1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/blk-pm.h> 21 #include <linux/blk-integrity.h> 22 #include <linux/highmem.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/string.h> 27 #include <linux/init.h> 28 #include <linux/completion.h> 29 #include <linux/slab.h> 30 #include <linux/swap.h> 31 #include <linux/writeback.h> 32 #include <linux/task_io_accounting_ops.h> 33 #include <linux/fault-inject.h> 34 #include <linux/list_sort.h> 35 #include <linux/delay.h> 36 #include <linux/ratelimit.h> 37 #include <linux/pm_runtime.h> 38 #include <linux/blk-cgroup.h> 39 #include <linux/t10-pi.h> 40 #include <linux/debugfs.h> 41 #include <linux/bpf.h> 42 #include <linux/psi.h> 43 #include <linux/sched/sysctl.h> 44 #include <linux/blk-crypto.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/block.h> 48 49 #include "blk.h" 50 #include "blk-mq.h" 51 #include "blk-mq-sched.h" 52 #include "blk-pm.h" 53 #include "blk-throttle.h" 54 55 struct dentry *blk_debugfs_root; 56 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert); 63 64 DEFINE_IDA(blk_queue_ida); 65 66 /* 67 * For queue allocation 68 */ 69 struct kmem_cache *blk_requestq_cachep; 70 71 /* 72 * Controlling structure to kblockd 73 */ 74 static struct workqueue_struct *kblockd_workqueue; 75 76 /** 77 * blk_queue_flag_set - atomically set a queue flag 78 * @flag: flag to be set 79 * @q: request queue 80 */ 81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 82 { 83 set_bit(flag, &q->queue_flags); 84 } 85 EXPORT_SYMBOL(blk_queue_flag_set); 86 87 /** 88 * blk_queue_flag_clear - atomically clear a queue flag 89 * @flag: flag to be cleared 90 * @q: request queue 91 */ 92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 93 { 94 clear_bit(flag, &q->queue_flags); 95 } 96 EXPORT_SYMBOL(blk_queue_flag_clear); 97 98 /** 99 * blk_queue_flag_test_and_set - atomically test and set a queue flag 100 * @flag: flag to be set 101 * @q: request queue 102 * 103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 104 * the flag was already set. 105 */ 106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 107 { 108 return test_and_set_bit(flag, &q->queue_flags); 109 } 110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 111 112 void blk_rq_init(struct request_queue *q, struct request *rq) 113 { 114 memset(rq, 0, sizeof(*rq)); 115 116 INIT_LIST_HEAD(&rq->queuelist); 117 rq->q = q; 118 rq->__sector = (sector_t) -1; 119 INIT_HLIST_NODE(&rq->hash); 120 RB_CLEAR_NODE(&rq->rb_node); 121 rq->tag = BLK_MQ_NO_TAG; 122 rq->internal_tag = BLK_MQ_NO_TAG; 123 rq->start_time_ns = ktime_get_ns(); 124 rq->part = NULL; 125 blk_crypto_rq_set_defaults(rq); 126 } 127 EXPORT_SYMBOL(blk_rq_init); 128 129 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 130 static const char *const blk_op_name[] = { 131 REQ_OP_NAME(READ), 132 REQ_OP_NAME(WRITE), 133 REQ_OP_NAME(FLUSH), 134 REQ_OP_NAME(DISCARD), 135 REQ_OP_NAME(SECURE_ERASE), 136 REQ_OP_NAME(ZONE_RESET), 137 REQ_OP_NAME(ZONE_RESET_ALL), 138 REQ_OP_NAME(ZONE_OPEN), 139 REQ_OP_NAME(ZONE_CLOSE), 140 REQ_OP_NAME(ZONE_FINISH), 141 REQ_OP_NAME(ZONE_APPEND), 142 REQ_OP_NAME(WRITE_SAME), 143 REQ_OP_NAME(WRITE_ZEROES), 144 REQ_OP_NAME(DRV_IN), 145 REQ_OP_NAME(DRV_OUT), 146 }; 147 #undef REQ_OP_NAME 148 149 /** 150 * blk_op_str - Return string XXX in the REQ_OP_XXX. 151 * @op: REQ_OP_XXX. 152 * 153 * Description: Centralize block layer function to convert REQ_OP_XXX into 154 * string format. Useful in the debugging and tracing bio or request. For 155 * invalid REQ_OP_XXX it returns string "UNKNOWN". 156 */ 157 inline const char *blk_op_str(unsigned int op) 158 { 159 const char *op_str = "UNKNOWN"; 160 161 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 162 op_str = blk_op_name[op]; 163 164 return op_str; 165 } 166 EXPORT_SYMBOL_GPL(blk_op_str); 167 168 static const struct { 169 int errno; 170 const char *name; 171 } blk_errors[] = { 172 [BLK_STS_OK] = { 0, "" }, 173 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 174 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 175 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 176 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 177 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 178 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 179 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 180 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 181 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 182 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 183 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 184 185 /* device mapper special case, should not leak out: */ 186 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 187 188 /* zone device specific errors */ 189 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" }, 190 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" }, 191 192 /* everything else not covered above: */ 193 [BLK_STS_IOERR] = { -EIO, "I/O" }, 194 }; 195 196 blk_status_t errno_to_blk_status(int errno) 197 { 198 int i; 199 200 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 201 if (blk_errors[i].errno == errno) 202 return (__force blk_status_t)i; 203 } 204 205 return BLK_STS_IOERR; 206 } 207 EXPORT_SYMBOL_GPL(errno_to_blk_status); 208 209 int blk_status_to_errno(blk_status_t status) 210 { 211 int idx = (__force int)status; 212 213 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 214 return -EIO; 215 return blk_errors[idx].errno; 216 } 217 EXPORT_SYMBOL_GPL(blk_status_to_errno); 218 219 void blk_print_req_error(struct request *req, blk_status_t status) 220 { 221 int idx = (__force int)status; 222 223 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 224 return; 225 226 printk_ratelimited(KERN_ERR 227 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 228 "phys_seg %u prio class %u\n", 229 blk_errors[idx].name, 230 req->rq_disk ? req->rq_disk->disk_name : "?", 231 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 232 req->cmd_flags & ~REQ_OP_MASK, 233 req->nr_phys_segments, 234 IOPRIO_PRIO_CLASS(req->ioprio)); 235 } 236 237 void blk_dump_rq_flags(struct request *rq, char *msg) 238 { 239 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 240 rq->rq_disk ? rq->rq_disk->disk_name : "?", 241 (unsigned long long) rq->cmd_flags); 242 243 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 244 (unsigned long long)blk_rq_pos(rq), 245 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 246 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 247 rq->bio, rq->biotail, blk_rq_bytes(rq)); 248 } 249 EXPORT_SYMBOL(blk_dump_rq_flags); 250 251 /** 252 * blk_sync_queue - cancel any pending callbacks on a queue 253 * @q: the queue 254 * 255 * Description: 256 * The block layer may perform asynchronous callback activity 257 * on a queue, such as calling the unplug function after a timeout. 258 * A block device may call blk_sync_queue to ensure that any 259 * such activity is cancelled, thus allowing it to release resources 260 * that the callbacks might use. The caller must already have made sure 261 * that its ->submit_bio will not re-add plugging prior to calling 262 * this function. 263 * 264 * This function does not cancel any asynchronous activity arising 265 * out of elevator or throttling code. That would require elevator_exit() 266 * and blkcg_exit_queue() to be called with queue lock initialized. 267 * 268 */ 269 void blk_sync_queue(struct request_queue *q) 270 { 271 del_timer_sync(&q->timeout); 272 cancel_work_sync(&q->timeout_work); 273 } 274 EXPORT_SYMBOL(blk_sync_queue); 275 276 /** 277 * blk_set_pm_only - increment pm_only counter 278 * @q: request queue pointer 279 */ 280 void blk_set_pm_only(struct request_queue *q) 281 { 282 atomic_inc(&q->pm_only); 283 } 284 EXPORT_SYMBOL_GPL(blk_set_pm_only); 285 286 void blk_clear_pm_only(struct request_queue *q) 287 { 288 int pm_only; 289 290 pm_only = atomic_dec_return(&q->pm_only); 291 WARN_ON_ONCE(pm_only < 0); 292 if (pm_only == 0) 293 wake_up_all(&q->mq_freeze_wq); 294 } 295 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 296 297 /** 298 * blk_put_queue - decrement the request_queue refcount 299 * @q: the request_queue structure to decrement the refcount for 300 * 301 * Decrements the refcount of the request_queue kobject. When this reaches 0 302 * we'll have blk_release_queue() called. 303 * 304 * Context: Any context, but the last reference must not be dropped from 305 * atomic context. 306 */ 307 void blk_put_queue(struct request_queue *q) 308 { 309 kobject_put(&q->kobj); 310 } 311 EXPORT_SYMBOL(blk_put_queue); 312 313 void blk_queue_start_drain(struct request_queue *q) 314 { 315 /* 316 * When queue DYING flag is set, we need to block new req 317 * entering queue, so we call blk_freeze_queue_start() to 318 * prevent I/O from crossing blk_queue_enter(). 319 */ 320 blk_freeze_queue_start(q); 321 if (queue_is_mq(q)) 322 blk_mq_wake_waiters(q); 323 /* Make blk_queue_enter() reexamine the DYING flag. */ 324 wake_up_all(&q->mq_freeze_wq); 325 } 326 327 void blk_set_queue_dying(struct request_queue *q) 328 { 329 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 330 blk_queue_start_drain(q); 331 } 332 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 333 334 /** 335 * blk_cleanup_queue - shutdown a request queue 336 * @q: request queue to shutdown 337 * 338 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 339 * put it. All future requests will be failed immediately with -ENODEV. 340 * 341 * Context: can sleep 342 */ 343 void blk_cleanup_queue(struct request_queue *q) 344 { 345 /* cannot be called from atomic context */ 346 might_sleep(); 347 348 WARN_ON_ONCE(blk_queue_registered(q)); 349 350 /* mark @q DYING, no new request or merges will be allowed afterwards */ 351 blk_set_queue_dying(q); 352 353 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 354 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 355 356 /* 357 * Drain all requests queued before DYING marking. Set DEAD flag to 358 * prevent that blk_mq_run_hw_queues() accesses the hardware queues 359 * after draining finished. 360 */ 361 blk_freeze_queue(q); 362 363 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 364 365 blk_sync_queue(q); 366 if (queue_is_mq(q)) 367 blk_mq_exit_queue(q); 368 369 /* 370 * In theory, request pool of sched_tags belongs to request queue. 371 * However, the current implementation requires tag_set for freeing 372 * requests, so free the pool now. 373 * 374 * Queue has become frozen, there can't be any in-queue requests, so 375 * it is safe to free requests now. 376 */ 377 mutex_lock(&q->sysfs_lock); 378 if (q->elevator) 379 blk_mq_sched_free_rqs(q); 380 mutex_unlock(&q->sysfs_lock); 381 382 percpu_ref_exit(&q->q_usage_counter); 383 384 /* @q is and will stay empty, shutdown and put */ 385 blk_put_queue(q); 386 } 387 EXPORT_SYMBOL(blk_cleanup_queue); 388 389 /** 390 * blk_queue_enter() - try to increase q->q_usage_counter 391 * @q: request queue pointer 392 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM 393 */ 394 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 395 { 396 const bool pm = flags & BLK_MQ_REQ_PM; 397 398 while (!blk_try_enter_queue(q, pm)) { 399 if (flags & BLK_MQ_REQ_NOWAIT) 400 return -EBUSY; 401 402 /* 403 * read pair of barrier in blk_freeze_queue_start(), we need to 404 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and 405 * reading .mq_freeze_depth or queue dying flag, otherwise the 406 * following wait may never return if the two reads are 407 * reordered. 408 */ 409 smp_rmb(); 410 wait_event(q->mq_freeze_wq, 411 (!q->mq_freeze_depth && 412 blk_pm_resume_queue(pm, q)) || 413 blk_queue_dying(q)); 414 if (blk_queue_dying(q)) 415 return -ENODEV; 416 } 417 418 return 0; 419 } 420 421 int __bio_queue_enter(struct request_queue *q, struct bio *bio) 422 { 423 while (!blk_try_enter_queue(q, false)) { 424 struct gendisk *disk = bio->bi_bdev->bd_disk; 425 426 if (bio->bi_opf & REQ_NOWAIT) { 427 if (test_bit(GD_DEAD, &disk->state)) 428 goto dead; 429 bio_wouldblock_error(bio); 430 return -EBUSY; 431 } 432 433 /* 434 * read pair of barrier in blk_freeze_queue_start(), we need to 435 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and 436 * reading .mq_freeze_depth or queue dying flag, otherwise the 437 * following wait may never return if the two reads are 438 * reordered. 439 */ 440 smp_rmb(); 441 wait_event(q->mq_freeze_wq, 442 (!q->mq_freeze_depth && 443 blk_pm_resume_queue(false, q)) || 444 test_bit(GD_DEAD, &disk->state)); 445 if (test_bit(GD_DEAD, &disk->state)) 446 goto dead; 447 } 448 449 return 0; 450 dead: 451 bio_io_error(bio); 452 return -ENODEV; 453 } 454 455 void blk_queue_exit(struct request_queue *q) 456 { 457 percpu_ref_put(&q->q_usage_counter); 458 } 459 460 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 461 { 462 struct request_queue *q = 463 container_of(ref, struct request_queue, q_usage_counter); 464 465 wake_up_all(&q->mq_freeze_wq); 466 } 467 468 static void blk_rq_timed_out_timer(struct timer_list *t) 469 { 470 struct request_queue *q = from_timer(q, t, timeout); 471 472 kblockd_schedule_work(&q->timeout_work); 473 } 474 475 static void blk_timeout_work(struct work_struct *work) 476 { 477 } 478 479 struct request_queue *blk_alloc_queue(int node_id) 480 { 481 struct request_queue *q; 482 int ret; 483 484 q = kmem_cache_alloc_node(blk_requestq_cachep, 485 GFP_KERNEL | __GFP_ZERO, node_id); 486 if (!q) 487 return NULL; 488 489 q->last_merge = NULL; 490 491 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL); 492 if (q->id < 0) 493 goto fail_q; 494 495 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0); 496 if (ret) 497 goto fail_id; 498 499 q->stats = blk_alloc_queue_stats(); 500 if (!q->stats) 501 goto fail_split; 502 503 q->node = node_id; 504 505 atomic_set(&q->nr_active_requests_shared_tags, 0); 506 507 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 508 INIT_WORK(&q->timeout_work, blk_timeout_work); 509 INIT_LIST_HEAD(&q->icq_list); 510 #ifdef CONFIG_BLK_CGROUP 511 INIT_LIST_HEAD(&q->blkg_list); 512 #endif 513 514 kobject_init(&q->kobj, &blk_queue_ktype); 515 516 mutex_init(&q->debugfs_mutex); 517 mutex_init(&q->sysfs_lock); 518 mutex_init(&q->sysfs_dir_lock); 519 spin_lock_init(&q->queue_lock); 520 521 init_waitqueue_head(&q->mq_freeze_wq); 522 mutex_init(&q->mq_freeze_lock); 523 524 /* 525 * Init percpu_ref in atomic mode so that it's faster to shutdown. 526 * See blk_register_queue() for details. 527 */ 528 if (percpu_ref_init(&q->q_usage_counter, 529 blk_queue_usage_counter_release, 530 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 531 goto fail_stats; 532 533 if (blkcg_init_queue(q)) 534 goto fail_ref; 535 536 blk_queue_dma_alignment(q, 511); 537 blk_set_default_limits(&q->limits); 538 q->nr_requests = BLKDEV_DEFAULT_RQ; 539 540 return q; 541 542 fail_ref: 543 percpu_ref_exit(&q->q_usage_counter); 544 fail_stats: 545 blk_free_queue_stats(q->stats); 546 fail_split: 547 bioset_exit(&q->bio_split); 548 fail_id: 549 ida_simple_remove(&blk_queue_ida, q->id); 550 fail_q: 551 kmem_cache_free(blk_requestq_cachep, q); 552 return NULL; 553 } 554 555 /** 556 * blk_get_queue - increment the request_queue refcount 557 * @q: the request_queue structure to increment the refcount for 558 * 559 * Increment the refcount of the request_queue kobject. 560 * 561 * Context: Any context. 562 */ 563 bool blk_get_queue(struct request_queue *q) 564 { 565 if (likely(!blk_queue_dying(q))) { 566 __blk_get_queue(q); 567 return true; 568 } 569 570 return false; 571 } 572 EXPORT_SYMBOL(blk_get_queue); 573 574 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 575 { 576 char b[BDEVNAME_SIZE]; 577 578 pr_info_ratelimited("%s: attempt to access beyond end of device\n" 579 "%s: rw=%d, want=%llu, limit=%llu\n", 580 current->comm, 581 bio_devname(bio, b), bio->bi_opf, 582 bio_end_sector(bio), maxsector); 583 } 584 585 #ifdef CONFIG_FAIL_MAKE_REQUEST 586 587 static DECLARE_FAULT_ATTR(fail_make_request); 588 589 static int __init setup_fail_make_request(char *str) 590 { 591 return setup_fault_attr(&fail_make_request, str); 592 } 593 __setup("fail_make_request=", setup_fail_make_request); 594 595 static bool should_fail_request(struct block_device *part, unsigned int bytes) 596 { 597 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes); 598 } 599 600 static int __init fail_make_request_debugfs(void) 601 { 602 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 603 NULL, &fail_make_request); 604 605 return PTR_ERR_OR_ZERO(dir); 606 } 607 608 late_initcall(fail_make_request_debugfs); 609 610 #else /* CONFIG_FAIL_MAKE_REQUEST */ 611 612 static inline bool should_fail_request(struct block_device *part, 613 unsigned int bytes) 614 { 615 return false; 616 } 617 618 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 619 620 static inline bool bio_check_ro(struct bio *bio) 621 { 622 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) { 623 char b[BDEVNAME_SIZE]; 624 625 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 626 return false; 627 628 WARN_ONCE(1, 629 "Trying to write to read-only block-device %s (partno %d)\n", 630 bio_devname(bio, b), bio->bi_bdev->bd_partno); 631 /* Older lvm-tools actually trigger this */ 632 return false; 633 } 634 635 return false; 636 } 637 638 static noinline int should_fail_bio(struct bio *bio) 639 { 640 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size)) 641 return -EIO; 642 return 0; 643 } 644 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 645 646 /* 647 * Check whether this bio extends beyond the end of the device or partition. 648 * This may well happen - the kernel calls bread() without checking the size of 649 * the device, e.g., when mounting a file system. 650 */ 651 static inline int bio_check_eod(struct bio *bio) 652 { 653 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 654 unsigned int nr_sectors = bio_sectors(bio); 655 656 if (nr_sectors && maxsector && 657 (nr_sectors > maxsector || 658 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 659 handle_bad_sector(bio, maxsector); 660 return -EIO; 661 } 662 return 0; 663 } 664 665 /* 666 * Remap block n of partition p to block n+start(p) of the disk. 667 */ 668 static int blk_partition_remap(struct bio *bio) 669 { 670 struct block_device *p = bio->bi_bdev; 671 672 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 673 return -EIO; 674 if (bio_sectors(bio)) { 675 bio->bi_iter.bi_sector += p->bd_start_sect; 676 trace_block_bio_remap(bio, p->bd_dev, 677 bio->bi_iter.bi_sector - 678 p->bd_start_sect); 679 } 680 bio_set_flag(bio, BIO_REMAPPED); 681 return 0; 682 } 683 684 /* 685 * Check write append to a zoned block device. 686 */ 687 static inline blk_status_t blk_check_zone_append(struct request_queue *q, 688 struct bio *bio) 689 { 690 sector_t pos = bio->bi_iter.bi_sector; 691 int nr_sectors = bio_sectors(bio); 692 693 /* Only applicable to zoned block devices */ 694 if (!blk_queue_is_zoned(q)) 695 return BLK_STS_NOTSUPP; 696 697 /* The bio sector must point to the start of a sequential zone */ 698 if (pos & (blk_queue_zone_sectors(q) - 1) || 699 !blk_queue_zone_is_seq(q, pos)) 700 return BLK_STS_IOERR; 701 702 /* 703 * Not allowed to cross zone boundaries. Otherwise, the BIO will be 704 * split and could result in non-contiguous sectors being written in 705 * different zones. 706 */ 707 if (nr_sectors > q->limits.chunk_sectors) 708 return BLK_STS_IOERR; 709 710 /* Make sure the BIO is small enough and will not get split */ 711 if (nr_sectors > q->limits.max_zone_append_sectors) 712 return BLK_STS_IOERR; 713 714 bio->bi_opf |= REQ_NOMERGE; 715 716 return BLK_STS_OK; 717 } 718 719 noinline_for_stack bool submit_bio_checks(struct bio *bio) 720 { 721 struct block_device *bdev = bio->bi_bdev; 722 struct request_queue *q = bdev_get_queue(bdev); 723 blk_status_t status = BLK_STS_IOERR; 724 struct blk_plug *plug; 725 726 might_sleep(); 727 728 plug = blk_mq_plug(q, bio); 729 if (plug && plug->nowait) 730 bio->bi_opf |= REQ_NOWAIT; 731 732 /* 733 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 734 * if queue does not support NOWAIT. 735 */ 736 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q)) 737 goto not_supported; 738 739 if (should_fail_bio(bio)) 740 goto end_io; 741 if (unlikely(bio_check_ro(bio))) 742 goto end_io; 743 if (!bio_flagged(bio, BIO_REMAPPED)) { 744 if (unlikely(bio_check_eod(bio))) 745 goto end_io; 746 if (bdev->bd_partno && unlikely(blk_partition_remap(bio))) 747 goto end_io; 748 } 749 750 /* 751 * Filter flush bio's early so that bio based drivers without flush 752 * support don't have to worry about them. 753 */ 754 if (op_is_flush(bio->bi_opf) && 755 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 756 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 757 if (!bio_sectors(bio)) { 758 status = BLK_STS_OK; 759 goto end_io; 760 } 761 } 762 763 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 764 bio_clear_polled(bio); 765 766 switch (bio_op(bio)) { 767 case REQ_OP_DISCARD: 768 if (!blk_queue_discard(q)) 769 goto not_supported; 770 break; 771 case REQ_OP_SECURE_ERASE: 772 if (!blk_queue_secure_erase(q)) 773 goto not_supported; 774 break; 775 case REQ_OP_WRITE_SAME: 776 if (!q->limits.max_write_same_sectors) 777 goto not_supported; 778 break; 779 case REQ_OP_ZONE_APPEND: 780 status = blk_check_zone_append(q, bio); 781 if (status != BLK_STS_OK) 782 goto end_io; 783 break; 784 case REQ_OP_ZONE_RESET: 785 case REQ_OP_ZONE_OPEN: 786 case REQ_OP_ZONE_CLOSE: 787 case REQ_OP_ZONE_FINISH: 788 if (!blk_queue_is_zoned(q)) 789 goto not_supported; 790 break; 791 case REQ_OP_ZONE_RESET_ALL: 792 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q)) 793 goto not_supported; 794 break; 795 case REQ_OP_WRITE_ZEROES: 796 if (!q->limits.max_write_zeroes_sectors) 797 goto not_supported; 798 break; 799 default: 800 break; 801 } 802 803 /* 804 * Various block parts want %current->io_context, so allocate it up 805 * front rather than dealing with lots of pain to allocate it only 806 * where needed. This may fail and the block layer knows how to live 807 * with it. 808 */ 809 if (unlikely(!current->io_context)) 810 create_task_io_context(current, GFP_ATOMIC, q->node); 811 812 if (blk_throtl_bio(bio)) 813 return false; 814 815 blk_cgroup_bio_start(bio); 816 blkcg_bio_issue_init(bio); 817 818 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 819 trace_block_bio_queue(bio); 820 /* Now that enqueuing has been traced, we need to trace 821 * completion as well. 822 */ 823 bio_set_flag(bio, BIO_TRACE_COMPLETION); 824 } 825 return true; 826 827 not_supported: 828 status = BLK_STS_NOTSUPP; 829 end_io: 830 bio->bi_status = status; 831 bio_endio(bio); 832 return false; 833 } 834 835 static void __submit_bio_fops(struct gendisk *disk, struct bio *bio) 836 { 837 if (unlikely(bio_queue_enter(bio) != 0)) 838 return; 839 if (submit_bio_checks(bio) && blk_crypto_bio_prep(&bio)) 840 disk->fops->submit_bio(bio); 841 blk_queue_exit(disk->queue); 842 } 843 844 static void __submit_bio(struct bio *bio) 845 { 846 struct gendisk *disk = bio->bi_bdev->bd_disk; 847 848 if (!disk->fops->submit_bio) 849 blk_mq_submit_bio(bio); 850 else 851 __submit_bio_fops(disk, bio); 852 } 853 854 /* 855 * The loop in this function may be a bit non-obvious, and so deserves some 856 * explanation: 857 * 858 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure 859 * that), so we have a list with a single bio. 860 * - We pretend that we have just taken it off a longer list, so we assign 861 * bio_list to a pointer to the bio_list_on_stack, thus initialising the 862 * bio_list of new bios to be added. ->submit_bio() may indeed add some more 863 * bios through a recursive call to submit_bio_noacct. If it did, we find a 864 * non-NULL value in bio_list and re-enter the loop from the top. 865 * - In this case we really did just take the bio of the top of the list (no 866 * pretending) and so remove it from bio_list, and call into ->submit_bio() 867 * again. 868 * 869 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio. 870 * bio_list_on_stack[1] contains bios that were submitted before the current 871 * ->submit_bio_bio, but that haven't been processed yet. 872 */ 873 static void __submit_bio_noacct(struct bio *bio) 874 { 875 struct bio_list bio_list_on_stack[2]; 876 877 BUG_ON(bio->bi_next); 878 879 bio_list_init(&bio_list_on_stack[0]); 880 current->bio_list = bio_list_on_stack; 881 882 do { 883 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 884 struct bio_list lower, same; 885 886 /* 887 * Create a fresh bio_list for all subordinate requests. 888 */ 889 bio_list_on_stack[1] = bio_list_on_stack[0]; 890 bio_list_init(&bio_list_on_stack[0]); 891 892 __submit_bio(bio); 893 894 /* 895 * Sort new bios into those for a lower level and those for the 896 * same level. 897 */ 898 bio_list_init(&lower); 899 bio_list_init(&same); 900 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 901 if (q == bdev_get_queue(bio->bi_bdev)) 902 bio_list_add(&same, bio); 903 else 904 bio_list_add(&lower, bio); 905 906 /* 907 * Now assemble so we handle the lowest level first. 908 */ 909 bio_list_merge(&bio_list_on_stack[0], &lower); 910 bio_list_merge(&bio_list_on_stack[0], &same); 911 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 912 } while ((bio = bio_list_pop(&bio_list_on_stack[0]))); 913 914 current->bio_list = NULL; 915 } 916 917 static void __submit_bio_noacct_mq(struct bio *bio) 918 { 919 struct bio_list bio_list[2] = { }; 920 921 current->bio_list = bio_list; 922 923 do { 924 __submit_bio(bio); 925 } while ((bio = bio_list_pop(&bio_list[0]))); 926 927 current->bio_list = NULL; 928 } 929 930 /** 931 * submit_bio_noacct - re-submit a bio to the block device layer for I/O 932 * @bio: The bio describing the location in memory and on the device. 933 * 934 * This is a version of submit_bio() that shall only be used for I/O that is 935 * resubmitted to lower level drivers by stacking block drivers. All file 936 * systems and other upper level users of the block layer should use 937 * submit_bio() instead. 938 */ 939 void submit_bio_noacct(struct bio *bio) 940 { 941 /* 942 * We only want one ->submit_bio to be active at a time, else stack 943 * usage with stacked devices could be a problem. Use current->bio_list 944 * to collect a list of requests submited by a ->submit_bio method while 945 * it is active, and then process them after it returned. 946 */ 947 if (current->bio_list) 948 bio_list_add(¤t->bio_list[0], bio); 949 else if (!bio->bi_bdev->bd_disk->fops->submit_bio) 950 __submit_bio_noacct_mq(bio); 951 else 952 __submit_bio_noacct(bio); 953 } 954 EXPORT_SYMBOL(submit_bio_noacct); 955 956 /** 957 * submit_bio - submit a bio to the block device layer for I/O 958 * @bio: The &struct bio which describes the I/O 959 * 960 * submit_bio() is used to submit I/O requests to block devices. It is passed a 961 * fully set up &struct bio that describes the I/O that needs to be done. The 962 * bio will be send to the device described by the bi_bdev field. 963 * 964 * The success/failure status of the request, along with notification of 965 * completion, is delivered asynchronously through the ->bi_end_io() callback 966 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has 967 * been called. 968 */ 969 void submit_bio(struct bio *bio) 970 { 971 if (blkcg_punt_bio_submit(bio)) 972 return; 973 974 /* 975 * If it's a regular read/write or a barrier with data attached, 976 * go through the normal accounting stuff before submission. 977 */ 978 if (bio_has_data(bio)) { 979 unsigned int count; 980 981 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 982 count = queue_logical_block_size( 983 bdev_get_queue(bio->bi_bdev)) >> 9; 984 else 985 count = bio_sectors(bio); 986 987 if (op_is_write(bio_op(bio))) { 988 count_vm_events(PGPGOUT, count); 989 } else { 990 task_io_account_read(bio->bi_iter.bi_size); 991 count_vm_events(PGPGIN, count); 992 } 993 } 994 995 /* 996 * If we're reading data that is part of the userspace workingset, count 997 * submission time as memory stall. When the device is congested, or 998 * the submitting cgroup IO-throttled, submission can be a significant 999 * part of overall IO time. 1000 */ 1001 if (unlikely(bio_op(bio) == REQ_OP_READ && 1002 bio_flagged(bio, BIO_WORKINGSET))) { 1003 unsigned long pflags; 1004 1005 psi_memstall_enter(&pflags); 1006 submit_bio_noacct(bio); 1007 psi_memstall_leave(&pflags); 1008 return; 1009 } 1010 1011 submit_bio_noacct(bio); 1012 } 1013 EXPORT_SYMBOL(submit_bio); 1014 1015 /** 1016 * bio_poll - poll for BIO completions 1017 * @bio: bio to poll for 1018 * @flags: BLK_POLL_* flags that control the behavior 1019 * 1020 * Poll for completions on queue associated with the bio. Returns number of 1021 * completed entries found. 1022 * 1023 * Note: the caller must either be the context that submitted @bio, or 1024 * be in a RCU critical section to prevent freeing of @bio. 1025 */ 1026 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags) 1027 { 1028 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1029 blk_qc_t cookie = READ_ONCE(bio->bi_cookie); 1030 int ret; 1031 1032 if (cookie == BLK_QC_T_NONE || 1033 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 1034 return 0; 1035 1036 if (current->plug) 1037 blk_flush_plug(current->plug, false); 1038 1039 if (blk_queue_enter(q, BLK_MQ_REQ_NOWAIT)) 1040 return 0; 1041 if (WARN_ON_ONCE(!queue_is_mq(q))) 1042 ret = 0; /* not yet implemented, should not happen */ 1043 else 1044 ret = blk_mq_poll(q, cookie, iob, flags); 1045 blk_queue_exit(q); 1046 return ret; 1047 } 1048 EXPORT_SYMBOL_GPL(bio_poll); 1049 1050 /* 1051 * Helper to implement file_operations.iopoll. Requires the bio to be stored 1052 * in iocb->private, and cleared before freeing the bio. 1053 */ 1054 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 1055 unsigned int flags) 1056 { 1057 struct bio *bio; 1058 int ret = 0; 1059 1060 /* 1061 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can 1062 * point to a freshly allocated bio at this point. If that happens 1063 * we have a few cases to consider: 1064 * 1065 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just 1066 * simply nothing in this case 1067 * 2) the bio points to a not poll enabled device. bio_poll will catch 1068 * this and return 0 1069 * 3) the bio points to a poll capable device, including but not 1070 * limited to the one that the original bio pointed to. In this 1071 * case we will call into the actual poll method and poll for I/O, 1072 * even if we don't need to, but it won't cause harm either. 1073 * 1074 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev 1075 * is still allocated. Because partitions hold a reference to the whole 1076 * device bdev and thus disk, the disk is also still valid. Grabbing 1077 * a reference to the queue in bio_poll() ensures the hctxs and requests 1078 * are still valid as well. 1079 */ 1080 rcu_read_lock(); 1081 bio = READ_ONCE(kiocb->private); 1082 if (bio && bio->bi_bdev) 1083 ret = bio_poll(bio, iob, flags); 1084 rcu_read_unlock(); 1085 1086 return ret; 1087 } 1088 EXPORT_SYMBOL_GPL(iocb_bio_iopoll); 1089 1090 /** 1091 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1092 * for the new queue limits 1093 * @q: the queue 1094 * @rq: the request being checked 1095 * 1096 * Description: 1097 * @rq may have been made based on weaker limitations of upper-level queues 1098 * in request stacking drivers, and it may violate the limitation of @q. 1099 * Since the block layer and the underlying device driver trust @rq 1100 * after it is inserted to @q, it should be checked against @q before 1101 * the insertion using this generic function. 1102 * 1103 * Request stacking drivers like request-based dm may change the queue 1104 * limits when retrying requests on other queues. Those requests need 1105 * to be checked against the new queue limits again during dispatch. 1106 */ 1107 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q, 1108 struct request *rq) 1109 { 1110 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 1111 1112 if (blk_rq_sectors(rq) > max_sectors) { 1113 /* 1114 * SCSI device does not have a good way to return if 1115 * Write Same/Zero is actually supported. If a device rejects 1116 * a non-read/write command (discard, write same,etc.) the 1117 * low-level device driver will set the relevant queue limit to 1118 * 0 to prevent blk-lib from issuing more of the offending 1119 * operations. Commands queued prior to the queue limit being 1120 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 1121 * errors being propagated to upper layers. 1122 */ 1123 if (max_sectors == 0) 1124 return BLK_STS_NOTSUPP; 1125 1126 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 1127 __func__, blk_rq_sectors(rq), max_sectors); 1128 return BLK_STS_IOERR; 1129 } 1130 1131 /* 1132 * The queue settings related to segment counting may differ from the 1133 * original queue. 1134 */ 1135 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 1136 if (rq->nr_phys_segments > queue_max_segments(q)) { 1137 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 1138 __func__, rq->nr_phys_segments, queue_max_segments(q)); 1139 return BLK_STS_IOERR; 1140 } 1141 1142 return BLK_STS_OK; 1143 } 1144 1145 /** 1146 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1147 * @q: the queue to submit the request 1148 * @rq: the request being queued 1149 */ 1150 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1151 { 1152 blk_status_t ret; 1153 1154 ret = blk_cloned_rq_check_limits(q, rq); 1155 if (ret != BLK_STS_OK) 1156 return ret; 1157 1158 if (rq->rq_disk && 1159 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq))) 1160 return BLK_STS_IOERR; 1161 1162 if (blk_crypto_insert_cloned_request(rq)) 1163 return BLK_STS_IOERR; 1164 1165 blk_account_io_start(rq); 1166 1167 /* 1168 * Since we have a scheduler attached on the top device, 1169 * bypass a potential scheduler on the bottom device for 1170 * insert. 1171 */ 1172 return blk_mq_request_issue_directly(rq, true); 1173 } 1174 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1175 1176 /** 1177 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1178 * @rq: request to examine 1179 * 1180 * Description: 1181 * A request could be merge of IOs which require different failure 1182 * handling. This function determines the number of bytes which 1183 * can be failed from the beginning of the request without 1184 * crossing into area which need to be retried further. 1185 * 1186 * Return: 1187 * The number of bytes to fail. 1188 */ 1189 unsigned int blk_rq_err_bytes(const struct request *rq) 1190 { 1191 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1192 unsigned int bytes = 0; 1193 struct bio *bio; 1194 1195 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1196 return blk_rq_bytes(rq); 1197 1198 /* 1199 * Currently the only 'mixing' which can happen is between 1200 * different fastfail types. We can safely fail portions 1201 * which have all the failfast bits that the first one has - 1202 * the ones which are at least as eager to fail as the first 1203 * one. 1204 */ 1205 for (bio = rq->bio; bio; bio = bio->bi_next) { 1206 if ((bio->bi_opf & ff) != ff) 1207 break; 1208 bytes += bio->bi_iter.bi_size; 1209 } 1210 1211 /* this could lead to infinite loop */ 1212 BUG_ON(blk_rq_bytes(rq) && !bytes); 1213 return bytes; 1214 } 1215 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1216 1217 static void update_io_ticks(struct block_device *part, unsigned long now, 1218 bool end) 1219 { 1220 unsigned long stamp; 1221 again: 1222 stamp = READ_ONCE(part->bd_stamp); 1223 if (unlikely(time_after(now, stamp))) { 1224 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp)) 1225 __part_stat_add(part, io_ticks, end ? now - stamp : 1); 1226 } 1227 if (part->bd_partno) { 1228 part = bdev_whole(part); 1229 goto again; 1230 } 1231 } 1232 1233 void __blk_account_io_done(struct request *req, u64 now) 1234 { 1235 const int sgrp = op_stat_group(req_op(req)); 1236 1237 part_stat_lock(); 1238 update_io_ticks(req->part, jiffies, true); 1239 part_stat_inc(req->part, ios[sgrp]); 1240 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1241 part_stat_unlock(); 1242 } 1243 1244 void __blk_account_io_start(struct request *rq) 1245 { 1246 /* passthrough requests can hold bios that do not have ->bi_bdev set */ 1247 if (rq->bio && rq->bio->bi_bdev) 1248 rq->part = rq->bio->bi_bdev; 1249 else 1250 rq->part = rq->rq_disk->part0; 1251 1252 part_stat_lock(); 1253 update_io_ticks(rq->part, jiffies, false); 1254 part_stat_unlock(); 1255 } 1256 1257 static unsigned long __part_start_io_acct(struct block_device *part, 1258 unsigned int sectors, unsigned int op) 1259 { 1260 const int sgrp = op_stat_group(op); 1261 unsigned long now = READ_ONCE(jiffies); 1262 1263 part_stat_lock(); 1264 update_io_ticks(part, now, false); 1265 part_stat_inc(part, ios[sgrp]); 1266 part_stat_add(part, sectors[sgrp], sectors); 1267 part_stat_local_inc(part, in_flight[op_is_write(op)]); 1268 part_stat_unlock(); 1269 1270 return now; 1271 } 1272 1273 /** 1274 * bio_start_io_acct - start I/O accounting for bio based drivers 1275 * @bio: bio to start account for 1276 * 1277 * Returns the start time that should be passed back to bio_end_io_acct(). 1278 */ 1279 unsigned long bio_start_io_acct(struct bio *bio) 1280 { 1281 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio)); 1282 } 1283 EXPORT_SYMBOL_GPL(bio_start_io_acct); 1284 1285 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1286 unsigned int op) 1287 { 1288 return __part_start_io_acct(disk->part0, sectors, op); 1289 } 1290 EXPORT_SYMBOL(disk_start_io_acct); 1291 1292 static void __part_end_io_acct(struct block_device *part, unsigned int op, 1293 unsigned long start_time) 1294 { 1295 const int sgrp = op_stat_group(op); 1296 unsigned long now = READ_ONCE(jiffies); 1297 unsigned long duration = now - start_time; 1298 1299 part_stat_lock(); 1300 update_io_ticks(part, now, true); 1301 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1302 part_stat_local_dec(part, in_flight[op_is_write(op)]); 1303 part_stat_unlock(); 1304 } 1305 1306 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1307 struct block_device *orig_bdev) 1308 { 1309 __part_end_io_acct(orig_bdev, bio_op(bio), start_time); 1310 } 1311 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped); 1312 1313 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1314 unsigned long start_time) 1315 { 1316 __part_end_io_acct(disk->part0, op, start_time); 1317 } 1318 EXPORT_SYMBOL(disk_end_io_acct); 1319 1320 /* 1321 * Steal bios from a request and add them to a bio list. 1322 * The request must not have been partially completed before. 1323 */ 1324 void blk_steal_bios(struct bio_list *list, struct request *rq) 1325 { 1326 if (rq->bio) { 1327 if (list->tail) 1328 list->tail->bi_next = rq->bio; 1329 else 1330 list->head = rq->bio; 1331 list->tail = rq->biotail; 1332 1333 rq->bio = NULL; 1334 rq->biotail = NULL; 1335 } 1336 1337 rq->__data_len = 0; 1338 } 1339 EXPORT_SYMBOL_GPL(blk_steal_bios); 1340 1341 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1342 /** 1343 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1344 * @rq: the request to be flushed 1345 * 1346 * Description: 1347 * Flush all pages in @rq. 1348 */ 1349 void rq_flush_dcache_pages(struct request *rq) 1350 { 1351 struct req_iterator iter; 1352 struct bio_vec bvec; 1353 1354 rq_for_each_segment(bvec, rq, iter) 1355 flush_dcache_page(bvec.bv_page); 1356 } 1357 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1358 #endif 1359 1360 /** 1361 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1362 * @q : the queue of the device being checked 1363 * 1364 * Description: 1365 * Check if underlying low-level drivers of a device are busy. 1366 * If the drivers want to export their busy state, they must set own 1367 * exporting function using blk_queue_lld_busy() first. 1368 * 1369 * Basically, this function is used only by request stacking drivers 1370 * to stop dispatching requests to underlying devices when underlying 1371 * devices are busy. This behavior helps more I/O merging on the queue 1372 * of the request stacking driver and prevents I/O throughput regression 1373 * on burst I/O load. 1374 * 1375 * Return: 1376 * 0 - Not busy (The request stacking driver should dispatch request) 1377 * 1 - Busy (The request stacking driver should stop dispatching request) 1378 */ 1379 int blk_lld_busy(struct request_queue *q) 1380 { 1381 if (queue_is_mq(q) && q->mq_ops->busy) 1382 return q->mq_ops->busy(q); 1383 1384 return 0; 1385 } 1386 EXPORT_SYMBOL_GPL(blk_lld_busy); 1387 1388 /** 1389 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1390 * @rq: the clone request to be cleaned up 1391 * 1392 * Description: 1393 * Free all bios in @rq for a cloned request. 1394 */ 1395 void blk_rq_unprep_clone(struct request *rq) 1396 { 1397 struct bio *bio; 1398 1399 while ((bio = rq->bio) != NULL) { 1400 rq->bio = bio->bi_next; 1401 1402 bio_put(bio); 1403 } 1404 } 1405 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1406 1407 /** 1408 * blk_rq_prep_clone - Helper function to setup clone request 1409 * @rq: the request to be setup 1410 * @rq_src: original request to be cloned 1411 * @bs: bio_set that bios for clone are allocated from 1412 * @gfp_mask: memory allocation mask for bio 1413 * @bio_ctr: setup function to be called for each clone bio. 1414 * Returns %0 for success, non %0 for failure. 1415 * @data: private data to be passed to @bio_ctr 1416 * 1417 * Description: 1418 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1419 * Also, pages which the original bios are pointing to are not copied 1420 * and the cloned bios just point same pages. 1421 * So cloned bios must be completed before original bios, which means 1422 * the caller must complete @rq before @rq_src. 1423 */ 1424 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1425 struct bio_set *bs, gfp_t gfp_mask, 1426 int (*bio_ctr)(struct bio *, struct bio *, void *), 1427 void *data) 1428 { 1429 struct bio *bio, *bio_src; 1430 1431 if (!bs) 1432 bs = &fs_bio_set; 1433 1434 __rq_for_each_bio(bio_src, rq_src) { 1435 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1436 if (!bio) 1437 goto free_and_out; 1438 1439 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1440 goto free_and_out; 1441 1442 if (rq->bio) { 1443 rq->biotail->bi_next = bio; 1444 rq->biotail = bio; 1445 } else { 1446 rq->bio = rq->biotail = bio; 1447 } 1448 bio = NULL; 1449 } 1450 1451 /* Copy attributes of the original request to the clone request. */ 1452 rq->__sector = blk_rq_pos(rq_src); 1453 rq->__data_len = blk_rq_bytes(rq_src); 1454 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1455 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 1456 rq->special_vec = rq_src->special_vec; 1457 } 1458 rq->nr_phys_segments = rq_src->nr_phys_segments; 1459 rq->ioprio = rq_src->ioprio; 1460 1461 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 1462 goto free_and_out; 1463 1464 return 0; 1465 1466 free_and_out: 1467 if (bio) 1468 bio_put(bio); 1469 blk_rq_unprep_clone(rq); 1470 1471 return -ENOMEM; 1472 } 1473 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1474 1475 int kblockd_schedule_work(struct work_struct *work) 1476 { 1477 return queue_work(kblockd_workqueue, work); 1478 } 1479 EXPORT_SYMBOL(kblockd_schedule_work); 1480 1481 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1482 unsigned long delay) 1483 { 1484 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1485 } 1486 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1487 1488 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios) 1489 { 1490 struct task_struct *tsk = current; 1491 1492 /* 1493 * If this is a nested plug, don't actually assign it. 1494 */ 1495 if (tsk->plug) 1496 return; 1497 1498 plug->mq_list = NULL; 1499 plug->cached_rq = NULL; 1500 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT); 1501 plug->rq_count = 0; 1502 plug->multiple_queues = false; 1503 plug->has_elevator = false; 1504 plug->nowait = false; 1505 INIT_LIST_HEAD(&plug->cb_list); 1506 1507 /* 1508 * Store ordering should not be needed here, since a potential 1509 * preempt will imply a full memory barrier 1510 */ 1511 tsk->plug = plug; 1512 } 1513 1514 /** 1515 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1516 * @plug: The &struct blk_plug that needs to be initialized 1517 * 1518 * Description: 1519 * blk_start_plug() indicates to the block layer an intent by the caller 1520 * to submit multiple I/O requests in a batch. The block layer may use 1521 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1522 * is called. However, the block layer may choose to submit requests 1523 * before a call to blk_finish_plug() if the number of queued I/Os 1524 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1525 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1526 * the task schedules (see below). 1527 * 1528 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1529 * pending I/O should the task end up blocking between blk_start_plug() and 1530 * blk_finish_plug(). This is important from a performance perspective, but 1531 * also ensures that we don't deadlock. For instance, if the task is blocking 1532 * for a memory allocation, memory reclaim could end up wanting to free a 1533 * page belonging to that request that is currently residing in our private 1534 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1535 * this kind of deadlock. 1536 */ 1537 void blk_start_plug(struct blk_plug *plug) 1538 { 1539 blk_start_plug_nr_ios(plug, 1); 1540 } 1541 EXPORT_SYMBOL(blk_start_plug); 1542 1543 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1544 { 1545 LIST_HEAD(callbacks); 1546 1547 while (!list_empty(&plug->cb_list)) { 1548 list_splice_init(&plug->cb_list, &callbacks); 1549 1550 while (!list_empty(&callbacks)) { 1551 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1552 struct blk_plug_cb, 1553 list); 1554 list_del(&cb->list); 1555 cb->callback(cb, from_schedule); 1556 } 1557 } 1558 } 1559 1560 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1561 int size) 1562 { 1563 struct blk_plug *plug = current->plug; 1564 struct blk_plug_cb *cb; 1565 1566 if (!plug) 1567 return NULL; 1568 1569 list_for_each_entry(cb, &plug->cb_list, list) 1570 if (cb->callback == unplug && cb->data == data) 1571 return cb; 1572 1573 /* Not currently on the callback list */ 1574 BUG_ON(size < sizeof(*cb)); 1575 cb = kzalloc(size, GFP_ATOMIC); 1576 if (cb) { 1577 cb->data = data; 1578 cb->callback = unplug; 1579 list_add(&cb->list, &plug->cb_list); 1580 } 1581 return cb; 1582 } 1583 EXPORT_SYMBOL(blk_check_plugged); 1584 1585 void blk_flush_plug(struct blk_plug *plug, bool from_schedule) 1586 { 1587 if (!list_empty(&plug->cb_list)) 1588 flush_plug_callbacks(plug, from_schedule); 1589 if (!rq_list_empty(plug->mq_list)) 1590 blk_mq_flush_plug_list(plug, from_schedule); 1591 /* 1592 * Unconditionally flush out cached requests, even if the unplug 1593 * event came from schedule. Since we know hold references to the 1594 * queue for cached requests, we don't want a blocked task holding 1595 * up a queue freeze/quiesce event. 1596 */ 1597 if (unlikely(!rq_list_empty(plug->cached_rq))) 1598 blk_mq_free_plug_rqs(plug); 1599 } 1600 1601 /** 1602 * blk_finish_plug - mark the end of a batch of submitted I/O 1603 * @plug: The &struct blk_plug passed to blk_start_plug() 1604 * 1605 * Description: 1606 * Indicate that a batch of I/O submissions is complete. This function 1607 * must be paired with an initial call to blk_start_plug(). The intent 1608 * is to allow the block layer to optimize I/O submission. See the 1609 * documentation for blk_start_plug() for more information. 1610 */ 1611 void blk_finish_plug(struct blk_plug *plug) 1612 { 1613 if (plug == current->plug) { 1614 blk_flush_plug(plug, false); 1615 current->plug = NULL; 1616 } 1617 } 1618 EXPORT_SYMBOL(blk_finish_plug); 1619 1620 void blk_io_schedule(void) 1621 { 1622 /* Prevent hang_check timer from firing at us during very long I/O */ 1623 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 1624 1625 if (timeout) 1626 io_schedule_timeout(timeout); 1627 else 1628 io_schedule(); 1629 } 1630 EXPORT_SYMBOL_GPL(blk_io_schedule); 1631 1632 int __init blk_dev_init(void) 1633 { 1634 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1635 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1636 sizeof_field(struct request, cmd_flags)); 1637 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1638 sizeof_field(struct bio, bi_opf)); 1639 1640 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1641 kblockd_workqueue = alloc_workqueue("kblockd", 1642 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1643 if (!kblockd_workqueue) 1644 panic("Failed to create kblockd\n"); 1645 1646 blk_requestq_cachep = kmem_cache_create("request_queue", 1647 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1648 1649 blk_debugfs_root = debugfs_create_dir("block", NULL); 1650 1651 return 0; 1652 } 1653