1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/fault-inject.h> 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/block.h> 33 34 #include "blk.h" 35 36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 39 40 static int __make_request(struct request_queue *q, struct bio *bio); 41 42 /* 43 * For the allocated request tables 44 */ 45 static struct kmem_cache *request_cachep; 46 47 /* 48 * For queue allocation 49 */ 50 struct kmem_cache *blk_requestq_cachep; 51 52 /* 53 * Controlling structure to kblockd 54 */ 55 static struct workqueue_struct *kblockd_workqueue; 56 57 static void drive_stat_acct(struct request *rq, int new_io) 58 { 59 struct hd_struct *part; 60 int rw = rq_data_dir(rq); 61 int cpu; 62 63 if (!blk_do_io_stat(rq)) 64 return; 65 66 cpu = part_stat_lock(); 67 68 if (!new_io) { 69 part = rq->part; 70 part_stat_inc(cpu, part, merges[rw]); 71 } else { 72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 73 if (!hd_struct_try_get(part)) { 74 /* 75 * The partition is already being removed, 76 * the request will be accounted on the disk only 77 * 78 * We take a reference on disk->part0 although that 79 * partition will never be deleted, so we can treat 80 * it as any other partition. 81 */ 82 part = &rq->rq_disk->part0; 83 hd_struct_get(part); 84 } 85 part_round_stats(cpu, part); 86 part_inc_in_flight(part, rw); 87 rq->part = part; 88 } 89 90 part_stat_unlock(); 91 } 92 93 void blk_queue_congestion_threshold(struct request_queue *q) 94 { 95 int nr; 96 97 nr = q->nr_requests - (q->nr_requests / 8) + 1; 98 if (nr > q->nr_requests) 99 nr = q->nr_requests; 100 q->nr_congestion_on = nr; 101 102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 103 if (nr < 1) 104 nr = 1; 105 q->nr_congestion_off = nr; 106 } 107 108 /** 109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 110 * @bdev: device 111 * 112 * Locates the passed device's request queue and returns the address of its 113 * backing_dev_info 114 * 115 * Will return NULL if the request queue cannot be located. 116 */ 117 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 118 { 119 struct backing_dev_info *ret = NULL; 120 struct request_queue *q = bdev_get_queue(bdev); 121 122 if (q) 123 ret = &q->backing_dev_info; 124 return ret; 125 } 126 EXPORT_SYMBOL(blk_get_backing_dev_info); 127 128 void blk_rq_init(struct request_queue *q, struct request *rq) 129 { 130 memset(rq, 0, sizeof(*rq)); 131 132 INIT_LIST_HEAD(&rq->queuelist); 133 INIT_LIST_HEAD(&rq->timeout_list); 134 rq->cpu = -1; 135 rq->q = q; 136 rq->__sector = (sector_t) -1; 137 INIT_HLIST_NODE(&rq->hash); 138 RB_CLEAR_NODE(&rq->rb_node); 139 rq->cmd = rq->__cmd; 140 rq->cmd_len = BLK_MAX_CDB; 141 rq->tag = -1; 142 rq->ref_count = 1; 143 rq->start_time = jiffies; 144 set_start_time_ns(rq); 145 rq->part = NULL; 146 } 147 EXPORT_SYMBOL(blk_rq_init); 148 149 static void req_bio_endio(struct request *rq, struct bio *bio, 150 unsigned int nbytes, int error) 151 { 152 struct request_queue *q = rq->q; 153 154 if (&q->flush_rq != rq) { 155 if (error) 156 clear_bit(BIO_UPTODATE, &bio->bi_flags); 157 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 158 error = -EIO; 159 160 if (unlikely(nbytes > bio->bi_size)) { 161 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 162 __func__, nbytes, bio->bi_size); 163 nbytes = bio->bi_size; 164 } 165 166 if (unlikely(rq->cmd_flags & REQ_QUIET)) 167 set_bit(BIO_QUIET, &bio->bi_flags); 168 169 bio->bi_size -= nbytes; 170 bio->bi_sector += (nbytes >> 9); 171 172 if (bio_integrity(bio)) 173 bio_integrity_advance(bio, nbytes); 174 175 if (bio->bi_size == 0) 176 bio_endio(bio, error); 177 } else { 178 /* 179 * Okay, this is the sequenced flush request in 180 * progress, just record the error; 181 */ 182 if (error && !q->flush_err) 183 q->flush_err = error; 184 } 185 } 186 187 void blk_dump_rq_flags(struct request *rq, char *msg) 188 { 189 int bit; 190 191 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 192 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 193 rq->cmd_flags); 194 195 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 196 (unsigned long long)blk_rq_pos(rq), 197 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 198 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 199 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 200 201 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 202 printk(KERN_INFO " cdb: "); 203 for (bit = 0; bit < BLK_MAX_CDB; bit++) 204 printk("%02x ", rq->cmd[bit]); 205 printk("\n"); 206 } 207 } 208 EXPORT_SYMBOL(blk_dump_rq_flags); 209 210 /* 211 * "plug" the device if there are no outstanding requests: this will 212 * force the transfer to start only after we have put all the requests 213 * on the list. 214 * 215 * This is called with interrupts off and no requests on the queue and 216 * with the queue lock held. 217 */ 218 void blk_plug_device(struct request_queue *q) 219 { 220 WARN_ON(!irqs_disabled()); 221 222 /* 223 * don't plug a stopped queue, it must be paired with blk_start_queue() 224 * which will restart the queueing 225 */ 226 if (blk_queue_stopped(q)) 227 return; 228 229 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) { 230 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 231 trace_block_plug(q); 232 } 233 } 234 EXPORT_SYMBOL(blk_plug_device); 235 236 /** 237 * blk_plug_device_unlocked - plug a device without queue lock held 238 * @q: The &struct request_queue to plug 239 * 240 * Description: 241 * Like @blk_plug_device(), but grabs the queue lock and disables 242 * interrupts. 243 **/ 244 void blk_plug_device_unlocked(struct request_queue *q) 245 { 246 unsigned long flags; 247 248 spin_lock_irqsave(q->queue_lock, flags); 249 blk_plug_device(q); 250 spin_unlock_irqrestore(q->queue_lock, flags); 251 } 252 EXPORT_SYMBOL(blk_plug_device_unlocked); 253 254 /* 255 * remove the queue from the plugged list, if present. called with 256 * queue lock held and interrupts disabled. 257 */ 258 int blk_remove_plug(struct request_queue *q) 259 { 260 WARN_ON(!irqs_disabled()); 261 262 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q)) 263 return 0; 264 265 del_timer(&q->unplug_timer); 266 return 1; 267 } 268 EXPORT_SYMBOL(blk_remove_plug); 269 270 /* 271 * remove the plug and let it rip.. 272 */ 273 void __generic_unplug_device(struct request_queue *q) 274 { 275 if (unlikely(blk_queue_stopped(q))) 276 return; 277 if (!blk_remove_plug(q) && !blk_queue_nonrot(q)) 278 return; 279 280 q->request_fn(q); 281 } 282 283 /** 284 * generic_unplug_device - fire a request queue 285 * @q: The &struct request_queue in question 286 * 287 * Description: 288 * Linux uses plugging to build bigger requests queues before letting 289 * the device have at them. If a queue is plugged, the I/O scheduler 290 * is still adding and merging requests on the queue. Once the queue 291 * gets unplugged, the request_fn defined for the queue is invoked and 292 * transfers started. 293 **/ 294 void generic_unplug_device(struct request_queue *q) 295 { 296 if (blk_queue_plugged(q)) { 297 spin_lock_irq(q->queue_lock); 298 __generic_unplug_device(q); 299 spin_unlock_irq(q->queue_lock); 300 } 301 } 302 EXPORT_SYMBOL(generic_unplug_device); 303 304 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 305 struct page *page) 306 { 307 struct request_queue *q = bdi->unplug_io_data; 308 309 blk_unplug(q); 310 } 311 312 void blk_unplug_work(struct work_struct *work) 313 { 314 struct request_queue *q = 315 container_of(work, struct request_queue, unplug_work); 316 317 trace_block_unplug_io(q); 318 q->unplug_fn(q); 319 } 320 321 void blk_unplug_timeout(unsigned long data) 322 { 323 struct request_queue *q = (struct request_queue *)data; 324 325 trace_block_unplug_timer(q); 326 kblockd_schedule_work(q, &q->unplug_work); 327 } 328 329 void blk_unplug(struct request_queue *q) 330 { 331 /* 332 * devices don't necessarily have an ->unplug_fn defined 333 */ 334 if (q->unplug_fn) { 335 trace_block_unplug_io(q); 336 q->unplug_fn(q); 337 } 338 } 339 EXPORT_SYMBOL(blk_unplug); 340 341 /** 342 * blk_start_queue - restart a previously stopped queue 343 * @q: The &struct request_queue in question 344 * 345 * Description: 346 * blk_start_queue() will clear the stop flag on the queue, and call 347 * the request_fn for the queue if it was in a stopped state when 348 * entered. Also see blk_stop_queue(). Queue lock must be held. 349 **/ 350 void blk_start_queue(struct request_queue *q) 351 { 352 WARN_ON(!irqs_disabled()); 353 354 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 355 __blk_run_queue(q); 356 } 357 EXPORT_SYMBOL(blk_start_queue); 358 359 /** 360 * blk_stop_queue - stop a queue 361 * @q: The &struct request_queue in question 362 * 363 * Description: 364 * The Linux block layer assumes that a block driver will consume all 365 * entries on the request queue when the request_fn strategy is called. 366 * Often this will not happen, because of hardware limitations (queue 367 * depth settings). If a device driver gets a 'queue full' response, 368 * or if it simply chooses not to queue more I/O at one point, it can 369 * call this function to prevent the request_fn from being called until 370 * the driver has signalled it's ready to go again. This happens by calling 371 * blk_start_queue() to restart queue operations. Queue lock must be held. 372 **/ 373 void blk_stop_queue(struct request_queue *q) 374 { 375 blk_remove_plug(q); 376 queue_flag_set(QUEUE_FLAG_STOPPED, q); 377 } 378 EXPORT_SYMBOL(blk_stop_queue); 379 380 /** 381 * blk_sync_queue - cancel any pending callbacks on a queue 382 * @q: the queue 383 * 384 * Description: 385 * The block layer may perform asynchronous callback activity 386 * on a queue, such as calling the unplug function after a timeout. 387 * A block device may call blk_sync_queue to ensure that any 388 * such activity is cancelled, thus allowing it to release resources 389 * that the callbacks might use. The caller must already have made sure 390 * that its ->make_request_fn will not re-add plugging prior to calling 391 * this function. 392 * 393 */ 394 void blk_sync_queue(struct request_queue *q) 395 { 396 del_timer_sync(&q->unplug_timer); 397 del_timer_sync(&q->timeout); 398 cancel_work_sync(&q->unplug_work); 399 throtl_shutdown_timer_wq(q); 400 } 401 EXPORT_SYMBOL(blk_sync_queue); 402 403 /** 404 * __blk_run_queue - run a single device queue 405 * @q: The queue to run 406 * 407 * Description: 408 * See @blk_run_queue. This variant must be called with the queue lock 409 * held and interrupts disabled. 410 * 411 */ 412 void __blk_run_queue(struct request_queue *q) 413 { 414 blk_remove_plug(q); 415 416 if (unlikely(blk_queue_stopped(q))) 417 return; 418 419 if (elv_queue_empty(q)) 420 return; 421 422 /* 423 * Only recurse once to avoid overrunning the stack, let the unplug 424 * handling reinvoke the handler shortly if we already got there. 425 */ 426 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 427 q->request_fn(q); 428 queue_flag_clear(QUEUE_FLAG_REENTER, q); 429 } else { 430 queue_flag_set(QUEUE_FLAG_PLUGGED, q); 431 kblockd_schedule_work(q, &q->unplug_work); 432 } 433 } 434 EXPORT_SYMBOL(__blk_run_queue); 435 436 /** 437 * blk_run_queue - run a single device queue 438 * @q: The queue to run 439 * 440 * Description: 441 * Invoke request handling on this queue, if it has pending work to do. 442 * May be used to restart queueing when a request has completed. 443 */ 444 void blk_run_queue(struct request_queue *q) 445 { 446 unsigned long flags; 447 448 spin_lock_irqsave(q->queue_lock, flags); 449 __blk_run_queue(q); 450 spin_unlock_irqrestore(q->queue_lock, flags); 451 } 452 EXPORT_SYMBOL(blk_run_queue); 453 454 void blk_put_queue(struct request_queue *q) 455 { 456 kobject_put(&q->kobj); 457 } 458 459 void blk_cleanup_queue(struct request_queue *q) 460 { 461 /* 462 * We know we have process context here, so we can be a little 463 * cautious and ensure that pending block actions on this device 464 * are done before moving on. Going into this function, we should 465 * not have processes doing IO to this device. 466 */ 467 blk_sync_queue(q); 468 469 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 470 mutex_lock(&q->sysfs_lock); 471 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 472 mutex_unlock(&q->sysfs_lock); 473 474 if (q->elevator) 475 elevator_exit(q->elevator); 476 477 blk_put_queue(q); 478 } 479 EXPORT_SYMBOL(blk_cleanup_queue); 480 481 static int blk_init_free_list(struct request_queue *q) 482 { 483 struct request_list *rl = &q->rq; 484 485 if (unlikely(rl->rq_pool)) 486 return 0; 487 488 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 489 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 490 rl->elvpriv = 0; 491 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 492 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 493 494 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 495 mempool_free_slab, request_cachep, q->node); 496 497 if (!rl->rq_pool) 498 return -ENOMEM; 499 500 return 0; 501 } 502 503 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 504 { 505 return blk_alloc_queue_node(gfp_mask, -1); 506 } 507 EXPORT_SYMBOL(blk_alloc_queue); 508 509 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 510 { 511 struct request_queue *q; 512 int err; 513 514 q = kmem_cache_alloc_node(blk_requestq_cachep, 515 gfp_mask | __GFP_ZERO, node_id); 516 if (!q) 517 return NULL; 518 519 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 520 q->backing_dev_info.unplug_io_data = q; 521 q->backing_dev_info.ra_pages = 522 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 523 q->backing_dev_info.state = 0; 524 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 525 q->backing_dev_info.name = "block"; 526 527 err = bdi_init(&q->backing_dev_info); 528 if (err) { 529 kmem_cache_free(blk_requestq_cachep, q); 530 return NULL; 531 } 532 533 if (blk_throtl_init(q)) { 534 kmem_cache_free(blk_requestq_cachep, q); 535 return NULL; 536 } 537 538 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 539 laptop_mode_timer_fn, (unsigned long) q); 540 init_timer(&q->unplug_timer); 541 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 542 INIT_LIST_HEAD(&q->timeout_list); 543 INIT_LIST_HEAD(&q->pending_flushes); 544 INIT_WORK(&q->unplug_work, blk_unplug_work); 545 546 kobject_init(&q->kobj, &blk_queue_ktype); 547 548 mutex_init(&q->sysfs_lock); 549 spin_lock_init(&q->__queue_lock); 550 551 return q; 552 } 553 EXPORT_SYMBOL(blk_alloc_queue_node); 554 555 /** 556 * blk_init_queue - prepare a request queue for use with a block device 557 * @rfn: The function to be called to process requests that have been 558 * placed on the queue. 559 * @lock: Request queue spin lock 560 * 561 * Description: 562 * If a block device wishes to use the standard request handling procedures, 563 * which sorts requests and coalesces adjacent requests, then it must 564 * call blk_init_queue(). The function @rfn will be called when there 565 * are requests on the queue that need to be processed. If the device 566 * supports plugging, then @rfn may not be called immediately when requests 567 * are available on the queue, but may be called at some time later instead. 568 * Plugged queues are generally unplugged when a buffer belonging to one 569 * of the requests on the queue is needed, or due to memory pressure. 570 * 571 * @rfn is not required, or even expected, to remove all requests off the 572 * queue, but only as many as it can handle at a time. If it does leave 573 * requests on the queue, it is responsible for arranging that the requests 574 * get dealt with eventually. 575 * 576 * The queue spin lock must be held while manipulating the requests on the 577 * request queue; this lock will be taken also from interrupt context, so irq 578 * disabling is needed for it. 579 * 580 * Function returns a pointer to the initialized request queue, or %NULL if 581 * it didn't succeed. 582 * 583 * Note: 584 * blk_init_queue() must be paired with a blk_cleanup_queue() call 585 * when the block device is deactivated (such as at module unload). 586 **/ 587 588 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 589 { 590 return blk_init_queue_node(rfn, lock, -1); 591 } 592 EXPORT_SYMBOL(blk_init_queue); 593 594 struct request_queue * 595 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 596 { 597 struct request_queue *uninit_q, *q; 598 599 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 600 if (!uninit_q) 601 return NULL; 602 603 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id); 604 if (!q) 605 blk_cleanup_queue(uninit_q); 606 607 return q; 608 } 609 EXPORT_SYMBOL(blk_init_queue_node); 610 611 struct request_queue * 612 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 613 spinlock_t *lock) 614 { 615 return blk_init_allocated_queue_node(q, rfn, lock, -1); 616 } 617 EXPORT_SYMBOL(blk_init_allocated_queue); 618 619 struct request_queue * 620 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn, 621 spinlock_t *lock, int node_id) 622 { 623 if (!q) 624 return NULL; 625 626 q->node = node_id; 627 if (blk_init_free_list(q)) 628 return NULL; 629 630 q->request_fn = rfn; 631 q->prep_rq_fn = NULL; 632 q->unprep_rq_fn = NULL; 633 q->unplug_fn = generic_unplug_device; 634 q->queue_flags = QUEUE_FLAG_DEFAULT; 635 q->queue_lock = lock; 636 637 /* 638 * This also sets hw/phys segments, boundary and size 639 */ 640 blk_queue_make_request(q, __make_request); 641 642 q->sg_reserved_size = INT_MAX; 643 644 /* 645 * all done 646 */ 647 if (!elevator_init(q, NULL)) { 648 blk_queue_congestion_threshold(q); 649 return q; 650 } 651 652 return NULL; 653 } 654 EXPORT_SYMBOL(blk_init_allocated_queue_node); 655 656 int blk_get_queue(struct request_queue *q) 657 { 658 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 659 kobject_get(&q->kobj); 660 return 0; 661 } 662 663 return 1; 664 } 665 666 static inline void blk_free_request(struct request_queue *q, struct request *rq) 667 { 668 if (rq->cmd_flags & REQ_ELVPRIV) 669 elv_put_request(q, rq); 670 mempool_free(rq, q->rq.rq_pool); 671 } 672 673 static struct request * 674 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask) 675 { 676 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 677 678 if (!rq) 679 return NULL; 680 681 blk_rq_init(q, rq); 682 683 rq->cmd_flags = flags | REQ_ALLOCED; 684 685 if (priv) { 686 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 687 mempool_free(rq, q->rq.rq_pool); 688 return NULL; 689 } 690 rq->cmd_flags |= REQ_ELVPRIV; 691 } 692 693 return rq; 694 } 695 696 /* 697 * ioc_batching returns true if the ioc is a valid batching request and 698 * should be given priority access to a request. 699 */ 700 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 701 { 702 if (!ioc) 703 return 0; 704 705 /* 706 * Make sure the process is able to allocate at least 1 request 707 * even if the batch times out, otherwise we could theoretically 708 * lose wakeups. 709 */ 710 return ioc->nr_batch_requests == q->nr_batching || 711 (ioc->nr_batch_requests > 0 712 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 713 } 714 715 /* 716 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 717 * will cause the process to be a "batcher" on all queues in the system. This 718 * is the behaviour we want though - once it gets a wakeup it should be given 719 * a nice run. 720 */ 721 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 722 { 723 if (!ioc || ioc_batching(q, ioc)) 724 return; 725 726 ioc->nr_batch_requests = q->nr_batching; 727 ioc->last_waited = jiffies; 728 } 729 730 static void __freed_request(struct request_queue *q, int sync) 731 { 732 struct request_list *rl = &q->rq; 733 734 if (rl->count[sync] < queue_congestion_off_threshold(q)) 735 blk_clear_queue_congested(q, sync); 736 737 if (rl->count[sync] + 1 <= q->nr_requests) { 738 if (waitqueue_active(&rl->wait[sync])) 739 wake_up(&rl->wait[sync]); 740 741 blk_clear_queue_full(q, sync); 742 } 743 } 744 745 /* 746 * A request has just been released. Account for it, update the full and 747 * congestion status, wake up any waiters. Called under q->queue_lock. 748 */ 749 static void freed_request(struct request_queue *q, int sync, int priv) 750 { 751 struct request_list *rl = &q->rq; 752 753 rl->count[sync]--; 754 if (priv) 755 rl->elvpriv--; 756 757 __freed_request(q, sync); 758 759 if (unlikely(rl->starved[sync ^ 1])) 760 __freed_request(q, sync ^ 1); 761 } 762 763 /* 764 * Get a free request, queue_lock must be held. 765 * Returns NULL on failure, with queue_lock held. 766 * Returns !NULL on success, with queue_lock *not held*. 767 */ 768 static struct request *get_request(struct request_queue *q, int rw_flags, 769 struct bio *bio, gfp_t gfp_mask) 770 { 771 struct request *rq = NULL; 772 struct request_list *rl = &q->rq; 773 struct io_context *ioc = NULL; 774 const bool is_sync = rw_is_sync(rw_flags) != 0; 775 int may_queue, priv; 776 777 may_queue = elv_may_queue(q, rw_flags); 778 if (may_queue == ELV_MQUEUE_NO) 779 goto rq_starved; 780 781 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 782 if (rl->count[is_sync]+1 >= q->nr_requests) { 783 ioc = current_io_context(GFP_ATOMIC, q->node); 784 /* 785 * The queue will fill after this allocation, so set 786 * it as full, and mark this process as "batching". 787 * This process will be allowed to complete a batch of 788 * requests, others will be blocked. 789 */ 790 if (!blk_queue_full(q, is_sync)) { 791 ioc_set_batching(q, ioc); 792 blk_set_queue_full(q, is_sync); 793 } else { 794 if (may_queue != ELV_MQUEUE_MUST 795 && !ioc_batching(q, ioc)) { 796 /* 797 * The queue is full and the allocating 798 * process is not a "batcher", and not 799 * exempted by the IO scheduler 800 */ 801 goto out; 802 } 803 } 804 } 805 blk_set_queue_congested(q, is_sync); 806 } 807 808 /* 809 * Only allow batching queuers to allocate up to 50% over the defined 810 * limit of requests, otherwise we could have thousands of requests 811 * allocated with any setting of ->nr_requests 812 */ 813 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 814 goto out; 815 816 rl->count[is_sync]++; 817 rl->starved[is_sync] = 0; 818 819 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 820 if (priv) 821 rl->elvpriv++; 822 823 if (blk_queue_io_stat(q)) 824 rw_flags |= REQ_IO_STAT; 825 spin_unlock_irq(q->queue_lock); 826 827 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 828 if (unlikely(!rq)) { 829 /* 830 * Allocation failed presumably due to memory. Undo anything 831 * we might have messed up. 832 * 833 * Allocating task should really be put onto the front of the 834 * wait queue, but this is pretty rare. 835 */ 836 spin_lock_irq(q->queue_lock); 837 freed_request(q, is_sync, priv); 838 839 /* 840 * in the very unlikely event that allocation failed and no 841 * requests for this direction was pending, mark us starved 842 * so that freeing of a request in the other direction will 843 * notice us. another possible fix would be to split the 844 * rq mempool into READ and WRITE 845 */ 846 rq_starved: 847 if (unlikely(rl->count[is_sync] == 0)) 848 rl->starved[is_sync] = 1; 849 850 goto out; 851 } 852 853 /* 854 * ioc may be NULL here, and ioc_batching will be false. That's 855 * OK, if the queue is under the request limit then requests need 856 * not count toward the nr_batch_requests limit. There will always 857 * be some limit enforced by BLK_BATCH_TIME. 858 */ 859 if (ioc_batching(q, ioc)) 860 ioc->nr_batch_requests--; 861 862 trace_block_getrq(q, bio, rw_flags & 1); 863 out: 864 return rq; 865 } 866 867 /* 868 * No available requests for this queue, unplug the device and wait for some 869 * requests to become available. 870 * 871 * Called with q->queue_lock held, and returns with it unlocked. 872 */ 873 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 874 struct bio *bio) 875 { 876 const bool is_sync = rw_is_sync(rw_flags) != 0; 877 struct request *rq; 878 879 rq = get_request(q, rw_flags, bio, GFP_NOIO); 880 while (!rq) { 881 DEFINE_WAIT(wait); 882 struct io_context *ioc; 883 struct request_list *rl = &q->rq; 884 885 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 886 TASK_UNINTERRUPTIBLE); 887 888 trace_block_sleeprq(q, bio, rw_flags & 1); 889 890 __generic_unplug_device(q); 891 spin_unlock_irq(q->queue_lock); 892 io_schedule(); 893 894 /* 895 * After sleeping, we become a "batching" process and 896 * will be able to allocate at least one request, and 897 * up to a big batch of them for a small period time. 898 * See ioc_batching, ioc_set_batching 899 */ 900 ioc = current_io_context(GFP_NOIO, q->node); 901 ioc_set_batching(q, ioc); 902 903 spin_lock_irq(q->queue_lock); 904 finish_wait(&rl->wait[is_sync], &wait); 905 906 rq = get_request(q, rw_flags, bio, GFP_NOIO); 907 }; 908 909 return rq; 910 } 911 912 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 913 { 914 struct request *rq; 915 916 BUG_ON(rw != READ && rw != WRITE); 917 918 spin_lock_irq(q->queue_lock); 919 if (gfp_mask & __GFP_WAIT) { 920 rq = get_request_wait(q, rw, NULL); 921 } else { 922 rq = get_request(q, rw, NULL, gfp_mask); 923 if (!rq) 924 spin_unlock_irq(q->queue_lock); 925 } 926 /* q->queue_lock is unlocked at this point */ 927 928 return rq; 929 } 930 EXPORT_SYMBOL(blk_get_request); 931 932 /** 933 * blk_make_request - given a bio, allocate a corresponding struct request. 934 * @q: target request queue 935 * @bio: The bio describing the memory mappings that will be submitted for IO. 936 * It may be a chained-bio properly constructed by block/bio layer. 937 * @gfp_mask: gfp flags to be used for memory allocation 938 * 939 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 940 * type commands. Where the struct request needs to be farther initialized by 941 * the caller. It is passed a &struct bio, which describes the memory info of 942 * the I/O transfer. 943 * 944 * The caller of blk_make_request must make sure that bi_io_vec 945 * are set to describe the memory buffers. That bio_data_dir() will return 946 * the needed direction of the request. (And all bio's in the passed bio-chain 947 * are properly set accordingly) 948 * 949 * If called under none-sleepable conditions, mapped bio buffers must not 950 * need bouncing, by calling the appropriate masked or flagged allocator, 951 * suitable for the target device. Otherwise the call to blk_queue_bounce will 952 * BUG. 953 * 954 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 955 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 956 * anything but the first bio in the chain. Otherwise you risk waiting for IO 957 * completion of a bio that hasn't been submitted yet, thus resulting in a 958 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 959 * of bio_alloc(), as that avoids the mempool deadlock. 960 * If possible a big IO should be split into smaller parts when allocation 961 * fails. Partial allocation should not be an error, or you risk a live-lock. 962 */ 963 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 964 gfp_t gfp_mask) 965 { 966 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 967 968 if (unlikely(!rq)) 969 return ERR_PTR(-ENOMEM); 970 971 for_each_bio(bio) { 972 struct bio *bounce_bio = bio; 973 int ret; 974 975 blk_queue_bounce(q, &bounce_bio); 976 ret = blk_rq_append_bio(q, rq, bounce_bio); 977 if (unlikely(ret)) { 978 blk_put_request(rq); 979 return ERR_PTR(ret); 980 } 981 } 982 983 return rq; 984 } 985 EXPORT_SYMBOL(blk_make_request); 986 987 /** 988 * blk_requeue_request - put a request back on queue 989 * @q: request queue where request should be inserted 990 * @rq: request to be inserted 991 * 992 * Description: 993 * Drivers often keep queueing requests until the hardware cannot accept 994 * more, when that condition happens we need to put the request back 995 * on the queue. Must be called with queue lock held. 996 */ 997 void blk_requeue_request(struct request_queue *q, struct request *rq) 998 { 999 blk_delete_timer(rq); 1000 blk_clear_rq_complete(rq); 1001 trace_block_rq_requeue(q, rq); 1002 1003 if (blk_rq_tagged(rq)) 1004 blk_queue_end_tag(q, rq); 1005 1006 BUG_ON(blk_queued_rq(rq)); 1007 1008 elv_requeue_request(q, rq); 1009 } 1010 EXPORT_SYMBOL(blk_requeue_request); 1011 1012 /** 1013 * blk_insert_request - insert a special request into a request queue 1014 * @q: request queue where request should be inserted 1015 * @rq: request to be inserted 1016 * @at_head: insert request at head or tail of queue 1017 * @data: private data 1018 * 1019 * Description: 1020 * Many block devices need to execute commands asynchronously, so they don't 1021 * block the whole kernel from preemption during request execution. This is 1022 * accomplished normally by inserting aritficial requests tagged as 1023 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 1024 * be scheduled for actual execution by the request queue. 1025 * 1026 * We have the option of inserting the head or the tail of the queue. 1027 * Typically we use the tail for new ioctls and so forth. We use the head 1028 * of the queue for things like a QUEUE_FULL message from a device, or a 1029 * host that is unable to accept a particular command. 1030 */ 1031 void blk_insert_request(struct request_queue *q, struct request *rq, 1032 int at_head, void *data) 1033 { 1034 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 1035 unsigned long flags; 1036 1037 /* 1038 * tell I/O scheduler that this isn't a regular read/write (ie it 1039 * must not attempt merges on this) and that it acts as a soft 1040 * barrier 1041 */ 1042 rq->cmd_type = REQ_TYPE_SPECIAL; 1043 1044 rq->special = data; 1045 1046 spin_lock_irqsave(q->queue_lock, flags); 1047 1048 /* 1049 * If command is tagged, release the tag 1050 */ 1051 if (blk_rq_tagged(rq)) 1052 blk_queue_end_tag(q, rq); 1053 1054 drive_stat_acct(rq, 1); 1055 __elv_add_request(q, rq, where, 0); 1056 __blk_run_queue(q); 1057 spin_unlock_irqrestore(q->queue_lock, flags); 1058 } 1059 EXPORT_SYMBOL(blk_insert_request); 1060 1061 static void part_round_stats_single(int cpu, struct hd_struct *part, 1062 unsigned long now) 1063 { 1064 if (now == part->stamp) 1065 return; 1066 1067 if (part_in_flight(part)) { 1068 __part_stat_add(cpu, part, time_in_queue, 1069 part_in_flight(part) * (now - part->stamp)); 1070 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1071 } 1072 part->stamp = now; 1073 } 1074 1075 /** 1076 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1077 * @cpu: cpu number for stats access 1078 * @part: target partition 1079 * 1080 * The average IO queue length and utilisation statistics are maintained 1081 * by observing the current state of the queue length and the amount of 1082 * time it has been in this state for. 1083 * 1084 * Normally, that accounting is done on IO completion, but that can result 1085 * in more than a second's worth of IO being accounted for within any one 1086 * second, leading to >100% utilisation. To deal with that, we call this 1087 * function to do a round-off before returning the results when reading 1088 * /proc/diskstats. This accounts immediately for all queue usage up to 1089 * the current jiffies and restarts the counters again. 1090 */ 1091 void part_round_stats(int cpu, struct hd_struct *part) 1092 { 1093 unsigned long now = jiffies; 1094 1095 if (part->partno) 1096 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1097 part_round_stats_single(cpu, part, now); 1098 } 1099 EXPORT_SYMBOL_GPL(part_round_stats); 1100 1101 /* 1102 * queue lock must be held 1103 */ 1104 void __blk_put_request(struct request_queue *q, struct request *req) 1105 { 1106 if (unlikely(!q)) 1107 return; 1108 if (unlikely(--req->ref_count)) 1109 return; 1110 1111 elv_completed_request(q, req); 1112 1113 /* this is a bio leak */ 1114 WARN_ON(req->bio != NULL); 1115 1116 /* 1117 * Request may not have originated from ll_rw_blk. if not, 1118 * it didn't come out of our reserved rq pools 1119 */ 1120 if (req->cmd_flags & REQ_ALLOCED) { 1121 int is_sync = rq_is_sync(req) != 0; 1122 int priv = req->cmd_flags & REQ_ELVPRIV; 1123 1124 BUG_ON(!list_empty(&req->queuelist)); 1125 BUG_ON(!hlist_unhashed(&req->hash)); 1126 1127 blk_free_request(q, req); 1128 freed_request(q, is_sync, priv); 1129 } 1130 } 1131 EXPORT_SYMBOL_GPL(__blk_put_request); 1132 1133 void blk_put_request(struct request *req) 1134 { 1135 unsigned long flags; 1136 struct request_queue *q = req->q; 1137 1138 spin_lock_irqsave(q->queue_lock, flags); 1139 __blk_put_request(q, req); 1140 spin_unlock_irqrestore(q->queue_lock, flags); 1141 } 1142 EXPORT_SYMBOL(blk_put_request); 1143 1144 /** 1145 * blk_add_request_payload - add a payload to a request 1146 * @rq: request to update 1147 * @page: page backing the payload 1148 * @len: length of the payload. 1149 * 1150 * This allows to later add a payload to an already submitted request by 1151 * a block driver. The driver needs to take care of freeing the payload 1152 * itself. 1153 * 1154 * Note that this is a quite horrible hack and nothing but handling of 1155 * discard requests should ever use it. 1156 */ 1157 void blk_add_request_payload(struct request *rq, struct page *page, 1158 unsigned int len) 1159 { 1160 struct bio *bio = rq->bio; 1161 1162 bio->bi_io_vec->bv_page = page; 1163 bio->bi_io_vec->bv_offset = 0; 1164 bio->bi_io_vec->bv_len = len; 1165 1166 bio->bi_size = len; 1167 bio->bi_vcnt = 1; 1168 bio->bi_phys_segments = 1; 1169 1170 rq->__data_len = rq->resid_len = len; 1171 rq->nr_phys_segments = 1; 1172 rq->buffer = bio_data(bio); 1173 } 1174 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1175 1176 void init_request_from_bio(struct request *req, struct bio *bio) 1177 { 1178 req->cpu = bio->bi_comp_cpu; 1179 req->cmd_type = REQ_TYPE_FS; 1180 1181 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1182 if (bio->bi_rw & REQ_RAHEAD) 1183 req->cmd_flags |= REQ_FAILFAST_MASK; 1184 1185 req->errors = 0; 1186 req->__sector = bio->bi_sector; 1187 req->ioprio = bio_prio(bio); 1188 blk_rq_bio_prep(req->q, req, bio); 1189 } 1190 1191 /* 1192 * Only disabling plugging for non-rotational devices if it does tagging 1193 * as well, otherwise we do need the proper merging 1194 */ 1195 static inline bool queue_should_plug(struct request_queue *q) 1196 { 1197 return !(blk_queue_nonrot(q) && blk_queue_tagged(q)); 1198 } 1199 1200 static int __make_request(struct request_queue *q, struct bio *bio) 1201 { 1202 struct request *req; 1203 int el_ret; 1204 unsigned int bytes = bio->bi_size; 1205 const unsigned short prio = bio_prio(bio); 1206 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1207 const bool unplug = !!(bio->bi_rw & REQ_UNPLUG); 1208 const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK; 1209 int where = ELEVATOR_INSERT_SORT; 1210 int rw_flags; 1211 1212 /* 1213 * low level driver can indicate that it wants pages above a 1214 * certain limit bounced to low memory (ie for highmem, or even 1215 * ISA dma in theory) 1216 */ 1217 blk_queue_bounce(q, &bio); 1218 1219 spin_lock_irq(q->queue_lock); 1220 1221 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1222 where = ELEVATOR_INSERT_FRONT; 1223 goto get_rq; 1224 } 1225 1226 if (elv_queue_empty(q)) 1227 goto get_rq; 1228 1229 el_ret = elv_merge(q, &req, bio); 1230 switch (el_ret) { 1231 case ELEVATOR_BACK_MERGE: 1232 BUG_ON(!rq_mergeable(req)); 1233 1234 if (!ll_back_merge_fn(q, req, bio)) 1235 break; 1236 1237 trace_block_bio_backmerge(q, bio); 1238 1239 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1240 blk_rq_set_mixed_merge(req); 1241 1242 req->biotail->bi_next = bio; 1243 req->biotail = bio; 1244 req->__data_len += bytes; 1245 req->ioprio = ioprio_best(req->ioprio, prio); 1246 if (!blk_rq_cpu_valid(req)) 1247 req->cpu = bio->bi_comp_cpu; 1248 drive_stat_acct(req, 0); 1249 elv_bio_merged(q, req, bio); 1250 if (!attempt_back_merge(q, req)) 1251 elv_merged_request(q, req, el_ret); 1252 goto out; 1253 1254 case ELEVATOR_FRONT_MERGE: 1255 BUG_ON(!rq_mergeable(req)); 1256 1257 if (!ll_front_merge_fn(q, req, bio)) 1258 break; 1259 1260 trace_block_bio_frontmerge(q, bio); 1261 1262 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) { 1263 blk_rq_set_mixed_merge(req); 1264 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1265 req->cmd_flags |= ff; 1266 } 1267 1268 bio->bi_next = req->bio; 1269 req->bio = bio; 1270 1271 /* 1272 * may not be valid. if the low level driver said 1273 * it didn't need a bounce buffer then it better 1274 * not touch req->buffer either... 1275 */ 1276 req->buffer = bio_data(bio); 1277 req->__sector = bio->bi_sector; 1278 req->__data_len += bytes; 1279 req->ioprio = ioprio_best(req->ioprio, prio); 1280 if (!blk_rq_cpu_valid(req)) 1281 req->cpu = bio->bi_comp_cpu; 1282 drive_stat_acct(req, 0); 1283 elv_bio_merged(q, req, bio); 1284 if (!attempt_front_merge(q, req)) 1285 elv_merged_request(q, req, el_ret); 1286 goto out; 1287 1288 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1289 default: 1290 ; 1291 } 1292 1293 get_rq: 1294 /* 1295 * This sync check and mask will be re-done in init_request_from_bio(), 1296 * but we need to set it earlier to expose the sync flag to the 1297 * rq allocator and io schedulers. 1298 */ 1299 rw_flags = bio_data_dir(bio); 1300 if (sync) 1301 rw_flags |= REQ_SYNC; 1302 1303 /* 1304 * Grab a free request. This is might sleep but can not fail. 1305 * Returns with the queue unlocked. 1306 */ 1307 req = get_request_wait(q, rw_flags, bio); 1308 1309 /* 1310 * After dropping the lock and possibly sleeping here, our request 1311 * may now be mergeable after it had proven unmergeable (above). 1312 * We don't worry about that case for efficiency. It won't happen 1313 * often, and the elevators are able to handle it. 1314 */ 1315 init_request_from_bio(req, bio); 1316 1317 spin_lock_irq(q->queue_lock); 1318 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1319 bio_flagged(bio, BIO_CPU_AFFINE)) 1320 req->cpu = blk_cpu_to_group(smp_processor_id()); 1321 if (queue_should_plug(q) && elv_queue_empty(q)) 1322 blk_plug_device(q); 1323 1324 /* insert the request into the elevator */ 1325 drive_stat_acct(req, 1); 1326 __elv_add_request(q, req, where, 0); 1327 out: 1328 if (unplug || !queue_should_plug(q)) 1329 __generic_unplug_device(q); 1330 spin_unlock_irq(q->queue_lock); 1331 return 0; 1332 } 1333 1334 /* 1335 * If bio->bi_dev is a partition, remap the location 1336 */ 1337 static inline void blk_partition_remap(struct bio *bio) 1338 { 1339 struct block_device *bdev = bio->bi_bdev; 1340 1341 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1342 struct hd_struct *p = bdev->bd_part; 1343 1344 bio->bi_sector += p->start_sect; 1345 bio->bi_bdev = bdev->bd_contains; 1346 1347 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1348 bdev->bd_dev, 1349 bio->bi_sector - p->start_sect); 1350 } 1351 } 1352 1353 static void handle_bad_sector(struct bio *bio) 1354 { 1355 char b[BDEVNAME_SIZE]; 1356 1357 printk(KERN_INFO "attempt to access beyond end of device\n"); 1358 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1359 bdevname(bio->bi_bdev, b), 1360 bio->bi_rw, 1361 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1362 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1363 1364 set_bit(BIO_EOF, &bio->bi_flags); 1365 } 1366 1367 #ifdef CONFIG_FAIL_MAKE_REQUEST 1368 1369 static DECLARE_FAULT_ATTR(fail_make_request); 1370 1371 static int __init setup_fail_make_request(char *str) 1372 { 1373 return setup_fault_attr(&fail_make_request, str); 1374 } 1375 __setup("fail_make_request=", setup_fail_make_request); 1376 1377 static int should_fail_request(struct bio *bio) 1378 { 1379 struct hd_struct *part = bio->bi_bdev->bd_part; 1380 1381 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail) 1382 return should_fail(&fail_make_request, bio->bi_size); 1383 1384 return 0; 1385 } 1386 1387 static int __init fail_make_request_debugfs(void) 1388 { 1389 return init_fault_attr_dentries(&fail_make_request, 1390 "fail_make_request"); 1391 } 1392 1393 late_initcall(fail_make_request_debugfs); 1394 1395 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1396 1397 static inline int should_fail_request(struct bio *bio) 1398 { 1399 return 0; 1400 } 1401 1402 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1403 1404 /* 1405 * Check whether this bio extends beyond the end of the device. 1406 */ 1407 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1408 { 1409 sector_t maxsector; 1410 1411 if (!nr_sectors) 1412 return 0; 1413 1414 /* Test device or partition size, when known. */ 1415 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1416 if (maxsector) { 1417 sector_t sector = bio->bi_sector; 1418 1419 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1420 /* 1421 * This may well happen - the kernel calls bread() 1422 * without checking the size of the device, e.g., when 1423 * mounting a device. 1424 */ 1425 handle_bad_sector(bio); 1426 return 1; 1427 } 1428 } 1429 1430 return 0; 1431 } 1432 1433 /** 1434 * generic_make_request - hand a buffer to its device driver for I/O 1435 * @bio: The bio describing the location in memory and on the device. 1436 * 1437 * generic_make_request() is used to make I/O requests of block 1438 * devices. It is passed a &struct bio, which describes the I/O that needs 1439 * to be done. 1440 * 1441 * generic_make_request() does not return any status. The 1442 * success/failure status of the request, along with notification of 1443 * completion, is delivered asynchronously through the bio->bi_end_io 1444 * function described (one day) else where. 1445 * 1446 * The caller of generic_make_request must make sure that bi_io_vec 1447 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1448 * set to describe the device address, and the 1449 * bi_end_io and optionally bi_private are set to describe how 1450 * completion notification should be signaled. 1451 * 1452 * generic_make_request and the drivers it calls may use bi_next if this 1453 * bio happens to be merged with someone else, and may change bi_dev and 1454 * bi_sector for remaps as it sees fit. So the values of these fields 1455 * should NOT be depended on after the call to generic_make_request. 1456 */ 1457 static inline void __generic_make_request(struct bio *bio) 1458 { 1459 struct request_queue *q; 1460 sector_t old_sector; 1461 int ret, nr_sectors = bio_sectors(bio); 1462 dev_t old_dev; 1463 int err = -EIO; 1464 1465 might_sleep(); 1466 1467 if (bio_check_eod(bio, nr_sectors)) 1468 goto end_io; 1469 1470 /* 1471 * Resolve the mapping until finished. (drivers are 1472 * still free to implement/resolve their own stacking 1473 * by explicitly returning 0) 1474 * 1475 * NOTE: we don't repeat the blk_size check for each new device. 1476 * Stacking drivers are expected to know what they are doing. 1477 */ 1478 old_sector = -1; 1479 old_dev = 0; 1480 do { 1481 char b[BDEVNAME_SIZE]; 1482 1483 q = bdev_get_queue(bio->bi_bdev); 1484 if (unlikely(!q)) { 1485 printk(KERN_ERR 1486 "generic_make_request: Trying to access " 1487 "nonexistent block-device %s (%Lu)\n", 1488 bdevname(bio->bi_bdev, b), 1489 (long long) bio->bi_sector); 1490 goto end_io; 1491 } 1492 1493 if (unlikely(!(bio->bi_rw & REQ_DISCARD) && 1494 nr_sectors > queue_max_hw_sectors(q))) { 1495 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1496 bdevname(bio->bi_bdev, b), 1497 bio_sectors(bio), 1498 queue_max_hw_sectors(q)); 1499 goto end_io; 1500 } 1501 1502 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1503 goto end_io; 1504 1505 if (should_fail_request(bio)) 1506 goto end_io; 1507 1508 /* 1509 * If this device has partitions, remap block n 1510 * of partition p to block n+start(p) of the disk. 1511 */ 1512 blk_partition_remap(bio); 1513 1514 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1515 goto end_io; 1516 1517 if (old_sector != -1) 1518 trace_block_bio_remap(q, bio, old_dev, old_sector); 1519 1520 old_sector = bio->bi_sector; 1521 old_dev = bio->bi_bdev->bd_dev; 1522 1523 if (bio_check_eod(bio, nr_sectors)) 1524 goto end_io; 1525 1526 /* 1527 * Filter flush bio's early so that make_request based 1528 * drivers without flush support don't have to worry 1529 * about them. 1530 */ 1531 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1532 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1533 if (!nr_sectors) { 1534 err = 0; 1535 goto end_io; 1536 } 1537 } 1538 1539 if ((bio->bi_rw & REQ_DISCARD) && 1540 (!blk_queue_discard(q) || 1541 ((bio->bi_rw & REQ_SECURE) && 1542 !blk_queue_secdiscard(q)))) { 1543 err = -EOPNOTSUPP; 1544 goto end_io; 1545 } 1546 1547 blk_throtl_bio(q, &bio); 1548 1549 /* 1550 * If bio = NULL, bio has been throttled and will be submitted 1551 * later. 1552 */ 1553 if (!bio) 1554 break; 1555 1556 trace_block_bio_queue(q, bio); 1557 1558 ret = q->make_request_fn(q, bio); 1559 } while (ret); 1560 1561 return; 1562 1563 end_io: 1564 bio_endio(bio, err); 1565 } 1566 1567 /* 1568 * We only want one ->make_request_fn to be active at a time, 1569 * else stack usage with stacked devices could be a problem. 1570 * So use current->bio_list to keep a list of requests 1571 * submited by a make_request_fn function. 1572 * current->bio_list is also used as a flag to say if 1573 * generic_make_request is currently active in this task or not. 1574 * If it is NULL, then no make_request is active. If it is non-NULL, 1575 * then a make_request is active, and new requests should be added 1576 * at the tail 1577 */ 1578 void generic_make_request(struct bio *bio) 1579 { 1580 struct bio_list bio_list_on_stack; 1581 1582 if (current->bio_list) { 1583 /* make_request is active */ 1584 bio_list_add(current->bio_list, bio); 1585 return; 1586 } 1587 /* following loop may be a bit non-obvious, and so deserves some 1588 * explanation. 1589 * Before entering the loop, bio->bi_next is NULL (as all callers 1590 * ensure that) so we have a list with a single bio. 1591 * We pretend that we have just taken it off a longer list, so 1592 * we assign bio_list to a pointer to the bio_list_on_stack, 1593 * thus initialising the bio_list of new bios to be 1594 * added. __generic_make_request may indeed add some more bios 1595 * through a recursive call to generic_make_request. If it 1596 * did, we find a non-NULL value in bio_list and re-enter the loop 1597 * from the top. In this case we really did just take the bio 1598 * of the top of the list (no pretending) and so remove it from 1599 * bio_list, and call into __generic_make_request again. 1600 * 1601 * The loop was structured like this to make only one call to 1602 * __generic_make_request (which is important as it is large and 1603 * inlined) and to keep the structure simple. 1604 */ 1605 BUG_ON(bio->bi_next); 1606 bio_list_init(&bio_list_on_stack); 1607 current->bio_list = &bio_list_on_stack; 1608 do { 1609 __generic_make_request(bio); 1610 bio = bio_list_pop(current->bio_list); 1611 } while (bio); 1612 current->bio_list = NULL; /* deactivate */ 1613 } 1614 EXPORT_SYMBOL(generic_make_request); 1615 1616 /** 1617 * submit_bio - submit a bio to the block device layer for I/O 1618 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1619 * @bio: The &struct bio which describes the I/O 1620 * 1621 * submit_bio() is very similar in purpose to generic_make_request(), and 1622 * uses that function to do most of the work. Both are fairly rough 1623 * interfaces; @bio must be presetup and ready for I/O. 1624 * 1625 */ 1626 void submit_bio(int rw, struct bio *bio) 1627 { 1628 int count = bio_sectors(bio); 1629 1630 bio->bi_rw |= rw; 1631 1632 /* 1633 * If it's a regular read/write or a barrier with data attached, 1634 * go through the normal accounting stuff before submission. 1635 */ 1636 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) { 1637 if (rw & WRITE) { 1638 count_vm_events(PGPGOUT, count); 1639 } else { 1640 task_io_account_read(bio->bi_size); 1641 count_vm_events(PGPGIN, count); 1642 } 1643 1644 if (unlikely(block_dump)) { 1645 char b[BDEVNAME_SIZE]; 1646 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1647 current->comm, task_pid_nr(current), 1648 (rw & WRITE) ? "WRITE" : "READ", 1649 (unsigned long long)bio->bi_sector, 1650 bdevname(bio->bi_bdev, b), 1651 count); 1652 } 1653 } 1654 1655 generic_make_request(bio); 1656 } 1657 EXPORT_SYMBOL(submit_bio); 1658 1659 /** 1660 * blk_rq_check_limits - Helper function to check a request for the queue limit 1661 * @q: the queue 1662 * @rq: the request being checked 1663 * 1664 * Description: 1665 * @rq may have been made based on weaker limitations of upper-level queues 1666 * in request stacking drivers, and it may violate the limitation of @q. 1667 * Since the block layer and the underlying device driver trust @rq 1668 * after it is inserted to @q, it should be checked against @q before 1669 * the insertion using this generic function. 1670 * 1671 * This function should also be useful for request stacking drivers 1672 * in some cases below, so export this function. 1673 * Request stacking drivers like request-based dm may change the queue 1674 * limits while requests are in the queue (e.g. dm's table swapping). 1675 * Such request stacking drivers should check those requests agaist 1676 * the new queue limits again when they dispatch those requests, 1677 * although such checkings are also done against the old queue limits 1678 * when submitting requests. 1679 */ 1680 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1681 { 1682 if (rq->cmd_flags & REQ_DISCARD) 1683 return 0; 1684 1685 if (blk_rq_sectors(rq) > queue_max_sectors(q) || 1686 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) { 1687 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1688 return -EIO; 1689 } 1690 1691 /* 1692 * queue's settings related to segment counting like q->bounce_pfn 1693 * may differ from that of other stacking queues. 1694 * Recalculate it to check the request correctly on this queue's 1695 * limitation. 1696 */ 1697 blk_recalc_rq_segments(rq); 1698 if (rq->nr_phys_segments > queue_max_segments(q)) { 1699 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1700 return -EIO; 1701 } 1702 1703 return 0; 1704 } 1705 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1706 1707 /** 1708 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1709 * @q: the queue to submit the request 1710 * @rq: the request being queued 1711 */ 1712 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1713 { 1714 unsigned long flags; 1715 1716 if (blk_rq_check_limits(q, rq)) 1717 return -EIO; 1718 1719 #ifdef CONFIG_FAIL_MAKE_REQUEST 1720 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail && 1721 should_fail(&fail_make_request, blk_rq_bytes(rq))) 1722 return -EIO; 1723 #endif 1724 1725 spin_lock_irqsave(q->queue_lock, flags); 1726 1727 /* 1728 * Submitting request must be dequeued before calling this function 1729 * because it will be linked to another request_queue 1730 */ 1731 BUG_ON(blk_queued_rq(rq)); 1732 1733 drive_stat_acct(rq, 1); 1734 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0); 1735 1736 spin_unlock_irqrestore(q->queue_lock, flags); 1737 1738 return 0; 1739 } 1740 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1741 1742 /** 1743 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1744 * @rq: request to examine 1745 * 1746 * Description: 1747 * A request could be merge of IOs which require different failure 1748 * handling. This function determines the number of bytes which 1749 * can be failed from the beginning of the request without 1750 * crossing into area which need to be retried further. 1751 * 1752 * Return: 1753 * The number of bytes to fail. 1754 * 1755 * Context: 1756 * queue_lock must be held. 1757 */ 1758 unsigned int blk_rq_err_bytes(const struct request *rq) 1759 { 1760 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1761 unsigned int bytes = 0; 1762 struct bio *bio; 1763 1764 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1765 return blk_rq_bytes(rq); 1766 1767 /* 1768 * Currently the only 'mixing' which can happen is between 1769 * different fastfail types. We can safely fail portions 1770 * which have all the failfast bits that the first one has - 1771 * the ones which are at least as eager to fail as the first 1772 * one. 1773 */ 1774 for (bio = rq->bio; bio; bio = bio->bi_next) { 1775 if ((bio->bi_rw & ff) != ff) 1776 break; 1777 bytes += bio->bi_size; 1778 } 1779 1780 /* this could lead to infinite loop */ 1781 BUG_ON(blk_rq_bytes(rq) && !bytes); 1782 return bytes; 1783 } 1784 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1785 1786 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1787 { 1788 if (blk_do_io_stat(req)) { 1789 const int rw = rq_data_dir(req); 1790 struct hd_struct *part; 1791 int cpu; 1792 1793 cpu = part_stat_lock(); 1794 part = req->part; 1795 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1796 part_stat_unlock(); 1797 } 1798 } 1799 1800 static void blk_account_io_done(struct request *req) 1801 { 1802 /* 1803 * Account IO completion. flush_rq isn't accounted as a 1804 * normal IO on queueing nor completion. Accounting the 1805 * containing request is enough. 1806 */ 1807 if (blk_do_io_stat(req) && req != &req->q->flush_rq) { 1808 unsigned long duration = jiffies - req->start_time; 1809 const int rw = rq_data_dir(req); 1810 struct hd_struct *part; 1811 int cpu; 1812 1813 cpu = part_stat_lock(); 1814 part = req->part; 1815 1816 part_stat_inc(cpu, part, ios[rw]); 1817 part_stat_add(cpu, part, ticks[rw], duration); 1818 part_round_stats(cpu, part); 1819 part_dec_in_flight(part, rw); 1820 1821 hd_struct_put(part); 1822 part_stat_unlock(); 1823 } 1824 } 1825 1826 /** 1827 * blk_peek_request - peek at the top of a request queue 1828 * @q: request queue to peek at 1829 * 1830 * Description: 1831 * Return the request at the top of @q. The returned request 1832 * should be started using blk_start_request() before LLD starts 1833 * processing it. 1834 * 1835 * Return: 1836 * Pointer to the request at the top of @q if available. Null 1837 * otherwise. 1838 * 1839 * Context: 1840 * queue_lock must be held. 1841 */ 1842 struct request *blk_peek_request(struct request_queue *q) 1843 { 1844 struct request *rq; 1845 int ret; 1846 1847 while ((rq = __elv_next_request(q)) != NULL) { 1848 if (!(rq->cmd_flags & REQ_STARTED)) { 1849 /* 1850 * This is the first time the device driver 1851 * sees this request (possibly after 1852 * requeueing). Notify IO scheduler. 1853 */ 1854 if (rq->cmd_flags & REQ_SORTED) 1855 elv_activate_rq(q, rq); 1856 1857 /* 1858 * just mark as started even if we don't start 1859 * it, a request that has been delayed should 1860 * not be passed by new incoming requests 1861 */ 1862 rq->cmd_flags |= REQ_STARTED; 1863 trace_block_rq_issue(q, rq); 1864 } 1865 1866 if (!q->boundary_rq || q->boundary_rq == rq) { 1867 q->end_sector = rq_end_sector(rq); 1868 q->boundary_rq = NULL; 1869 } 1870 1871 if (rq->cmd_flags & REQ_DONTPREP) 1872 break; 1873 1874 if (q->dma_drain_size && blk_rq_bytes(rq)) { 1875 /* 1876 * make sure space for the drain appears we 1877 * know we can do this because max_hw_segments 1878 * has been adjusted to be one fewer than the 1879 * device can handle 1880 */ 1881 rq->nr_phys_segments++; 1882 } 1883 1884 if (!q->prep_rq_fn) 1885 break; 1886 1887 ret = q->prep_rq_fn(q, rq); 1888 if (ret == BLKPREP_OK) { 1889 break; 1890 } else if (ret == BLKPREP_DEFER) { 1891 /* 1892 * the request may have been (partially) prepped. 1893 * we need to keep this request in the front to 1894 * avoid resource deadlock. REQ_STARTED will 1895 * prevent other fs requests from passing this one. 1896 */ 1897 if (q->dma_drain_size && blk_rq_bytes(rq) && 1898 !(rq->cmd_flags & REQ_DONTPREP)) { 1899 /* 1900 * remove the space for the drain we added 1901 * so that we don't add it again 1902 */ 1903 --rq->nr_phys_segments; 1904 } 1905 1906 rq = NULL; 1907 break; 1908 } else if (ret == BLKPREP_KILL) { 1909 rq->cmd_flags |= REQ_QUIET; 1910 /* 1911 * Mark this request as started so we don't trigger 1912 * any debug logic in the end I/O path. 1913 */ 1914 blk_start_request(rq); 1915 __blk_end_request_all(rq, -EIO); 1916 } else { 1917 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 1918 break; 1919 } 1920 } 1921 1922 return rq; 1923 } 1924 EXPORT_SYMBOL(blk_peek_request); 1925 1926 void blk_dequeue_request(struct request *rq) 1927 { 1928 struct request_queue *q = rq->q; 1929 1930 BUG_ON(list_empty(&rq->queuelist)); 1931 BUG_ON(ELV_ON_HASH(rq)); 1932 1933 list_del_init(&rq->queuelist); 1934 1935 /* 1936 * the time frame between a request being removed from the lists 1937 * and to it is freed is accounted as io that is in progress at 1938 * the driver side. 1939 */ 1940 if (blk_account_rq(rq)) { 1941 q->in_flight[rq_is_sync(rq)]++; 1942 set_io_start_time_ns(rq); 1943 } 1944 } 1945 1946 /** 1947 * blk_start_request - start request processing on the driver 1948 * @req: request to dequeue 1949 * 1950 * Description: 1951 * Dequeue @req and start timeout timer on it. This hands off the 1952 * request to the driver. 1953 * 1954 * Block internal functions which don't want to start timer should 1955 * call blk_dequeue_request(). 1956 * 1957 * Context: 1958 * queue_lock must be held. 1959 */ 1960 void blk_start_request(struct request *req) 1961 { 1962 blk_dequeue_request(req); 1963 1964 /* 1965 * We are now handing the request to the hardware, initialize 1966 * resid_len to full count and add the timeout handler. 1967 */ 1968 req->resid_len = blk_rq_bytes(req); 1969 if (unlikely(blk_bidi_rq(req))) 1970 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 1971 1972 blk_add_timer(req); 1973 } 1974 EXPORT_SYMBOL(blk_start_request); 1975 1976 /** 1977 * blk_fetch_request - fetch a request from a request queue 1978 * @q: request queue to fetch a request from 1979 * 1980 * Description: 1981 * Return the request at the top of @q. The request is started on 1982 * return and LLD can start processing it immediately. 1983 * 1984 * Return: 1985 * Pointer to the request at the top of @q if available. Null 1986 * otherwise. 1987 * 1988 * Context: 1989 * queue_lock must be held. 1990 */ 1991 struct request *blk_fetch_request(struct request_queue *q) 1992 { 1993 struct request *rq; 1994 1995 rq = blk_peek_request(q); 1996 if (rq) 1997 blk_start_request(rq); 1998 return rq; 1999 } 2000 EXPORT_SYMBOL(blk_fetch_request); 2001 2002 /** 2003 * blk_update_request - Special helper function for request stacking drivers 2004 * @req: the request being processed 2005 * @error: %0 for success, < %0 for error 2006 * @nr_bytes: number of bytes to complete @req 2007 * 2008 * Description: 2009 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2010 * the request structure even if @req doesn't have leftover. 2011 * If @req has leftover, sets it up for the next range of segments. 2012 * 2013 * This special helper function is only for request stacking drivers 2014 * (e.g. request-based dm) so that they can handle partial completion. 2015 * Actual device drivers should use blk_end_request instead. 2016 * 2017 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2018 * %false return from this function. 2019 * 2020 * Return: 2021 * %false - this request doesn't have any more data 2022 * %true - this request has more data 2023 **/ 2024 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2025 { 2026 int total_bytes, bio_nbytes, next_idx = 0; 2027 struct bio *bio; 2028 2029 if (!req->bio) 2030 return false; 2031 2032 trace_block_rq_complete(req->q, req); 2033 2034 /* 2035 * For fs requests, rq is just carrier of independent bio's 2036 * and each partial completion should be handled separately. 2037 * Reset per-request error on each partial completion. 2038 * 2039 * TODO: tj: This is too subtle. It would be better to let 2040 * low level drivers do what they see fit. 2041 */ 2042 if (req->cmd_type == REQ_TYPE_FS) 2043 req->errors = 0; 2044 2045 if (error && req->cmd_type == REQ_TYPE_FS && 2046 !(req->cmd_flags & REQ_QUIET)) { 2047 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 2048 req->rq_disk ? req->rq_disk->disk_name : "?", 2049 (unsigned long long)blk_rq_pos(req)); 2050 } 2051 2052 blk_account_io_completion(req, nr_bytes); 2053 2054 total_bytes = bio_nbytes = 0; 2055 while ((bio = req->bio) != NULL) { 2056 int nbytes; 2057 2058 if (nr_bytes >= bio->bi_size) { 2059 req->bio = bio->bi_next; 2060 nbytes = bio->bi_size; 2061 req_bio_endio(req, bio, nbytes, error); 2062 next_idx = 0; 2063 bio_nbytes = 0; 2064 } else { 2065 int idx = bio->bi_idx + next_idx; 2066 2067 if (unlikely(idx >= bio->bi_vcnt)) { 2068 blk_dump_rq_flags(req, "__end_that"); 2069 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 2070 __func__, idx, bio->bi_vcnt); 2071 break; 2072 } 2073 2074 nbytes = bio_iovec_idx(bio, idx)->bv_len; 2075 BIO_BUG_ON(nbytes > bio->bi_size); 2076 2077 /* 2078 * not a complete bvec done 2079 */ 2080 if (unlikely(nbytes > nr_bytes)) { 2081 bio_nbytes += nr_bytes; 2082 total_bytes += nr_bytes; 2083 break; 2084 } 2085 2086 /* 2087 * advance to the next vector 2088 */ 2089 next_idx++; 2090 bio_nbytes += nbytes; 2091 } 2092 2093 total_bytes += nbytes; 2094 nr_bytes -= nbytes; 2095 2096 bio = req->bio; 2097 if (bio) { 2098 /* 2099 * end more in this run, or just return 'not-done' 2100 */ 2101 if (unlikely(nr_bytes <= 0)) 2102 break; 2103 } 2104 } 2105 2106 /* 2107 * completely done 2108 */ 2109 if (!req->bio) { 2110 /* 2111 * Reset counters so that the request stacking driver 2112 * can find how many bytes remain in the request 2113 * later. 2114 */ 2115 req->__data_len = 0; 2116 return false; 2117 } 2118 2119 /* 2120 * if the request wasn't completed, update state 2121 */ 2122 if (bio_nbytes) { 2123 req_bio_endio(req, bio, bio_nbytes, error); 2124 bio->bi_idx += next_idx; 2125 bio_iovec(bio)->bv_offset += nr_bytes; 2126 bio_iovec(bio)->bv_len -= nr_bytes; 2127 } 2128 2129 req->__data_len -= total_bytes; 2130 req->buffer = bio_data(req->bio); 2131 2132 /* update sector only for requests with clear definition of sector */ 2133 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD)) 2134 req->__sector += total_bytes >> 9; 2135 2136 /* mixed attributes always follow the first bio */ 2137 if (req->cmd_flags & REQ_MIXED_MERGE) { 2138 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2139 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2140 } 2141 2142 /* 2143 * If total number of sectors is less than the first segment 2144 * size, something has gone terribly wrong. 2145 */ 2146 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2147 printk(KERN_ERR "blk: request botched\n"); 2148 req->__data_len = blk_rq_cur_bytes(req); 2149 } 2150 2151 /* recalculate the number of segments */ 2152 blk_recalc_rq_segments(req); 2153 2154 return true; 2155 } 2156 EXPORT_SYMBOL_GPL(blk_update_request); 2157 2158 static bool blk_update_bidi_request(struct request *rq, int error, 2159 unsigned int nr_bytes, 2160 unsigned int bidi_bytes) 2161 { 2162 if (blk_update_request(rq, error, nr_bytes)) 2163 return true; 2164 2165 /* Bidi request must be completed as a whole */ 2166 if (unlikely(blk_bidi_rq(rq)) && 2167 blk_update_request(rq->next_rq, error, bidi_bytes)) 2168 return true; 2169 2170 if (blk_queue_add_random(rq->q)) 2171 add_disk_randomness(rq->rq_disk); 2172 2173 return false; 2174 } 2175 2176 /** 2177 * blk_unprep_request - unprepare a request 2178 * @req: the request 2179 * 2180 * This function makes a request ready for complete resubmission (or 2181 * completion). It happens only after all error handling is complete, 2182 * so represents the appropriate moment to deallocate any resources 2183 * that were allocated to the request in the prep_rq_fn. The queue 2184 * lock is held when calling this. 2185 */ 2186 void blk_unprep_request(struct request *req) 2187 { 2188 struct request_queue *q = req->q; 2189 2190 req->cmd_flags &= ~REQ_DONTPREP; 2191 if (q->unprep_rq_fn) 2192 q->unprep_rq_fn(q, req); 2193 } 2194 EXPORT_SYMBOL_GPL(blk_unprep_request); 2195 2196 /* 2197 * queue lock must be held 2198 */ 2199 static void blk_finish_request(struct request *req, int error) 2200 { 2201 if (blk_rq_tagged(req)) 2202 blk_queue_end_tag(req->q, req); 2203 2204 BUG_ON(blk_queued_rq(req)); 2205 2206 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2207 laptop_io_completion(&req->q->backing_dev_info); 2208 2209 blk_delete_timer(req); 2210 2211 if (req->cmd_flags & REQ_DONTPREP) 2212 blk_unprep_request(req); 2213 2214 2215 blk_account_io_done(req); 2216 2217 if (req->end_io) 2218 req->end_io(req, error); 2219 else { 2220 if (blk_bidi_rq(req)) 2221 __blk_put_request(req->next_rq->q, req->next_rq); 2222 2223 __blk_put_request(req->q, req); 2224 } 2225 } 2226 2227 /** 2228 * blk_end_bidi_request - Complete a bidi request 2229 * @rq: the request to complete 2230 * @error: %0 for success, < %0 for error 2231 * @nr_bytes: number of bytes to complete @rq 2232 * @bidi_bytes: number of bytes to complete @rq->next_rq 2233 * 2234 * Description: 2235 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2236 * Drivers that supports bidi can safely call this member for any 2237 * type of request, bidi or uni. In the later case @bidi_bytes is 2238 * just ignored. 2239 * 2240 * Return: 2241 * %false - we are done with this request 2242 * %true - still buffers pending for this request 2243 **/ 2244 static bool blk_end_bidi_request(struct request *rq, int error, 2245 unsigned int nr_bytes, unsigned int bidi_bytes) 2246 { 2247 struct request_queue *q = rq->q; 2248 unsigned long flags; 2249 2250 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2251 return true; 2252 2253 spin_lock_irqsave(q->queue_lock, flags); 2254 blk_finish_request(rq, error); 2255 spin_unlock_irqrestore(q->queue_lock, flags); 2256 2257 return false; 2258 } 2259 2260 /** 2261 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2262 * @rq: the request to complete 2263 * @error: %0 for success, < %0 for error 2264 * @nr_bytes: number of bytes to complete @rq 2265 * @bidi_bytes: number of bytes to complete @rq->next_rq 2266 * 2267 * Description: 2268 * Identical to blk_end_bidi_request() except that queue lock is 2269 * assumed to be locked on entry and remains so on return. 2270 * 2271 * Return: 2272 * %false - we are done with this request 2273 * %true - still buffers pending for this request 2274 **/ 2275 static bool __blk_end_bidi_request(struct request *rq, int error, 2276 unsigned int nr_bytes, unsigned int bidi_bytes) 2277 { 2278 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2279 return true; 2280 2281 blk_finish_request(rq, error); 2282 2283 return false; 2284 } 2285 2286 /** 2287 * blk_end_request - Helper function for drivers to complete the request. 2288 * @rq: the request being processed 2289 * @error: %0 for success, < %0 for error 2290 * @nr_bytes: number of bytes to complete 2291 * 2292 * Description: 2293 * Ends I/O on a number of bytes attached to @rq. 2294 * If @rq has leftover, sets it up for the next range of segments. 2295 * 2296 * Return: 2297 * %false - we are done with this request 2298 * %true - still buffers pending for this request 2299 **/ 2300 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2301 { 2302 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2303 } 2304 EXPORT_SYMBOL(blk_end_request); 2305 2306 /** 2307 * blk_end_request_all - Helper function for drives to finish the request. 2308 * @rq: the request to finish 2309 * @error: %0 for success, < %0 for error 2310 * 2311 * Description: 2312 * Completely finish @rq. 2313 */ 2314 void blk_end_request_all(struct request *rq, int error) 2315 { 2316 bool pending; 2317 unsigned int bidi_bytes = 0; 2318 2319 if (unlikely(blk_bidi_rq(rq))) 2320 bidi_bytes = blk_rq_bytes(rq->next_rq); 2321 2322 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2323 BUG_ON(pending); 2324 } 2325 EXPORT_SYMBOL(blk_end_request_all); 2326 2327 /** 2328 * blk_end_request_cur - Helper function to finish the current request chunk. 2329 * @rq: the request to finish the current chunk for 2330 * @error: %0 for success, < %0 for error 2331 * 2332 * Description: 2333 * Complete the current consecutively mapped chunk from @rq. 2334 * 2335 * Return: 2336 * %false - we are done with this request 2337 * %true - still buffers pending for this request 2338 */ 2339 bool blk_end_request_cur(struct request *rq, int error) 2340 { 2341 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2342 } 2343 EXPORT_SYMBOL(blk_end_request_cur); 2344 2345 /** 2346 * blk_end_request_err - Finish a request till the next failure boundary. 2347 * @rq: the request to finish till the next failure boundary for 2348 * @error: must be negative errno 2349 * 2350 * Description: 2351 * Complete @rq till the next failure boundary. 2352 * 2353 * Return: 2354 * %false - we are done with this request 2355 * %true - still buffers pending for this request 2356 */ 2357 bool blk_end_request_err(struct request *rq, int error) 2358 { 2359 WARN_ON(error >= 0); 2360 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2361 } 2362 EXPORT_SYMBOL_GPL(blk_end_request_err); 2363 2364 /** 2365 * __blk_end_request - Helper function for drivers to complete the request. 2366 * @rq: the request being processed 2367 * @error: %0 for success, < %0 for error 2368 * @nr_bytes: number of bytes to complete 2369 * 2370 * Description: 2371 * Must be called with queue lock held unlike blk_end_request(). 2372 * 2373 * Return: 2374 * %false - we are done with this request 2375 * %true - still buffers pending for this request 2376 **/ 2377 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2378 { 2379 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2380 } 2381 EXPORT_SYMBOL(__blk_end_request); 2382 2383 /** 2384 * __blk_end_request_all - Helper function for drives to finish the request. 2385 * @rq: the request to finish 2386 * @error: %0 for success, < %0 for error 2387 * 2388 * Description: 2389 * Completely finish @rq. Must be called with queue lock held. 2390 */ 2391 void __blk_end_request_all(struct request *rq, int error) 2392 { 2393 bool pending; 2394 unsigned int bidi_bytes = 0; 2395 2396 if (unlikely(blk_bidi_rq(rq))) 2397 bidi_bytes = blk_rq_bytes(rq->next_rq); 2398 2399 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2400 BUG_ON(pending); 2401 } 2402 EXPORT_SYMBOL(__blk_end_request_all); 2403 2404 /** 2405 * __blk_end_request_cur - Helper function to finish the current request chunk. 2406 * @rq: the request to finish the current chunk for 2407 * @error: %0 for success, < %0 for error 2408 * 2409 * Description: 2410 * Complete the current consecutively mapped chunk from @rq. Must 2411 * be called with queue lock held. 2412 * 2413 * Return: 2414 * %false - we are done with this request 2415 * %true - still buffers pending for this request 2416 */ 2417 bool __blk_end_request_cur(struct request *rq, int error) 2418 { 2419 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2420 } 2421 EXPORT_SYMBOL(__blk_end_request_cur); 2422 2423 /** 2424 * __blk_end_request_err - Finish a request till the next failure boundary. 2425 * @rq: the request to finish till the next failure boundary for 2426 * @error: must be negative errno 2427 * 2428 * Description: 2429 * Complete @rq till the next failure boundary. Must be called 2430 * with queue lock held. 2431 * 2432 * Return: 2433 * %false - we are done with this request 2434 * %true - still buffers pending for this request 2435 */ 2436 bool __blk_end_request_err(struct request *rq, int error) 2437 { 2438 WARN_ON(error >= 0); 2439 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2440 } 2441 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2442 2443 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2444 struct bio *bio) 2445 { 2446 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2447 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2448 2449 if (bio_has_data(bio)) { 2450 rq->nr_phys_segments = bio_phys_segments(q, bio); 2451 rq->buffer = bio_data(bio); 2452 } 2453 rq->__data_len = bio->bi_size; 2454 rq->bio = rq->biotail = bio; 2455 2456 if (bio->bi_bdev) 2457 rq->rq_disk = bio->bi_bdev->bd_disk; 2458 } 2459 2460 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2461 /** 2462 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2463 * @rq: the request to be flushed 2464 * 2465 * Description: 2466 * Flush all pages in @rq. 2467 */ 2468 void rq_flush_dcache_pages(struct request *rq) 2469 { 2470 struct req_iterator iter; 2471 struct bio_vec *bvec; 2472 2473 rq_for_each_segment(bvec, rq, iter) 2474 flush_dcache_page(bvec->bv_page); 2475 } 2476 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2477 #endif 2478 2479 /** 2480 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2481 * @q : the queue of the device being checked 2482 * 2483 * Description: 2484 * Check if underlying low-level drivers of a device are busy. 2485 * If the drivers want to export their busy state, they must set own 2486 * exporting function using blk_queue_lld_busy() first. 2487 * 2488 * Basically, this function is used only by request stacking drivers 2489 * to stop dispatching requests to underlying devices when underlying 2490 * devices are busy. This behavior helps more I/O merging on the queue 2491 * of the request stacking driver and prevents I/O throughput regression 2492 * on burst I/O load. 2493 * 2494 * Return: 2495 * 0 - Not busy (The request stacking driver should dispatch request) 2496 * 1 - Busy (The request stacking driver should stop dispatching request) 2497 */ 2498 int blk_lld_busy(struct request_queue *q) 2499 { 2500 if (q->lld_busy_fn) 2501 return q->lld_busy_fn(q); 2502 2503 return 0; 2504 } 2505 EXPORT_SYMBOL_GPL(blk_lld_busy); 2506 2507 /** 2508 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2509 * @rq: the clone request to be cleaned up 2510 * 2511 * Description: 2512 * Free all bios in @rq for a cloned request. 2513 */ 2514 void blk_rq_unprep_clone(struct request *rq) 2515 { 2516 struct bio *bio; 2517 2518 while ((bio = rq->bio) != NULL) { 2519 rq->bio = bio->bi_next; 2520 2521 bio_put(bio); 2522 } 2523 } 2524 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2525 2526 /* 2527 * Copy attributes of the original request to the clone request. 2528 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2529 */ 2530 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2531 { 2532 dst->cpu = src->cpu; 2533 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2534 dst->cmd_type = src->cmd_type; 2535 dst->__sector = blk_rq_pos(src); 2536 dst->__data_len = blk_rq_bytes(src); 2537 dst->nr_phys_segments = src->nr_phys_segments; 2538 dst->ioprio = src->ioprio; 2539 dst->extra_len = src->extra_len; 2540 } 2541 2542 /** 2543 * blk_rq_prep_clone - Helper function to setup clone request 2544 * @rq: the request to be setup 2545 * @rq_src: original request to be cloned 2546 * @bs: bio_set that bios for clone are allocated from 2547 * @gfp_mask: memory allocation mask for bio 2548 * @bio_ctr: setup function to be called for each clone bio. 2549 * Returns %0 for success, non %0 for failure. 2550 * @data: private data to be passed to @bio_ctr 2551 * 2552 * Description: 2553 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2554 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2555 * are not copied, and copying such parts is the caller's responsibility. 2556 * Also, pages which the original bios are pointing to are not copied 2557 * and the cloned bios just point same pages. 2558 * So cloned bios must be completed before original bios, which means 2559 * the caller must complete @rq before @rq_src. 2560 */ 2561 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2562 struct bio_set *bs, gfp_t gfp_mask, 2563 int (*bio_ctr)(struct bio *, struct bio *, void *), 2564 void *data) 2565 { 2566 struct bio *bio, *bio_src; 2567 2568 if (!bs) 2569 bs = fs_bio_set; 2570 2571 blk_rq_init(NULL, rq); 2572 2573 __rq_for_each_bio(bio_src, rq_src) { 2574 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs); 2575 if (!bio) 2576 goto free_and_out; 2577 2578 __bio_clone(bio, bio_src); 2579 2580 if (bio_integrity(bio_src) && 2581 bio_integrity_clone(bio, bio_src, gfp_mask, bs)) 2582 goto free_and_out; 2583 2584 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2585 goto free_and_out; 2586 2587 if (rq->bio) { 2588 rq->biotail->bi_next = bio; 2589 rq->biotail = bio; 2590 } else 2591 rq->bio = rq->biotail = bio; 2592 } 2593 2594 __blk_rq_prep_clone(rq, rq_src); 2595 2596 return 0; 2597 2598 free_and_out: 2599 if (bio) 2600 bio_free(bio, bs); 2601 blk_rq_unprep_clone(rq); 2602 2603 return -ENOMEM; 2604 } 2605 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2606 2607 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2608 { 2609 return queue_work(kblockd_workqueue, work); 2610 } 2611 EXPORT_SYMBOL(kblockd_schedule_work); 2612 2613 int kblockd_schedule_delayed_work(struct request_queue *q, 2614 struct delayed_work *dwork, unsigned long delay) 2615 { 2616 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2617 } 2618 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2619 2620 int __init blk_dev_init(void) 2621 { 2622 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 2623 sizeof(((struct request *)0)->cmd_flags)); 2624 2625 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 2626 kblockd_workqueue = alloc_workqueue("kblockd", 2627 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2628 if (!kblockd_workqueue) 2629 panic("Failed to create kblockd\n"); 2630 2631 request_cachep = kmem_cache_create("blkdev_requests", 2632 sizeof(struct request), 0, SLAB_PANIC, NULL); 2633 2634 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2635 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2636 2637 return 0; 2638 } 2639