xref: /openbmc/linux/block/blk-core.c (revision e0f6d1a5)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41 
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-wbt.h"
46 
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry *blk_debugfs_root;
49 #endif
50 
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
56 
57 DEFINE_IDA(blk_queue_ida);
58 
59 /*
60  * For the allocated request tables
61  */
62 struct kmem_cache *request_cachep;
63 
64 /*
65  * For queue allocation
66  */
67 struct kmem_cache *blk_requestq_cachep;
68 
69 /*
70  * Controlling structure to kblockd
71  */
72 static struct workqueue_struct *kblockd_workqueue;
73 
74 /**
75  * blk_queue_flag_set - atomically set a queue flag
76  * @flag: flag to be set
77  * @q: request queue
78  */
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 	unsigned long flags;
82 
83 	spin_lock_irqsave(q->queue_lock, flags);
84 	queue_flag_set(flag, q);
85 	spin_unlock_irqrestore(q->queue_lock, flags);
86 }
87 EXPORT_SYMBOL(blk_queue_flag_set);
88 
89 /**
90  * blk_queue_flag_clear - atomically clear a queue flag
91  * @flag: flag to be cleared
92  * @q: request queue
93  */
94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
95 {
96 	unsigned long flags;
97 
98 	spin_lock_irqsave(q->queue_lock, flags);
99 	queue_flag_clear(flag, q);
100 	spin_unlock_irqrestore(q->queue_lock, flags);
101 }
102 EXPORT_SYMBOL(blk_queue_flag_clear);
103 
104 /**
105  * blk_queue_flag_test_and_set - atomically test and set a queue flag
106  * @flag: flag to be set
107  * @q: request queue
108  *
109  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110  * the flag was already set.
111  */
112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
113 {
114 	unsigned long flags;
115 	bool res;
116 
117 	spin_lock_irqsave(q->queue_lock, flags);
118 	res = queue_flag_test_and_set(flag, q);
119 	spin_unlock_irqrestore(q->queue_lock, flags);
120 
121 	return res;
122 }
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
124 
125 /**
126  * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127  * @flag: flag to be cleared
128  * @q: request queue
129  *
130  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131  * the flag was set.
132  */
133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
134 {
135 	unsigned long flags;
136 	bool res;
137 
138 	spin_lock_irqsave(q->queue_lock, flags);
139 	res = queue_flag_test_and_clear(flag, q);
140 	spin_unlock_irqrestore(q->queue_lock, flags);
141 
142 	return res;
143 }
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
145 
146 static void blk_clear_congested(struct request_list *rl, int sync)
147 {
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 	clear_wb_congested(rl->blkg->wb_congested, sync);
150 #else
151 	/*
152 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 	 * flip its congestion state for events on other blkcgs.
154 	 */
155 	if (rl == &rl->q->root_rl)
156 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
157 #endif
158 }
159 
160 static void blk_set_congested(struct request_list *rl, int sync)
161 {
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 	set_wb_congested(rl->blkg->wb_congested, sync);
164 #else
165 	/* see blk_clear_congested() */
166 	if (rl == &rl->q->root_rl)
167 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
168 #endif
169 }
170 
171 void blk_queue_congestion_threshold(struct request_queue *q)
172 {
173 	int nr;
174 
175 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 	if (nr > q->nr_requests)
177 		nr = q->nr_requests;
178 	q->nr_congestion_on = nr;
179 
180 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 	if (nr < 1)
182 		nr = 1;
183 	q->nr_congestion_off = nr;
184 }
185 
186 void blk_rq_init(struct request_queue *q, struct request *rq)
187 {
188 	memset(rq, 0, sizeof(*rq));
189 
190 	INIT_LIST_HEAD(&rq->queuelist);
191 	INIT_LIST_HEAD(&rq->timeout_list);
192 	rq->cpu = -1;
193 	rq->q = q;
194 	rq->__sector = (sector_t) -1;
195 	INIT_HLIST_NODE(&rq->hash);
196 	RB_CLEAR_NODE(&rq->rb_node);
197 	rq->tag = -1;
198 	rq->internal_tag = -1;
199 	rq->start_time = jiffies;
200 	set_start_time_ns(rq);
201 	rq->part = NULL;
202 	seqcount_init(&rq->gstate_seq);
203 	u64_stats_init(&rq->aborted_gstate_sync);
204 	/*
205 	 * See comment of blk_mq_init_request
206 	 */
207 	WRITE_ONCE(rq->gstate, MQ_RQ_GEN_INC);
208 }
209 EXPORT_SYMBOL(blk_rq_init);
210 
211 static const struct {
212 	int		errno;
213 	const char	*name;
214 } blk_errors[] = {
215 	[BLK_STS_OK]		= { 0,		"" },
216 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
217 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
218 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
219 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
220 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
221 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
222 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
223 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
224 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
225 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
226 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
227 
228 	/* device mapper special case, should not leak out: */
229 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
230 
231 	/* everything else not covered above: */
232 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
233 };
234 
235 blk_status_t errno_to_blk_status(int errno)
236 {
237 	int i;
238 
239 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
240 		if (blk_errors[i].errno == errno)
241 			return (__force blk_status_t)i;
242 	}
243 
244 	return BLK_STS_IOERR;
245 }
246 EXPORT_SYMBOL_GPL(errno_to_blk_status);
247 
248 int blk_status_to_errno(blk_status_t status)
249 {
250 	int idx = (__force int)status;
251 
252 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
253 		return -EIO;
254 	return blk_errors[idx].errno;
255 }
256 EXPORT_SYMBOL_GPL(blk_status_to_errno);
257 
258 static void print_req_error(struct request *req, blk_status_t status)
259 {
260 	int idx = (__force int)status;
261 
262 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
263 		return;
264 
265 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
266 			   __func__, blk_errors[idx].name, req->rq_disk ?
267 			   req->rq_disk->disk_name : "?",
268 			   (unsigned long long)blk_rq_pos(req));
269 }
270 
271 static void req_bio_endio(struct request *rq, struct bio *bio,
272 			  unsigned int nbytes, blk_status_t error)
273 {
274 	if (error)
275 		bio->bi_status = error;
276 
277 	if (unlikely(rq->rq_flags & RQF_QUIET))
278 		bio_set_flag(bio, BIO_QUIET);
279 
280 	bio_advance(bio, nbytes);
281 
282 	/* don't actually finish bio if it's part of flush sequence */
283 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
284 		bio_endio(bio);
285 }
286 
287 void blk_dump_rq_flags(struct request *rq, char *msg)
288 {
289 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
290 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
291 		(unsigned long long) rq->cmd_flags);
292 
293 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
294 	       (unsigned long long)blk_rq_pos(rq),
295 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
296 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
297 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
298 }
299 EXPORT_SYMBOL(blk_dump_rq_flags);
300 
301 static void blk_delay_work(struct work_struct *work)
302 {
303 	struct request_queue *q;
304 
305 	q = container_of(work, struct request_queue, delay_work.work);
306 	spin_lock_irq(q->queue_lock);
307 	__blk_run_queue(q);
308 	spin_unlock_irq(q->queue_lock);
309 }
310 
311 /**
312  * blk_delay_queue - restart queueing after defined interval
313  * @q:		The &struct request_queue in question
314  * @msecs:	Delay in msecs
315  *
316  * Description:
317  *   Sometimes queueing needs to be postponed for a little while, to allow
318  *   resources to come back. This function will make sure that queueing is
319  *   restarted around the specified time.
320  */
321 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
322 {
323 	lockdep_assert_held(q->queue_lock);
324 	WARN_ON_ONCE(q->mq_ops);
325 
326 	if (likely(!blk_queue_dead(q)))
327 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
328 				   msecs_to_jiffies(msecs));
329 }
330 EXPORT_SYMBOL(blk_delay_queue);
331 
332 /**
333  * blk_start_queue_async - asynchronously restart a previously stopped queue
334  * @q:    The &struct request_queue in question
335  *
336  * Description:
337  *   blk_start_queue_async() will clear the stop flag on the queue, and
338  *   ensure that the request_fn for the queue is run from an async
339  *   context.
340  **/
341 void blk_start_queue_async(struct request_queue *q)
342 {
343 	lockdep_assert_held(q->queue_lock);
344 	WARN_ON_ONCE(q->mq_ops);
345 
346 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
347 	blk_run_queue_async(q);
348 }
349 EXPORT_SYMBOL(blk_start_queue_async);
350 
351 /**
352  * blk_start_queue - restart a previously stopped queue
353  * @q:    The &struct request_queue in question
354  *
355  * Description:
356  *   blk_start_queue() will clear the stop flag on the queue, and call
357  *   the request_fn for the queue if it was in a stopped state when
358  *   entered. Also see blk_stop_queue().
359  **/
360 void blk_start_queue(struct request_queue *q)
361 {
362 	lockdep_assert_held(q->queue_lock);
363 	WARN_ON(!in_interrupt() && !irqs_disabled());
364 	WARN_ON_ONCE(q->mq_ops);
365 
366 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
367 	__blk_run_queue(q);
368 }
369 EXPORT_SYMBOL(blk_start_queue);
370 
371 /**
372  * blk_stop_queue - stop a queue
373  * @q:    The &struct request_queue in question
374  *
375  * Description:
376  *   The Linux block layer assumes that a block driver will consume all
377  *   entries on the request queue when the request_fn strategy is called.
378  *   Often this will not happen, because of hardware limitations (queue
379  *   depth settings). If a device driver gets a 'queue full' response,
380  *   or if it simply chooses not to queue more I/O at one point, it can
381  *   call this function to prevent the request_fn from being called until
382  *   the driver has signalled it's ready to go again. This happens by calling
383  *   blk_start_queue() to restart queue operations.
384  **/
385 void blk_stop_queue(struct request_queue *q)
386 {
387 	lockdep_assert_held(q->queue_lock);
388 	WARN_ON_ONCE(q->mq_ops);
389 
390 	cancel_delayed_work(&q->delay_work);
391 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
392 }
393 EXPORT_SYMBOL(blk_stop_queue);
394 
395 /**
396  * blk_sync_queue - cancel any pending callbacks on a queue
397  * @q: the queue
398  *
399  * Description:
400  *     The block layer may perform asynchronous callback activity
401  *     on a queue, such as calling the unplug function after a timeout.
402  *     A block device may call blk_sync_queue to ensure that any
403  *     such activity is cancelled, thus allowing it to release resources
404  *     that the callbacks might use. The caller must already have made sure
405  *     that its ->make_request_fn will not re-add plugging prior to calling
406  *     this function.
407  *
408  *     This function does not cancel any asynchronous activity arising
409  *     out of elevator or throttling code. That would require elevator_exit()
410  *     and blkcg_exit_queue() to be called with queue lock initialized.
411  *
412  */
413 void blk_sync_queue(struct request_queue *q)
414 {
415 	del_timer_sync(&q->timeout);
416 	cancel_work_sync(&q->timeout_work);
417 
418 	if (q->mq_ops) {
419 		struct blk_mq_hw_ctx *hctx;
420 		int i;
421 
422 		cancel_delayed_work_sync(&q->requeue_work);
423 		queue_for_each_hw_ctx(q, hctx, i)
424 			cancel_delayed_work_sync(&hctx->run_work);
425 	} else {
426 		cancel_delayed_work_sync(&q->delay_work);
427 	}
428 }
429 EXPORT_SYMBOL(blk_sync_queue);
430 
431 /**
432  * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
433  * @q: request queue pointer
434  *
435  * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
436  * set and 1 if the flag was already set.
437  */
438 int blk_set_preempt_only(struct request_queue *q)
439 {
440 	return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
441 }
442 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
443 
444 void blk_clear_preempt_only(struct request_queue *q)
445 {
446 	blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
447 	wake_up_all(&q->mq_freeze_wq);
448 }
449 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
450 
451 /**
452  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
453  * @q:	The queue to run
454  *
455  * Description:
456  *    Invoke request handling on a queue if there are any pending requests.
457  *    May be used to restart request handling after a request has completed.
458  *    This variant runs the queue whether or not the queue has been
459  *    stopped. Must be called with the queue lock held and interrupts
460  *    disabled. See also @blk_run_queue.
461  */
462 inline void __blk_run_queue_uncond(struct request_queue *q)
463 {
464 	lockdep_assert_held(q->queue_lock);
465 	WARN_ON_ONCE(q->mq_ops);
466 
467 	if (unlikely(blk_queue_dead(q)))
468 		return;
469 
470 	/*
471 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
472 	 * the queue lock internally. As a result multiple threads may be
473 	 * running such a request function concurrently. Keep track of the
474 	 * number of active request_fn invocations such that blk_drain_queue()
475 	 * can wait until all these request_fn calls have finished.
476 	 */
477 	q->request_fn_active++;
478 	q->request_fn(q);
479 	q->request_fn_active--;
480 }
481 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
482 
483 /**
484  * __blk_run_queue - run a single device queue
485  * @q:	The queue to run
486  *
487  * Description:
488  *    See @blk_run_queue.
489  */
490 void __blk_run_queue(struct request_queue *q)
491 {
492 	lockdep_assert_held(q->queue_lock);
493 	WARN_ON_ONCE(q->mq_ops);
494 
495 	if (unlikely(blk_queue_stopped(q)))
496 		return;
497 
498 	__blk_run_queue_uncond(q);
499 }
500 EXPORT_SYMBOL(__blk_run_queue);
501 
502 /**
503  * blk_run_queue_async - run a single device queue in workqueue context
504  * @q:	The queue to run
505  *
506  * Description:
507  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
508  *    of us.
509  *
510  * Note:
511  *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
512  *    has canceled q->delay_work, callers must hold the queue lock to avoid
513  *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
514  */
515 void blk_run_queue_async(struct request_queue *q)
516 {
517 	lockdep_assert_held(q->queue_lock);
518 	WARN_ON_ONCE(q->mq_ops);
519 
520 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
521 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
522 }
523 EXPORT_SYMBOL(blk_run_queue_async);
524 
525 /**
526  * blk_run_queue - run a single device queue
527  * @q: The queue to run
528  *
529  * Description:
530  *    Invoke request handling on this queue, if it has pending work to do.
531  *    May be used to restart queueing when a request has completed.
532  */
533 void blk_run_queue(struct request_queue *q)
534 {
535 	unsigned long flags;
536 
537 	WARN_ON_ONCE(q->mq_ops);
538 
539 	spin_lock_irqsave(q->queue_lock, flags);
540 	__blk_run_queue(q);
541 	spin_unlock_irqrestore(q->queue_lock, flags);
542 }
543 EXPORT_SYMBOL(blk_run_queue);
544 
545 void blk_put_queue(struct request_queue *q)
546 {
547 	kobject_put(&q->kobj);
548 }
549 EXPORT_SYMBOL(blk_put_queue);
550 
551 /**
552  * __blk_drain_queue - drain requests from request_queue
553  * @q: queue to drain
554  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
555  *
556  * Drain requests from @q.  If @drain_all is set, all requests are drained.
557  * If not, only ELVPRIV requests are drained.  The caller is responsible
558  * for ensuring that no new requests which need to be drained are queued.
559  */
560 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
561 	__releases(q->queue_lock)
562 	__acquires(q->queue_lock)
563 {
564 	int i;
565 
566 	lockdep_assert_held(q->queue_lock);
567 	WARN_ON_ONCE(q->mq_ops);
568 
569 	while (true) {
570 		bool drain = false;
571 
572 		/*
573 		 * The caller might be trying to drain @q before its
574 		 * elevator is initialized.
575 		 */
576 		if (q->elevator)
577 			elv_drain_elevator(q);
578 
579 		blkcg_drain_queue(q);
580 
581 		/*
582 		 * This function might be called on a queue which failed
583 		 * driver init after queue creation or is not yet fully
584 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
585 		 * in such cases.  Kick queue iff dispatch queue has
586 		 * something on it and @q has request_fn set.
587 		 */
588 		if (!list_empty(&q->queue_head) && q->request_fn)
589 			__blk_run_queue(q);
590 
591 		drain |= q->nr_rqs_elvpriv;
592 		drain |= q->request_fn_active;
593 
594 		/*
595 		 * Unfortunately, requests are queued at and tracked from
596 		 * multiple places and there's no single counter which can
597 		 * be drained.  Check all the queues and counters.
598 		 */
599 		if (drain_all) {
600 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
601 			drain |= !list_empty(&q->queue_head);
602 			for (i = 0; i < 2; i++) {
603 				drain |= q->nr_rqs[i];
604 				drain |= q->in_flight[i];
605 				if (fq)
606 				    drain |= !list_empty(&fq->flush_queue[i]);
607 			}
608 		}
609 
610 		if (!drain)
611 			break;
612 
613 		spin_unlock_irq(q->queue_lock);
614 
615 		msleep(10);
616 
617 		spin_lock_irq(q->queue_lock);
618 	}
619 
620 	/*
621 	 * With queue marked dead, any woken up waiter will fail the
622 	 * allocation path, so the wakeup chaining is lost and we're
623 	 * left with hung waiters. We need to wake up those waiters.
624 	 */
625 	if (q->request_fn) {
626 		struct request_list *rl;
627 
628 		blk_queue_for_each_rl(rl, q)
629 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
630 				wake_up_all(&rl->wait[i]);
631 	}
632 }
633 
634 void blk_drain_queue(struct request_queue *q)
635 {
636 	spin_lock_irq(q->queue_lock);
637 	__blk_drain_queue(q, true);
638 	spin_unlock_irq(q->queue_lock);
639 }
640 
641 /**
642  * blk_queue_bypass_start - enter queue bypass mode
643  * @q: queue of interest
644  *
645  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
646  * function makes @q enter bypass mode and drains all requests which were
647  * throttled or issued before.  On return, it's guaranteed that no request
648  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
649  * inside queue or RCU read lock.
650  */
651 void blk_queue_bypass_start(struct request_queue *q)
652 {
653 	WARN_ON_ONCE(q->mq_ops);
654 
655 	spin_lock_irq(q->queue_lock);
656 	q->bypass_depth++;
657 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
658 	spin_unlock_irq(q->queue_lock);
659 
660 	/*
661 	 * Queues start drained.  Skip actual draining till init is
662 	 * complete.  This avoids lenghty delays during queue init which
663 	 * can happen many times during boot.
664 	 */
665 	if (blk_queue_init_done(q)) {
666 		spin_lock_irq(q->queue_lock);
667 		__blk_drain_queue(q, false);
668 		spin_unlock_irq(q->queue_lock);
669 
670 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
671 		synchronize_rcu();
672 	}
673 }
674 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
675 
676 /**
677  * blk_queue_bypass_end - leave queue bypass mode
678  * @q: queue of interest
679  *
680  * Leave bypass mode and restore the normal queueing behavior.
681  *
682  * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
683  * this function is called for both blk-sq and blk-mq queues.
684  */
685 void blk_queue_bypass_end(struct request_queue *q)
686 {
687 	spin_lock_irq(q->queue_lock);
688 	if (!--q->bypass_depth)
689 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
690 	WARN_ON_ONCE(q->bypass_depth < 0);
691 	spin_unlock_irq(q->queue_lock);
692 }
693 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
694 
695 void blk_set_queue_dying(struct request_queue *q)
696 {
697 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
698 
699 	/*
700 	 * When queue DYING flag is set, we need to block new req
701 	 * entering queue, so we call blk_freeze_queue_start() to
702 	 * prevent I/O from crossing blk_queue_enter().
703 	 */
704 	blk_freeze_queue_start(q);
705 
706 	if (q->mq_ops)
707 		blk_mq_wake_waiters(q);
708 	else {
709 		struct request_list *rl;
710 
711 		spin_lock_irq(q->queue_lock);
712 		blk_queue_for_each_rl(rl, q) {
713 			if (rl->rq_pool) {
714 				wake_up_all(&rl->wait[BLK_RW_SYNC]);
715 				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
716 			}
717 		}
718 		spin_unlock_irq(q->queue_lock);
719 	}
720 
721 	/* Make blk_queue_enter() reexamine the DYING flag. */
722 	wake_up_all(&q->mq_freeze_wq);
723 }
724 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
725 
726 /**
727  * blk_cleanup_queue - shutdown a request queue
728  * @q: request queue to shutdown
729  *
730  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
731  * put it.  All future requests will be failed immediately with -ENODEV.
732  */
733 void blk_cleanup_queue(struct request_queue *q)
734 {
735 	spinlock_t *lock = q->queue_lock;
736 
737 	/* mark @q DYING, no new request or merges will be allowed afterwards */
738 	mutex_lock(&q->sysfs_lock);
739 	blk_set_queue_dying(q);
740 	spin_lock_irq(lock);
741 
742 	/*
743 	 * A dying queue is permanently in bypass mode till released.  Note
744 	 * that, unlike blk_queue_bypass_start(), we aren't performing
745 	 * synchronize_rcu() after entering bypass mode to avoid the delay
746 	 * as some drivers create and destroy a lot of queues while
747 	 * probing.  This is still safe because blk_release_queue() will be
748 	 * called only after the queue refcnt drops to zero and nothing,
749 	 * RCU or not, would be traversing the queue by then.
750 	 */
751 	q->bypass_depth++;
752 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
753 
754 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
755 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
756 	queue_flag_set(QUEUE_FLAG_DYING, q);
757 	spin_unlock_irq(lock);
758 	mutex_unlock(&q->sysfs_lock);
759 
760 	/*
761 	 * Drain all requests queued before DYING marking. Set DEAD flag to
762 	 * prevent that q->request_fn() gets invoked after draining finished.
763 	 */
764 	blk_freeze_queue(q);
765 	spin_lock_irq(lock);
766 	queue_flag_set(QUEUE_FLAG_DEAD, q);
767 	spin_unlock_irq(lock);
768 
769 	/*
770 	 * make sure all in-progress dispatch are completed because
771 	 * blk_freeze_queue() can only complete all requests, and
772 	 * dispatch may still be in-progress since we dispatch requests
773 	 * from more than one contexts
774 	 */
775 	if (q->mq_ops)
776 		blk_mq_quiesce_queue(q);
777 
778 	/* for synchronous bio-based driver finish in-flight integrity i/o */
779 	blk_flush_integrity();
780 
781 	/* @q won't process any more request, flush async actions */
782 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
783 	blk_sync_queue(q);
784 
785 	/*
786 	 * I/O scheduler exit is only safe after the sysfs scheduler attribute
787 	 * has been removed.
788 	 */
789 	WARN_ON_ONCE(q->kobj.state_in_sysfs);
790 
791 	/*
792 	 * Since the I/O scheduler exit code may access cgroup information,
793 	 * perform I/O scheduler exit before disassociating from the block
794 	 * cgroup controller.
795 	 */
796 	if (q->elevator) {
797 		ioc_clear_queue(q);
798 		elevator_exit(q, q->elevator);
799 		q->elevator = NULL;
800 	}
801 
802 	/*
803 	 * Remove all references to @q from the block cgroup controller before
804 	 * restoring @q->queue_lock to avoid that restoring this pointer causes
805 	 * e.g. blkcg_print_blkgs() to crash.
806 	 */
807 	blkcg_exit_queue(q);
808 
809 	/*
810 	 * Since the cgroup code may dereference the @q->backing_dev_info
811 	 * pointer, only decrease its reference count after having removed the
812 	 * association with the block cgroup controller.
813 	 */
814 	bdi_put(q->backing_dev_info);
815 
816 	if (q->mq_ops)
817 		blk_mq_free_queue(q);
818 	percpu_ref_exit(&q->q_usage_counter);
819 
820 	spin_lock_irq(lock);
821 	if (q->queue_lock != &q->__queue_lock)
822 		q->queue_lock = &q->__queue_lock;
823 	spin_unlock_irq(lock);
824 
825 	/* @q is and will stay empty, shutdown and put */
826 	blk_put_queue(q);
827 }
828 EXPORT_SYMBOL(blk_cleanup_queue);
829 
830 /* Allocate memory local to the request queue */
831 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
832 {
833 	struct request_queue *q = data;
834 
835 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
836 }
837 
838 static void free_request_simple(void *element, void *data)
839 {
840 	kmem_cache_free(request_cachep, element);
841 }
842 
843 static void *alloc_request_size(gfp_t gfp_mask, void *data)
844 {
845 	struct request_queue *q = data;
846 	struct request *rq;
847 
848 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
849 			q->node);
850 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
851 		kfree(rq);
852 		rq = NULL;
853 	}
854 	return rq;
855 }
856 
857 static void free_request_size(void *element, void *data)
858 {
859 	struct request_queue *q = data;
860 
861 	if (q->exit_rq_fn)
862 		q->exit_rq_fn(q, element);
863 	kfree(element);
864 }
865 
866 int blk_init_rl(struct request_list *rl, struct request_queue *q,
867 		gfp_t gfp_mask)
868 {
869 	if (unlikely(rl->rq_pool) || q->mq_ops)
870 		return 0;
871 
872 	rl->q = q;
873 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
874 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
875 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
876 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
877 
878 	if (q->cmd_size) {
879 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
880 				alloc_request_size, free_request_size,
881 				q, gfp_mask, q->node);
882 	} else {
883 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
884 				alloc_request_simple, free_request_simple,
885 				q, gfp_mask, q->node);
886 	}
887 	if (!rl->rq_pool)
888 		return -ENOMEM;
889 
890 	if (rl != &q->root_rl)
891 		WARN_ON_ONCE(!blk_get_queue(q));
892 
893 	return 0;
894 }
895 
896 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
897 {
898 	if (rl->rq_pool) {
899 		mempool_destroy(rl->rq_pool);
900 		if (rl != &q->root_rl)
901 			blk_put_queue(q);
902 	}
903 }
904 
905 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
906 {
907 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
908 }
909 EXPORT_SYMBOL(blk_alloc_queue);
910 
911 /**
912  * blk_queue_enter() - try to increase q->q_usage_counter
913  * @q: request queue pointer
914  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
915  */
916 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
917 {
918 	const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
919 
920 	while (true) {
921 		bool success = false;
922 
923 		rcu_read_lock();
924 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
925 			/*
926 			 * The code that sets the PREEMPT_ONLY flag is
927 			 * responsible for ensuring that that flag is globally
928 			 * visible before the queue is unfrozen.
929 			 */
930 			if (preempt || !blk_queue_preempt_only(q)) {
931 				success = true;
932 			} else {
933 				percpu_ref_put(&q->q_usage_counter);
934 			}
935 		}
936 		rcu_read_unlock();
937 
938 		if (success)
939 			return 0;
940 
941 		if (flags & BLK_MQ_REQ_NOWAIT)
942 			return -EBUSY;
943 
944 		/*
945 		 * read pair of barrier in blk_freeze_queue_start(),
946 		 * we need to order reading __PERCPU_REF_DEAD flag of
947 		 * .q_usage_counter and reading .mq_freeze_depth or
948 		 * queue dying flag, otherwise the following wait may
949 		 * never return if the two reads are reordered.
950 		 */
951 		smp_rmb();
952 
953 		wait_event(q->mq_freeze_wq,
954 			   (atomic_read(&q->mq_freeze_depth) == 0 &&
955 			    (preempt || !blk_queue_preempt_only(q))) ||
956 			   blk_queue_dying(q));
957 		if (blk_queue_dying(q))
958 			return -ENODEV;
959 	}
960 }
961 
962 void blk_queue_exit(struct request_queue *q)
963 {
964 	percpu_ref_put(&q->q_usage_counter);
965 }
966 
967 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
968 {
969 	struct request_queue *q =
970 		container_of(ref, struct request_queue, q_usage_counter);
971 
972 	wake_up_all(&q->mq_freeze_wq);
973 }
974 
975 static void blk_rq_timed_out_timer(struct timer_list *t)
976 {
977 	struct request_queue *q = from_timer(q, t, timeout);
978 
979 	kblockd_schedule_work(&q->timeout_work);
980 }
981 
982 /**
983  * blk_alloc_queue_node - allocate a request queue
984  * @gfp_mask: memory allocation flags
985  * @node_id: NUMA node to allocate memory from
986  * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
987  *        serialize calls to the legacy .request_fn() callback. Ignored for
988  *	  blk-mq request queues.
989  *
990  * Note: pass the queue lock as the third argument to this function instead of
991  * setting the queue lock pointer explicitly to avoid triggering a sporadic
992  * crash in the blkcg code. This function namely calls blkcg_init_queue() and
993  * the queue lock pointer must be set before blkcg_init_queue() is called.
994  */
995 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
996 					   spinlock_t *lock)
997 {
998 	struct request_queue *q;
999 
1000 	q = kmem_cache_alloc_node(blk_requestq_cachep,
1001 				gfp_mask | __GFP_ZERO, node_id);
1002 	if (!q)
1003 		return NULL;
1004 
1005 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1006 	if (q->id < 0)
1007 		goto fail_q;
1008 
1009 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1010 	if (!q->bio_split)
1011 		goto fail_id;
1012 
1013 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1014 	if (!q->backing_dev_info)
1015 		goto fail_split;
1016 
1017 	q->stats = blk_alloc_queue_stats();
1018 	if (!q->stats)
1019 		goto fail_stats;
1020 
1021 	q->backing_dev_info->ra_pages =
1022 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1023 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1024 	q->backing_dev_info->name = "block";
1025 	q->node = node_id;
1026 
1027 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1028 		    laptop_mode_timer_fn, 0);
1029 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1030 	INIT_WORK(&q->timeout_work, NULL);
1031 	INIT_LIST_HEAD(&q->queue_head);
1032 	INIT_LIST_HEAD(&q->timeout_list);
1033 	INIT_LIST_HEAD(&q->icq_list);
1034 #ifdef CONFIG_BLK_CGROUP
1035 	INIT_LIST_HEAD(&q->blkg_list);
1036 #endif
1037 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1038 
1039 	kobject_init(&q->kobj, &blk_queue_ktype);
1040 
1041 #ifdef CONFIG_BLK_DEV_IO_TRACE
1042 	mutex_init(&q->blk_trace_mutex);
1043 #endif
1044 	mutex_init(&q->sysfs_lock);
1045 	spin_lock_init(&q->__queue_lock);
1046 
1047 	if (!q->mq_ops)
1048 		q->queue_lock = lock ? : &q->__queue_lock;
1049 
1050 	/*
1051 	 * A queue starts its life with bypass turned on to avoid
1052 	 * unnecessary bypass on/off overhead and nasty surprises during
1053 	 * init.  The initial bypass will be finished when the queue is
1054 	 * registered by blk_register_queue().
1055 	 */
1056 	q->bypass_depth = 1;
1057 	queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1058 
1059 	init_waitqueue_head(&q->mq_freeze_wq);
1060 
1061 	/*
1062 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1063 	 * See blk_register_queue() for details.
1064 	 */
1065 	if (percpu_ref_init(&q->q_usage_counter,
1066 				blk_queue_usage_counter_release,
1067 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1068 		goto fail_bdi;
1069 
1070 	if (blkcg_init_queue(q))
1071 		goto fail_ref;
1072 
1073 	return q;
1074 
1075 fail_ref:
1076 	percpu_ref_exit(&q->q_usage_counter);
1077 fail_bdi:
1078 	blk_free_queue_stats(q->stats);
1079 fail_stats:
1080 	bdi_put(q->backing_dev_info);
1081 fail_split:
1082 	bioset_free(q->bio_split);
1083 fail_id:
1084 	ida_simple_remove(&blk_queue_ida, q->id);
1085 fail_q:
1086 	kmem_cache_free(blk_requestq_cachep, q);
1087 	return NULL;
1088 }
1089 EXPORT_SYMBOL(blk_alloc_queue_node);
1090 
1091 /**
1092  * blk_init_queue  - prepare a request queue for use with a block device
1093  * @rfn:  The function to be called to process requests that have been
1094  *        placed on the queue.
1095  * @lock: Request queue spin lock
1096  *
1097  * Description:
1098  *    If a block device wishes to use the standard request handling procedures,
1099  *    which sorts requests and coalesces adjacent requests, then it must
1100  *    call blk_init_queue().  The function @rfn will be called when there
1101  *    are requests on the queue that need to be processed.  If the device
1102  *    supports plugging, then @rfn may not be called immediately when requests
1103  *    are available on the queue, but may be called at some time later instead.
1104  *    Plugged queues are generally unplugged when a buffer belonging to one
1105  *    of the requests on the queue is needed, or due to memory pressure.
1106  *
1107  *    @rfn is not required, or even expected, to remove all requests off the
1108  *    queue, but only as many as it can handle at a time.  If it does leave
1109  *    requests on the queue, it is responsible for arranging that the requests
1110  *    get dealt with eventually.
1111  *
1112  *    The queue spin lock must be held while manipulating the requests on the
1113  *    request queue; this lock will be taken also from interrupt context, so irq
1114  *    disabling is needed for it.
1115  *
1116  *    Function returns a pointer to the initialized request queue, or %NULL if
1117  *    it didn't succeed.
1118  *
1119  * Note:
1120  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1121  *    when the block device is deactivated (such as at module unload).
1122  **/
1123 
1124 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1125 {
1126 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1127 }
1128 EXPORT_SYMBOL(blk_init_queue);
1129 
1130 struct request_queue *
1131 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1132 {
1133 	struct request_queue *q;
1134 
1135 	q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1136 	if (!q)
1137 		return NULL;
1138 
1139 	q->request_fn = rfn;
1140 	if (blk_init_allocated_queue(q) < 0) {
1141 		blk_cleanup_queue(q);
1142 		return NULL;
1143 	}
1144 
1145 	return q;
1146 }
1147 EXPORT_SYMBOL(blk_init_queue_node);
1148 
1149 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1150 
1151 
1152 int blk_init_allocated_queue(struct request_queue *q)
1153 {
1154 	WARN_ON_ONCE(q->mq_ops);
1155 
1156 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1157 	if (!q->fq)
1158 		return -ENOMEM;
1159 
1160 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1161 		goto out_free_flush_queue;
1162 
1163 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1164 		goto out_exit_flush_rq;
1165 
1166 	INIT_WORK(&q->timeout_work, blk_timeout_work);
1167 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
1168 
1169 	/*
1170 	 * This also sets hw/phys segments, boundary and size
1171 	 */
1172 	blk_queue_make_request(q, blk_queue_bio);
1173 
1174 	q->sg_reserved_size = INT_MAX;
1175 
1176 	/* Protect q->elevator from elevator_change */
1177 	mutex_lock(&q->sysfs_lock);
1178 
1179 	/* init elevator */
1180 	if (elevator_init(q, NULL)) {
1181 		mutex_unlock(&q->sysfs_lock);
1182 		goto out_exit_flush_rq;
1183 	}
1184 
1185 	mutex_unlock(&q->sysfs_lock);
1186 	return 0;
1187 
1188 out_exit_flush_rq:
1189 	if (q->exit_rq_fn)
1190 		q->exit_rq_fn(q, q->fq->flush_rq);
1191 out_free_flush_queue:
1192 	blk_free_flush_queue(q->fq);
1193 	return -ENOMEM;
1194 }
1195 EXPORT_SYMBOL(blk_init_allocated_queue);
1196 
1197 bool blk_get_queue(struct request_queue *q)
1198 {
1199 	if (likely(!blk_queue_dying(q))) {
1200 		__blk_get_queue(q);
1201 		return true;
1202 	}
1203 
1204 	return false;
1205 }
1206 EXPORT_SYMBOL(blk_get_queue);
1207 
1208 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1209 {
1210 	if (rq->rq_flags & RQF_ELVPRIV) {
1211 		elv_put_request(rl->q, rq);
1212 		if (rq->elv.icq)
1213 			put_io_context(rq->elv.icq->ioc);
1214 	}
1215 
1216 	mempool_free(rq, rl->rq_pool);
1217 }
1218 
1219 /*
1220  * ioc_batching returns true if the ioc is a valid batching request and
1221  * should be given priority access to a request.
1222  */
1223 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1224 {
1225 	if (!ioc)
1226 		return 0;
1227 
1228 	/*
1229 	 * Make sure the process is able to allocate at least 1 request
1230 	 * even if the batch times out, otherwise we could theoretically
1231 	 * lose wakeups.
1232 	 */
1233 	return ioc->nr_batch_requests == q->nr_batching ||
1234 		(ioc->nr_batch_requests > 0
1235 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1236 }
1237 
1238 /*
1239  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1240  * will cause the process to be a "batcher" on all queues in the system. This
1241  * is the behaviour we want though - once it gets a wakeup it should be given
1242  * a nice run.
1243  */
1244 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1245 {
1246 	if (!ioc || ioc_batching(q, ioc))
1247 		return;
1248 
1249 	ioc->nr_batch_requests = q->nr_batching;
1250 	ioc->last_waited = jiffies;
1251 }
1252 
1253 static void __freed_request(struct request_list *rl, int sync)
1254 {
1255 	struct request_queue *q = rl->q;
1256 
1257 	if (rl->count[sync] < queue_congestion_off_threshold(q))
1258 		blk_clear_congested(rl, sync);
1259 
1260 	if (rl->count[sync] + 1 <= q->nr_requests) {
1261 		if (waitqueue_active(&rl->wait[sync]))
1262 			wake_up(&rl->wait[sync]);
1263 
1264 		blk_clear_rl_full(rl, sync);
1265 	}
1266 }
1267 
1268 /*
1269  * A request has just been released.  Account for it, update the full and
1270  * congestion status, wake up any waiters.   Called under q->queue_lock.
1271  */
1272 static void freed_request(struct request_list *rl, bool sync,
1273 		req_flags_t rq_flags)
1274 {
1275 	struct request_queue *q = rl->q;
1276 
1277 	q->nr_rqs[sync]--;
1278 	rl->count[sync]--;
1279 	if (rq_flags & RQF_ELVPRIV)
1280 		q->nr_rqs_elvpriv--;
1281 
1282 	__freed_request(rl, sync);
1283 
1284 	if (unlikely(rl->starved[sync ^ 1]))
1285 		__freed_request(rl, sync ^ 1);
1286 }
1287 
1288 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1289 {
1290 	struct request_list *rl;
1291 	int on_thresh, off_thresh;
1292 
1293 	WARN_ON_ONCE(q->mq_ops);
1294 
1295 	spin_lock_irq(q->queue_lock);
1296 	q->nr_requests = nr;
1297 	blk_queue_congestion_threshold(q);
1298 	on_thresh = queue_congestion_on_threshold(q);
1299 	off_thresh = queue_congestion_off_threshold(q);
1300 
1301 	blk_queue_for_each_rl(rl, q) {
1302 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1303 			blk_set_congested(rl, BLK_RW_SYNC);
1304 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1305 			blk_clear_congested(rl, BLK_RW_SYNC);
1306 
1307 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1308 			blk_set_congested(rl, BLK_RW_ASYNC);
1309 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1310 			blk_clear_congested(rl, BLK_RW_ASYNC);
1311 
1312 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1313 			blk_set_rl_full(rl, BLK_RW_SYNC);
1314 		} else {
1315 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1316 			wake_up(&rl->wait[BLK_RW_SYNC]);
1317 		}
1318 
1319 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1320 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1321 		} else {
1322 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1323 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1324 		}
1325 	}
1326 
1327 	spin_unlock_irq(q->queue_lock);
1328 	return 0;
1329 }
1330 
1331 /**
1332  * __get_request - get a free request
1333  * @rl: request list to allocate from
1334  * @op: operation and flags
1335  * @bio: bio to allocate request for (can be %NULL)
1336  * @flags: BLQ_MQ_REQ_* flags
1337  *
1338  * Get a free request from @q.  This function may fail under memory
1339  * pressure or if @q is dead.
1340  *
1341  * Must be called with @q->queue_lock held and,
1342  * Returns ERR_PTR on failure, with @q->queue_lock held.
1343  * Returns request pointer on success, with @q->queue_lock *not held*.
1344  */
1345 static struct request *__get_request(struct request_list *rl, unsigned int op,
1346 				     struct bio *bio, blk_mq_req_flags_t flags)
1347 {
1348 	struct request_queue *q = rl->q;
1349 	struct request *rq;
1350 	struct elevator_type *et = q->elevator->type;
1351 	struct io_context *ioc = rq_ioc(bio);
1352 	struct io_cq *icq = NULL;
1353 	const bool is_sync = op_is_sync(op);
1354 	int may_queue;
1355 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1356 			 __GFP_DIRECT_RECLAIM;
1357 	req_flags_t rq_flags = RQF_ALLOCED;
1358 
1359 	lockdep_assert_held(q->queue_lock);
1360 
1361 	if (unlikely(blk_queue_dying(q)))
1362 		return ERR_PTR(-ENODEV);
1363 
1364 	may_queue = elv_may_queue(q, op);
1365 	if (may_queue == ELV_MQUEUE_NO)
1366 		goto rq_starved;
1367 
1368 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1369 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1370 			/*
1371 			 * The queue will fill after this allocation, so set
1372 			 * it as full, and mark this process as "batching".
1373 			 * This process will be allowed to complete a batch of
1374 			 * requests, others will be blocked.
1375 			 */
1376 			if (!blk_rl_full(rl, is_sync)) {
1377 				ioc_set_batching(q, ioc);
1378 				blk_set_rl_full(rl, is_sync);
1379 			} else {
1380 				if (may_queue != ELV_MQUEUE_MUST
1381 						&& !ioc_batching(q, ioc)) {
1382 					/*
1383 					 * The queue is full and the allocating
1384 					 * process is not a "batcher", and not
1385 					 * exempted by the IO scheduler
1386 					 */
1387 					return ERR_PTR(-ENOMEM);
1388 				}
1389 			}
1390 		}
1391 		blk_set_congested(rl, is_sync);
1392 	}
1393 
1394 	/*
1395 	 * Only allow batching queuers to allocate up to 50% over the defined
1396 	 * limit of requests, otherwise we could have thousands of requests
1397 	 * allocated with any setting of ->nr_requests
1398 	 */
1399 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1400 		return ERR_PTR(-ENOMEM);
1401 
1402 	q->nr_rqs[is_sync]++;
1403 	rl->count[is_sync]++;
1404 	rl->starved[is_sync] = 0;
1405 
1406 	/*
1407 	 * Decide whether the new request will be managed by elevator.  If
1408 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1409 	 * prevent the current elevator from being destroyed until the new
1410 	 * request is freed.  This guarantees icq's won't be destroyed and
1411 	 * makes creating new ones safe.
1412 	 *
1413 	 * Flush requests do not use the elevator so skip initialization.
1414 	 * This allows a request to share the flush and elevator data.
1415 	 *
1416 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1417 	 * it will be created after releasing queue_lock.
1418 	 */
1419 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1420 		rq_flags |= RQF_ELVPRIV;
1421 		q->nr_rqs_elvpriv++;
1422 		if (et->icq_cache && ioc)
1423 			icq = ioc_lookup_icq(ioc, q);
1424 	}
1425 
1426 	if (blk_queue_io_stat(q))
1427 		rq_flags |= RQF_IO_STAT;
1428 	spin_unlock_irq(q->queue_lock);
1429 
1430 	/* allocate and init request */
1431 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1432 	if (!rq)
1433 		goto fail_alloc;
1434 
1435 	blk_rq_init(q, rq);
1436 	blk_rq_set_rl(rq, rl);
1437 	rq->cmd_flags = op;
1438 	rq->rq_flags = rq_flags;
1439 	if (flags & BLK_MQ_REQ_PREEMPT)
1440 		rq->rq_flags |= RQF_PREEMPT;
1441 
1442 	/* init elvpriv */
1443 	if (rq_flags & RQF_ELVPRIV) {
1444 		if (unlikely(et->icq_cache && !icq)) {
1445 			if (ioc)
1446 				icq = ioc_create_icq(ioc, q, gfp_mask);
1447 			if (!icq)
1448 				goto fail_elvpriv;
1449 		}
1450 
1451 		rq->elv.icq = icq;
1452 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1453 			goto fail_elvpriv;
1454 
1455 		/* @rq->elv.icq holds io_context until @rq is freed */
1456 		if (icq)
1457 			get_io_context(icq->ioc);
1458 	}
1459 out:
1460 	/*
1461 	 * ioc may be NULL here, and ioc_batching will be false. That's
1462 	 * OK, if the queue is under the request limit then requests need
1463 	 * not count toward the nr_batch_requests limit. There will always
1464 	 * be some limit enforced by BLK_BATCH_TIME.
1465 	 */
1466 	if (ioc_batching(q, ioc))
1467 		ioc->nr_batch_requests--;
1468 
1469 	trace_block_getrq(q, bio, op);
1470 	return rq;
1471 
1472 fail_elvpriv:
1473 	/*
1474 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1475 	 * and may fail indefinitely under memory pressure and thus
1476 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1477 	 * disturb iosched and blkcg but weird is bettern than dead.
1478 	 */
1479 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1480 			   __func__, dev_name(q->backing_dev_info->dev));
1481 
1482 	rq->rq_flags &= ~RQF_ELVPRIV;
1483 	rq->elv.icq = NULL;
1484 
1485 	spin_lock_irq(q->queue_lock);
1486 	q->nr_rqs_elvpriv--;
1487 	spin_unlock_irq(q->queue_lock);
1488 	goto out;
1489 
1490 fail_alloc:
1491 	/*
1492 	 * Allocation failed presumably due to memory. Undo anything we
1493 	 * might have messed up.
1494 	 *
1495 	 * Allocating task should really be put onto the front of the wait
1496 	 * queue, but this is pretty rare.
1497 	 */
1498 	spin_lock_irq(q->queue_lock);
1499 	freed_request(rl, is_sync, rq_flags);
1500 
1501 	/*
1502 	 * in the very unlikely event that allocation failed and no
1503 	 * requests for this direction was pending, mark us starved so that
1504 	 * freeing of a request in the other direction will notice
1505 	 * us. another possible fix would be to split the rq mempool into
1506 	 * READ and WRITE
1507 	 */
1508 rq_starved:
1509 	if (unlikely(rl->count[is_sync] == 0))
1510 		rl->starved[is_sync] = 1;
1511 	return ERR_PTR(-ENOMEM);
1512 }
1513 
1514 /**
1515  * get_request - get a free request
1516  * @q: request_queue to allocate request from
1517  * @op: operation and flags
1518  * @bio: bio to allocate request for (can be %NULL)
1519  * @flags: BLK_MQ_REQ_* flags.
1520  *
1521  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1522  * this function keeps retrying under memory pressure and fails iff @q is dead.
1523  *
1524  * Must be called with @q->queue_lock held and,
1525  * Returns ERR_PTR on failure, with @q->queue_lock held.
1526  * Returns request pointer on success, with @q->queue_lock *not held*.
1527  */
1528 static struct request *get_request(struct request_queue *q, unsigned int op,
1529 				   struct bio *bio, blk_mq_req_flags_t flags)
1530 {
1531 	const bool is_sync = op_is_sync(op);
1532 	DEFINE_WAIT(wait);
1533 	struct request_list *rl;
1534 	struct request *rq;
1535 
1536 	lockdep_assert_held(q->queue_lock);
1537 	WARN_ON_ONCE(q->mq_ops);
1538 
1539 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1540 retry:
1541 	rq = __get_request(rl, op, bio, flags);
1542 	if (!IS_ERR(rq))
1543 		return rq;
1544 
1545 	if (op & REQ_NOWAIT) {
1546 		blk_put_rl(rl);
1547 		return ERR_PTR(-EAGAIN);
1548 	}
1549 
1550 	if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1551 		blk_put_rl(rl);
1552 		return rq;
1553 	}
1554 
1555 	/* wait on @rl and retry */
1556 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1557 				  TASK_UNINTERRUPTIBLE);
1558 
1559 	trace_block_sleeprq(q, bio, op);
1560 
1561 	spin_unlock_irq(q->queue_lock);
1562 	io_schedule();
1563 
1564 	/*
1565 	 * After sleeping, we become a "batching" process and will be able
1566 	 * to allocate at least one request, and up to a big batch of them
1567 	 * for a small period time.  See ioc_batching, ioc_set_batching
1568 	 */
1569 	ioc_set_batching(q, current->io_context);
1570 
1571 	spin_lock_irq(q->queue_lock);
1572 	finish_wait(&rl->wait[is_sync], &wait);
1573 
1574 	goto retry;
1575 }
1576 
1577 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1578 static struct request *blk_old_get_request(struct request_queue *q,
1579 				unsigned int op, blk_mq_req_flags_t flags)
1580 {
1581 	struct request *rq;
1582 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1583 			 __GFP_DIRECT_RECLAIM;
1584 	int ret = 0;
1585 
1586 	WARN_ON_ONCE(q->mq_ops);
1587 
1588 	/* create ioc upfront */
1589 	create_io_context(gfp_mask, q->node);
1590 
1591 	ret = blk_queue_enter(q, flags);
1592 	if (ret)
1593 		return ERR_PTR(ret);
1594 	spin_lock_irq(q->queue_lock);
1595 	rq = get_request(q, op, NULL, flags);
1596 	if (IS_ERR(rq)) {
1597 		spin_unlock_irq(q->queue_lock);
1598 		blk_queue_exit(q);
1599 		return rq;
1600 	}
1601 
1602 	/* q->queue_lock is unlocked at this point */
1603 	rq->__data_len = 0;
1604 	rq->__sector = (sector_t) -1;
1605 	rq->bio = rq->biotail = NULL;
1606 	return rq;
1607 }
1608 
1609 /**
1610  * blk_get_request_flags - allocate a request
1611  * @q: request queue to allocate a request for
1612  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1613  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1614  */
1615 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1616 				      blk_mq_req_flags_t flags)
1617 {
1618 	struct request *req;
1619 
1620 	WARN_ON_ONCE(op & REQ_NOWAIT);
1621 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1622 
1623 	if (q->mq_ops) {
1624 		req = blk_mq_alloc_request(q, op, flags);
1625 		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1626 			q->mq_ops->initialize_rq_fn(req);
1627 	} else {
1628 		req = blk_old_get_request(q, op, flags);
1629 		if (!IS_ERR(req) && q->initialize_rq_fn)
1630 			q->initialize_rq_fn(req);
1631 	}
1632 
1633 	return req;
1634 }
1635 EXPORT_SYMBOL(blk_get_request_flags);
1636 
1637 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1638 				gfp_t gfp_mask)
1639 {
1640 	return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1641 				     0 : BLK_MQ_REQ_NOWAIT);
1642 }
1643 EXPORT_SYMBOL(blk_get_request);
1644 
1645 /**
1646  * blk_requeue_request - put a request back on queue
1647  * @q:		request queue where request should be inserted
1648  * @rq:		request to be inserted
1649  *
1650  * Description:
1651  *    Drivers often keep queueing requests until the hardware cannot accept
1652  *    more, when that condition happens we need to put the request back
1653  *    on the queue. Must be called with queue lock held.
1654  */
1655 void blk_requeue_request(struct request_queue *q, struct request *rq)
1656 {
1657 	lockdep_assert_held(q->queue_lock);
1658 	WARN_ON_ONCE(q->mq_ops);
1659 
1660 	blk_delete_timer(rq);
1661 	blk_clear_rq_complete(rq);
1662 	trace_block_rq_requeue(q, rq);
1663 	wbt_requeue(q->rq_wb, &rq->issue_stat);
1664 
1665 	if (rq->rq_flags & RQF_QUEUED)
1666 		blk_queue_end_tag(q, rq);
1667 
1668 	BUG_ON(blk_queued_rq(rq));
1669 
1670 	elv_requeue_request(q, rq);
1671 }
1672 EXPORT_SYMBOL(blk_requeue_request);
1673 
1674 static void add_acct_request(struct request_queue *q, struct request *rq,
1675 			     int where)
1676 {
1677 	blk_account_io_start(rq, true);
1678 	__elv_add_request(q, rq, where);
1679 }
1680 
1681 static void part_round_stats_single(struct request_queue *q, int cpu,
1682 				    struct hd_struct *part, unsigned long now,
1683 				    unsigned int inflight)
1684 {
1685 	if (inflight) {
1686 		__part_stat_add(cpu, part, time_in_queue,
1687 				inflight * (now - part->stamp));
1688 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1689 	}
1690 	part->stamp = now;
1691 }
1692 
1693 /**
1694  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1695  * @q: target block queue
1696  * @cpu: cpu number for stats access
1697  * @part: target partition
1698  *
1699  * The average IO queue length and utilisation statistics are maintained
1700  * by observing the current state of the queue length and the amount of
1701  * time it has been in this state for.
1702  *
1703  * Normally, that accounting is done on IO completion, but that can result
1704  * in more than a second's worth of IO being accounted for within any one
1705  * second, leading to >100% utilisation.  To deal with that, we call this
1706  * function to do a round-off before returning the results when reading
1707  * /proc/diskstats.  This accounts immediately for all queue usage up to
1708  * the current jiffies and restarts the counters again.
1709  */
1710 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1711 {
1712 	struct hd_struct *part2 = NULL;
1713 	unsigned long now = jiffies;
1714 	unsigned int inflight[2];
1715 	int stats = 0;
1716 
1717 	if (part->stamp != now)
1718 		stats |= 1;
1719 
1720 	if (part->partno) {
1721 		part2 = &part_to_disk(part)->part0;
1722 		if (part2->stamp != now)
1723 			stats |= 2;
1724 	}
1725 
1726 	if (!stats)
1727 		return;
1728 
1729 	part_in_flight(q, part, inflight);
1730 
1731 	if (stats & 2)
1732 		part_round_stats_single(q, cpu, part2, now, inflight[1]);
1733 	if (stats & 1)
1734 		part_round_stats_single(q, cpu, part, now, inflight[0]);
1735 }
1736 EXPORT_SYMBOL_GPL(part_round_stats);
1737 
1738 #ifdef CONFIG_PM
1739 static void blk_pm_put_request(struct request *rq)
1740 {
1741 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1742 		pm_runtime_mark_last_busy(rq->q->dev);
1743 }
1744 #else
1745 static inline void blk_pm_put_request(struct request *rq) {}
1746 #endif
1747 
1748 void __blk_put_request(struct request_queue *q, struct request *req)
1749 {
1750 	req_flags_t rq_flags = req->rq_flags;
1751 
1752 	if (unlikely(!q))
1753 		return;
1754 
1755 	if (q->mq_ops) {
1756 		blk_mq_free_request(req);
1757 		return;
1758 	}
1759 
1760 	lockdep_assert_held(q->queue_lock);
1761 
1762 	blk_req_zone_write_unlock(req);
1763 	blk_pm_put_request(req);
1764 
1765 	elv_completed_request(q, req);
1766 
1767 	/* this is a bio leak */
1768 	WARN_ON(req->bio != NULL);
1769 
1770 	wbt_done(q->rq_wb, &req->issue_stat);
1771 
1772 	/*
1773 	 * Request may not have originated from ll_rw_blk. if not,
1774 	 * it didn't come out of our reserved rq pools
1775 	 */
1776 	if (rq_flags & RQF_ALLOCED) {
1777 		struct request_list *rl = blk_rq_rl(req);
1778 		bool sync = op_is_sync(req->cmd_flags);
1779 
1780 		BUG_ON(!list_empty(&req->queuelist));
1781 		BUG_ON(ELV_ON_HASH(req));
1782 
1783 		blk_free_request(rl, req);
1784 		freed_request(rl, sync, rq_flags);
1785 		blk_put_rl(rl);
1786 		blk_queue_exit(q);
1787 	}
1788 }
1789 EXPORT_SYMBOL_GPL(__blk_put_request);
1790 
1791 void blk_put_request(struct request *req)
1792 {
1793 	struct request_queue *q = req->q;
1794 
1795 	if (q->mq_ops)
1796 		blk_mq_free_request(req);
1797 	else {
1798 		unsigned long flags;
1799 
1800 		spin_lock_irqsave(q->queue_lock, flags);
1801 		__blk_put_request(q, req);
1802 		spin_unlock_irqrestore(q->queue_lock, flags);
1803 	}
1804 }
1805 EXPORT_SYMBOL(blk_put_request);
1806 
1807 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1808 			    struct bio *bio)
1809 {
1810 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1811 
1812 	if (!ll_back_merge_fn(q, req, bio))
1813 		return false;
1814 
1815 	trace_block_bio_backmerge(q, req, bio);
1816 
1817 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1818 		blk_rq_set_mixed_merge(req);
1819 
1820 	req->biotail->bi_next = bio;
1821 	req->biotail = bio;
1822 	req->__data_len += bio->bi_iter.bi_size;
1823 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1824 
1825 	blk_account_io_start(req, false);
1826 	return true;
1827 }
1828 
1829 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1830 			     struct bio *bio)
1831 {
1832 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1833 
1834 	if (!ll_front_merge_fn(q, req, bio))
1835 		return false;
1836 
1837 	trace_block_bio_frontmerge(q, req, bio);
1838 
1839 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1840 		blk_rq_set_mixed_merge(req);
1841 
1842 	bio->bi_next = req->bio;
1843 	req->bio = bio;
1844 
1845 	req->__sector = bio->bi_iter.bi_sector;
1846 	req->__data_len += bio->bi_iter.bi_size;
1847 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1848 
1849 	blk_account_io_start(req, false);
1850 	return true;
1851 }
1852 
1853 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1854 		struct bio *bio)
1855 {
1856 	unsigned short segments = blk_rq_nr_discard_segments(req);
1857 
1858 	if (segments >= queue_max_discard_segments(q))
1859 		goto no_merge;
1860 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1861 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1862 		goto no_merge;
1863 
1864 	req->biotail->bi_next = bio;
1865 	req->biotail = bio;
1866 	req->__data_len += bio->bi_iter.bi_size;
1867 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1868 	req->nr_phys_segments = segments + 1;
1869 
1870 	blk_account_io_start(req, false);
1871 	return true;
1872 no_merge:
1873 	req_set_nomerge(q, req);
1874 	return false;
1875 }
1876 
1877 /**
1878  * blk_attempt_plug_merge - try to merge with %current's plugged list
1879  * @q: request_queue new bio is being queued at
1880  * @bio: new bio being queued
1881  * @request_count: out parameter for number of traversed plugged requests
1882  * @same_queue_rq: pointer to &struct request that gets filled in when
1883  * another request associated with @q is found on the plug list
1884  * (optional, may be %NULL)
1885  *
1886  * Determine whether @bio being queued on @q can be merged with a request
1887  * on %current's plugged list.  Returns %true if merge was successful,
1888  * otherwise %false.
1889  *
1890  * Plugging coalesces IOs from the same issuer for the same purpose without
1891  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1892  * than scheduling, and the request, while may have elvpriv data, is not
1893  * added on the elevator at this point.  In addition, we don't have
1894  * reliable access to the elevator outside queue lock.  Only check basic
1895  * merging parameters without querying the elevator.
1896  *
1897  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1898  */
1899 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1900 			    unsigned int *request_count,
1901 			    struct request **same_queue_rq)
1902 {
1903 	struct blk_plug *plug;
1904 	struct request *rq;
1905 	struct list_head *plug_list;
1906 
1907 	plug = current->plug;
1908 	if (!plug)
1909 		return false;
1910 	*request_count = 0;
1911 
1912 	if (q->mq_ops)
1913 		plug_list = &plug->mq_list;
1914 	else
1915 		plug_list = &plug->list;
1916 
1917 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1918 		bool merged = false;
1919 
1920 		if (rq->q == q) {
1921 			(*request_count)++;
1922 			/*
1923 			 * Only blk-mq multiple hardware queues case checks the
1924 			 * rq in the same queue, there should be only one such
1925 			 * rq in a queue
1926 			 **/
1927 			if (same_queue_rq)
1928 				*same_queue_rq = rq;
1929 		}
1930 
1931 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1932 			continue;
1933 
1934 		switch (blk_try_merge(rq, bio)) {
1935 		case ELEVATOR_BACK_MERGE:
1936 			merged = bio_attempt_back_merge(q, rq, bio);
1937 			break;
1938 		case ELEVATOR_FRONT_MERGE:
1939 			merged = bio_attempt_front_merge(q, rq, bio);
1940 			break;
1941 		case ELEVATOR_DISCARD_MERGE:
1942 			merged = bio_attempt_discard_merge(q, rq, bio);
1943 			break;
1944 		default:
1945 			break;
1946 		}
1947 
1948 		if (merged)
1949 			return true;
1950 	}
1951 
1952 	return false;
1953 }
1954 
1955 unsigned int blk_plug_queued_count(struct request_queue *q)
1956 {
1957 	struct blk_plug *plug;
1958 	struct request *rq;
1959 	struct list_head *plug_list;
1960 	unsigned int ret = 0;
1961 
1962 	plug = current->plug;
1963 	if (!plug)
1964 		goto out;
1965 
1966 	if (q->mq_ops)
1967 		plug_list = &plug->mq_list;
1968 	else
1969 		plug_list = &plug->list;
1970 
1971 	list_for_each_entry(rq, plug_list, queuelist) {
1972 		if (rq->q == q)
1973 			ret++;
1974 	}
1975 out:
1976 	return ret;
1977 }
1978 
1979 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1980 {
1981 	struct io_context *ioc = rq_ioc(bio);
1982 
1983 	if (bio->bi_opf & REQ_RAHEAD)
1984 		req->cmd_flags |= REQ_FAILFAST_MASK;
1985 
1986 	req->__sector = bio->bi_iter.bi_sector;
1987 	if (ioprio_valid(bio_prio(bio)))
1988 		req->ioprio = bio_prio(bio);
1989 	else if (ioc)
1990 		req->ioprio = ioc->ioprio;
1991 	else
1992 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1993 	req->write_hint = bio->bi_write_hint;
1994 	blk_rq_bio_prep(req->q, req, bio);
1995 }
1996 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1997 
1998 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1999 {
2000 	struct blk_plug *plug;
2001 	int where = ELEVATOR_INSERT_SORT;
2002 	struct request *req, *free;
2003 	unsigned int request_count = 0;
2004 	unsigned int wb_acct;
2005 
2006 	/*
2007 	 * low level driver can indicate that it wants pages above a
2008 	 * certain limit bounced to low memory (ie for highmem, or even
2009 	 * ISA dma in theory)
2010 	 */
2011 	blk_queue_bounce(q, &bio);
2012 
2013 	blk_queue_split(q, &bio);
2014 
2015 	if (!bio_integrity_prep(bio))
2016 		return BLK_QC_T_NONE;
2017 
2018 	if (op_is_flush(bio->bi_opf)) {
2019 		spin_lock_irq(q->queue_lock);
2020 		where = ELEVATOR_INSERT_FLUSH;
2021 		goto get_rq;
2022 	}
2023 
2024 	/*
2025 	 * Check if we can merge with the plugged list before grabbing
2026 	 * any locks.
2027 	 */
2028 	if (!blk_queue_nomerges(q)) {
2029 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2030 			return BLK_QC_T_NONE;
2031 	} else
2032 		request_count = blk_plug_queued_count(q);
2033 
2034 	spin_lock_irq(q->queue_lock);
2035 
2036 	switch (elv_merge(q, &req, bio)) {
2037 	case ELEVATOR_BACK_MERGE:
2038 		if (!bio_attempt_back_merge(q, req, bio))
2039 			break;
2040 		elv_bio_merged(q, req, bio);
2041 		free = attempt_back_merge(q, req);
2042 		if (free)
2043 			__blk_put_request(q, free);
2044 		else
2045 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2046 		goto out_unlock;
2047 	case ELEVATOR_FRONT_MERGE:
2048 		if (!bio_attempt_front_merge(q, req, bio))
2049 			break;
2050 		elv_bio_merged(q, req, bio);
2051 		free = attempt_front_merge(q, req);
2052 		if (free)
2053 			__blk_put_request(q, free);
2054 		else
2055 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2056 		goto out_unlock;
2057 	default:
2058 		break;
2059 	}
2060 
2061 get_rq:
2062 	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
2063 
2064 	/*
2065 	 * Grab a free request. This is might sleep but can not fail.
2066 	 * Returns with the queue unlocked.
2067 	 */
2068 	blk_queue_enter_live(q);
2069 	req = get_request(q, bio->bi_opf, bio, 0);
2070 	if (IS_ERR(req)) {
2071 		blk_queue_exit(q);
2072 		__wbt_done(q->rq_wb, wb_acct);
2073 		if (PTR_ERR(req) == -ENOMEM)
2074 			bio->bi_status = BLK_STS_RESOURCE;
2075 		else
2076 			bio->bi_status = BLK_STS_IOERR;
2077 		bio_endio(bio);
2078 		goto out_unlock;
2079 	}
2080 
2081 	wbt_track(&req->issue_stat, wb_acct);
2082 
2083 	/*
2084 	 * After dropping the lock and possibly sleeping here, our request
2085 	 * may now be mergeable after it had proven unmergeable (above).
2086 	 * We don't worry about that case for efficiency. It won't happen
2087 	 * often, and the elevators are able to handle it.
2088 	 */
2089 	blk_init_request_from_bio(req, bio);
2090 
2091 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2092 		req->cpu = raw_smp_processor_id();
2093 
2094 	plug = current->plug;
2095 	if (plug) {
2096 		/*
2097 		 * If this is the first request added after a plug, fire
2098 		 * of a plug trace.
2099 		 *
2100 		 * @request_count may become stale because of schedule
2101 		 * out, so check plug list again.
2102 		 */
2103 		if (!request_count || list_empty(&plug->list))
2104 			trace_block_plug(q);
2105 		else {
2106 			struct request *last = list_entry_rq(plug->list.prev);
2107 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
2108 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2109 				blk_flush_plug_list(plug, false);
2110 				trace_block_plug(q);
2111 			}
2112 		}
2113 		list_add_tail(&req->queuelist, &plug->list);
2114 		blk_account_io_start(req, true);
2115 	} else {
2116 		spin_lock_irq(q->queue_lock);
2117 		add_acct_request(q, req, where);
2118 		__blk_run_queue(q);
2119 out_unlock:
2120 		spin_unlock_irq(q->queue_lock);
2121 	}
2122 
2123 	return BLK_QC_T_NONE;
2124 }
2125 
2126 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2127 {
2128 	char b[BDEVNAME_SIZE];
2129 
2130 	printk(KERN_INFO "attempt to access beyond end of device\n");
2131 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2132 			bio_devname(bio, b), bio->bi_opf,
2133 			(unsigned long long)bio_end_sector(bio),
2134 			(long long)maxsector);
2135 }
2136 
2137 #ifdef CONFIG_FAIL_MAKE_REQUEST
2138 
2139 static DECLARE_FAULT_ATTR(fail_make_request);
2140 
2141 static int __init setup_fail_make_request(char *str)
2142 {
2143 	return setup_fault_attr(&fail_make_request, str);
2144 }
2145 __setup("fail_make_request=", setup_fail_make_request);
2146 
2147 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2148 {
2149 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
2150 }
2151 
2152 static int __init fail_make_request_debugfs(void)
2153 {
2154 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2155 						NULL, &fail_make_request);
2156 
2157 	return PTR_ERR_OR_ZERO(dir);
2158 }
2159 
2160 late_initcall(fail_make_request_debugfs);
2161 
2162 #else /* CONFIG_FAIL_MAKE_REQUEST */
2163 
2164 static inline bool should_fail_request(struct hd_struct *part,
2165 					unsigned int bytes)
2166 {
2167 	return false;
2168 }
2169 
2170 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2171 
2172 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2173 {
2174 	if (part->policy && op_is_write(bio_op(bio))) {
2175 		char b[BDEVNAME_SIZE];
2176 
2177 		printk(KERN_ERR
2178 		       "generic_make_request: Trying to write "
2179 			"to read-only block-device %s (partno %d)\n",
2180 			bio_devname(bio, b), part->partno);
2181 		return true;
2182 	}
2183 
2184 	return false;
2185 }
2186 
2187 static noinline int should_fail_bio(struct bio *bio)
2188 {
2189 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2190 		return -EIO;
2191 	return 0;
2192 }
2193 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2194 
2195 /*
2196  * Check whether this bio extends beyond the end of the device or partition.
2197  * This may well happen - the kernel calls bread() without checking the size of
2198  * the device, e.g., when mounting a file system.
2199  */
2200 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2201 {
2202 	unsigned int nr_sectors = bio_sectors(bio);
2203 
2204 	if (nr_sectors && maxsector &&
2205 	    (nr_sectors > maxsector ||
2206 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2207 		handle_bad_sector(bio, maxsector);
2208 		return -EIO;
2209 	}
2210 	return 0;
2211 }
2212 
2213 /*
2214  * Remap block n of partition p to block n+start(p) of the disk.
2215  */
2216 static inline int blk_partition_remap(struct bio *bio)
2217 {
2218 	struct hd_struct *p;
2219 	int ret = -EIO;
2220 
2221 	rcu_read_lock();
2222 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2223 	if (unlikely(!p))
2224 		goto out;
2225 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2226 		goto out;
2227 	if (unlikely(bio_check_ro(bio, p)))
2228 		goto out;
2229 
2230 	/*
2231 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
2232 	 * Include a test for the reset op code and perform the remap if needed.
2233 	 */
2234 	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2235 		if (bio_check_eod(bio, part_nr_sects_read(p)))
2236 			goto out;
2237 		bio->bi_iter.bi_sector += p->start_sect;
2238 		bio->bi_partno = 0;
2239 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2240 				      bio->bi_iter.bi_sector - p->start_sect);
2241 	}
2242 	ret = 0;
2243 out:
2244 	rcu_read_unlock();
2245 	return ret;
2246 }
2247 
2248 static noinline_for_stack bool
2249 generic_make_request_checks(struct bio *bio)
2250 {
2251 	struct request_queue *q;
2252 	int nr_sectors = bio_sectors(bio);
2253 	blk_status_t status = BLK_STS_IOERR;
2254 	char b[BDEVNAME_SIZE];
2255 
2256 	might_sleep();
2257 
2258 	q = bio->bi_disk->queue;
2259 	if (unlikely(!q)) {
2260 		printk(KERN_ERR
2261 		       "generic_make_request: Trying to access "
2262 			"nonexistent block-device %s (%Lu)\n",
2263 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2264 		goto end_io;
2265 	}
2266 
2267 	/*
2268 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2269 	 * if queue is not a request based queue.
2270 	 */
2271 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2272 		goto not_supported;
2273 
2274 	if (should_fail_bio(bio))
2275 		goto end_io;
2276 
2277 	if (bio->bi_partno) {
2278 		if (unlikely(blk_partition_remap(bio)))
2279 			goto end_io;
2280 	} else {
2281 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2282 			goto end_io;
2283 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2284 			goto end_io;
2285 	}
2286 
2287 	/*
2288 	 * Filter flush bio's early so that make_request based
2289 	 * drivers without flush support don't have to worry
2290 	 * about them.
2291 	 */
2292 	if (op_is_flush(bio->bi_opf) &&
2293 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2294 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2295 		if (!nr_sectors) {
2296 			status = BLK_STS_OK;
2297 			goto end_io;
2298 		}
2299 	}
2300 
2301 	switch (bio_op(bio)) {
2302 	case REQ_OP_DISCARD:
2303 		if (!blk_queue_discard(q))
2304 			goto not_supported;
2305 		break;
2306 	case REQ_OP_SECURE_ERASE:
2307 		if (!blk_queue_secure_erase(q))
2308 			goto not_supported;
2309 		break;
2310 	case REQ_OP_WRITE_SAME:
2311 		if (!q->limits.max_write_same_sectors)
2312 			goto not_supported;
2313 		break;
2314 	case REQ_OP_ZONE_REPORT:
2315 	case REQ_OP_ZONE_RESET:
2316 		if (!blk_queue_is_zoned(q))
2317 			goto not_supported;
2318 		break;
2319 	case REQ_OP_WRITE_ZEROES:
2320 		if (!q->limits.max_write_zeroes_sectors)
2321 			goto not_supported;
2322 		break;
2323 	default:
2324 		break;
2325 	}
2326 
2327 	/*
2328 	 * Various block parts want %current->io_context and lazy ioc
2329 	 * allocation ends up trading a lot of pain for a small amount of
2330 	 * memory.  Just allocate it upfront.  This may fail and block
2331 	 * layer knows how to live with it.
2332 	 */
2333 	create_io_context(GFP_ATOMIC, q->node);
2334 
2335 	if (!blkcg_bio_issue_check(q, bio))
2336 		return false;
2337 
2338 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2339 		trace_block_bio_queue(q, bio);
2340 		/* Now that enqueuing has been traced, we need to trace
2341 		 * completion as well.
2342 		 */
2343 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2344 	}
2345 	return true;
2346 
2347 not_supported:
2348 	status = BLK_STS_NOTSUPP;
2349 end_io:
2350 	bio->bi_status = status;
2351 	bio_endio(bio);
2352 	return false;
2353 }
2354 
2355 /**
2356  * generic_make_request - hand a buffer to its device driver for I/O
2357  * @bio:  The bio describing the location in memory and on the device.
2358  *
2359  * generic_make_request() is used to make I/O requests of block
2360  * devices. It is passed a &struct bio, which describes the I/O that needs
2361  * to be done.
2362  *
2363  * generic_make_request() does not return any status.  The
2364  * success/failure status of the request, along with notification of
2365  * completion, is delivered asynchronously through the bio->bi_end_io
2366  * function described (one day) else where.
2367  *
2368  * The caller of generic_make_request must make sure that bi_io_vec
2369  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2370  * set to describe the device address, and the
2371  * bi_end_io and optionally bi_private are set to describe how
2372  * completion notification should be signaled.
2373  *
2374  * generic_make_request and the drivers it calls may use bi_next if this
2375  * bio happens to be merged with someone else, and may resubmit the bio to
2376  * a lower device by calling into generic_make_request recursively, which
2377  * means the bio should NOT be touched after the call to ->make_request_fn.
2378  */
2379 blk_qc_t generic_make_request(struct bio *bio)
2380 {
2381 	/*
2382 	 * bio_list_on_stack[0] contains bios submitted by the current
2383 	 * make_request_fn.
2384 	 * bio_list_on_stack[1] contains bios that were submitted before
2385 	 * the current make_request_fn, but that haven't been processed
2386 	 * yet.
2387 	 */
2388 	struct bio_list bio_list_on_stack[2];
2389 	blk_mq_req_flags_t flags = 0;
2390 	struct request_queue *q = bio->bi_disk->queue;
2391 	blk_qc_t ret = BLK_QC_T_NONE;
2392 
2393 	if (bio->bi_opf & REQ_NOWAIT)
2394 		flags = BLK_MQ_REQ_NOWAIT;
2395 	if (blk_queue_enter(q, flags) < 0) {
2396 		if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2397 			bio_wouldblock_error(bio);
2398 		else
2399 			bio_io_error(bio);
2400 		return ret;
2401 	}
2402 
2403 	if (!generic_make_request_checks(bio))
2404 		goto out;
2405 
2406 	/*
2407 	 * We only want one ->make_request_fn to be active at a time, else
2408 	 * stack usage with stacked devices could be a problem.  So use
2409 	 * current->bio_list to keep a list of requests submited by a
2410 	 * make_request_fn function.  current->bio_list is also used as a
2411 	 * flag to say if generic_make_request is currently active in this
2412 	 * task or not.  If it is NULL, then no make_request is active.  If
2413 	 * it is non-NULL, then a make_request is active, and new requests
2414 	 * should be added at the tail
2415 	 */
2416 	if (current->bio_list) {
2417 		bio_list_add(&current->bio_list[0], bio);
2418 		goto out;
2419 	}
2420 
2421 	/* following loop may be a bit non-obvious, and so deserves some
2422 	 * explanation.
2423 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2424 	 * ensure that) so we have a list with a single bio.
2425 	 * We pretend that we have just taken it off a longer list, so
2426 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2427 	 * thus initialising the bio_list of new bios to be
2428 	 * added.  ->make_request() may indeed add some more bios
2429 	 * through a recursive call to generic_make_request.  If it
2430 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2431 	 * from the top.  In this case we really did just take the bio
2432 	 * of the top of the list (no pretending) and so remove it from
2433 	 * bio_list, and call into ->make_request() again.
2434 	 */
2435 	BUG_ON(bio->bi_next);
2436 	bio_list_init(&bio_list_on_stack[0]);
2437 	current->bio_list = bio_list_on_stack;
2438 	do {
2439 		bool enter_succeeded = true;
2440 
2441 		if (unlikely(q != bio->bi_disk->queue)) {
2442 			if (q)
2443 				blk_queue_exit(q);
2444 			q = bio->bi_disk->queue;
2445 			flags = 0;
2446 			if (bio->bi_opf & REQ_NOWAIT)
2447 				flags = BLK_MQ_REQ_NOWAIT;
2448 			if (blk_queue_enter(q, flags) < 0) {
2449 				enter_succeeded = false;
2450 				q = NULL;
2451 			}
2452 		}
2453 
2454 		if (enter_succeeded) {
2455 			struct bio_list lower, same;
2456 
2457 			/* Create a fresh bio_list for all subordinate requests */
2458 			bio_list_on_stack[1] = bio_list_on_stack[0];
2459 			bio_list_init(&bio_list_on_stack[0]);
2460 			ret = q->make_request_fn(q, bio);
2461 
2462 			/* sort new bios into those for a lower level
2463 			 * and those for the same level
2464 			 */
2465 			bio_list_init(&lower);
2466 			bio_list_init(&same);
2467 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2468 				if (q == bio->bi_disk->queue)
2469 					bio_list_add(&same, bio);
2470 				else
2471 					bio_list_add(&lower, bio);
2472 			/* now assemble so we handle the lowest level first */
2473 			bio_list_merge(&bio_list_on_stack[0], &lower);
2474 			bio_list_merge(&bio_list_on_stack[0], &same);
2475 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2476 		} else {
2477 			if (unlikely(!blk_queue_dying(q) &&
2478 					(bio->bi_opf & REQ_NOWAIT)))
2479 				bio_wouldblock_error(bio);
2480 			else
2481 				bio_io_error(bio);
2482 		}
2483 		bio = bio_list_pop(&bio_list_on_stack[0]);
2484 	} while (bio);
2485 	current->bio_list = NULL; /* deactivate */
2486 
2487 out:
2488 	if (q)
2489 		blk_queue_exit(q);
2490 	return ret;
2491 }
2492 EXPORT_SYMBOL(generic_make_request);
2493 
2494 /**
2495  * direct_make_request - hand a buffer directly to its device driver for I/O
2496  * @bio:  The bio describing the location in memory and on the device.
2497  *
2498  * This function behaves like generic_make_request(), but does not protect
2499  * against recursion.  Must only be used if the called driver is known
2500  * to not call generic_make_request (or direct_make_request) again from
2501  * its make_request function.  (Calling direct_make_request again from
2502  * a workqueue is perfectly fine as that doesn't recurse).
2503  */
2504 blk_qc_t direct_make_request(struct bio *bio)
2505 {
2506 	struct request_queue *q = bio->bi_disk->queue;
2507 	bool nowait = bio->bi_opf & REQ_NOWAIT;
2508 	blk_qc_t ret;
2509 
2510 	if (!generic_make_request_checks(bio))
2511 		return BLK_QC_T_NONE;
2512 
2513 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2514 		if (nowait && !blk_queue_dying(q))
2515 			bio->bi_status = BLK_STS_AGAIN;
2516 		else
2517 			bio->bi_status = BLK_STS_IOERR;
2518 		bio_endio(bio);
2519 		return BLK_QC_T_NONE;
2520 	}
2521 
2522 	ret = q->make_request_fn(q, bio);
2523 	blk_queue_exit(q);
2524 	return ret;
2525 }
2526 EXPORT_SYMBOL_GPL(direct_make_request);
2527 
2528 /**
2529  * submit_bio - submit a bio to the block device layer for I/O
2530  * @bio: The &struct bio which describes the I/O
2531  *
2532  * submit_bio() is very similar in purpose to generic_make_request(), and
2533  * uses that function to do most of the work. Both are fairly rough
2534  * interfaces; @bio must be presetup and ready for I/O.
2535  *
2536  */
2537 blk_qc_t submit_bio(struct bio *bio)
2538 {
2539 	/*
2540 	 * If it's a regular read/write or a barrier with data attached,
2541 	 * go through the normal accounting stuff before submission.
2542 	 */
2543 	if (bio_has_data(bio)) {
2544 		unsigned int count;
2545 
2546 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2547 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2548 		else
2549 			count = bio_sectors(bio);
2550 
2551 		if (op_is_write(bio_op(bio))) {
2552 			count_vm_events(PGPGOUT, count);
2553 		} else {
2554 			task_io_account_read(bio->bi_iter.bi_size);
2555 			count_vm_events(PGPGIN, count);
2556 		}
2557 
2558 		if (unlikely(block_dump)) {
2559 			char b[BDEVNAME_SIZE];
2560 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2561 			current->comm, task_pid_nr(current),
2562 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2563 				(unsigned long long)bio->bi_iter.bi_sector,
2564 				bio_devname(bio, b), count);
2565 		}
2566 	}
2567 
2568 	return generic_make_request(bio);
2569 }
2570 EXPORT_SYMBOL(submit_bio);
2571 
2572 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2573 {
2574 	if (!q->poll_fn || !blk_qc_t_valid(cookie))
2575 		return false;
2576 
2577 	if (current->plug)
2578 		blk_flush_plug_list(current->plug, false);
2579 	return q->poll_fn(q, cookie);
2580 }
2581 EXPORT_SYMBOL_GPL(blk_poll);
2582 
2583 /**
2584  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2585  *                              for new the queue limits
2586  * @q:  the queue
2587  * @rq: the request being checked
2588  *
2589  * Description:
2590  *    @rq may have been made based on weaker limitations of upper-level queues
2591  *    in request stacking drivers, and it may violate the limitation of @q.
2592  *    Since the block layer and the underlying device driver trust @rq
2593  *    after it is inserted to @q, it should be checked against @q before
2594  *    the insertion using this generic function.
2595  *
2596  *    Request stacking drivers like request-based dm may change the queue
2597  *    limits when retrying requests on other queues. Those requests need
2598  *    to be checked against the new queue limits again during dispatch.
2599  */
2600 static int blk_cloned_rq_check_limits(struct request_queue *q,
2601 				      struct request *rq)
2602 {
2603 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2604 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2605 		return -EIO;
2606 	}
2607 
2608 	/*
2609 	 * queue's settings related to segment counting like q->bounce_pfn
2610 	 * may differ from that of other stacking queues.
2611 	 * Recalculate it to check the request correctly on this queue's
2612 	 * limitation.
2613 	 */
2614 	blk_recalc_rq_segments(rq);
2615 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2616 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2617 		return -EIO;
2618 	}
2619 
2620 	return 0;
2621 }
2622 
2623 /**
2624  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2625  * @q:  the queue to submit the request
2626  * @rq: the request being queued
2627  */
2628 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2629 {
2630 	unsigned long flags;
2631 	int where = ELEVATOR_INSERT_BACK;
2632 
2633 	if (blk_cloned_rq_check_limits(q, rq))
2634 		return BLK_STS_IOERR;
2635 
2636 	if (rq->rq_disk &&
2637 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2638 		return BLK_STS_IOERR;
2639 
2640 	if (q->mq_ops) {
2641 		if (blk_queue_io_stat(q))
2642 			blk_account_io_start(rq, true);
2643 		/*
2644 		 * Since we have a scheduler attached on the top device,
2645 		 * bypass a potential scheduler on the bottom device for
2646 		 * insert.
2647 		 */
2648 		return blk_mq_request_issue_directly(rq);
2649 	}
2650 
2651 	spin_lock_irqsave(q->queue_lock, flags);
2652 	if (unlikely(blk_queue_dying(q))) {
2653 		spin_unlock_irqrestore(q->queue_lock, flags);
2654 		return BLK_STS_IOERR;
2655 	}
2656 
2657 	/*
2658 	 * Submitting request must be dequeued before calling this function
2659 	 * because it will be linked to another request_queue
2660 	 */
2661 	BUG_ON(blk_queued_rq(rq));
2662 
2663 	if (op_is_flush(rq->cmd_flags))
2664 		where = ELEVATOR_INSERT_FLUSH;
2665 
2666 	add_acct_request(q, rq, where);
2667 	if (where == ELEVATOR_INSERT_FLUSH)
2668 		__blk_run_queue(q);
2669 	spin_unlock_irqrestore(q->queue_lock, flags);
2670 
2671 	return BLK_STS_OK;
2672 }
2673 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2674 
2675 /**
2676  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2677  * @rq: request to examine
2678  *
2679  * Description:
2680  *     A request could be merge of IOs which require different failure
2681  *     handling.  This function determines the number of bytes which
2682  *     can be failed from the beginning of the request without
2683  *     crossing into area which need to be retried further.
2684  *
2685  * Return:
2686  *     The number of bytes to fail.
2687  */
2688 unsigned int blk_rq_err_bytes(const struct request *rq)
2689 {
2690 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2691 	unsigned int bytes = 0;
2692 	struct bio *bio;
2693 
2694 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2695 		return blk_rq_bytes(rq);
2696 
2697 	/*
2698 	 * Currently the only 'mixing' which can happen is between
2699 	 * different fastfail types.  We can safely fail portions
2700 	 * which have all the failfast bits that the first one has -
2701 	 * the ones which are at least as eager to fail as the first
2702 	 * one.
2703 	 */
2704 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2705 		if ((bio->bi_opf & ff) != ff)
2706 			break;
2707 		bytes += bio->bi_iter.bi_size;
2708 	}
2709 
2710 	/* this could lead to infinite loop */
2711 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2712 	return bytes;
2713 }
2714 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2715 
2716 void blk_account_io_completion(struct request *req, unsigned int bytes)
2717 {
2718 	if (blk_do_io_stat(req)) {
2719 		const int rw = rq_data_dir(req);
2720 		struct hd_struct *part;
2721 		int cpu;
2722 
2723 		cpu = part_stat_lock();
2724 		part = req->part;
2725 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2726 		part_stat_unlock();
2727 	}
2728 }
2729 
2730 void blk_account_io_done(struct request *req)
2731 {
2732 	/*
2733 	 * Account IO completion.  flush_rq isn't accounted as a
2734 	 * normal IO on queueing nor completion.  Accounting the
2735 	 * containing request is enough.
2736 	 */
2737 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2738 		unsigned long duration = jiffies - req->start_time;
2739 		const int rw = rq_data_dir(req);
2740 		struct hd_struct *part;
2741 		int cpu;
2742 
2743 		cpu = part_stat_lock();
2744 		part = req->part;
2745 
2746 		part_stat_inc(cpu, part, ios[rw]);
2747 		part_stat_add(cpu, part, ticks[rw], duration);
2748 		part_round_stats(req->q, cpu, part);
2749 		part_dec_in_flight(req->q, part, rw);
2750 
2751 		hd_struct_put(part);
2752 		part_stat_unlock();
2753 	}
2754 }
2755 
2756 #ifdef CONFIG_PM
2757 /*
2758  * Don't process normal requests when queue is suspended
2759  * or in the process of suspending/resuming
2760  */
2761 static bool blk_pm_allow_request(struct request *rq)
2762 {
2763 	switch (rq->q->rpm_status) {
2764 	case RPM_RESUMING:
2765 	case RPM_SUSPENDING:
2766 		return rq->rq_flags & RQF_PM;
2767 	case RPM_SUSPENDED:
2768 		return false;
2769 	}
2770 
2771 	return true;
2772 }
2773 #else
2774 static bool blk_pm_allow_request(struct request *rq)
2775 {
2776 	return true;
2777 }
2778 #endif
2779 
2780 void blk_account_io_start(struct request *rq, bool new_io)
2781 {
2782 	struct hd_struct *part;
2783 	int rw = rq_data_dir(rq);
2784 	int cpu;
2785 
2786 	if (!blk_do_io_stat(rq))
2787 		return;
2788 
2789 	cpu = part_stat_lock();
2790 
2791 	if (!new_io) {
2792 		part = rq->part;
2793 		part_stat_inc(cpu, part, merges[rw]);
2794 	} else {
2795 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2796 		if (!hd_struct_try_get(part)) {
2797 			/*
2798 			 * The partition is already being removed,
2799 			 * the request will be accounted on the disk only
2800 			 *
2801 			 * We take a reference on disk->part0 although that
2802 			 * partition will never be deleted, so we can treat
2803 			 * it as any other partition.
2804 			 */
2805 			part = &rq->rq_disk->part0;
2806 			hd_struct_get(part);
2807 		}
2808 		part_round_stats(rq->q, cpu, part);
2809 		part_inc_in_flight(rq->q, part, rw);
2810 		rq->part = part;
2811 	}
2812 
2813 	part_stat_unlock();
2814 }
2815 
2816 static struct request *elv_next_request(struct request_queue *q)
2817 {
2818 	struct request *rq;
2819 	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2820 
2821 	WARN_ON_ONCE(q->mq_ops);
2822 
2823 	while (1) {
2824 		list_for_each_entry(rq, &q->queue_head, queuelist) {
2825 			if (blk_pm_allow_request(rq))
2826 				return rq;
2827 
2828 			if (rq->rq_flags & RQF_SOFTBARRIER)
2829 				break;
2830 		}
2831 
2832 		/*
2833 		 * Flush request is running and flush request isn't queueable
2834 		 * in the drive, we can hold the queue till flush request is
2835 		 * finished. Even we don't do this, driver can't dispatch next
2836 		 * requests and will requeue them. And this can improve
2837 		 * throughput too. For example, we have request flush1, write1,
2838 		 * flush 2. flush1 is dispatched, then queue is hold, write1
2839 		 * isn't inserted to queue. After flush1 is finished, flush2
2840 		 * will be dispatched. Since disk cache is already clean,
2841 		 * flush2 will be finished very soon, so looks like flush2 is
2842 		 * folded to flush1.
2843 		 * Since the queue is hold, a flag is set to indicate the queue
2844 		 * should be restarted later. Please see flush_end_io() for
2845 		 * details.
2846 		 */
2847 		if (fq->flush_pending_idx != fq->flush_running_idx &&
2848 				!queue_flush_queueable(q)) {
2849 			fq->flush_queue_delayed = 1;
2850 			return NULL;
2851 		}
2852 		if (unlikely(blk_queue_bypass(q)) ||
2853 		    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2854 			return NULL;
2855 	}
2856 }
2857 
2858 /**
2859  * blk_peek_request - peek at the top of a request queue
2860  * @q: request queue to peek at
2861  *
2862  * Description:
2863  *     Return the request at the top of @q.  The returned request
2864  *     should be started using blk_start_request() before LLD starts
2865  *     processing it.
2866  *
2867  * Return:
2868  *     Pointer to the request at the top of @q if available.  Null
2869  *     otherwise.
2870  */
2871 struct request *blk_peek_request(struct request_queue *q)
2872 {
2873 	struct request *rq;
2874 	int ret;
2875 
2876 	lockdep_assert_held(q->queue_lock);
2877 	WARN_ON_ONCE(q->mq_ops);
2878 
2879 	while ((rq = elv_next_request(q)) != NULL) {
2880 		if (!(rq->rq_flags & RQF_STARTED)) {
2881 			/*
2882 			 * This is the first time the device driver
2883 			 * sees this request (possibly after
2884 			 * requeueing).  Notify IO scheduler.
2885 			 */
2886 			if (rq->rq_flags & RQF_SORTED)
2887 				elv_activate_rq(q, rq);
2888 
2889 			/*
2890 			 * just mark as started even if we don't start
2891 			 * it, a request that has been delayed should
2892 			 * not be passed by new incoming requests
2893 			 */
2894 			rq->rq_flags |= RQF_STARTED;
2895 			trace_block_rq_issue(q, rq);
2896 		}
2897 
2898 		if (!q->boundary_rq || q->boundary_rq == rq) {
2899 			q->end_sector = rq_end_sector(rq);
2900 			q->boundary_rq = NULL;
2901 		}
2902 
2903 		if (rq->rq_flags & RQF_DONTPREP)
2904 			break;
2905 
2906 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2907 			/*
2908 			 * make sure space for the drain appears we
2909 			 * know we can do this because max_hw_segments
2910 			 * has been adjusted to be one fewer than the
2911 			 * device can handle
2912 			 */
2913 			rq->nr_phys_segments++;
2914 		}
2915 
2916 		if (!q->prep_rq_fn)
2917 			break;
2918 
2919 		ret = q->prep_rq_fn(q, rq);
2920 		if (ret == BLKPREP_OK) {
2921 			break;
2922 		} else if (ret == BLKPREP_DEFER) {
2923 			/*
2924 			 * the request may have been (partially) prepped.
2925 			 * we need to keep this request in the front to
2926 			 * avoid resource deadlock.  RQF_STARTED will
2927 			 * prevent other fs requests from passing this one.
2928 			 */
2929 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2930 			    !(rq->rq_flags & RQF_DONTPREP)) {
2931 				/*
2932 				 * remove the space for the drain we added
2933 				 * so that we don't add it again
2934 				 */
2935 				--rq->nr_phys_segments;
2936 			}
2937 
2938 			rq = NULL;
2939 			break;
2940 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2941 			rq->rq_flags |= RQF_QUIET;
2942 			/*
2943 			 * Mark this request as started so we don't trigger
2944 			 * any debug logic in the end I/O path.
2945 			 */
2946 			blk_start_request(rq);
2947 			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2948 					BLK_STS_TARGET : BLK_STS_IOERR);
2949 		} else {
2950 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2951 			break;
2952 		}
2953 	}
2954 
2955 	return rq;
2956 }
2957 EXPORT_SYMBOL(blk_peek_request);
2958 
2959 static void blk_dequeue_request(struct request *rq)
2960 {
2961 	struct request_queue *q = rq->q;
2962 
2963 	BUG_ON(list_empty(&rq->queuelist));
2964 	BUG_ON(ELV_ON_HASH(rq));
2965 
2966 	list_del_init(&rq->queuelist);
2967 
2968 	/*
2969 	 * the time frame between a request being removed from the lists
2970 	 * and to it is freed is accounted as io that is in progress at
2971 	 * the driver side.
2972 	 */
2973 	if (blk_account_rq(rq)) {
2974 		q->in_flight[rq_is_sync(rq)]++;
2975 		set_io_start_time_ns(rq);
2976 	}
2977 }
2978 
2979 /**
2980  * blk_start_request - start request processing on the driver
2981  * @req: request to dequeue
2982  *
2983  * Description:
2984  *     Dequeue @req and start timeout timer on it.  This hands off the
2985  *     request to the driver.
2986  */
2987 void blk_start_request(struct request *req)
2988 {
2989 	lockdep_assert_held(req->q->queue_lock);
2990 	WARN_ON_ONCE(req->q->mq_ops);
2991 
2992 	blk_dequeue_request(req);
2993 
2994 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2995 		blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2996 		req->rq_flags |= RQF_STATS;
2997 		wbt_issue(req->q->rq_wb, &req->issue_stat);
2998 	}
2999 
3000 	BUG_ON(blk_rq_is_complete(req));
3001 	blk_add_timer(req);
3002 }
3003 EXPORT_SYMBOL(blk_start_request);
3004 
3005 /**
3006  * blk_fetch_request - fetch a request from a request queue
3007  * @q: request queue to fetch a request from
3008  *
3009  * Description:
3010  *     Return the request at the top of @q.  The request is started on
3011  *     return and LLD can start processing it immediately.
3012  *
3013  * Return:
3014  *     Pointer to the request at the top of @q if available.  Null
3015  *     otherwise.
3016  */
3017 struct request *blk_fetch_request(struct request_queue *q)
3018 {
3019 	struct request *rq;
3020 
3021 	lockdep_assert_held(q->queue_lock);
3022 	WARN_ON_ONCE(q->mq_ops);
3023 
3024 	rq = blk_peek_request(q);
3025 	if (rq)
3026 		blk_start_request(rq);
3027 	return rq;
3028 }
3029 EXPORT_SYMBOL(blk_fetch_request);
3030 
3031 /*
3032  * Steal bios from a request and add them to a bio list.
3033  * The request must not have been partially completed before.
3034  */
3035 void blk_steal_bios(struct bio_list *list, struct request *rq)
3036 {
3037 	if (rq->bio) {
3038 		if (list->tail)
3039 			list->tail->bi_next = rq->bio;
3040 		else
3041 			list->head = rq->bio;
3042 		list->tail = rq->biotail;
3043 
3044 		rq->bio = NULL;
3045 		rq->biotail = NULL;
3046 	}
3047 
3048 	rq->__data_len = 0;
3049 }
3050 EXPORT_SYMBOL_GPL(blk_steal_bios);
3051 
3052 /**
3053  * blk_update_request - Special helper function for request stacking drivers
3054  * @req:      the request being processed
3055  * @error:    block status code
3056  * @nr_bytes: number of bytes to complete @req
3057  *
3058  * Description:
3059  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
3060  *     the request structure even if @req doesn't have leftover.
3061  *     If @req has leftover, sets it up for the next range of segments.
3062  *
3063  *     This special helper function is only for request stacking drivers
3064  *     (e.g. request-based dm) so that they can handle partial completion.
3065  *     Actual device drivers should use blk_end_request instead.
3066  *
3067  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3068  *     %false return from this function.
3069  *
3070  * Return:
3071  *     %false - this request doesn't have any more data
3072  *     %true  - this request has more data
3073  **/
3074 bool blk_update_request(struct request *req, blk_status_t error,
3075 		unsigned int nr_bytes)
3076 {
3077 	int total_bytes;
3078 
3079 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3080 
3081 	if (!req->bio)
3082 		return false;
3083 
3084 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
3085 		     !(req->rq_flags & RQF_QUIET)))
3086 		print_req_error(req, error);
3087 
3088 	blk_account_io_completion(req, nr_bytes);
3089 
3090 	total_bytes = 0;
3091 	while (req->bio) {
3092 		struct bio *bio = req->bio;
3093 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3094 
3095 		if (bio_bytes == bio->bi_iter.bi_size)
3096 			req->bio = bio->bi_next;
3097 
3098 		/* Completion has already been traced */
3099 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3100 		req_bio_endio(req, bio, bio_bytes, error);
3101 
3102 		total_bytes += bio_bytes;
3103 		nr_bytes -= bio_bytes;
3104 
3105 		if (!nr_bytes)
3106 			break;
3107 	}
3108 
3109 	/*
3110 	 * completely done
3111 	 */
3112 	if (!req->bio) {
3113 		/*
3114 		 * Reset counters so that the request stacking driver
3115 		 * can find how many bytes remain in the request
3116 		 * later.
3117 		 */
3118 		req->__data_len = 0;
3119 		return false;
3120 	}
3121 
3122 	req->__data_len -= total_bytes;
3123 
3124 	/* update sector only for requests with clear definition of sector */
3125 	if (!blk_rq_is_passthrough(req))
3126 		req->__sector += total_bytes >> 9;
3127 
3128 	/* mixed attributes always follow the first bio */
3129 	if (req->rq_flags & RQF_MIXED_MERGE) {
3130 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
3131 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3132 	}
3133 
3134 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3135 		/*
3136 		 * If total number of sectors is less than the first segment
3137 		 * size, something has gone terribly wrong.
3138 		 */
3139 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3140 			blk_dump_rq_flags(req, "request botched");
3141 			req->__data_len = blk_rq_cur_bytes(req);
3142 		}
3143 
3144 		/* recalculate the number of segments */
3145 		blk_recalc_rq_segments(req);
3146 	}
3147 
3148 	return true;
3149 }
3150 EXPORT_SYMBOL_GPL(blk_update_request);
3151 
3152 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3153 				    unsigned int nr_bytes,
3154 				    unsigned int bidi_bytes)
3155 {
3156 	if (blk_update_request(rq, error, nr_bytes))
3157 		return true;
3158 
3159 	/* Bidi request must be completed as a whole */
3160 	if (unlikely(blk_bidi_rq(rq)) &&
3161 	    blk_update_request(rq->next_rq, error, bidi_bytes))
3162 		return true;
3163 
3164 	if (blk_queue_add_random(rq->q))
3165 		add_disk_randomness(rq->rq_disk);
3166 
3167 	return false;
3168 }
3169 
3170 /**
3171  * blk_unprep_request - unprepare a request
3172  * @req:	the request
3173  *
3174  * This function makes a request ready for complete resubmission (or
3175  * completion).  It happens only after all error handling is complete,
3176  * so represents the appropriate moment to deallocate any resources
3177  * that were allocated to the request in the prep_rq_fn.  The queue
3178  * lock is held when calling this.
3179  */
3180 void blk_unprep_request(struct request *req)
3181 {
3182 	struct request_queue *q = req->q;
3183 
3184 	req->rq_flags &= ~RQF_DONTPREP;
3185 	if (q->unprep_rq_fn)
3186 		q->unprep_rq_fn(q, req);
3187 }
3188 EXPORT_SYMBOL_GPL(blk_unprep_request);
3189 
3190 void blk_finish_request(struct request *req, blk_status_t error)
3191 {
3192 	struct request_queue *q = req->q;
3193 
3194 	lockdep_assert_held(req->q->queue_lock);
3195 	WARN_ON_ONCE(q->mq_ops);
3196 
3197 	if (req->rq_flags & RQF_STATS)
3198 		blk_stat_add(req);
3199 
3200 	if (req->rq_flags & RQF_QUEUED)
3201 		blk_queue_end_tag(q, req);
3202 
3203 	BUG_ON(blk_queued_rq(req));
3204 
3205 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3206 		laptop_io_completion(req->q->backing_dev_info);
3207 
3208 	blk_delete_timer(req);
3209 
3210 	if (req->rq_flags & RQF_DONTPREP)
3211 		blk_unprep_request(req);
3212 
3213 	blk_account_io_done(req);
3214 
3215 	if (req->end_io) {
3216 		wbt_done(req->q->rq_wb, &req->issue_stat);
3217 		req->end_io(req, error);
3218 	} else {
3219 		if (blk_bidi_rq(req))
3220 			__blk_put_request(req->next_rq->q, req->next_rq);
3221 
3222 		__blk_put_request(q, req);
3223 	}
3224 }
3225 EXPORT_SYMBOL(blk_finish_request);
3226 
3227 /**
3228  * blk_end_bidi_request - Complete a bidi request
3229  * @rq:         the request to complete
3230  * @error:      block status code
3231  * @nr_bytes:   number of bytes to complete @rq
3232  * @bidi_bytes: number of bytes to complete @rq->next_rq
3233  *
3234  * Description:
3235  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3236  *     Drivers that supports bidi can safely call this member for any
3237  *     type of request, bidi or uni.  In the later case @bidi_bytes is
3238  *     just ignored.
3239  *
3240  * Return:
3241  *     %false - we are done with this request
3242  *     %true  - still buffers pending for this request
3243  **/
3244 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3245 				 unsigned int nr_bytes, unsigned int bidi_bytes)
3246 {
3247 	struct request_queue *q = rq->q;
3248 	unsigned long flags;
3249 
3250 	WARN_ON_ONCE(q->mq_ops);
3251 
3252 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3253 		return true;
3254 
3255 	spin_lock_irqsave(q->queue_lock, flags);
3256 	blk_finish_request(rq, error);
3257 	spin_unlock_irqrestore(q->queue_lock, flags);
3258 
3259 	return false;
3260 }
3261 
3262 /**
3263  * __blk_end_bidi_request - Complete a bidi request with queue lock held
3264  * @rq:         the request to complete
3265  * @error:      block status code
3266  * @nr_bytes:   number of bytes to complete @rq
3267  * @bidi_bytes: number of bytes to complete @rq->next_rq
3268  *
3269  * Description:
3270  *     Identical to blk_end_bidi_request() except that queue lock is
3271  *     assumed to be locked on entry and remains so on return.
3272  *
3273  * Return:
3274  *     %false - we are done with this request
3275  *     %true  - still buffers pending for this request
3276  **/
3277 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3278 				   unsigned int nr_bytes, unsigned int bidi_bytes)
3279 {
3280 	lockdep_assert_held(rq->q->queue_lock);
3281 	WARN_ON_ONCE(rq->q->mq_ops);
3282 
3283 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3284 		return true;
3285 
3286 	blk_finish_request(rq, error);
3287 
3288 	return false;
3289 }
3290 
3291 /**
3292  * blk_end_request - Helper function for drivers to complete the request.
3293  * @rq:       the request being processed
3294  * @error:    block status code
3295  * @nr_bytes: number of bytes to complete
3296  *
3297  * Description:
3298  *     Ends I/O on a number of bytes attached to @rq.
3299  *     If @rq has leftover, sets it up for the next range of segments.
3300  *
3301  * Return:
3302  *     %false - we are done with this request
3303  *     %true  - still buffers pending for this request
3304  **/
3305 bool blk_end_request(struct request *rq, blk_status_t error,
3306 		unsigned int nr_bytes)
3307 {
3308 	WARN_ON_ONCE(rq->q->mq_ops);
3309 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
3310 }
3311 EXPORT_SYMBOL(blk_end_request);
3312 
3313 /**
3314  * blk_end_request_all - Helper function for drives to finish the request.
3315  * @rq: the request to finish
3316  * @error: block status code
3317  *
3318  * Description:
3319  *     Completely finish @rq.
3320  */
3321 void blk_end_request_all(struct request *rq, blk_status_t error)
3322 {
3323 	bool pending;
3324 	unsigned int bidi_bytes = 0;
3325 
3326 	if (unlikely(blk_bidi_rq(rq)))
3327 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3328 
3329 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3330 	BUG_ON(pending);
3331 }
3332 EXPORT_SYMBOL(blk_end_request_all);
3333 
3334 /**
3335  * __blk_end_request - Helper function for drivers to complete the request.
3336  * @rq:       the request being processed
3337  * @error:    block status code
3338  * @nr_bytes: number of bytes to complete
3339  *
3340  * Description:
3341  *     Must be called with queue lock held unlike blk_end_request().
3342  *
3343  * Return:
3344  *     %false - we are done with this request
3345  *     %true  - still buffers pending for this request
3346  **/
3347 bool __blk_end_request(struct request *rq, blk_status_t error,
3348 		unsigned int nr_bytes)
3349 {
3350 	lockdep_assert_held(rq->q->queue_lock);
3351 	WARN_ON_ONCE(rq->q->mq_ops);
3352 
3353 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3354 }
3355 EXPORT_SYMBOL(__blk_end_request);
3356 
3357 /**
3358  * __blk_end_request_all - Helper function for drives to finish the request.
3359  * @rq: the request to finish
3360  * @error:    block status code
3361  *
3362  * Description:
3363  *     Completely finish @rq.  Must be called with queue lock held.
3364  */
3365 void __blk_end_request_all(struct request *rq, blk_status_t error)
3366 {
3367 	bool pending;
3368 	unsigned int bidi_bytes = 0;
3369 
3370 	lockdep_assert_held(rq->q->queue_lock);
3371 	WARN_ON_ONCE(rq->q->mq_ops);
3372 
3373 	if (unlikely(blk_bidi_rq(rq)))
3374 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3375 
3376 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3377 	BUG_ON(pending);
3378 }
3379 EXPORT_SYMBOL(__blk_end_request_all);
3380 
3381 /**
3382  * __blk_end_request_cur - Helper function to finish the current request chunk.
3383  * @rq: the request to finish the current chunk for
3384  * @error:    block status code
3385  *
3386  * Description:
3387  *     Complete the current consecutively mapped chunk from @rq.  Must
3388  *     be called with queue lock held.
3389  *
3390  * Return:
3391  *     %false - we are done with this request
3392  *     %true  - still buffers pending for this request
3393  */
3394 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3395 {
3396 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3397 }
3398 EXPORT_SYMBOL(__blk_end_request_cur);
3399 
3400 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3401 		     struct bio *bio)
3402 {
3403 	if (bio_has_data(bio))
3404 		rq->nr_phys_segments = bio_phys_segments(q, bio);
3405 	else if (bio_op(bio) == REQ_OP_DISCARD)
3406 		rq->nr_phys_segments = 1;
3407 
3408 	rq->__data_len = bio->bi_iter.bi_size;
3409 	rq->bio = rq->biotail = bio;
3410 
3411 	if (bio->bi_disk)
3412 		rq->rq_disk = bio->bi_disk;
3413 }
3414 
3415 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3416 /**
3417  * rq_flush_dcache_pages - Helper function to flush all pages in a request
3418  * @rq: the request to be flushed
3419  *
3420  * Description:
3421  *     Flush all pages in @rq.
3422  */
3423 void rq_flush_dcache_pages(struct request *rq)
3424 {
3425 	struct req_iterator iter;
3426 	struct bio_vec bvec;
3427 
3428 	rq_for_each_segment(bvec, rq, iter)
3429 		flush_dcache_page(bvec.bv_page);
3430 }
3431 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3432 #endif
3433 
3434 /**
3435  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3436  * @q : the queue of the device being checked
3437  *
3438  * Description:
3439  *    Check if underlying low-level drivers of a device are busy.
3440  *    If the drivers want to export their busy state, they must set own
3441  *    exporting function using blk_queue_lld_busy() first.
3442  *
3443  *    Basically, this function is used only by request stacking drivers
3444  *    to stop dispatching requests to underlying devices when underlying
3445  *    devices are busy.  This behavior helps more I/O merging on the queue
3446  *    of the request stacking driver and prevents I/O throughput regression
3447  *    on burst I/O load.
3448  *
3449  * Return:
3450  *    0 - Not busy (The request stacking driver should dispatch request)
3451  *    1 - Busy (The request stacking driver should stop dispatching request)
3452  */
3453 int blk_lld_busy(struct request_queue *q)
3454 {
3455 	if (q->lld_busy_fn)
3456 		return q->lld_busy_fn(q);
3457 
3458 	return 0;
3459 }
3460 EXPORT_SYMBOL_GPL(blk_lld_busy);
3461 
3462 /**
3463  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3464  * @rq: the clone request to be cleaned up
3465  *
3466  * Description:
3467  *     Free all bios in @rq for a cloned request.
3468  */
3469 void blk_rq_unprep_clone(struct request *rq)
3470 {
3471 	struct bio *bio;
3472 
3473 	while ((bio = rq->bio) != NULL) {
3474 		rq->bio = bio->bi_next;
3475 
3476 		bio_put(bio);
3477 	}
3478 }
3479 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3480 
3481 /*
3482  * Copy attributes of the original request to the clone request.
3483  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3484  */
3485 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3486 {
3487 	dst->cpu = src->cpu;
3488 	dst->__sector = blk_rq_pos(src);
3489 	dst->__data_len = blk_rq_bytes(src);
3490 	dst->nr_phys_segments = src->nr_phys_segments;
3491 	dst->ioprio = src->ioprio;
3492 	dst->extra_len = src->extra_len;
3493 }
3494 
3495 /**
3496  * blk_rq_prep_clone - Helper function to setup clone request
3497  * @rq: the request to be setup
3498  * @rq_src: original request to be cloned
3499  * @bs: bio_set that bios for clone are allocated from
3500  * @gfp_mask: memory allocation mask for bio
3501  * @bio_ctr: setup function to be called for each clone bio.
3502  *           Returns %0 for success, non %0 for failure.
3503  * @data: private data to be passed to @bio_ctr
3504  *
3505  * Description:
3506  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3507  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3508  *     are not copied, and copying such parts is the caller's responsibility.
3509  *     Also, pages which the original bios are pointing to are not copied
3510  *     and the cloned bios just point same pages.
3511  *     So cloned bios must be completed before original bios, which means
3512  *     the caller must complete @rq before @rq_src.
3513  */
3514 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3515 		      struct bio_set *bs, gfp_t gfp_mask,
3516 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3517 		      void *data)
3518 {
3519 	struct bio *bio, *bio_src;
3520 
3521 	if (!bs)
3522 		bs = fs_bio_set;
3523 
3524 	__rq_for_each_bio(bio_src, rq_src) {
3525 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3526 		if (!bio)
3527 			goto free_and_out;
3528 
3529 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3530 			goto free_and_out;
3531 
3532 		if (rq->bio) {
3533 			rq->biotail->bi_next = bio;
3534 			rq->biotail = bio;
3535 		} else
3536 			rq->bio = rq->biotail = bio;
3537 	}
3538 
3539 	__blk_rq_prep_clone(rq, rq_src);
3540 
3541 	return 0;
3542 
3543 free_and_out:
3544 	if (bio)
3545 		bio_put(bio);
3546 	blk_rq_unprep_clone(rq);
3547 
3548 	return -ENOMEM;
3549 }
3550 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3551 
3552 int kblockd_schedule_work(struct work_struct *work)
3553 {
3554 	return queue_work(kblockd_workqueue, work);
3555 }
3556 EXPORT_SYMBOL(kblockd_schedule_work);
3557 
3558 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3559 {
3560 	return queue_work_on(cpu, kblockd_workqueue, work);
3561 }
3562 EXPORT_SYMBOL(kblockd_schedule_work_on);
3563 
3564 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3565 				unsigned long delay)
3566 {
3567 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3568 }
3569 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3570 
3571 /**
3572  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3573  * @plug:	The &struct blk_plug that needs to be initialized
3574  *
3575  * Description:
3576  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3577  *   pending I/O should the task end up blocking between blk_start_plug() and
3578  *   blk_finish_plug(). This is important from a performance perspective, but
3579  *   also ensures that we don't deadlock. For instance, if the task is blocking
3580  *   for a memory allocation, memory reclaim could end up wanting to free a
3581  *   page belonging to that request that is currently residing in our private
3582  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3583  *   this kind of deadlock.
3584  */
3585 void blk_start_plug(struct blk_plug *plug)
3586 {
3587 	struct task_struct *tsk = current;
3588 
3589 	/*
3590 	 * If this is a nested plug, don't actually assign it.
3591 	 */
3592 	if (tsk->plug)
3593 		return;
3594 
3595 	INIT_LIST_HEAD(&plug->list);
3596 	INIT_LIST_HEAD(&plug->mq_list);
3597 	INIT_LIST_HEAD(&plug->cb_list);
3598 	/*
3599 	 * Store ordering should not be needed here, since a potential
3600 	 * preempt will imply a full memory barrier
3601 	 */
3602 	tsk->plug = plug;
3603 }
3604 EXPORT_SYMBOL(blk_start_plug);
3605 
3606 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3607 {
3608 	struct request *rqa = container_of(a, struct request, queuelist);
3609 	struct request *rqb = container_of(b, struct request, queuelist);
3610 
3611 	return !(rqa->q < rqb->q ||
3612 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3613 }
3614 
3615 /*
3616  * If 'from_schedule' is true, then postpone the dispatch of requests
3617  * until a safe kblockd context. We due this to avoid accidental big
3618  * additional stack usage in driver dispatch, in places where the originally
3619  * plugger did not intend it.
3620  */
3621 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3622 			    bool from_schedule)
3623 	__releases(q->queue_lock)
3624 {
3625 	lockdep_assert_held(q->queue_lock);
3626 
3627 	trace_block_unplug(q, depth, !from_schedule);
3628 
3629 	if (from_schedule)
3630 		blk_run_queue_async(q);
3631 	else
3632 		__blk_run_queue(q);
3633 	spin_unlock(q->queue_lock);
3634 }
3635 
3636 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3637 {
3638 	LIST_HEAD(callbacks);
3639 
3640 	while (!list_empty(&plug->cb_list)) {
3641 		list_splice_init(&plug->cb_list, &callbacks);
3642 
3643 		while (!list_empty(&callbacks)) {
3644 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3645 							  struct blk_plug_cb,
3646 							  list);
3647 			list_del(&cb->list);
3648 			cb->callback(cb, from_schedule);
3649 		}
3650 	}
3651 }
3652 
3653 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3654 				      int size)
3655 {
3656 	struct blk_plug *plug = current->plug;
3657 	struct blk_plug_cb *cb;
3658 
3659 	if (!plug)
3660 		return NULL;
3661 
3662 	list_for_each_entry(cb, &plug->cb_list, list)
3663 		if (cb->callback == unplug && cb->data == data)
3664 			return cb;
3665 
3666 	/* Not currently on the callback list */
3667 	BUG_ON(size < sizeof(*cb));
3668 	cb = kzalloc(size, GFP_ATOMIC);
3669 	if (cb) {
3670 		cb->data = data;
3671 		cb->callback = unplug;
3672 		list_add(&cb->list, &plug->cb_list);
3673 	}
3674 	return cb;
3675 }
3676 EXPORT_SYMBOL(blk_check_plugged);
3677 
3678 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3679 {
3680 	struct request_queue *q;
3681 	unsigned long flags;
3682 	struct request *rq;
3683 	LIST_HEAD(list);
3684 	unsigned int depth;
3685 
3686 	flush_plug_callbacks(plug, from_schedule);
3687 
3688 	if (!list_empty(&plug->mq_list))
3689 		blk_mq_flush_plug_list(plug, from_schedule);
3690 
3691 	if (list_empty(&plug->list))
3692 		return;
3693 
3694 	list_splice_init(&plug->list, &list);
3695 
3696 	list_sort(NULL, &list, plug_rq_cmp);
3697 
3698 	q = NULL;
3699 	depth = 0;
3700 
3701 	/*
3702 	 * Save and disable interrupts here, to avoid doing it for every
3703 	 * queue lock we have to take.
3704 	 */
3705 	local_irq_save(flags);
3706 	while (!list_empty(&list)) {
3707 		rq = list_entry_rq(list.next);
3708 		list_del_init(&rq->queuelist);
3709 		BUG_ON(!rq->q);
3710 		if (rq->q != q) {
3711 			/*
3712 			 * This drops the queue lock
3713 			 */
3714 			if (q)
3715 				queue_unplugged(q, depth, from_schedule);
3716 			q = rq->q;
3717 			depth = 0;
3718 			spin_lock(q->queue_lock);
3719 		}
3720 
3721 		/*
3722 		 * Short-circuit if @q is dead
3723 		 */
3724 		if (unlikely(blk_queue_dying(q))) {
3725 			__blk_end_request_all(rq, BLK_STS_IOERR);
3726 			continue;
3727 		}
3728 
3729 		/*
3730 		 * rq is already accounted, so use raw insert
3731 		 */
3732 		if (op_is_flush(rq->cmd_flags))
3733 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3734 		else
3735 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3736 
3737 		depth++;
3738 	}
3739 
3740 	/*
3741 	 * This drops the queue lock
3742 	 */
3743 	if (q)
3744 		queue_unplugged(q, depth, from_schedule);
3745 
3746 	local_irq_restore(flags);
3747 }
3748 
3749 void blk_finish_plug(struct blk_plug *plug)
3750 {
3751 	if (plug != current->plug)
3752 		return;
3753 	blk_flush_plug_list(plug, false);
3754 
3755 	current->plug = NULL;
3756 }
3757 EXPORT_SYMBOL(blk_finish_plug);
3758 
3759 #ifdef CONFIG_PM
3760 /**
3761  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3762  * @q: the queue of the device
3763  * @dev: the device the queue belongs to
3764  *
3765  * Description:
3766  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3767  *    @dev. Drivers that want to take advantage of request-based runtime PM
3768  *    should call this function after @dev has been initialized, and its
3769  *    request queue @q has been allocated, and runtime PM for it can not happen
3770  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3771  *    cases, driver should call this function before any I/O has taken place.
3772  *
3773  *    This function takes care of setting up using auto suspend for the device,
3774  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3775  *    until an updated value is either set by user or by driver. Drivers do
3776  *    not need to touch other autosuspend settings.
3777  *
3778  *    The block layer runtime PM is request based, so only works for drivers
3779  *    that use request as their IO unit instead of those directly use bio's.
3780  */
3781 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3782 {
3783 	/* not support for RQF_PM and ->rpm_status in blk-mq yet */
3784 	if (q->mq_ops)
3785 		return;
3786 
3787 	q->dev = dev;
3788 	q->rpm_status = RPM_ACTIVE;
3789 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3790 	pm_runtime_use_autosuspend(q->dev);
3791 }
3792 EXPORT_SYMBOL(blk_pm_runtime_init);
3793 
3794 /**
3795  * blk_pre_runtime_suspend - Pre runtime suspend check
3796  * @q: the queue of the device
3797  *
3798  * Description:
3799  *    This function will check if runtime suspend is allowed for the device
3800  *    by examining if there are any requests pending in the queue. If there
3801  *    are requests pending, the device can not be runtime suspended; otherwise,
3802  *    the queue's status will be updated to SUSPENDING and the driver can
3803  *    proceed to suspend the device.
3804  *
3805  *    For the not allowed case, we mark last busy for the device so that
3806  *    runtime PM core will try to autosuspend it some time later.
3807  *
3808  *    This function should be called near the start of the device's
3809  *    runtime_suspend callback.
3810  *
3811  * Return:
3812  *    0		- OK to runtime suspend the device
3813  *    -EBUSY	- Device should not be runtime suspended
3814  */
3815 int blk_pre_runtime_suspend(struct request_queue *q)
3816 {
3817 	int ret = 0;
3818 
3819 	if (!q->dev)
3820 		return ret;
3821 
3822 	spin_lock_irq(q->queue_lock);
3823 	if (q->nr_pending) {
3824 		ret = -EBUSY;
3825 		pm_runtime_mark_last_busy(q->dev);
3826 	} else {
3827 		q->rpm_status = RPM_SUSPENDING;
3828 	}
3829 	spin_unlock_irq(q->queue_lock);
3830 	return ret;
3831 }
3832 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3833 
3834 /**
3835  * blk_post_runtime_suspend - Post runtime suspend processing
3836  * @q: the queue of the device
3837  * @err: return value of the device's runtime_suspend function
3838  *
3839  * Description:
3840  *    Update the queue's runtime status according to the return value of the
3841  *    device's runtime suspend function and mark last busy for the device so
3842  *    that PM core will try to auto suspend the device at a later time.
3843  *
3844  *    This function should be called near the end of the device's
3845  *    runtime_suspend callback.
3846  */
3847 void blk_post_runtime_suspend(struct request_queue *q, int err)
3848 {
3849 	if (!q->dev)
3850 		return;
3851 
3852 	spin_lock_irq(q->queue_lock);
3853 	if (!err) {
3854 		q->rpm_status = RPM_SUSPENDED;
3855 	} else {
3856 		q->rpm_status = RPM_ACTIVE;
3857 		pm_runtime_mark_last_busy(q->dev);
3858 	}
3859 	spin_unlock_irq(q->queue_lock);
3860 }
3861 EXPORT_SYMBOL(blk_post_runtime_suspend);
3862 
3863 /**
3864  * blk_pre_runtime_resume - Pre runtime resume processing
3865  * @q: the queue of the device
3866  *
3867  * Description:
3868  *    Update the queue's runtime status to RESUMING in preparation for the
3869  *    runtime resume of the device.
3870  *
3871  *    This function should be called near the start of the device's
3872  *    runtime_resume callback.
3873  */
3874 void blk_pre_runtime_resume(struct request_queue *q)
3875 {
3876 	if (!q->dev)
3877 		return;
3878 
3879 	spin_lock_irq(q->queue_lock);
3880 	q->rpm_status = RPM_RESUMING;
3881 	spin_unlock_irq(q->queue_lock);
3882 }
3883 EXPORT_SYMBOL(blk_pre_runtime_resume);
3884 
3885 /**
3886  * blk_post_runtime_resume - Post runtime resume processing
3887  * @q: the queue of the device
3888  * @err: return value of the device's runtime_resume function
3889  *
3890  * Description:
3891  *    Update the queue's runtime status according to the return value of the
3892  *    device's runtime_resume function. If it is successfully resumed, process
3893  *    the requests that are queued into the device's queue when it is resuming
3894  *    and then mark last busy and initiate autosuspend for it.
3895  *
3896  *    This function should be called near the end of the device's
3897  *    runtime_resume callback.
3898  */
3899 void blk_post_runtime_resume(struct request_queue *q, int err)
3900 {
3901 	if (!q->dev)
3902 		return;
3903 
3904 	spin_lock_irq(q->queue_lock);
3905 	if (!err) {
3906 		q->rpm_status = RPM_ACTIVE;
3907 		__blk_run_queue(q);
3908 		pm_runtime_mark_last_busy(q->dev);
3909 		pm_request_autosuspend(q->dev);
3910 	} else {
3911 		q->rpm_status = RPM_SUSPENDED;
3912 	}
3913 	spin_unlock_irq(q->queue_lock);
3914 }
3915 EXPORT_SYMBOL(blk_post_runtime_resume);
3916 
3917 /**
3918  * blk_set_runtime_active - Force runtime status of the queue to be active
3919  * @q: the queue of the device
3920  *
3921  * If the device is left runtime suspended during system suspend the resume
3922  * hook typically resumes the device and corrects runtime status
3923  * accordingly. However, that does not affect the queue runtime PM status
3924  * which is still "suspended". This prevents processing requests from the
3925  * queue.
3926  *
3927  * This function can be used in driver's resume hook to correct queue
3928  * runtime PM status and re-enable peeking requests from the queue. It
3929  * should be called before first request is added to the queue.
3930  */
3931 void blk_set_runtime_active(struct request_queue *q)
3932 {
3933 	spin_lock_irq(q->queue_lock);
3934 	q->rpm_status = RPM_ACTIVE;
3935 	pm_runtime_mark_last_busy(q->dev);
3936 	pm_request_autosuspend(q->dev);
3937 	spin_unlock_irq(q->queue_lock);
3938 }
3939 EXPORT_SYMBOL(blk_set_runtime_active);
3940 #endif
3941 
3942 int __init blk_dev_init(void)
3943 {
3944 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3945 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3946 			FIELD_SIZEOF(struct request, cmd_flags));
3947 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3948 			FIELD_SIZEOF(struct bio, bi_opf));
3949 
3950 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3951 	kblockd_workqueue = alloc_workqueue("kblockd",
3952 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3953 	if (!kblockd_workqueue)
3954 		panic("Failed to create kblockd\n");
3955 
3956 	request_cachep = kmem_cache_create("blkdev_requests",
3957 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3958 
3959 	blk_requestq_cachep = kmem_cache_create("request_queue",
3960 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3961 
3962 #ifdef CONFIG_DEBUG_FS
3963 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3964 #endif
3965 
3966 	return 0;
3967 }
3968