xref: /openbmc/linux/block/blk-core.c (revision dea54fba)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40 
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45 
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49 
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55 
56 DEFINE_IDA(blk_queue_ida);
57 
58 /*
59  * For the allocated request tables
60  */
61 struct kmem_cache *request_cachep;
62 
63 /*
64  * For queue allocation
65  */
66 struct kmem_cache *blk_requestq_cachep;
67 
68 /*
69  * Controlling structure to kblockd
70  */
71 static struct workqueue_struct *kblockd_workqueue;
72 
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 	clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 	/*
79 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 	 * flip its congestion state for events on other blkcgs.
81 	 */
82 	if (rl == &rl->q->root_rl)
83 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86 
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 	set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 	/* see blk_clear_congested() */
93 	if (rl == &rl->q->root_rl)
94 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97 
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 	int nr;
101 
102 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 	if (nr > q->nr_requests)
104 		nr = q->nr_requests;
105 	q->nr_congestion_on = nr;
106 
107 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 	if (nr < 1)
109 		nr = 1;
110 	q->nr_congestion_off = nr;
111 }
112 
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 	memset(rq, 0, sizeof(*rq));
116 
117 	INIT_LIST_HEAD(&rq->queuelist);
118 	INIT_LIST_HEAD(&rq->timeout_list);
119 	rq->cpu = -1;
120 	rq->q = q;
121 	rq->__sector = (sector_t) -1;
122 	INIT_HLIST_NODE(&rq->hash);
123 	RB_CLEAR_NODE(&rq->rb_node);
124 	rq->tag = -1;
125 	rq->internal_tag = -1;
126 	rq->start_time = jiffies;
127 	set_start_time_ns(rq);
128 	rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131 
132 static const struct {
133 	int		errno;
134 	const char	*name;
135 } blk_errors[] = {
136 	[BLK_STS_OK]		= { 0,		"" },
137 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
138 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
139 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
140 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
141 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
142 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
143 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
144 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
145 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
146 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
147 
148 	/* device mapper special case, should not leak out: */
149 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
150 
151 	/* everything else not covered above: */
152 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
153 };
154 
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 	int i;
158 
159 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 		if (blk_errors[i].errno == errno)
161 			return (__force blk_status_t)i;
162 	}
163 
164 	return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167 
168 int blk_status_to_errno(blk_status_t status)
169 {
170 	int idx = (__force int)status;
171 
172 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 		return -EIO;
174 	return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177 
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 	int idx = (__force int)status;
181 
182 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 		return;
184 
185 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 			   __func__, blk_errors[idx].name, req->rq_disk ?
187 			   req->rq_disk->disk_name : "?",
188 			   (unsigned long long)blk_rq_pos(req));
189 }
190 
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 			  unsigned int nbytes, blk_status_t error)
193 {
194 	if (error)
195 		bio->bi_status = error;
196 
197 	if (unlikely(rq->rq_flags & RQF_QUIET))
198 		bio_set_flag(bio, BIO_QUIET);
199 
200 	bio_advance(bio, nbytes);
201 
202 	/* don't actually finish bio if it's part of flush sequence */
203 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 		bio_endio(bio);
205 }
206 
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 		(unsigned long long) rq->cmd_flags);
212 
213 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
214 	       (unsigned long long)blk_rq_pos(rq),
215 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
217 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220 
221 static void blk_delay_work(struct work_struct *work)
222 {
223 	struct request_queue *q;
224 
225 	q = container_of(work, struct request_queue, delay_work.work);
226 	spin_lock_irq(q->queue_lock);
227 	__blk_run_queue(q);
228 	spin_unlock_irq(q->queue_lock);
229 }
230 
231 /**
232  * blk_delay_queue - restart queueing after defined interval
233  * @q:		The &struct request_queue in question
234  * @msecs:	Delay in msecs
235  *
236  * Description:
237  *   Sometimes queueing needs to be postponed for a little while, to allow
238  *   resources to come back. This function will make sure that queueing is
239  *   restarted around the specified time.
240  */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 	lockdep_assert_held(q->queue_lock);
244 	WARN_ON_ONCE(q->mq_ops);
245 
246 	if (likely(!blk_queue_dead(q)))
247 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 				   msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251 
252 /**
253  * blk_start_queue_async - asynchronously restart a previously stopped queue
254  * @q:    The &struct request_queue in question
255  *
256  * Description:
257  *   blk_start_queue_async() will clear the stop flag on the queue, and
258  *   ensure that the request_fn for the queue is run from an async
259  *   context.
260  **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 	lockdep_assert_held(q->queue_lock);
264 	WARN_ON_ONCE(q->mq_ops);
265 
266 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 	blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270 
271 /**
272  * blk_start_queue - restart a previously stopped queue
273  * @q:    The &struct request_queue in question
274  *
275  * Description:
276  *   blk_start_queue() will clear the stop flag on the queue, and call
277  *   the request_fn for the queue if it was in a stopped state when
278  *   entered. Also see blk_stop_queue().
279  **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 	lockdep_assert_held(q->queue_lock);
283 	WARN_ON(!irqs_disabled());
284 	WARN_ON_ONCE(q->mq_ops);
285 
286 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 	__blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290 
291 /**
292  * blk_stop_queue - stop a queue
293  * @q:    The &struct request_queue in question
294  *
295  * Description:
296  *   The Linux block layer assumes that a block driver will consume all
297  *   entries on the request queue when the request_fn strategy is called.
298  *   Often this will not happen, because of hardware limitations (queue
299  *   depth settings). If a device driver gets a 'queue full' response,
300  *   or if it simply chooses not to queue more I/O at one point, it can
301  *   call this function to prevent the request_fn from being called until
302  *   the driver has signalled it's ready to go again. This happens by calling
303  *   blk_start_queue() to restart queue operations.
304  **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 	lockdep_assert_held(q->queue_lock);
308 	WARN_ON_ONCE(q->mq_ops);
309 
310 	cancel_delayed_work(&q->delay_work);
311 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314 
315 /**
316  * blk_sync_queue - cancel any pending callbacks on a queue
317  * @q: the queue
318  *
319  * Description:
320  *     The block layer may perform asynchronous callback activity
321  *     on a queue, such as calling the unplug function after a timeout.
322  *     A block device may call blk_sync_queue to ensure that any
323  *     such activity is cancelled, thus allowing it to release resources
324  *     that the callbacks might use. The caller must already have made sure
325  *     that its ->make_request_fn will not re-add plugging prior to calling
326  *     this function.
327  *
328  *     This function does not cancel any asynchronous activity arising
329  *     out of elevator or throttling code. That would require elevator_exit()
330  *     and blkcg_exit_queue() to be called with queue lock initialized.
331  *
332  */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 	del_timer_sync(&q->timeout);
336 
337 	if (q->mq_ops) {
338 		struct blk_mq_hw_ctx *hctx;
339 		int i;
340 
341 		queue_for_each_hw_ctx(q, hctx, i)
342 			cancel_delayed_work_sync(&hctx->run_work);
343 	} else {
344 		cancel_delayed_work_sync(&q->delay_work);
345 	}
346 }
347 EXPORT_SYMBOL(blk_sync_queue);
348 
349 /**
350  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
351  * @q:	The queue to run
352  *
353  * Description:
354  *    Invoke request handling on a queue if there are any pending requests.
355  *    May be used to restart request handling after a request has completed.
356  *    This variant runs the queue whether or not the queue has been
357  *    stopped. Must be called with the queue lock held and interrupts
358  *    disabled. See also @blk_run_queue.
359  */
360 inline void __blk_run_queue_uncond(struct request_queue *q)
361 {
362 	lockdep_assert_held(q->queue_lock);
363 	WARN_ON_ONCE(q->mq_ops);
364 
365 	if (unlikely(blk_queue_dead(q)))
366 		return;
367 
368 	/*
369 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
370 	 * the queue lock internally. As a result multiple threads may be
371 	 * running such a request function concurrently. Keep track of the
372 	 * number of active request_fn invocations such that blk_drain_queue()
373 	 * can wait until all these request_fn calls have finished.
374 	 */
375 	q->request_fn_active++;
376 	q->request_fn(q);
377 	q->request_fn_active--;
378 }
379 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
380 
381 /**
382  * __blk_run_queue - run a single device queue
383  * @q:	The queue to run
384  *
385  * Description:
386  *    See @blk_run_queue.
387  */
388 void __blk_run_queue(struct request_queue *q)
389 {
390 	lockdep_assert_held(q->queue_lock);
391 	WARN_ON_ONCE(q->mq_ops);
392 
393 	if (unlikely(blk_queue_stopped(q)))
394 		return;
395 
396 	__blk_run_queue_uncond(q);
397 }
398 EXPORT_SYMBOL(__blk_run_queue);
399 
400 /**
401  * blk_run_queue_async - run a single device queue in workqueue context
402  * @q:	The queue to run
403  *
404  * Description:
405  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
406  *    of us.
407  *
408  * Note:
409  *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
410  *    has canceled q->delay_work, callers must hold the queue lock to avoid
411  *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
412  */
413 void blk_run_queue_async(struct request_queue *q)
414 {
415 	lockdep_assert_held(q->queue_lock);
416 	WARN_ON_ONCE(q->mq_ops);
417 
418 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
419 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
420 }
421 EXPORT_SYMBOL(blk_run_queue_async);
422 
423 /**
424  * blk_run_queue - run a single device queue
425  * @q: The queue to run
426  *
427  * Description:
428  *    Invoke request handling on this queue, if it has pending work to do.
429  *    May be used to restart queueing when a request has completed.
430  */
431 void blk_run_queue(struct request_queue *q)
432 {
433 	unsigned long flags;
434 
435 	WARN_ON_ONCE(q->mq_ops);
436 
437 	spin_lock_irqsave(q->queue_lock, flags);
438 	__blk_run_queue(q);
439 	spin_unlock_irqrestore(q->queue_lock, flags);
440 }
441 EXPORT_SYMBOL(blk_run_queue);
442 
443 void blk_put_queue(struct request_queue *q)
444 {
445 	kobject_put(&q->kobj);
446 }
447 EXPORT_SYMBOL(blk_put_queue);
448 
449 /**
450  * __blk_drain_queue - drain requests from request_queue
451  * @q: queue to drain
452  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
453  *
454  * Drain requests from @q.  If @drain_all is set, all requests are drained.
455  * If not, only ELVPRIV requests are drained.  The caller is responsible
456  * for ensuring that no new requests which need to be drained are queued.
457  */
458 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
459 	__releases(q->queue_lock)
460 	__acquires(q->queue_lock)
461 {
462 	int i;
463 
464 	lockdep_assert_held(q->queue_lock);
465 	WARN_ON_ONCE(q->mq_ops);
466 
467 	while (true) {
468 		bool drain = false;
469 
470 		/*
471 		 * The caller might be trying to drain @q before its
472 		 * elevator is initialized.
473 		 */
474 		if (q->elevator)
475 			elv_drain_elevator(q);
476 
477 		blkcg_drain_queue(q);
478 
479 		/*
480 		 * This function might be called on a queue which failed
481 		 * driver init after queue creation or is not yet fully
482 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
483 		 * in such cases.  Kick queue iff dispatch queue has
484 		 * something on it and @q has request_fn set.
485 		 */
486 		if (!list_empty(&q->queue_head) && q->request_fn)
487 			__blk_run_queue(q);
488 
489 		drain |= q->nr_rqs_elvpriv;
490 		drain |= q->request_fn_active;
491 
492 		/*
493 		 * Unfortunately, requests are queued at and tracked from
494 		 * multiple places and there's no single counter which can
495 		 * be drained.  Check all the queues and counters.
496 		 */
497 		if (drain_all) {
498 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
499 			drain |= !list_empty(&q->queue_head);
500 			for (i = 0; i < 2; i++) {
501 				drain |= q->nr_rqs[i];
502 				drain |= q->in_flight[i];
503 				if (fq)
504 				    drain |= !list_empty(&fq->flush_queue[i]);
505 			}
506 		}
507 
508 		if (!drain)
509 			break;
510 
511 		spin_unlock_irq(q->queue_lock);
512 
513 		msleep(10);
514 
515 		spin_lock_irq(q->queue_lock);
516 	}
517 
518 	/*
519 	 * With queue marked dead, any woken up waiter will fail the
520 	 * allocation path, so the wakeup chaining is lost and we're
521 	 * left with hung waiters. We need to wake up those waiters.
522 	 */
523 	if (q->request_fn) {
524 		struct request_list *rl;
525 
526 		blk_queue_for_each_rl(rl, q)
527 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
528 				wake_up_all(&rl->wait[i]);
529 	}
530 }
531 
532 /**
533  * blk_queue_bypass_start - enter queue bypass mode
534  * @q: queue of interest
535  *
536  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
537  * function makes @q enter bypass mode and drains all requests which were
538  * throttled or issued before.  On return, it's guaranteed that no request
539  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
540  * inside queue or RCU read lock.
541  */
542 void blk_queue_bypass_start(struct request_queue *q)
543 {
544 	WARN_ON_ONCE(q->mq_ops);
545 
546 	spin_lock_irq(q->queue_lock);
547 	q->bypass_depth++;
548 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
549 	spin_unlock_irq(q->queue_lock);
550 
551 	/*
552 	 * Queues start drained.  Skip actual draining till init is
553 	 * complete.  This avoids lenghty delays during queue init which
554 	 * can happen many times during boot.
555 	 */
556 	if (blk_queue_init_done(q)) {
557 		spin_lock_irq(q->queue_lock);
558 		__blk_drain_queue(q, false);
559 		spin_unlock_irq(q->queue_lock);
560 
561 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
562 		synchronize_rcu();
563 	}
564 }
565 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
566 
567 /**
568  * blk_queue_bypass_end - leave queue bypass mode
569  * @q: queue of interest
570  *
571  * Leave bypass mode and restore the normal queueing behavior.
572  *
573  * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
574  * this function is called for both blk-sq and blk-mq queues.
575  */
576 void blk_queue_bypass_end(struct request_queue *q)
577 {
578 	spin_lock_irq(q->queue_lock);
579 	if (!--q->bypass_depth)
580 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
581 	WARN_ON_ONCE(q->bypass_depth < 0);
582 	spin_unlock_irq(q->queue_lock);
583 }
584 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
585 
586 void blk_set_queue_dying(struct request_queue *q)
587 {
588 	spin_lock_irq(q->queue_lock);
589 	queue_flag_set(QUEUE_FLAG_DYING, q);
590 	spin_unlock_irq(q->queue_lock);
591 
592 	/*
593 	 * When queue DYING flag is set, we need to block new req
594 	 * entering queue, so we call blk_freeze_queue_start() to
595 	 * prevent I/O from crossing blk_queue_enter().
596 	 */
597 	blk_freeze_queue_start(q);
598 
599 	if (q->mq_ops)
600 		blk_mq_wake_waiters(q);
601 	else {
602 		struct request_list *rl;
603 
604 		spin_lock_irq(q->queue_lock);
605 		blk_queue_for_each_rl(rl, q) {
606 			if (rl->rq_pool) {
607 				wake_up(&rl->wait[BLK_RW_SYNC]);
608 				wake_up(&rl->wait[BLK_RW_ASYNC]);
609 			}
610 		}
611 		spin_unlock_irq(q->queue_lock);
612 	}
613 }
614 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
615 
616 /**
617  * blk_cleanup_queue - shutdown a request queue
618  * @q: request queue to shutdown
619  *
620  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
621  * put it.  All future requests will be failed immediately with -ENODEV.
622  */
623 void blk_cleanup_queue(struct request_queue *q)
624 {
625 	spinlock_t *lock = q->queue_lock;
626 
627 	/* mark @q DYING, no new request or merges will be allowed afterwards */
628 	mutex_lock(&q->sysfs_lock);
629 	blk_set_queue_dying(q);
630 	spin_lock_irq(lock);
631 
632 	/*
633 	 * A dying queue is permanently in bypass mode till released.  Note
634 	 * that, unlike blk_queue_bypass_start(), we aren't performing
635 	 * synchronize_rcu() after entering bypass mode to avoid the delay
636 	 * as some drivers create and destroy a lot of queues while
637 	 * probing.  This is still safe because blk_release_queue() will be
638 	 * called only after the queue refcnt drops to zero and nothing,
639 	 * RCU or not, would be traversing the queue by then.
640 	 */
641 	q->bypass_depth++;
642 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
643 
644 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
645 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
646 	queue_flag_set(QUEUE_FLAG_DYING, q);
647 	spin_unlock_irq(lock);
648 	mutex_unlock(&q->sysfs_lock);
649 
650 	/*
651 	 * Drain all requests queued before DYING marking. Set DEAD flag to
652 	 * prevent that q->request_fn() gets invoked after draining finished.
653 	 */
654 	blk_freeze_queue(q);
655 	spin_lock_irq(lock);
656 	if (!q->mq_ops)
657 		__blk_drain_queue(q, true);
658 	queue_flag_set(QUEUE_FLAG_DEAD, q);
659 	spin_unlock_irq(lock);
660 
661 	/* for synchronous bio-based driver finish in-flight integrity i/o */
662 	blk_flush_integrity();
663 
664 	/* @q won't process any more request, flush async actions */
665 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
666 	blk_sync_queue(q);
667 
668 	if (q->mq_ops)
669 		blk_mq_free_queue(q);
670 	percpu_ref_exit(&q->q_usage_counter);
671 
672 	spin_lock_irq(lock);
673 	if (q->queue_lock != &q->__queue_lock)
674 		q->queue_lock = &q->__queue_lock;
675 	spin_unlock_irq(lock);
676 
677 	/* @q is and will stay empty, shutdown and put */
678 	blk_put_queue(q);
679 }
680 EXPORT_SYMBOL(blk_cleanup_queue);
681 
682 /* Allocate memory local to the request queue */
683 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
684 {
685 	struct request_queue *q = data;
686 
687 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
688 }
689 
690 static void free_request_simple(void *element, void *data)
691 {
692 	kmem_cache_free(request_cachep, element);
693 }
694 
695 static void *alloc_request_size(gfp_t gfp_mask, void *data)
696 {
697 	struct request_queue *q = data;
698 	struct request *rq;
699 
700 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
701 			q->node);
702 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
703 		kfree(rq);
704 		rq = NULL;
705 	}
706 	return rq;
707 }
708 
709 static void free_request_size(void *element, void *data)
710 {
711 	struct request_queue *q = data;
712 
713 	if (q->exit_rq_fn)
714 		q->exit_rq_fn(q, element);
715 	kfree(element);
716 }
717 
718 int blk_init_rl(struct request_list *rl, struct request_queue *q,
719 		gfp_t gfp_mask)
720 {
721 	if (unlikely(rl->rq_pool))
722 		return 0;
723 
724 	rl->q = q;
725 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
726 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
727 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
728 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
729 
730 	if (q->cmd_size) {
731 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
732 				alloc_request_size, free_request_size,
733 				q, gfp_mask, q->node);
734 	} else {
735 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
736 				alloc_request_simple, free_request_simple,
737 				q, gfp_mask, q->node);
738 	}
739 	if (!rl->rq_pool)
740 		return -ENOMEM;
741 
742 	if (rl != &q->root_rl)
743 		WARN_ON_ONCE(!blk_get_queue(q));
744 
745 	return 0;
746 }
747 
748 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
749 {
750 	if (rl->rq_pool) {
751 		mempool_destroy(rl->rq_pool);
752 		if (rl != &q->root_rl)
753 			blk_put_queue(q);
754 	}
755 }
756 
757 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
758 {
759 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
760 }
761 EXPORT_SYMBOL(blk_alloc_queue);
762 
763 int blk_queue_enter(struct request_queue *q, bool nowait)
764 {
765 	while (true) {
766 		int ret;
767 
768 		if (percpu_ref_tryget_live(&q->q_usage_counter))
769 			return 0;
770 
771 		if (nowait)
772 			return -EBUSY;
773 
774 		/*
775 		 * read pair of barrier in blk_freeze_queue_start(),
776 		 * we need to order reading __PERCPU_REF_DEAD flag of
777 		 * .q_usage_counter and reading .mq_freeze_depth or
778 		 * queue dying flag, otherwise the following wait may
779 		 * never return if the two reads are reordered.
780 		 */
781 		smp_rmb();
782 
783 		ret = wait_event_interruptible(q->mq_freeze_wq,
784 				!atomic_read(&q->mq_freeze_depth) ||
785 				blk_queue_dying(q));
786 		if (blk_queue_dying(q))
787 			return -ENODEV;
788 		if (ret)
789 			return ret;
790 	}
791 }
792 
793 void blk_queue_exit(struct request_queue *q)
794 {
795 	percpu_ref_put(&q->q_usage_counter);
796 }
797 
798 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
799 {
800 	struct request_queue *q =
801 		container_of(ref, struct request_queue, q_usage_counter);
802 
803 	wake_up_all(&q->mq_freeze_wq);
804 }
805 
806 static void blk_rq_timed_out_timer(unsigned long data)
807 {
808 	struct request_queue *q = (struct request_queue *)data;
809 
810 	kblockd_schedule_work(&q->timeout_work);
811 }
812 
813 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
814 {
815 	struct request_queue *q;
816 
817 	q = kmem_cache_alloc_node(blk_requestq_cachep,
818 				gfp_mask | __GFP_ZERO, node_id);
819 	if (!q)
820 		return NULL;
821 
822 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
823 	if (q->id < 0)
824 		goto fail_q;
825 
826 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
827 	if (!q->bio_split)
828 		goto fail_id;
829 
830 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
831 	if (!q->backing_dev_info)
832 		goto fail_split;
833 
834 	q->stats = blk_alloc_queue_stats();
835 	if (!q->stats)
836 		goto fail_stats;
837 
838 	q->backing_dev_info->ra_pages =
839 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
840 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
841 	q->backing_dev_info->name = "block";
842 	q->node = node_id;
843 
844 	setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
845 		    laptop_mode_timer_fn, (unsigned long) q);
846 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
847 	INIT_LIST_HEAD(&q->queue_head);
848 	INIT_LIST_HEAD(&q->timeout_list);
849 	INIT_LIST_HEAD(&q->icq_list);
850 #ifdef CONFIG_BLK_CGROUP
851 	INIT_LIST_HEAD(&q->blkg_list);
852 #endif
853 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
854 
855 	kobject_init(&q->kobj, &blk_queue_ktype);
856 
857 	mutex_init(&q->sysfs_lock);
858 	spin_lock_init(&q->__queue_lock);
859 
860 	/*
861 	 * By default initialize queue_lock to internal lock and driver can
862 	 * override it later if need be.
863 	 */
864 	q->queue_lock = &q->__queue_lock;
865 
866 	/*
867 	 * A queue starts its life with bypass turned on to avoid
868 	 * unnecessary bypass on/off overhead and nasty surprises during
869 	 * init.  The initial bypass will be finished when the queue is
870 	 * registered by blk_register_queue().
871 	 */
872 	q->bypass_depth = 1;
873 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
874 
875 	init_waitqueue_head(&q->mq_freeze_wq);
876 
877 	/*
878 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
879 	 * See blk_register_queue() for details.
880 	 */
881 	if (percpu_ref_init(&q->q_usage_counter,
882 				blk_queue_usage_counter_release,
883 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
884 		goto fail_bdi;
885 
886 	if (blkcg_init_queue(q))
887 		goto fail_ref;
888 
889 	return q;
890 
891 fail_ref:
892 	percpu_ref_exit(&q->q_usage_counter);
893 fail_bdi:
894 	blk_free_queue_stats(q->stats);
895 fail_stats:
896 	bdi_put(q->backing_dev_info);
897 fail_split:
898 	bioset_free(q->bio_split);
899 fail_id:
900 	ida_simple_remove(&blk_queue_ida, q->id);
901 fail_q:
902 	kmem_cache_free(blk_requestq_cachep, q);
903 	return NULL;
904 }
905 EXPORT_SYMBOL(blk_alloc_queue_node);
906 
907 /**
908  * blk_init_queue  - prepare a request queue for use with a block device
909  * @rfn:  The function to be called to process requests that have been
910  *        placed on the queue.
911  * @lock: Request queue spin lock
912  *
913  * Description:
914  *    If a block device wishes to use the standard request handling procedures,
915  *    which sorts requests and coalesces adjacent requests, then it must
916  *    call blk_init_queue().  The function @rfn will be called when there
917  *    are requests on the queue that need to be processed.  If the device
918  *    supports plugging, then @rfn may not be called immediately when requests
919  *    are available on the queue, but may be called at some time later instead.
920  *    Plugged queues are generally unplugged when a buffer belonging to one
921  *    of the requests on the queue is needed, or due to memory pressure.
922  *
923  *    @rfn is not required, or even expected, to remove all requests off the
924  *    queue, but only as many as it can handle at a time.  If it does leave
925  *    requests on the queue, it is responsible for arranging that the requests
926  *    get dealt with eventually.
927  *
928  *    The queue spin lock must be held while manipulating the requests on the
929  *    request queue; this lock will be taken also from interrupt context, so irq
930  *    disabling is needed for it.
931  *
932  *    Function returns a pointer to the initialized request queue, or %NULL if
933  *    it didn't succeed.
934  *
935  * Note:
936  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
937  *    when the block device is deactivated (such as at module unload).
938  **/
939 
940 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
941 {
942 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
943 }
944 EXPORT_SYMBOL(blk_init_queue);
945 
946 struct request_queue *
947 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
948 {
949 	struct request_queue *q;
950 
951 	q = blk_alloc_queue_node(GFP_KERNEL, node_id);
952 	if (!q)
953 		return NULL;
954 
955 	q->request_fn = rfn;
956 	if (lock)
957 		q->queue_lock = lock;
958 	if (blk_init_allocated_queue(q) < 0) {
959 		blk_cleanup_queue(q);
960 		return NULL;
961 	}
962 
963 	return q;
964 }
965 EXPORT_SYMBOL(blk_init_queue_node);
966 
967 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
968 
969 
970 int blk_init_allocated_queue(struct request_queue *q)
971 {
972 	WARN_ON_ONCE(q->mq_ops);
973 
974 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
975 	if (!q->fq)
976 		return -ENOMEM;
977 
978 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
979 		goto out_free_flush_queue;
980 
981 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
982 		goto out_exit_flush_rq;
983 
984 	INIT_WORK(&q->timeout_work, blk_timeout_work);
985 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
986 
987 	/*
988 	 * This also sets hw/phys segments, boundary and size
989 	 */
990 	blk_queue_make_request(q, blk_queue_bio);
991 
992 	q->sg_reserved_size = INT_MAX;
993 
994 	/* Protect q->elevator from elevator_change */
995 	mutex_lock(&q->sysfs_lock);
996 
997 	/* init elevator */
998 	if (elevator_init(q, NULL)) {
999 		mutex_unlock(&q->sysfs_lock);
1000 		goto out_exit_flush_rq;
1001 	}
1002 
1003 	mutex_unlock(&q->sysfs_lock);
1004 	return 0;
1005 
1006 out_exit_flush_rq:
1007 	if (q->exit_rq_fn)
1008 		q->exit_rq_fn(q, q->fq->flush_rq);
1009 out_free_flush_queue:
1010 	blk_free_flush_queue(q->fq);
1011 	return -ENOMEM;
1012 }
1013 EXPORT_SYMBOL(blk_init_allocated_queue);
1014 
1015 bool blk_get_queue(struct request_queue *q)
1016 {
1017 	if (likely(!blk_queue_dying(q))) {
1018 		__blk_get_queue(q);
1019 		return true;
1020 	}
1021 
1022 	return false;
1023 }
1024 EXPORT_SYMBOL(blk_get_queue);
1025 
1026 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1027 {
1028 	if (rq->rq_flags & RQF_ELVPRIV) {
1029 		elv_put_request(rl->q, rq);
1030 		if (rq->elv.icq)
1031 			put_io_context(rq->elv.icq->ioc);
1032 	}
1033 
1034 	mempool_free(rq, rl->rq_pool);
1035 }
1036 
1037 /*
1038  * ioc_batching returns true if the ioc is a valid batching request and
1039  * should be given priority access to a request.
1040  */
1041 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1042 {
1043 	if (!ioc)
1044 		return 0;
1045 
1046 	/*
1047 	 * Make sure the process is able to allocate at least 1 request
1048 	 * even if the batch times out, otherwise we could theoretically
1049 	 * lose wakeups.
1050 	 */
1051 	return ioc->nr_batch_requests == q->nr_batching ||
1052 		(ioc->nr_batch_requests > 0
1053 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1054 }
1055 
1056 /*
1057  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1058  * will cause the process to be a "batcher" on all queues in the system. This
1059  * is the behaviour we want though - once it gets a wakeup it should be given
1060  * a nice run.
1061  */
1062 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1063 {
1064 	if (!ioc || ioc_batching(q, ioc))
1065 		return;
1066 
1067 	ioc->nr_batch_requests = q->nr_batching;
1068 	ioc->last_waited = jiffies;
1069 }
1070 
1071 static void __freed_request(struct request_list *rl, int sync)
1072 {
1073 	struct request_queue *q = rl->q;
1074 
1075 	if (rl->count[sync] < queue_congestion_off_threshold(q))
1076 		blk_clear_congested(rl, sync);
1077 
1078 	if (rl->count[sync] + 1 <= q->nr_requests) {
1079 		if (waitqueue_active(&rl->wait[sync]))
1080 			wake_up(&rl->wait[sync]);
1081 
1082 		blk_clear_rl_full(rl, sync);
1083 	}
1084 }
1085 
1086 /*
1087  * A request has just been released.  Account for it, update the full and
1088  * congestion status, wake up any waiters.   Called under q->queue_lock.
1089  */
1090 static void freed_request(struct request_list *rl, bool sync,
1091 		req_flags_t rq_flags)
1092 {
1093 	struct request_queue *q = rl->q;
1094 
1095 	q->nr_rqs[sync]--;
1096 	rl->count[sync]--;
1097 	if (rq_flags & RQF_ELVPRIV)
1098 		q->nr_rqs_elvpriv--;
1099 
1100 	__freed_request(rl, sync);
1101 
1102 	if (unlikely(rl->starved[sync ^ 1]))
1103 		__freed_request(rl, sync ^ 1);
1104 }
1105 
1106 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1107 {
1108 	struct request_list *rl;
1109 	int on_thresh, off_thresh;
1110 
1111 	WARN_ON_ONCE(q->mq_ops);
1112 
1113 	spin_lock_irq(q->queue_lock);
1114 	q->nr_requests = nr;
1115 	blk_queue_congestion_threshold(q);
1116 	on_thresh = queue_congestion_on_threshold(q);
1117 	off_thresh = queue_congestion_off_threshold(q);
1118 
1119 	blk_queue_for_each_rl(rl, q) {
1120 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1121 			blk_set_congested(rl, BLK_RW_SYNC);
1122 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1123 			blk_clear_congested(rl, BLK_RW_SYNC);
1124 
1125 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1126 			blk_set_congested(rl, BLK_RW_ASYNC);
1127 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1128 			blk_clear_congested(rl, BLK_RW_ASYNC);
1129 
1130 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1131 			blk_set_rl_full(rl, BLK_RW_SYNC);
1132 		} else {
1133 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1134 			wake_up(&rl->wait[BLK_RW_SYNC]);
1135 		}
1136 
1137 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1138 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1139 		} else {
1140 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1141 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1142 		}
1143 	}
1144 
1145 	spin_unlock_irq(q->queue_lock);
1146 	return 0;
1147 }
1148 
1149 /**
1150  * __get_request - get a free request
1151  * @rl: request list to allocate from
1152  * @op: operation and flags
1153  * @bio: bio to allocate request for (can be %NULL)
1154  * @gfp_mask: allocation mask
1155  *
1156  * Get a free request from @q.  This function may fail under memory
1157  * pressure or if @q is dead.
1158  *
1159  * Must be called with @q->queue_lock held and,
1160  * Returns ERR_PTR on failure, with @q->queue_lock held.
1161  * Returns request pointer on success, with @q->queue_lock *not held*.
1162  */
1163 static struct request *__get_request(struct request_list *rl, unsigned int op,
1164 		struct bio *bio, gfp_t gfp_mask)
1165 {
1166 	struct request_queue *q = rl->q;
1167 	struct request *rq;
1168 	struct elevator_type *et = q->elevator->type;
1169 	struct io_context *ioc = rq_ioc(bio);
1170 	struct io_cq *icq = NULL;
1171 	const bool is_sync = op_is_sync(op);
1172 	int may_queue;
1173 	req_flags_t rq_flags = RQF_ALLOCED;
1174 
1175 	lockdep_assert_held(q->queue_lock);
1176 
1177 	if (unlikely(blk_queue_dying(q)))
1178 		return ERR_PTR(-ENODEV);
1179 
1180 	may_queue = elv_may_queue(q, op);
1181 	if (may_queue == ELV_MQUEUE_NO)
1182 		goto rq_starved;
1183 
1184 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1185 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1186 			/*
1187 			 * The queue will fill after this allocation, so set
1188 			 * it as full, and mark this process as "batching".
1189 			 * This process will be allowed to complete a batch of
1190 			 * requests, others will be blocked.
1191 			 */
1192 			if (!blk_rl_full(rl, is_sync)) {
1193 				ioc_set_batching(q, ioc);
1194 				blk_set_rl_full(rl, is_sync);
1195 			} else {
1196 				if (may_queue != ELV_MQUEUE_MUST
1197 						&& !ioc_batching(q, ioc)) {
1198 					/*
1199 					 * The queue is full and the allocating
1200 					 * process is not a "batcher", and not
1201 					 * exempted by the IO scheduler
1202 					 */
1203 					return ERR_PTR(-ENOMEM);
1204 				}
1205 			}
1206 		}
1207 		blk_set_congested(rl, is_sync);
1208 	}
1209 
1210 	/*
1211 	 * Only allow batching queuers to allocate up to 50% over the defined
1212 	 * limit of requests, otherwise we could have thousands of requests
1213 	 * allocated with any setting of ->nr_requests
1214 	 */
1215 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1216 		return ERR_PTR(-ENOMEM);
1217 
1218 	q->nr_rqs[is_sync]++;
1219 	rl->count[is_sync]++;
1220 	rl->starved[is_sync] = 0;
1221 
1222 	/*
1223 	 * Decide whether the new request will be managed by elevator.  If
1224 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1225 	 * prevent the current elevator from being destroyed until the new
1226 	 * request is freed.  This guarantees icq's won't be destroyed and
1227 	 * makes creating new ones safe.
1228 	 *
1229 	 * Flush requests do not use the elevator so skip initialization.
1230 	 * This allows a request to share the flush and elevator data.
1231 	 *
1232 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1233 	 * it will be created after releasing queue_lock.
1234 	 */
1235 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1236 		rq_flags |= RQF_ELVPRIV;
1237 		q->nr_rqs_elvpriv++;
1238 		if (et->icq_cache && ioc)
1239 			icq = ioc_lookup_icq(ioc, q);
1240 	}
1241 
1242 	if (blk_queue_io_stat(q))
1243 		rq_flags |= RQF_IO_STAT;
1244 	spin_unlock_irq(q->queue_lock);
1245 
1246 	/* allocate and init request */
1247 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1248 	if (!rq)
1249 		goto fail_alloc;
1250 
1251 	blk_rq_init(q, rq);
1252 	blk_rq_set_rl(rq, rl);
1253 	rq->cmd_flags = op;
1254 	rq->rq_flags = rq_flags;
1255 
1256 	/* init elvpriv */
1257 	if (rq_flags & RQF_ELVPRIV) {
1258 		if (unlikely(et->icq_cache && !icq)) {
1259 			if (ioc)
1260 				icq = ioc_create_icq(ioc, q, gfp_mask);
1261 			if (!icq)
1262 				goto fail_elvpriv;
1263 		}
1264 
1265 		rq->elv.icq = icq;
1266 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1267 			goto fail_elvpriv;
1268 
1269 		/* @rq->elv.icq holds io_context until @rq is freed */
1270 		if (icq)
1271 			get_io_context(icq->ioc);
1272 	}
1273 out:
1274 	/*
1275 	 * ioc may be NULL here, and ioc_batching will be false. That's
1276 	 * OK, if the queue is under the request limit then requests need
1277 	 * not count toward the nr_batch_requests limit. There will always
1278 	 * be some limit enforced by BLK_BATCH_TIME.
1279 	 */
1280 	if (ioc_batching(q, ioc))
1281 		ioc->nr_batch_requests--;
1282 
1283 	trace_block_getrq(q, bio, op);
1284 	return rq;
1285 
1286 fail_elvpriv:
1287 	/*
1288 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1289 	 * and may fail indefinitely under memory pressure and thus
1290 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1291 	 * disturb iosched and blkcg but weird is bettern than dead.
1292 	 */
1293 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1294 			   __func__, dev_name(q->backing_dev_info->dev));
1295 
1296 	rq->rq_flags &= ~RQF_ELVPRIV;
1297 	rq->elv.icq = NULL;
1298 
1299 	spin_lock_irq(q->queue_lock);
1300 	q->nr_rqs_elvpriv--;
1301 	spin_unlock_irq(q->queue_lock);
1302 	goto out;
1303 
1304 fail_alloc:
1305 	/*
1306 	 * Allocation failed presumably due to memory. Undo anything we
1307 	 * might have messed up.
1308 	 *
1309 	 * Allocating task should really be put onto the front of the wait
1310 	 * queue, but this is pretty rare.
1311 	 */
1312 	spin_lock_irq(q->queue_lock);
1313 	freed_request(rl, is_sync, rq_flags);
1314 
1315 	/*
1316 	 * in the very unlikely event that allocation failed and no
1317 	 * requests for this direction was pending, mark us starved so that
1318 	 * freeing of a request in the other direction will notice
1319 	 * us. another possible fix would be to split the rq mempool into
1320 	 * READ and WRITE
1321 	 */
1322 rq_starved:
1323 	if (unlikely(rl->count[is_sync] == 0))
1324 		rl->starved[is_sync] = 1;
1325 	return ERR_PTR(-ENOMEM);
1326 }
1327 
1328 /**
1329  * get_request - get a free request
1330  * @q: request_queue to allocate request from
1331  * @op: operation and flags
1332  * @bio: bio to allocate request for (can be %NULL)
1333  * @gfp_mask: allocation mask
1334  *
1335  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1336  * this function keeps retrying under memory pressure and fails iff @q is dead.
1337  *
1338  * Must be called with @q->queue_lock held and,
1339  * Returns ERR_PTR on failure, with @q->queue_lock held.
1340  * Returns request pointer on success, with @q->queue_lock *not held*.
1341  */
1342 static struct request *get_request(struct request_queue *q, unsigned int op,
1343 		struct bio *bio, gfp_t gfp_mask)
1344 {
1345 	const bool is_sync = op_is_sync(op);
1346 	DEFINE_WAIT(wait);
1347 	struct request_list *rl;
1348 	struct request *rq;
1349 
1350 	lockdep_assert_held(q->queue_lock);
1351 	WARN_ON_ONCE(q->mq_ops);
1352 
1353 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1354 retry:
1355 	rq = __get_request(rl, op, bio, gfp_mask);
1356 	if (!IS_ERR(rq))
1357 		return rq;
1358 
1359 	if (op & REQ_NOWAIT) {
1360 		blk_put_rl(rl);
1361 		return ERR_PTR(-EAGAIN);
1362 	}
1363 
1364 	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1365 		blk_put_rl(rl);
1366 		return rq;
1367 	}
1368 
1369 	/* wait on @rl and retry */
1370 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1371 				  TASK_UNINTERRUPTIBLE);
1372 
1373 	trace_block_sleeprq(q, bio, op);
1374 
1375 	spin_unlock_irq(q->queue_lock);
1376 	io_schedule();
1377 
1378 	/*
1379 	 * After sleeping, we become a "batching" process and will be able
1380 	 * to allocate at least one request, and up to a big batch of them
1381 	 * for a small period time.  See ioc_batching, ioc_set_batching
1382 	 */
1383 	ioc_set_batching(q, current->io_context);
1384 
1385 	spin_lock_irq(q->queue_lock);
1386 	finish_wait(&rl->wait[is_sync], &wait);
1387 
1388 	goto retry;
1389 }
1390 
1391 static struct request *blk_old_get_request(struct request_queue *q,
1392 					   unsigned int op, gfp_t gfp_mask)
1393 {
1394 	struct request *rq;
1395 
1396 	WARN_ON_ONCE(q->mq_ops);
1397 
1398 	/* create ioc upfront */
1399 	create_io_context(gfp_mask, q->node);
1400 
1401 	spin_lock_irq(q->queue_lock);
1402 	rq = get_request(q, op, NULL, gfp_mask);
1403 	if (IS_ERR(rq)) {
1404 		spin_unlock_irq(q->queue_lock);
1405 		return rq;
1406 	}
1407 
1408 	/* q->queue_lock is unlocked at this point */
1409 	rq->__data_len = 0;
1410 	rq->__sector = (sector_t) -1;
1411 	rq->bio = rq->biotail = NULL;
1412 	return rq;
1413 }
1414 
1415 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1416 				gfp_t gfp_mask)
1417 {
1418 	struct request *req;
1419 
1420 	if (q->mq_ops) {
1421 		req = blk_mq_alloc_request(q, op,
1422 			(gfp_mask & __GFP_DIRECT_RECLAIM) ?
1423 				0 : BLK_MQ_REQ_NOWAIT);
1424 		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1425 			q->mq_ops->initialize_rq_fn(req);
1426 	} else {
1427 		req = blk_old_get_request(q, op, gfp_mask);
1428 		if (!IS_ERR(req) && q->initialize_rq_fn)
1429 			q->initialize_rq_fn(req);
1430 	}
1431 
1432 	return req;
1433 }
1434 EXPORT_SYMBOL(blk_get_request);
1435 
1436 /**
1437  * blk_requeue_request - put a request back on queue
1438  * @q:		request queue where request should be inserted
1439  * @rq:		request to be inserted
1440  *
1441  * Description:
1442  *    Drivers often keep queueing requests until the hardware cannot accept
1443  *    more, when that condition happens we need to put the request back
1444  *    on the queue. Must be called with queue lock held.
1445  */
1446 void blk_requeue_request(struct request_queue *q, struct request *rq)
1447 {
1448 	lockdep_assert_held(q->queue_lock);
1449 	WARN_ON_ONCE(q->mq_ops);
1450 
1451 	blk_delete_timer(rq);
1452 	blk_clear_rq_complete(rq);
1453 	trace_block_rq_requeue(q, rq);
1454 	wbt_requeue(q->rq_wb, &rq->issue_stat);
1455 
1456 	if (rq->rq_flags & RQF_QUEUED)
1457 		blk_queue_end_tag(q, rq);
1458 
1459 	BUG_ON(blk_queued_rq(rq));
1460 
1461 	elv_requeue_request(q, rq);
1462 }
1463 EXPORT_SYMBOL(blk_requeue_request);
1464 
1465 static void add_acct_request(struct request_queue *q, struct request *rq,
1466 			     int where)
1467 {
1468 	blk_account_io_start(rq, true);
1469 	__elv_add_request(q, rq, where);
1470 }
1471 
1472 static void part_round_stats_single(int cpu, struct hd_struct *part,
1473 				    unsigned long now)
1474 {
1475 	int inflight;
1476 
1477 	if (now == part->stamp)
1478 		return;
1479 
1480 	inflight = part_in_flight(part);
1481 	if (inflight) {
1482 		__part_stat_add(cpu, part, time_in_queue,
1483 				inflight * (now - part->stamp));
1484 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1485 	}
1486 	part->stamp = now;
1487 }
1488 
1489 /**
1490  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1491  * @cpu: cpu number for stats access
1492  * @part: target partition
1493  *
1494  * The average IO queue length and utilisation statistics are maintained
1495  * by observing the current state of the queue length and the amount of
1496  * time it has been in this state for.
1497  *
1498  * Normally, that accounting is done on IO completion, but that can result
1499  * in more than a second's worth of IO being accounted for within any one
1500  * second, leading to >100% utilisation.  To deal with that, we call this
1501  * function to do a round-off before returning the results when reading
1502  * /proc/diskstats.  This accounts immediately for all queue usage up to
1503  * the current jiffies and restarts the counters again.
1504  */
1505 void part_round_stats(int cpu, struct hd_struct *part)
1506 {
1507 	unsigned long now = jiffies;
1508 
1509 	if (part->partno)
1510 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1511 	part_round_stats_single(cpu, part, now);
1512 }
1513 EXPORT_SYMBOL_GPL(part_round_stats);
1514 
1515 #ifdef CONFIG_PM
1516 static void blk_pm_put_request(struct request *rq)
1517 {
1518 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1519 		pm_runtime_mark_last_busy(rq->q->dev);
1520 }
1521 #else
1522 static inline void blk_pm_put_request(struct request *rq) {}
1523 #endif
1524 
1525 void __blk_put_request(struct request_queue *q, struct request *req)
1526 {
1527 	req_flags_t rq_flags = req->rq_flags;
1528 
1529 	if (unlikely(!q))
1530 		return;
1531 
1532 	if (q->mq_ops) {
1533 		blk_mq_free_request(req);
1534 		return;
1535 	}
1536 
1537 	lockdep_assert_held(q->queue_lock);
1538 
1539 	blk_pm_put_request(req);
1540 
1541 	elv_completed_request(q, req);
1542 
1543 	/* this is a bio leak */
1544 	WARN_ON(req->bio != NULL);
1545 
1546 	wbt_done(q->rq_wb, &req->issue_stat);
1547 
1548 	/*
1549 	 * Request may not have originated from ll_rw_blk. if not,
1550 	 * it didn't come out of our reserved rq pools
1551 	 */
1552 	if (rq_flags & RQF_ALLOCED) {
1553 		struct request_list *rl = blk_rq_rl(req);
1554 		bool sync = op_is_sync(req->cmd_flags);
1555 
1556 		BUG_ON(!list_empty(&req->queuelist));
1557 		BUG_ON(ELV_ON_HASH(req));
1558 
1559 		blk_free_request(rl, req);
1560 		freed_request(rl, sync, rq_flags);
1561 		blk_put_rl(rl);
1562 	}
1563 }
1564 EXPORT_SYMBOL_GPL(__blk_put_request);
1565 
1566 void blk_put_request(struct request *req)
1567 {
1568 	struct request_queue *q = req->q;
1569 
1570 	if (q->mq_ops)
1571 		blk_mq_free_request(req);
1572 	else {
1573 		unsigned long flags;
1574 
1575 		spin_lock_irqsave(q->queue_lock, flags);
1576 		__blk_put_request(q, req);
1577 		spin_unlock_irqrestore(q->queue_lock, flags);
1578 	}
1579 }
1580 EXPORT_SYMBOL(blk_put_request);
1581 
1582 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1583 			    struct bio *bio)
1584 {
1585 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1586 
1587 	if (!ll_back_merge_fn(q, req, bio))
1588 		return false;
1589 
1590 	trace_block_bio_backmerge(q, req, bio);
1591 
1592 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1593 		blk_rq_set_mixed_merge(req);
1594 
1595 	req->biotail->bi_next = bio;
1596 	req->biotail = bio;
1597 	req->__data_len += bio->bi_iter.bi_size;
1598 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1599 
1600 	blk_account_io_start(req, false);
1601 	return true;
1602 }
1603 
1604 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1605 			     struct bio *bio)
1606 {
1607 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1608 
1609 	if (!ll_front_merge_fn(q, req, bio))
1610 		return false;
1611 
1612 	trace_block_bio_frontmerge(q, req, bio);
1613 
1614 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1615 		blk_rq_set_mixed_merge(req);
1616 
1617 	bio->bi_next = req->bio;
1618 	req->bio = bio;
1619 
1620 	req->__sector = bio->bi_iter.bi_sector;
1621 	req->__data_len += bio->bi_iter.bi_size;
1622 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1623 
1624 	blk_account_io_start(req, false);
1625 	return true;
1626 }
1627 
1628 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1629 		struct bio *bio)
1630 {
1631 	unsigned short segments = blk_rq_nr_discard_segments(req);
1632 
1633 	if (segments >= queue_max_discard_segments(q))
1634 		goto no_merge;
1635 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1636 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1637 		goto no_merge;
1638 
1639 	req->biotail->bi_next = bio;
1640 	req->biotail = bio;
1641 	req->__data_len += bio->bi_iter.bi_size;
1642 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1643 	req->nr_phys_segments = segments + 1;
1644 
1645 	blk_account_io_start(req, false);
1646 	return true;
1647 no_merge:
1648 	req_set_nomerge(q, req);
1649 	return false;
1650 }
1651 
1652 /**
1653  * blk_attempt_plug_merge - try to merge with %current's plugged list
1654  * @q: request_queue new bio is being queued at
1655  * @bio: new bio being queued
1656  * @request_count: out parameter for number of traversed plugged requests
1657  * @same_queue_rq: pointer to &struct request that gets filled in when
1658  * another request associated with @q is found on the plug list
1659  * (optional, may be %NULL)
1660  *
1661  * Determine whether @bio being queued on @q can be merged with a request
1662  * on %current's plugged list.  Returns %true if merge was successful,
1663  * otherwise %false.
1664  *
1665  * Plugging coalesces IOs from the same issuer for the same purpose without
1666  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1667  * than scheduling, and the request, while may have elvpriv data, is not
1668  * added on the elevator at this point.  In addition, we don't have
1669  * reliable access to the elevator outside queue lock.  Only check basic
1670  * merging parameters without querying the elevator.
1671  *
1672  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1673  */
1674 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1675 			    unsigned int *request_count,
1676 			    struct request **same_queue_rq)
1677 {
1678 	struct blk_plug *plug;
1679 	struct request *rq;
1680 	struct list_head *plug_list;
1681 
1682 	plug = current->plug;
1683 	if (!plug)
1684 		return false;
1685 	*request_count = 0;
1686 
1687 	if (q->mq_ops)
1688 		plug_list = &plug->mq_list;
1689 	else
1690 		plug_list = &plug->list;
1691 
1692 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1693 		bool merged = false;
1694 
1695 		if (rq->q == q) {
1696 			(*request_count)++;
1697 			/*
1698 			 * Only blk-mq multiple hardware queues case checks the
1699 			 * rq in the same queue, there should be only one such
1700 			 * rq in a queue
1701 			 **/
1702 			if (same_queue_rq)
1703 				*same_queue_rq = rq;
1704 		}
1705 
1706 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1707 			continue;
1708 
1709 		switch (blk_try_merge(rq, bio)) {
1710 		case ELEVATOR_BACK_MERGE:
1711 			merged = bio_attempt_back_merge(q, rq, bio);
1712 			break;
1713 		case ELEVATOR_FRONT_MERGE:
1714 			merged = bio_attempt_front_merge(q, rq, bio);
1715 			break;
1716 		case ELEVATOR_DISCARD_MERGE:
1717 			merged = bio_attempt_discard_merge(q, rq, bio);
1718 			break;
1719 		default:
1720 			break;
1721 		}
1722 
1723 		if (merged)
1724 			return true;
1725 	}
1726 
1727 	return false;
1728 }
1729 
1730 unsigned int blk_plug_queued_count(struct request_queue *q)
1731 {
1732 	struct blk_plug *plug;
1733 	struct request *rq;
1734 	struct list_head *plug_list;
1735 	unsigned int ret = 0;
1736 
1737 	plug = current->plug;
1738 	if (!plug)
1739 		goto out;
1740 
1741 	if (q->mq_ops)
1742 		plug_list = &plug->mq_list;
1743 	else
1744 		plug_list = &plug->list;
1745 
1746 	list_for_each_entry(rq, plug_list, queuelist) {
1747 		if (rq->q == q)
1748 			ret++;
1749 	}
1750 out:
1751 	return ret;
1752 }
1753 
1754 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1755 {
1756 	struct io_context *ioc = rq_ioc(bio);
1757 
1758 	if (bio->bi_opf & REQ_RAHEAD)
1759 		req->cmd_flags |= REQ_FAILFAST_MASK;
1760 
1761 	req->__sector = bio->bi_iter.bi_sector;
1762 	if (ioprio_valid(bio_prio(bio)))
1763 		req->ioprio = bio_prio(bio);
1764 	else if (ioc)
1765 		req->ioprio = ioc->ioprio;
1766 	else
1767 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1768 	req->write_hint = bio->bi_write_hint;
1769 	blk_rq_bio_prep(req->q, req, bio);
1770 }
1771 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1772 
1773 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1774 {
1775 	struct blk_plug *plug;
1776 	int where = ELEVATOR_INSERT_SORT;
1777 	struct request *req, *free;
1778 	unsigned int request_count = 0;
1779 	unsigned int wb_acct;
1780 
1781 	/*
1782 	 * low level driver can indicate that it wants pages above a
1783 	 * certain limit bounced to low memory (ie for highmem, or even
1784 	 * ISA dma in theory)
1785 	 */
1786 	blk_queue_bounce(q, &bio);
1787 
1788 	blk_queue_split(q, &bio);
1789 
1790 	if (!bio_integrity_prep(bio))
1791 		return BLK_QC_T_NONE;
1792 
1793 	if (op_is_flush(bio->bi_opf)) {
1794 		spin_lock_irq(q->queue_lock);
1795 		where = ELEVATOR_INSERT_FLUSH;
1796 		goto get_rq;
1797 	}
1798 
1799 	/*
1800 	 * Check if we can merge with the plugged list before grabbing
1801 	 * any locks.
1802 	 */
1803 	if (!blk_queue_nomerges(q)) {
1804 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1805 			return BLK_QC_T_NONE;
1806 	} else
1807 		request_count = blk_plug_queued_count(q);
1808 
1809 	spin_lock_irq(q->queue_lock);
1810 
1811 	switch (elv_merge(q, &req, bio)) {
1812 	case ELEVATOR_BACK_MERGE:
1813 		if (!bio_attempt_back_merge(q, req, bio))
1814 			break;
1815 		elv_bio_merged(q, req, bio);
1816 		free = attempt_back_merge(q, req);
1817 		if (free)
1818 			__blk_put_request(q, free);
1819 		else
1820 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1821 		goto out_unlock;
1822 	case ELEVATOR_FRONT_MERGE:
1823 		if (!bio_attempt_front_merge(q, req, bio))
1824 			break;
1825 		elv_bio_merged(q, req, bio);
1826 		free = attempt_front_merge(q, req);
1827 		if (free)
1828 			__blk_put_request(q, free);
1829 		else
1830 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1831 		goto out_unlock;
1832 	default:
1833 		break;
1834 	}
1835 
1836 get_rq:
1837 	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1838 
1839 	/*
1840 	 * Grab a free request. This is might sleep but can not fail.
1841 	 * Returns with the queue unlocked.
1842 	 */
1843 	req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1844 	if (IS_ERR(req)) {
1845 		__wbt_done(q->rq_wb, wb_acct);
1846 		if (PTR_ERR(req) == -ENOMEM)
1847 			bio->bi_status = BLK_STS_RESOURCE;
1848 		else
1849 			bio->bi_status = BLK_STS_IOERR;
1850 		bio_endio(bio);
1851 		goto out_unlock;
1852 	}
1853 
1854 	wbt_track(&req->issue_stat, wb_acct);
1855 
1856 	/*
1857 	 * After dropping the lock and possibly sleeping here, our request
1858 	 * may now be mergeable after it had proven unmergeable (above).
1859 	 * We don't worry about that case for efficiency. It won't happen
1860 	 * often, and the elevators are able to handle it.
1861 	 */
1862 	blk_init_request_from_bio(req, bio);
1863 
1864 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1865 		req->cpu = raw_smp_processor_id();
1866 
1867 	plug = current->plug;
1868 	if (plug) {
1869 		/*
1870 		 * If this is the first request added after a plug, fire
1871 		 * of a plug trace.
1872 		 *
1873 		 * @request_count may become stale because of schedule
1874 		 * out, so check plug list again.
1875 		 */
1876 		if (!request_count || list_empty(&plug->list))
1877 			trace_block_plug(q);
1878 		else {
1879 			struct request *last = list_entry_rq(plug->list.prev);
1880 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
1881 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1882 				blk_flush_plug_list(plug, false);
1883 				trace_block_plug(q);
1884 			}
1885 		}
1886 		list_add_tail(&req->queuelist, &plug->list);
1887 		blk_account_io_start(req, true);
1888 	} else {
1889 		spin_lock_irq(q->queue_lock);
1890 		add_acct_request(q, req, where);
1891 		__blk_run_queue(q);
1892 out_unlock:
1893 		spin_unlock_irq(q->queue_lock);
1894 	}
1895 
1896 	return BLK_QC_T_NONE;
1897 }
1898 
1899 /*
1900  * If bio->bi_dev is a partition, remap the location
1901  */
1902 static inline void blk_partition_remap(struct bio *bio)
1903 {
1904 	struct block_device *bdev = bio->bi_bdev;
1905 
1906 	/*
1907 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
1908 	 * Include a test for the reset op code and perform the remap if needed.
1909 	 */
1910 	if (bdev != bdev->bd_contains &&
1911 	    (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1912 		struct hd_struct *p = bdev->bd_part;
1913 
1914 		bio->bi_iter.bi_sector += p->start_sect;
1915 		bio->bi_bdev = bdev->bd_contains;
1916 
1917 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1918 				      bdev->bd_dev,
1919 				      bio->bi_iter.bi_sector - p->start_sect);
1920 	}
1921 }
1922 
1923 static void handle_bad_sector(struct bio *bio)
1924 {
1925 	char b[BDEVNAME_SIZE];
1926 
1927 	printk(KERN_INFO "attempt to access beyond end of device\n");
1928 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1929 			bdevname(bio->bi_bdev, b),
1930 			bio->bi_opf,
1931 			(unsigned long long)bio_end_sector(bio),
1932 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1933 }
1934 
1935 #ifdef CONFIG_FAIL_MAKE_REQUEST
1936 
1937 static DECLARE_FAULT_ATTR(fail_make_request);
1938 
1939 static int __init setup_fail_make_request(char *str)
1940 {
1941 	return setup_fault_attr(&fail_make_request, str);
1942 }
1943 __setup("fail_make_request=", setup_fail_make_request);
1944 
1945 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1946 {
1947 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1948 }
1949 
1950 static int __init fail_make_request_debugfs(void)
1951 {
1952 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1953 						NULL, &fail_make_request);
1954 
1955 	return PTR_ERR_OR_ZERO(dir);
1956 }
1957 
1958 late_initcall(fail_make_request_debugfs);
1959 
1960 #else /* CONFIG_FAIL_MAKE_REQUEST */
1961 
1962 static inline bool should_fail_request(struct hd_struct *part,
1963 					unsigned int bytes)
1964 {
1965 	return false;
1966 }
1967 
1968 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1969 
1970 /*
1971  * Check whether this bio extends beyond the end of the device.
1972  */
1973 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1974 {
1975 	sector_t maxsector;
1976 
1977 	if (!nr_sectors)
1978 		return 0;
1979 
1980 	/* Test device or partition size, when known. */
1981 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1982 	if (maxsector) {
1983 		sector_t sector = bio->bi_iter.bi_sector;
1984 
1985 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1986 			/*
1987 			 * This may well happen - the kernel calls bread()
1988 			 * without checking the size of the device, e.g., when
1989 			 * mounting a device.
1990 			 */
1991 			handle_bad_sector(bio);
1992 			return 1;
1993 		}
1994 	}
1995 
1996 	return 0;
1997 }
1998 
1999 static noinline_for_stack bool
2000 generic_make_request_checks(struct bio *bio)
2001 {
2002 	struct request_queue *q;
2003 	int nr_sectors = bio_sectors(bio);
2004 	blk_status_t status = BLK_STS_IOERR;
2005 	char b[BDEVNAME_SIZE];
2006 	struct hd_struct *part;
2007 
2008 	might_sleep();
2009 
2010 	if (bio_check_eod(bio, nr_sectors))
2011 		goto end_io;
2012 
2013 	q = bdev_get_queue(bio->bi_bdev);
2014 	if (unlikely(!q)) {
2015 		printk(KERN_ERR
2016 		       "generic_make_request: Trying to access "
2017 			"nonexistent block-device %s (%Lu)\n",
2018 			bdevname(bio->bi_bdev, b),
2019 			(long long) bio->bi_iter.bi_sector);
2020 		goto end_io;
2021 	}
2022 
2023 	/*
2024 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2025 	 * if queue is not a request based queue.
2026 	 */
2027 
2028 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2029 		goto not_supported;
2030 
2031 	part = bio->bi_bdev->bd_part;
2032 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
2033 	    should_fail_request(&part_to_disk(part)->part0,
2034 				bio->bi_iter.bi_size))
2035 		goto end_io;
2036 
2037 	/*
2038 	 * If this device has partitions, remap block n
2039 	 * of partition p to block n+start(p) of the disk.
2040 	 */
2041 	blk_partition_remap(bio);
2042 
2043 	if (bio_check_eod(bio, nr_sectors))
2044 		goto end_io;
2045 
2046 	/*
2047 	 * Filter flush bio's early so that make_request based
2048 	 * drivers without flush support don't have to worry
2049 	 * about them.
2050 	 */
2051 	if (op_is_flush(bio->bi_opf) &&
2052 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2053 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2054 		if (!nr_sectors) {
2055 			status = BLK_STS_OK;
2056 			goto end_io;
2057 		}
2058 	}
2059 
2060 	switch (bio_op(bio)) {
2061 	case REQ_OP_DISCARD:
2062 		if (!blk_queue_discard(q))
2063 			goto not_supported;
2064 		break;
2065 	case REQ_OP_SECURE_ERASE:
2066 		if (!blk_queue_secure_erase(q))
2067 			goto not_supported;
2068 		break;
2069 	case REQ_OP_WRITE_SAME:
2070 		if (!bdev_write_same(bio->bi_bdev))
2071 			goto not_supported;
2072 		break;
2073 	case REQ_OP_ZONE_REPORT:
2074 	case REQ_OP_ZONE_RESET:
2075 		if (!bdev_is_zoned(bio->bi_bdev))
2076 			goto not_supported;
2077 		break;
2078 	case REQ_OP_WRITE_ZEROES:
2079 		if (!bdev_write_zeroes_sectors(bio->bi_bdev))
2080 			goto not_supported;
2081 		break;
2082 	default:
2083 		break;
2084 	}
2085 
2086 	/*
2087 	 * Various block parts want %current->io_context and lazy ioc
2088 	 * allocation ends up trading a lot of pain for a small amount of
2089 	 * memory.  Just allocate it upfront.  This may fail and block
2090 	 * layer knows how to live with it.
2091 	 */
2092 	create_io_context(GFP_ATOMIC, q->node);
2093 
2094 	if (!blkcg_bio_issue_check(q, bio))
2095 		return false;
2096 
2097 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2098 		trace_block_bio_queue(q, bio);
2099 		/* Now that enqueuing has been traced, we need to trace
2100 		 * completion as well.
2101 		 */
2102 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2103 	}
2104 	return true;
2105 
2106 not_supported:
2107 	status = BLK_STS_NOTSUPP;
2108 end_io:
2109 	bio->bi_status = status;
2110 	bio_endio(bio);
2111 	return false;
2112 }
2113 
2114 /**
2115  * generic_make_request - hand a buffer to its device driver for I/O
2116  * @bio:  The bio describing the location in memory and on the device.
2117  *
2118  * generic_make_request() is used to make I/O requests of block
2119  * devices. It is passed a &struct bio, which describes the I/O that needs
2120  * to be done.
2121  *
2122  * generic_make_request() does not return any status.  The
2123  * success/failure status of the request, along with notification of
2124  * completion, is delivered asynchronously through the bio->bi_end_io
2125  * function described (one day) else where.
2126  *
2127  * The caller of generic_make_request must make sure that bi_io_vec
2128  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2129  * set to describe the device address, and the
2130  * bi_end_io and optionally bi_private are set to describe how
2131  * completion notification should be signaled.
2132  *
2133  * generic_make_request and the drivers it calls may use bi_next if this
2134  * bio happens to be merged with someone else, and may resubmit the bio to
2135  * a lower device by calling into generic_make_request recursively, which
2136  * means the bio should NOT be touched after the call to ->make_request_fn.
2137  */
2138 blk_qc_t generic_make_request(struct bio *bio)
2139 {
2140 	/*
2141 	 * bio_list_on_stack[0] contains bios submitted by the current
2142 	 * make_request_fn.
2143 	 * bio_list_on_stack[1] contains bios that were submitted before
2144 	 * the current make_request_fn, but that haven't been processed
2145 	 * yet.
2146 	 */
2147 	struct bio_list bio_list_on_stack[2];
2148 	blk_qc_t ret = BLK_QC_T_NONE;
2149 
2150 	if (!generic_make_request_checks(bio))
2151 		goto out;
2152 
2153 	/*
2154 	 * We only want one ->make_request_fn to be active at a time, else
2155 	 * stack usage with stacked devices could be a problem.  So use
2156 	 * current->bio_list to keep a list of requests submited by a
2157 	 * make_request_fn function.  current->bio_list is also used as a
2158 	 * flag to say if generic_make_request is currently active in this
2159 	 * task or not.  If it is NULL, then no make_request is active.  If
2160 	 * it is non-NULL, then a make_request is active, and new requests
2161 	 * should be added at the tail
2162 	 */
2163 	if (current->bio_list) {
2164 		bio_list_add(&current->bio_list[0], bio);
2165 		goto out;
2166 	}
2167 
2168 	/* following loop may be a bit non-obvious, and so deserves some
2169 	 * explanation.
2170 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2171 	 * ensure that) so we have a list with a single bio.
2172 	 * We pretend that we have just taken it off a longer list, so
2173 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2174 	 * thus initialising the bio_list of new bios to be
2175 	 * added.  ->make_request() may indeed add some more bios
2176 	 * through a recursive call to generic_make_request.  If it
2177 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2178 	 * from the top.  In this case we really did just take the bio
2179 	 * of the top of the list (no pretending) and so remove it from
2180 	 * bio_list, and call into ->make_request() again.
2181 	 */
2182 	BUG_ON(bio->bi_next);
2183 	bio_list_init(&bio_list_on_stack[0]);
2184 	current->bio_list = bio_list_on_stack;
2185 	do {
2186 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2187 
2188 		if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
2189 			struct bio_list lower, same;
2190 
2191 			/* Create a fresh bio_list for all subordinate requests */
2192 			bio_list_on_stack[1] = bio_list_on_stack[0];
2193 			bio_list_init(&bio_list_on_stack[0]);
2194 			ret = q->make_request_fn(q, bio);
2195 
2196 			blk_queue_exit(q);
2197 
2198 			/* sort new bios into those for a lower level
2199 			 * and those for the same level
2200 			 */
2201 			bio_list_init(&lower);
2202 			bio_list_init(&same);
2203 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2204 				if (q == bdev_get_queue(bio->bi_bdev))
2205 					bio_list_add(&same, bio);
2206 				else
2207 					bio_list_add(&lower, bio);
2208 			/* now assemble so we handle the lowest level first */
2209 			bio_list_merge(&bio_list_on_stack[0], &lower);
2210 			bio_list_merge(&bio_list_on_stack[0], &same);
2211 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2212 		} else {
2213 			if (unlikely(!blk_queue_dying(q) &&
2214 					(bio->bi_opf & REQ_NOWAIT)))
2215 				bio_wouldblock_error(bio);
2216 			else
2217 				bio_io_error(bio);
2218 		}
2219 		bio = bio_list_pop(&bio_list_on_stack[0]);
2220 	} while (bio);
2221 	current->bio_list = NULL; /* deactivate */
2222 
2223 out:
2224 	return ret;
2225 }
2226 EXPORT_SYMBOL(generic_make_request);
2227 
2228 /**
2229  * submit_bio - submit a bio to the block device layer for I/O
2230  * @bio: The &struct bio which describes the I/O
2231  *
2232  * submit_bio() is very similar in purpose to generic_make_request(), and
2233  * uses that function to do most of the work. Both are fairly rough
2234  * interfaces; @bio must be presetup and ready for I/O.
2235  *
2236  */
2237 blk_qc_t submit_bio(struct bio *bio)
2238 {
2239 	/*
2240 	 * If it's a regular read/write or a barrier with data attached,
2241 	 * go through the normal accounting stuff before submission.
2242 	 */
2243 	if (bio_has_data(bio)) {
2244 		unsigned int count;
2245 
2246 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2247 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2248 		else
2249 			count = bio_sectors(bio);
2250 
2251 		if (op_is_write(bio_op(bio))) {
2252 			count_vm_events(PGPGOUT, count);
2253 		} else {
2254 			task_io_account_read(bio->bi_iter.bi_size);
2255 			count_vm_events(PGPGIN, count);
2256 		}
2257 
2258 		if (unlikely(block_dump)) {
2259 			char b[BDEVNAME_SIZE];
2260 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2261 			current->comm, task_pid_nr(current),
2262 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2263 				(unsigned long long)bio->bi_iter.bi_sector,
2264 				bdevname(bio->bi_bdev, b),
2265 				count);
2266 		}
2267 	}
2268 
2269 	return generic_make_request(bio);
2270 }
2271 EXPORT_SYMBOL(submit_bio);
2272 
2273 /**
2274  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2275  *                              for new the queue limits
2276  * @q:  the queue
2277  * @rq: the request being checked
2278  *
2279  * Description:
2280  *    @rq may have been made based on weaker limitations of upper-level queues
2281  *    in request stacking drivers, and it may violate the limitation of @q.
2282  *    Since the block layer and the underlying device driver trust @rq
2283  *    after it is inserted to @q, it should be checked against @q before
2284  *    the insertion using this generic function.
2285  *
2286  *    Request stacking drivers like request-based dm may change the queue
2287  *    limits when retrying requests on other queues. Those requests need
2288  *    to be checked against the new queue limits again during dispatch.
2289  */
2290 static int blk_cloned_rq_check_limits(struct request_queue *q,
2291 				      struct request *rq)
2292 {
2293 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2294 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2295 		return -EIO;
2296 	}
2297 
2298 	/*
2299 	 * queue's settings related to segment counting like q->bounce_pfn
2300 	 * may differ from that of other stacking queues.
2301 	 * Recalculate it to check the request correctly on this queue's
2302 	 * limitation.
2303 	 */
2304 	blk_recalc_rq_segments(rq);
2305 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2306 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2307 		return -EIO;
2308 	}
2309 
2310 	return 0;
2311 }
2312 
2313 /**
2314  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2315  * @q:  the queue to submit the request
2316  * @rq: the request being queued
2317  */
2318 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2319 {
2320 	unsigned long flags;
2321 	int where = ELEVATOR_INSERT_BACK;
2322 
2323 	if (blk_cloned_rq_check_limits(q, rq))
2324 		return BLK_STS_IOERR;
2325 
2326 	if (rq->rq_disk &&
2327 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2328 		return BLK_STS_IOERR;
2329 
2330 	if (q->mq_ops) {
2331 		if (blk_queue_io_stat(q))
2332 			blk_account_io_start(rq, true);
2333 		blk_mq_sched_insert_request(rq, false, true, false, false);
2334 		return BLK_STS_OK;
2335 	}
2336 
2337 	spin_lock_irqsave(q->queue_lock, flags);
2338 	if (unlikely(blk_queue_dying(q))) {
2339 		spin_unlock_irqrestore(q->queue_lock, flags);
2340 		return BLK_STS_IOERR;
2341 	}
2342 
2343 	/*
2344 	 * Submitting request must be dequeued before calling this function
2345 	 * because it will be linked to another request_queue
2346 	 */
2347 	BUG_ON(blk_queued_rq(rq));
2348 
2349 	if (op_is_flush(rq->cmd_flags))
2350 		where = ELEVATOR_INSERT_FLUSH;
2351 
2352 	add_acct_request(q, rq, where);
2353 	if (where == ELEVATOR_INSERT_FLUSH)
2354 		__blk_run_queue(q);
2355 	spin_unlock_irqrestore(q->queue_lock, flags);
2356 
2357 	return BLK_STS_OK;
2358 }
2359 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2360 
2361 /**
2362  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2363  * @rq: request to examine
2364  *
2365  * Description:
2366  *     A request could be merge of IOs which require different failure
2367  *     handling.  This function determines the number of bytes which
2368  *     can be failed from the beginning of the request without
2369  *     crossing into area which need to be retried further.
2370  *
2371  * Return:
2372  *     The number of bytes to fail.
2373  */
2374 unsigned int blk_rq_err_bytes(const struct request *rq)
2375 {
2376 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2377 	unsigned int bytes = 0;
2378 	struct bio *bio;
2379 
2380 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2381 		return blk_rq_bytes(rq);
2382 
2383 	/*
2384 	 * Currently the only 'mixing' which can happen is between
2385 	 * different fastfail types.  We can safely fail portions
2386 	 * which have all the failfast bits that the first one has -
2387 	 * the ones which are at least as eager to fail as the first
2388 	 * one.
2389 	 */
2390 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2391 		if ((bio->bi_opf & ff) != ff)
2392 			break;
2393 		bytes += bio->bi_iter.bi_size;
2394 	}
2395 
2396 	/* this could lead to infinite loop */
2397 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2398 	return bytes;
2399 }
2400 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2401 
2402 void blk_account_io_completion(struct request *req, unsigned int bytes)
2403 {
2404 	if (blk_do_io_stat(req)) {
2405 		const int rw = rq_data_dir(req);
2406 		struct hd_struct *part;
2407 		int cpu;
2408 
2409 		cpu = part_stat_lock();
2410 		part = req->part;
2411 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2412 		part_stat_unlock();
2413 	}
2414 }
2415 
2416 void blk_account_io_done(struct request *req)
2417 {
2418 	/*
2419 	 * Account IO completion.  flush_rq isn't accounted as a
2420 	 * normal IO on queueing nor completion.  Accounting the
2421 	 * containing request is enough.
2422 	 */
2423 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2424 		unsigned long duration = jiffies - req->start_time;
2425 		const int rw = rq_data_dir(req);
2426 		struct hd_struct *part;
2427 		int cpu;
2428 
2429 		cpu = part_stat_lock();
2430 		part = req->part;
2431 
2432 		part_stat_inc(cpu, part, ios[rw]);
2433 		part_stat_add(cpu, part, ticks[rw], duration);
2434 		part_round_stats(cpu, part);
2435 		part_dec_in_flight(part, rw);
2436 
2437 		hd_struct_put(part);
2438 		part_stat_unlock();
2439 	}
2440 }
2441 
2442 #ifdef CONFIG_PM
2443 /*
2444  * Don't process normal requests when queue is suspended
2445  * or in the process of suspending/resuming
2446  */
2447 static struct request *blk_pm_peek_request(struct request_queue *q,
2448 					   struct request *rq)
2449 {
2450 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2451 	    (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2452 		return NULL;
2453 	else
2454 		return rq;
2455 }
2456 #else
2457 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2458 						  struct request *rq)
2459 {
2460 	return rq;
2461 }
2462 #endif
2463 
2464 void blk_account_io_start(struct request *rq, bool new_io)
2465 {
2466 	struct hd_struct *part;
2467 	int rw = rq_data_dir(rq);
2468 	int cpu;
2469 
2470 	if (!blk_do_io_stat(rq))
2471 		return;
2472 
2473 	cpu = part_stat_lock();
2474 
2475 	if (!new_io) {
2476 		part = rq->part;
2477 		part_stat_inc(cpu, part, merges[rw]);
2478 	} else {
2479 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2480 		if (!hd_struct_try_get(part)) {
2481 			/*
2482 			 * The partition is already being removed,
2483 			 * the request will be accounted on the disk only
2484 			 *
2485 			 * We take a reference on disk->part0 although that
2486 			 * partition will never be deleted, so we can treat
2487 			 * it as any other partition.
2488 			 */
2489 			part = &rq->rq_disk->part0;
2490 			hd_struct_get(part);
2491 		}
2492 		part_round_stats(cpu, part);
2493 		part_inc_in_flight(part, rw);
2494 		rq->part = part;
2495 	}
2496 
2497 	part_stat_unlock();
2498 }
2499 
2500 /**
2501  * blk_peek_request - peek at the top of a request queue
2502  * @q: request queue to peek at
2503  *
2504  * Description:
2505  *     Return the request at the top of @q.  The returned request
2506  *     should be started using blk_start_request() before LLD starts
2507  *     processing it.
2508  *
2509  * Return:
2510  *     Pointer to the request at the top of @q if available.  Null
2511  *     otherwise.
2512  */
2513 struct request *blk_peek_request(struct request_queue *q)
2514 {
2515 	struct request *rq;
2516 	int ret;
2517 
2518 	lockdep_assert_held(q->queue_lock);
2519 	WARN_ON_ONCE(q->mq_ops);
2520 
2521 	while ((rq = __elv_next_request(q)) != NULL) {
2522 
2523 		rq = blk_pm_peek_request(q, rq);
2524 		if (!rq)
2525 			break;
2526 
2527 		if (!(rq->rq_flags & RQF_STARTED)) {
2528 			/*
2529 			 * This is the first time the device driver
2530 			 * sees this request (possibly after
2531 			 * requeueing).  Notify IO scheduler.
2532 			 */
2533 			if (rq->rq_flags & RQF_SORTED)
2534 				elv_activate_rq(q, rq);
2535 
2536 			/*
2537 			 * just mark as started even if we don't start
2538 			 * it, a request that has been delayed should
2539 			 * not be passed by new incoming requests
2540 			 */
2541 			rq->rq_flags |= RQF_STARTED;
2542 			trace_block_rq_issue(q, rq);
2543 		}
2544 
2545 		if (!q->boundary_rq || q->boundary_rq == rq) {
2546 			q->end_sector = rq_end_sector(rq);
2547 			q->boundary_rq = NULL;
2548 		}
2549 
2550 		if (rq->rq_flags & RQF_DONTPREP)
2551 			break;
2552 
2553 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2554 			/*
2555 			 * make sure space for the drain appears we
2556 			 * know we can do this because max_hw_segments
2557 			 * has been adjusted to be one fewer than the
2558 			 * device can handle
2559 			 */
2560 			rq->nr_phys_segments++;
2561 		}
2562 
2563 		if (!q->prep_rq_fn)
2564 			break;
2565 
2566 		ret = q->prep_rq_fn(q, rq);
2567 		if (ret == BLKPREP_OK) {
2568 			break;
2569 		} else if (ret == BLKPREP_DEFER) {
2570 			/*
2571 			 * the request may have been (partially) prepped.
2572 			 * we need to keep this request in the front to
2573 			 * avoid resource deadlock.  RQF_STARTED will
2574 			 * prevent other fs requests from passing this one.
2575 			 */
2576 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2577 			    !(rq->rq_flags & RQF_DONTPREP)) {
2578 				/*
2579 				 * remove the space for the drain we added
2580 				 * so that we don't add it again
2581 				 */
2582 				--rq->nr_phys_segments;
2583 			}
2584 
2585 			rq = NULL;
2586 			break;
2587 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2588 			rq->rq_flags |= RQF_QUIET;
2589 			/*
2590 			 * Mark this request as started so we don't trigger
2591 			 * any debug logic in the end I/O path.
2592 			 */
2593 			blk_start_request(rq);
2594 			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2595 					BLK_STS_TARGET : BLK_STS_IOERR);
2596 		} else {
2597 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2598 			break;
2599 		}
2600 	}
2601 
2602 	return rq;
2603 }
2604 EXPORT_SYMBOL(blk_peek_request);
2605 
2606 void blk_dequeue_request(struct request *rq)
2607 {
2608 	struct request_queue *q = rq->q;
2609 
2610 	BUG_ON(list_empty(&rq->queuelist));
2611 	BUG_ON(ELV_ON_HASH(rq));
2612 
2613 	list_del_init(&rq->queuelist);
2614 
2615 	/*
2616 	 * the time frame between a request being removed from the lists
2617 	 * and to it is freed is accounted as io that is in progress at
2618 	 * the driver side.
2619 	 */
2620 	if (blk_account_rq(rq)) {
2621 		q->in_flight[rq_is_sync(rq)]++;
2622 		set_io_start_time_ns(rq);
2623 	}
2624 }
2625 
2626 /**
2627  * blk_start_request - start request processing on the driver
2628  * @req: request to dequeue
2629  *
2630  * Description:
2631  *     Dequeue @req and start timeout timer on it.  This hands off the
2632  *     request to the driver.
2633  *
2634  *     Block internal functions which don't want to start timer should
2635  *     call blk_dequeue_request().
2636  */
2637 void blk_start_request(struct request *req)
2638 {
2639 	lockdep_assert_held(req->q->queue_lock);
2640 	WARN_ON_ONCE(req->q->mq_ops);
2641 
2642 	blk_dequeue_request(req);
2643 
2644 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2645 		blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2646 		req->rq_flags |= RQF_STATS;
2647 		wbt_issue(req->q->rq_wb, &req->issue_stat);
2648 	}
2649 
2650 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2651 	blk_add_timer(req);
2652 }
2653 EXPORT_SYMBOL(blk_start_request);
2654 
2655 /**
2656  * blk_fetch_request - fetch a request from a request queue
2657  * @q: request queue to fetch a request from
2658  *
2659  * Description:
2660  *     Return the request at the top of @q.  The request is started on
2661  *     return and LLD can start processing it immediately.
2662  *
2663  * Return:
2664  *     Pointer to the request at the top of @q if available.  Null
2665  *     otherwise.
2666  */
2667 struct request *blk_fetch_request(struct request_queue *q)
2668 {
2669 	struct request *rq;
2670 
2671 	lockdep_assert_held(q->queue_lock);
2672 	WARN_ON_ONCE(q->mq_ops);
2673 
2674 	rq = blk_peek_request(q);
2675 	if (rq)
2676 		blk_start_request(rq);
2677 	return rq;
2678 }
2679 EXPORT_SYMBOL(blk_fetch_request);
2680 
2681 /**
2682  * blk_update_request - Special helper function for request stacking drivers
2683  * @req:      the request being processed
2684  * @error:    block status code
2685  * @nr_bytes: number of bytes to complete @req
2686  *
2687  * Description:
2688  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2689  *     the request structure even if @req doesn't have leftover.
2690  *     If @req has leftover, sets it up for the next range of segments.
2691  *
2692  *     This special helper function is only for request stacking drivers
2693  *     (e.g. request-based dm) so that they can handle partial completion.
2694  *     Actual device drivers should use blk_end_request instead.
2695  *
2696  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2697  *     %false return from this function.
2698  *
2699  * Return:
2700  *     %false - this request doesn't have any more data
2701  *     %true  - this request has more data
2702  **/
2703 bool blk_update_request(struct request *req, blk_status_t error,
2704 		unsigned int nr_bytes)
2705 {
2706 	int total_bytes;
2707 
2708 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2709 
2710 	if (!req->bio)
2711 		return false;
2712 
2713 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
2714 		     !(req->rq_flags & RQF_QUIET)))
2715 		print_req_error(req, error);
2716 
2717 	blk_account_io_completion(req, nr_bytes);
2718 
2719 	total_bytes = 0;
2720 	while (req->bio) {
2721 		struct bio *bio = req->bio;
2722 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2723 
2724 		if (bio_bytes == bio->bi_iter.bi_size)
2725 			req->bio = bio->bi_next;
2726 
2727 		/* Completion has already been traced */
2728 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2729 		req_bio_endio(req, bio, bio_bytes, error);
2730 
2731 		total_bytes += bio_bytes;
2732 		nr_bytes -= bio_bytes;
2733 
2734 		if (!nr_bytes)
2735 			break;
2736 	}
2737 
2738 	/*
2739 	 * completely done
2740 	 */
2741 	if (!req->bio) {
2742 		/*
2743 		 * Reset counters so that the request stacking driver
2744 		 * can find how many bytes remain in the request
2745 		 * later.
2746 		 */
2747 		req->__data_len = 0;
2748 		return false;
2749 	}
2750 
2751 	req->__data_len -= total_bytes;
2752 
2753 	/* update sector only for requests with clear definition of sector */
2754 	if (!blk_rq_is_passthrough(req))
2755 		req->__sector += total_bytes >> 9;
2756 
2757 	/* mixed attributes always follow the first bio */
2758 	if (req->rq_flags & RQF_MIXED_MERGE) {
2759 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2760 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2761 	}
2762 
2763 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2764 		/*
2765 		 * If total number of sectors is less than the first segment
2766 		 * size, something has gone terribly wrong.
2767 		 */
2768 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2769 			blk_dump_rq_flags(req, "request botched");
2770 			req->__data_len = blk_rq_cur_bytes(req);
2771 		}
2772 
2773 		/* recalculate the number of segments */
2774 		blk_recalc_rq_segments(req);
2775 	}
2776 
2777 	return true;
2778 }
2779 EXPORT_SYMBOL_GPL(blk_update_request);
2780 
2781 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2782 				    unsigned int nr_bytes,
2783 				    unsigned int bidi_bytes)
2784 {
2785 	if (blk_update_request(rq, error, nr_bytes))
2786 		return true;
2787 
2788 	/* Bidi request must be completed as a whole */
2789 	if (unlikely(blk_bidi_rq(rq)) &&
2790 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2791 		return true;
2792 
2793 	if (blk_queue_add_random(rq->q))
2794 		add_disk_randomness(rq->rq_disk);
2795 
2796 	return false;
2797 }
2798 
2799 /**
2800  * blk_unprep_request - unprepare a request
2801  * @req:	the request
2802  *
2803  * This function makes a request ready for complete resubmission (or
2804  * completion).  It happens only after all error handling is complete,
2805  * so represents the appropriate moment to deallocate any resources
2806  * that were allocated to the request in the prep_rq_fn.  The queue
2807  * lock is held when calling this.
2808  */
2809 void blk_unprep_request(struct request *req)
2810 {
2811 	struct request_queue *q = req->q;
2812 
2813 	req->rq_flags &= ~RQF_DONTPREP;
2814 	if (q->unprep_rq_fn)
2815 		q->unprep_rq_fn(q, req);
2816 }
2817 EXPORT_SYMBOL_GPL(blk_unprep_request);
2818 
2819 void blk_finish_request(struct request *req, blk_status_t error)
2820 {
2821 	struct request_queue *q = req->q;
2822 
2823 	lockdep_assert_held(req->q->queue_lock);
2824 	WARN_ON_ONCE(q->mq_ops);
2825 
2826 	if (req->rq_flags & RQF_STATS)
2827 		blk_stat_add(req);
2828 
2829 	if (req->rq_flags & RQF_QUEUED)
2830 		blk_queue_end_tag(q, req);
2831 
2832 	BUG_ON(blk_queued_rq(req));
2833 
2834 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2835 		laptop_io_completion(req->q->backing_dev_info);
2836 
2837 	blk_delete_timer(req);
2838 
2839 	if (req->rq_flags & RQF_DONTPREP)
2840 		blk_unprep_request(req);
2841 
2842 	blk_account_io_done(req);
2843 
2844 	if (req->end_io) {
2845 		wbt_done(req->q->rq_wb, &req->issue_stat);
2846 		req->end_io(req, error);
2847 	} else {
2848 		if (blk_bidi_rq(req))
2849 			__blk_put_request(req->next_rq->q, req->next_rq);
2850 
2851 		__blk_put_request(q, req);
2852 	}
2853 }
2854 EXPORT_SYMBOL(blk_finish_request);
2855 
2856 /**
2857  * blk_end_bidi_request - Complete a bidi request
2858  * @rq:         the request to complete
2859  * @error:      block status code
2860  * @nr_bytes:   number of bytes to complete @rq
2861  * @bidi_bytes: number of bytes to complete @rq->next_rq
2862  *
2863  * Description:
2864  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2865  *     Drivers that supports bidi can safely call this member for any
2866  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2867  *     just ignored.
2868  *
2869  * Return:
2870  *     %false - we are done with this request
2871  *     %true  - still buffers pending for this request
2872  **/
2873 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
2874 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2875 {
2876 	struct request_queue *q = rq->q;
2877 	unsigned long flags;
2878 
2879 	WARN_ON_ONCE(q->mq_ops);
2880 
2881 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2882 		return true;
2883 
2884 	spin_lock_irqsave(q->queue_lock, flags);
2885 	blk_finish_request(rq, error);
2886 	spin_unlock_irqrestore(q->queue_lock, flags);
2887 
2888 	return false;
2889 }
2890 
2891 /**
2892  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2893  * @rq:         the request to complete
2894  * @error:      block status code
2895  * @nr_bytes:   number of bytes to complete @rq
2896  * @bidi_bytes: number of bytes to complete @rq->next_rq
2897  *
2898  * Description:
2899  *     Identical to blk_end_bidi_request() except that queue lock is
2900  *     assumed to be locked on entry and remains so on return.
2901  *
2902  * Return:
2903  *     %false - we are done with this request
2904  *     %true  - still buffers pending for this request
2905  **/
2906 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
2907 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2908 {
2909 	lockdep_assert_held(rq->q->queue_lock);
2910 	WARN_ON_ONCE(rq->q->mq_ops);
2911 
2912 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2913 		return true;
2914 
2915 	blk_finish_request(rq, error);
2916 
2917 	return false;
2918 }
2919 
2920 /**
2921  * blk_end_request - Helper function for drivers to complete the request.
2922  * @rq:       the request being processed
2923  * @error:    block status code
2924  * @nr_bytes: number of bytes to complete
2925  *
2926  * Description:
2927  *     Ends I/O on a number of bytes attached to @rq.
2928  *     If @rq has leftover, sets it up for the next range of segments.
2929  *
2930  * Return:
2931  *     %false - we are done with this request
2932  *     %true  - still buffers pending for this request
2933  **/
2934 bool blk_end_request(struct request *rq, blk_status_t error,
2935 		unsigned int nr_bytes)
2936 {
2937 	WARN_ON_ONCE(rq->q->mq_ops);
2938 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2939 }
2940 EXPORT_SYMBOL(blk_end_request);
2941 
2942 /**
2943  * blk_end_request_all - Helper function for drives to finish the request.
2944  * @rq: the request to finish
2945  * @error: block status code
2946  *
2947  * Description:
2948  *     Completely finish @rq.
2949  */
2950 void blk_end_request_all(struct request *rq, blk_status_t error)
2951 {
2952 	bool pending;
2953 	unsigned int bidi_bytes = 0;
2954 
2955 	if (unlikely(blk_bidi_rq(rq)))
2956 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2957 
2958 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2959 	BUG_ON(pending);
2960 }
2961 EXPORT_SYMBOL(blk_end_request_all);
2962 
2963 /**
2964  * __blk_end_request - Helper function for drivers to complete the request.
2965  * @rq:       the request being processed
2966  * @error:    block status code
2967  * @nr_bytes: number of bytes to complete
2968  *
2969  * Description:
2970  *     Must be called with queue lock held unlike blk_end_request().
2971  *
2972  * Return:
2973  *     %false - we are done with this request
2974  *     %true  - still buffers pending for this request
2975  **/
2976 bool __blk_end_request(struct request *rq, blk_status_t error,
2977 		unsigned int nr_bytes)
2978 {
2979 	lockdep_assert_held(rq->q->queue_lock);
2980 	WARN_ON_ONCE(rq->q->mq_ops);
2981 
2982 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2983 }
2984 EXPORT_SYMBOL(__blk_end_request);
2985 
2986 /**
2987  * __blk_end_request_all - Helper function for drives to finish the request.
2988  * @rq: the request to finish
2989  * @error:    block status code
2990  *
2991  * Description:
2992  *     Completely finish @rq.  Must be called with queue lock held.
2993  */
2994 void __blk_end_request_all(struct request *rq, blk_status_t error)
2995 {
2996 	bool pending;
2997 	unsigned int bidi_bytes = 0;
2998 
2999 	lockdep_assert_held(rq->q->queue_lock);
3000 	WARN_ON_ONCE(rq->q->mq_ops);
3001 
3002 	if (unlikely(blk_bidi_rq(rq)))
3003 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3004 
3005 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3006 	BUG_ON(pending);
3007 }
3008 EXPORT_SYMBOL(__blk_end_request_all);
3009 
3010 /**
3011  * __blk_end_request_cur - Helper function to finish the current request chunk.
3012  * @rq: the request to finish the current chunk for
3013  * @error:    block status code
3014  *
3015  * Description:
3016  *     Complete the current consecutively mapped chunk from @rq.  Must
3017  *     be called with queue lock held.
3018  *
3019  * Return:
3020  *     %false - we are done with this request
3021  *     %true  - still buffers pending for this request
3022  */
3023 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3024 {
3025 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3026 }
3027 EXPORT_SYMBOL(__blk_end_request_cur);
3028 
3029 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3030 		     struct bio *bio)
3031 {
3032 	if (bio_has_data(bio))
3033 		rq->nr_phys_segments = bio_phys_segments(q, bio);
3034 
3035 	rq->__data_len = bio->bi_iter.bi_size;
3036 	rq->bio = rq->biotail = bio;
3037 
3038 	if (bio->bi_bdev)
3039 		rq->rq_disk = bio->bi_bdev->bd_disk;
3040 }
3041 
3042 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3043 /**
3044  * rq_flush_dcache_pages - Helper function to flush all pages in a request
3045  * @rq: the request to be flushed
3046  *
3047  * Description:
3048  *     Flush all pages in @rq.
3049  */
3050 void rq_flush_dcache_pages(struct request *rq)
3051 {
3052 	struct req_iterator iter;
3053 	struct bio_vec bvec;
3054 
3055 	rq_for_each_segment(bvec, rq, iter)
3056 		flush_dcache_page(bvec.bv_page);
3057 }
3058 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3059 #endif
3060 
3061 /**
3062  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3063  * @q : the queue of the device being checked
3064  *
3065  * Description:
3066  *    Check if underlying low-level drivers of a device are busy.
3067  *    If the drivers want to export their busy state, they must set own
3068  *    exporting function using blk_queue_lld_busy() first.
3069  *
3070  *    Basically, this function is used only by request stacking drivers
3071  *    to stop dispatching requests to underlying devices when underlying
3072  *    devices are busy.  This behavior helps more I/O merging on the queue
3073  *    of the request stacking driver and prevents I/O throughput regression
3074  *    on burst I/O load.
3075  *
3076  * Return:
3077  *    0 - Not busy (The request stacking driver should dispatch request)
3078  *    1 - Busy (The request stacking driver should stop dispatching request)
3079  */
3080 int blk_lld_busy(struct request_queue *q)
3081 {
3082 	if (q->lld_busy_fn)
3083 		return q->lld_busy_fn(q);
3084 
3085 	return 0;
3086 }
3087 EXPORT_SYMBOL_GPL(blk_lld_busy);
3088 
3089 /**
3090  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3091  * @rq: the clone request to be cleaned up
3092  *
3093  * Description:
3094  *     Free all bios in @rq for a cloned request.
3095  */
3096 void blk_rq_unprep_clone(struct request *rq)
3097 {
3098 	struct bio *bio;
3099 
3100 	while ((bio = rq->bio) != NULL) {
3101 		rq->bio = bio->bi_next;
3102 
3103 		bio_put(bio);
3104 	}
3105 }
3106 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3107 
3108 /*
3109  * Copy attributes of the original request to the clone request.
3110  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3111  */
3112 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3113 {
3114 	dst->cpu = src->cpu;
3115 	dst->__sector = blk_rq_pos(src);
3116 	dst->__data_len = blk_rq_bytes(src);
3117 	dst->nr_phys_segments = src->nr_phys_segments;
3118 	dst->ioprio = src->ioprio;
3119 	dst->extra_len = src->extra_len;
3120 }
3121 
3122 /**
3123  * blk_rq_prep_clone - Helper function to setup clone request
3124  * @rq: the request to be setup
3125  * @rq_src: original request to be cloned
3126  * @bs: bio_set that bios for clone are allocated from
3127  * @gfp_mask: memory allocation mask for bio
3128  * @bio_ctr: setup function to be called for each clone bio.
3129  *           Returns %0 for success, non %0 for failure.
3130  * @data: private data to be passed to @bio_ctr
3131  *
3132  * Description:
3133  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3134  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3135  *     are not copied, and copying such parts is the caller's responsibility.
3136  *     Also, pages which the original bios are pointing to are not copied
3137  *     and the cloned bios just point same pages.
3138  *     So cloned bios must be completed before original bios, which means
3139  *     the caller must complete @rq before @rq_src.
3140  */
3141 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3142 		      struct bio_set *bs, gfp_t gfp_mask,
3143 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3144 		      void *data)
3145 {
3146 	struct bio *bio, *bio_src;
3147 
3148 	if (!bs)
3149 		bs = fs_bio_set;
3150 
3151 	__rq_for_each_bio(bio_src, rq_src) {
3152 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3153 		if (!bio)
3154 			goto free_and_out;
3155 
3156 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3157 			goto free_and_out;
3158 
3159 		if (rq->bio) {
3160 			rq->biotail->bi_next = bio;
3161 			rq->biotail = bio;
3162 		} else
3163 			rq->bio = rq->biotail = bio;
3164 	}
3165 
3166 	__blk_rq_prep_clone(rq, rq_src);
3167 
3168 	return 0;
3169 
3170 free_and_out:
3171 	if (bio)
3172 		bio_put(bio);
3173 	blk_rq_unprep_clone(rq);
3174 
3175 	return -ENOMEM;
3176 }
3177 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3178 
3179 int kblockd_schedule_work(struct work_struct *work)
3180 {
3181 	return queue_work(kblockd_workqueue, work);
3182 }
3183 EXPORT_SYMBOL(kblockd_schedule_work);
3184 
3185 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3186 {
3187 	return queue_work_on(cpu, kblockd_workqueue, work);
3188 }
3189 EXPORT_SYMBOL(kblockd_schedule_work_on);
3190 
3191 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3192 				unsigned long delay)
3193 {
3194 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3195 }
3196 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3197 
3198 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3199 				  unsigned long delay)
3200 {
3201 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3202 }
3203 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3204 
3205 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3206 				     unsigned long delay)
3207 {
3208 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3209 }
3210 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3211 
3212 /**
3213  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3214  * @plug:	The &struct blk_plug that needs to be initialized
3215  *
3216  * Description:
3217  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3218  *   pending I/O should the task end up blocking between blk_start_plug() and
3219  *   blk_finish_plug(). This is important from a performance perspective, but
3220  *   also ensures that we don't deadlock. For instance, if the task is blocking
3221  *   for a memory allocation, memory reclaim could end up wanting to free a
3222  *   page belonging to that request that is currently residing in our private
3223  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3224  *   this kind of deadlock.
3225  */
3226 void blk_start_plug(struct blk_plug *plug)
3227 {
3228 	struct task_struct *tsk = current;
3229 
3230 	/*
3231 	 * If this is a nested plug, don't actually assign it.
3232 	 */
3233 	if (tsk->plug)
3234 		return;
3235 
3236 	INIT_LIST_HEAD(&plug->list);
3237 	INIT_LIST_HEAD(&plug->mq_list);
3238 	INIT_LIST_HEAD(&plug->cb_list);
3239 	/*
3240 	 * Store ordering should not be needed here, since a potential
3241 	 * preempt will imply a full memory barrier
3242 	 */
3243 	tsk->plug = plug;
3244 }
3245 EXPORT_SYMBOL(blk_start_plug);
3246 
3247 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3248 {
3249 	struct request *rqa = container_of(a, struct request, queuelist);
3250 	struct request *rqb = container_of(b, struct request, queuelist);
3251 
3252 	return !(rqa->q < rqb->q ||
3253 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3254 }
3255 
3256 /*
3257  * If 'from_schedule' is true, then postpone the dispatch of requests
3258  * until a safe kblockd context. We due this to avoid accidental big
3259  * additional stack usage in driver dispatch, in places where the originally
3260  * plugger did not intend it.
3261  */
3262 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3263 			    bool from_schedule)
3264 	__releases(q->queue_lock)
3265 {
3266 	lockdep_assert_held(q->queue_lock);
3267 
3268 	trace_block_unplug(q, depth, !from_schedule);
3269 
3270 	if (from_schedule)
3271 		blk_run_queue_async(q);
3272 	else
3273 		__blk_run_queue(q);
3274 	spin_unlock(q->queue_lock);
3275 }
3276 
3277 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3278 {
3279 	LIST_HEAD(callbacks);
3280 
3281 	while (!list_empty(&plug->cb_list)) {
3282 		list_splice_init(&plug->cb_list, &callbacks);
3283 
3284 		while (!list_empty(&callbacks)) {
3285 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3286 							  struct blk_plug_cb,
3287 							  list);
3288 			list_del(&cb->list);
3289 			cb->callback(cb, from_schedule);
3290 		}
3291 	}
3292 }
3293 
3294 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3295 				      int size)
3296 {
3297 	struct blk_plug *plug = current->plug;
3298 	struct blk_plug_cb *cb;
3299 
3300 	if (!plug)
3301 		return NULL;
3302 
3303 	list_for_each_entry(cb, &plug->cb_list, list)
3304 		if (cb->callback == unplug && cb->data == data)
3305 			return cb;
3306 
3307 	/* Not currently on the callback list */
3308 	BUG_ON(size < sizeof(*cb));
3309 	cb = kzalloc(size, GFP_ATOMIC);
3310 	if (cb) {
3311 		cb->data = data;
3312 		cb->callback = unplug;
3313 		list_add(&cb->list, &plug->cb_list);
3314 	}
3315 	return cb;
3316 }
3317 EXPORT_SYMBOL(blk_check_plugged);
3318 
3319 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3320 {
3321 	struct request_queue *q;
3322 	unsigned long flags;
3323 	struct request *rq;
3324 	LIST_HEAD(list);
3325 	unsigned int depth;
3326 
3327 	flush_plug_callbacks(plug, from_schedule);
3328 
3329 	if (!list_empty(&plug->mq_list))
3330 		blk_mq_flush_plug_list(plug, from_schedule);
3331 
3332 	if (list_empty(&plug->list))
3333 		return;
3334 
3335 	list_splice_init(&plug->list, &list);
3336 
3337 	list_sort(NULL, &list, plug_rq_cmp);
3338 
3339 	q = NULL;
3340 	depth = 0;
3341 
3342 	/*
3343 	 * Save and disable interrupts here, to avoid doing it for every
3344 	 * queue lock we have to take.
3345 	 */
3346 	local_irq_save(flags);
3347 	while (!list_empty(&list)) {
3348 		rq = list_entry_rq(list.next);
3349 		list_del_init(&rq->queuelist);
3350 		BUG_ON(!rq->q);
3351 		if (rq->q != q) {
3352 			/*
3353 			 * This drops the queue lock
3354 			 */
3355 			if (q)
3356 				queue_unplugged(q, depth, from_schedule);
3357 			q = rq->q;
3358 			depth = 0;
3359 			spin_lock(q->queue_lock);
3360 		}
3361 
3362 		/*
3363 		 * Short-circuit if @q is dead
3364 		 */
3365 		if (unlikely(blk_queue_dying(q))) {
3366 			__blk_end_request_all(rq, BLK_STS_IOERR);
3367 			continue;
3368 		}
3369 
3370 		/*
3371 		 * rq is already accounted, so use raw insert
3372 		 */
3373 		if (op_is_flush(rq->cmd_flags))
3374 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3375 		else
3376 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3377 
3378 		depth++;
3379 	}
3380 
3381 	/*
3382 	 * This drops the queue lock
3383 	 */
3384 	if (q)
3385 		queue_unplugged(q, depth, from_schedule);
3386 
3387 	local_irq_restore(flags);
3388 }
3389 
3390 void blk_finish_plug(struct blk_plug *plug)
3391 {
3392 	if (plug != current->plug)
3393 		return;
3394 	blk_flush_plug_list(plug, false);
3395 
3396 	current->plug = NULL;
3397 }
3398 EXPORT_SYMBOL(blk_finish_plug);
3399 
3400 #ifdef CONFIG_PM
3401 /**
3402  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3403  * @q: the queue of the device
3404  * @dev: the device the queue belongs to
3405  *
3406  * Description:
3407  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3408  *    @dev. Drivers that want to take advantage of request-based runtime PM
3409  *    should call this function after @dev has been initialized, and its
3410  *    request queue @q has been allocated, and runtime PM for it can not happen
3411  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3412  *    cases, driver should call this function before any I/O has taken place.
3413  *
3414  *    This function takes care of setting up using auto suspend for the device,
3415  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3416  *    until an updated value is either set by user or by driver. Drivers do
3417  *    not need to touch other autosuspend settings.
3418  *
3419  *    The block layer runtime PM is request based, so only works for drivers
3420  *    that use request as their IO unit instead of those directly use bio's.
3421  */
3422 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3423 {
3424 	/* not support for RQF_PM and ->rpm_status in blk-mq yet */
3425 	if (q->mq_ops)
3426 		return;
3427 
3428 	q->dev = dev;
3429 	q->rpm_status = RPM_ACTIVE;
3430 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3431 	pm_runtime_use_autosuspend(q->dev);
3432 }
3433 EXPORT_SYMBOL(blk_pm_runtime_init);
3434 
3435 /**
3436  * blk_pre_runtime_suspend - Pre runtime suspend check
3437  * @q: the queue of the device
3438  *
3439  * Description:
3440  *    This function will check if runtime suspend is allowed for the device
3441  *    by examining if there are any requests pending in the queue. If there
3442  *    are requests pending, the device can not be runtime suspended; otherwise,
3443  *    the queue's status will be updated to SUSPENDING and the driver can
3444  *    proceed to suspend the device.
3445  *
3446  *    For the not allowed case, we mark last busy for the device so that
3447  *    runtime PM core will try to autosuspend it some time later.
3448  *
3449  *    This function should be called near the start of the device's
3450  *    runtime_suspend callback.
3451  *
3452  * Return:
3453  *    0		- OK to runtime suspend the device
3454  *    -EBUSY	- Device should not be runtime suspended
3455  */
3456 int blk_pre_runtime_suspend(struct request_queue *q)
3457 {
3458 	int ret = 0;
3459 
3460 	if (!q->dev)
3461 		return ret;
3462 
3463 	spin_lock_irq(q->queue_lock);
3464 	if (q->nr_pending) {
3465 		ret = -EBUSY;
3466 		pm_runtime_mark_last_busy(q->dev);
3467 	} else {
3468 		q->rpm_status = RPM_SUSPENDING;
3469 	}
3470 	spin_unlock_irq(q->queue_lock);
3471 	return ret;
3472 }
3473 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3474 
3475 /**
3476  * blk_post_runtime_suspend - Post runtime suspend processing
3477  * @q: the queue of the device
3478  * @err: return value of the device's runtime_suspend function
3479  *
3480  * Description:
3481  *    Update the queue's runtime status according to the return value of the
3482  *    device's runtime suspend function and mark last busy for the device so
3483  *    that PM core will try to auto suspend the device at a later time.
3484  *
3485  *    This function should be called near the end of the device's
3486  *    runtime_suspend callback.
3487  */
3488 void blk_post_runtime_suspend(struct request_queue *q, int err)
3489 {
3490 	if (!q->dev)
3491 		return;
3492 
3493 	spin_lock_irq(q->queue_lock);
3494 	if (!err) {
3495 		q->rpm_status = RPM_SUSPENDED;
3496 	} else {
3497 		q->rpm_status = RPM_ACTIVE;
3498 		pm_runtime_mark_last_busy(q->dev);
3499 	}
3500 	spin_unlock_irq(q->queue_lock);
3501 }
3502 EXPORT_SYMBOL(blk_post_runtime_suspend);
3503 
3504 /**
3505  * blk_pre_runtime_resume - Pre runtime resume processing
3506  * @q: the queue of the device
3507  *
3508  * Description:
3509  *    Update the queue's runtime status to RESUMING in preparation for the
3510  *    runtime resume of the device.
3511  *
3512  *    This function should be called near the start of the device's
3513  *    runtime_resume callback.
3514  */
3515 void blk_pre_runtime_resume(struct request_queue *q)
3516 {
3517 	if (!q->dev)
3518 		return;
3519 
3520 	spin_lock_irq(q->queue_lock);
3521 	q->rpm_status = RPM_RESUMING;
3522 	spin_unlock_irq(q->queue_lock);
3523 }
3524 EXPORT_SYMBOL(blk_pre_runtime_resume);
3525 
3526 /**
3527  * blk_post_runtime_resume - Post runtime resume processing
3528  * @q: the queue of the device
3529  * @err: return value of the device's runtime_resume function
3530  *
3531  * Description:
3532  *    Update the queue's runtime status according to the return value of the
3533  *    device's runtime_resume function. If it is successfully resumed, process
3534  *    the requests that are queued into the device's queue when it is resuming
3535  *    and then mark last busy and initiate autosuspend for it.
3536  *
3537  *    This function should be called near the end of the device's
3538  *    runtime_resume callback.
3539  */
3540 void blk_post_runtime_resume(struct request_queue *q, int err)
3541 {
3542 	if (!q->dev)
3543 		return;
3544 
3545 	spin_lock_irq(q->queue_lock);
3546 	if (!err) {
3547 		q->rpm_status = RPM_ACTIVE;
3548 		__blk_run_queue(q);
3549 		pm_runtime_mark_last_busy(q->dev);
3550 		pm_request_autosuspend(q->dev);
3551 	} else {
3552 		q->rpm_status = RPM_SUSPENDED;
3553 	}
3554 	spin_unlock_irq(q->queue_lock);
3555 }
3556 EXPORT_SYMBOL(blk_post_runtime_resume);
3557 
3558 /**
3559  * blk_set_runtime_active - Force runtime status of the queue to be active
3560  * @q: the queue of the device
3561  *
3562  * If the device is left runtime suspended during system suspend the resume
3563  * hook typically resumes the device and corrects runtime status
3564  * accordingly. However, that does not affect the queue runtime PM status
3565  * which is still "suspended". This prevents processing requests from the
3566  * queue.
3567  *
3568  * This function can be used in driver's resume hook to correct queue
3569  * runtime PM status and re-enable peeking requests from the queue. It
3570  * should be called before first request is added to the queue.
3571  */
3572 void blk_set_runtime_active(struct request_queue *q)
3573 {
3574 	spin_lock_irq(q->queue_lock);
3575 	q->rpm_status = RPM_ACTIVE;
3576 	pm_runtime_mark_last_busy(q->dev);
3577 	pm_request_autosuspend(q->dev);
3578 	spin_unlock_irq(q->queue_lock);
3579 }
3580 EXPORT_SYMBOL(blk_set_runtime_active);
3581 #endif
3582 
3583 int __init blk_dev_init(void)
3584 {
3585 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3586 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3587 			FIELD_SIZEOF(struct request, cmd_flags));
3588 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3589 			FIELD_SIZEOF(struct bio, bi_opf));
3590 
3591 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3592 	kblockd_workqueue = alloc_workqueue("kblockd",
3593 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3594 	if (!kblockd_workqueue)
3595 		panic("Failed to create kblockd\n");
3596 
3597 	request_cachep = kmem_cache_create("blkdev_requests",
3598 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3599 
3600 	blk_requestq_cachep = kmem_cache_create("request_queue",
3601 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3602 
3603 #ifdef CONFIG_DEBUG_FS
3604 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3605 #endif
3606 
3607 	return 0;
3608 }
3609