xref: /openbmc/linux/block/blk-core.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
33 
34 #include "blk.h"
35 
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
39 
40 static int __make_request(struct request_queue *q, struct bio *bio);
41 
42 /*
43  * For the allocated request tables
44  */
45 static struct kmem_cache *request_cachep;
46 
47 /*
48  * For queue allocation
49  */
50 struct kmem_cache *blk_requestq_cachep;
51 
52 /*
53  * Controlling structure to kblockd
54  */
55 static struct workqueue_struct *kblockd_workqueue;
56 
57 static void drive_stat_acct(struct request *rq, int new_io)
58 {
59 	struct hd_struct *part;
60 	int rw = rq_data_dir(rq);
61 	int cpu;
62 
63 	if (!blk_do_io_stat(rq))
64 		return;
65 
66 	cpu = part_stat_lock();
67 
68 	if (!new_io) {
69 		part = rq->part;
70 		part_stat_inc(cpu, part, merges[rw]);
71 	} else {
72 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
73 		if (!hd_struct_try_get(part)) {
74 			/*
75 			 * The partition is already being removed,
76 			 * the request will be accounted on the disk only
77 			 *
78 			 * We take a reference on disk->part0 although that
79 			 * partition will never be deleted, so we can treat
80 			 * it as any other partition.
81 			 */
82 			part = &rq->rq_disk->part0;
83 			hd_struct_get(part);
84 		}
85 		part_round_stats(cpu, part);
86 		part_inc_in_flight(part, rw);
87 		rq->part = part;
88 	}
89 
90 	part_stat_unlock();
91 }
92 
93 void blk_queue_congestion_threshold(struct request_queue *q)
94 {
95 	int nr;
96 
97 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 	if (nr > q->nr_requests)
99 		nr = q->nr_requests;
100 	q->nr_congestion_on = nr;
101 
102 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 	if (nr < 1)
104 		nr = 1;
105 	q->nr_congestion_off = nr;
106 }
107 
108 /**
109  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110  * @bdev:	device
111  *
112  * Locates the passed device's request queue and returns the address of its
113  * backing_dev_info
114  *
115  * Will return NULL if the request queue cannot be located.
116  */
117 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
118 {
119 	struct backing_dev_info *ret = NULL;
120 	struct request_queue *q = bdev_get_queue(bdev);
121 
122 	if (q)
123 		ret = &q->backing_dev_info;
124 	return ret;
125 }
126 EXPORT_SYMBOL(blk_get_backing_dev_info);
127 
128 void blk_rq_init(struct request_queue *q, struct request *rq)
129 {
130 	memset(rq, 0, sizeof(*rq));
131 
132 	INIT_LIST_HEAD(&rq->queuelist);
133 	INIT_LIST_HEAD(&rq->timeout_list);
134 	rq->cpu = -1;
135 	rq->q = q;
136 	rq->__sector = (sector_t) -1;
137 	INIT_HLIST_NODE(&rq->hash);
138 	RB_CLEAR_NODE(&rq->rb_node);
139 	rq->cmd = rq->__cmd;
140 	rq->cmd_len = BLK_MAX_CDB;
141 	rq->tag = -1;
142 	rq->ref_count = 1;
143 	rq->start_time = jiffies;
144 	set_start_time_ns(rq);
145 	rq->part = NULL;
146 }
147 EXPORT_SYMBOL(blk_rq_init);
148 
149 static void req_bio_endio(struct request *rq, struct bio *bio,
150 			  unsigned int nbytes, int error)
151 {
152 	struct request_queue *q = rq->q;
153 
154 	if (&q->flush_rq != rq) {
155 		if (error)
156 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
157 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
158 			error = -EIO;
159 
160 		if (unlikely(nbytes > bio->bi_size)) {
161 			printk(KERN_ERR "%s: want %u bytes done, %u left\n",
162 			       __func__, nbytes, bio->bi_size);
163 			nbytes = bio->bi_size;
164 		}
165 
166 		if (unlikely(rq->cmd_flags & REQ_QUIET))
167 			set_bit(BIO_QUIET, &bio->bi_flags);
168 
169 		bio->bi_size -= nbytes;
170 		bio->bi_sector += (nbytes >> 9);
171 
172 		if (bio_integrity(bio))
173 			bio_integrity_advance(bio, nbytes);
174 
175 		if (bio->bi_size == 0)
176 			bio_endio(bio, error);
177 	} else {
178 		/*
179 		 * Okay, this is the sequenced flush request in
180 		 * progress, just record the error;
181 		 */
182 		if (error && !q->flush_err)
183 			q->flush_err = error;
184 	}
185 }
186 
187 void blk_dump_rq_flags(struct request *rq, char *msg)
188 {
189 	int bit;
190 
191 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
192 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
193 		rq->cmd_flags);
194 
195 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
196 	       (unsigned long long)blk_rq_pos(rq),
197 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
198 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
199 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
200 
201 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
202 		printk(KERN_INFO "  cdb: ");
203 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
204 			printk("%02x ", rq->cmd[bit]);
205 		printk("\n");
206 	}
207 }
208 EXPORT_SYMBOL(blk_dump_rq_flags);
209 
210 /*
211  * "plug" the device if there are no outstanding requests: this will
212  * force the transfer to start only after we have put all the requests
213  * on the list.
214  *
215  * This is called with interrupts off and no requests on the queue and
216  * with the queue lock held.
217  */
218 void blk_plug_device(struct request_queue *q)
219 {
220 	WARN_ON(!irqs_disabled());
221 
222 	/*
223 	 * don't plug a stopped queue, it must be paired with blk_start_queue()
224 	 * which will restart the queueing
225 	 */
226 	if (blk_queue_stopped(q))
227 		return;
228 
229 	if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
230 		mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
231 		trace_block_plug(q);
232 	}
233 }
234 EXPORT_SYMBOL(blk_plug_device);
235 
236 /**
237  * blk_plug_device_unlocked - plug a device without queue lock held
238  * @q:    The &struct request_queue to plug
239  *
240  * Description:
241  *   Like @blk_plug_device(), but grabs the queue lock and disables
242  *   interrupts.
243  **/
244 void blk_plug_device_unlocked(struct request_queue *q)
245 {
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(q->queue_lock, flags);
249 	blk_plug_device(q);
250 	spin_unlock_irqrestore(q->queue_lock, flags);
251 }
252 EXPORT_SYMBOL(blk_plug_device_unlocked);
253 
254 /*
255  * remove the queue from the plugged list, if present. called with
256  * queue lock held and interrupts disabled.
257  */
258 int blk_remove_plug(struct request_queue *q)
259 {
260 	WARN_ON(!irqs_disabled());
261 
262 	if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
263 		return 0;
264 
265 	del_timer(&q->unplug_timer);
266 	return 1;
267 }
268 EXPORT_SYMBOL(blk_remove_plug);
269 
270 /*
271  * remove the plug and let it rip..
272  */
273 void __generic_unplug_device(struct request_queue *q)
274 {
275 	if (unlikely(blk_queue_stopped(q)))
276 		return;
277 	if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
278 		return;
279 
280 	q->request_fn(q);
281 }
282 
283 /**
284  * generic_unplug_device - fire a request queue
285  * @q:    The &struct request_queue in question
286  *
287  * Description:
288  *   Linux uses plugging to build bigger requests queues before letting
289  *   the device have at them. If a queue is plugged, the I/O scheduler
290  *   is still adding and merging requests on the queue. Once the queue
291  *   gets unplugged, the request_fn defined for the queue is invoked and
292  *   transfers started.
293  **/
294 void generic_unplug_device(struct request_queue *q)
295 {
296 	if (blk_queue_plugged(q)) {
297 		spin_lock_irq(q->queue_lock);
298 		__generic_unplug_device(q);
299 		spin_unlock_irq(q->queue_lock);
300 	}
301 }
302 EXPORT_SYMBOL(generic_unplug_device);
303 
304 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
305 				   struct page *page)
306 {
307 	struct request_queue *q = bdi->unplug_io_data;
308 
309 	blk_unplug(q);
310 }
311 
312 void blk_unplug_work(struct work_struct *work)
313 {
314 	struct request_queue *q =
315 		container_of(work, struct request_queue, unplug_work);
316 
317 	trace_block_unplug_io(q);
318 	q->unplug_fn(q);
319 }
320 
321 void blk_unplug_timeout(unsigned long data)
322 {
323 	struct request_queue *q = (struct request_queue *)data;
324 
325 	trace_block_unplug_timer(q);
326 	kblockd_schedule_work(q, &q->unplug_work);
327 }
328 
329 void blk_unplug(struct request_queue *q)
330 {
331 	/*
332 	 * devices don't necessarily have an ->unplug_fn defined
333 	 */
334 	if (q->unplug_fn) {
335 		trace_block_unplug_io(q);
336 		q->unplug_fn(q);
337 	}
338 }
339 EXPORT_SYMBOL(blk_unplug);
340 
341 /**
342  * blk_start_queue - restart a previously stopped queue
343  * @q:    The &struct request_queue in question
344  *
345  * Description:
346  *   blk_start_queue() will clear the stop flag on the queue, and call
347  *   the request_fn for the queue if it was in a stopped state when
348  *   entered. Also see blk_stop_queue(). Queue lock must be held.
349  **/
350 void blk_start_queue(struct request_queue *q)
351 {
352 	WARN_ON(!irqs_disabled());
353 
354 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
355 	__blk_run_queue(q);
356 }
357 EXPORT_SYMBOL(blk_start_queue);
358 
359 /**
360  * blk_stop_queue - stop a queue
361  * @q:    The &struct request_queue in question
362  *
363  * Description:
364  *   The Linux block layer assumes that a block driver will consume all
365  *   entries on the request queue when the request_fn strategy is called.
366  *   Often this will not happen, because of hardware limitations (queue
367  *   depth settings). If a device driver gets a 'queue full' response,
368  *   or if it simply chooses not to queue more I/O at one point, it can
369  *   call this function to prevent the request_fn from being called until
370  *   the driver has signalled it's ready to go again. This happens by calling
371  *   blk_start_queue() to restart queue operations. Queue lock must be held.
372  **/
373 void blk_stop_queue(struct request_queue *q)
374 {
375 	blk_remove_plug(q);
376 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
377 }
378 EXPORT_SYMBOL(blk_stop_queue);
379 
380 /**
381  * blk_sync_queue - cancel any pending callbacks on a queue
382  * @q: the queue
383  *
384  * Description:
385  *     The block layer may perform asynchronous callback activity
386  *     on a queue, such as calling the unplug function after a timeout.
387  *     A block device may call blk_sync_queue to ensure that any
388  *     such activity is cancelled, thus allowing it to release resources
389  *     that the callbacks might use. The caller must already have made sure
390  *     that its ->make_request_fn will not re-add plugging prior to calling
391  *     this function.
392  *
393  */
394 void blk_sync_queue(struct request_queue *q)
395 {
396 	del_timer_sync(&q->unplug_timer);
397 	del_timer_sync(&q->timeout);
398 	cancel_work_sync(&q->unplug_work);
399 	throtl_shutdown_timer_wq(q);
400 }
401 EXPORT_SYMBOL(blk_sync_queue);
402 
403 /**
404  * __blk_run_queue - run a single device queue
405  * @q:	The queue to run
406  *
407  * Description:
408  *    See @blk_run_queue. This variant must be called with the queue lock
409  *    held and interrupts disabled.
410  *
411  */
412 void __blk_run_queue(struct request_queue *q)
413 {
414 	blk_remove_plug(q);
415 
416 	if (unlikely(blk_queue_stopped(q)))
417 		return;
418 
419 	if (elv_queue_empty(q))
420 		return;
421 
422 	/*
423 	 * Only recurse once to avoid overrunning the stack, let the unplug
424 	 * handling reinvoke the handler shortly if we already got there.
425 	 */
426 	if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
427 		q->request_fn(q);
428 		queue_flag_clear(QUEUE_FLAG_REENTER, q);
429 	} else {
430 		queue_flag_set(QUEUE_FLAG_PLUGGED, q);
431 		kblockd_schedule_work(q, &q->unplug_work);
432 	}
433 }
434 EXPORT_SYMBOL(__blk_run_queue);
435 
436 /**
437  * blk_run_queue - run a single device queue
438  * @q: The queue to run
439  *
440  * Description:
441  *    Invoke request handling on this queue, if it has pending work to do.
442  *    May be used to restart queueing when a request has completed.
443  */
444 void blk_run_queue(struct request_queue *q)
445 {
446 	unsigned long flags;
447 
448 	spin_lock_irqsave(q->queue_lock, flags);
449 	__blk_run_queue(q);
450 	spin_unlock_irqrestore(q->queue_lock, flags);
451 }
452 EXPORT_SYMBOL(blk_run_queue);
453 
454 void blk_put_queue(struct request_queue *q)
455 {
456 	kobject_put(&q->kobj);
457 }
458 
459 void blk_cleanup_queue(struct request_queue *q)
460 {
461 	/*
462 	 * We know we have process context here, so we can be a little
463 	 * cautious and ensure that pending block actions on this device
464 	 * are done before moving on. Going into this function, we should
465 	 * not have processes doing IO to this device.
466 	 */
467 	blk_sync_queue(q);
468 
469 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
470 	mutex_lock(&q->sysfs_lock);
471 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
472 	mutex_unlock(&q->sysfs_lock);
473 
474 	if (q->elevator)
475 		elevator_exit(q->elevator);
476 
477 	blk_put_queue(q);
478 }
479 EXPORT_SYMBOL(blk_cleanup_queue);
480 
481 static int blk_init_free_list(struct request_queue *q)
482 {
483 	struct request_list *rl = &q->rq;
484 
485 	if (unlikely(rl->rq_pool))
486 		return 0;
487 
488 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
489 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
490 	rl->elvpriv = 0;
491 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
492 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
493 
494 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
495 				mempool_free_slab, request_cachep, q->node);
496 
497 	if (!rl->rq_pool)
498 		return -ENOMEM;
499 
500 	return 0;
501 }
502 
503 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
504 {
505 	return blk_alloc_queue_node(gfp_mask, -1);
506 }
507 EXPORT_SYMBOL(blk_alloc_queue);
508 
509 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
510 {
511 	struct request_queue *q;
512 	int err;
513 
514 	q = kmem_cache_alloc_node(blk_requestq_cachep,
515 				gfp_mask | __GFP_ZERO, node_id);
516 	if (!q)
517 		return NULL;
518 
519 	q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
520 	q->backing_dev_info.unplug_io_data = q;
521 	q->backing_dev_info.ra_pages =
522 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
523 	q->backing_dev_info.state = 0;
524 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
525 	q->backing_dev_info.name = "block";
526 
527 	err = bdi_init(&q->backing_dev_info);
528 	if (err) {
529 		kmem_cache_free(blk_requestq_cachep, q);
530 		return NULL;
531 	}
532 
533 	if (blk_throtl_init(q)) {
534 		kmem_cache_free(blk_requestq_cachep, q);
535 		return NULL;
536 	}
537 
538 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
539 		    laptop_mode_timer_fn, (unsigned long) q);
540 	init_timer(&q->unplug_timer);
541 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
542 	INIT_LIST_HEAD(&q->timeout_list);
543 	INIT_LIST_HEAD(&q->pending_flushes);
544 	INIT_WORK(&q->unplug_work, blk_unplug_work);
545 
546 	kobject_init(&q->kobj, &blk_queue_ktype);
547 
548 	mutex_init(&q->sysfs_lock);
549 	spin_lock_init(&q->__queue_lock);
550 
551 	return q;
552 }
553 EXPORT_SYMBOL(blk_alloc_queue_node);
554 
555 /**
556  * blk_init_queue  - prepare a request queue for use with a block device
557  * @rfn:  The function to be called to process requests that have been
558  *        placed on the queue.
559  * @lock: Request queue spin lock
560  *
561  * Description:
562  *    If a block device wishes to use the standard request handling procedures,
563  *    which sorts requests and coalesces adjacent requests, then it must
564  *    call blk_init_queue().  The function @rfn will be called when there
565  *    are requests on the queue that need to be processed.  If the device
566  *    supports plugging, then @rfn may not be called immediately when requests
567  *    are available on the queue, but may be called at some time later instead.
568  *    Plugged queues are generally unplugged when a buffer belonging to one
569  *    of the requests on the queue is needed, or due to memory pressure.
570  *
571  *    @rfn is not required, or even expected, to remove all requests off the
572  *    queue, but only as many as it can handle at a time.  If it does leave
573  *    requests on the queue, it is responsible for arranging that the requests
574  *    get dealt with eventually.
575  *
576  *    The queue spin lock must be held while manipulating the requests on the
577  *    request queue; this lock will be taken also from interrupt context, so irq
578  *    disabling is needed for it.
579  *
580  *    Function returns a pointer to the initialized request queue, or %NULL if
581  *    it didn't succeed.
582  *
583  * Note:
584  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
585  *    when the block device is deactivated (such as at module unload).
586  **/
587 
588 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
589 {
590 	return blk_init_queue_node(rfn, lock, -1);
591 }
592 EXPORT_SYMBOL(blk_init_queue);
593 
594 struct request_queue *
595 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
596 {
597 	struct request_queue *uninit_q, *q;
598 
599 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
600 	if (!uninit_q)
601 		return NULL;
602 
603 	q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
604 	if (!q)
605 		blk_cleanup_queue(uninit_q);
606 
607 	return q;
608 }
609 EXPORT_SYMBOL(blk_init_queue_node);
610 
611 struct request_queue *
612 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
613 			 spinlock_t *lock)
614 {
615 	return blk_init_allocated_queue_node(q, rfn, lock, -1);
616 }
617 EXPORT_SYMBOL(blk_init_allocated_queue);
618 
619 struct request_queue *
620 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
621 			      spinlock_t *lock, int node_id)
622 {
623 	if (!q)
624 		return NULL;
625 
626 	q->node = node_id;
627 	if (blk_init_free_list(q))
628 		return NULL;
629 
630 	q->request_fn		= rfn;
631 	q->prep_rq_fn		= NULL;
632 	q->unprep_rq_fn		= NULL;
633 	q->unplug_fn		= generic_unplug_device;
634 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
635 	q->queue_lock		= lock;
636 
637 	/*
638 	 * This also sets hw/phys segments, boundary and size
639 	 */
640 	blk_queue_make_request(q, __make_request);
641 
642 	q->sg_reserved_size = INT_MAX;
643 
644 	/*
645 	 * all done
646 	 */
647 	if (!elevator_init(q, NULL)) {
648 		blk_queue_congestion_threshold(q);
649 		return q;
650 	}
651 
652 	return NULL;
653 }
654 EXPORT_SYMBOL(blk_init_allocated_queue_node);
655 
656 int blk_get_queue(struct request_queue *q)
657 {
658 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
659 		kobject_get(&q->kobj);
660 		return 0;
661 	}
662 
663 	return 1;
664 }
665 
666 static inline void blk_free_request(struct request_queue *q, struct request *rq)
667 {
668 	if (rq->cmd_flags & REQ_ELVPRIV)
669 		elv_put_request(q, rq);
670 	mempool_free(rq, q->rq.rq_pool);
671 }
672 
673 static struct request *
674 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
675 {
676 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
677 
678 	if (!rq)
679 		return NULL;
680 
681 	blk_rq_init(q, rq);
682 
683 	rq->cmd_flags = flags | REQ_ALLOCED;
684 
685 	if (priv) {
686 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
687 			mempool_free(rq, q->rq.rq_pool);
688 			return NULL;
689 		}
690 		rq->cmd_flags |= REQ_ELVPRIV;
691 	}
692 
693 	return rq;
694 }
695 
696 /*
697  * ioc_batching returns true if the ioc is a valid batching request and
698  * should be given priority access to a request.
699  */
700 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
701 {
702 	if (!ioc)
703 		return 0;
704 
705 	/*
706 	 * Make sure the process is able to allocate at least 1 request
707 	 * even if the batch times out, otherwise we could theoretically
708 	 * lose wakeups.
709 	 */
710 	return ioc->nr_batch_requests == q->nr_batching ||
711 		(ioc->nr_batch_requests > 0
712 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
713 }
714 
715 /*
716  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
717  * will cause the process to be a "batcher" on all queues in the system. This
718  * is the behaviour we want though - once it gets a wakeup it should be given
719  * a nice run.
720  */
721 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
722 {
723 	if (!ioc || ioc_batching(q, ioc))
724 		return;
725 
726 	ioc->nr_batch_requests = q->nr_batching;
727 	ioc->last_waited = jiffies;
728 }
729 
730 static void __freed_request(struct request_queue *q, int sync)
731 {
732 	struct request_list *rl = &q->rq;
733 
734 	if (rl->count[sync] < queue_congestion_off_threshold(q))
735 		blk_clear_queue_congested(q, sync);
736 
737 	if (rl->count[sync] + 1 <= q->nr_requests) {
738 		if (waitqueue_active(&rl->wait[sync]))
739 			wake_up(&rl->wait[sync]);
740 
741 		blk_clear_queue_full(q, sync);
742 	}
743 }
744 
745 /*
746  * A request has just been released.  Account for it, update the full and
747  * congestion status, wake up any waiters.   Called under q->queue_lock.
748  */
749 static void freed_request(struct request_queue *q, int sync, int priv)
750 {
751 	struct request_list *rl = &q->rq;
752 
753 	rl->count[sync]--;
754 	if (priv)
755 		rl->elvpriv--;
756 
757 	__freed_request(q, sync);
758 
759 	if (unlikely(rl->starved[sync ^ 1]))
760 		__freed_request(q, sync ^ 1);
761 }
762 
763 /*
764  * Get a free request, queue_lock must be held.
765  * Returns NULL on failure, with queue_lock held.
766  * Returns !NULL on success, with queue_lock *not held*.
767  */
768 static struct request *get_request(struct request_queue *q, int rw_flags,
769 				   struct bio *bio, gfp_t gfp_mask)
770 {
771 	struct request *rq = NULL;
772 	struct request_list *rl = &q->rq;
773 	struct io_context *ioc = NULL;
774 	const bool is_sync = rw_is_sync(rw_flags) != 0;
775 	int may_queue, priv;
776 
777 	may_queue = elv_may_queue(q, rw_flags);
778 	if (may_queue == ELV_MQUEUE_NO)
779 		goto rq_starved;
780 
781 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
782 		if (rl->count[is_sync]+1 >= q->nr_requests) {
783 			ioc = current_io_context(GFP_ATOMIC, q->node);
784 			/*
785 			 * The queue will fill after this allocation, so set
786 			 * it as full, and mark this process as "batching".
787 			 * This process will be allowed to complete a batch of
788 			 * requests, others will be blocked.
789 			 */
790 			if (!blk_queue_full(q, is_sync)) {
791 				ioc_set_batching(q, ioc);
792 				blk_set_queue_full(q, is_sync);
793 			} else {
794 				if (may_queue != ELV_MQUEUE_MUST
795 						&& !ioc_batching(q, ioc)) {
796 					/*
797 					 * The queue is full and the allocating
798 					 * process is not a "batcher", and not
799 					 * exempted by the IO scheduler
800 					 */
801 					goto out;
802 				}
803 			}
804 		}
805 		blk_set_queue_congested(q, is_sync);
806 	}
807 
808 	/*
809 	 * Only allow batching queuers to allocate up to 50% over the defined
810 	 * limit of requests, otherwise we could have thousands of requests
811 	 * allocated with any setting of ->nr_requests
812 	 */
813 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
814 		goto out;
815 
816 	rl->count[is_sync]++;
817 	rl->starved[is_sync] = 0;
818 
819 	priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
820 	if (priv)
821 		rl->elvpriv++;
822 
823 	if (blk_queue_io_stat(q))
824 		rw_flags |= REQ_IO_STAT;
825 	spin_unlock_irq(q->queue_lock);
826 
827 	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
828 	if (unlikely(!rq)) {
829 		/*
830 		 * Allocation failed presumably due to memory. Undo anything
831 		 * we might have messed up.
832 		 *
833 		 * Allocating task should really be put onto the front of the
834 		 * wait queue, but this is pretty rare.
835 		 */
836 		spin_lock_irq(q->queue_lock);
837 		freed_request(q, is_sync, priv);
838 
839 		/*
840 		 * in the very unlikely event that allocation failed and no
841 		 * requests for this direction was pending, mark us starved
842 		 * so that freeing of a request in the other direction will
843 		 * notice us. another possible fix would be to split the
844 		 * rq mempool into READ and WRITE
845 		 */
846 rq_starved:
847 		if (unlikely(rl->count[is_sync] == 0))
848 			rl->starved[is_sync] = 1;
849 
850 		goto out;
851 	}
852 
853 	/*
854 	 * ioc may be NULL here, and ioc_batching will be false. That's
855 	 * OK, if the queue is under the request limit then requests need
856 	 * not count toward the nr_batch_requests limit. There will always
857 	 * be some limit enforced by BLK_BATCH_TIME.
858 	 */
859 	if (ioc_batching(q, ioc))
860 		ioc->nr_batch_requests--;
861 
862 	trace_block_getrq(q, bio, rw_flags & 1);
863 out:
864 	return rq;
865 }
866 
867 /*
868  * No available requests for this queue, unplug the device and wait for some
869  * requests to become available.
870  *
871  * Called with q->queue_lock held, and returns with it unlocked.
872  */
873 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
874 					struct bio *bio)
875 {
876 	const bool is_sync = rw_is_sync(rw_flags) != 0;
877 	struct request *rq;
878 
879 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
880 	while (!rq) {
881 		DEFINE_WAIT(wait);
882 		struct io_context *ioc;
883 		struct request_list *rl = &q->rq;
884 
885 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
886 				TASK_UNINTERRUPTIBLE);
887 
888 		trace_block_sleeprq(q, bio, rw_flags & 1);
889 
890 		__generic_unplug_device(q);
891 		spin_unlock_irq(q->queue_lock);
892 		io_schedule();
893 
894 		/*
895 		 * After sleeping, we become a "batching" process and
896 		 * will be able to allocate at least one request, and
897 		 * up to a big batch of them for a small period time.
898 		 * See ioc_batching, ioc_set_batching
899 		 */
900 		ioc = current_io_context(GFP_NOIO, q->node);
901 		ioc_set_batching(q, ioc);
902 
903 		spin_lock_irq(q->queue_lock);
904 		finish_wait(&rl->wait[is_sync], &wait);
905 
906 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
907 	};
908 
909 	return rq;
910 }
911 
912 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
913 {
914 	struct request *rq;
915 
916 	BUG_ON(rw != READ && rw != WRITE);
917 
918 	spin_lock_irq(q->queue_lock);
919 	if (gfp_mask & __GFP_WAIT) {
920 		rq = get_request_wait(q, rw, NULL);
921 	} else {
922 		rq = get_request(q, rw, NULL, gfp_mask);
923 		if (!rq)
924 			spin_unlock_irq(q->queue_lock);
925 	}
926 	/* q->queue_lock is unlocked at this point */
927 
928 	return rq;
929 }
930 EXPORT_SYMBOL(blk_get_request);
931 
932 /**
933  * blk_make_request - given a bio, allocate a corresponding struct request.
934  * @q: target request queue
935  * @bio:  The bio describing the memory mappings that will be submitted for IO.
936  *        It may be a chained-bio properly constructed by block/bio layer.
937  * @gfp_mask: gfp flags to be used for memory allocation
938  *
939  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
940  * type commands. Where the struct request needs to be farther initialized by
941  * the caller. It is passed a &struct bio, which describes the memory info of
942  * the I/O transfer.
943  *
944  * The caller of blk_make_request must make sure that bi_io_vec
945  * are set to describe the memory buffers. That bio_data_dir() will return
946  * the needed direction of the request. (And all bio's in the passed bio-chain
947  * are properly set accordingly)
948  *
949  * If called under none-sleepable conditions, mapped bio buffers must not
950  * need bouncing, by calling the appropriate masked or flagged allocator,
951  * suitable for the target device. Otherwise the call to blk_queue_bounce will
952  * BUG.
953  *
954  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
955  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
956  * anything but the first bio in the chain. Otherwise you risk waiting for IO
957  * completion of a bio that hasn't been submitted yet, thus resulting in a
958  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
959  * of bio_alloc(), as that avoids the mempool deadlock.
960  * If possible a big IO should be split into smaller parts when allocation
961  * fails. Partial allocation should not be an error, or you risk a live-lock.
962  */
963 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
964 				 gfp_t gfp_mask)
965 {
966 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
967 
968 	if (unlikely(!rq))
969 		return ERR_PTR(-ENOMEM);
970 
971 	for_each_bio(bio) {
972 		struct bio *bounce_bio = bio;
973 		int ret;
974 
975 		blk_queue_bounce(q, &bounce_bio);
976 		ret = blk_rq_append_bio(q, rq, bounce_bio);
977 		if (unlikely(ret)) {
978 			blk_put_request(rq);
979 			return ERR_PTR(ret);
980 		}
981 	}
982 
983 	return rq;
984 }
985 EXPORT_SYMBOL(blk_make_request);
986 
987 /**
988  * blk_requeue_request - put a request back on queue
989  * @q:		request queue where request should be inserted
990  * @rq:		request to be inserted
991  *
992  * Description:
993  *    Drivers often keep queueing requests until the hardware cannot accept
994  *    more, when that condition happens we need to put the request back
995  *    on the queue. Must be called with queue lock held.
996  */
997 void blk_requeue_request(struct request_queue *q, struct request *rq)
998 {
999 	blk_delete_timer(rq);
1000 	blk_clear_rq_complete(rq);
1001 	trace_block_rq_requeue(q, rq);
1002 
1003 	if (blk_rq_tagged(rq))
1004 		blk_queue_end_tag(q, rq);
1005 
1006 	BUG_ON(blk_queued_rq(rq));
1007 
1008 	elv_requeue_request(q, rq);
1009 }
1010 EXPORT_SYMBOL(blk_requeue_request);
1011 
1012 /**
1013  * blk_insert_request - insert a special request into a request queue
1014  * @q:		request queue where request should be inserted
1015  * @rq:		request to be inserted
1016  * @at_head:	insert request at head or tail of queue
1017  * @data:	private data
1018  *
1019  * Description:
1020  *    Many block devices need to execute commands asynchronously, so they don't
1021  *    block the whole kernel from preemption during request execution.  This is
1022  *    accomplished normally by inserting aritficial requests tagged as
1023  *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1024  *    be scheduled for actual execution by the request queue.
1025  *
1026  *    We have the option of inserting the head or the tail of the queue.
1027  *    Typically we use the tail for new ioctls and so forth.  We use the head
1028  *    of the queue for things like a QUEUE_FULL message from a device, or a
1029  *    host that is unable to accept a particular command.
1030  */
1031 void blk_insert_request(struct request_queue *q, struct request *rq,
1032 			int at_head, void *data)
1033 {
1034 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1035 	unsigned long flags;
1036 
1037 	/*
1038 	 * tell I/O scheduler that this isn't a regular read/write (ie it
1039 	 * must not attempt merges on this) and that it acts as a soft
1040 	 * barrier
1041 	 */
1042 	rq->cmd_type = REQ_TYPE_SPECIAL;
1043 
1044 	rq->special = data;
1045 
1046 	spin_lock_irqsave(q->queue_lock, flags);
1047 
1048 	/*
1049 	 * If command is tagged, release the tag
1050 	 */
1051 	if (blk_rq_tagged(rq))
1052 		blk_queue_end_tag(q, rq);
1053 
1054 	drive_stat_acct(rq, 1);
1055 	__elv_add_request(q, rq, where, 0);
1056 	__blk_run_queue(q);
1057 	spin_unlock_irqrestore(q->queue_lock, flags);
1058 }
1059 EXPORT_SYMBOL(blk_insert_request);
1060 
1061 static void part_round_stats_single(int cpu, struct hd_struct *part,
1062 				    unsigned long now)
1063 {
1064 	if (now == part->stamp)
1065 		return;
1066 
1067 	if (part_in_flight(part)) {
1068 		__part_stat_add(cpu, part, time_in_queue,
1069 				part_in_flight(part) * (now - part->stamp));
1070 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1071 	}
1072 	part->stamp = now;
1073 }
1074 
1075 /**
1076  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1077  * @cpu: cpu number for stats access
1078  * @part: target partition
1079  *
1080  * The average IO queue length and utilisation statistics are maintained
1081  * by observing the current state of the queue length and the amount of
1082  * time it has been in this state for.
1083  *
1084  * Normally, that accounting is done on IO completion, but that can result
1085  * in more than a second's worth of IO being accounted for within any one
1086  * second, leading to >100% utilisation.  To deal with that, we call this
1087  * function to do a round-off before returning the results when reading
1088  * /proc/diskstats.  This accounts immediately for all queue usage up to
1089  * the current jiffies and restarts the counters again.
1090  */
1091 void part_round_stats(int cpu, struct hd_struct *part)
1092 {
1093 	unsigned long now = jiffies;
1094 
1095 	if (part->partno)
1096 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1097 	part_round_stats_single(cpu, part, now);
1098 }
1099 EXPORT_SYMBOL_GPL(part_round_stats);
1100 
1101 /*
1102  * queue lock must be held
1103  */
1104 void __blk_put_request(struct request_queue *q, struct request *req)
1105 {
1106 	if (unlikely(!q))
1107 		return;
1108 	if (unlikely(--req->ref_count))
1109 		return;
1110 
1111 	elv_completed_request(q, req);
1112 
1113 	/* this is a bio leak */
1114 	WARN_ON(req->bio != NULL);
1115 
1116 	/*
1117 	 * Request may not have originated from ll_rw_blk. if not,
1118 	 * it didn't come out of our reserved rq pools
1119 	 */
1120 	if (req->cmd_flags & REQ_ALLOCED) {
1121 		int is_sync = rq_is_sync(req) != 0;
1122 		int priv = req->cmd_flags & REQ_ELVPRIV;
1123 
1124 		BUG_ON(!list_empty(&req->queuelist));
1125 		BUG_ON(!hlist_unhashed(&req->hash));
1126 
1127 		blk_free_request(q, req);
1128 		freed_request(q, is_sync, priv);
1129 	}
1130 }
1131 EXPORT_SYMBOL_GPL(__blk_put_request);
1132 
1133 void blk_put_request(struct request *req)
1134 {
1135 	unsigned long flags;
1136 	struct request_queue *q = req->q;
1137 
1138 	spin_lock_irqsave(q->queue_lock, flags);
1139 	__blk_put_request(q, req);
1140 	spin_unlock_irqrestore(q->queue_lock, flags);
1141 }
1142 EXPORT_SYMBOL(blk_put_request);
1143 
1144 /**
1145  * blk_add_request_payload - add a payload to a request
1146  * @rq: request to update
1147  * @page: page backing the payload
1148  * @len: length of the payload.
1149  *
1150  * This allows to later add a payload to an already submitted request by
1151  * a block driver.  The driver needs to take care of freeing the payload
1152  * itself.
1153  *
1154  * Note that this is a quite horrible hack and nothing but handling of
1155  * discard requests should ever use it.
1156  */
1157 void blk_add_request_payload(struct request *rq, struct page *page,
1158 		unsigned int len)
1159 {
1160 	struct bio *bio = rq->bio;
1161 
1162 	bio->bi_io_vec->bv_page = page;
1163 	bio->bi_io_vec->bv_offset = 0;
1164 	bio->bi_io_vec->bv_len = len;
1165 
1166 	bio->bi_size = len;
1167 	bio->bi_vcnt = 1;
1168 	bio->bi_phys_segments = 1;
1169 
1170 	rq->__data_len = rq->resid_len = len;
1171 	rq->nr_phys_segments = 1;
1172 	rq->buffer = bio_data(bio);
1173 }
1174 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1175 
1176 void init_request_from_bio(struct request *req, struct bio *bio)
1177 {
1178 	req->cpu = bio->bi_comp_cpu;
1179 	req->cmd_type = REQ_TYPE_FS;
1180 
1181 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1182 	if (bio->bi_rw & REQ_RAHEAD)
1183 		req->cmd_flags |= REQ_FAILFAST_MASK;
1184 
1185 	req->errors = 0;
1186 	req->__sector = bio->bi_sector;
1187 	req->ioprio = bio_prio(bio);
1188 	blk_rq_bio_prep(req->q, req, bio);
1189 }
1190 
1191 /*
1192  * Only disabling plugging for non-rotational devices if it does tagging
1193  * as well, otherwise we do need the proper merging
1194  */
1195 static inline bool queue_should_plug(struct request_queue *q)
1196 {
1197 	return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1198 }
1199 
1200 static int __make_request(struct request_queue *q, struct bio *bio)
1201 {
1202 	struct request *req;
1203 	int el_ret;
1204 	unsigned int bytes = bio->bi_size;
1205 	const unsigned short prio = bio_prio(bio);
1206 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1207 	const bool unplug = !!(bio->bi_rw & REQ_UNPLUG);
1208 	const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK;
1209 	int where = ELEVATOR_INSERT_SORT;
1210 	int rw_flags;
1211 
1212 	/*
1213 	 * low level driver can indicate that it wants pages above a
1214 	 * certain limit bounced to low memory (ie for highmem, or even
1215 	 * ISA dma in theory)
1216 	 */
1217 	blk_queue_bounce(q, &bio);
1218 
1219 	spin_lock_irq(q->queue_lock);
1220 
1221 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1222 		where = ELEVATOR_INSERT_FRONT;
1223 		goto get_rq;
1224 	}
1225 
1226 	if (elv_queue_empty(q))
1227 		goto get_rq;
1228 
1229 	el_ret = elv_merge(q, &req, bio);
1230 	switch (el_ret) {
1231 	case ELEVATOR_BACK_MERGE:
1232 		BUG_ON(!rq_mergeable(req));
1233 
1234 		if (!ll_back_merge_fn(q, req, bio))
1235 			break;
1236 
1237 		trace_block_bio_backmerge(q, bio);
1238 
1239 		if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1240 			blk_rq_set_mixed_merge(req);
1241 
1242 		req->biotail->bi_next = bio;
1243 		req->biotail = bio;
1244 		req->__data_len += bytes;
1245 		req->ioprio = ioprio_best(req->ioprio, prio);
1246 		if (!blk_rq_cpu_valid(req))
1247 			req->cpu = bio->bi_comp_cpu;
1248 		drive_stat_acct(req, 0);
1249 		elv_bio_merged(q, req, bio);
1250 		if (!attempt_back_merge(q, req))
1251 			elv_merged_request(q, req, el_ret);
1252 		goto out;
1253 
1254 	case ELEVATOR_FRONT_MERGE:
1255 		BUG_ON(!rq_mergeable(req));
1256 
1257 		if (!ll_front_merge_fn(q, req, bio))
1258 			break;
1259 
1260 		trace_block_bio_frontmerge(q, bio);
1261 
1262 		if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1263 			blk_rq_set_mixed_merge(req);
1264 			req->cmd_flags &= ~REQ_FAILFAST_MASK;
1265 			req->cmd_flags |= ff;
1266 		}
1267 
1268 		bio->bi_next = req->bio;
1269 		req->bio = bio;
1270 
1271 		/*
1272 		 * may not be valid. if the low level driver said
1273 		 * it didn't need a bounce buffer then it better
1274 		 * not touch req->buffer either...
1275 		 */
1276 		req->buffer = bio_data(bio);
1277 		req->__sector = bio->bi_sector;
1278 		req->__data_len += bytes;
1279 		req->ioprio = ioprio_best(req->ioprio, prio);
1280 		if (!blk_rq_cpu_valid(req))
1281 			req->cpu = bio->bi_comp_cpu;
1282 		drive_stat_acct(req, 0);
1283 		elv_bio_merged(q, req, bio);
1284 		if (!attempt_front_merge(q, req))
1285 			elv_merged_request(q, req, el_ret);
1286 		goto out;
1287 
1288 	/* ELV_NO_MERGE: elevator says don't/can't merge. */
1289 	default:
1290 		;
1291 	}
1292 
1293 get_rq:
1294 	/*
1295 	 * This sync check and mask will be re-done in init_request_from_bio(),
1296 	 * but we need to set it earlier to expose the sync flag to the
1297 	 * rq allocator and io schedulers.
1298 	 */
1299 	rw_flags = bio_data_dir(bio);
1300 	if (sync)
1301 		rw_flags |= REQ_SYNC;
1302 
1303 	/*
1304 	 * Grab a free request. This is might sleep but can not fail.
1305 	 * Returns with the queue unlocked.
1306 	 */
1307 	req = get_request_wait(q, rw_flags, bio);
1308 
1309 	/*
1310 	 * After dropping the lock and possibly sleeping here, our request
1311 	 * may now be mergeable after it had proven unmergeable (above).
1312 	 * We don't worry about that case for efficiency. It won't happen
1313 	 * often, and the elevators are able to handle it.
1314 	 */
1315 	init_request_from_bio(req, bio);
1316 
1317 	spin_lock_irq(q->queue_lock);
1318 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1319 	    bio_flagged(bio, BIO_CPU_AFFINE))
1320 		req->cpu = blk_cpu_to_group(smp_processor_id());
1321 	if (queue_should_plug(q) && elv_queue_empty(q))
1322 		blk_plug_device(q);
1323 
1324 	/* insert the request into the elevator */
1325 	drive_stat_acct(req, 1);
1326 	__elv_add_request(q, req, where, 0);
1327 out:
1328 	if (unplug || !queue_should_plug(q))
1329 		__generic_unplug_device(q);
1330 	spin_unlock_irq(q->queue_lock);
1331 	return 0;
1332 }
1333 
1334 /*
1335  * If bio->bi_dev is a partition, remap the location
1336  */
1337 static inline void blk_partition_remap(struct bio *bio)
1338 {
1339 	struct block_device *bdev = bio->bi_bdev;
1340 
1341 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1342 		struct hd_struct *p = bdev->bd_part;
1343 
1344 		bio->bi_sector += p->start_sect;
1345 		bio->bi_bdev = bdev->bd_contains;
1346 
1347 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1348 				      bdev->bd_dev,
1349 				      bio->bi_sector - p->start_sect);
1350 	}
1351 }
1352 
1353 static void handle_bad_sector(struct bio *bio)
1354 {
1355 	char b[BDEVNAME_SIZE];
1356 
1357 	printk(KERN_INFO "attempt to access beyond end of device\n");
1358 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1359 			bdevname(bio->bi_bdev, b),
1360 			bio->bi_rw,
1361 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1362 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1363 
1364 	set_bit(BIO_EOF, &bio->bi_flags);
1365 }
1366 
1367 #ifdef CONFIG_FAIL_MAKE_REQUEST
1368 
1369 static DECLARE_FAULT_ATTR(fail_make_request);
1370 
1371 static int __init setup_fail_make_request(char *str)
1372 {
1373 	return setup_fault_attr(&fail_make_request, str);
1374 }
1375 __setup("fail_make_request=", setup_fail_make_request);
1376 
1377 static int should_fail_request(struct bio *bio)
1378 {
1379 	struct hd_struct *part = bio->bi_bdev->bd_part;
1380 
1381 	if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1382 		return should_fail(&fail_make_request, bio->bi_size);
1383 
1384 	return 0;
1385 }
1386 
1387 static int __init fail_make_request_debugfs(void)
1388 {
1389 	return init_fault_attr_dentries(&fail_make_request,
1390 					"fail_make_request");
1391 }
1392 
1393 late_initcall(fail_make_request_debugfs);
1394 
1395 #else /* CONFIG_FAIL_MAKE_REQUEST */
1396 
1397 static inline int should_fail_request(struct bio *bio)
1398 {
1399 	return 0;
1400 }
1401 
1402 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1403 
1404 /*
1405  * Check whether this bio extends beyond the end of the device.
1406  */
1407 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1408 {
1409 	sector_t maxsector;
1410 
1411 	if (!nr_sectors)
1412 		return 0;
1413 
1414 	/* Test device or partition size, when known. */
1415 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1416 	if (maxsector) {
1417 		sector_t sector = bio->bi_sector;
1418 
1419 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1420 			/*
1421 			 * This may well happen - the kernel calls bread()
1422 			 * without checking the size of the device, e.g., when
1423 			 * mounting a device.
1424 			 */
1425 			handle_bad_sector(bio);
1426 			return 1;
1427 		}
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 /**
1434  * generic_make_request - hand a buffer to its device driver for I/O
1435  * @bio:  The bio describing the location in memory and on the device.
1436  *
1437  * generic_make_request() is used to make I/O requests of block
1438  * devices. It is passed a &struct bio, which describes the I/O that needs
1439  * to be done.
1440  *
1441  * generic_make_request() does not return any status.  The
1442  * success/failure status of the request, along with notification of
1443  * completion, is delivered asynchronously through the bio->bi_end_io
1444  * function described (one day) else where.
1445  *
1446  * The caller of generic_make_request must make sure that bi_io_vec
1447  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1448  * set to describe the device address, and the
1449  * bi_end_io and optionally bi_private are set to describe how
1450  * completion notification should be signaled.
1451  *
1452  * generic_make_request and the drivers it calls may use bi_next if this
1453  * bio happens to be merged with someone else, and may change bi_dev and
1454  * bi_sector for remaps as it sees fit.  So the values of these fields
1455  * should NOT be depended on after the call to generic_make_request.
1456  */
1457 static inline void __generic_make_request(struct bio *bio)
1458 {
1459 	struct request_queue *q;
1460 	sector_t old_sector;
1461 	int ret, nr_sectors = bio_sectors(bio);
1462 	dev_t old_dev;
1463 	int err = -EIO;
1464 
1465 	might_sleep();
1466 
1467 	if (bio_check_eod(bio, nr_sectors))
1468 		goto end_io;
1469 
1470 	/*
1471 	 * Resolve the mapping until finished. (drivers are
1472 	 * still free to implement/resolve their own stacking
1473 	 * by explicitly returning 0)
1474 	 *
1475 	 * NOTE: we don't repeat the blk_size check for each new device.
1476 	 * Stacking drivers are expected to know what they are doing.
1477 	 */
1478 	old_sector = -1;
1479 	old_dev = 0;
1480 	do {
1481 		char b[BDEVNAME_SIZE];
1482 
1483 		q = bdev_get_queue(bio->bi_bdev);
1484 		if (unlikely(!q)) {
1485 			printk(KERN_ERR
1486 			       "generic_make_request: Trying to access "
1487 				"nonexistent block-device %s (%Lu)\n",
1488 				bdevname(bio->bi_bdev, b),
1489 				(long long) bio->bi_sector);
1490 			goto end_io;
1491 		}
1492 
1493 		if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1494 			     nr_sectors > queue_max_hw_sectors(q))) {
1495 			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1496 			       bdevname(bio->bi_bdev, b),
1497 			       bio_sectors(bio),
1498 			       queue_max_hw_sectors(q));
1499 			goto end_io;
1500 		}
1501 
1502 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1503 			goto end_io;
1504 
1505 		if (should_fail_request(bio))
1506 			goto end_io;
1507 
1508 		/*
1509 		 * If this device has partitions, remap block n
1510 		 * of partition p to block n+start(p) of the disk.
1511 		 */
1512 		blk_partition_remap(bio);
1513 
1514 		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1515 			goto end_io;
1516 
1517 		if (old_sector != -1)
1518 			trace_block_bio_remap(q, bio, old_dev, old_sector);
1519 
1520 		old_sector = bio->bi_sector;
1521 		old_dev = bio->bi_bdev->bd_dev;
1522 
1523 		if (bio_check_eod(bio, nr_sectors))
1524 			goto end_io;
1525 
1526 		/*
1527 		 * Filter flush bio's early so that make_request based
1528 		 * drivers without flush support don't have to worry
1529 		 * about them.
1530 		 */
1531 		if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1532 			bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1533 			if (!nr_sectors) {
1534 				err = 0;
1535 				goto end_io;
1536 			}
1537 		}
1538 
1539 		if ((bio->bi_rw & REQ_DISCARD) &&
1540 		    (!blk_queue_discard(q) ||
1541 		     ((bio->bi_rw & REQ_SECURE) &&
1542 		      !blk_queue_secdiscard(q)))) {
1543 			err = -EOPNOTSUPP;
1544 			goto end_io;
1545 		}
1546 
1547 		blk_throtl_bio(q, &bio);
1548 
1549 		/*
1550 		 * If bio = NULL, bio has been throttled and will be submitted
1551 		 * later.
1552 		 */
1553 		if (!bio)
1554 			break;
1555 
1556 		trace_block_bio_queue(q, bio);
1557 
1558 		ret = q->make_request_fn(q, bio);
1559 	} while (ret);
1560 
1561 	return;
1562 
1563 end_io:
1564 	bio_endio(bio, err);
1565 }
1566 
1567 /*
1568  * We only want one ->make_request_fn to be active at a time,
1569  * else stack usage with stacked devices could be a problem.
1570  * So use current->bio_list to keep a list of requests
1571  * submited by a make_request_fn function.
1572  * current->bio_list is also used as a flag to say if
1573  * generic_make_request is currently active in this task or not.
1574  * If it is NULL, then no make_request is active.  If it is non-NULL,
1575  * then a make_request is active, and new requests should be added
1576  * at the tail
1577  */
1578 void generic_make_request(struct bio *bio)
1579 {
1580 	struct bio_list bio_list_on_stack;
1581 
1582 	if (current->bio_list) {
1583 		/* make_request is active */
1584 		bio_list_add(current->bio_list, bio);
1585 		return;
1586 	}
1587 	/* following loop may be a bit non-obvious, and so deserves some
1588 	 * explanation.
1589 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1590 	 * ensure that) so we have a list with a single bio.
1591 	 * We pretend that we have just taken it off a longer list, so
1592 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1593 	 * thus initialising the bio_list of new bios to be
1594 	 * added.  __generic_make_request may indeed add some more bios
1595 	 * through a recursive call to generic_make_request.  If it
1596 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1597 	 * from the top.  In this case we really did just take the bio
1598 	 * of the top of the list (no pretending) and so remove it from
1599 	 * bio_list, and call into __generic_make_request again.
1600 	 *
1601 	 * The loop was structured like this to make only one call to
1602 	 * __generic_make_request (which is important as it is large and
1603 	 * inlined) and to keep the structure simple.
1604 	 */
1605 	BUG_ON(bio->bi_next);
1606 	bio_list_init(&bio_list_on_stack);
1607 	current->bio_list = &bio_list_on_stack;
1608 	do {
1609 		__generic_make_request(bio);
1610 		bio = bio_list_pop(current->bio_list);
1611 	} while (bio);
1612 	current->bio_list = NULL; /* deactivate */
1613 }
1614 EXPORT_SYMBOL(generic_make_request);
1615 
1616 /**
1617  * submit_bio - submit a bio to the block device layer for I/O
1618  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1619  * @bio: The &struct bio which describes the I/O
1620  *
1621  * submit_bio() is very similar in purpose to generic_make_request(), and
1622  * uses that function to do most of the work. Both are fairly rough
1623  * interfaces; @bio must be presetup and ready for I/O.
1624  *
1625  */
1626 void submit_bio(int rw, struct bio *bio)
1627 {
1628 	int count = bio_sectors(bio);
1629 
1630 	bio->bi_rw |= rw;
1631 
1632 	/*
1633 	 * If it's a regular read/write or a barrier with data attached,
1634 	 * go through the normal accounting stuff before submission.
1635 	 */
1636 	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1637 		if (rw & WRITE) {
1638 			count_vm_events(PGPGOUT, count);
1639 		} else {
1640 			task_io_account_read(bio->bi_size);
1641 			count_vm_events(PGPGIN, count);
1642 		}
1643 
1644 		if (unlikely(block_dump)) {
1645 			char b[BDEVNAME_SIZE];
1646 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1647 			current->comm, task_pid_nr(current),
1648 				(rw & WRITE) ? "WRITE" : "READ",
1649 				(unsigned long long)bio->bi_sector,
1650 				bdevname(bio->bi_bdev, b),
1651 				count);
1652 		}
1653 	}
1654 
1655 	generic_make_request(bio);
1656 }
1657 EXPORT_SYMBOL(submit_bio);
1658 
1659 /**
1660  * blk_rq_check_limits - Helper function to check a request for the queue limit
1661  * @q:  the queue
1662  * @rq: the request being checked
1663  *
1664  * Description:
1665  *    @rq may have been made based on weaker limitations of upper-level queues
1666  *    in request stacking drivers, and it may violate the limitation of @q.
1667  *    Since the block layer and the underlying device driver trust @rq
1668  *    after it is inserted to @q, it should be checked against @q before
1669  *    the insertion using this generic function.
1670  *
1671  *    This function should also be useful for request stacking drivers
1672  *    in some cases below, so export this function.
1673  *    Request stacking drivers like request-based dm may change the queue
1674  *    limits while requests are in the queue (e.g. dm's table swapping).
1675  *    Such request stacking drivers should check those requests agaist
1676  *    the new queue limits again when they dispatch those requests,
1677  *    although such checkings are also done against the old queue limits
1678  *    when submitting requests.
1679  */
1680 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1681 {
1682 	if (rq->cmd_flags & REQ_DISCARD)
1683 		return 0;
1684 
1685 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1686 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1687 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1688 		return -EIO;
1689 	}
1690 
1691 	/*
1692 	 * queue's settings related to segment counting like q->bounce_pfn
1693 	 * may differ from that of other stacking queues.
1694 	 * Recalculate it to check the request correctly on this queue's
1695 	 * limitation.
1696 	 */
1697 	blk_recalc_rq_segments(rq);
1698 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1699 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1700 		return -EIO;
1701 	}
1702 
1703 	return 0;
1704 }
1705 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1706 
1707 /**
1708  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1709  * @q:  the queue to submit the request
1710  * @rq: the request being queued
1711  */
1712 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1713 {
1714 	unsigned long flags;
1715 
1716 	if (blk_rq_check_limits(q, rq))
1717 		return -EIO;
1718 
1719 #ifdef CONFIG_FAIL_MAKE_REQUEST
1720 	if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1721 	    should_fail(&fail_make_request, blk_rq_bytes(rq)))
1722 		return -EIO;
1723 #endif
1724 
1725 	spin_lock_irqsave(q->queue_lock, flags);
1726 
1727 	/*
1728 	 * Submitting request must be dequeued before calling this function
1729 	 * because it will be linked to another request_queue
1730 	 */
1731 	BUG_ON(blk_queued_rq(rq));
1732 
1733 	drive_stat_acct(rq, 1);
1734 	__elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1735 
1736 	spin_unlock_irqrestore(q->queue_lock, flags);
1737 
1738 	return 0;
1739 }
1740 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1741 
1742 /**
1743  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1744  * @rq: request to examine
1745  *
1746  * Description:
1747  *     A request could be merge of IOs which require different failure
1748  *     handling.  This function determines the number of bytes which
1749  *     can be failed from the beginning of the request without
1750  *     crossing into area which need to be retried further.
1751  *
1752  * Return:
1753  *     The number of bytes to fail.
1754  *
1755  * Context:
1756  *     queue_lock must be held.
1757  */
1758 unsigned int blk_rq_err_bytes(const struct request *rq)
1759 {
1760 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1761 	unsigned int bytes = 0;
1762 	struct bio *bio;
1763 
1764 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1765 		return blk_rq_bytes(rq);
1766 
1767 	/*
1768 	 * Currently the only 'mixing' which can happen is between
1769 	 * different fastfail types.  We can safely fail portions
1770 	 * which have all the failfast bits that the first one has -
1771 	 * the ones which are at least as eager to fail as the first
1772 	 * one.
1773 	 */
1774 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1775 		if ((bio->bi_rw & ff) != ff)
1776 			break;
1777 		bytes += bio->bi_size;
1778 	}
1779 
1780 	/* this could lead to infinite loop */
1781 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1782 	return bytes;
1783 }
1784 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1785 
1786 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1787 {
1788 	if (blk_do_io_stat(req)) {
1789 		const int rw = rq_data_dir(req);
1790 		struct hd_struct *part;
1791 		int cpu;
1792 
1793 		cpu = part_stat_lock();
1794 		part = req->part;
1795 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1796 		part_stat_unlock();
1797 	}
1798 }
1799 
1800 static void blk_account_io_done(struct request *req)
1801 {
1802 	/*
1803 	 * Account IO completion.  flush_rq isn't accounted as a
1804 	 * normal IO on queueing nor completion.  Accounting the
1805 	 * containing request is enough.
1806 	 */
1807 	if (blk_do_io_stat(req) && req != &req->q->flush_rq) {
1808 		unsigned long duration = jiffies - req->start_time;
1809 		const int rw = rq_data_dir(req);
1810 		struct hd_struct *part;
1811 		int cpu;
1812 
1813 		cpu = part_stat_lock();
1814 		part = req->part;
1815 
1816 		part_stat_inc(cpu, part, ios[rw]);
1817 		part_stat_add(cpu, part, ticks[rw], duration);
1818 		part_round_stats(cpu, part);
1819 		part_dec_in_flight(part, rw);
1820 
1821 		hd_struct_put(part);
1822 		part_stat_unlock();
1823 	}
1824 }
1825 
1826 /**
1827  * blk_peek_request - peek at the top of a request queue
1828  * @q: request queue to peek at
1829  *
1830  * Description:
1831  *     Return the request at the top of @q.  The returned request
1832  *     should be started using blk_start_request() before LLD starts
1833  *     processing it.
1834  *
1835  * Return:
1836  *     Pointer to the request at the top of @q if available.  Null
1837  *     otherwise.
1838  *
1839  * Context:
1840  *     queue_lock must be held.
1841  */
1842 struct request *blk_peek_request(struct request_queue *q)
1843 {
1844 	struct request *rq;
1845 	int ret;
1846 
1847 	while ((rq = __elv_next_request(q)) != NULL) {
1848 		if (!(rq->cmd_flags & REQ_STARTED)) {
1849 			/*
1850 			 * This is the first time the device driver
1851 			 * sees this request (possibly after
1852 			 * requeueing).  Notify IO scheduler.
1853 			 */
1854 			if (rq->cmd_flags & REQ_SORTED)
1855 				elv_activate_rq(q, rq);
1856 
1857 			/*
1858 			 * just mark as started even if we don't start
1859 			 * it, a request that has been delayed should
1860 			 * not be passed by new incoming requests
1861 			 */
1862 			rq->cmd_flags |= REQ_STARTED;
1863 			trace_block_rq_issue(q, rq);
1864 		}
1865 
1866 		if (!q->boundary_rq || q->boundary_rq == rq) {
1867 			q->end_sector = rq_end_sector(rq);
1868 			q->boundary_rq = NULL;
1869 		}
1870 
1871 		if (rq->cmd_flags & REQ_DONTPREP)
1872 			break;
1873 
1874 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1875 			/*
1876 			 * make sure space for the drain appears we
1877 			 * know we can do this because max_hw_segments
1878 			 * has been adjusted to be one fewer than the
1879 			 * device can handle
1880 			 */
1881 			rq->nr_phys_segments++;
1882 		}
1883 
1884 		if (!q->prep_rq_fn)
1885 			break;
1886 
1887 		ret = q->prep_rq_fn(q, rq);
1888 		if (ret == BLKPREP_OK) {
1889 			break;
1890 		} else if (ret == BLKPREP_DEFER) {
1891 			/*
1892 			 * the request may have been (partially) prepped.
1893 			 * we need to keep this request in the front to
1894 			 * avoid resource deadlock.  REQ_STARTED will
1895 			 * prevent other fs requests from passing this one.
1896 			 */
1897 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1898 			    !(rq->cmd_flags & REQ_DONTPREP)) {
1899 				/*
1900 				 * remove the space for the drain we added
1901 				 * so that we don't add it again
1902 				 */
1903 				--rq->nr_phys_segments;
1904 			}
1905 
1906 			rq = NULL;
1907 			break;
1908 		} else if (ret == BLKPREP_KILL) {
1909 			rq->cmd_flags |= REQ_QUIET;
1910 			/*
1911 			 * Mark this request as started so we don't trigger
1912 			 * any debug logic in the end I/O path.
1913 			 */
1914 			blk_start_request(rq);
1915 			__blk_end_request_all(rq, -EIO);
1916 		} else {
1917 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1918 			break;
1919 		}
1920 	}
1921 
1922 	return rq;
1923 }
1924 EXPORT_SYMBOL(blk_peek_request);
1925 
1926 void blk_dequeue_request(struct request *rq)
1927 {
1928 	struct request_queue *q = rq->q;
1929 
1930 	BUG_ON(list_empty(&rq->queuelist));
1931 	BUG_ON(ELV_ON_HASH(rq));
1932 
1933 	list_del_init(&rq->queuelist);
1934 
1935 	/*
1936 	 * the time frame between a request being removed from the lists
1937 	 * and to it is freed is accounted as io that is in progress at
1938 	 * the driver side.
1939 	 */
1940 	if (blk_account_rq(rq)) {
1941 		q->in_flight[rq_is_sync(rq)]++;
1942 		set_io_start_time_ns(rq);
1943 	}
1944 }
1945 
1946 /**
1947  * blk_start_request - start request processing on the driver
1948  * @req: request to dequeue
1949  *
1950  * Description:
1951  *     Dequeue @req and start timeout timer on it.  This hands off the
1952  *     request to the driver.
1953  *
1954  *     Block internal functions which don't want to start timer should
1955  *     call blk_dequeue_request().
1956  *
1957  * Context:
1958  *     queue_lock must be held.
1959  */
1960 void blk_start_request(struct request *req)
1961 {
1962 	blk_dequeue_request(req);
1963 
1964 	/*
1965 	 * We are now handing the request to the hardware, initialize
1966 	 * resid_len to full count and add the timeout handler.
1967 	 */
1968 	req->resid_len = blk_rq_bytes(req);
1969 	if (unlikely(blk_bidi_rq(req)))
1970 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1971 
1972 	blk_add_timer(req);
1973 }
1974 EXPORT_SYMBOL(blk_start_request);
1975 
1976 /**
1977  * blk_fetch_request - fetch a request from a request queue
1978  * @q: request queue to fetch a request from
1979  *
1980  * Description:
1981  *     Return the request at the top of @q.  The request is started on
1982  *     return and LLD can start processing it immediately.
1983  *
1984  * Return:
1985  *     Pointer to the request at the top of @q if available.  Null
1986  *     otherwise.
1987  *
1988  * Context:
1989  *     queue_lock must be held.
1990  */
1991 struct request *blk_fetch_request(struct request_queue *q)
1992 {
1993 	struct request *rq;
1994 
1995 	rq = blk_peek_request(q);
1996 	if (rq)
1997 		blk_start_request(rq);
1998 	return rq;
1999 }
2000 EXPORT_SYMBOL(blk_fetch_request);
2001 
2002 /**
2003  * blk_update_request - Special helper function for request stacking drivers
2004  * @req:      the request being processed
2005  * @error:    %0 for success, < %0 for error
2006  * @nr_bytes: number of bytes to complete @req
2007  *
2008  * Description:
2009  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2010  *     the request structure even if @req doesn't have leftover.
2011  *     If @req has leftover, sets it up for the next range of segments.
2012  *
2013  *     This special helper function is only for request stacking drivers
2014  *     (e.g. request-based dm) so that they can handle partial completion.
2015  *     Actual device drivers should use blk_end_request instead.
2016  *
2017  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2018  *     %false return from this function.
2019  *
2020  * Return:
2021  *     %false - this request doesn't have any more data
2022  *     %true  - this request has more data
2023  **/
2024 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2025 {
2026 	int total_bytes, bio_nbytes, next_idx = 0;
2027 	struct bio *bio;
2028 
2029 	if (!req->bio)
2030 		return false;
2031 
2032 	trace_block_rq_complete(req->q, req);
2033 
2034 	/*
2035 	 * For fs requests, rq is just carrier of independent bio's
2036 	 * and each partial completion should be handled separately.
2037 	 * Reset per-request error on each partial completion.
2038 	 *
2039 	 * TODO: tj: This is too subtle.  It would be better to let
2040 	 * low level drivers do what they see fit.
2041 	 */
2042 	if (req->cmd_type == REQ_TYPE_FS)
2043 		req->errors = 0;
2044 
2045 	if (error && req->cmd_type == REQ_TYPE_FS &&
2046 	    !(req->cmd_flags & REQ_QUIET)) {
2047 		printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
2048 				req->rq_disk ? req->rq_disk->disk_name : "?",
2049 				(unsigned long long)blk_rq_pos(req));
2050 	}
2051 
2052 	blk_account_io_completion(req, nr_bytes);
2053 
2054 	total_bytes = bio_nbytes = 0;
2055 	while ((bio = req->bio) != NULL) {
2056 		int nbytes;
2057 
2058 		if (nr_bytes >= bio->bi_size) {
2059 			req->bio = bio->bi_next;
2060 			nbytes = bio->bi_size;
2061 			req_bio_endio(req, bio, nbytes, error);
2062 			next_idx = 0;
2063 			bio_nbytes = 0;
2064 		} else {
2065 			int idx = bio->bi_idx + next_idx;
2066 
2067 			if (unlikely(idx >= bio->bi_vcnt)) {
2068 				blk_dump_rq_flags(req, "__end_that");
2069 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2070 				       __func__, idx, bio->bi_vcnt);
2071 				break;
2072 			}
2073 
2074 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2075 			BIO_BUG_ON(nbytes > bio->bi_size);
2076 
2077 			/*
2078 			 * not a complete bvec done
2079 			 */
2080 			if (unlikely(nbytes > nr_bytes)) {
2081 				bio_nbytes += nr_bytes;
2082 				total_bytes += nr_bytes;
2083 				break;
2084 			}
2085 
2086 			/*
2087 			 * advance to the next vector
2088 			 */
2089 			next_idx++;
2090 			bio_nbytes += nbytes;
2091 		}
2092 
2093 		total_bytes += nbytes;
2094 		nr_bytes -= nbytes;
2095 
2096 		bio = req->bio;
2097 		if (bio) {
2098 			/*
2099 			 * end more in this run, or just return 'not-done'
2100 			 */
2101 			if (unlikely(nr_bytes <= 0))
2102 				break;
2103 		}
2104 	}
2105 
2106 	/*
2107 	 * completely done
2108 	 */
2109 	if (!req->bio) {
2110 		/*
2111 		 * Reset counters so that the request stacking driver
2112 		 * can find how many bytes remain in the request
2113 		 * later.
2114 		 */
2115 		req->__data_len = 0;
2116 		return false;
2117 	}
2118 
2119 	/*
2120 	 * if the request wasn't completed, update state
2121 	 */
2122 	if (bio_nbytes) {
2123 		req_bio_endio(req, bio, bio_nbytes, error);
2124 		bio->bi_idx += next_idx;
2125 		bio_iovec(bio)->bv_offset += nr_bytes;
2126 		bio_iovec(bio)->bv_len -= nr_bytes;
2127 	}
2128 
2129 	req->__data_len -= total_bytes;
2130 	req->buffer = bio_data(req->bio);
2131 
2132 	/* update sector only for requests with clear definition of sector */
2133 	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2134 		req->__sector += total_bytes >> 9;
2135 
2136 	/* mixed attributes always follow the first bio */
2137 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2138 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2139 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2140 	}
2141 
2142 	/*
2143 	 * If total number of sectors is less than the first segment
2144 	 * size, something has gone terribly wrong.
2145 	 */
2146 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2147 		printk(KERN_ERR "blk: request botched\n");
2148 		req->__data_len = blk_rq_cur_bytes(req);
2149 	}
2150 
2151 	/* recalculate the number of segments */
2152 	blk_recalc_rq_segments(req);
2153 
2154 	return true;
2155 }
2156 EXPORT_SYMBOL_GPL(blk_update_request);
2157 
2158 static bool blk_update_bidi_request(struct request *rq, int error,
2159 				    unsigned int nr_bytes,
2160 				    unsigned int bidi_bytes)
2161 {
2162 	if (blk_update_request(rq, error, nr_bytes))
2163 		return true;
2164 
2165 	/* Bidi request must be completed as a whole */
2166 	if (unlikely(blk_bidi_rq(rq)) &&
2167 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2168 		return true;
2169 
2170 	if (blk_queue_add_random(rq->q))
2171 		add_disk_randomness(rq->rq_disk);
2172 
2173 	return false;
2174 }
2175 
2176 /**
2177  * blk_unprep_request - unprepare a request
2178  * @req:	the request
2179  *
2180  * This function makes a request ready for complete resubmission (or
2181  * completion).  It happens only after all error handling is complete,
2182  * so represents the appropriate moment to deallocate any resources
2183  * that were allocated to the request in the prep_rq_fn.  The queue
2184  * lock is held when calling this.
2185  */
2186 void blk_unprep_request(struct request *req)
2187 {
2188 	struct request_queue *q = req->q;
2189 
2190 	req->cmd_flags &= ~REQ_DONTPREP;
2191 	if (q->unprep_rq_fn)
2192 		q->unprep_rq_fn(q, req);
2193 }
2194 EXPORT_SYMBOL_GPL(blk_unprep_request);
2195 
2196 /*
2197  * queue lock must be held
2198  */
2199 static void blk_finish_request(struct request *req, int error)
2200 {
2201 	if (blk_rq_tagged(req))
2202 		blk_queue_end_tag(req->q, req);
2203 
2204 	BUG_ON(blk_queued_rq(req));
2205 
2206 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2207 		laptop_io_completion(&req->q->backing_dev_info);
2208 
2209 	blk_delete_timer(req);
2210 
2211 	if (req->cmd_flags & REQ_DONTPREP)
2212 		blk_unprep_request(req);
2213 
2214 
2215 	blk_account_io_done(req);
2216 
2217 	if (req->end_io)
2218 		req->end_io(req, error);
2219 	else {
2220 		if (blk_bidi_rq(req))
2221 			__blk_put_request(req->next_rq->q, req->next_rq);
2222 
2223 		__blk_put_request(req->q, req);
2224 	}
2225 }
2226 
2227 /**
2228  * blk_end_bidi_request - Complete a bidi request
2229  * @rq:         the request to complete
2230  * @error:      %0 for success, < %0 for error
2231  * @nr_bytes:   number of bytes to complete @rq
2232  * @bidi_bytes: number of bytes to complete @rq->next_rq
2233  *
2234  * Description:
2235  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2236  *     Drivers that supports bidi can safely call this member for any
2237  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2238  *     just ignored.
2239  *
2240  * Return:
2241  *     %false - we are done with this request
2242  *     %true  - still buffers pending for this request
2243  **/
2244 static bool blk_end_bidi_request(struct request *rq, int error,
2245 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2246 {
2247 	struct request_queue *q = rq->q;
2248 	unsigned long flags;
2249 
2250 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2251 		return true;
2252 
2253 	spin_lock_irqsave(q->queue_lock, flags);
2254 	blk_finish_request(rq, error);
2255 	spin_unlock_irqrestore(q->queue_lock, flags);
2256 
2257 	return false;
2258 }
2259 
2260 /**
2261  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2262  * @rq:         the request to complete
2263  * @error:      %0 for success, < %0 for error
2264  * @nr_bytes:   number of bytes to complete @rq
2265  * @bidi_bytes: number of bytes to complete @rq->next_rq
2266  *
2267  * Description:
2268  *     Identical to blk_end_bidi_request() except that queue lock is
2269  *     assumed to be locked on entry and remains so on return.
2270  *
2271  * Return:
2272  *     %false - we are done with this request
2273  *     %true  - still buffers pending for this request
2274  **/
2275 static bool __blk_end_bidi_request(struct request *rq, int error,
2276 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2277 {
2278 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2279 		return true;
2280 
2281 	blk_finish_request(rq, error);
2282 
2283 	return false;
2284 }
2285 
2286 /**
2287  * blk_end_request - Helper function for drivers to complete the request.
2288  * @rq:       the request being processed
2289  * @error:    %0 for success, < %0 for error
2290  * @nr_bytes: number of bytes to complete
2291  *
2292  * Description:
2293  *     Ends I/O on a number of bytes attached to @rq.
2294  *     If @rq has leftover, sets it up for the next range of segments.
2295  *
2296  * Return:
2297  *     %false - we are done with this request
2298  *     %true  - still buffers pending for this request
2299  **/
2300 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2301 {
2302 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2303 }
2304 EXPORT_SYMBOL(blk_end_request);
2305 
2306 /**
2307  * blk_end_request_all - Helper function for drives to finish the request.
2308  * @rq: the request to finish
2309  * @error: %0 for success, < %0 for error
2310  *
2311  * Description:
2312  *     Completely finish @rq.
2313  */
2314 void blk_end_request_all(struct request *rq, int error)
2315 {
2316 	bool pending;
2317 	unsigned int bidi_bytes = 0;
2318 
2319 	if (unlikely(blk_bidi_rq(rq)))
2320 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2321 
2322 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2323 	BUG_ON(pending);
2324 }
2325 EXPORT_SYMBOL(blk_end_request_all);
2326 
2327 /**
2328  * blk_end_request_cur - Helper function to finish the current request chunk.
2329  * @rq: the request to finish the current chunk for
2330  * @error: %0 for success, < %0 for error
2331  *
2332  * Description:
2333  *     Complete the current consecutively mapped chunk from @rq.
2334  *
2335  * Return:
2336  *     %false - we are done with this request
2337  *     %true  - still buffers pending for this request
2338  */
2339 bool blk_end_request_cur(struct request *rq, int error)
2340 {
2341 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2342 }
2343 EXPORT_SYMBOL(blk_end_request_cur);
2344 
2345 /**
2346  * blk_end_request_err - Finish a request till the next failure boundary.
2347  * @rq: the request to finish till the next failure boundary for
2348  * @error: must be negative errno
2349  *
2350  * Description:
2351  *     Complete @rq till the next failure boundary.
2352  *
2353  * Return:
2354  *     %false - we are done with this request
2355  *     %true  - still buffers pending for this request
2356  */
2357 bool blk_end_request_err(struct request *rq, int error)
2358 {
2359 	WARN_ON(error >= 0);
2360 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2361 }
2362 EXPORT_SYMBOL_GPL(blk_end_request_err);
2363 
2364 /**
2365  * __blk_end_request - Helper function for drivers to complete the request.
2366  * @rq:       the request being processed
2367  * @error:    %0 for success, < %0 for error
2368  * @nr_bytes: number of bytes to complete
2369  *
2370  * Description:
2371  *     Must be called with queue lock held unlike blk_end_request().
2372  *
2373  * Return:
2374  *     %false - we are done with this request
2375  *     %true  - still buffers pending for this request
2376  **/
2377 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2378 {
2379 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2380 }
2381 EXPORT_SYMBOL(__blk_end_request);
2382 
2383 /**
2384  * __blk_end_request_all - Helper function for drives to finish the request.
2385  * @rq: the request to finish
2386  * @error: %0 for success, < %0 for error
2387  *
2388  * Description:
2389  *     Completely finish @rq.  Must be called with queue lock held.
2390  */
2391 void __blk_end_request_all(struct request *rq, int error)
2392 {
2393 	bool pending;
2394 	unsigned int bidi_bytes = 0;
2395 
2396 	if (unlikely(blk_bidi_rq(rq)))
2397 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2398 
2399 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2400 	BUG_ON(pending);
2401 }
2402 EXPORT_SYMBOL(__blk_end_request_all);
2403 
2404 /**
2405  * __blk_end_request_cur - Helper function to finish the current request chunk.
2406  * @rq: the request to finish the current chunk for
2407  * @error: %0 for success, < %0 for error
2408  *
2409  * Description:
2410  *     Complete the current consecutively mapped chunk from @rq.  Must
2411  *     be called with queue lock held.
2412  *
2413  * Return:
2414  *     %false - we are done with this request
2415  *     %true  - still buffers pending for this request
2416  */
2417 bool __blk_end_request_cur(struct request *rq, int error)
2418 {
2419 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2420 }
2421 EXPORT_SYMBOL(__blk_end_request_cur);
2422 
2423 /**
2424  * __blk_end_request_err - Finish a request till the next failure boundary.
2425  * @rq: the request to finish till the next failure boundary for
2426  * @error: must be negative errno
2427  *
2428  * Description:
2429  *     Complete @rq till the next failure boundary.  Must be called
2430  *     with queue lock held.
2431  *
2432  * Return:
2433  *     %false - we are done with this request
2434  *     %true  - still buffers pending for this request
2435  */
2436 bool __blk_end_request_err(struct request *rq, int error)
2437 {
2438 	WARN_ON(error >= 0);
2439 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2440 }
2441 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2442 
2443 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2444 		     struct bio *bio)
2445 {
2446 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2447 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2448 
2449 	if (bio_has_data(bio)) {
2450 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2451 		rq->buffer = bio_data(bio);
2452 	}
2453 	rq->__data_len = bio->bi_size;
2454 	rq->bio = rq->biotail = bio;
2455 
2456 	if (bio->bi_bdev)
2457 		rq->rq_disk = bio->bi_bdev->bd_disk;
2458 }
2459 
2460 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2461 /**
2462  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2463  * @rq: the request to be flushed
2464  *
2465  * Description:
2466  *     Flush all pages in @rq.
2467  */
2468 void rq_flush_dcache_pages(struct request *rq)
2469 {
2470 	struct req_iterator iter;
2471 	struct bio_vec *bvec;
2472 
2473 	rq_for_each_segment(bvec, rq, iter)
2474 		flush_dcache_page(bvec->bv_page);
2475 }
2476 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2477 #endif
2478 
2479 /**
2480  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2481  * @q : the queue of the device being checked
2482  *
2483  * Description:
2484  *    Check if underlying low-level drivers of a device are busy.
2485  *    If the drivers want to export their busy state, they must set own
2486  *    exporting function using blk_queue_lld_busy() first.
2487  *
2488  *    Basically, this function is used only by request stacking drivers
2489  *    to stop dispatching requests to underlying devices when underlying
2490  *    devices are busy.  This behavior helps more I/O merging on the queue
2491  *    of the request stacking driver and prevents I/O throughput regression
2492  *    on burst I/O load.
2493  *
2494  * Return:
2495  *    0 - Not busy (The request stacking driver should dispatch request)
2496  *    1 - Busy (The request stacking driver should stop dispatching request)
2497  */
2498 int blk_lld_busy(struct request_queue *q)
2499 {
2500 	if (q->lld_busy_fn)
2501 		return q->lld_busy_fn(q);
2502 
2503 	return 0;
2504 }
2505 EXPORT_SYMBOL_GPL(blk_lld_busy);
2506 
2507 /**
2508  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2509  * @rq: the clone request to be cleaned up
2510  *
2511  * Description:
2512  *     Free all bios in @rq for a cloned request.
2513  */
2514 void blk_rq_unprep_clone(struct request *rq)
2515 {
2516 	struct bio *bio;
2517 
2518 	while ((bio = rq->bio) != NULL) {
2519 		rq->bio = bio->bi_next;
2520 
2521 		bio_put(bio);
2522 	}
2523 }
2524 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2525 
2526 /*
2527  * Copy attributes of the original request to the clone request.
2528  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2529  */
2530 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2531 {
2532 	dst->cpu = src->cpu;
2533 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2534 	dst->cmd_type = src->cmd_type;
2535 	dst->__sector = blk_rq_pos(src);
2536 	dst->__data_len = blk_rq_bytes(src);
2537 	dst->nr_phys_segments = src->nr_phys_segments;
2538 	dst->ioprio = src->ioprio;
2539 	dst->extra_len = src->extra_len;
2540 }
2541 
2542 /**
2543  * blk_rq_prep_clone - Helper function to setup clone request
2544  * @rq: the request to be setup
2545  * @rq_src: original request to be cloned
2546  * @bs: bio_set that bios for clone are allocated from
2547  * @gfp_mask: memory allocation mask for bio
2548  * @bio_ctr: setup function to be called for each clone bio.
2549  *           Returns %0 for success, non %0 for failure.
2550  * @data: private data to be passed to @bio_ctr
2551  *
2552  * Description:
2553  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2554  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2555  *     are not copied, and copying such parts is the caller's responsibility.
2556  *     Also, pages which the original bios are pointing to are not copied
2557  *     and the cloned bios just point same pages.
2558  *     So cloned bios must be completed before original bios, which means
2559  *     the caller must complete @rq before @rq_src.
2560  */
2561 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2562 		      struct bio_set *bs, gfp_t gfp_mask,
2563 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2564 		      void *data)
2565 {
2566 	struct bio *bio, *bio_src;
2567 
2568 	if (!bs)
2569 		bs = fs_bio_set;
2570 
2571 	blk_rq_init(NULL, rq);
2572 
2573 	__rq_for_each_bio(bio_src, rq_src) {
2574 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2575 		if (!bio)
2576 			goto free_and_out;
2577 
2578 		__bio_clone(bio, bio_src);
2579 
2580 		if (bio_integrity(bio_src) &&
2581 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2582 			goto free_and_out;
2583 
2584 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2585 			goto free_and_out;
2586 
2587 		if (rq->bio) {
2588 			rq->biotail->bi_next = bio;
2589 			rq->biotail = bio;
2590 		} else
2591 			rq->bio = rq->biotail = bio;
2592 	}
2593 
2594 	__blk_rq_prep_clone(rq, rq_src);
2595 
2596 	return 0;
2597 
2598 free_and_out:
2599 	if (bio)
2600 		bio_free(bio, bs);
2601 	blk_rq_unprep_clone(rq);
2602 
2603 	return -ENOMEM;
2604 }
2605 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2606 
2607 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2608 {
2609 	return queue_work(kblockd_workqueue, work);
2610 }
2611 EXPORT_SYMBOL(kblockd_schedule_work);
2612 
2613 int kblockd_schedule_delayed_work(struct request_queue *q,
2614 			struct delayed_work *dwork, unsigned long delay)
2615 {
2616 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2617 }
2618 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2619 
2620 int __init blk_dev_init(void)
2621 {
2622 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2623 			sizeof(((struct request *)0)->cmd_flags));
2624 
2625 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
2626 	kblockd_workqueue = alloc_workqueue("kblockd",
2627 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2628 	if (!kblockd_workqueue)
2629 		panic("Failed to create kblockd\n");
2630 
2631 	request_cachep = kmem_cache_create("blkdev_requests",
2632 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2633 
2634 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2635 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2636 
2637 	return 0;
2638 }
2639