1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/block.h> 40 41 #include "blk.h" 42 #include "blk-mq.h" 43 #include "blk-mq-sched.h" 44 #include "blk-wbt.h" 45 46 #ifdef CONFIG_DEBUG_FS 47 struct dentry *blk_debugfs_root; 48 #endif 49 50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 55 56 DEFINE_IDA(blk_queue_ida); 57 58 /* 59 * For the allocated request tables 60 */ 61 struct kmem_cache *request_cachep; 62 63 /* 64 * For queue allocation 65 */ 66 struct kmem_cache *blk_requestq_cachep; 67 68 /* 69 * Controlling structure to kblockd 70 */ 71 static struct workqueue_struct *kblockd_workqueue; 72 73 static void blk_clear_congested(struct request_list *rl, int sync) 74 { 75 #ifdef CONFIG_CGROUP_WRITEBACK 76 clear_wb_congested(rl->blkg->wb_congested, sync); 77 #else 78 /* 79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 80 * flip its congestion state for events on other blkcgs. 81 */ 82 if (rl == &rl->q->root_rl) 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 84 #endif 85 } 86 87 static void blk_set_congested(struct request_list *rl, int sync) 88 { 89 #ifdef CONFIG_CGROUP_WRITEBACK 90 set_wb_congested(rl->blkg->wb_congested, sync); 91 #else 92 /* see blk_clear_congested() */ 93 if (rl == &rl->q->root_rl) 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 95 #endif 96 } 97 98 void blk_queue_congestion_threshold(struct request_queue *q) 99 { 100 int nr; 101 102 nr = q->nr_requests - (q->nr_requests / 8) + 1; 103 if (nr > q->nr_requests) 104 nr = q->nr_requests; 105 q->nr_congestion_on = nr; 106 107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 108 if (nr < 1) 109 nr = 1; 110 q->nr_congestion_off = nr; 111 } 112 113 void blk_rq_init(struct request_queue *q, struct request *rq) 114 { 115 memset(rq, 0, sizeof(*rq)); 116 117 INIT_LIST_HEAD(&rq->queuelist); 118 INIT_LIST_HEAD(&rq->timeout_list); 119 rq->cpu = -1; 120 rq->q = q; 121 rq->__sector = (sector_t) -1; 122 INIT_HLIST_NODE(&rq->hash); 123 RB_CLEAR_NODE(&rq->rb_node); 124 rq->tag = -1; 125 rq->internal_tag = -1; 126 rq->start_time = jiffies; 127 set_start_time_ns(rq); 128 rq->part = NULL; 129 } 130 EXPORT_SYMBOL(blk_rq_init); 131 132 static const struct { 133 int errno; 134 const char *name; 135 } blk_errors[] = { 136 [BLK_STS_OK] = { 0, "" }, 137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 147 148 /* device mapper special case, should not leak out: */ 149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 150 151 /* everything else not covered above: */ 152 [BLK_STS_IOERR] = { -EIO, "I/O" }, 153 }; 154 155 blk_status_t errno_to_blk_status(int errno) 156 { 157 int i; 158 159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 160 if (blk_errors[i].errno == errno) 161 return (__force blk_status_t)i; 162 } 163 164 return BLK_STS_IOERR; 165 } 166 EXPORT_SYMBOL_GPL(errno_to_blk_status); 167 168 int blk_status_to_errno(blk_status_t status) 169 { 170 int idx = (__force int)status; 171 172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 173 return -EIO; 174 return blk_errors[idx].errno; 175 } 176 EXPORT_SYMBOL_GPL(blk_status_to_errno); 177 178 static void print_req_error(struct request *req, blk_status_t status) 179 { 180 int idx = (__force int)status; 181 182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 183 return; 184 185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 186 __func__, blk_errors[idx].name, req->rq_disk ? 187 req->rq_disk->disk_name : "?", 188 (unsigned long long)blk_rq_pos(req)); 189 } 190 191 static void req_bio_endio(struct request *rq, struct bio *bio, 192 unsigned int nbytes, blk_status_t error) 193 { 194 if (error) 195 bio->bi_status = error; 196 197 if (unlikely(rq->rq_flags & RQF_QUIET)) 198 bio_set_flag(bio, BIO_QUIET); 199 200 bio_advance(bio, nbytes); 201 202 /* don't actually finish bio if it's part of flush sequence */ 203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 204 bio_endio(bio); 205 } 206 207 void blk_dump_rq_flags(struct request *rq, char *msg) 208 { 209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 210 rq->rq_disk ? rq->rq_disk->disk_name : "?", 211 (unsigned long long) rq->cmd_flags); 212 213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 214 (unsigned long long)blk_rq_pos(rq), 215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 216 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 217 rq->bio, rq->biotail, blk_rq_bytes(rq)); 218 } 219 EXPORT_SYMBOL(blk_dump_rq_flags); 220 221 static void blk_delay_work(struct work_struct *work) 222 { 223 struct request_queue *q; 224 225 q = container_of(work, struct request_queue, delay_work.work); 226 spin_lock_irq(q->queue_lock); 227 __blk_run_queue(q); 228 spin_unlock_irq(q->queue_lock); 229 } 230 231 /** 232 * blk_delay_queue - restart queueing after defined interval 233 * @q: The &struct request_queue in question 234 * @msecs: Delay in msecs 235 * 236 * Description: 237 * Sometimes queueing needs to be postponed for a little while, to allow 238 * resources to come back. This function will make sure that queueing is 239 * restarted around the specified time. 240 */ 241 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 242 { 243 lockdep_assert_held(q->queue_lock); 244 WARN_ON_ONCE(q->mq_ops); 245 246 if (likely(!blk_queue_dead(q))) 247 queue_delayed_work(kblockd_workqueue, &q->delay_work, 248 msecs_to_jiffies(msecs)); 249 } 250 EXPORT_SYMBOL(blk_delay_queue); 251 252 /** 253 * blk_start_queue_async - asynchronously restart a previously stopped queue 254 * @q: The &struct request_queue in question 255 * 256 * Description: 257 * blk_start_queue_async() will clear the stop flag on the queue, and 258 * ensure that the request_fn for the queue is run from an async 259 * context. 260 **/ 261 void blk_start_queue_async(struct request_queue *q) 262 { 263 lockdep_assert_held(q->queue_lock); 264 WARN_ON_ONCE(q->mq_ops); 265 266 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 267 blk_run_queue_async(q); 268 } 269 EXPORT_SYMBOL(blk_start_queue_async); 270 271 /** 272 * blk_start_queue - restart a previously stopped queue 273 * @q: The &struct request_queue in question 274 * 275 * Description: 276 * blk_start_queue() will clear the stop flag on the queue, and call 277 * the request_fn for the queue if it was in a stopped state when 278 * entered. Also see blk_stop_queue(). 279 **/ 280 void blk_start_queue(struct request_queue *q) 281 { 282 lockdep_assert_held(q->queue_lock); 283 WARN_ON(!irqs_disabled()); 284 WARN_ON_ONCE(q->mq_ops); 285 286 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 287 __blk_run_queue(q); 288 } 289 EXPORT_SYMBOL(blk_start_queue); 290 291 /** 292 * blk_stop_queue - stop a queue 293 * @q: The &struct request_queue in question 294 * 295 * Description: 296 * The Linux block layer assumes that a block driver will consume all 297 * entries on the request queue when the request_fn strategy is called. 298 * Often this will not happen, because of hardware limitations (queue 299 * depth settings). If a device driver gets a 'queue full' response, 300 * or if it simply chooses not to queue more I/O at one point, it can 301 * call this function to prevent the request_fn from being called until 302 * the driver has signalled it's ready to go again. This happens by calling 303 * blk_start_queue() to restart queue operations. 304 **/ 305 void blk_stop_queue(struct request_queue *q) 306 { 307 lockdep_assert_held(q->queue_lock); 308 WARN_ON_ONCE(q->mq_ops); 309 310 cancel_delayed_work(&q->delay_work); 311 queue_flag_set(QUEUE_FLAG_STOPPED, q); 312 } 313 EXPORT_SYMBOL(blk_stop_queue); 314 315 /** 316 * blk_sync_queue - cancel any pending callbacks on a queue 317 * @q: the queue 318 * 319 * Description: 320 * The block layer may perform asynchronous callback activity 321 * on a queue, such as calling the unplug function after a timeout. 322 * A block device may call blk_sync_queue to ensure that any 323 * such activity is cancelled, thus allowing it to release resources 324 * that the callbacks might use. The caller must already have made sure 325 * that its ->make_request_fn will not re-add plugging prior to calling 326 * this function. 327 * 328 * This function does not cancel any asynchronous activity arising 329 * out of elevator or throttling code. That would require elevator_exit() 330 * and blkcg_exit_queue() to be called with queue lock initialized. 331 * 332 */ 333 void blk_sync_queue(struct request_queue *q) 334 { 335 del_timer_sync(&q->timeout); 336 337 if (q->mq_ops) { 338 struct blk_mq_hw_ctx *hctx; 339 int i; 340 341 queue_for_each_hw_ctx(q, hctx, i) 342 cancel_delayed_work_sync(&hctx->run_work); 343 } else { 344 cancel_delayed_work_sync(&q->delay_work); 345 } 346 } 347 EXPORT_SYMBOL(blk_sync_queue); 348 349 /** 350 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 351 * @q: The queue to run 352 * 353 * Description: 354 * Invoke request handling on a queue if there are any pending requests. 355 * May be used to restart request handling after a request has completed. 356 * This variant runs the queue whether or not the queue has been 357 * stopped. Must be called with the queue lock held and interrupts 358 * disabled. See also @blk_run_queue. 359 */ 360 inline void __blk_run_queue_uncond(struct request_queue *q) 361 { 362 lockdep_assert_held(q->queue_lock); 363 WARN_ON_ONCE(q->mq_ops); 364 365 if (unlikely(blk_queue_dead(q))) 366 return; 367 368 /* 369 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 370 * the queue lock internally. As a result multiple threads may be 371 * running such a request function concurrently. Keep track of the 372 * number of active request_fn invocations such that blk_drain_queue() 373 * can wait until all these request_fn calls have finished. 374 */ 375 q->request_fn_active++; 376 q->request_fn(q); 377 q->request_fn_active--; 378 } 379 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 380 381 /** 382 * __blk_run_queue - run a single device queue 383 * @q: The queue to run 384 * 385 * Description: 386 * See @blk_run_queue. 387 */ 388 void __blk_run_queue(struct request_queue *q) 389 { 390 lockdep_assert_held(q->queue_lock); 391 WARN_ON_ONCE(q->mq_ops); 392 393 if (unlikely(blk_queue_stopped(q))) 394 return; 395 396 __blk_run_queue_uncond(q); 397 } 398 EXPORT_SYMBOL(__blk_run_queue); 399 400 /** 401 * blk_run_queue_async - run a single device queue in workqueue context 402 * @q: The queue to run 403 * 404 * Description: 405 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 406 * of us. 407 * 408 * Note: 409 * Since it is not allowed to run q->delay_work after blk_cleanup_queue() 410 * has canceled q->delay_work, callers must hold the queue lock to avoid 411 * race conditions between blk_cleanup_queue() and blk_run_queue_async(). 412 */ 413 void blk_run_queue_async(struct request_queue *q) 414 { 415 lockdep_assert_held(q->queue_lock); 416 WARN_ON_ONCE(q->mq_ops); 417 418 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 419 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 420 } 421 EXPORT_SYMBOL(blk_run_queue_async); 422 423 /** 424 * blk_run_queue - run a single device queue 425 * @q: The queue to run 426 * 427 * Description: 428 * Invoke request handling on this queue, if it has pending work to do. 429 * May be used to restart queueing when a request has completed. 430 */ 431 void blk_run_queue(struct request_queue *q) 432 { 433 unsigned long flags; 434 435 WARN_ON_ONCE(q->mq_ops); 436 437 spin_lock_irqsave(q->queue_lock, flags); 438 __blk_run_queue(q); 439 spin_unlock_irqrestore(q->queue_lock, flags); 440 } 441 EXPORT_SYMBOL(blk_run_queue); 442 443 void blk_put_queue(struct request_queue *q) 444 { 445 kobject_put(&q->kobj); 446 } 447 EXPORT_SYMBOL(blk_put_queue); 448 449 /** 450 * __blk_drain_queue - drain requests from request_queue 451 * @q: queue to drain 452 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 453 * 454 * Drain requests from @q. If @drain_all is set, all requests are drained. 455 * If not, only ELVPRIV requests are drained. The caller is responsible 456 * for ensuring that no new requests which need to be drained are queued. 457 */ 458 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 459 __releases(q->queue_lock) 460 __acquires(q->queue_lock) 461 { 462 int i; 463 464 lockdep_assert_held(q->queue_lock); 465 WARN_ON_ONCE(q->mq_ops); 466 467 while (true) { 468 bool drain = false; 469 470 /* 471 * The caller might be trying to drain @q before its 472 * elevator is initialized. 473 */ 474 if (q->elevator) 475 elv_drain_elevator(q); 476 477 blkcg_drain_queue(q); 478 479 /* 480 * This function might be called on a queue which failed 481 * driver init after queue creation or is not yet fully 482 * active yet. Some drivers (e.g. fd and loop) get unhappy 483 * in such cases. Kick queue iff dispatch queue has 484 * something on it and @q has request_fn set. 485 */ 486 if (!list_empty(&q->queue_head) && q->request_fn) 487 __blk_run_queue(q); 488 489 drain |= q->nr_rqs_elvpriv; 490 drain |= q->request_fn_active; 491 492 /* 493 * Unfortunately, requests are queued at and tracked from 494 * multiple places and there's no single counter which can 495 * be drained. Check all the queues and counters. 496 */ 497 if (drain_all) { 498 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 499 drain |= !list_empty(&q->queue_head); 500 for (i = 0; i < 2; i++) { 501 drain |= q->nr_rqs[i]; 502 drain |= q->in_flight[i]; 503 if (fq) 504 drain |= !list_empty(&fq->flush_queue[i]); 505 } 506 } 507 508 if (!drain) 509 break; 510 511 spin_unlock_irq(q->queue_lock); 512 513 msleep(10); 514 515 spin_lock_irq(q->queue_lock); 516 } 517 518 /* 519 * With queue marked dead, any woken up waiter will fail the 520 * allocation path, so the wakeup chaining is lost and we're 521 * left with hung waiters. We need to wake up those waiters. 522 */ 523 if (q->request_fn) { 524 struct request_list *rl; 525 526 blk_queue_for_each_rl(rl, q) 527 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 528 wake_up_all(&rl->wait[i]); 529 } 530 } 531 532 /** 533 * blk_queue_bypass_start - enter queue bypass mode 534 * @q: queue of interest 535 * 536 * In bypass mode, only the dispatch FIFO queue of @q is used. This 537 * function makes @q enter bypass mode and drains all requests which were 538 * throttled or issued before. On return, it's guaranteed that no request 539 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 540 * inside queue or RCU read lock. 541 */ 542 void blk_queue_bypass_start(struct request_queue *q) 543 { 544 WARN_ON_ONCE(q->mq_ops); 545 546 spin_lock_irq(q->queue_lock); 547 q->bypass_depth++; 548 queue_flag_set(QUEUE_FLAG_BYPASS, q); 549 spin_unlock_irq(q->queue_lock); 550 551 /* 552 * Queues start drained. Skip actual draining till init is 553 * complete. This avoids lenghty delays during queue init which 554 * can happen many times during boot. 555 */ 556 if (blk_queue_init_done(q)) { 557 spin_lock_irq(q->queue_lock); 558 __blk_drain_queue(q, false); 559 spin_unlock_irq(q->queue_lock); 560 561 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 562 synchronize_rcu(); 563 } 564 } 565 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 566 567 /** 568 * blk_queue_bypass_end - leave queue bypass mode 569 * @q: queue of interest 570 * 571 * Leave bypass mode and restore the normal queueing behavior. 572 * 573 * Note: although blk_queue_bypass_start() is only called for blk-sq queues, 574 * this function is called for both blk-sq and blk-mq queues. 575 */ 576 void blk_queue_bypass_end(struct request_queue *q) 577 { 578 spin_lock_irq(q->queue_lock); 579 if (!--q->bypass_depth) 580 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 581 WARN_ON_ONCE(q->bypass_depth < 0); 582 spin_unlock_irq(q->queue_lock); 583 } 584 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 585 586 void blk_set_queue_dying(struct request_queue *q) 587 { 588 spin_lock_irq(q->queue_lock); 589 queue_flag_set(QUEUE_FLAG_DYING, q); 590 spin_unlock_irq(q->queue_lock); 591 592 /* 593 * When queue DYING flag is set, we need to block new req 594 * entering queue, so we call blk_freeze_queue_start() to 595 * prevent I/O from crossing blk_queue_enter(). 596 */ 597 blk_freeze_queue_start(q); 598 599 if (q->mq_ops) 600 blk_mq_wake_waiters(q); 601 else { 602 struct request_list *rl; 603 604 spin_lock_irq(q->queue_lock); 605 blk_queue_for_each_rl(rl, q) { 606 if (rl->rq_pool) { 607 wake_up(&rl->wait[BLK_RW_SYNC]); 608 wake_up(&rl->wait[BLK_RW_ASYNC]); 609 } 610 } 611 spin_unlock_irq(q->queue_lock); 612 } 613 } 614 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 615 616 /** 617 * blk_cleanup_queue - shutdown a request queue 618 * @q: request queue to shutdown 619 * 620 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 621 * put it. All future requests will be failed immediately with -ENODEV. 622 */ 623 void blk_cleanup_queue(struct request_queue *q) 624 { 625 spinlock_t *lock = q->queue_lock; 626 627 /* mark @q DYING, no new request or merges will be allowed afterwards */ 628 mutex_lock(&q->sysfs_lock); 629 blk_set_queue_dying(q); 630 spin_lock_irq(lock); 631 632 /* 633 * A dying queue is permanently in bypass mode till released. Note 634 * that, unlike blk_queue_bypass_start(), we aren't performing 635 * synchronize_rcu() after entering bypass mode to avoid the delay 636 * as some drivers create and destroy a lot of queues while 637 * probing. This is still safe because blk_release_queue() will be 638 * called only after the queue refcnt drops to zero and nothing, 639 * RCU or not, would be traversing the queue by then. 640 */ 641 q->bypass_depth++; 642 queue_flag_set(QUEUE_FLAG_BYPASS, q); 643 644 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 645 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 646 queue_flag_set(QUEUE_FLAG_DYING, q); 647 spin_unlock_irq(lock); 648 mutex_unlock(&q->sysfs_lock); 649 650 /* 651 * Drain all requests queued before DYING marking. Set DEAD flag to 652 * prevent that q->request_fn() gets invoked after draining finished. 653 */ 654 blk_freeze_queue(q); 655 spin_lock_irq(lock); 656 if (!q->mq_ops) 657 __blk_drain_queue(q, true); 658 queue_flag_set(QUEUE_FLAG_DEAD, q); 659 spin_unlock_irq(lock); 660 661 /* for synchronous bio-based driver finish in-flight integrity i/o */ 662 blk_flush_integrity(); 663 664 /* @q won't process any more request, flush async actions */ 665 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 666 blk_sync_queue(q); 667 668 if (q->mq_ops) 669 blk_mq_free_queue(q); 670 percpu_ref_exit(&q->q_usage_counter); 671 672 spin_lock_irq(lock); 673 if (q->queue_lock != &q->__queue_lock) 674 q->queue_lock = &q->__queue_lock; 675 spin_unlock_irq(lock); 676 677 /* @q is and will stay empty, shutdown and put */ 678 blk_put_queue(q); 679 } 680 EXPORT_SYMBOL(blk_cleanup_queue); 681 682 /* Allocate memory local to the request queue */ 683 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 684 { 685 struct request_queue *q = data; 686 687 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 688 } 689 690 static void free_request_simple(void *element, void *data) 691 { 692 kmem_cache_free(request_cachep, element); 693 } 694 695 static void *alloc_request_size(gfp_t gfp_mask, void *data) 696 { 697 struct request_queue *q = data; 698 struct request *rq; 699 700 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 701 q->node); 702 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 703 kfree(rq); 704 rq = NULL; 705 } 706 return rq; 707 } 708 709 static void free_request_size(void *element, void *data) 710 { 711 struct request_queue *q = data; 712 713 if (q->exit_rq_fn) 714 q->exit_rq_fn(q, element); 715 kfree(element); 716 } 717 718 int blk_init_rl(struct request_list *rl, struct request_queue *q, 719 gfp_t gfp_mask) 720 { 721 if (unlikely(rl->rq_pool)) 722 return 0; 723 724 rl->q = q; 725 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 726 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 727 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 728 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 729 730 if (q->cmd_size) { 731 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 732 alloc_request_size, free_request_size, 733 q, gfp_mask, q->node); 734 } else { 735 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 736 alloc_request_simple, free_request_simple, 737 q, gfp_mask, q->node); 738 } 739 if (!rl->rq_pool) 740 return -ENOMEM; 741 742 if (rl != &q->root_rl) 743 WARN_ON_ONCE(!blk_get_queue(q)); 744 745 return 0; 746 } 747 748 void blk_exit_rl(struct request_queue *q, struct request_list *rl) 749 { 750 if (rl->rq_pool) { 751 mempool_destroy(rl->rq_pool); 752 if (rl != &q->root_rl) 753 blk_put_queue(q); 754 } 755 } 756 757 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 758 { 759 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 760 } 761 EXPORT_SYMBOL(blk_alloc_queue); 762 763 int blk_queue_enter(struct request_queue *q, bool nowait) 764 { 765 while (true) { 766 int ret; 767 768 if (percpu_ref_tryget_live(&q->q_usage_counter)) 769 return 0; 770 771 if (nowait) 772 return -EBUSY; 773 774 /* 775 * read pair of barrier in blk_freeze_queue_start(), 776 * we need to order reading __PERCPU_REF_DEAD flag of 777 * .q_usage_counter and reading .mq_freeze_depth or 778 * queue dying flag, otherwise the following wait may 779 * never return if the two reads are reordered. 780 */ 781 smp_rmb(); 782 783 ret = wait_event_interruptible(q->mq_freeze_wq, 784 !atomic_read(&q->mq_freeze_depth) || 785 blk_queue_dying(q)); 786 if (blk_queue_dying(q)) 787 return -ENODEV; 788 if (ret) 789 return ret; 790 } 791 } 792 793 void blk_queue_exit(struct request_queue *q) 794 { 795 percpu_ref_put(&q->q_usage_counter); 796 } 797 798 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 799 { 800 struct request_queue *q = 801 container_of(ref, struct request_queue, q_usage_counter); 802 803 wake_up_all(&q->mq_freeze_wq); 804 } 805 806 static void blk_rq_timed_out_timer(unsigned long data) 807 { 808 struct request_queue *q = (struct request_queue *)data; 809 810 kblockd_schedule_work(&q->timeout_work); 811 } 812 813 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 814 { 815 struct request_queue *q; 816 817 q = kmem_cache_alloc_node(blk_requestq_cachep, 818 gfp_mask | __GFP_ZERO, node_id); 819 if (!q) 820 return NULL; 821 822 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 823 if (q->id < 0) 824 goto fail_q; 825 826 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 827 if (!q->bio_split) 828 goto fail_id; 829 830 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 831 if (!q->backing_dev_info) 832 goto fail_split; 833 834 q->stats = blk_alloc_queue_stats(); 835 if (!q->stats) 836 goto fail_stats; 837 838 q->backing_dev_info->ra_pages = 839 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 840 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 841 q->backing_dev_info->name = "block"; 842 q->node = node_id; 843 844 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer, 845 laptop_mode_timer_fn, (unsigned long) q); 846 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 847 INIT_LIST_HEAD(&q->queue_head); 848 INIT_LIST_HEAD(&q->timeout_list); 849 INIT_LIST_HEAD(&q->icq_list); 850 #ifdef CONFIG_BLK_CGROUP 851 INIT_LIST_HEAD(&q->blkg_list); 852 #endif 853 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 854 855 kobject_init(&q->kobj, &blk_queue_ktype); 856 857 mutex_init(&q->sysfs_lock); 858 spin_lock_init(&q->__queue_lock); 859 860 /* 861 * By default initialize queue_lock to internal lock and driver can 862 * override it later if need be. 863 */ 864 q->queue_lock = &q->__queue_lock; 865 866 /* 867 * A queue starts its life with bypass turned on to avoid 868 * unnecessary bypass on/off overhead and nasty surprises during 869 * init. The initial bypass will be finished when the queue is 870 * registered by blk_register_queue(). 871 */ 872 q->bypass_depth = 1; 873 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 874 875 init_waitqueue_head(&q->mq_freeze_wq); 876 877 /* 878 * Init percpu_ref in atomic mode so that it's faster to shutdown. 879 * See blk_register_queue() for details. 880 */ 881 if (percpu_ref_init(&q->q_usage_counter, 882 blk_queue_usage_counter_release, 883 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 884 goto fail_bdi; 885 886 if (blkcg_init_queue(q)) 887 goto fail_ref; 888 889 return q; 890 891 fail_ref: 892 percpu_ref_exit(&q->q_usage_counter); 893 fail_bdi: 894 blk_free_queue_stats(q->stats); 895 fail_stats: 896 bdi_put(q->backing_dev_info); 897 fail_split: 898 bioset_free(q->bio_split); 899 fail_id: 900 ida_simple_remove(&blk_queue_ida, q->id); 901 fail_q: 902 kmem_cache_free(blk_requestq_cachep, q); 903 return NULL; 904 } 905 EXPORT_SYMBOL(blk_alloc_queue_node); 906 907 /** 908 * blk_init_queue - prepare a request queue for use with a block device 909 * @rfn: The function to be called to process requests that have been 910 * placed on the queue. 911 * @lock: Request queue spin lock 912 * 913 * Description: 914 * If a block device wishes to use the standard request handling procedures, 915 * which sorts requests and coalesces adjacent requests, then it must 916 * call blk_init_queue(). The function @rfn will be called when there 917 * are requests on the queue that need to be processed. If the device 918 * supports plugging, then @rfn may not be called immediately when requests 919 * are available on the queue, but may be called at some time later instead. 920 * Plugged queues are generally unplugged when a buffer belonging to one 921 * of the requests on the queue is needed, or due to memory pressure. 922 * 923 * @rfn is not required, or even expected, to remove all requests off the 924 * queue, but only as many as it can handle at a time. If it does leave 925 * requests on the queue, it is responsible for arranging that the requests 926 * get dealt with eventually. 927 * 928 * The queue spin lock must be held while manipulating the requests on the 929 * request queue; this lock will be taken also from interrupt context, so irq 930 * disabling is needed for it. 931 * 932 * Function returns a pointer to the initialized request queue, or %NULL if 933 * it didn't succeed. 934 * 935 * Note: 936 * blk_init_queue() must be paired with a blk_cleanup_queue() call 937 * when the block device is deactivated (such as at module unload). 938 **/ 939 940 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 941 { 942 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 943 } 944 EXPORT_SYMBOL(blk_init_queue); 945 946 struct request_queue * 947 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 948 { 949 struct request_queue *q; 950 951 q = blk_alloc_queue_node(GFP_KERNEL, node_id); 952 if (!q) 953 return NULL; 954 955 q->request_fn = rfn; 956 if (lock) 957 q->queue_lock = lock; 958 if (blk_init_allocated_queue(q) < 0) { 959 blk_cleanup_queue(q); 960 return NULL; 961 } 962 963 return q; 964 } 965 EXPORT_SYMBOL(blk_init_queue_node); 966 967 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 968 969 970 int blk_init_allocated_queue(struct request_queue *q) 971 { 972 WARN_ON_ONCE(q->mq_ops); 973 974 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); 975 if (!q->fq) 976 return -ENOMEM; 977 978 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 979 goto out_free_flush_queue; 980 981 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 982 goto out_exit_flush_rq; 983 984 INIT_WORK(&q->timeout_work, blk_timeout_work); 985 q->queue_flags |= QUEUE_FLAG_DEFAULT; 986 987 /* 988 * This also sets hw/phys segments, boundary and size 989 */ 990 blk_queue_make_request(q, blk_queue_bio); 991 992 q->sg_reserved_size = INT_MAX; 993 994 /* Protect q->elevator from elevator_change */ 995 mutex_lock(&q->sysfs_lock); 996 997 /* init elevator */ 998 if (elevator_init(q, NULL)) { 999 mutex_unlock(&q->sysfs_lock); 1000 goto out_exit_flush_rq; 1001 } 1002 1003 mutex_unlock(&q->sysfs_lock); 1004 return 0; 1005 1006 out_exit_flush_rq: 1007 if (q->exit_rq_fn) 1008 q->exit_rq_fn(q, q->fq->flush_rq); 1009 out_free_flush_queue: 1010 blk_free_flush_queue(q->fq); 1011 return -ENOMEM; 1012 } 1013 EXPORT_SYMBOL(blk_init_allocated_queue); 1014 1015 bool blk_get_queue(struct request_queue *q) 1016 { 1017 if (likely(!blk_queue_dying(q))) { 1018 __blk_get_queue(q); 1019 return true; 1020 } 1021 1022 return false; 1023 } 1024 EXPORT_SYMBOL(blk_get_queue); 1025 1026 static inline void blk_free_request(struct request_list *rl, struct request *rq) 1027 { 1028 if (rq->rq_flags & RQF_ELVPRIV) { 1029 elv_put_request(rl->q, rq); 1030 if (rq->elv.icq) 1031 put_io_context(rq->elv.icq->ioc); 1032 } 1033 1034 mempool_free(rq, rl->rq_pool); 1035 } 1036 1037 /* 1038 * ioc_batching returns true if the ioc is a valid batching request and 1039 * should be given priority access to a request. 1040 */ 1041 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 1042 { 1043 if (!ioc) 1044 return 0; 1045 1046 /* 1047 * Make sure the process is able to allocate at least 1 request 1048 * even if the batch times out, otherwise we could theoretically 1049 * lose wakeups. 1050 */ 1051 return ioc->nr_batch_requests == q->nr_batching || 1052 (ioc->nr_batch_requests > 0 1053 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 1054 } 1055 1056 /* 1057 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 1058 * will cause the process to be a "batcher" on all queues in the system. This 1059 * is the behaviour we want though - once it gets a wakeup it should be given 1060 * a nice run. 1061 */ 1062 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 1063 { 1064 if (!ioc || ioc_batching(q, ioc)) 1065 return; 1066 1067 ioc->nr_batch_requests = q->nr_batching; 1068 ioc->last_waited = jiffies; 1069 } 1070 1071 static void __freed_request(struct request_list *rl, int sync) 1072 { 1073 struct request_queue *q = rl->q; 1074 1075 if (rl->count[sync] < queue_congestion_off_threshold(q)) 1076 blk_clear_congested(rl, sync); 1077 1078 if (rl->count[sync] + 1 <= q->nr_requests) { 1079 if (waitqueue_active(&rl->wait[sync])) 1080 wake_up(&rl->wait[sync]); 1081 1082 blk_clear_rl_full(rl, sync); 1083 } 1084 } 1085 1086 /* 1087 * A request has just been released. Account for it, update the full and 1088 * congestion status, wake up any waiters. Called under q->queue_lock. 1089 */ 1090 static void freed_request(struct request_list *rl, bool sync, 1091 req_flags_t rq_flags) 1092 { 1093 struct request_queue *q = rl->q; 1094 1095 q->nr_rqs[sync]--; 1096 rl->count[sync]--; 1097 if (rq_flags & RQF_ELVPRIV) 1098 q->nr_rqs_elvpriv--; 1099 1100 __freed_request(rl, sync); 1101 1102 if (unlikely(rl->starved[sync ^ 1])) 1103 __freed_request(rl, sync ^ 1); 1104 } 1105 1106 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 1107 { 1108 struct request_list *rl; 1109 int on_thresh, off_thresh; 1110 1111 WARN_ON_ONCE(q->mq_ops); 1112 1113 spin_lock_irq(q->queue_lock); 1114 q->nr_requests = nr; 1115 blk_queue_congestion_threshold(q); 1116 on_thresh = queue_congestion_on_threshold(q); 1117 off_thresh = queue_congestion_off_threshold(q); 1118 1119 blk_queue_for_each_rl(rl, q) { 1120 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1121 blk_set_congested(rl, BLK_RW_SYNC); 1122 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1123 blk_clear_congested(rl, BLK_RW_SYNC); 1124 1125 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1126 blk_set_congested(rl, BLK_RW_ASYNC); 1127 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1128 blk_clear_congested(rl, BLK_RW_ASYNC); 1129 1130 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1131 blk_set_rl_full(rl, BLK_RW_SYNC); 1132 } else { 1133 blk_clear_rl_full(rl, BLK_RW_SYNC); 1134 wake_up(&rl->wait[BLK_RW_SYNC]); 1135 } 1136 1137 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1138 blk_set_rl_full(rl, BLK_RW_ASYNC); 1139 } else { 1140 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1141 wake_up(&rl->wait[BLK_RW_ASYNC]); 1142 } 1143 } 1144 1145 spin_unlock_irq(q->queue_lock); 1146 return 0; 1147 } 1148 1149 /** 1150 * __get_request - get a free request 1151 * @rl: request list to allocate from 1152 * @op: operation and flags 1153 * @bio: bio to allocate request for (can be %NULL) 1154 * @gfp_mask: allocation mask 1155 * 1156 * Get a free request from @q. This function may fail under memory 1157 * pressure or if @q is dead. 1158 * 1159 * Must be called with @q->queue_lock held and, 1160 * Returns ERR_PTR on failure, with @q->queue_lock held. 1161 * Returns request pointer on success, with @q->queue_lock *not held*. 1162 */ 1163 static struct request *__get_request(struct request_list *rl, unsigned int op, 1164 struct bio *bio, gfp_t gfp_mask) 1165 { 1166 struct request_queue *q = rl->q; 1167 struct request *rq; 1168 struct elevator_type *et = q->elevator->type; 1169 struct io_context *ioc = rq_ioc(bio); 1170 struct io_cq *icq = NULL; 1171 const bool is_sync = op_is_sync(op); 1172 int may_queue; 1173 req_flags_t rq_flags = RQF_ALLOCED; 1174 1175 lockdep_assert_held(q->queue_lock); 1176 1177 if (unlikely(blk_queue_dying(q))) 1178 return ERR_PTR(-ENODEV); 1179 1180 may_queue = elv_may_queue(q, op); 1181 if (may_queue == ELV_MQUEUE_NO) 1182 goto rq_starved; 1183 1184 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1185 if (rl->count[is_sync]+1 >= q->nr_requests) { 1186 /* 1187 * The queue will fill after this allocation, so set 1188 * it as full, and mark this process as "batching". 1189 * This process will be allowed to complete a batch of 1190 * requests, others will be blocked. 1191 */ 1192 if (!blk_rl_full(rl, is_sync)) { 1193 ioc_set_batching(q, ioc); 1194 blk_set_rl_full(rl, is_sync); 1195 } else { 1196 if (may_queue != ELV_MQUEUE_MUST 1197 && !ioc_batching(q, ioc)) { 1198 /* 1199 * The queue is full and the allocating 1200 * process is not a "batcher", and not 1201 * exempted by the IO scheduler 1202 */ 1203 return ERR_PTR(-ENOMEM); 1204 } 1205 } 1206 } 1207 blk_set_congested(rl, is_sync); 1208 } 1209 1210 /* 1211 * Only allow batching queuers to allocate up to 50% over the defined 1212 * limit of requests, otherwise we could have thousands of requests 1213 * allocated with any setting of ->nr_requests 1214 */ 1215 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1216 return ERR_PTR(-ENOMEM); 1217 1218 q->nr_rqs[is_sync]++; 1219 rl->count[is_sync]++; 1220 rl->starved[is_sync] = 0; 1221 1222 /* 1223 * Decide whether the new request will be managed by elevator. If 1224 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1225 * prevent the current elevator from being destroyed until the new 1226 * request is freed. This guarantees icq's won't be destroyed and 1227 * makes creating new ones safe. 1228 * 1229 * Flush requests do not use the elevator so skip initialization. 1230 * This allows a request to share the flush and elevator data. 1231 * 1232 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1233 * it will be created after releasing queue_lock. 1234 */ 1235 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1236 rq_flags |= RQF_ELVPRIV; 1237 q->nr_rqs_elvpriv++; 1238 if (et->icq_cache && ioc) 1239 icq = ioc_lookup_icq(ioc, q); 1240 } 1241 1242 if (blk_queue_io_stat(q)) 1243 rq_flags |= RQF_IO_STAT; 1244 spin_unlock_irq(q->queue_lock); 1245 1246 /* allocate and init request */ 1247 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1248 if (!rq) 1249 goto fail_alloc; 1250 1251 blk_rq_init(q, rq); 1252 blk_rq_set_rl(rq, rl); 1253 rq->cmd_flags = op; 1254 rq->rq_flags = rq_flags; 1255 1256 /* init elvpriv */ 1257 if (rq_flags & RQF_ELVPRIV) { 1258 if (unlikely(et->icq_cache && !icq)) { 1259 if (ioc) 1260 icq = ioc_create_icq(ioc, q, gfp_mask); 1261 if (!icq) 1262 goto fail_elvpriv; 1263 } 1264 1265 rq->elv.icq = icq; 1266 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1267 goto fail_elvpriv; 1268 1269 /* @rq->elv.icq holds io_context until @rq is freed */ 1270 if (icq) 1271 get_io_context(icq->ioc); 1272 } 1273 out: 1274 /* 1275 * ioc may be NULL here, and ioc_batching will be false. That's 1276 * OK, if the queue is under the request limit then requests need 1277 * not count toward the nr_batch_requests limit. There will always 1278 * be some limit enforced by BLK_BATCH_TIME. 1279 */ 1280 if (ioc_batching(q, ioc)) 1281 ioc->nr_batch_requests--; 1282 1283 trace_block_getrq(q, bio, op); 1284 return rq; 1285 1286 fail_elvpriv: 1287 /* 1288 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1289 * and may fail indefinitely under memory pressure and thus 1290 * shouldn't stall IO. Treat this request as !elvpriv. This will 1291 * disturb iosched and blkcg but weird is bettern than dead. 1292 */ 1293 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1294 __func__, dev_name(q->backing_dev_info->dev)); 1295 1296 rq->rq_flags &= ~RQF_ELVPRIV; 1297 rq->elv.icq = NULL; 1298 1299 spin_lock_irq(q->queue_lock); 1300 q->nr_rqs_elvpriv--; 1301 spin_unlock_irq(q->queue_lock); 1302 goto out; 1303 1304 fail_alloc: 1305 /* 1306 * Allocation failed presumably due to memory. Undo anything we 1307 * might have messed up. 1308 * 1309 * Allocating task should really be put onto the front of the wait 1310 * queue, but this is pretty rare. 1311 */ 1312 spin_lock_irq(q->queue_lock); 1313 freed_request(rl, is_sync, rq_flags); 1314 1315 /* 1316 * in the very unlikely event that allocation failed and no 1317 * requests for this direction was pending, mark us starved so that 1318 * freeing of a request in the other direction will notice 1319 * us. another possible fix would be to split the rq mempool into 1320 * READ and WRITE 1321 */ 1322 rq_starved: 1323 if (unlikely(rl->count[is_sync] == 0)) 1324 rl->starved[is_sync] = 1; 1325 return ERR_PTR(-ENOMEM); 1326 } 1327 1328 /** 1329 * get_request - get a free request 1330 * @q: request_queue to allocate request from 1331 * @op: operation and flags 1332 * @bio: bio to allocate request for (can be %NULL) 1333 * @gfp_mask: allocation mask 1334 * 1335 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1336 * this function keeps retrying under memory pressure and fails iff @q is dead. 1337 * 1338 * Must be called with @q->queue_lock held and, 1339 * Returns ERR_PTR on failure, with @q->queue_lock held. 1340 * Returns request pointer on success, with @q->queue_lock *not held*. 1341 */ 1342 static struct request *get_request(struct request_queue *q, unsigned int op, 1343 struct bio *bio, gfp_t gfp_mask) 1344 { 1345 const bool is_sync = op_is_sync(op); 1346 DEFINE_WAIT(wait); 1347 struct request_list *rl; 1348 struct request *rq; 1349 1350 lockdep_assert_held(q->queue_lock); 1351 WARN_ON_ONCE(q->mq_ops); 1352 1353 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1354 retry: 1355 rq = __get_request(rl, op, bio, gfp_mask); 1356 if (!IS_ERR(rq)) 1357 return rq; 1358 1359 if (op & REQ_NOWAIT) { 1360 blk_put_rl(rl); 1361 return ERR_PTR(-EAGAIN); 1362 } 1363 1364 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) { 1365 blk_put_rl(rl); 1366 return rq; 1367 } 1368 1369 /* wait on @rl and retry */ 1370 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1371 TASK_UNINTERRUPTIBLE); 1372 1373 trace_block_sleeprq(q, bio, op); 1374 1375 spin_unlock_irq(q->queue_lock); 1376 io_schedule(); 1377 1378 /* 1379 * After sleeping, we become a "batching" process and will be able 1380 * to allocate at least one request, and up to a big batch of them 1381 * for a small period time. See ioc_batching, ioc_set_batching 1382 */ 1383 ioc_set_batching(q, current->io_context); 1384 1385 spin_lock_irq(q->queue_lock); 1386 finish_wait(&rl->wait[is_sync], &wait); 1387 1388 goto retry; 1389 } 1390 1391 static struct request *blk_old_get_request(struct request_queue *q, 1392 unsigned int op, gfp_t gfp_mask) 1393 { 1394 struct request *rq; 1395 1396 WARN_ON_ONCE(q->mq_ops); 1397 1398 /* create ioc upfront */ 1399 create_io_context(gfp_mask, q->node); 1400 1401 spin_lock_irq(q->queue_lock); 1402 rq = get_request(q, op, NULL, gfp_mask); 1403 if (IS_ERR(rq)) { 1404 spin_unlock_irq(q->queue_lock); 1405 return rq; 1406 } 1407 1408 /* q->queue_lock is unlocked at this point */ 1409 rq->__data_len = 0; 1410 rq->__sector = (sector_t) -1; 1411 rq->bio = rq->biotail = NULL; 1412 return rq; 1413 } 1414 1415 struct request *blk_get_request(struct request_queue *q, unsigned int op, 1416 gfp_t gfp_mask) 1417 { 1418 struct request *req; 1419 1420 if (q->mq_ops) { 1421 req = blk_mq_alloc_request(q, op, 1422 (gfp_mask & __GFP_DIRECT_RECLAIM) ? 1423 0 : BLK_MQ_REQ_NOWAIT); 1424 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 1425 q->mq_ops->initialize_rq_fn(req); 1426 } else { 1427 req = blk_old_get_request(q, op, gfp_mask); 1428 if (!IS_ERR(req) && q->initialize_rq_fn) 1429 q->initialize_rq_fn(req); 1430 } 1431 1432 return req; 1433 } 1434 EXPORT_SYMBOL(blk_get_request); 1435 1436 /** 1437 * blk_requeue_request - put a request back on queue 1438 * @q: request queue where request should be inserted 1439 * @rq: request to be inserted 1440 * 1441 * Description: 1442 * Drivers often keep queueing requests until the hardware cannot accept 1443 * more, when that condition happens we need to put the request back 1444 * on the queue. Must be called with queue lock held. 1445 */ 1446 void blk_requeue_request(struct request_queue *q, struct request *rq) 1447 { 1448 lockdep_assert_held(q->queue_lock); 1449 WARN_ON_ONCE(q->mq_ops); 1450 1451 blk_delete_timer(rq); 1452 blk_clear_rq_complete(rq); 1453 trace_block_rq_requeue(q, rq); 1454 wbt_requeue(q->rq_wb, &rq->issue_stat); 1455 1456 if (rq->rq_flags & RQF_QUEUED) 1457 blk_queue_end_tag(q, rq); 1458 1459 BUG_ON(blk_queued_rq(rq)); 1460 1461 elv_requeue_request(q, rq); 1462 } 1463 EXPORT_SYMBOL(blk_requeue_request); 1464 1465 static void add_acct_request(struct request_queue *q, struct request *rq, 1466 int where) 1467 { 1468 blk_account_io_start(rq, true); 1469 __elv_add_request(q, rq, where); 1470 } 1471 1472 static void part_round_stats_single(int cpu, struct hd_struct *part, 1473 unsigned long now) 1474 { 1475 int inflight; 1476 1477 if (now == part->stamp) 1478 return; 1479 1480 inflight = part_in_flight(part); 1481 if (inflight) { 1482 __part_stat_add(cpu, part, time_in_queue, 1483 inflight * (now - part->stamp)); 1484 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1485 } 1486 part->stamp = now; 1487 } 1488 1489 /** 1490 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1491 * @cpu: cpu number for stats access 1492 * @part: target partition 1493 * 1494 * The average IO queue length and utilisation statistics are maintained 1495 * by observing the current state of the queue length and the amount of 1496 * time it has been in this state for. 1497 * 1498 * Normally, that accounting is done on IO completion, but that can result 1499 * in more than a second's worth of IO being accounted for within any one 1500 * second, leading to >100% utilisation. To deal with that, we call this 1501 * function to do a round-off before returning the results when reading 1502 * /proc/diskstats. This accounts immediately for all queue usage up to 1503 * the current jiffies and restarts the counters again. 1504 */ 1505 void part_round_stats(int cpu, struct hd_struct *part) 1506 { 1507 unsigned long now = jiffies; 1508 1509 if (part->partno) 1510 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1511 part_round_stats_single(cpu, part, now); 1512 } 1513 EXPORT_SYMBOL_GPL(part_round_stats); 1514 1515 #ifdef CONFIG_PM 1516 static void blk_pm_put_request(struct request *rq) 1517 { 1518 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1519 pm_runtime_mark_last_busy(rq->q->dev); 1520 } 1521 #else 1522 static inline void blk_pm_put_request(struct request *rq) {} 1523 #endif 1524 1525 void __blk_put_request(struct request_queue *q, struct request *req) 1526 { 1527 req_flags_t rq_flags = req->rq_flags; 1528 1529 if (unlikely(!q)) 1530 return; 1531 1532 if (q->mq_ops) { 1533 blk_mq_free_request(req); 1534 return; 1535 } 1536 1537 lockdep_assert_held(q->queue_lock); 1538 1539 blk_pm_put_request(req); 1540 1541 elv_completed_request(q, req); 1542 1543 /* this is a bio leak */ 1544 WARN_ON(req->bio != NULL); 1545 1546 wbt_done(q->rq_wb, &req->issue_stat); 1547 1548 /* 1549 * Request may not have originated from ll_rw_blk. if not, 1550 * it didn't come out of our reserved rq pools 1551 */ 1552 if (rq_flags & RQF_ALLOCED) { 1553 struct request_list *rl = blk_rq_rl(req); 1554 bool sync = op_is_sync(req->cmd_flags); 1555 1556 BUG_ON(!list_empty(&req->queuelist)); 1557 BUG_ON(ELV_ON_HASH(req)); 1558 1559 blk_free_request(rl, req); 1560 freed_request(rl, sync, rq_flags); 1561 blk_put_rl(rl); 1562 } 1563 } 1564 EXPORT_SYMBOL_GPL(__blk_put_request); 1565 1566 void blk_put_request(struct request *req) 1567 { 1568 struct request_queue *q = req->q; 1569 1570 if (q->mq_ops) 1571 blk_mq_free_request(req); 1572 else { 1573 unsigned long flags; 1574 1575 spin_lock_irqsave(q->queue_lock, flags); 1576 __blk_put_request(q, req); 1577 spin_unlock_irqrestore(q->queue_lock, flags); 1578 } 1579 } 1580 EXPORT_SYMBOL(blk_put_request); 1581 1582 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1583 struct bio *bio) 1584 { 1585 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1586 1587 if (!ll_back_merge_fn(q, req, bio)) 1588 return false; 1589 1590 trace_block_bio_backmerge(q, req, bio); 1591 1592 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1593 blk_rq_set_mixed_merge(req); 1594 1595 req->biotail->bi_next = bio; 1596 req->biotail = bio; 1597 req->__data_len += bio->bi_iter.bi_size; 1598 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1599 1600 blk_account_io_start(req, false); 1601 return true; 1602 } 1603 1604 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1605 struct bio *bio) 1606 { 1607 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1608 1609 if (!ll_front_merge_fn(q, req, bio)) 1610 return false; 1611 1612 trace_block_bio_frontmerge(q, req, bio); 1613 1614 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1615 blk_rq_set_mixed_merge(req); 1616 1617 bio->bi_next = req->bio; 1618 req->bio = bio; 1619 1620 req->__sector = bio->bi_iter.bi_sector; 1621 req->__data_len += bio->bi_iter.bi_size; 1622 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1623 1624 blk_account_io_start(req, false); 1625 return true; 1626 } 1627 1628 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1629 struct bio *bio) 1630 { 1631 unsigned short segments = blk_rq_nr_discard_segments(req); 1632 1633 if (segments >= queue_max_discard_segments(q)) 1634 goto no_merge; 1635 if (blk_rq_sectors(req) + bio_sectors(bio) > 1636 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1637 goto no_merge; 1638 1639 req->biotail->bi_next = bio; 1640 req->biotail = bio; 1641 req->__data_len += bio->bi_iter.bi_size; 1642 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1643 req->nr_phys_segments = segments + 1; 1644 1645 blk_account_io_start(req, false); 1646 return true; 1647 no_merge: 1648 req_set_nomerge(q, req); 1649 return false; 1650 } 1651 1652 /** 1653 * blk_attempt_plug_merge - try to merge with %current's plugged list 1654 * @q: request_queue new bio is being queued at 1655 * @bio: new bio being queued 1656 * @request_count: out parameter for number of traversed plugged requests 1657 * @same_queue_rq: pointer to &struct request that gets filled in when 1658 * another request associated with @q is found on the plug list 1659 * (optional, may be %NULL) 1660 * 1661 * Determine whether @bio being queued on @q can be merged with a request 1662 * on %current's plugged list. Returns %true if merge was successful, 1663 * otherwise %false. 1664 * 1665 * Plugging coalesces IOs from the same issuer for the same purpose without 1666 * going through @q->queue_lock. As such it's more of an issuing mechanism 1667 * than scheduling, and the request, while may have elvpriv data, is not 1668 * added on the elevator at this point. In addition, we don't have 1669 * reliable access to the elevator outside queue lock. Only check basic 1670 * merging parameters without querying the elevator. 1671 * 1672 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1673 */ 1674 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1675 unsigned int *request_count, 1676 struct request **same_queue_rq) 1677 { 1678 struct blk_plug *plug; 1679 struct request *rq; 1680 struct list_head *plug_list; 1681 1682 plug = current->plug; 1683 if (!plug) 1684 return false; 1685 *request_count = 0; 1686 1687 if (q->mq_ops) 1688 plug_list = &plug->mq_list; 1689 else 1690 plug_list = &plug->list; 1691 1692 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1693 bool merged = false; 1694 1695 if (rq->q == q) { 1696 (*request_count)++; 1697 /* 1698 * Only blk-mq multiple hardware queues case checks the 1699 * rq in the same queue, there should be only one such 1700 * rq in a queue 1701 **/ 1702 if (same_queue_rq) 1703 *same_queue_rq = rq; 1704 } 1705 1706 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1707 continue; 1708 1709 switch (blk_try_merge(rq, bio)) { 1710 case ELEVATOR_BACK_MERGE: 1711 merged = bio_attempt_back_merge(q, rq, bio); 1712 break; 1713 case ELEVATOR_FRONT_MERGE: 1714 merged = bio_attempt_front_merge(q, rq, bio); 1715 break; 1716 case ELEVATOR_DISCARD_MERGE: 1717 merged = bio_attempt_discard_merge(q, rq, bio); 1718 break; 1719 default: 1720 break; 1721 } 1722 1723 if (merged) 1724 return true; 1725 } 1726 1727 return false; 1728 } 1729 1730 unsigned int blk_plug_queued_count(struct request_queue *q) 1731 { 1732 struct blk_plug *plug; 1733 struct request *rq; 1734 struct list_head *plug_list; 1735 unsigned int ret = 0; 1736 1737 plug = current->plug; 1738 if (!plug) 1739 goto out; 1740 1741 if (q->mq_ops) 1742 plug_list = &plug->mq_list; 1743 else 1744 plug_list = &plug->list; 1745 1746 list_for_each_entry(rq, plug_list, queuelist) { 1747 if (rq->q == q) 1748 ret++; 1749 } 1750 out: 1751 return ret; 1752 } 1753 1754 void blk_init_request_from_bio(struct request *req, struct bio *bio) 1755 { 1756 struct io_context *ioc = rq_ioc(bio); 1757 1758 if (bio->bi_opf & REQ_RAHEAD) 1759 req->cmd_flags |= REQ_FAILFAST_MASK; 1760 1761 req->__sector = bio->bi_iter.bi_sector; 1762 if (ioprio_valid(bio_prio(bio))) 1763 req->ioprio = bio_prio(bio); 1764 else if (ioc) 1765 req->ioprio = ioc->ioprio; 1766 else 1767 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1768 req->write_hint = bio->bi_write_hint; 1769 blk_rq_bio_prep(req->q, req, bio); 1770 } 1771 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 1772 1773 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1774 { 1775 struct blk_plug *plug; 1776 int where = ELEVATOR_INSERT_SORT; 1777 struct request *req, *free; 1778 unsigned int request_count = 0; 1779 unsigned int wb_acct; 1780 1781 /* 1782 * low level driver can indicate that it wants pages above a 1783 * certain limit bounced to low memory (ie for highmem, or even 1784 * ISA dma in theory) 1785 */ 1786 blk_queue_bounce(q, &bio); 1787 1788 blk_queue_split(q, &bio); 1789 1790 if (!bio_integrity_prep(bio)) 1791 return BLK_QC_T_NONE; 1792 1793 if (op_is_flush(bio->bi_opf)) { 1794 spin_lock_irq(q->queue_lock); 1795 where = ELEVATOR_INSERT_FLUSH; 1796 goto get_rq; 1797 } 1798 1799 /* 1800 * Check if we can merge with the plugged list before grabbing 1801 * any locks. 1802 */ 1803 if (!blk_queue_nomerges(q)) { 1804 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1805 return BLK_QC_T_NONE; 1806 } else 1807 request_count = blk_plug_queued_count(q); 1808 1809 spin_lock_irq(q->queue_lock); 1810 1811 switch (elv_merge(q, &req, bio)) { 1812 case ELEVATOR_BACK_MERGE: 1813 if (!bio_attempt_back_merge(q, req, bio)) 1814 break; 1815 elv_bio_merged(q, req, bio); 1816 free = attempt_back_merge(q, req); 1817 if (free) 1818 __blk_put_request(q, free); 1819 else 1820 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 1821 goto out_unlock; 1822 case ELEVATOR_FRONT_MERGE: 1823 if (!bio_attempt_front_merge(q, req, bio)) 1824 break; 1825 elv_bio_merged(q, req, bio); 1826 free = attempt_front_merge(q, req); 1827 if (free) 1828 __blk_put_request(q, free); 1829 else 1830 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 1831 goto out_unlock; 1832 default: 1833 break; 1834 } 1835 1836 get_rq: 1837 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock); 1838 1839 /* 1840 * Grab a free request. This is might sleep but can not fail. 1841 * Returns with the queue unlocked. 1842 */ 1843 req = get_request(q, bio->bi_opf, bio, GFP_NOIO); 1844 if (IS_ERR(req)) { 1845 __wbt_done(q->rq_wb, wb_acct); 1846 if (PTR_ERR(req) == -ENOMEM) 1847 bio->bi_status = BLK_STS_RESOURCE; 1848 else 1849 bio->bi_status = BLK_STS_IOERR; 1850 bio_endio(bio); 1851 goto out_unlock; 1852 } 1853 1854 wbt_track(&req->issue_stat, wb_acct); 1855 1856 /* 1857 * After dropping the lock and possibly sleeping here, our request 1858 * may now be mergeable after it had proven unmergeable (above). 1859 * We don't worry about that case for efficiency. It won't happen 1860 * often, and the elevators are able to handle it. 1861 */ 1862 blk_init_request_from_bio(req, bio); 1863 1864 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1865 req->cpu = raw_smp_processor_id(); 1866 1867 plug = current->plug; 1868 if (plug) { 1869 /* 1870 * If this is the first request added after a plug, fire 1871 * of a plug trace. 1872 * 1873 * @request_count may become stale because of schedule 1874 * out, so check plug list again. 1875 */ 1876 if (!request_count || list_empty(&plug->list)) 1877 trace_block_plug(q); 1878 else { 1879 struct request *last = list_entry_rq(plug->list.prev); 1880 if (request_count >= BLK_MAX_REQUEST_COUNT || 1881 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 1882 blk_flush_plug_list(plug, false); 1883 trace_block_plug(q); 1884 } 1885 } 1886 list_add_tail(&req->queuelist, &plug->list); 1887 blk_account_io_start(req, true); 1888 } else { 1889 spin_lock_irq(q->queue_lock); 1890 add_acct_request(q, req, where); 1891 __blk_run_queue(q); 1892 out_unlock: 1893 spin_unlock_irq(q->queue_lock); 1894 } 1895 1896 return BLK_QC_T_NONE; 1897 } 1898 1899 /* 1900 * If bio->bi_dev is a partition, remap the location 1901 */ 1902 static inline void blk_partition_remap(struct bio *bio) 1903 { 1904 struct block_device *bdev = bio->bi_bdev; 1905 1906 /* 1907 * Zone reset does not include bi_size so bio_sectors() is always 0. 1908 * Include a test for the reset op code and perform the remap if needed. 1909 */ 1910 if (bdev != bdev->bd_contains && 1911 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) { 1912 struct hd_struct *p = bdev->bd_part; 1913 1914 bio->bi_iter.bi_sector += p->start_sect; 1915 bio->bi_bdev = bdev->bd_contains; 1916 1917 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1918 bdev->bd_dev, 1919 bio->bi_iter.bi_sector - p->start_sect); 1920 } 1921 } 1922 1923 static void handle_bad_sector(struct bio *bio) 1924 { 1925 char b[BDEVNAME_SIZE]; 1926 1927 printk(KERN_INFO "attempt to access beyond end of device\n"); 1928 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 1929 bdevname(bio->bi_bdev, b), 1930 bio->bi_opf, 1931 (unsigned long long)bio_end_sector(bio), 1932 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1933 } 1934 1935 #ifdef CONFIG_FAIL_MAKE_REQUEST 1936 1937 static DECLARE_FAULT_ATTR(fail_make_request); 1938 1939 static int __init setup_fail_make_request(char *str) 1940 { 1941 return setup_fault_attr(&fail_make_request, str); 1942 } 1943 __setup("fail_make_request=", setup_fail_make_request); 1944 1945 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1946 { 1947 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1948 } 1949 1950 static int __init fail_make_request_debugfs(void) 1951 { 1952 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1953 NULL, &fail_make_request); 1954 1955 return PTR_ERR_OR_ZERO(dir); 1956 } 1957 1958 late_initcall(fail_make_request_debugfs); 1959 1960 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1961 1962 static inline bool should_fail_request(struct hd_struct *part, 1963 unsigned int bytes) 1964 { 1965 return false; 1966 } 1967 1968 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1969 1970 /* 1971 * Check whether this bio extends beyond the end of the device. 1972 */ 1973 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1974 { 1975 sector_t maxsector; 1976 1977 if (!nr_sectors) 1978 return 0; 1979 1980 /* Test device or partition size, when known. */ 1981 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1982 if (maxsector) { 1983 sector_t sector = bio->bi_iter.bi_sector; 1984 1985 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1986 /* 1987 * This may well happen - the kernel calls bread() 1988 * without checking the size of the device, e.g., when 1989 * mounting a device. 1990 */ 1991 handle_bad_sector(bio); 1992 return 1; 1993 } 1994 } 1995 1996 return 0; 1997 } 1998 1999 static noinline_for_stack bool 2000 generic_make_request_checks(struct bio *bio) 2001 { 2002 struct request_queue *q; 2003 int nr_sectors = bio_sectors(bio); 2004 blk_status_t status = BLK_STS_IOERR; 2005 char b[BDEVNAME_SIZE]; 2006 struct hd_struct *part; 2007 2008 might_sleep(); 2009 2010 if (bio_check_eod(bio, nr_sectors)) 2011 goto end_io; 2012 2013 q = bdev_get_queue(bio->bi_bdev); 2014 if (unlikely(!q)) { 2015 printk(KERN_ERR 2016 "generic_make_request: Trying to access " 2017 "nonexistent block-device %s (%Lu)\n", 2018 bdevname(bio->bi_bdev, b), 2019 (long long) bio->bi_iter.bi_sector); 2020 goto end_io; 2021 } 2022 2023 /* 2024 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 2025 * if queue is not a request based queue. 2026 */ 2027 2028 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q)) 2029 goto not_supported; 2030 2031 part = bio->bi_bdev->bd_part; 2032 if (should_fail_request(part, bio->bi_iter.bi_size) || 2033 should_fail_request(&part_to_disk(part)->part0, 2034 bio->bi_iter.bi_size)) 2035 goto end_io; 2036 2037 /* 2038 * If this device has partitions, remap block n 2039 * of partition p to block n+start(p) of the disk. 2040 */ 2041 blk_partition_remap(bio); 2042 2043 if (bio_check_eod(bio, nr_sectors)) 2044 goto end_io; 2045 2046 /* 2047 * Filter flush bio's early so that make_request based 2048 * drivers without flush support don't have to worry 2049 * about them. 2050 */ 2051 if (op_is_flush(bio->bi_opf) && 2052 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 2053 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 2054 if (!nr_sectors) { 2055 status = BLK_STS_OK; 2056 goto end_io; 2057 } 2058 } 2059 2060 switch (bio_op(bio)) { 2061 case REQ_OP_DISCARD: 2062 if (!blk_queue_discard(q)) 2063 goto not_supported; 2064 break; 2065 case REQ_OP_SECURE_ERASE: 2066 if (!blk_queue_secure_erase(q)) 2067 goto not_supported; 2068 break; 2069 case REQ_OP_WRITE_SAME: 2070 if (!bdev_write_same(bio->bi_bdev)) 2071 goto not_supported; 2072 break; 2073 case REQ_OP_ZONE_REPORT: 2074 case REQ_OP_ZONE_RESET: 2075 if (!bdev_is_zoned(bio->bi_bdev)) 2076 goto not_supported; 2077 break; 2078 case REQ_OP_WRITE_ZEROES: 2079 if (!bdev_write_zeroes_sectors(bio->bi_bdev)) 2080 goto not_supported; 2081 break; 2082 default: 2083 break; 2084 } 2085 2086 /* 2087 * Various block parts want %current->io_context and lazy ioc 2088 * allocation ends up trading a lot of pain for a small amount of 2089 * memory. Just allocate it upfront. This may fail and block 2090 * layer knows how to live with it. 2091 */ 2092 create_io_context(GFP_ATOMIC, q->node); 2093 2094 if (!blkcg_bio_issue_check(q, bio)) 2095 return false; 2096 2097 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 2098 trace_block_bio_queue(q, bio); 2099 /* Now that enqueuing has been traced, we need to trace 2100 * completion as well. 2101 */ 2102 bio_set_flag(bio, BIO_TRACE_COMPLETION); 2103 } 2104 return true; 2105 2106 not_supported: 2107 status = BLK_STS_NOTSUPP; 2108 end_io: 2109 bio->bi_status = status; 2110 bio_endio(bio); 2111 return false; 2112 } 2113 2114 /** 2115 * generic_make_request - hand a buffer to its device driver for I/O 2116 * @bio: The bio describing the location in memory and on the device. 2117 * 2118 * generic_make_request() is used to make I/O requests of block 2119 * devices. It is passed a &struct bio, which describes the I/O that needs 2120 * to be done. 2121 * 2122 * generic_make_request() does not return any status. The 2123 * success/failure status of the request, along with notification of 2124 * completion, is delivered asynchronously through the bio->bi_end_io 2125 * function described (one day) else where. 2126 * 2127 * The caller of generic_make_request must make sure that bi_io_vec 2128 * are set to describe the memory buffer, and that bi_dev and bi_sector are 2129 * set to describe the device address, and the 2130 * bi_end_io and optionally bi_private are set to describe how 2131 * completion notification should be signaled. 2132 * 2133 * generic_make_request and the drivers it calls may use bi_next if this 2134 * bio happens to be merged with someone else, and may resubmit the bio to 2135 * a lower device by calling into generic_make_request recursively, which 2136 * means the bio should NOT be touched after the call to ->make_request_fn. 2137 */ 2138 blk_qc_t generic_make_request(struct bio *bio) 2139 { 2140 /* 2141 * bio_list_on_stack[0] contains bios submitted by the current 2142 * make_request_fn. 2143 * bio_list_on_stack[1] contains bios that were submitted before 2144 * the current make_request_fn, but that haven't been processed 2145 * yet. 2146 */ 2147 struct bio_list bio_list_on_stack[2]; 2148 blk_qc_t ret = BLK_QC_T_NONE; 2149 2150 if (!generic_make_request_checks(bio)) 2151 goto out; 2152 2153 /* 2154 * We only want one ->make_request_fn to be active at a time, else 2155 * stack usage with stacked devices could be a problem. So use 2156 * current->bio_list to keep a list of requests submited by a 2157 * make_request_fn function. current->bio_list is also used as a 2158 * flag to say if generic_make_request is currently active in this 2159 * task or not. If it is NULL, then no make_request is active. If 2160 * it is non-NULL, then a make_request is active, and new requests 2161 * should be added at the tail 2162 */ 2163 if (current->bio_list) { 2164 bio_list_add(¤t->bio_list[0], bio); 2165 goto out; 2166 } 2167 2168 /* following loop may be a bit non-obvious, and so deserves some 2169 * explanation. 2170 * Before entering the loop, bio->bi_next is NULL (as all callers 2171 * ensure that) so we have a list with a single bio. 2172 * We pretend that we have just taken it off a longer list, so 2173 * we assign bio_list to a pointer to the bio_list_on_stack, 2174 * thus initialising the bio_list of new bios to be 2175 * added. ->make_request() may indeed add some more bios 2176 * through a recursive call to generic_make_request. If it 2177 * did, we find a non-NULL value in bio_list and re-enter the loop 2178 * from the top. In this case we really did just take the bio 2179 * of the top of the list (no pretending) and so remove it from 2180 * bio_list, and call into ->make_request() again. 2181 */ 2182 BUG_ON(bio->bi_next); 2183 bio_list_init(&bio_list_on_stack[0]); 2184 current->bio_list = bio_list_on_stack; 2185 do { 2186 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2187 2188 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) { 2189 struct bio_list lower, same; 2190 2191 /* Create a fresh bio_list for all subordinate requests */ 2192 bio_list_on_stack[1] = bio_list_on_stack[0]; 2193 bio_list_init(&bio_list_on_stack[0]); 2194 ret = q->make_request_fn(q, bio); 2195 2196 blk_queue_exit(q); 2197 2198 /* sort new bios into those for a lower level 2199 * and those for the same level 2200 */ 2201 bio_list_init(&lower); 2202 bio_list_init(&same); 2203 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 2204 if (q == bdev_get_queue(bio->bi_bdev)) 2205 bio_list_add(&same, bio); 2206 else 2207 bio_list_add(&lower, bio); 2208 /* now assemble so we handle the lowest level first */ 2209 bio_list_merge(&bio_list_on_stack[0], &lower); 2210 bio_list_merge(&bio_list_on_stack[0], &same); 2211 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 2212 } else { 2213 if (unlikely(!blk_queue_dying(q) && 2214 (bio->bi_opf & REQ_NOWAIT))) 2215 bio_wouldblock_error(bio); 2216 else 2217 bio_io_error(bio); 2218 } 2219 bio = bio_list_pop(&bio_list_on_stack[0]); 2220 } while (bio); 2221 current->bio_list = NULL; /* deactivate */ 2222 2223 out: 2224 return ret; 2225 } 2226 EXPORT_SYMBOL(generic_make_request); 2227 2228 /** 2229 * submit_bio - submit a bio to the block device layer for I/O 2230 * @bio: The &struct bio which describes the I/O 2231 * 2232 * submit_bio() is very similar in purpose to generic_make_request(), and 2233 * uses that function to do most of the work. Both are fairly rough 2234 * interfaces; @bio must be presetup and ready for I/O. 2235 * 2236 */ 2237 blk_qc_t submit_bio(struct bio *bio) 2238 { 2239 /* 2240 * If it's a regular read/write or a barrier with data attached, 2241 * go through the normal accounting stuff before submission. 2242 */ 2243 if (bio_has_data(bio)) { 2244 unsigned int count; 2245 2246 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2247 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 2248 else 2249 count = bio_sectors(bio); 2250 2251 if (op_is_write(bio_op(bio))) { 2252 count_vm_events(PGPGOUT, count); 2253 } else { 2254 task_io_account_read(bio->bi_iter.bi_size); 2255 count_vm_events(PGPGIN, count); 2256 } 2257 2258 if (unlikely(block_dump)) { 2259 char b[BDEVNAME_SIZE]; 2260 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2261 current->comm, task_pid_nr(current), 2262 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2263 (unsigned long long)bio->bi_iter.bi_sector, 2264 bdevname(bio->bi_bdev, b), 2265 count); 2266 } 2267 } 2268 2269 return generic_make_request(bio); 2270 } 2271 EXPORT_SYMBOL(submit_bio); 2272 2273 /** 2274 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2275 * for new the queue limits 2276 * @q: the queue 2277 * @rq: the request being checked 2278 * 2279 * Description: 2280 * @rq may have been made based on weaker limitations of upper-level queues 2281 * in request stacking drivers, and it may violate the limitation of @q. 2282 * Since the block layer and the underlying device driver trust @rq 2283 * after it is inserted to @q, it should be checked against @q before 2284 * the insertion using this generic function. 2285 * 2286 * Request stacking drivers like request-based dm may change the queue 2287 * limits when retrying requests on other queues. Those requests need 2288 * to be checked against the new queue limits again during dispatch. 2289 */ 2290 static int blk_cloned_rq_check_limits(struct request_queue *q, 2291 struct request *rq) 2292 { 2293 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2294 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2295 return -EIO; 2296 } 2297 2298 /* 2299 * queue's settings related to segment counting like q->bounce_pfn 2300 * may differ from that of other stacking queues. 2301 * Recalculate it to check the request correctly on this queue's 2302 * limitation. 2303 */ 2304 blk_recalc_rq_segments(rq); 2305 if (rq->nr_phys_segments > queue_max_segments(q)) { 2306 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2307 return -EIO; 2308 } 2309 2310 return 0; 2311 } 2312 2313 /** 2314 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2315 * @q: the queue to submit the request 2316 * @rq: the request being queued 2317 */ 2318 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2319 { 2320 unsigned long flags; 2321 int where = ELEVATOR_INSERT_BACK; 2322 2323 if (blk_cloned_rq_check_limits(q, rq)) 2324 return BLK_STS_IOERR; 2325 2326 if (rq->rq_disk && 2327 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2328 return BLK_STS_IOERR; 2329 2330 if (q->mq_ops) { 2331 if (blk_queue_io_stat(q)) 2332 blk_account_io_start(rq, true); 2333 blk_mq_sched_insert_request(rq, false, true, false, false); 2334 return BLK_STS_OK; 2335 } 2336 2337 spin_lock_irqsave(q->queue_lock, flags); 2338 if (unlikely(blk_queue_dying(q))) { 2339 spin_unlock_irqrestore(q->queue_lock, flags); 2340 return BLK_STS_IOERR; 2341 } 2342 2343 /* 2344 * Submitting request must be dequeued before calling this function 2345 * because it will be linked to another request_queue 2346 */ 2347 BUG_ON(blk_queued_rq(rq)); 2348 2349 if (op_is_flush(rq->cmd_flags)) 2350 where = ELEVATOR_INSERT_FLUSH; 2351 2352 add_acct_request(q, rq, where); 2353 if (where == ELEVATOR_INSERT_FLUSH) 2354 __blk_run_queue(q); 2355 spin_unlock_irqrestore(q->queue_lock, flags); 2356 2357 return BLK_STS_OK; 2358 } 2359 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2360 2361 /** 2362 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2363 * @rq: request to examine 2364 * 2365 * Description: 2366 * A request could be merge of IOs which require different failure 2367 * handling. This function determines the number of bytes which 2368 * can be failed from the beginning of the request without 2369 * crossing into area which need to be retried further. 2370 * 2371 * Return: 2372 * The number of bytes to fail. 2373 */ 2374 unsigned int blk_rq_err_bytes(const struct request *rq) 2375 { 2376 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2377 unsigned int bytes = 0; 2378 struct bio *bio; 2379 2380 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2381 return blk_rq_bytes(rq); 2382 2383 /* 2384 * Currently the only 'mixing' which can happen is between 2385 * different fastfail types. We can safely fail portions 2386 * which have all the failfast bits that the first one has - 2387 * the ones which are at least as eager to fail as the first 2388 * one. 2389 */ 2390 for (bio = rq->bio; bio; bio = bio->bi_next) { 2391 if ((bio->bi_opf & ff) != ff) 2392 break; 2393 bytes += bio->bi_iter.bi_size; 2394 } 2395 2396 /* this could lead to infinite loop */ 2397 BUG_ON(blk_rq_bytes(rq) && !bytes); 2398 return bytes; 2399 } 2400 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2401 2402 void blk_account_io_completion(struct request *req, unsigned int bytes) 2403 { 2404 if (blk_do_io_stat(req)) { 2405 const int rw = rq_data_dir(req); 2406 struct hd_struct *part; 2407 int cpu; 2408 2409 cpu = part_stat_lock(); 2410 part = req->part; 2411 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2412 part_stat_unlock(); 2413 } 2414 } 2415 2416 void blk_account_io_done(struct request *req) 2417 { 2418 /* 2419 * Account IO completion. flush_rq isn't accounted as a 2420 * normal IO on queueing nor completion. Accounting the 2421 * containing request is enough. 2422 */ 2423 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2424 unsigned long duration = jiffies - req->start_time; 2425 const int rw = rq_data_dir(req); 2426 struct hd_struct *part; 2427 int cpu; 2428 2429 cpu = part_stat_lock(); 2430 part = req->part; 2431 2432 part_stat_inc(cpu, part, ios[rw]); 2433 part_stat_add(cpu, part, ticks[rw], duration); 2434 part_round_stats(cpu, part); 2435 part_dec_in_flight(part, rw); 2436 2437 hd_struct_put(part); 2438 part_stat_unlock(); 2439 } 2440 } 2441 2442 #ifdef CONFIG_PM 2443 /* 2444 * Don't process normal requests when queue is suspended 2445 * or in the process of suspending/resuming 2446 */ 2447 static struct request *blk_pm_peek_request(struct request_queue *q, 2448 struct request *rq) 2449 { 2450 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2451 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM)))) 2452 return NULL; 2453 else 2454 return rq; 2455 } 2456 #else 2457 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2458 struct request *rq) 2459 { 2460 return rq; 2461 } 2462 #endif 2463 2464 void blk_account_io_start(struct request *rq, bool new_io) 2465 { 2466 struct hd_struct *part; 2467 int rw = rq_data_dir(rq); 2468 int cpu; 2469 2470 if (!blk_do_io_stat(rq)) 2471 return; 2472 2473 cpu = part_stat_lock(); 2474 2475 if (!new_io) { 2476 part = rq->part; 2477 part_stat_inc(cpu, part, merges[rw]); 2478 } else { 2479 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2480 if (!hd_struct_try_get(part)) { 2481 /* 2482 * The partition is already being removed, 2483 * the request will be accounted on the disk only 2484 * 2485 * We take a reference on disk->part0 although that 2486 * partition will never be deleted, so we can treat 2487 * it as any other partition. 2488 */ 2489 part = &rq->rq_disk->part0; 2490 hd_struct_get(part); 2491 } 2492 part_round_stats(cpu, part); 2493 part_inc_in_flight(part, rw); 2494 rq->part = part; 2495 } 2496 2497 part_stat_unlock(); 2498 } 2499 2500 /** 2501 * blk_peek_request - peek at the top of a request queue 2502 * @q: request queue to peek at 2503 * 2504 * Description: 2505 * Return the request at the top of @q. The returned request 2506 * should be started using blk_start_request() before LLD starts 2507 * processing it. 2508 * 2509 * Return: 2510 * Pointer to the request at the top of @q if available. Null 2511 * otherwise. 2512 */ 2513 struct request *blk_peek_request(struct request_queue *q) 2514 { 2515 struct request *rq; 2516 int ret; 2517 2518 lockdep_assert_held(q->queue_lock); 2519 WARN_ON_ONCE(q->mq_ops); 2520 2521 while ((rq = __elv_next_request(q)) != NULL) { 2522 2523 rq = blk_pm_peek_request(q, rq); 2524 if (!rq) 2525 break; 2526 2527 if (!(rq->rq_flags & RQF_STARTED)) { 2528 /* 2529 * This is the first time the device driver 2530 * sees this request (possibly after 2531 * requeueing). Notify IO scheduler. 2532 */ 2533 if (rq->rq_flags & RQF_SORTED) 2534 elv_activate_rq(q, rq); 2535 2536 /* 2537 * just mark as started even if we don't start 2538 * it, a request that has been delayed should 2539 * not be passed by new incoming requests 2540 */ 2541 rq->rq_flags |= RQF_STARTED; 2542 trace_block_rq_issue(q, rq); 2543 } 2544 2545 if (!q->boundary_rq || q->boundary_rq == rq) { 2546 q->end_sector = rq_end_sector(rq); 2547 q->boundary_rq = NULL; 2548 } 2549 2550 if (rq->rq_flags & RQF_DONTPREP) 2551 break; 2552 2553 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2554 /* 2555 * make sure space for the drain appears we 2556 * know we can do this because max_hw_segments 2557 * has been adjusted to be one fewer than the 2558 * device can handle 2559 */ 2560 rq->nr_phys_segments++; 2561 } 2562 2563 if (!q->prep_rq_fn) 2564 break; 2565 2566 ret = q->prep_rq_fn(q, rq); 2567 if (ret == BLKPREP_OK) { 2568 break; 2569 } else if (ret == BLKPREP_DEFER) { 2570 /* 2571 * the request may have been (partially) prepped. 2572 * we need to keep this request in the front to 2573 * avoid resource deadlock. RQF_STARTED will 2574 * prevent other fs requests from passing this one. 2575 */ 2576 if (q->dma_drain_size && blk_rq_bytes(rq) && 2577 !(rq->rq_flags & RQF_DONTPREP)) { 2578 /* 2579 * remove the space for the drain we added 2580 * so that we don't add it again 2581 */ 2582 --rq->nr_phys_segments; 2583 } 2584 2585 rq = NULL; 2586 break; 2587 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2588 rq->rq_flags |= RQF_QUIET; 2589 /* 2590 * Mark this request as started so we don't trigger 2591 * any debug logic in the end I/O path. 2592 */ 2593 blk_start_request(rq); 2594 __blk_end_request_all(rq, ret == BLKPREP_INVALID ? 2595 BLK_STS_TARGET : BLK_STS_IOERR); 2596 } else { 2597 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2598 break; 2599 } 2600 } 2601 2602 return rq; 2603 } 2604 EXPORT_SYMBOL(blk_peek_request); 2605 2606 void blk_dequeue_request(struct request *rq) 2607 { 2608 struct request_queue *q = rq->q; 2609 2610 BUG_ON(list_empty(&rq->queuelist)); 2611 BUG_ON(ELV_ON_HASH(rq)); 2612 2613 list_del_init(&rq->queuelist); 2614 2615 /* 2616 * the time frame between a request being removed from the lists 2617 * and to it is freed is accounted as io that is in progress at 2618 * the driver side. 2619 */ 2620 if (blk_account_rq(rq)) { 2621 q->in_flight[rq_is_sync(rq)]++; 2622 set_io_start_time_ns(rq); 2623 } 2624 } 2625 2626 /** 2627 * blk_start_request - start request processing on the driver 2628 * @req: request to dequeue 2629 * 2630 * Description: 2631 * Dequeue @req and start timeout timer on it. This hands off the 2632 * request to the driver. 2633 * 2634 * Block internal functions which don't want to start timer should 2635 * call blk_dequeue_request(). 2636 */ 2637 void blk_start_request(struct request *req) 2638 { 2639 lockdep_assert_held(req->q->queue_lock); 2640 WARN_ON_ONCE(req->q->mq_ops); 2641 2642 blk_dequeue_request(req); 2643 2644 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2645 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req)); 2646 req->rq_flags |= RQF_STATS; 2647 wbt_issue(req->q->rq_wb, &req->issue_stat); 2648 } 2649 2650 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2651 blk_add_timer(req); 2652 } 2653 EXPORT_SYMBOL(blk_start_request); 2654 2655 /** 2656 * blk_fetch_request - fetch a request from a request queue 2657 * @q: request queue to fetch a request from 2658 * 2659 * Description: 2660 * Return the request at the top of @q. The request is started on 2661 * return and LLD can start processing it immediately. 2662 * 2663 * Return: 2664 * Pointer to the request at the top of @q if available. Null 2665 * otherwise. 2666 */ 2667 struct request *blk_fetch_request(struct request_queue *q) 2668 { 2669 struct request *rq; 2670 2671 lockdep_assert_held(q->queue_lock); 2672 WARN_ON_ONCE(q->mq_ops); 2673 2674 rq = blk_peek_request(q); 2675 if (rq) 2676 blk_start_request(rq); 2677 return rq; 2678 } 2679 EXPORT_SYMBOL(blk_fetch_request); 2680 2681 /** 2682 * blk_update_request - Special helper function for request stacking drivers 2683 * @req: the request being processed 2684 * @error: block status code 2685 * @nr_bytes: number of bytes to complete @req 2686 * 2687 * Description: 2688 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2689 * the request structure even if @req doesn't have leftover. 2690 * If @req has leftover, sets it up for the next range of segments. 2691 * 2692 * This special helper function is only for request stacking drivers 2693 * (e.g. request-based dm) so that they can handle partial completion. 2694 * Actual device drivers should use blk_end_request instead. 2695 * 2696 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2697 * %false return from this function. 2698 * 2699 * Return: 2700 * %false - this request doesn't have any more data 2701 * %true - this request has more data 2702 **/ 2703 bool blk_update_request(struct request *req, blk_status_t error, 2704 unsigned int nr_bytes) 2705 { 2706 int total_bytes; 2707 2708 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 2709 2710 if (!req->bio) 2711 return false; 2712 2713 if (unlikely(error && !blk_rq_is_passthrough(req) && 2714 !(req->rq_flags & RQF_QUIET))) 2715 print_req_error(req, error); 2716 2717 blk_account_io_completion(req, nr_bytes); 2718 2719 total_bytes = 0; 2720 while (req->bio) { 2721 struct bio *bio = req->bio; 2722 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2723 2724 if (bio_bytes == bio->bi_iter.bi_size) 2725 req->bio = bio->bi_next; 2726 2727 /* Completion has already been traced */ 2728 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 2729 req_bio_endio(req, bio, bio_bytes, error); 2730 2731 total_bytes += bio_bytes; 2732 nr_bytes -= bio_bytes; 2733 2734 if (!nr_bytes) 2735 break; 2736 } 2737 2738 /* 2739 * completely done 2740 */ 2741 if (!req->bio) { 2742 /* 2743 * Reset counters so that the request stacking driver 2744 * can find how many bytes remain in the request 2745 * later. 2746 */ 2747 req->__data_len = 0; 2748 return false; 2749 } 2750 2751 req->__data_len -= total_bytes; 2752 2753 /* update sector only for requests with clear definition of sector */ 2754 if (!blk_rq_is_passthrough(req)) 2755 req->__sector += total_bytes >> 9; 2756 2757 /* mixed attributes always follow the first bio */ 2758 if (req->rq_flags & RQF_MIXED_MERGE) { 2759 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2760 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 2761 } 2762 2763 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 2764 /* 2765 * If total number of sectors is less than the first segment 2766 * size, something has gone terribly wrong. 2767 */ 2768 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2769 blk_dump_rq_flags(req, "request botched"); 2770 req->__data_len = blk_rq_cur_bytes(req); 2771 } 2772 2773 /* recalculate the number of segments */ 2774 blk_recalc_rq_segments(req); 2775 } 2776 2777 return true; 2778 } 2779 EXPORT_SYMBOL_GPL(blk_update_request); 2780 2781 static bool blk_update_bidi_request(struct request *rq, blk_status_t error, 2782 unsigned int nr_bytes, 2783 unsigned int bidi_bytes) 2784 { 2785 if (blk_update_request(rq, error, nr_bytes)) 2786 return true; 2787 2788 /* Bidi request must be completed as a whole */ 2789 if (unlikely(blk_bidi_rq(rq)) && 2790 blk_update_request(rq->next_rq, error, bidi_bytes)) 2791 return true; 2792 2793 if (blk_queue_add_random(rq->q)) 2794 add_disk_randomness(rq->rq_disk); 2795 2796 return false; 2797 } 2798 2799 /** 2800 * blk_unprep_request - unprepare a request 2801 * @req: the request 2802 * 2803 * This function makes a request ready for complete resubmission (or 2804 * completion). It happens only after all error handling is complete, 2805 * so represents the appropriate moment to deallocate any resources 2806 * that were allocated to the request in the prep_rq_fn. The queue 2807 * lock is held when calling this. 2808 */ 2809 void blk_unprep_request(struct request *req) 2810 { 2811 struct request_queue *q = req->q; 2812 2813 req->rq_flags &= ~RQF_DONTPREP; 2814 if (q->unprep_rq_fn) 2815 q->unprep_rq_fn(q, req); 2816 } 2817 EXPORT_SYMBOL_GPL(blk_unprep_request); 2818 2819 void blk_finish_request(struct request *req, blk_status_t error) 2820 { 2821 struct request_queue *q = req->q; 2822 2823 lockdep_assert_held(req->q->queue_lock); 2824 WARN_ON_ONCE(q->mq_ops); 2825 2826 if (req->rq_flags & RQF_STATS) 2827 blk_stat_add(req); 2828 2829 if (req->rq_flags & RQF_QUEUED) 2830 blk_queue_end_tag(q, req); 2831 2832 BUG_ON(blk_queued_rq(req)); 2833 2834 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 2835 laptop_io_completion(req->q->backing_dev_info); 2836 2837 blk_delete_timer(req); 2838 2839 if (req->rq_flags & RQF_DONTPREP) 2840 blk_unprep_request(req); 2841 2842 blk_account_io_done(req); 2843 2844 if (req->end_io) { 2845 wbt_done(req->q->rq_wb, &req->issue_stat); 2846 req->end_io(req, error); 2847 } else { 2848 if (blk_bidi_rq(req)) 2849 __blk_put_request(req->next_rq->q, req->next_rq); 2850 2851 __blk_put_request(q, req); 2852 } 2853 } 2854 EXPORT_SYMBOL(blk_finish_request); 2855 2856 /** 2857 * blk_end_bidi_request - Complete a bidi request 2858 * @rq: the request to complete 2859 * @error: block status code 2860 * @nr_bytes: number of bytes to complete @rq 2861 * @bidi_bytes: number of bytes to complete @rq->next_rq 2862 * 2863 * Description: 2864 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2865 * Drivers that supports bidi can safely call this member for any 2866 * type of request, bidi or uni. In the later case @bidi_bytes is 2867 * just ignored. 2868 * 2869 * Return: 2870 * %false - we are done with this request 2871 * %true - still buffers pending for this request 2872 **/ 2873 static bool blk_end_bidi_request(struct request *rq, blk_status_t error, 2874 unsigned int nr_bytes, unsigned int bidi_bytes) 2875 { 2876 struct request_queue *q = rq->q; 2877 unsigned long flags; 2878 2879 WARN_ON_ONCE(q->mq_ops); 2880 2881 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2882 return true; 2883 2884 spin_lock_irqsave(q->queue_lock, flags); 2885 blk_finish_request(rq, error); 2886 spin_unlock_irqrestore(q->queue_lock, flags); 2887 2888 return false; 2889 } 2890 2891 /** 2892 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2893 * @rq: the request to complete 2894 * @error: block status code 2895 * @nr_bytes: number of bytes to complete @rq 2896 * @bidi_bytes: number of bytes to complete @rq->next_rq 2897 * 2898 * Description: 2899 * Identical to blk_end_bidi_request() except that queue lock is 2900 * assumed to be locked on entry and remains so on return. 2901 * 2902 * Return: 2903 * %false - we are done with this request 2904 * %true - still buffers pending for this request 2905 **/ 2906 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error, 2907 unsigned int nr_bytes, unsigned int bidi_bytes) 2908 { 2909 lockdep_assert_held(rq->q->queue_lock); 2910 WARN_ON_ONCE(rq->q->mq_ops); 2911 2912 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2913 return true; 2914 2915 blk_finish_request(rq, error); 2916 2917 return false; 2918 } 2919 2920 /** 2921 * blk_end_request - Helper function for drivers to complete the request. 2922 * @rq: the request being processed 2923 * @error: block status code 2924 * @nr_bytes: number of bytes to complete 2925 * 2926 * Description: 2927 * Ends I/O on a number of bytes attached to @rq. 2928 * If @rq has leftover, sets it up for the next range of segments. 2929 * 2930 * Return: 2931 * %false - we are done with this request 2932 * %true - still buffers pending for this request 2933 **/ 2934 bool blk_end_request(struct request *rq, blk_status_t error, 2935 unsigned int nr_bytes) 2936 { 2937 WARN_ON_ONCE(rq->q->mq_ops); 2938 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2939 } 2940 EXPORT_SYMBOL(blk_end_request); 2941 2942 /** 2943 * blk_end_request_all - Helper function for drives to finish the request. 2944 * @rq: the request to finish 2945 * @error: block status code 2946 * 2947 * Description: 2948 * Completely finish @rq. 2949 */ 2950 void blk_end_request_all(struct request *rq, blk_status_t error) 2951 { 2952 bool pending; 2953 unsigned int bidi_bytes = 0; 2954 2955 if (unlikely(blk_bidi_rq(rq))) 2956 bidi_bytes = blk_rq_bytes(rq->next_rq); 2957 2958 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2959 BUG_ON(pending); 2960 } 2961 EXPORT_SYMBOL(blk_end_request_all); 2962 2963 /** 2964 * __blk_end_request - Helper function for drivers to complete the request. 2965 * @rq: the request being processed 2966 * @error: block status code 2967 * @nr_bytes: number of bytes to complete 2968 * 2969 * Description: 2970 * Must be called with queue lock held unlike blk_end_request(). 2971 * 2972 * Return: 2973 * %false - we are done with this request 2974 * %true - still buffers pending for this request 2975 **/ 2976 bool __blk_end_request(struct request *rq, blk_status_t error, 2977 unsigned int nr_bytes) 2978 { 2979 lockdep_assert_held(rq->q->queue_lock); 2980 WARN_ON_ONCE(rq->q->mq_ops); 2981 2982 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2983 } 2984 EXPORT_SYMBOL(__blk_end_request); 2985 2986 /** 2987 * __blk_end_request_all - Helper function for drives to finish the request. 2988 * @rq: the request to finish 2989 * @error: block status code 2990 * 2991 * Description: 2992 * Completely finish @rq. Must be called with queue lock held. 2993 */ 2994 void __blk_end_request_all(struct request *rq, blk_status_t error) 2995 { 2996 bool pending; 2997 unsigned int bidi_bytes = 0; 2998 2999 lockdep_assert_held(rq->q->queue_lock); 3000 WARN_ON_ONCE(rq->q->mq_ops); 3001 3002 if (unlikely(blk_bidi_rq(rq))) 3003 bidi_bytes = blk_rq_bytes(rq->next_rq); 3004 3005 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3006 BUG_ON(pending); 3007 } 3008 EXPORT_SYMBOL(__blk_end_request_all); 3009 3010 /** 3011 * __blk_end_request_cur - Helper function to finish the current request chunk. 3012 * @rq: the request to finish the current chunk for 3013 * @error: block status code 3014 * 3015 * Description: 3016 * Complete the current consecutively mapped chunk from @rq. Must 3017 * be called with queue lock held. 3018 * 3019 * Return: 3020 * %false - we are done with this request 3021 * %true - still buffers pending for this request 3022 */ 3023 bool __blk_end_request_cur(struct request *rq, blk_status_t error) 3024 { 3025 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 3026 } 3027 EXPORT_SYMBOL(__blk_end_request_cur); 3028 3029 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 3030 struct bio *bio) 3031 { 3032 if (bio_has_data(bio)) 3033 rq->nr_phys_segments = bio_phys_segments(q, bio); 3034 3035 rq->__data_len = bio->bi_iter.bi_size; 3036 rq->bio = rq->biotail = bio; 3037 3038 if (bio->bi_bdev) 3039 rq->rq_disk = bio->bi_bdev->bd_disk; 3040 } 3041 3042 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 3043 /** 3044 * rq_flush_dcache_pages - Helper function to flush all pages in a request 3045 * @rq: the request to be flushed 3046 * 3047 * Description: 3048 * Flush all pages in @rq. 3049 */ 3050 void rq_flush_dcache_pages(struct request *rq) 3051 { 3052 struct req_iterator iter; 3053 struct bio_vec bvec; 3054 3055 rq_for_each_segment(bvec, rq, iter) 3056 flush_dcache_page(bvec.bv_page); 3057 } 3058 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 3059 #endif 3060 3061 /** 3062 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 3063 * @q : the queue of the device being checked 3064 * 3065 * Description: 3066 * Check if underlying low-level drivers of a device are busy. 3067 * If the drivers want to export their busy state, they must set own 3068 * exporting function using blk_queue_lld_busy() first. 3069 * 3070 * Basically, this function is used only by request stacking drivers 3071 * to stop dispatching requests to underlying devices when underlying 3072 * devices are busy. This behavior helps more I/O merging on the queue 3073 * of the request stacking driver and prevents I/O throughput regression 3074 * on burst I/O load. 3075 * 3076 * Return: 3077 * 0 - Not busy (The request stacking driver should dispatch request) 3078 * 1 - Busy (The request stacking driver should stop dispatching request) 3079 */ 3080 int blk_lld_busy(struct request_queue *q) 3081 { 3082 if (q->lld_busy_fn) 3083 return q->lld_busy_fn(q); 3084 3085 return 0; 3086 } 3087 EXPORT_SYMBOL_GPL(blk_lld_busy); 3088 3089 /** 3090 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3091 * @rq: the clone request to be cleaned up 3092 * 3093 * Description: 3094 * Free all bios in @rq for a cloned request. 3095 */ 3096 void blk_rq_unprep_clone(struct request *rq) 3097 { 3098 struct bio *bio; 3099 3100 while ((bio = rq->bio) != NULL) { 3101 rq->bio = bio->bi_next; 3102 3103 bio_put(bio); 3104 } 3105 } 3106 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3107 3108 /* 3109 * Copy attributes of the original request to the clone request. 3110 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3111 */ 3112 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3113 { 3114 dst->cpu = src->cpu; 3115 dst->__sector = blk_rq_pos(src); 3116 dst->__data_len = blk_rq_bytes(src); 3117 dst->nr_phys_segments = src->nr_phys_segments; 3118 dst->ioprio = src->ioprio; 3119 dst->extra_len = src->extra_len; 3120 } 3121 3122 /** 3123 * blk_rq_prep_clone - Helper function to setup clone request 3124 * @rq: the request to be setup 3125 * @rq_src: original request to be cloned 3126 * @bs: bio_set that bios for clone are allocated from 3127 * @gfp_mask: memory allocation mask for bio 3128 * @bio_ctr: setup function to be called for each clone bio. 3129 * Returns %0 for success, non %0 for failure. 3130 * @data: private data to be passed to @bio_ctr 3131 * 3132 * Description: 3133 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3134 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3135 * are not copied, and copying such parts is the caller's responsibility. 3136 * Also, pages which the original bios are pointing to are not copied 3137 * and the cloned bios just point same pages. 3138 * So cloned bios must be completed before original bios, which means 3139 * the caller must complete @rq before @rq_src. 3140 */ 3141 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3142 struct bio_set *bs, gfp_t gfp_mask, 3143 int (*bio_ctr)(struct bio *, struct bio *, void *), 3144 void *data) 3145 { 3146 struct bio *bio, *bio_src; 3147 3148 if (!bs) 3149 bs = fs_bio_set; 3150 3151 __rq_for_each_bio(bio_src, rq_src) { 3152 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3153 if (!bio) 3154 goto free_and_out; 3155 3156 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3157 goto free_and_out; 3158 3159 if (rq->bio) { 3160 rq->biotail->bi_next = bio; 3161 rq->biotail = bio; 3162 } else 3163 rq->bio = rq->biotail = bio; 3164 } 3165 3166 __blk_rq_prep_clone(rq, rq_src); 3167 3168 return 0; 3169 3170 free_and_out: 3171 if (bio) 3172 bio_put(bio); 3173 blk_rq_unprep_clone(rq); 3174 3175 return -ENOMEM; 3176 } 3177 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3178 3179 int kblockd_schedule_work(struct work_struct *work) 3180 { 3181 return queue_work(kblockd_workqueue, work); 3182 } 3183 EXPORT_SYMBOL(kblockd_schedule_work); 3184 3185 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3186 { 3187 return queue_work_on(cpu, kblockd_workqueue, work); 3188 } 3189 EXPORT_SYMBOL(kblockd_schedule_work_on); 3190 3191 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 3192 unsigned long delay) 3193 { 3194 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3195 } 3196 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 3197 3198 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 3199 unsigned long delay) 3200 { 3201 return queue_delayed_work(kblockd_workqueue, dwork, delay); 3202 } 3203 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 3204 3205 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3206 unsigned long delay) 3207 { 3208 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3209 } 3210 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 3211 3212 /** 3213 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3214 * @plug: The &struct blk_plug that needs to be initialized 3215 * 3216 * Description: 3217 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3218 * pending I/O should the task end up blocking between blk_start_plug() and 3219 * blk_finish_plug(). This is important from a performance perspective, but 3220 * also ensures that we don't deadlock. For instance, if the task is blocking 3221 * for a memory allocation, memory reclaim could end up wanting to free a 3222 * page belonging to that request that is currently residing in our private 3223 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3224 * this kind of deadlock. 3225 */ 3226 void blk_start_plug(struct blk_plug *plug) 3227 { 3228 struct task_struct *tsk = current; 3229 3230 /* 3231 * If this is a nested plug, don't actually assign it. 3232 */ 3233 if (tsk->plug) 3234 return; 3235 3236 INIT_LIST_HEAD(&plug->list); 3237 INIT_LIST_HEAD(&plug->mq_list); 3238 INIT_LIST_HEAD(&plug->cb_list); 3239 /* 3240 * Store ordering should not be needed here, since a potential 3241 * preempt will imply a full memory barrier 3242 */ 3243 tsk->plug = plug; 3244 } 3245 EXPORT_SYMBOL(blk_start_plug); 3246 3247 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3248 { 3249 struct request *rqa = container_of(a, struct request, queuelist); 3250 struct request *rqb = container_of(b, struct request, queuelist); 3251 3252 return !(rqa->q < rqb->q || 3253 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3254 } 3255 3256 /* 3257 * If 'from_schedule' is true, then postpone the dispatch of requests 3258 * until a safe kblockd context. We due this to avoid accidental big 3259 * additional stack usage in driver dispatch, in places where the originally 3260 * plugger did not intend it. 3261 */ 3262 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3263 bool from_schedule) 3264 __releases(q->queue_lock) 3265 { 3266 lockdep_assert_held(q->queue_lock); 3267 3268 trace_block_unplug(q, depth, !from_schedule); 3269 3270 if (from_schedule) 3271 blk_run_queue_async(q); 3272 else 3273 __blk_run_queue(q); 3274 spin_unlock(q->queue_lock); 3275 } 3276 3277 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3278 { 3279 LIST_HEAD(callbacks); 3280 3281 while (!list_empty(&plug->cb_list)) { 3282 list_splice_init(&plug->cb_list, &callbacks); 3283 3284 while (!list_empty(&callbacks)) { 3285 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3286 struct blk_plug_cb, 3287 list); 3288 list_del(&cb->list); 3289 cb->callback(cb, from_schedule); 3290 } 3291 } 3292 } 3293 3294 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3295 int size) 3296 { 3297 struct blk_plug *plug = current->plug; 3298 struct blk_plug_cb *cb; 3299 3300 if (!plug) 3301 return NULL; 3302 3303 list_for_each_entry(cb, &plug->cb_list, list) 3304 if (cb->callback == unplug && cb->data == data) 3305 return cb; 3306 3307 /* Not currently on the callback list */ 3308 BUG_ON(size < sizeof(*cb)); 3309 cb = kzalloc(size, GFP_ATOMIC); 3310 if (cb) { 3311 cb->data = data; 3312 cb->callback = unplug; 3313 list_add(&cb->list, &plug->cb_list); 3314 } 3315 return cb; 3316 } 3317 EXPORT_SYMBOL(blk_check_plugged); 3318 3319 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3320 { 3321 struct request_queue *q; 3322 unsigned long flags; 3323 struct request *rq; 3324 LIST_HEAD(list); 3325 unsigned int depth; 3326 3327 flush_plug_callbacks(plug, from_schedule); 3328 3329 if (!list_empty(&plug->mq_list)) 3330 blk_mq_flush_plug_list(plug, from_schedule); 3331 3332 if (list_empty(&plug->list)) 3333 return; 3334 3335 list_splice_init(&plug->list, &list); 3336 3337 list_sort(NULL, &list, plug_rq_cmp); 3338 3339 q = NULL; 3340 depth = 0; 3341 3342 /* 3343 * Save and disable interrupts here, to avoid doing it for every 3344 * queue lock we have to take. 3345 */ 3346 local_irq_save(flags); 3347 while (!list_empty(&list)) { 3348 rq = list_entry_rq(list.next); 3349 list_del_init(&rq->queuelist); 3350 BUG_ON(!rq->q); 3351 if (rq->q != q) { 3352 /* 3353 * This drops the queue lock 3354 */ 3355 if (q) 3356 queue_unplugged(q, depth, from_schedule); 3357 q = rq->q; 3358 depth = 0; 3359 spin_lock(q->queue_lock); 3360 } 3361 3362 /* 3363 * Short-circuit if @q is dead 3364 */ 3365 if (unlikely(blk_queue_dying(q))) { 3366 __blk_end_request_all(rq, BLK_STS_IOERR); 3367 continue; 3368 } 3369 3370 /* 3371 * rq is already accounted, so use raw insert 3372 */ 3373 if (op_is_flush(rq->cmd_flags)) 3374 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3375 else 3376 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3377 3378 depth++; 3379 } 3380 3381 /* 3382 * This drops the queue lock 3383 */ 3384 if (q) 3385 queue_unplugged(q, depth, from_schedule); 3386 3387 local_irq_restore(flags); 3388 } 3389 3390 void blk_finish_plug(struct blk_plug *plug) 3391 { 3392 if (plug != current->plug) 3393 return; 3394 blk_flush_plug_list(plug, false); 3395 3396 current->plug = NULL; 3397 } 3398 EXPORT_SYMBOL(blk_finish_plug); 3399 3400 #ifdef CONFIG_PM 3401 /** 3402 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3403 * @q: the queue of the device 3404 * @dev: the device the queue belongs to 3405 * 3406 * Description: 3407 * Initialize runtime-PM-related fields for @q and start auto suspend for 3408 * @dev. Drivers that want to take advantage of request-based runtime PM 3409 * should call this function after @dev has been initialized, and its 3410 * request queue @q has been allocated, and runtime PM for it can not happen 3411 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3412 * cases, driver should call this function before any I/O has taken place. 3413 * 3414 * This function takes care of setting up using auto suspend for the device, 3415 * the autosuspend delay is set to -1 to make runtime suspend impossible 3416 * until an updated value is either set by user or by driver. Drivers do 3417 * not need to touch other autosuspend settings. 3418 * 3419 * The block layer runtime PM is request based, so only works for drivers 3420 * that use request as their IO unit instead of those directly use bio's. 3421 */ 3422 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3423 { 3424 /* not support for RQF_PM and ->rpm_status in blk-mq yet */ 3425 if (q->mq_ops) 3426 return; 3427 3428 q->dev = dev; 3429 q->rpm_status = RPM_ACTIVE; 3430 pm_runtime_set_autosuspend_delay(q->dev, -1); 3431 pm_runtime_use_autosuspend(q->dev); 3432 } 3433 EXPORT_SYMBOL(blk_pm_runtime_init); 3434 3435 /** 3436 * blk_pre_runtime_suspend - Pre runtime suspend check 3437 * @q: the queue of the device 3438 * 3439 * Description: 3440 * This function will check if runtime suspend is allowed for the device 3441 * by examining if there are any requests pending in the queue. If there 3442 * are requests pending, the device can not be runtime suspended; otherwise, 3443 * the queue's status will be updated to SUSPENDING and the driver can 3444 * proceed to suspend the device. 3445 * 3446 * For the not allowed case, we mark last busy for the device so that 3447 * runtime PM core will try to autosuspend it some time later. 3448 * 3449 * This function should be called near the start of the device's 3450 * runtime_suspend callback. 3451 * 3452 * Return: 3453 * 0 - OK to runtime suspend the device 3454 * -EBUSY - Device should not be runtime suspended 3455 */ 3456 int blk_pre_runtime_suspend(struct request_queue *q) 3457 { 3458 int ret = 0; 3459 3460 if (!q->dev) 3461 return ret; 3462 3463 spin_lock_irq(q->queue_lock); 3464 if (q->nr_pending) { 3465 ret = -EBUSY; 3466 pm_runtime_mark_last_busy(q->dev); 3467 } else { 3468 q->rpm_status = RPM_SUSPENDING; 3469 } 3470 spin_unlock_irq(q->queue_lock); 3471 return ret; 3472 } 3473 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3474 3475 /** 3476 * blk_post_runtime_suspend - Post runtime suspend processing 3477 * @q: the queue of the device 3478 * @err: return value of the device's runtime_suspend function 3479 * 3480 * Description: 3481 * Update the queue's runtime status according to the return value of the 3482 * device's runtime suspend function and mark last busy for the device so 3483 * that PM core will try to auto suspend the device at a later time. 3484 * 3485 * This function should be called near the end of the device's 3486 * runtime_suspend callback. 3487 */ 3488 void blk_post_runtime_suspend(struct request_queue *q, int err) 3489 { 3490 if (!q->dev) 3491 return; 3492 3493 spin_lock_irq(q->queue_lock); 3494 if (!err) { 3495 q->rpm_status = RPM_SUSPENDED; 3496 } else { 3497 q->rpm_status = RPM_ACTIVE; 3498 pm_runtime_mark_last_busy(q->dev); 3499 } 3500 spin_unlock_irq(q->queue_lock); 3501 } 3502 EXPORT_SYMBOL(blk_post_runtime_suspend); 3503 3504 /** 3505 * blk_pre_runtime_resume - Pre runtime resume processing 3506 * @q: the queue of the device 3507 * 3508 * Description: 3509 * Update the queue's runtime status to RESUMING in preparation for the 3510 * runtime resume of the device. 3511 * 3512 * This function should be called near the start of the device's 3513 * runtime_resume callback. 3514 */ 3515 void blk_pre_runtime_resume(struct request_queue *q) 3516 { 3517 if (!q->dev) 3518 return; 3519 3520 spin_lock_irq(q->queue_lock); 3521 q->rpm_status = RPM_RESUMING; 3522 spin_unlock_irq(q->queue_lock); 3523 } 3524 EXPORT_SYMBOL(blk_pre_runtime_resume); 3525 3526 /** 3527 * blk_post_runtime_resume - Post runtime resume processing 3528 * @q: the queue of the device 3529 * @err: return value of the device's runtime_resume function 3530 * 3531 * Description: 3532 * Update the queue's runtime status according to the return value of the 3533 * device's runtime_resume function. If it is successfully resumed, process 3534 * the requests that are queued into the device's queue when it is resuming 3535 * and then mark last busy and initiate autosuspend for it. 3536 * 3537 * This function should be called near the end of the device's 3538 * runtime_resume callback. 3539 */ 3540 void blk_post_runtime_resume(struct request_queue *q, int err) 3541 { 3542 if (!q->dev) 3543 return; 3544 3545 spin_lock_irq(q->queue_lock); 3546 if (!err) { 3547 q->rpm_status = RPM_ACTIVE; 3548 __blk_run_queue(q); 3549 pm_runtime_mark_last_busy(q->dev); 3550 pm_request_autosuspend(q->dev); 3551 } else { 3552 q->rpm_status = RPM_SUSPENDED; 3553 } 3554 spin_unlock_irq(q->queue_lock); 3555 } 3556 EXPORT_SYMBOL(blk_post_runtime_resume); 3557 3558 /** 3559 * blk_set_runtime_active - Force runtime status of the queue to be active 3560 * @q: the queue of the device 3561 * 3562 * If the device is left runtime suspended during system suspend the resume 3563 * hook typically resumes the device and corrects runtime status 3564 * accordingly. However, that does not affect the queue runtime PM status 3565 * which is still "suspended". This prevents processing requests from the 3566 * queue. 3567 * 3568 * This function can be used in driver's resume hook to correct queue 3569 * runtime PM status and re-enable peeking requests from the queue. It 3570 * should be called before first request is added to the queue. 3571 */ 3572 void blk_set_runtime_active(struct request_queue *q) 3573 { 3574 spin_lock_irq(q->queue_lock); 3575 q->rpm_status = RPM_ACTIVE; 3576 pm_runtime_mark_last_busy(q->dev); 3577 pm_request_autosuspend(q->dev); 3578 spin_unlock_irq(q->queue_lock); 3579 } 3580 EXPORT_SYMBOL(blk_set_runtime_active); 3581 #endif 3582 3583 int __init blk_dev_init(void) 3584 { 3585 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3586 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3587 FIELD_SIZEOF(struct request, cmd_flags)); 3588 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3589 FIELD_SIZEOF(struct bio, bi_opf)); 3590 3591 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3592 kblockd_workqueue = alloc_workqueue("kblockd", 3593 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3594 if (!kblockd_workqueue) 3595 panic("Failed to create kblockd\n"); 3596 3597 request_cachep = kmem_cache_create("blkdev_requests", 3598 sizeof(struct request), 0, SLAB_PANIC, NULL); 3599 3600 blk_requestq_cachep = kmem_cache_create("request_queue", 3601 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3602 3603 #ifdef CONFIG_DEBUG_FS 3604 blk_debugfs_root = debugfs_create_dir("block", NULL); 3605 #endif 3606 3607 return 0; 3608 } 3609