1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/bio.h> 19 #include <linux/blkdev.h> 20 #include <linux/blk-mq.h> 21 #include <linux/blk-pm.h> 22 #include <linux/highmem.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/string.h> 27 #include <linux/init.h> 28 #include <linux/completion.h> 29 #include <linux/slab.h> 30 #include <linux/swap.h> 31 #include <linux/writeback.h> 32 #include <linux/task_io_accounting_ops.h> 33 #include <linux/fault-inject.h> 34 #include <linux/list_sort.h> 35 #include <linux/delay.h> 36 #include <linux/ratelimit.h> 37 #include <linux/pm_runtime.h> 38 #include <linux/blk-cgroup.h> 39 #include <linux/t10-pi.h> 40 #include <linux/debugfs.h> 41 #include <linux/bpf.h> 42 #include <linux/psi.h> 43 #include <linux/sched/sysctl.h> 44 #include <linux/blk-crypto.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/block.h> 48 49 #include "blk.h" 50 #include "blk-mq.h" 51 #include "blk-mq-sched.h" 52 #include "blk-pm.h" 53 #include "blk-rq-qos.h" 54 55 struct dentry *blk_debugfs_root; 56 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 62 63 DEFINE_IDA(blk_queue_ida); 64 65 /* 66 * For queue allocation 67 */ 68 struct kmem_cache *blk_requestq_cachep; 69 70 /* 71 * Controlling structure to kblockd 72 */ 73 static struct workqueue_struct *kblockd_workqueue; 74 75 /** 76 * blk_queue_flag_set - atomically set a queue flag 77 * @flag: flag to be set 78 * @q: request queue 79 */ 80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 81 { 82 set_bit(flag, &q->queue_flags); 83 } 84 EXPORT_SYMBOL(blk_queue_flag_set); 85 86 /** 87 * blk_queue_flag_clear - atomically clear a queue flag 88 * @flag: flag to be cleared 89 * @q: request queue 90 */ 91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 92 { 93 clear_bit(flag, &q->queue_flags); 94 } 95 EXPORT_SYMBOL(blk_queue_flag_clear); 96 97 /** 98 * blk_queue_flag_test_and_set - atomically test and set a queue flag 99 * @flag: flag to be set 100 * @q: request queue 101 * 102 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 103 * the flag was already set. 104 */ 105 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 106 { 107 return test_and_set_bit(flag, &q->queue_flags); 108 } 109 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 110 111 void blk_rq_init(struct request_queue *q, struct request *rq) 112 { 113 memset(rq, 0, sizeof(*rq)); 114 115 INIT_LIST_HEAD(&rq->queuelist); 116 rq->q = q; 117 rq->__sector = (sector_t) -1; 118 INIT_HLIST_NODE(&rq->hash); 119 RB_CLEAR_NODE(&rq->rb_node); 120 rq->tag = BLK_MQ_NO_TAG; 121 rq->internal_tag = BLK_MQ_NO_TAG; 122 rq->start_time_ns = ktime_get_ns(); 123 rq->part = NULL; 124 refcount_set(&rq->ref, 1); 125 blk_crypto_rq_set_defaults(rq); 126 } 127 EXPORT_SYMBOL(blk_rq_init); 128 129 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 130 static const char *const blk_op_name[] = { 131 REQ_OP_NAME(READ), 132 REQ_OP_NAME(WRITE), 133 REQ_OP_NAME(FLUSH), 134 REQ_OP_NAME(DISCARD), 135 REQ_OP_NAME(SECURE_ERASE), 136 REQ_OP_NAME(ZONE_RESET), 137 REQ_OP_NAME(ZONE_RESET_ALL), 138 REQ_OP_NAME(ZONE_OPEN), 139 REQ_OP_NAME(ZONE_CLOSE), 140 REQ_OP_NAME(ZONE_FINISH), 141 REQ_OP_NAME(ZONE_APPEND), 142 REQ_OP_NAME(WRITE_SAME), 143 REQ_OP_NAME(WRITE_ZEROES), 144 REQ_OP_NAME(SCSI_IN), 145 REQ_OP_NAME(SCSI_OUT), 146 REQ_OP_NAME(DRV_IN), 147 REQ_OP_NAME(DRV_OUT), 148 }; 149 #undef REQ_OP_NAME 150 151 /** 152 * blk_op_str - Return string XXX in the REQ_OP_XXX. 153 * @op: REQ_OP_XXX. 154 * 155 * Description: Centralize block layer function to convert REQ_OP_XXX into 156 * string format. Useful in the debugging and tracing bio or request. For 157 * invalid REQ_OP_XXX it returns string "UNKNOWN". 158 */ 159 inline const char *blk_op_str(unsigned int op) 160 { 161 const char *op_str = "UNKNOWN"; 162 163 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 164 op_str = blk_op_name[op]; 165 166 return op_str; 167 } 168 EXPORT_SYMBOL_GPL(blk_op_str); 169 170 static const struct { 171 int errno; 172 const char *name; 173 } blk_errors[] = { 174 [BLK_STS_OK] = { 0, "" }, 175 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 176 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 177 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 178 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 179 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 180 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 181 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 182 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 183 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 184 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 185 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 186 187 /* device mapper special case, should not leak out: */ 188 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 189 190 /* zone device specific errors */ 191 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" }, 192 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" }, 193 194 /* everything else not covered above: */ 195 [BLK_STS_IOERR] = { -EIO, "I/O" }, 196 }; 197 198 blk_status_t errno_to_blk_status(int errno) 199 { 200 int i; 201 202 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 203 if (blk_errors[i].errno == errno) 204 return (__force blk_status_t)i; 205 } 206 207 return BLK_STS_IOERR; 208 } 209 EXPORT_SYMBOL_GPL(errno_to_blk_status); 210 211 int blk_status_to_errno(blk_status_t status) 212 { 213 int idx = (__force int)status; 214 215 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 216 return -EIO; 217 return blk_errors[idx].errno; 218 } 219 EXPORT_SYMBOL_GPL(blk_status_to_errno); 220 221 static void print_req_error(struct request *req, blk_status_t status, 222 const char *caller) 223 { 224 int idx = (__force int)status; 225 226 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 227 return; 228 229 printk_ratelimited(KERN_ERR 230 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 231 "phys_seg %u prio class %u\n", 232 caller, blk_errors[idx].name, 233 req->rq_disk ? req->rq_disk->disk_name : "?", 234 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 235 req->cmd_flags & ~REQ_OP_MASK, 236 req->nr_phys_segments, 237 IOPRIO_PRIO_CLASS(req->ioprio)); 238 } 239 240 static void req_bio_endio(struct request *rq, struct bio *bio, 241 unsigned int nbytes, blk_status_t error) 242 { 243 if (error) 244 bio->bi_status = error; 245 246 if (unlikely(rq->rq_flags & RQF_QUIET)) 247 bio_set_flag(bio, BIO_QUIET); 248 249 bio_advance(bio, nbytes); 250 251 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) { 252 /* 253 * Partial zone append completions cannot be supported as the 254 * BIO fragments may end up not being written sequentially. 255 */ 256 if (bio->bi_iter.bi_size) 257 bio->bi_status = BLK_STS_IOERR; 258 else 259 bio->bi_iter.bi_sector = rq->__sector; 260 } 261 262 /* don't actually finish bio if it's part of flush sequence */ 263 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 264 bio_endio(bio); 265 } 266 267 void blk_dump_rq_flags(struct request *rq, char *msg) 268 { 269 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 270 rq->rq_disk ? rq->rq_disk->disk_name : "?", 271 (unsigned long long) rq->cmd_flags); 272 273 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 274 (unsigned long long)blk_rq_pos(rq), 275 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 276 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 277 rq->bio, rq->biotail, blk_rq_bytes(rq)); 278 } 279 EXPORT_SYMBOL(blk_dump_rq_flags); 280 281 /** 282 * blk_sync_queue - cancel any pending callbacks on a queue 283 * @q: the queue 284 * 285 * Description: 286 * The block layer may perform asynchronous callback activity 287 * on a queue, such as calling the unplug function after a timeout. 288 * A block device may call blk_sync_queue to ensure that any 289 * such activity is cancelled, thus allowing it to release resources 290 * that the callbacks might use. The caller must already have made sure 291 * that its ->submit_bio will not re-add plugging prior to calling 292 * this function. 293 * 294 * This function does not cancel any asynchronous activity arising 295 * out of elevator or throttling code. That would require elevator_exit() 296 * and blkcg_exit_queue() to be called with queue lock initialized. 297 * 298 */ 299 void blk_sync_queue(struct request_queue *q) 300 { 301 del_timer_sync(&q->timeout); 302 cancel_work_sync(&q->timeout_work); 303 } 304 EXPORT_SYMBOL(blk_sync_queue); 305 306 /** 307 * blk_set_pm_only - increment pm_only counter 308 * @q: request queue pointer 309 */ 310 void blk_set_pm_only(struct request_queue *q) 311 { 312 atomic_inc(&q->pm_only); 313 } 314 EXPORT_SYMBOL_GPL(blk_set_pm_only); 315 316 void blk_clear_pm_only(struct request_queue *q) 317 { 318 int pm_only; 319 320 pm_only = atomic_dec_return(&q->pm_only); 321 WARN_ON_ONCE(pm_only < 0); 322 if (pm_only == 0) 323 wake_up_all(&q->mq_freeze_wq); 324 } 325 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 326 327 /** 328 * blk_put_queue - decrement the request_queue refcount 329 * @q: the request_queue structure to decrement the refcount for 330 * 331 * Decrements the refcount of the request_queue kobject. When this reaches 0 332 * we'll have blk_release_queue() called. 333 * 334 * Context: Any context, but the last reference must not be dropped from 335 * atomic context. 336 */ 337 void blk_put_queue(struct request_queue *q) 338 { 339 kobject_put(&q->kobj); 340 } 341 EXPORT_SYMBOL(blk_put_queue); 342 343 void blk_set_queue_dying(struct request_queue *q) 344 { 345 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 346 347 /* 348 * When queue DYING flag is set, we need to block new req 349 * entering queue, so we call blk_freeze_queue_start() to 350 * prevent I/O from crossing blk_queue_enter(). 351 */ 352 blk_freeze_queue_start(q); 353 354 if (queue_is_mq(q)) 355 blk_mq_wake_waiters(q); 356 357 /* Make blk_queue_enter() reexamine the DYING flag. */ 358 wake_up_all(&q->mq_freeze_wq); 359 } 360 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 361 362 /** 363 * blk_cleanup_queue - shutdown a request queue 364 * @q: request queue to shutdown 365 * 366 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 367 * put it. All future requests will be failed immediately with -ENODEV. 368 * 369 * Context: can sleep 370 */ 371 void blk_cleanup_queue(struct request_queue *q) 372 { 373 /* cannot be called from atomic context */ 374 might_sleep(); 375 376 WARN_ON_ONCE(blk_queue_registered(q)); 377 378 /* mark @q DYING, no new request or merges will be allowed afterwards */ 379 blk_set_queue_dying(q); 380 381 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 382 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 383 384 /* 385 * Drain all requests queued before DYING marking. Set DEAD flag to 386 * prevent that blk_mq_run_hw_queues() accesses the hardware queues 387 * after draining finished. 388 */ 389 blk_freeze_queue(q); 390 391 rq_qos_exit(q); 392 393 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 394 395 /* for synchronous bio-based driver finish in-flight integrity i/o */ 396 blk_flush_integrity(); 397 398 /* @q won't process any more request, flush async actions */ 399 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 400 blk_sync_queue(q); 401 402 if (queue_is_mq(q)) 403 blk_mq_exit_queue(q); 404 405 /* 406 * In theory, request pool of sched_tags belongs to request queue. 407 * However, the current implementation requires tag_set for freeing 408 * requests, so free the pool now. 409 * 410 * Queue has become frozen, there can't be any in-queue requests, so 411 * it is safe to free requests now. 412 */ 413 mutex_lock(&q->sysfs_lock); 414 if (q->elevator) 415 blk_mq_sched_free_requests(q); 416 mutex_unlock(&q->sysfs_lock); 417 418 percpu_ref_exit(&q->q_usage_counter); 419 420 /* @q is and will stay empty, shutdown and put */ 421 blk_put_queue(q); 422 } 423 EXPORT_SYMBOL(blk_cleanup_queue); 424 425 /** 426 * blk_queue_enter() - try to increase q->q_usage_counter 427 * @q: request queue pointer 428 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM 429 */ 430 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 431 { 432 const bool pm = flags & BLK_MQ_REQ_PM; 433 434 while (true) { 435 bool success = false; 436 437 rcu_read_lock(); 438 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 439 /* 440 * The code that increments the pm_only counter is 441 * responsible for ensuring that that counter is 442 * globally visible before the queue is unfrozen. 443 */ 444 if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) || 445 !blk_queue_pm_only(q)) { 446 success = true; 447 } else { 448 percpu_ref_put(&q->q_usage_counter); 449 } 450 } 451 rcu_read_unlock(); 452 453 if (success) 454 return 0; 455 456 if (flags & BLK_MQ_REQ_NOWAIT) 457 return -EBUSY; 458 459 /* 460 * read pair of barrier in blk_freeze_queue_start(), 461 * we need to order reading __PERCPU_REF_DEAD flag of 462 * .q_usage_counter and reading .mq_freeze_depth or 463 * queue dying flag, otherwise the following wait may 464 * never return if the two reads are reordered. 465 */ 466 smp_rmb(); 467 468 wait_event(q->mq_freeze_wq, 469 (!q->mq_freeze_depth && 470 blk_pm_resume_queue(pm, q)) || 471 blk_queue_dying(q)); 472 if (blk_queue_dying(q)) 473 return -ENODEV; 474 } 475 } 476 477 static inline int bio_queue_enter(struct bio *bio) 478 { 479 struct request_queue *q = bio->bi_disk->queue; 480 bool nowait = bio->bi_opf & REQ_NOWAIT; 481 int ret; 482 483 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0); 484 if (unlikely(ret)) { 485 if (nowait && !blk_queue_dying(q)) 486 bio_wouldblock_error(bio); 487 else 488 bio_io_error(bio); 489 } 490 491 return ret; 492 } 493 494 void blk_queue_exit(struct request_queue *q) 495 { 496 percpu_ref_put(&q->q_usage_counter); 497 } 498 499 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 500 { 501 struct request_queue *q = 502 container_of(ref, struct request_queue, q_usage_counter); 503 504 wake_up_all(&q->mq_freeze_wq); 505 } 506 507 static void blk_rq_timed_out_timer(struct timer_list *t) 508 { 509 struct request_queue *q = from_timer(q, t, timeout); 510 511 kblockd_schedule_work(&q->timeout_work); 512 } 513 514 static void blk_timeout_work(struct work_struct *work) 515 { 516 } 517 518 struct request_queue *blk_alloc_queue(int node_id) 519 { 520 struct request_queue *q; 521 int ret; 522 523 q = kmem_cache_alloc_node(blk_requestq_cachep, 524 GFP_KERNEL | __GFP_ZERO, node_id); 525 if (!q) 526 return NULL; 527 528 q->last_merge = NULL; 529 530 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL); 531 if (q->id < 0) 532 goto fail_q; 533 534 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 535 if (ret) 536 goto fail_id; 537 538 q->backing_dev_info = bdi_alloc(node_id); 539 if (!q->backing_dev_info) 540 goto fail_split; 541 542 q->stats = blk_alloc_queue_stats(); 543 if (!q->stats) 544 goto fail_stats; 545 546 q->node = node_id; 547 548 atomic_set(&q->nr_active_requests_shared_sbitmap, 0); 549 550 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 551 laptop_mode_timer_fn, 0); 552 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 553 INIT_WORK(&q->timeout_work, blk_timeout_work); 554 INIT_LIST_HEAD(&q->icq_list); 555 #ifdef CONFIG_BLK_CGROUP 556 INIT_LIST_HEAD(&q->blkg_list); 557 #endif 558 559 kobject_init(&q->kobj, &blk_queue_ktype); 560 561 mutex_init(&q->debugfs_mutex); 562 mutex_init(&q->sysfs_lock); 563 mutex_init(&q->sysfs_dir_lock); 564 spin_lock_init(&q->queue_lock); 565 566 init_waitqueue_head(&q->mq_freeze_wq); 567 mutex_init(&q->mq_freeze_lock); 568 569 /* 570 * Init percpu_ref in atomic mode so that it's faster to shutdown. 571 * See blk_register_queue() for details. 572 */ 573 if (percpu_ref_init(&q->q_usage_counter, 574 blk_queue_usage_counter_release, 575 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 576 goto fail_bdi; 577 578 if (blkcg_init_queue(q)) 579 goto fail_ref; 580 581 blk_queue_dma_alignment(q, 511); 582 blk_set_default_limits(&q->limits); 583 q->nr_requests = BLKDEV_MAX_RQ; 584 585 return q; 586 587 fail_ref: 588 percpu_ref_exit(&q->q_usage_counter); 589 fail_bdi: 590 blk_free_queue_stats(q->stats); 591 fail_stats: 592 bdi_put(q->backing_dev_info); 593 fail_split: 594 bioset_exit(&q->bio_split); 595 fail_id: 596 ida_simple_remove(&blk_queue_ida, q->id); 597 fail_q: 598 kmem_cache_free(blk_requestq_cachep, q); 599 return NULL; 600 } 601 EXPORT_SYMBOL(blk_alloc_queue); 602 603 /** 604 * blk_get_queue - increment the request_queue refcount 605 * @q: the request_queue structure to increment the refcount for 606 * 607 * Increment the refcount of the request_queue kobject. 608 * 609 * Context: Any context. 610 */ 611 bool blk_get_queue(struct request_queue *q) 612 { 613 if (likely(!blk_queue_dying(q))) { 614 __blk_get_queue(q); 615 return true; 616 } 617 618 return false; 619 } 620 EXPORT_SYMBOL(blk_get_queue); 621 622 /** 623 * blk_get_request - allocate a request 624 * @q: request queue to allocate a request for 625 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 626 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 627 */ 628 struct request *blk_get_request(struct request_queue *q, unsigned int op, 629 blk_mq_req_flags_t flags) 630 { 631 struct request *req; 632 633 WARN_ON_ONCE(op & REQ_NOWAIT); 634 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM)); 635 636 req = blk_mq_alloc_request(q, op, flags); 637 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 638 q->mq_ops->initialize_rq_fn(req); 639 640 return req; 641 } 642 EXPORT_SYMBOL(blk_get_request); 643 644 void blk_put_request(struct request *req) 645 { 646 blk_mq_free_request(req); 647 } 648 EXPORT_SYMBOL(blk_put_request); 649 650 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 651 { 652 char b[BDEVNAME_SIZE]; 653 654 pr_info_ratelimited("attempt to access beyond end of device\n" 655 "%s: rw=%d, want=%llu, limit=%llu\n", 656 bio_devname(bio, b), bio->bi_opf, 657 bio_end_sector(bio), maxsector); 658 } 659 660 #ifdef CONFIG_FAIL_MAKE_REQUEST 661 662 static DECLARE_FAULT_ATTR(fail_make_request); 663 664 static int __init setup_fail_make_request(char *str) 665 { 666 return setup_fault_attr(&fail_make_request, str); 667 } 668 __setup("fail_make_request=", setup_fail_make_request); 669 670 static bool should_fail_request(struct block_device *part, unsigned int bytes) 671 { 672 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes); 673 } 674 675 static int __init fail_make_request_debugfs(void) 676 { 677 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 678 NULL, &fail_make_request); 679 680 return PTR_ERR_OR_ZERO(dir); 681 } 682 683 late_initcall(fail_make_request_debugfs); 684 685 #else /* CONFIG_FAIL_MAKE_REQUEST */ 686 687 static inline bool should_fail_request(struct block_device *part, 688 unsigned int bytes) 689 { 690 return false; 691 } 692 693 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 694 695 static inline bool bio_check_ro(struct bio *bio, struct block_device *part) 696 { 697 const int op = bio_op(bio); 698 699 if (part->bd_read_only && op_is_write(op)) { 700 char b[BDEVNAME_SIZE]; 701 702 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 703 return false; 704 705 WARN_ONCE(1, 706 "Trying to write to read-only block-device %s (partno %d)\n", 707 bio_devname(bio, b), part->bd_partno); 708 /* Older lvm-tools actually trigger this */ 709 return false; 710 } 711 712 return false; 713 } 714 715 static noinline int should_fail_bio(struct bio *bio) 716 { 717 if (should_fail_request(bio->bi_disk->part0, bio->bi_iter.bi_size)) 718 return -EIO; 719 return 0; 720 } 721 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 722 723 /* 724 * Check whether this bio extends beyond the end of the device or partition. 725 * This may well happen - the kernel calls bread() without checking the size of 726 * the device, e.g., when mounting a file system. 727 */ 728 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 729 { 730 unsigned int nr_sectors = bio_sectors(bio); 731 732 if (nr_sectors && maxsector && 733 (nr_sectors > maxsector || 734 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 735 handle_bad_sector(bio, maxsector); 736 return -EIO; 737 } 738 return 0; 739 } 740 741 /* 742 * Remap block n of partition p to block n+start(p) of the disk. 743 */ 744 static inline int blk_partition_remap(struct bio *bio) 745 { 746 struct block_device *p; 747 int ret = -EIO; 748 749 rcu_read_lock(); 750 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 751 if (unlikely(!p)) 752 goto out; 753 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 754 goto out; 755 if (unlikely(bio_check_ro(bio, p))) 756 goto out; 757 758 if (bio_sectors(bio)) { 759 if (bio_check_eod(bio, bdev_nr_sectors(p))) 760 goto out; 761 bio->bi_iter.bi_sector += p->bd_start_sect; 762 trace_block_bio_remap(bio, p->bd_dev, 763 bio->bi_iter.bi_sector - 764 p->bd_start_sect); 765 } 766 bio->bi_partno = 0; 767 ret = 0; 768 out: 769 rcu_read_unlock(); 770 return ret; 771 } 772 773 /* 774 * Check write append to a zoned block device. 775 */ 776 static inline blk_status_t blk_check_zone_append(struct request_queue *q, 777 struct bio *bio) 778 { 779 sector_t pos = bio->bi_iter.bi_sector; 780 int nr_sectors = bio_sectors(bio); 781 782 /* Only applicable to zoned block devices */ 783 if (!blk_queue_is_zoned(q)) 784 return BLK_STS_NOTSUPP; 785 786 /* The bio sector must point to the start of a sequential zone */ 787 if (pos & (blk_queue_zone_sectors(q) - 1) || 788 !blk_queue_zone_is_seq(q, pos)) 789 return BLK_STS_IOERR; 790 791 /* 792 * Not allowed to cross zone boundaries. Otherwise, the BIO will be 793 * split and could result in non-contiguous sectors being written in 794 * different zones. 795 */ 796 if (nr_sectors > q->limits.chunk_sectors) 797 return BLK_STS_IOERR; 798 799 /* Make sure the BIO is small enough and will not get split */ 800 if (nr_sectors > q->limits.max_zone_append_sectors) 801 return BLK_STS_IOERR; 802 803 bio->bi_opf |= REQ_NOMERGE; 804 805 return BLK_STS_OK; 806 } 807 808 static noinline_for_stack bool submit_bio_checks(struct bio *bio) 809 { 810 struct request_queue *q = bio->bi_disk->queue; 811 blk_status_t status = BLK_STS_IOERR; 812 struct blk_plug *plug; 813 814 might_sleep(); 815 816 plug = blk_mq_plug(q, bio); 817 if (plug && plug->nowait) 818 bio->bi_opf |= REQ_NOWAIT; 819 820 /* 821 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 822 * if queue does not support NOWAIT. 823 */ 824 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q)) 825 goto not_supported; 826 827 if (should_fail_bio(bio)) 828 goto end_io; 829 830 if (bio->bi_partno) { 831 if (unlikely(blk_partition_remap(bio))) 832 goto end_io; 833 } else { 834 if (unlikely(bio_check_ro(bio, bio->bi_disk->part0))) 835 goto end_io; 836 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 837 goto end_io; 838 } 839 840 /* 841 * Filter flush bio's early so that bio based drivers without flush 842 * support don't have to worry about them. 843 */ 844 if (op_is_flush(bio->bi_opf) && 845 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 846 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 847 if (!bio_sectors(bio)) { 848 status = BLK_STS_OK; 849 goto end_io; 850 } 851 } 852 853 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 854 bio->bi_opf &= ~REQ_HIPRI; 855 856 switch (bio_op(bio)) { 857 case REQ_OP_DISCARD: 858 if (!blk_queue_discard(q)) 859 goto not_supported; 860 break; 861 case REQ_OP_SECURE_ERASE: 862 if (!blk_queue_secure_erase(q)) 863 goto not_supported; 864 break; 865 case REQ_OP_WRITE_SAME: 866 if (!q->limits.max_write_same_sectors) 867 goto not_supported; 868 break; 869 case REQ_OP_ZONE_APPEND: 870 status = blk_check_zone_append(q, bio); 871 if (status != BLK_STS_OK) 872 goto end_io; 873 break; 874 case REQ_OP_ZONE_RESET: 875 case REQ_OP_ZONE_OPEN: 876 case REQ_OP_ZONE_CLOSE: 877 case REQ_OP_ZONE_FINISH: 878 if (!blk_queue_is_zoned(q)) 879 goto not_supported; 880 break; 881 case REQ_OP_ZONE_RESET_ALL: 882 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q)) 883 goto not_supported; 884 break; 885 case REQ_OP_WRITE_ZEROES: 886 if (!q->limits.max_write_zeroes_sectors) 887 goto not_supported; 888 break; 889 default: 890 break; 891 } 892 893 /* 894 * Various block parts want %current->io_context, so allocate it up 895 * front rather than dealing with lots of pain to allocate it only 896 * where needed. This may fail and the block layer knows how to live 897 * with it. 898 */ 899 if (unlikely(!current->io_context)) 900 create_task_io_context(current, GFP_ATOMIC, q->node); 901 902 if (blk_throtl_bio(bio)) { 903 blkcg_bio_issue_init(bio); 904 return false; 905 } 906 907 blk_cgroup_bio_start(bio); 908 blkcg_bio_issue_init(bio); 909 910 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 911 trace_block_bio_queue(bio); 912 /* Now that enqueuing has been traced, we need to trace 913 * completion as well. 914 */ 915 bio_set_flag(bio, BIO_TRACE_COMPLETION); 916 } 917 return true; 918 919 not_supported: 920 status = BLK_STS_NOTSUPP; 921 end_io: 922 bio->bi_status = status; 923 bio_endio(bio); 924 return false; 925 } 926 927 static blk_qc_t __submit_bio(struct bio *bio) 928 { 929 struct gendisk *disk = bio->bi_disk; 930 blk_qc_t ret = BLK_QC_T_NONE; 931 932 if (blk_crypto_bio_prep(&bio)) { 933 if (!disk->fops->submit_bio) 934 return blk_mq_submit_bio(bio); 935 ret = disk->fops->submit_bio(bio); 936 } 937 blk_queue_exit(disk->queue); 938 return ret; 939 } 940 941 /* 942 * The loop in this function may be a bit non-obvious, and so deserves some 943 * explanation: 944 * 945 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure 946 * that), so we have a list with a single bio. 947 * - We pretend that we have just taken it off a longer list, so we assign 948 * bio_list to a pointer to the bio_list_on_stack, thus initialising the 949 * bio_list of new bios to be added. ->submit_bio() may indeed add some more 950 * bios through a recursive call to submit_bio_noacct. If it did, we find a 951 * non-NULL value in bio_list and re-enter the loop from the top. 952 * - In this case we really did just take the bio of the top of the list (no 953 * pretending) and so remove it from bio_list, and call into ->submit_bio() 954 * again. 955 * 956 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio. 957 * bio_list_on_stack[1] contains bios that were submitted before the current 958 * ->submit_bio_bio, but that haven't been processed yet. 959 */ 960 static blk_qc_t __submit_bio_noacct(struct bio *bio) 961 { 962 struct bio_list bio_list_on_stack[2]; 963 blk_qc_t ret = BLK_QC_T_NONE; 964 965 BUG_ON(bio->bi_next); 966 967 bio_list_init(&bio_list_on_stack[0]); 968 current->bio_list = bio_list_on_stack; 969 970 do { 971 struct request_queue *q = bio->bi_disk->queue; 972 struct bio_list lower, same; 973 974 if (unlikely(bio_queue_enter(bio) != 0)) 975 continue; 976 977 /* 978 * Create a fresh bio_list for all subordinate requests. 979 */ 980 bio_list_on_stack[1] = bio_list_on_stack[0]; 981 bio_list_init(&bio_list_on_stack[0]); 982 983 ret = __submit_bio(bio); 984 985 /* 986 * Sort new bios into those for a lower level and those for the 987 * same level. 988 */ 989 bio_list_init(&lower); 990 bio_list_init(&same); 991 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 992 if (q == bio->bi_disk->queue) 993 bio_list_add(&same, bio); 994 else 995 bio_list_add(&lower, bio); 996 997 /* 998 * Now assemble so we handle the lowest level first. 999 */ 1000 bio_list_merge(&bio_list_on_stack[0], &lower); 1001 bio_list_merge(&bio_list_on_stack[0], &same); 1002 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 1003 } while ((bio = bio_list_pop(&bio_list_on_stack[0]))); 1004 1005 current->bio_list = NULL; 1006 return ret; 1007 } 1008 1009 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio) 1010 { 1011 struct bio_list bio_list[2] = { }; 1012 blk_qc_t ret = BLK_QC_T_NONE; 1013 1014 current->bio_list = bio_list; 1015 1016 do { 1017 struct gendisk *disk = bio->bi_disk; 1018 1019 if (unlikely(bio_queue_enter(bio) != 0)) 1020 continue; 1021 1022 if (!blk_crypto_bio_prep(&bio)) { 1023 blk_queue_exit(disk->queue); 1024 ret = BLK_QC_T_NONE; 1025 continue; 1026 } 1027 1028 ret = blk_mq_submit_bio(bio); 1029 } while ((bio = bio_list_pop(&bio_list[0]))); 1030 1031 current->bio_list = NULL; 1032 return ret; 1033 } 1034 1035 /** 1036 * submit_bio_noacct - re-submit a bio to the block device layer for I/O 1037 * @bio: The bio describing the location in memory and on the device. 1038 * 1039 * This is a version of submit_bio() that shall only be used for I/O that is 1040 * resubmitted to lower level drivers by stacking block drivers. All file 1041 * systems and other upper level users of the block layer should use 1042 * submit_bio() instead. 1043 */ 1044 blk_qc_t submit_bio_noacct(struct bio *bio) 1045 { 1046 if (!submit_bio_checks(bio)) 1047 return BLK_QC_T_NONE; 1048 1049 /* 1050 * We only want one ->submit_bio to be active at a time, else stack 1051 * usage with stacked devices could be a problem. Use current->bio_list 1052 * to collect a list of requests submited by a ->submit_bio method while 1053 * it is active, and then process them after it returned. 1054 */ 1055 if (current->bio_list) { 1056 bio_list_add(¤t->bio_list[0], bio); 1057 return BLK_QC_T_NONE; 1058 } 1059 1060 if (!bio->bi_disk->fops->submit_bio) 1061 return __submit_bio_noacct_mq(bio); 1062 return __submit_bio_noacct(bio); 1063 } 1064 EXPORT_SYMBOL(submit_bio_noacct); 1065 1066 /** 1067 * submit_bio - submit a bio to the block device layer for I/O 1068 * @bio: The &struct bio which describes the I/O 1069 * 1070 * submit_bio() is used to submit I/O requests to block devices. It is passed a 1071 * fully set up &struct bio that describes the I/O that needs to be done. The 1072 * bio will be send to the device described by the bi_disk and bi_partno fields. 1073 * 1074 * The success/failure status of the request, along with notification of 1075 * completion, is delivered asynchronously through the ->bi_end_io() callback 1076 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has 1077 * been called. 1078 */ 1079 blk_qc_t submit_bio(struct bio *bio) 1080 { 1081 if (blkcg_punt_bio_submit(bio)) 1082 return BLK_QC_T_NONE; 1083 1084 /* 1085 * If it's a regular read/write or a barrier with data attached, 1086 * go through the normal accounting stuff before submission. 1087 */ 1088 if (bio_has_data(bio)) { 1089 unsigned int count; 1090 1091 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1092 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 1093 else 1094 count = bio_sectors(bio); 1095 1096 if (op_is_write(bio_op(bio))) { 1097 count_vm_events(PGPGOUT, count); 1098 } else { 1099 task_io_account_read(bio->bi_iter.bi_size); 1100 count_vm_events(PGPGIN, count); 1101 } 1102 1103 if (unlikely(block_dump)) { 1104 char b[BDEVNAME_SIZE]; 1105 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1106 current->comm, task_pid_nr(current), 1107 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 1108 (unsigned long long)bio->bi_iter.bi_sector, 1109 bio_devname(bio, b), count); 1110 } 1111 } 1112 1113 /* 1114 * If we're reading data that is part of the userspace workingset, count 1115 * submission time as memory stall. When the device is congested, or 1116 * the submitting cgroup IO-throttled, submission can be a significant 1117 * part of overall IO time. 1118 */ 1119 if (unlikely(bio_op(bio) == REQ_OP_READ && 1120 bio_flagged(bio, BIO_WORKINGSET))) { 1121 unsigned long pflags; 1122 blk_qc_t ret; 1123 1124 psi_memstall_enter(&pflags); 1125 ret = submit_bio_noacct(bio); 1126 psi_memstall_leave(&pflags); 1127 1128 return ret; 1129 } 1130 1131 return submit_bio_noacct(bio); 1132 } 1133 EXPORT_SYMBOL(submit_bio); 1134 1135 /** 1136 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1137 * for the new queue limits 1138 * @q: the queue 1139 * @rq: the request being checked 1140 * 1141 * Description: 1142 * @rq may have been made based on weaker limitations of upper-level queues 1143 * in request stacking drivers, and it may violate the limitation of @q. 1144 * Since the block layer and the underlying device driver trust @rq 1145 * after it is inserted to @q, it should be checked against @q before 1146 * the insertion using this generic function. 1147 * 1148 * Request stacking drivers like request-based dm may change the queue 1149 * limits when retrying requests on other queues. Those requests need 1150 * to be checked against the new queue limits again during dispatch. 1151 */ 1152 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q, 1153 struct request *rq) 1154 { 1155 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 1156 1157 if (blk_rq_sectors(rq) > max_sectors) { 1158 /* 1159 * SCSI device does not have a good way to return if 1160 * Write Same/Zero is actually supported. If a device rejects 1161 * a non-read/write command (discard, write same,etc.) the 1162 * low-level device driver will set the relevant queue limit to 1163 * 0 to prevent blk-lib from issuing more of the offending 1164 * operations. Commands queued prior to the queue limit being 1165 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 1166 * errors being propagated to upper layers. 1167 */ 1168 if (max_sectors == 0) 1169 return BLK_STS_NOTSUPP; 1170 1171 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 1172 __func__, blk_rq_sectors(rq), max_sectors); 1173 return BLK_STS_IOERR; 1174 } 1175 1176 /* 1177 * queue's settings related to segment counting like q->bounce_pfn 1178 * may differ from that of other stacking queues. 1179 * Recalculate it to check the request correctly on this queue's 1180 * limitation. 1181 */ 1182 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 1183 if (rq->nr_phys_segments > queue_max_segments(q)) { 1184 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 1185 __func__, rq->nr_phys_segments, queue_max_segments(q)); 1186 return BLK_STS_IOERR; 1187 } 1188 1189 return BLK_STS_OK; 1190 } 1191 1192 /** 1193 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1194 * @q: the queue to submit the request 1195 * @rq: the request being queued 1196 */ 1197 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1198 { 1199 blk_status_t ret; 1200 1201 ret = blk_cloned_rq_check_limits(q, rq); 1202 if (ret != BLK_STS_OK) 1203 return ret; 1204 1205 if (rq->rq_disk && 1206 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq))) 1207 return BLK_STS_IOERR; 1208 1209 if (blk_crypto_insert_cloned_request(rq)) 1210 return BLK_STS_IOERR; 1211 1212 if (blk_queue_io_stat(q)) 1213 blk_account_io_start(rq); 1214 1215 /* 1216 * Since we have a scheduler attached on the top device, 1217 * bypass a potential scheduler on the bottom device for 1218 * insert. 1219 */ 1220 return blk_mq_request_issue_directly(rq, true); 1221 } 1222 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1223 1224 /** 1225 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1226 * @rq: request to examine 1227 * 1228 * Description: 1229 * A request could be merge of IOs which require different failure 1230 * handling. This function determines the number of bytes which 1231 * can be failed from the beginning of the request without 1232 * crossing into area which need to be retried further. 1233 * 1234 * Return: 1235 * The number of bytes to fail. 1236 */ 1237 unsigned int blk_rq_err_bytes(const struct request *rq) 1238 { 1239 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1240 unsigned int bytes = 0; 1241 struct bio *bio; 1242 1243 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1244 return blk_rq_bytes(rq); 1245 1246 /* 1247 * Currently the only 'mixing' which can happen is between 1248 * different fastfail types. We can safely fail portions 1249 * which have all the failfast bits that the first one has - 1250 * the ones which are at least as eager to fail as the first 1251 * one. 1252 */ 1253 for (bio = rq->bio; bio; bio = bio->bi_next) { 1254 if ((bio->bi_opf & ff) != ff) 1255 break; 1256 bytes += bio->bi_iter.bi_size; 1257 } 1258 1259 /* this could lead to infinite loop */ 1260 BUG_ON(blk_rq_bytes(rq) && !bytes); 1261 return bytes; 1262 } 1263 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1264 1265 static void update_io_ticks(struct block_device *part, unsigned long now, 1266 bool end) 1267 { 1268 unsigned long stamp; 1269 again: 1270 stamp = READ_ONCE(part->bd_stamp); 1271 if (unlikely(stamp != now)) { 1272 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp)) 1273 __part_stat_add(part, io_ticks, end ? now - stamp : 1); 1274 } 1275 if (part->bd_partno) { 1276 part = bdev_whole(part); 1277 goto again; 1278 } 1279 } 1280 1281 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1282 { 1283 if (req->part && blk_do_io_stat(req)) { 1284 const int sgrp = op_stat_group(req_op(req)); 1285 1286 part_stat_lock(); 1287 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 1288 part_stat_unlock(); 1289 } 1290 } 1291 1292 void blk_account_io_done(struct request *req, u64 now) 1293 { 1294 /* 1295 * Account IO completion. flush_rq isn't accounted as a 1296 * normal IO on queueing nor completion. Accounting the 1297 * containing request is enough. 1298 */ 1299 if (req->part && blk_do_io_stat(req) && 1300 !(req->rq_flags & RQF_FLUSH_SEQ)) { 1301 const int sgrp = op_stat_group(req_op(req)); 1302 1303 part_stat_lock(); 1304 update_io_ticks(req->part, jiffies, true); 1305 part_stat_inc(req->part, ios[sgrp]); 1306 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1307 part_stat_unlock(); 1308 } 1309 } 1310 1311 void blk_account_io_start(struct request *rq) 1312 { 1313 if (!blk_do_io_stat(rq)) 1314 return; 1315 1316 rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 1317 1318 part_stat_lock(); 1319 update_io_ticks(rq->part, jiffies, false); 1320 part_stat_unlock(); 1321 } 1322 1323 static unsigned long __part_start_io_acct(struct block_device *part, 1324 unsigned int sectors, unsigned int op) 1325 { 1326 const int sgrp = op_stat_group(op); 1327 unsigned long now = READ_ONCE(jiffies); 1328 1329 part_stat_lock(); 1330 update_io_ticks(part, now, false); 1331 part_stat_inc(part, ios[sgrp]); 1332 part_stat_add(part, sectors[sgrp], sectors); 1333 part_stat_local_inc(part, in_flight[op_is_write(op)]); 1334 part_stat_unlock(); 1335 1336 return now; 1337 } 1338 1339 unsigned long part_start_io_acct(struct gendisk *disk, struct block_device **part, 1340 struct bio *bio) 1341 { 1342 *part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector); 1343 1344 return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio)); 1345 } 1346 EXPORT_SYMBOL_GPL(part_start_io_acct); 1347 1348 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1349 unsigned int op) 1350 { 1351 return __part_start_io_acct(disk->part0, sectors, op); 1352 } 1353 EXPORT_SYMBOL(disk_start_io_acct); 1354 1355 static void __part_end_io_acct(struct block_device *part, unsigned int op, 1356 unsigned long start_time) 1357 { 1358 const int sgrp = op_stat_group(op); 1359 unsigned long now = READ_ONCE(jiffies); 1360 unsigned long duration = now - start_time; 1361 1362 part_stat_lock(); 1363 update_io_ticks(part, now, true); 1364 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1365 part_stat_local_dec(part, in_flight[op_is_write(op)]); 1366 part_stat_unlock(); 1367 } 1368 1369 void part_end_io_acct(struct block_device *part, struct bio *bio, 1370 unsigned long start_time) 1371 { 1372 __part_end_io_acct(part, bio_op(bio), start_time); 1373 } 1374 EXPORT_SYMBOL_GPL(part_end_io_acct); 1375 1376 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1377 unsigned long start_time) 1378 { 1379 __part_end_io_acct(disk->part0, op, start_time); 1380 } 1381 EXPORT_SYMBOL(disk_end_io_acct); 1382 1383 /* 1384 * Steal bios from a request and add them to a bio list. 1385 * The request must not have been partially completed before. 1386 */ 1387 void blk_steal_bios(struct bio_list *list, struct request *rq) 1388 { 1389 if (rq->bio) { 1390 if (list->tail) 1391 list->tail->bi_next = rq->bio; 1392 else 1393 list->head = rq->bio; 1394 list->tail = rq->biotail; 1395 1396 rq->bio = NULL; 1397 rq->biotail = NULL; 1398 } 1399 1400 rq->__data_len = 0; 1401 } 1402 EXPORT_SYMBOL_GPL(blk_steal_bios); 1403 1404 /** 1405 * blk_update_request - Special helper function for request stacking drivers 1406 * @req: the request being processed 1407 * @error: block status code 1408 * @nr_bytes: number of bytes to complete @req 1409 * 1410 * Description: 1411 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1412 * the request structure even if @req doesn't have leftover. 1413 * If @req has leftover, sets it up for the next range of segments. 1414 * 1415 * This special helper function is only for request stacking drivers 1416 * (e.g. request-based dm) so that they can handle partial completion. 1417 * Actual device drivers should use blk_mq_end_request instead. 1418 * 1419 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1420 * %false return from this function. 1421 * 1422 * Note: 1423 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both 1424 * blk_rq_bytes() and in blk_update_request(). 1425 * 1426 * Return: 1427 * %false - this request doesn't have any more data 1428 * %true - this request has more data 1429 **/ 1430 bool blk_update_request(struct request *req, blk_status_t error, 1431 unsigned int nr_bytes) 1432 { 1433 int total_bytes; 1434 1435 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 1436 1437 if (!req->bio) 1438 return false; 1439 1440 #ifdef CONFIG_BLK_DEV_INTEGRITY 1441 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 1442 error == BLK_STS_OK) 1443 req->q->integrity.profile->complete_fn(req, nr_bytes); 1444 #endif 1445 1446 if (unlikely(error && !blk_rq_is_passthrough(req) && 1447 !(req->rq_flags & RQF_QUIET))) 1448 print_req_error(req, error, __func__); 1449 1450 blk_account_io_completion(req, nr_bytes); 1451 1452 total_bytes = 0; 1453 while (req->bio) { 1454 struct bio *bio = req->bio; 1455 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 1456 1457 if (bio_bytes == bio->bi_iter.bi_size) 1458 req->bio = bio->bi_next; 1459 1460 /* Completion has already been traced */ 1461 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1462 req_bio_endio(req, bio, bio_bytes, error); 1463 1464 total_bytes += bio_bytes; 1465 nr_bytes -= bio_bytes; 1466 1467 if (!nr_bytes) 1468 break; 1469 } 1470 1471 /* 1472 * completely done 1473 */ 1474 if (!req->bio) { 1475 /* 1476 * Reset counters so that the request stacking driver 1477 * can find how many bytes remain in the request 1478 * later. 1479 */ 1480 req->__data_len = 0; 1481 return false; 1482 } 1483 1484 req->__data_len -= total_bytes; 1485 1486 /* update sector only for requests with clear definition of sector */ 1487 if (!blk_rq_is_passthrough(req)) 1488 req->__sector += total_bytes >> 9; 1489 1490 /* mixed attributes always follow the first bio */ 1491 if (req->rq_flags & RQF_MIXED_MERGE) { 1492 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1493 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1494 } 1495 1496 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1497 /* 1498 * If total number of sectors is less than the first segment 1499 * size, something has gone terribly wrong. 1500 */ 1501 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1502 blk_dump_rq_flags(req, "request botched"); 1503 req->__data_len = blk_rq_cur_bytes(req); 1504 } 1505 1506 /* recalculate the number of segments */ 1507 req->nr_phys_segments = blk_recalc_rq_segments(req); 1508 } 1509 1510 return true; 1511 } 1512 EXPORT_SYMBOL_GPL(blk_update_request); 1513 1514 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1515 /** 1516 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1517 * @rq: the request to be flushed 1518 * 1519 * Description: 1520 * Flush all pages in @rq. 1521 */ 1522 void rq_flush_dcache_pages(struct request *rq) 1523 { 1524 struct req_iterator iter; 1525 struct bio_vec bvec; 1526 1527 rq_for_each_segment(bvec, rq, iter) 1528 flush_dcache_page(bvec.bv_page); 1529 } 1530 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1531 #endif 1532 1533 /** 1534 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1535 * @q : the queue of the device being checked 1536 * 1537 * Description: 1538 * Check if underlying low-level drivers of a device are busy. 1539 * If the drivers want to export their busy state, they must set own 1540 * exporting function using blk_queue_lld_busy() first. 1541 * 1542 * Basically, this function is used only by request stacking drivers 1543 * to stop dispatching requests to underlying devices when underlying 1544 * devices are busy. This behavior helps more I/O merging on the queue 1545 * of the request stacking driver and prevents I/O throughput regression 1546 * on burst I/O load. 1547 * 1548 * Return: 1549 * 0 - Not busy (The request stacking driver should dispatch request) 1550 * 1 - Busy (The request stacking driver should stop dispatching request) 1551 */ 1552 int blk_lld_busy(struct request_queue *q) 1553 { 1554 if (queue_is_mq(q) && q->mq_ops->busy) 1555 return q->mq_ops->busy(q); 1556 1557 return 0; 1558 } 1559 EXPORT_SYMBOL_GPL(blk_lld_busy); 1560 1561 /** 1562 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1563 * @rq: the clone request to be cleaned up 1564 * 1565 * Description: 1566 * Free all bios in @rq for a cloned request. 1567 */ 1568 void blk_rq_unprep_clone(struct request *rq) 1569 { 1570 struct bio *bio; 1571 1572 while ((bio = rq->bio) != NULL) { 1573 rq->bio = bio->bi_next; 1574 1575 bio_put(bio); 1576 } 1577 } 1578 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1579 1580 /** 1581 * blk_rq_prep_clone - Helper function to setup clone request 1582 * @rq: the request to be setup 1583 * @rq_src: original request to be cloned 1584 * @bs: bio_set that bios for clone are allocated from 1585 * @gfp_mask: memory allocation mask for bio 1586 * @bio_ctr: setup function to be called for each clone bio. 1587 * Returns %0 for success, non %0 for failure. 1588 * @data: private data to be passed to @bio_ctr 1589 * 1590 * Description: 1591 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1592 * Also, pages which the original bios are pointing to are not copied 1593 * and the cloned bios just point same pages. 1594 * So cloned bios must be completed before original bios, which means 1595 * the caller must complete @rq before @rq_src. 1596 */ 1597 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1598 struct bio_set *bs, gfp_t gfp_mask, 1599 int (*bio_ctr)(struct bio *, struct bio *, void *), 1600 void *data) 1601 { 1602 struct bio *bio, *bio_src; 1603 1604 if (!bs) 1605 bs = &fs_bio_set; 1606 1607 __rq_for_each_bio(bio_src, rq_src) { 1608 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1609 if (!bio) 1610 goto free_and_out; 1611 1612 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1613 goto free_and_out; 1614 1615 if (rq->bio) { 1616 rq->biotail->bi_next = bio; 1617 rq->biotail = bio; 1618 } else { 1619 rq->bio = rq->biotail = bio; 1620 } 1621 bio = NULL; 1622 } 1623 1624 /* Copy attributes of the original request to the clone request. */ 1625 rq->__sector = blk_rq_pos(rq_src); 1626 rq->__data_len = blk_rq_bytes(rq_src); 1627 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1628 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 1629 rq->special_vec = rq_src->special_vec; 1630 } 1631 rq->nr_phys_segments = rq_src->nr_phys_segments; 1632 rq->ioprio = rq_src->ioprio; 1633 1634 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 1635 goto free_and_out; 1636 1637 return 0; 1638 1639 free_and_out: 1640 if (bio) 1641 bio_put(bio); 1642 blk_rq_unprep_clone(rq); 1643 1644 return -ENOMEM; 1645 } 1646 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1647 1648 int kblockd_schedule_work(struct work_struct *work) 1649 { 1650 return queue_work(kblockd_workqueue, work); 1651 } 1652 EXPORT_SYMBOL(kblockd_schedule_work); 1653 1654 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1655 unsigned long delay) 1656 { 1657 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1658 } 1659 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1660 1661 /** 1662 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1663 * @plug: The &struct blk_plug that needs to be initialized 1664 * 1665 * Description: 1666 * blk_start_plug() indicates to the block layer an intent by the caller 1667 * to submit multiple I/O requests in a batch. The block layer may use 1668 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1669 * is called. However, the block layer may choose to submit requests 1670 * before a call to blk_finish_plug() if the number of queued I/Os 1671 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1672 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1673 * the task schedules (see below). 1674 * 1675 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1676 * pending I/O should the task end up blocking between blk_start_plug() and 1677 * blk_finish_plug(). This is important from a performance perspective, but 1678 * also ensures that we don't deadlock. For instance, if the task is blocking 1679 * for a memory allocation, memory reclaim could end up wanting to free a 1680 * page belonging to that request that is currently residing in our private 1681 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1682 * this kind of deadlock. 1683 */ 1684 void blk_start_plug(struct blk_plug *plug) 1685 { 1686 struct task_struct *tsk = current; 1687 1688 /* 1689 * If this is a nested plug, don't actually assign it. 1690 */ 1691 if (tsk->plug) 1692 return; 1693 1694 INIT_LIST_HEAD(&plug->mq_list); 1695 INIT_LIST_HEAD(&plug->cb_list); 1696 plug->rq_count = 0; 1697 plug->multiple_queues = false; 1698 plug->nowait = false; 1699 1700 /* 1701 * Store ordering should not be needed here, since a potential 1702 * preempt will imply a full memory barrier 1703 */ 1704 tsk->plug = plug; 1705 } 1706 EXPORT_SYMBOL(blk_start_plug); 1707 1708 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1709 { 1710 LIST_HEAD(callbacks); 1711 1712 while (!list_empty(&plug->cb_list)) { 1713 list_splice_init(&plug->cb_list, &callbacks); 1714 1715 while (!list_empty(&callbacks)) { 1716 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1717 struct blk_plug_cb, 1718 list); 1719 list_del(&cb->list); 1720 cb->callback(cb, from_schedule); 1721 } 1722 } 1723 } 1724 1725 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1726 int size) 1727 { 1728 struct blk_plug *plug = current->plug; 1729 struct blk_plug_cb *cb; 1730 1731 if (!plug) 1732 return NULL; 1733 1734 list_for_each_entry(cb, &plug->cb_list, list) 1735 if (cb->callback == unplug && cb->data == data) 1736 return cb; 1737 1738 /* Not currently on the callback list */ 1739 BUG_ON(size < sizeof(*cb)); 1740 cb = kzalloc(size, GFP_ATOMIC); 1741 if (cb) { 1742 cb->data = data; 1743 cb->callback = unplug; 1744 list_add(&cb->list, &plug->cb_list); 1745 } 1746 return cb; 1747 } 1748 EXPORT_SYMBOL(blk_check_plugged); 1749 1750 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1751 { 1752 flush_plug_callbacks(plug, from_schedule); 1753 1754 if (!list_empty(&plug->mq_list)) 1755 blk_mq_flush_plug_list(plug, from_schedule); 1756 } 1757 1758 /** 1759 * blk_finish_plug - mark the end of a batch of submitted I/O 1760 * @plug: The &struct blk_plug passed to blk_start_plug() 1761 * 1762 * Description: 1763 * Indicate that a batch of I/O submissions is complete. This function 1764 * must be paired with an initial call to blk_start_plug(). The intent 1765 * is to allow the block layer to optimize I/O submission. See the 1766 * documentation for blk_start_plug() for more information. 1767 */ 1768 void blk_finish_plug(struct blk_plug *plug) 1769 { 1770 if (plug != current->plug) 1771 return; 1772 blk_flush_plug_list(plug, false); 1773 1774 current->plug = NULL; 1775 } 1776 EXPORT_SYMBOL(blk_finish_plug); 1777 1778 void blk_io_schedule(void) 1779 { 1780 /* Prevent hang_check timer from firing at us during very long I/O */ 1781 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 1782 1783 if (timeout) 1784 io_schedule_timeout(timeout); 1785 else 1786 io_schedule(); 1787 } 1788 EXPORT_SYMBOL_GPL(blk_io_schedule); 1789 1790 int __init blk_dev_init(void) 1791 { 1792 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1793 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1794 sizeof_field(struct request, cmd_flags)); 1795 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1796 sizeof_field(struct bio, bi_opf)); 1797 1798 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1799 kblockd_workqueue = alloc_workqueue("kblockd", 1800 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1801 if (!kblockd_workqueue) 1802 panic("Failed to create kblockd\n"); 1803 1804 blk_requestq_cachep = kmem_cache_create("request_queue", 1805 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1806 1807 blk_debugfs_root = debugfs_create_dir("block", NULL); 1808 1809 return 0; 1810 } 1811