xref: /openbmc/linux/block/blk-core.c (revision de167752a889d19b9bb018f8eecbc1ebbfe07b2f)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41 
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-wbt.h"
46 
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry *blk_debugfs_root;
49 #endif
50 
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
56 
57 DEFINE_IDA(blk_queue_ida);
58 
59 /*
60  * For the allocated request tables
61  */
62 struct kmem_cache *request_cachep;
63 
64 /*
65  * For queue allocation
66  */
67 struct kmem_cache *blk_requestq_cachep;
68 
69 /*
70  * Controlling structure to kblockd
71  */
72 static struct workqueue_struct *kblockd_workqueue;
73 
74 /**
75  * blk_queue_flag_set - atomically set a queue flag
76  * @flag: flag to be set
77  * @q: request queue
78  */
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 	unsigned long flags;
82 
83 	spin_lock_irqsave(q->queue_lock, flags);
84 	queue_flag_set(flag, q);
85 	spin_unlock_irqrestore(q->queue_lock, flags);
86 }
87 EXPORT_SYMBOL(blk_queue_flag_set);
88 
89 /**
90  * blk_queue_flag_clear - atomically clear a queue flag
91  * @flag: flag to be cleared
92  * @q: request queue
93  */
94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
95 {
96 	unsigned long flags;
97 
98 	spin_lock_irqsave(q->queue_lock, flags);
99 	queue_flag_clear(flag, q);
100 	spin_unlock_irqrestore(q->queue_lock, flags);
101 }
102 EXPORT_SYMBOL(blk_queue_flag_clear);
103 
104 /**
105  * blk_queue_flag_test_and_set - atomically test and set a queue flag
106  * @flag: flag to be set
107  * @q: request queue
108  *
109  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110  * the flag was already set.
111  */
112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
113 {
114 	unsigned long flags;
115 	bool res;
116 
117 	spin_lock_irqsave(q->queue_lock, flags);
118 	res = queue_flag_test_and_set(flag, q);
119 	spin_unlock_irqrestore(q->queue_lock, flags);
120 
121 	return res;
122 }
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
124 
125 /**
126  * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127  * @flag: flag to be cleared
128  * @q: request queue
129  *
130  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131  * the flag was set.
132  */
133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
134 {
135 	unsigned long flags;
136 	bool res;
137 
138 	spin_lock_irqsave(q->queue_lock, flags);
139 	res = queue_flag_test_and_clear(flag, q);
140 	spin_unlock_irqrestore(q->queue_lock, flags);
141 
142 	return res;
143 }
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
145 
146 static void blk_clear_congested(struct request_list *rl, int sync)
147 {
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 	clear_wb_congested(rl->blkg->wb_congested, sync);
150 #else
151 	/*
152 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 	 * flip its congestion state for events on other blkcgs.
154 	 */
155 	if (rl == &rl->q->root_rl)
156 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
157 #endif
158 }
159 
160 static void blk_set_congested(struct request_list *rl, int sync)
161 {
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 	set_wb_congested(rl->blkg->wb_congested, sync);
164 #else
165 	/* see blk_clear_congested() */
166 	if (rl == &rl->q->root_rl)
167 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
168 #endif
169 }
170 
171 void blk_queue_congestion_threshold(struct request_queue *q)
172 {
173 	int nr;
174 
175 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 	if (nr > q->nr_requests)
177 		nr = q->nr_requests;
178 	q->nr_congestion_on = nr;
179 
180 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 	if (nr < 1)
182 		nr = 1;
183 	q->nr_congestion_off = nr;
184 }
185 
186 void blk_rq_init(struct request_queue *q, struct request *rq)
187 {
188 	memset(rq, 0, sizeof(*rq));
189 
190 	INIT_LIST_HEAD(&rq->queuelist);
191 	INIT_LIST_HEAD(&rq->timeout_list);
192 	rq->cpu = -1;
193 	rq->q = q;
194 	rq->__sector = (sector_t) -1;
195 	INIT_HLIST_NODE(&rq->hash);
196 	RB_CLEAR_NODE(&rq->rb_node);
197 	rq->tag = -1;
198 	rq->internal_tag = -1;
199 	rq->start_time_ns = ktime_get_ns();
200 	rq->part = NULL;
201 }
202 EXPORT_SYMBOL(blk_rq_init);
203 
204 static const struct {
205 	int		errno;
206 	const char	*name;
207 } blk_errors[] = {
208 	[BLK_STS_OK]		= { 0,		"" },
209 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
210 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
211 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
212 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
213 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
214 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
215 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
216 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
217 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
218 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
219 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
220 
221 	/* device mapper special case, should not leak out: */
222 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
223 
224 	/* everything else not covered above: */
225 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
226 };
227 
228 blk_status_t errno_to_blk_status(int errno)
229 {
230 	int i;
231 
232 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
233 		if (blk_errors[i].errno == errno)
234 			return (__force blk_status_t)i;
235 	}
236 
237 	return BLK_STS_IOERR;
238 }
239 EXPORT_SYMBOL_GPL(errno_to_blk_status);
240 
241 int blk_status_to_errno(blk_status_t status)
242 {
243 	int idx = (__force int)status;
244 
245 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
246 		return -EIO;
247 	return blk_errors[idx].errno;
248 }
249 EXPORT_SYMBOL_GPL(blk_status_to_errno);
250 
251 static void print_req_error(struct request *req, blk_status_t status)
252 {
253 	int idx = (__force int)status;
254 
255 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
256 		return;
257 
258 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
259 			   __func__, blk_errors[idx].name, req->rq_disk ?
260 			   req->rq_disk->disk_name : "?",
261 			   (unsigned long long)blk_rq_pos(req));
262 }
263 
264 static void req_bio_endio(struct request *rq, struct bio *bio,
265 			  unsigned int nbytes, blk_status_t error)
266 {
267 	if (error)
268 		bio->bi_status = error;
269 
270 	if (unlikely(rq->rq_flags & RQF_QUIET))
271 		bio_set_flag(bio, BIO_QUIET);
272 
273 	bio_advance(bio, nbytes);
274 
275 	/* don't actually finish bio if it's part of flush sequence */
276 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
277 		bio_endio(bio);
278 }
279 
280 void blk_dump_rq_flags(struct request *rq, char *msg)
281 {
282 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
283 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
284 		(unsigned long long) rq->cmd_flags);
285 
286 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
287 	       (unsigned long long)blk_rq_pos(rq),
288 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
289 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
290 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
291 }
292 EXPORT_SYMBOL(blk_dump_rq_flags);
293 
294 static void blk_delay_work(struct work_struct *work)
295 {
296 	struct request_queue *q;
297 
298 	q = container_of(work, struct request_queue, delay_work.work);
299 	spin_lock_irq(q->queue_lock);
300 	__blk_run_queue(q);
301 	spin_unlock_irq(q->queue_lock);
302 }
303 
304 /**
305  * blk_delay_queue - restart queueing after defined interval
306  * @q:		The &struct request_queue in question
307  * @msecs:	Delay in msecs
308  *
309  * Description:
310  *   Sometimes queueing needs to be postponed for a little while, to allow
311  *   resources to come back. This function will make sure that queueing is
312  *   restarted around the specified time.
313  */
314 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
315 {
316 	lockdep_assert_held(q->queue_lock);
317 	WARN_ON_ONCE(q->mq_ops);
318 
319 	if (likely(!blk_queue_dead(q)))
320 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
321 				   msecs_to_jiffies(msecs));
322 }
323 EXPORT_SYMBOL(blk_delay_queue);
324 
325 /**
326  * blk_start_queue_async - asynchronously restart a previously stopped queue
327  * @q:    The &struct request_queue in question
328  *
329  * Description:
330  *   blk_start_queue_async() will clear the stop flag on the queue, and
331  *   ensure that the request_fn for the queue is run from an async
332  *   context.
333  **/
334 void blk_start_queue_async(struct request_queue *q)
335 {
336 	lockdep_assert_held(q->queue_lock);
337 	WARN_ON_ONCE(q->mq_ops);
338 
339 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
340 	blk_run_queue_async(q);
341 }
342 EXPORT_SYMBOL(blk_start_queue_async);
343 
344 /**
345  * blk_start_queue - restart a previously stopped queue
346  * @q:    The &struct request_queue in question
347  *
348  * Description:
349  *   blk_start_queue() will clear the stop flag on the queue, and call
350  *   the request_fn for the queue if it was in a stopped state when
351  *   entered. Also see blk_stop_queue().
352  **/
353 void blk_start_queue(struct request_queue *q)
354 {
355 	lockdep_assert_held(q->queue_lock);
356 	WARN_ON_ONCE(q->mq_ops);
357 
358 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
359 	__blk_run_queue(q);
360 }
361 EXPORT_SYMBOL(blk_start_queue);
362 
363 /**
364  * blk_stop_queue - stop a queue
365  * @q:    The &struct request_queue in question
366  *
367  * Description:
368  *   The Linux block layer assumes that a block driver will consume all
369  *   entries on the request queue when the request_fn strategy is called.
370  *   Often this will not happen, because of hardware limitations (queue
371  *   depth settings). If a device driver gets a 'queue full' response,
372  *   or if it simply chooses not to queue more I/O at one point, it can
373  *   call this function to prevent the request_fn from being called until
374  *   the driver has signalled it's ready to go again. This happens by calling
375  *   blk_start_queue() to restart queue operations.
376  **/
377 void blk_stop_queue(struct request_queue *q)
378 {
379 	lockdep_assert_held(q->queue_lock);
380 	WARN_ON_ONCE(q->mq_ops);
381 
382 	cancel_delayed_work(&q->delay_work);
383 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
384 }
385 EXPORT_SYMBOL(blk_stop_queue);
386 
387 /**
388  * blk_sync_queue - cancel any pending callbacks on a queue
389  * @q: the queue
390  *
391  * Description:
392  *     The block layer may perform asynchronous callback activity
393  *     on a queue, such as calling the unplug function after a timeout.
394  *     A block device may call blk_sync_queue to ensure that any
395  *     such activity is cancelled, thus allowing it to release resources
396  *     that the callbacks might use. The caller must already have made sure
397  *     that its ->make_request_fn will not re-add plugging prior to calling
398  *     this function.
399  *
400  *     This function does not cancel any asynchronous activity arising
401  *     out of elevator or throttling code. That would require elevator_exit()
402  *     and blkcg_exit_queue() to be called with queue lock initialized.
403  *
404  */
405 void blk_sync_queue(struct request_queue *q)
406 {
407 	del_timer_sync(&q->timeout);
408 	cancel_work_sync(&q->timeout_work);
409 
410 	if (q->mq_ops) {
411 		struct blk_mq_hw_ctx *hctx;
412 		int i;
413 
414 		cancel_delayed_work_sync(&q->requeue_work);
415 		queue_for_each_hw_ctx(q, hctx, i)
416 			cancel_delayed_work_sync(&hctx->run_work);
417 	} else {
418 		cancel_delayed_work_sync(&q->delay_work);
419 	}
420 }
421 EXPORT_SYMBOL(blk_sync_queue);
422 
423 /**
424  * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
425  * @q: request queue pointer
426  *
427  * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
428  * set and 1 if the flag was already set.
429  */
430 int blk_set_preempt_only(struct request_queue *q)
431 {
432 	return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
433 }
434 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
435 
436 void blk_clear_preempt_only(struct request_queue *q)
437 {
438 	blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
439 	wake_up_all(&q->mq_freeze_wq);
440 }
441 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
442 
443 /**
444  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
445  * @q:	The queue to run
446  *
447  * Description:
448  *    Invoke request handling on a queue if there are any pending requests.
449  *    May be used to restart request handling after a request has completed.
450  *    This variant runs the queue whether or not the queue has been
451  *    stopped. Must be called with the queue lock held and interrupts
452  *    disabled. See also @blk_run_queue.
453  */
454 inline void __blk_run_queue_uncond(struct request_queue *q)
455 {
456 	lockdep_assert_held(q->queue_lock);
457 	WARN_ON_ONCE(q->mq_ops);
458 
459 	if (unlikely(blk_queue_dead(q)))
460 		return;
461 
462 	/*
463 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
464 	 * the queue lock internally. As a result multiple threads may be
465 	 * running such a request function concurrently. Keep track of the
466 	 * number of active request_fn invocations such that blk_drain_queue()
467 	 * can wait until all these request_fn calls have finished.
468 	 */
469 	q->request_fn_active++;
470 	q->request_fn(q);
471 	q->request_fn_active--;
472 }
473 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
474 
475 /**
476  * __blk_run_queue - run a single device queue
477  * @q:	The queue to run
478  *
479  * Description:
480  *    See @blk_run_queue.
481  */
482 void __blk_run_queue(struct request_queue *q)
483 {
484 	lockdep_assert_held(q->queue_lock);
485 	WARN_ON_ONCE(q->mq_ops);
486 
487 	if (unlikely(blk_queue_stopped(q)))
488 		return;
489 
490 	__blk_run_queue_uncond(q);
491 }
492 EXPORT_SYMBOL(__blk_run_queue);
493 
494 /**
495  * blk_run_queue_async - run a single device queue in workqueue context
496  * @q:	The queue to run
497  *
498  * Description:
499  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
500  *    of us.
501  *
502  * Note:
503  *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
504  *    has canceled q->delay_work, callers must hold the queue lock to avoid
505  *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
506  */
507 void blk_run_queue_async(struct request_queue *q)
508 {
509 	lockdep_assert_held(q->queue_lock);
510 	WARN_ON_ONCE(q->mq_ops);
511 
512 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
513 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
514 }
515 EXPORT_SYMBOL(blk_run_queue_async);
516 
517 /**
518  * blk_run_queue - run a single device queue
519  * @q: The queue to run
520  *
521  * Description:
522  *    Invoke request handling on this queue, if it has pending work to do.
523  *    May be used to restart queueing when a request has completed.
524  */
525 void blk_run_queue(struct request_queue *q)
526 {
527 	unsigned long flags;
528 
529 	WARN_ON_ONCE(q->mq_ops);
530 
531 	spin_lock_irqsave(q->queue_lock, flags);
532 	__blk_run_queue(q);
533 	spin_unlock_irqrestore(q->queue_lock, flags);
534 }
535 EXPORT_SYMBOL(blk_run_queue);
536 
537 void blk_put_queue(struct request_queue *q)
538 {
539 	kobject_put(&q->kobj);
540 }
541 EXPORT_SYMBOL(blk_put_queue);
542 
543 /**
544  * __blk_drain_queue - drain requests from request_queue
545  * @q: queue to drain
546  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
547  *
548  * Drain requests from @q.  If @drain_all is set, all requests are drained.
549  * If not, only ELVPRIV requests are drained.  The caller is responsible
550  * for ensuring that no new requests which need to be drained are queued.
551  */
552 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
553 	__releases(q->queue_lock)
554 	__acquires(q->queue_lock)
555 {
556 	int i;
557 
558 	lockdep_assert_held(q->queue_lock);
559 	WARN_ON_ONCE(q->mq_ops);
560 
561 	while (true) {
562 		bool drain = false;
563 
564 		/*
565 		 * The caller might be trying to drain @q before its
566 		 * elevator is initialized.
567 		 */
568 		if (q->elevator)
569 			elv_drain_elevator(q);
570 
571 		blkcg_drain_queue(q);
572 
573 		/*
574 		 * This function might be called on a queue which failed
575 		 * driver init after queue creation or is not yet fully
576 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
577 		 * in such cases.  Kick queue iff dispatch queue has
578 		 * something on it and @q has request_fn set.
579 		 */
580 		if (!list_empty(&q->queue_head) && q->request_fn)
581 			__blk_run_queue(q);
582 
583 		drain |= q->nr_rqs_elvpriv;
584 		drain |= q->request_fn_active;
585 
586 		/*
587 		 * Unfortunately, requests are queued at and tracked from
588 		 * multiple places and there's no single counter which can
589 		 * be drained.  Check all the queues and counters.
590 		 */
591 		if (drain_all) {
592 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
593 			drain |= !list_empty(&q->queue_head);
594 			for (i = 0; i < 2; i++) {
595 				drain |= q->nr_rqs[i];
596 				drain |= q->in_flight[i];
597 				if (fq)
598 				    drain |= !list_empty(&fq->flush_queue[i]);
599 			}
600 		}
601 
602 		if (!drain)
603 			break;
604 
605 		spin_unlock_irq(q->queue_lock);
606 
607 		msleep(10);
608 
609 		spin_lock_irq(q->queue_lock);
610 	}
611 
612 	/*
613 	 * With queue marked dead, any woken up waiter will fail the
614 	 * allocation path, so the wakeup chaining is lost and we're
615 	 * left with hung waiters. We need to wake up those waiters.
616 	 */
617 	if (q->request_fn) {
618 		struct request_list *rl;
619 
620 		blk_queue_for_each_rl(rl, q)
621 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
622 				wake_up_all(&rl->wait[i]);
623 	}
624 }
625 
626 void blk_drain_queue(struct request_queue *q)
627 {
628 	spin_lock_irq(q->queue_lock);
629 	__blk_drain_queue(q, true);
630 	spin_unlock_irq(q->queue_lock);
631 }
632 
633 /**
634  * blk_queue_bypass_start - enter queue bypass mode
635  * @q: queue of interest
636  *
637  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
638  * function makes @q enter bypass mode and drains all requests which were
639  * throttled or issued before.  On return, it's guaranteed that no request
640  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
641  * inside queue or RCU read lock.
642  */
643 void blk_queue_bypass_start(struct request_queue *q)
644 {
645 	WARN_ON_ONCE(q->mq_ops);
646 
647 	spin_lock_irq(q->queue_lock);
648 	q->bypass_depth++;
649 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
650 	spin_unlock_irq(q->queue_lock);
651 
652 	/*
653 	 * Queues start drained.  Skip actual draining till init is
654 	 * complete.  This avoids lenghty delays during queue init which
655 	 * can happen many times during boot.
656 	 */
657 	if (blk_queue_init_done(q)) {
658 		spin_lock_irq(q->queue_lock);
659 		__blk_drain_queue(q, false);
660 		spin_unlock_irq(q->queue_lock);
661 
662 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
663 		synchronize_rcu();
664 	}
665 }
666 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
667 
668 /**
669  * blk_queue_bypass_end - leave queue bypass mode
670  * @q: queue of interest
671  *
672  * Leave bypass mode and restore the normal queueing behavior.
673  *
674  * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
675  * this function is called for both blk-sq and blk-mq queues.
676  */
677 void blk_queue_bypass_end(struct request_queue *q)
678 {
679 	spin_lock_irq(q->queue_lock);
680 	if (!--q->bypass_depth)
681 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
682 	WARN_ON_ONCE(q->bypass_depth < 0);
683 	spin_unlock_irq(q->queue_lock);
684 }
685 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
686 
687 void blk_set_queue_dying(struct request_queue *q)
688 {
689 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
690 
691 	/*
692 	 * When queue DYING flag is set, we need to block new req
693 	 * entering queue, so we call blk_freeze_queue_start() to
694 	 * prevent I/O from crossing blk_queue_enter().
695 	 */
696 	blk_freeze_queue_start(q);
697 
698 	if (q->mq_ops)
699 		blk_mq_wake_waiters(q);
700 	else {
701 		struct request_list *rl;
702 
703 		spin_lock_irq(q->queue_lock);
704 		blk_queue_for_each_rl(rl, q) {
705 			if (rl->rq_pool) {
706 				wake_up_all(&rl->wait[BLK_RW_SYNC]);
707 				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
708 			}
709 		}
710 		spin_unlock_irq(q->queue_lock);
711 	}
712 
713 	/* Make blk_queue_enter() reexamine the DYING flag. */
714 	wake_up_all(&q->mq_freeze_wq);
715 }
716 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
717 
718 /**
719  * blk_cleanup_queue - shutdown a request queue
720  * @q: request queue to shutdown
721  *
722  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
723  * put it.  All future requests will be failed immediately with -ENODEV.
724  */
725 void blk_cleanup_queue(struct request_queue *q)
726 {
727 	spinlock_t *lock = q->queue_lock;
728 
729 	/* mark @q DYING, no new request or merges will be allowed afterwards */
730 	mutex_lock(&q->sysfs_lock);
731 	blk_set_queue_dying(q);
732 	spin_lock_irq(lock);
733 
734 	/*
735 	 * A dying queue is permanently in bypass mode till released.  Note
736 	 * that, unlike blk_queue_bypass_start(), we aren't performing
737 	 * synchronize_rcu() after entering bypass mode to avoid the delay
738 	 * as some drivers create and destroy a lot of queues while
739 	 * probing.  This is still safe because blk_release_queue() will be
740 	 * called only after the queue refcnt drops to zero and nothing,
741 	 * RCU or not, would be traversing the queue by then.
742 	 */
743 	q->bypass_depth++;
744 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
745 
746 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
747 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
748 	queue_flag_set(QUEUE_FLAG_DYING, q);
749 	spin_unlock_irq(lock);
750 	mutex_unlock(&q->sysfs_lock);
751 
752 	/*
753 	 * Drain all requests queued before DYING marking. Set DEAD flag to
754 	 * prevent that q->request_fn() gets invoked after draining finished.
755 	 */
756 	blk_freeze_queue(q);
757 	spin_lock_irq(lock);
758 	queue_flag_set(QUEUE_FLAG_DEAD, q);
759 	spin_unlock_irq(lock);
760 
761 	/*
762 	 * make sure all in-progress dispatch are completed because
763 	 * blk_freeze_queue() can only complete all requests, and
764 	 * dispatch may still be in-progress since we dispatch requests
765 	 * from more than one contexts
766 	 */
767 	if (q->mq_ops)
768 		blk_mq_quiesce_queue(q);
769 
770 	/* for synchronous bio-based driver finish in-flight integrity i/o */
771 	blk_flush_integrity();
772 
773 	/* @q won't process any more request, flush async actions */
774 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
775 	blk_sync_queue(q);
776 
777 	/*
778 	 * I/O scheduler exit is only safe after the sysfs scheduler attribute
779 	 * has been removed.
780 	 */
781 	WARN_ON_ONCE(q->kobj.state_in_sysfs);
782 
783 	/*
784 	 * Since the I/O scheduler exit code may access cgroup information,
785 	 * perform I/O scheduler exit before disassociating from the block
786 	 * cgroup controller.
787 	 */
788 	if (q->elevator) {
789 		ioc_clear_queue(q);
790 		elevator_exit(q, q->elevator);
791 		q->elevator = NULL;
792 	}
793 
794 	/*
795 	 * Remove all references to @q from the block cgroup controller before
796 	 * restoring @q->queue_lock to avoid that restoring this pointer causes
797 	 * e.g. blkcg_print_blkgs() to crash.
798 	 */
799 	blkcg_exit_queue(q);
800 
801 	/*
802 	 * Since the cgroup code may dereference the @q->backing_dev_info
803 	 * pointer, only decrease its reference count after having removed the
804 	 * association with the block cgroup controller.
805 	 */
806 	bdi_put(q->backing_dev_info);
807 
808 	if (q->mq_ops)
809 		blk_mq_free_queue(q);
810 	percpu_ref_exit(&q->q_usage_counter);
811 
812 	spin_lock_irq(lock);
813 	if (q->queue_lock != &q->__queue_lock)
814 		q->queue_lock = &q->__queue_lock;
815 	spin_unlock_irq(lock);
816 
817 	/* @q is and will stay empty, shutdown and put */
818 	blk_put_queue(q);
819 }
820 EXPORT_SYMBOL(blk_cleanup_queue);
821 
822 /* Allocate memory local to the request queue */
823 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
824 {
825 	struct request_queue *q = data;
826 
827 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
828 }
829 
830 static void free_request_simple(void *element, void *data)
831 {
832 	kmem_cache_free(request_cachep, element);
833 }
834 
835 static void *alloc_request_size(gfp_t gfp_mask, void *data)
836 {
837 	struct request_queue *q = data;
838 	struct request *rq;
839 
840 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
841 			q->node);
842 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
843 		kfree(rq);
844 		rq = NULL;
845 	}
846 	return rq;
847 }
848 
849 static void free_request_size(void *element, void *data)
850 {
851 	struct request_queue *q = data;
852 
853 	if (q->exit_rq_fn)
854 		q->exit_rq_fn(q, element);
855 	kfree(element);
856 }
857 
858 int blk_init_rl(struct request_list *rl, struct request_queue *q,
859 		gfp_t gfp_mask)
860 {
861 	if (unlikely(rl->rq_pool) || q->mq_ops)
862 		return 0;
863 
864 	rl->q = q;
865 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
866 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
867 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
868 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
869 
870 	if (q->cmd_size) {
871 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
872 				alloc_request_size, free_request_size,
873 				q, gfp_mask, q->node);
874 	} else {
875 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
876 				alloc_request_simple, free_request_simple,
877 				q, gfp_mask, q->node);
878 	}
879 	if (!rl->rq_pool)
880 		return -ENOMEM;
881 
882 	if (rl != &q->root_rl)
883 		WARN_ON_ONCE(!blk_get_queue(q));
884 
885 	return 0;
886 }
887 
888 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
889 {
890 	if (rl->rq_pool) {
891 		mempool_destroy(rl->rq_pool);
892 		if (rl != &q->root_rl)
893 			blk_put_queue(q);
894 	}
895 }
896 
897 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
898 {
899 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
900 }
901 EXPORT_SYMBOL(blk_alloc_queue);
902 
903 /**
904  * blk_queue_enter() - try to increase q->q_usage_counter
905  * @q: request queue pointer
906  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
907  */
908 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
909 {
910 	const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
911 
912 	while (true) {
913 		bool success = false;
914 
915 		rcu_read_lock();
916 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
917 			/*
918 			 * The code that sets the PREEMPT_ONLY flag is
919 			 * responsible for ensuring that that flag is globally
920 			 * visible before the queue is unfrozen.
921 			 */
922 			if (preempt || !blk_queue_preempt_only(q)) {
923 				success = true;
924 			} else {
925 				percpu_ref_put(&q->q_usage_counter);
926 			}
927 		}
928 		rcu_read_unlock();
929 
930 		if (success)
931 			return 0;
932 
933 		if (flags & BLK_MQ_REQ_NOWAIT)
934 			return -EBUSY;
935 
936 		/*
937 		 * read pair of barrier in blk_freeze_queue_start(),
938 		 * we need to order reading __PERCPU_REF_DEAD flag of
939 		 * .q_usage_counter and reading .mq_freeze_depth or
940 		 * queue dying flag, otherwise the following wait may
941 		 * never return if the two reads are reordered.
942 		 */
943 		smp_rmb();
944 
945 		wait_event(q->mq_freeze_wq,
946 			   (atomic_read(&q->mq_freeze_depth) == 0 &&
947 			    (preempt || !blk_queue_preempt_only(q))) ||
948 			   blk_queue_dying(q));
949 		if (blk_queue_dying(q))
950 			return -ENODEV;
951 	}
952 }
953 
954 void blk_queue_exit(struct request_queue *q)
955 {
956 	percpu_ref_put(&q->q_usage_counter);
957 }
958 
959 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
960 {
961 	struct request_queue *q =
962 		container_of(ref, struct request_queue, q_usage_counter);
963 
964 	wake_up_all(&q->mq_freeze_wq);
965 }
966 
967 static void blk_rq_timed_out_timer(struct timer_list *t)
968 {
969 	struct request_queue *q = from_timer(q, t, timeout);
970 
971 	kblockd_schedule_work(&q->timeout_work);
972 }
973 
974 /**
975  * blk_alloc_queue_node - allocate a request queue
976  * @gfp_mask: memory allocation flags
977  * @node_id: NUMA node to allocate memory from
978  * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
979  *        serialize calls to the legacy .request_fn() callback. Ignored for
980  *	  blk-mq request queues.
981  *
982  * Note: pass the queue lock as the third argument to this function instead of
983  * setting the queue lock pointer explicitly to avoid triggering a sporadic
984  * crash in the blkcg code. This function namely calls blkcg_init_queue() and
985  * the queue lock pointer must be set before blkcg_init_queue() is called.
986  */
987 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
988 					   spinlock_t *lock)
989 {
990 	struct request_queue *q;
991 	int ret;
992 
993 	q = kmem_cache_alloc_node(blk_requestq_cachep,
994 				gfp_mask | __GFP_ZERO, node_id);
995 	if (!q)
996 		return NULL;
997 
998 	INIT_LIST_HEAD(&q->queue_head);
999 	q->last_merge = NULL;
1000 	q->end_sector = 0;
1001 	q->boundary_rq = NULL;
1002 
1003 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1004 	if (q->id < 0)
1005 		goto fail_q;
1006 
1007 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1008 	if (ret)
1009 		goto fail_id;
1010 
1011 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1012 	if (!q->backing_dev_info)
1013 		goto fail_split;
1014 
1015 	q->stats = blk_alloc_queue_stats();
1016 	if (!q->stats)
1017 		goto fail_stats;
1018 
1019 	q->backing_dev_info->ra_pages =
1020 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1021 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1022 	q->backing_dev_info->name = "block";
1023 	q->node = node_id;
1024 
1025 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1026 		    laptop_mode_timer_fn, 0);
1027 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1028 	INIT_WORK(&q->timeout_work, NULL);
1029 	INIT_LIST_HEAD(&q->queue_head);
1030 	INIT_LIST_HEAD(&q->timeout_list);
1031 	INIT_LIST_HEAD(&q->icq_list);
1032 #ifdef CONFIG_BLK_CGROUP
1033 	INIT_LIST_HEAD(&q->blkg_list);
1034 #endif
1035 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1036 
1037 	kobject_init(&q->kobj, &blk_queue_ktype);
1038 
1039 #ifdef CONFIG_BLK_DEV_IO_TRACE
1040 	mutex_init(&q->blk_trace_mutex);
1041 #endif
1042 	mutex_init(&q->sysfs_lock);
1043 	spin_lock_init(&q->__queue_lock);
1044 
1045 	if (!q->mq_ops)
1046 		q->queue_lock = lock ? : &q->__queue_lock;
1047 
1048 	/*
1049 	 * A queue starts its life with bypass turned on to avoid
1050 	 * unnecessary bypass on/off overhead and nasty surprises during
1051 	 * init.  The initial bypass will be finished when the queue is
1052 	 * registered by blk_register_queue().
1053 	 */
1054 	q->bypass_depth = 1;
1055 	queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1056 
1057 	init_waitqueue_head(&q->mq_freeze_wq);
1058 
1059 	/*
1060 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1061 	 * See blk_register_queue() for details.
1062 	 */
1063 	if (percpu_ref_init(&q->q_usage_counter,
1064 				blk_queue_usage_counter_release,
1065 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1066 		goto fail_bdi;
1067 
1068 	if (blkcg_init_queue(q))
1069 		goto fail_ref;
1070 
1071 	return q;
1072 
1073 fail_ref:
1074 	percpu_ref_exit(&q->q_usage_counter);
1075 fail_bdi:
1076 	blk_free_queue_stats(q->stats);
1077 fail_stats:
1078 	bdi_put(q->backing_dev_info);
1079 fail_split:
1080 	bioset_exit(&q->bio_split);
1081 fail_id:
1082 	ida_simple_remove(&blk_queue_ida, q->id);
1083 fail_q:
1084 	kmem_cache_free(blk_requestq_cachep, q);
1085 	return NULL;
1086 }
1087 EXPORT_SYMBOL(blk_alloc_queue_node);
1088 
1089 /**
1090  * blk_init_queue  - prepare a request queue for use with a block device
1091  * @rfn:  The function to be called to process requests that have been
1092  *        placed on the queue.
1093  * @lock: Request queue spin lock
1094  *
1095  * Description:
1096  *    If a block device wishes to use the standard request handling procedures,
1097  *    which sorts requests and coalesces adjacent requests, then it must
1098  *    call blk_init_queue().  The function @rfn will be called when there
1099  *    are requests on the queue that need to be processed.  If the device
1100  *    supports plugging, then @rfn may not be called immediately when requests
1101  *    are available on the queue, but may be called at some time later instead.
1102  *    Plugged queues are generally unplugged when a buffer belonging to one
1103  *    of the requests on the queue is needed, or due to memory pressure.
1104  *
1105  *    @rfn is not required, or even expected, to remove all requests off the
1106  *    queue, but only as many as it can handle at a time.  If it does leave
1107  *    requests on the queue, it is responsible for arranging that the requests
1108  *    get dealt with eventually.
1109  *
1110  *    The queue spin lock must be held while manipulating the requests on the
1111  *    request queue; this lock will be taken also from interrupt context, so irq
1112  *    disabling is needed for it.
1113  *
1114  *    Function returns a pointer to the initialized request queue, or %NULL if
1115  *    it didn't succeed.
1116  *
1117  * Note:
1118  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1119  *    when the block device is deactivated (such as at module unload).
1120  **/
1121 
1122 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1123 {
1124 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1125 }
1126 EXPORT_SYMBOL(blk_init_queue);
1127 
1128 struct request_queue *
1129 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1130 {
1131 	struct request_queue *q;
1132 
1133 	q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1134 	if (!q)
1135 		return NULL;
1136 
1137 	q->request_fn = rfn;
1138 	if (blk_init_allocated_queue(q) < 0) {
1139 		blk_cleanup_queue(q);
1140 		return NULL;
1141 	}
1142 
1143 	return q;
1144 }
1145 EXPORT_SYMBOL(blk_init_queue_node);
1146 
1147 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1148 
1149 
1150 int blk_init_allocated_queue(struct request_queue *q)
1151 {
1152 	WARN_ON_ONCE(q->mq_ops);
1153 
1154 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1155 	if (!q->fq)
1156 		return -ENOMEM;
1157 
1158 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1159 		goto out_free_flush_queue;
1160 
1161 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1162 		goto out_exit_flush_rq;
1163 
1164 	INIT_WORK(&q->timeout_work, blk_timeout_work);
1165 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
1166 
1167 	/*
1168 	 * This also sets hw/phys segments, boundary and size
1169 	 */
1170 	blk_queue_make_request(q, blk_queue_bio);
1171 
1172 	q->sg_reserved_size = INT_MAX;
1173 
1174 	if (elevator_init(q))
1175 		goto out_exit_flush_rq;
1176 	return 0;
1177 
1178 out_exit_flush_rq:
1179 	if (q->exit_rq_fn)
1180 		q->exit_rq_fn(q, q->fq->flush_rq);
1181 out_free_flush_queue:
1182 	blk_free_flush_queue(q->fq);
1183 	return -ENOMEM;
1184 }
1185 EXPORT_SYMBOL(blk_init_allocated_queue);
1186 
1187 bool blk_get_queue(struct request_queue *q)
1188 {
1189 	if (likely(!blk_queue_dying(q))) {
1190 		__blk_get_queue(q);
1191 		return true;
1192 	}
1193 
1194 	return false;
1195 }
1196 EXPORT_SYMBOL(blk_get_queue);
1197 
1198 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1199 {
1200 	if (rq->rq_flags & RQF_ELVPRIV) {
1201 		elv_put_request(rl->q, rq);
1202 		if (rq->elv.icq)
1203 			put_io_context(rq->elv.icq->ioc);
1204 	}
1205 
1206 	mempool_free(rq, rl->rq_pool);
1207 }
1208 
1209 /*
1210  * ioc_batching returns true if the ioc is a valid batching request and
1211  * should be given priority access to a request.
1212  */
1213 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1214 {
1215 	if (!ioc)
1216 		return 0;
1217 
1218 	/*
1219 	 * Make sure the process is able to allocate at least 1 request
1220 	 * even if the batch times out, otherwise we could theoretically
1221 	 * lose wakeups.
1222 	 */
1223 	return ioc->nr_batch_requests == q->nr_batching ||
1224 		(ioc->nr_batch_requests > 0
1225 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1226 }
1227 
1228 /*
1229  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1230  * will cause the process to be a "batcher" on all queues in the system. This
1231  * is the behaviour we want though - once it gets a wakeup it should be given
1232  * a nice run.
1233  */
1234 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1235 {
1236 	if (!ioc || ioc_batching(q, ioc))
1237 		return;
1238 
1239 	ioc->nr_batch_requests = q->nr_batching;
1240 	ioc->last_waited = jiffies;
1241 }
1242 
1243 static void __freed_request(struct request_list *rl, int sync)
1244 {
1245 	struct request_queue *q = rl->q;
1246 
1247 	if (rl->count[sync] < queue_congestion_off_threshold(q))
1248 		blk_clear_congested(rl, sync);
1249 
1250 	if (rl->count[sync] + 1 <= q->nr_requests) {
1251 		if (waitqueue_active(&rl->wait[sync]))
1252 			wake_up(&rl->wait[sync]);
1253 
1254 		blk_clear_rl_full(rl, sync);
1255 	}
1256 }
1257 
1258 /*
1259  * A request has just been released.  Account for it, update the full and
1260  * congestion status, wake up any waiters.   Called under q->queue_lock.
1261  */
1262 static void freed_request(struct request_list *rl, bool sync,
1263 		req_flags_t rq_flags)
1264 {
1265 	struct request_queue *q = rl->q;
1266 
1267 	q->nr_rqs[sync]--;
1268 	rl->count[sync]--;
1269 	if (rq_flags & RQF_ELVPRIV)
1270 		q->nr_rqs_elvpriv--;
1271 
1272 	__freed_request(rl, sync);
1273 
1274 	if (unlikely(rl->starved[sync ^ 1]))
1275 		__freed_request(rl, sync ^ 1);
1276 }
1277 
1278 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1279 {
1280 	struct request_list *rl;
1281 	int on_thresh, off_thresh;
1282 
1283 	WARN_ON_ONCE(q->mq_ops);
1284 
1285 	spin_lock_irq(q->queue_lock);
1286 	q->nr_requests = nr;
1287 	blk_queue_congestion_threshold(q);
1288 	on_thresh = queue_congestion_on_threshold(q);
1289 	off_thresh = queue_congestion_off_threshold(q);
1290 
1291 	blk_queue_for_each_rl(rl, q) {
1292 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1293 			blk_set_congested(rl, BLK_RW_SYNC);
1294 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1295 			blk_clear_congested(rl, BLK_RW_SYNC);
1296 
1297 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1298 			blk_set_congested(rl, BLK_RW_ASYNC);
1299 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1300 			blk_clear_congested(rl, BLK_RW_ASYNC);
1301 
1302 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1303 			blk_set_rl_full(rl, BLK_RW_SYNC);
1304 		} else {
1305 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1306 			wake_up(&rl->wait[BLK_RW_SYNC]);
1307 		}
1308 
1309 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1310 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1311 		} else {
1312 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1313 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1314 		}
1315 	}
1316 
1317 	spin_unlock_irq(q->queue_lock);
1318 	return 0;
1319 }
1320 
1321 /**
1322  * __get_request - get a free request
1323  * @rl: request list to allocate from
1324  * @op: operation and flags
1325  * @bio: bio to allocate request for (can be %NULL)
1326  * @flags: BLQ_MQ_REQ_* flags
1327  * @gfp_mask: allocator flags
1328  *
1329  * Get a free request from @q.  This function may fail under memory
1330  * pressure or if @q is dead.
1331  *
1332  * Must be called with @q->queue_lock held and,
1333  * Returns ERR_PTR on failure, with @q->queue_lock held.
1334  * Returns request pointer on success, with @q->queue_lock *not held*.
1335  */
1336 static struct request *__get_request(struct request_list *rl, unsigned int op,
1337 		struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1338 {
1339 	struct request_queue *q = rl->q;
1340 	struct request *rq;
1341 	struct elevator_type *et = q->elevator->type;
1342 	struct io_context *ioc = rq_ioc(bio);
1343 	struct io_cq *icq = NULL;
1344 	const bool is_sync = op_is_sync(op);
1345 	int may_queue;
1346 	req_flags_t rq_flags = RQF_ALLOCED;
1347 
1348 	lockdep_assert_held(q->queue_lock);
1349 
1350 	if (unlikely(blk_queue_dying(q)))
1351 		return ERR_PTR(-ENODEV);
1352 
1353 	may_queue = elv_may_queue(q, op);
1354 	if (may_queue == ELV_MQUEUE_NO)
1355 		goto rq_starved;
1356 
1357 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1358 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1359 			/*
1360 			 * The queue will fill after this allocation, so set
1361 			 * it as full, and mark this process as "batching".
1362 			 * This process will be allowed to complete a batch of
1363 			 * requests, others will be blocked.
1364 			 */
1365 			if (!blk_rl_full(rl, is_sync)) {
1366 				ioc_set_batching(q, ioc);
1367 				blk_set_rl_full(rl, is_sync);
1368 			} else {
1369 				if (may_queue != ELV_MQUEUE_MUST
1370 						&& !ioc_batching(q, ioc)) {
1371 					/*
1372 					 * The queue is full and the allocating
1373 					 * process is not a "batcher", and not
1374 					 * exempted by the IO scheduler
1375 					 */
1376 					return ERR_PTR(-ENOMEM);
1377 				}
1378 			}
1379 		}
1380 		blk_set_congested(rl, is_sync);
1381 	}
1382 
1383 	/*
1384 	 * Only allow batching queuers to allocate up to 50% over the defined
1385 	 * limit of requests, otherwise we could have thousands of requests
1386 	 * allocated with any setting of ->nr_requests
1387 	 */
1388 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1389 		return ERR_PTR(-ENOMEM);
1390 
1391 	q->nr_rqs[is_sync]++;
1392 	rl->count[is_sync]++;
1393 	rl->starved[is_sync] = 0;
1394 
1395 	/*
1396 	 * Decide whether the new request will be managed by elevator.  If
1397 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1398 	 * prevent the current elevator from being destroyed until the new
1399 	 * request is freed.  This guarantees icq's won't be destroyed and
1400 	 * makes creating new ones safe.
1401 	 *
1402 	 * Flush requests do not use the elevator so skip initialization.
1403 	 * This allows a request to share the flush and elevator data.
1404 	 *
1405 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1406 	 * it will be created after releasing queue_lock.
1407 	 */
1408 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1409 		rq_flags |= RQF_ELVPRIV;
1410 		q->nr_rqs_elvpriv++;
1411 		if (et->icq_cache && ioc)
1412 			icq = ioc_lookup_icq(ioc, q);
1413 	}
1414 
1415 	if (blk_queue_io_stat(q))
1416 		rq_flags |= RQF_IO_STAT;
1417 	spin_unlock_irq(q->queue_lock);
1418 
1419 	/* allocate and init request */
1420 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1421 	if (!rq)
1422 		goto fail_alloc;
1423 
1424 	blk_rq_init(q, rq);
1425 	blk_rq_set_rl(rq, rl);
1426 	rq->cmd_flags = op;
1427 	rq->rq_flags = rq_flags;
1428 	if (flags & BLK_MQ_REQ_PREEMPT)
1429 		rq->rq_flags |= RQF_PREEMPT;
1430 
1431 	/* init elvpriv */
1432 	if (rq_flags & RQF_ELVPRIV) {
1433 		if (unlikely(et->icq_cache && !icq)) {
1434 			if (ioc)
1435 				icq = ioc_create_icq(ioc, q, gfp_mask);
1436 			if (!icq)
1437 				goto fail_elvpriv;
1438 		}
1439 
1440 		rq->elv.icq = icq;
1441 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1442 			goto fail_elvpriv;
1443 
1444 		/* @rq->elv.icq holds io_context until @rq is freed */
1445 		if (icq)
1446 			get_io_context(icq->ioc);
1447 	}
1448 out:
1449 	/*
1450 	 * ioc may be NULL here, and ioc_batching will be false. That's
1451 	 * OK, if the queue is under the request limit then requests need
1452 	 * not count toward the nr_batch_requests limit. There will always
1453 	 * be some limit enforced by BLK_BATCH_TIME.
1454 	 */
1455 	if (ioc_batching(q, ioc))
1456 		ioc->nr_batch_requests--;
1457 
1458 	trace_block_getrq(q, bio, op);
1459 	return rq;
1460 
1461 fail_elvpriv:
1462 	/*
1463 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1464 	 * and may fail indefinitely under memory pressure and thus
1465 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1466 	 * disturb iosched and blkcg but weird is bettern than dead.
1467 	 */
1468 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1469 			   __func__, dev_name(q->backing_dev_info->dev));
1470 
1471 	rq->rq_flags &= ~RQF_ELVPRIV;
1472 	rq->elv.icq = NULL;
1473 
1474 	spin_lock_irq(q->queue_lock);
1475 	q->nr_rqs_elvpriv--;
1476 	spin_unlock_irq(q->queue_lock);
1477 	goto out;
1478 
1479 fail_alloc:
1480 	/*
1481 	 * Allocation failed presumably due to memory. Undo anything we
1482 	 * might have messed up.
1483 	 *
1484 	 * Allocating task should really be put onto the front of the wait
1485 	 * queue, but this is pretty rare.
1486 	 */
1487 	spin_lock_irq(q->queue_lock);
1488 	freed_request(rl, is_sync, rq_flags);
1489 
1490 	/*
1491 	 * in the very unlikely event that allocation failed and no
1492 	 * requests for this direction was pending, mark us starved so that
1493 	 * freeing of a request in the other direction will notice
1494 	 * us. another possible fix would be to split the rq mempool into
1495 	 * READ and WRITE
1496 	 */
1497 rq_starved:
1498 	if (unlikely(rl->count[is_sync] == 0))
1499 		rl->starved[is_sync] = 1;
1500 	return ERR_PTR(-ENOMEM);
1501 }
1502 
1503 /**
1504  * get_request - get a free request
1505  * @q: request_queue to allocate request from
1506  * @op: operation and flags
1507  * @bio: bio to allocate request for (can be %NULL)
1508  * @flags: BLK_MQ_REQ_* flags.
1509  * @gfp: allocator flags
1510  *
1511  * Get a free request from @q.  If %BLK_MQ_REQ_NOWAIT is set in @flags,
1512  * this function keeps retrying under memory pressure and fails iff @q is dead.
1513  *
1514  * Must be called with @q->queue_lock held and,
1515  * Returns ERR_PTR on failure, with @q->queue_lock held.
1516  * Returns request pointer on success, with @q->queue_lock *not held*.
1517  */
1518 static struct request *get_request(struct request_queue *q, unsigned int op,
1519 		struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1520 {
1521 	const bool is_sync = op_is_sync(op);
1522 	DEFINE_WAIT(wait);
1523 	struct request_list *rl;
1524 	struct request *rq;
1525 
1526 	lockdep_assert_held(q->queue_lock);
1527 	WARN_ON_ONCE(q->mq_ops);
1528 
1529 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1530 retry:
1531 	rq = __get_request(rl, op, bio, flags, gfp);
1532 	if (!IS_ERR(rq))
1533 		return rq;
1534 
1535 	if (op & REQ_NOWAIT) {
1536 		blk_put_rl(rl);
1537 		return ERR_PTR(-EAGAIN);
1538 	}
1539 
1540 	if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1541 		blk_put_rl(rl);
1542 		return rq;
1543 	}
1544 
1545 	/* wait on @rl and retry */
1546 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1547 				  TASK_UNINTERRUPTIBLE);
1548 
1549 	trace_block_sleeprq(q, bio, op);
1550 
1551 	spin_unlock_irq(q->queue_lock);
1552 	io_schedule();
1553 
1554 	/*
1555 	 * After sleeping, we become a "batching" process and will be able
1556 	 * to allocate at least one request, and up to a big batch of them
1557 	 * for a small period time.  See ioc_batching, ioc_set_batching
1558 	 */
1559 	ioc_set_batching(q, current->io_context);
1560 
1561 	spin_lock_irq(q->queue_lock);
1562 	finish_wait(&rl->wait[is_sync], &wait);
1563 
1564 	goto retry;
1565 }
1566 
1567 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1568 static struct request *blk_old_get_request(struct request_queue *q,
1569 				unsigned int op, blk_mq_req_flags_t flags)
1570 {
1571 	struct request *rq;
1572 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
1573 	int ret = 0;
1574 
1575 	WARN_ON_ONCE(q->mq_ops);
1576 
1577 	/* create ioc upfront */
1578 	create_io_context(gfp_mask, q->node);
1579 
1580 	ret = blk_queue_enter(q, flags);
1581 	if (ret)
1582 		return ERR_PTR(ret);
1583 	spin_lock_irq(q->queue_lock);
1584 	rq = get_request(q, op, NULL, flags, gfp_mask);
1585 	if (IS_ERR(rq)) {
1586 		spin_unlock_irq(q->queue_lock);
1587 		blk_queue_exit(q);
1588 		return rq;
1589 	}
1590 
1591 	/* q->queue_lock is unlocked at this point */
1592 	rq->__data_len = 0;
1593 	rq->__sector = (sector_t) -1;
1594 	rq->bio = rq->biotail = NULL;
1595 	return rq;
1596 }
1597 
1598 /**
1599  * blk_get_request - allocate a request
1600  * @q: request queue to allocate a request for
1601  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1602  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1603  */
1604 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1605 				blk_mq_req_flags_t flags)
1606 {
1607 	struct request *req;
1608 
1609 	WARN_ON_ONCE(op & REQ_NOWAIT);
1610 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1611 
1612 	if (q->mq_ops) {
1613 		req = blk_mq_alloc_request(q, op, flags);
1614 		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1615 			q->mq_ops->initialize_rq_fn(req);
1616 	} else {
1617 		req = blk_old_get_request(q, op, flags);
1618 		if (!IS_ERR(req) && q->initialize_rq_fn)
1619 			q->initialize_rq_fn(req);
1620 	}
1621 
1622 	return req;
1623 }
1624 EXPORT_SYMBOL(blk_get_request);
1625 
1626 /**
1627  * blk_requeue_request - put a request back on queue
1628  * @q:		request queue where request should be inserted
1629  * @rq:		request to be inserted
1630  *
1631  * Description:
1632  *    Drivers often keep queueing requests until the hardware cannot accept
1633  *    more, when that condition happens we need to put the request back
1634  *    on the queue. Must be called with queue lock held.
1635  */
1636 void blk_requeue_request(struct request_queue *q, struct request *rq)
1637 {
1638 	lockdep_assert_held(q->queue_lock);
1639 	WARN_ON_ONCE(q->mq_ops);
1640 
1641 	blk_delete_timer(rq);
1642 	blk_clear_rq_complete(rq);
1643 	trace_block_rq_requeue(q, rq);
1644 	wbt_requeue(q->rq_wb, rq);
1645 
1646 	if (rq->rq_flags & RQF_QUEUED)
1647 		blk_queue_end_tag(q, rq);
1648 
1649 	BUG_ON(blk_queued_rq(rq));
1650 
1651 	elv_requeue_request(q, rq);
1652 }
1653 EXPORT_SYMBOL(blk_requeue_request);
1654 
1655 static void add_acct_request(struct request_queue *q, struct request *rq,
1656 			     int where)
1657 {
1658 	blk_account_io_start(rq, true);
1659 	__elv_add_request(q, rq, where);
1660 }
1661 
1662 static void part_round_stats_single(struct request_queue *q, int cpu,
1663 				    struct hd_struct *part, unsigned long now,
1664 				    unsigned int inflight)
1665 {
1666 	if (inflight) {
1667 		__part_stat_add(cpu, part, time_in_queue,
1668 				inflight * (now - part->stamp));
1669 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1670 	}
1671 	part->stamp = now;
1672 }
1673 
1674 /**
1675  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1676  * @q: target block queue
1677  * @cpu: cpu number for stats access
1678  * @part: target partition
1679  *
1680  * The average IO queue length and utilisation statistics are maintained
1681  * by observing the current state of the queue length and the amount of
1682  * time it has been in this state for.
1683  *
1684  * Normally, that accounting is done on IO completion, but that can result
1685  * in more than a second's worth of IO being accounted for within any one
1686  * second, leading to >100% utilisation.  To deal with that, we call this
1687  * function to do a round-off before returning the results when reading
1688  * /proc/diskstats.  This accounts immediately for all queue usage up to
1689  * the current jiffies and restarts the counters again.
1690  */
1691 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1692 {
1693 	struct hd_struct *part2 = NULL;
1694 	unsigned long now = jiffies;
1695 	unsigned int inflight[2];
1696 	int stats = 0;
1697 
1698 	if (part->stamp != now)
1699 		stats |= 1;
1700 
1701 	if (part->partno) {
1702 		part2 = &part_to_disk(part)->part0;
1703 		if (part2->stamp != now)
1704 			stats |= 2;
1705 	}
1706 
1707 	if (!stats)
1708 		return;
1709 
1710 	part_in_flight(q, part, inflight);
1711 
1712 	if (stats & 2)
1713 		part_round_stats_single(q, cpu, part2, now, inflight[1]);
1714 	if (stats & 1)
1715 		part_round_stats_single(q, cpu, part, now, inflight[0]);
1716 }
1717 EXPORT_SYMBOL_GPL(part_round_stats);
1718 
1719 #ifdef CONFIG_PM
1720 static void blk_pm_put_request(struct request *rq)
1721 {
1722 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1723 		pm_runtime_mark_last_busy(rq->q->dev);
1724 }
1725 #else
1726 static inline void blk_pm_put_request(struct request *rq) {}
1727 #endif
1728 
1729 void __blk_put_request(struct request_queue *q, struct request *req)
1730 {
1731 	req_flags_t rq_flags = req->rq_flags;
1732 
1733 	if (unlikely(!q))
1734 		return;
1735 
1736 	if (q->mq_ops) {
1737 		blk_mq_free_request(req);
1738 		return;
1739 	}
1740 
1741 	lockdep_assert_held(q->queue_lock);
1742 
1743 	blk_req_zone_write_unlock(req);
1744 	blk_pm_put_request(req);
1745 
1746 	elv_completed_request(q, req);
1747 
1748 	/* this is a bio leak */
1749 	WARN_ON(req->bio != NULL);
1750 
1751 	wbt_done(q->rq_wb, req);
1752 
1753 	/*
1754 	 * Request may not have originated from ll_rw_blk. if not,
1755 	 * it didn't come out of our reserved rq pools
1756 	 */
1757 	if (rq_flags & RQF_ALLOCED) {
1758 		struct request_list *rl = blk_rq_rl(req);
1759 		bool sync = op_is_sync(req->cmd_flags);
1760 
1761 		BUG_ON(!list_empty(&req->queuelist));
1762 		BUG_ON(ELV_ON_HASH(req));
1763 
1764 		blk_free_request(rl, req);
1765 		freed_request(rl, sync, rq_flags);
1766 		blk_put_rl(rl);
1767 		blk_queue_exit(q);
1768 	}
1769 }
1770 EXPORT_SYMBOL_GPL(__blk_put_request);
1771 
1772 void blk_put_request(struct request *req)
1773 {
1774 	struct request_queue *q = req->q;
1775 
1776 	if (q->mq_ops)
1777 		blk_mq_free_request(req);
1778 	else {
1779 		unsigned long flags;
1780 
1781 		spin_lock_irqsave(q->queue_lock, flags);
1782 		__blk_put_request(q, req);
1783 		spin_unlock_irqrestore(q->queue_lock, flags);
1784 	}
1785 }
1786 EXPORT_SYMBOL(blk_put_request);
1787 
1788 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1789 			    struct bio *bio)
1790 {
1791 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1792 
1793 	if (!ll_back_merge_fn(q, req, bio))
1794 		return false;
1795 
1796 	trace_block_bio_backmerge(q, req, bio);
1797 
1798 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1799 		blk_rq_set_mixed_merge(req);
1800 
1801 	req->biotail->bi_next = bio;
1802 	req->biotail = bio;
1803 	req->__data_len += bio->bi_iter.bi_size;
1804 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1805 
1806 	blk_account_io_start(req, false);
1807 	return true;
1808 }
1809 
1810 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1811 			     struct bio *bio)
1812 {
1813 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1814 
1815 	if (!ll_front_merge_fn(q, req, bio))
1816 		return false;
1817 
1818 	trace_block_bio_frontmerge(q, req, bio);
1819 
1820 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1821 		blk_rq_set_mixed_merge(req);
1822 
1823 	bio->bi_next = req->bio;
1824 	req->bio = bio;
1825 
1826 	req->__sector = bio->bi_iter.bi_sector;
1827 	req->__data_len += bio->bi_iter.bi_size;
1828 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1829 
1830 	blk_account_io_start(req, false);
1831 	return true;
1832 }
1833 
1834 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1835 		struct bio *bio)
1836 {
1837 	unsigned short segments = blk_rq_nr_discard_segments(req);
1838 
1839 	if (segments >= queue_max_discard_segments(q))
1840 		goto no_merge;
1841 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1842 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1843 		goto no_merge;
1844 
1845 	req->biotail->bi_next = bio;
1846 	req->biotail = bio;
1847 	req->__data_len += bio->bi_iter.bi_size;
1848 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1849 	req->nr_phys_segments = segments + 1;
1850 
1851 	blk_account_io_start(req, false);
1852 	return true;
1853 no_merge:
1854 	req_set_nomerge(q, req);
1855 	return false;
1856 }
1857 
1858 /**
1859  * blk_attempt_plug_merge - try to merge with %current's plugged list
1860  * @q: request_queue new bio is being queued at
1861  * @bio: new bio being queued
1862  * @request_count: out parameter for number of traversed plugged requests
1863  * @same_queue_rq: pointer to &struct request that gets filled in when
1864  * another request associated with @q is found on the plug list
1865  * (optional, may be %NULL)
1866  *
1867  * Determine whether @bio being queued on @q can be merged with a request
1868  * on %current's plugged list.  Returns %true if merge was successful,
1869  * otherwise %false.
1870  *
1871  * Plugging coalesces IOs from the same issuer for the same purpose without
1872  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1873  * than scheduling, and the request, while may have elvpriv data, is not
1874  * added on the elevator at this point.  In addition, we don't have
1875  * reliable access to the elevator outside queue lock.  Only check basic
1876  * merging parameters without querying the elevator.
1877  *
1878  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1879  */
1880 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1881 			    unsigned int *request_count,
1882 			    struct request **same_queue_rq)
1883 {
1884 	struct blk_plug *plug;
1885 	struct request *rq;
1886 	struct list_head *plug_list;
1887 
1888 	plug = current->plug;
1889 	if (!plug)
1890 		return false;
1891 	*request_count = 0;
1892 
1893 	if (q->mq_ops)
1894 		plug_list = &plug->mq_list;
1895 	else
1896 		plug_list = &plug->list;
1897 
1898 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1899 		bool merged = false;
1900 
1901 		if (rq->q == q) {
1902 			(*request_count)++;
1903 			/*
1904 			 * Only blk-mq multiple hardware queues case checks the
1905 			 * rq in the same queue, there should be only one such
1906 			 * rq in a queue
1907 			 **/
1908 			if (same_queue_rq)
1909 				*same_queue_rq = rq;
1910 		}
1911 
1912 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1913 			continue;
1914 
1915 		switch (blk_try_merge(rq, bio)) {
1916 		case ELEVATOR_BACK_MERGE:
1917 			merged = bio_attempt_back_merge(q, rq, bio);
1918 			break;
1919 		case ELEVATOR_FRONT_MERGE:
1920 			merged = bio_attempt_front_merge(q, rq, bio);
1921 			break;
1922 		case ELEVATOR_DISCARD_MERGE:
1923 			merged = bio_attempt_discard_merge(q, rq, bio);
1924 			break;
1925 		default:
1926 			break;
1927 		}
1928 
1929 		if (merged)
1930 			return true;
1931 	}
1932 
1933 	return false;
1934 }
1935 
1936 unsigned int blk_plug_queued_count(struct request_queue *q)
1937 {
1938 	struct blk_plug *plug;
1939 	struct request *rq;
1940 	struct list_head *plug_list;
1941 	unsigned int ret = 0;
1942 
1943 	plug = current->plug;
1944 	if (!plug)
1945 		goto out;
1946 
1947 	if (q->mq_ops)
1948 		plug_list = &plug->mq_list;
1949 	else
1950 		plug_list = &plug->list;
1951 
1952 	list_for_each_entry(rq, plug_list, queuelist) {
1953 		if (rq->q == q)
1954 			ret++;
1955 	}
1956 out:
1957 	return ret;
1958 }
1959 
1960 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1961 {
1962 	struct io_context *ioc = rq_ioc(bio);
1963 
1964 	if (bio->bi_opf & REQ_RAHEAD)
1965 		req->cmd_flags |= REQ_FAILFAST_MASK;
1966 
1967 	req->__sector = bio->bi_iter.bi_sector;
1968 	if (ioprio_valid(bio_prio(bio)))
1969 		req->ioprio = bio_prio(bio);
1970 	else if (ioc)
1971 		req->ioprio = ioc->ioprio;
1972 	else
1973 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1974 	req->write_hint = bio->bi_write_hint;
1975 	blk_rq_bio_prep(req->q, req, bio);
1976 }
1977 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1978 
1979 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1980 {
1981 	struct blk_plug *plug;
1982 	int where = ELEVATOR_INSERT_SORT;
1983 	struct request *req, *free;
1984 	unsigned int request_count = 0;
1985 	unsigned int wb_acct;
1986 
1987 	/*
1988 	 * low level driver can indicate that it wants pages above a
1989 	 * certain limit bounced to low memory (ie for highmem, or even
1990 	 * ISA dma in theory)
1991 	 */
1992 	blk_queue_bounce(q, &bio);
1993 
1994 	blk_queue_split(q, &bio);
1995 
1996 	if (!bio_integrity_prep(bio))
1997 		return BLK_QC_T_NONE;
1998 
1999 	if (op_is_flush(bio->bi_opf)) {
2000 		spin_lock_irq(q->queue_lock);
2001 		where = ELEVATOR_INSERT_FLUSH;
2002 		goto get_rq;
2003 	}
2004 
2005 	/*
2006 	 * Check if we can merge with the plugged list before grabbing
2007 	 * any locks.
2008 	 */
2009 	if (!blk_queue_nomerges(q)) {
2010 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2011 			return BLK_QC_T_NONE;
2012 	} else
2013 		request_count = blk_plug_queued_count(q);
2014 
2015 	spin_lock_irq(q->queue_lock);
2016 
2017 	switch (elv_merge(q, &req, bio)) {
2018 	case ELEVATOR_BACK_MERGE:
2019 		if (!bio_attempt_back_merge(q, req, bio))
2020 			break;
2021 		elv_bio_merged(q, req, bio);
2022 		free = attempt_back_merge(q, req);
2023 		if (free)
2024 			__blk_put_request(q, free);
2025 		else
2026 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2027 		goto out_unlock;
2028 	case ELEVATOR_FRONT_MERGE:
2029 		if (!bio_attempt_front_merge(q, req, bio))
2030 			break;
2031 		elv_bio_merged(q, req, bio);
2032 		free = attempt_front_merge(q, req);
2033 		if (free)
2034 			__blk_put_request(q, free);
2035 		else
2036 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2037 		goto out_unlock;
2038 	default:
2039 		break;
2040 	}
2041 
2042 get_rq:
2043 	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
2044 
2045 	/*
2046 	 * Grab a free request. This is might sleep but can not fail.
2047 	 * Returns with the queue unlocked.
2048 	 */
2049 	blk_queue_enter_live(q);
2050 	req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
2051 	if (IS_ERR(req)) {
2052 		blk_queue_exit(q);
2053 		__wbt_done(q->rq_wb, wb_acct);
2054 		if (PTR_ERR(req) == -ENOMEM)
2055 			bio->bi_status = BLK_STS_RESOURCE;
2056 		else
2057 			bio->bi_status = BLK_STS_IOERR;
2058 		bio_endio(bio);
2059 		goto out_unlock;
2060 	}
2061 
2062 	wbt_track(req, wb_acct);
2063 
2064 	/*
2065 	 * After dropping the lock and possibly sleeping here, our request
2066 	 * may now be mergeable after it had proven unmergeable (above).
2067 	 * We don't worry about that case for efficiency. It won't happen
2068 	 * often, and the elevators are able to handle it.
2069 	 */
2070 	blk_init_request_from_bio(req, bio);
2071 
2072 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2073 		req->cpu = raw_smp_processor_id();
2074 
2075 	plug = current->plug;
2076 	if (plug) {
2077 		/*
2078 		 * If this is the first request added after a plug, fire
2079 		 * of a plug trace.
2080 		 *
2081 		 * @request_count may become stale because of schedule
2082 		 * out, so check plug list again.
2083 		 */
2084 		if (!request_count || list_empty(&plug->list))
2085 			trace_block_plug(q);
2086 		else {
2087 			struct request *last = list_entry_rq(plug->list.prev);
2088 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
2089 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2090 				blk_flush_plug_list(plug, false);
2091 				trace_block_plug(q);
2092 			}
2093 		}
2094 		list_add_tail(&req->queuelist, &plug->list);
2095 		blk_account_io_start(req, true);
2096 	} else {
2097 		spin_lock_irq(q->queue_lock);
2098 		add_acct_request(q, req, where);
2099 		__blk_run_queue(q);
2100 out_unlock:
2101 		spin_unlock_irq(q->queue_lock);
2102 	}
2103 
2104 	return BLK_QC_T_NONE;
2105 }
2106 
2107 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2108 {
2109 	char b[BDEVNAME_SIZE];
2110 
2111 	printk(KERN_INFO "attempt to access beyond end of device\n");
2112 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2113 			bio_devname(bio, b), bio->bi_opf,
2114 			(unsigned long long)bio_end_sector(bio),
2115 			(long long)maxsector);
2116 }
2117 
2118 #ifdef CONFIG_FAIL_MAKE_REQUEST
2119 
2120 static DECLARE_FAULT_ATTR(fail_make_request);
2121 
2122 static int __init setup_fail_make_request(char *str)
2123 {
2124 	return setup_fault_attr(&fail_make_request, str);
2125 }
2126 __setup("fail_make_request=", setup_fail_make_request);
2127 
2128 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2129 {
2130 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
2131 }
2132 
2133 static int __init fail_make_request_debugfs(void)
2134 {
2135 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2136 						NULL, &fail_make_request);
2137 
2138 	return PTR_ERR_OR_ZERO(dir);
2139 }
2140 
2141 late_initcall(fail_make_request_debugfs);
2142 
2143 #else /* CONFIG_FAIL_MAKE_REQUEST */
2144 
2145 static inline bool should_fail_request(struct hd_struct *part,
2146 					unsigned int bytes)
2147 {
2148 	return false;
2149 }
2150 
2151 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2152 
2153 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2154 {
2155 	if (part->policy && op_is_write(bio_op(bio))) {
2156 		char b[BDEVNAME_SIZE];
2157 
2158 		printk(KERN_ERR
2159 		       "generic_make_request: Trying to write "
2160 			"to read-only block-device %s (partno %d)\n",
2161 			bio_devname(bio, b), part->partno);
2162 		return true;
2163 	}
2164 
2165 	return false;
2166 }
2167 
2168 static noinline int should_fail_bio(struct bio *bio)
2169 {
2170 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2171 		return -EIO;
2172 	return 0;
2173 }
2174 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2175 
2176 /*
2177  * Check whether this bio extends beyond the end of the device or partition.
2178  * This may well happen - the kernel calls bread() without checking the size of
2179  * the device, e.g., when mounting a file system.
2180  */
2181 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2182 {
2183 	unsigned int nr_sectors = bio_sectors(bio);
2184 
2185 	if (nr_sectors && maxsector &&
2186 	    (nr_sectors > maxsector ||
2187 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2188 		handle_bad_sector(bio, maxsector);
2189 		return -EIO;
2190 	}
2191 	return 0;
2192 }
2193 
2194 /*
2195  * Remap block n of partition p to block n+start(p) of the disk.
2196  */
2197 static inline int blk_partition_remap(struct bio *bio)
2198 {
2199 	struct hd_struct *p;
2200 	int ret = -EIO;
2201 
2202 	rcu_read_lock();
2203 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2204 	if (unlikely(!p))
2205 		goto out;
2206 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2207 		goto out;
2208 	if (unlikely(bio_check_ro(bio, p)))
2209 		goto out;
2210 
2211 	/*
2212 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
2213 	 * Include a test for the reset op code and perform the remap if needed.
2214 	 */
2215 	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2216 		if (bio_check_eod(bio, part_nr_sects_read(p)))
2217 			goto out;
2218 		bio->bi_iter.bi_sector += p->start_sect;
2219 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2220 				      bio->bi_iter.bi_sector - p->start_sect);
2221 	}
2222 	bio->bi_partno = 0;
2223 	ret = 0;
2224 out:
2225 	rcu_read_unlock();
2226 	return ret;
2227 }
2228 
2229 static noinline_for_stack bool
2230 generic_make_request_checks(struct bio *bio)
2231 {
2232 	struct request_queue *q;
2233 	int nr_sectors = bio_sectors(bio);
2234 	blk_status_t status = BLK_STS_IOERR;
2235 	char b[BDEVNAME_SIZE];
2236 
2237 	might_sleep();
2238 
2239 	q = bio->bi_disk->queue;
2240 	if (unlikely(!q)) {
2241 		printk(KERN_ERR
2242 		       "generic_make_request: Trying to access "
2243 			"nonexistent block-device %s (%Lu)\n",
2244 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2245 		goto end_io;
2246 	}
2247 
2248 	/*
2249 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2250 	 * if queue is not a request based queue.
2251 	 */
2252 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2253 		goto not_supported;
2254 
2255 	if (should_fail_bio(bio))
2256 		goto end_io;
2257 
2258 	if (bio->bi_partno) {
2259 		if (unlikely(blk_partition_remap(bio)))
2260 			goto end_io;
2261 	} else {
2262 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2263 			goto end_io;
2264 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2265 			goto end_io;
2266 	}
2267 
2268 	/*
2269 	 * Filter flush bio's early so that make_request based
2270 	 * drivers without flush support don't have to worry
2271 	 * about them.
2272 	 */
2273 	if (op_is_flush(bio->bi_opf) &&
2274 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2275 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2276 		if (!nr_sectors) {
2277 			status = BLK_STS_OK;
2278 			goto end_io;
2279 		}
2280 	}
2281 
2282 	switch (bio_op(bio)) {
2283 	case REQ_OP_DISCARD:
2284 		if (!blk_queue_discard(q))
2285 			goto not_supported;
2286 		break;
2287 	case REQ_OP_SECURE_ERASE:
2288 		if (!blk_queue_secure_erase(q))
2289 			goto not_supported;
2290 		break;
2291 	case REQ_OP_WRITE_SAME:
2292 		if (!q->limits.max_write_same_sectors)
2293 			goto not_supported;
2294 		break;
2295 	case REQ_OP_ZONE_REPORT:
2296 	case REQ_OP_ZONE_RESET:
2297 		if (!blk_queue_is_zoned(q))
2298 			goto not_supported;
2299 		break;
2300 	case REQ_OP_WRITE_ZEROES:
2301 		if (!q->limits.max_write_zeroes_sectors)
2302 			goto not_supported;
2303 		break;
2304 	default:
2305 		break;
2306 	}
2307 
2308 	/*
2309 	 * Various block parts want %current->io_context and lazy ioc
2310 	 * allocation ends up trading a lot of pain for a small amount of
2311 	 * memory.  Just allocate it upfront.  This may fail and block
2312 	 * layer knows how to live with it.
2313 	 */
2314 	create_io_context(GFP_ATOMIC, q->node);
2315 
2316 	if (!blkcg_bio_issue_check(q, bio))
2317 		return false;
2318 
2319 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2320 		trace_block_bio_queue(q, bio);
2321 		/* Now that enqueuing has been traced, we need to trace
2322 		 * completion as well.
2323 		 */
2324 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2325 	}
2326 	return true;
2327 
2328 not_supported:
2329 	status = BLK_STS_NOTSUPP;
2330 end_io:
2331 	bio->bi_status = status;
2332 	bio_endio(bio);
2333 	return false;
2334 }
2335 
2336 /**
2337  * generic_make_request - hand a buffer to its device driver for I/O
2338  * @bio:  The bio describing the location in memory and on the device.
2339  *
2340  * generic_make_request() is used to make I/O requests of block
2341  * devices. It is passed a &struct bio, which describes the I/O that needs
2342  * to be done.
2343  *
2344  * generic_make_request() does not return any status.  The
2345  * success/failure status of the request, along with notification of
2346  * completion, is delivered asynchronously through the bio->bi_end_io
2347  * function described (one day) else where.
2348  *
2349  * The caller of generic_make_request must make sure that bi_io_vec
2350  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2351  * set to describe the device address, and the
2352  * bi_end_io and optionally bi_private are set to describe how
2353  * completion notification should be signaled.
2354  *
2355  * generic_make_request and the drivers it calls may use bi_next if this
2356  * bio happens to be merged with someone else, and may resubmit the bio to
2357  * a lower device by calling into generic_make_request recursively, which
2358  * means the bio should NOT be touched after the call to ->make_request_fn.
2359  */
2360 blk_qc_t generic_make_request(struct bio *bio)
2361 {
2362 	/*
2363 	 * bio_list_on_stack[0] contains bios submitted by the current
2364 	 * make_request_fn.
2365 	 * bio_list_on_stack[1] contains bios that were submitted before
2366 	 * the current make_request_fn, but that haven't been processed
2367 	 * yet.
2368 	 */
2369 	struct bio_list bio_list_on_stack[2];
2370 	blk_mq_req_flags_t flags = 0;
2371 	struct request_queue *q = bio->bi_disk->queue;
2372 	blk_qc_t ret = BLK_QC_T_NONE;
2373 
2374 	if (bio->bi_opf & REQ_NOWAIT)
2375 		flags = BLK_MQ_REQ_NOWAIT;
2376 	if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2377 		blk_queue_enter_live(q);
2378 	else if (blk_queue_enter(q, flags) < 0) {
2379 		if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2380 			bio_wouldblock_error(bio);
2381 		else
2382 			bio_io_error(bio);
2383 		return ret;
2384 	}
2385 
2386 	if (!generic_make_request_checks(bio))
2387 		goto out;
2388 
2389 	/*
2390 	 * We only want one ->make_request_fn to be active at a time, else
2391 	 * stack usage with stacked devices could be a problem.  So use
2392 	 * current->bio_list to keep a list of requests submited by a
2393 	 * make_request_fn function.  current->bio_list is also used as a
2394 	 * flag to say if generic_make_request is currently active in this
2395 	 * task or not.  If it is NULL, then no make_request is active.  If
2396 	 * it is non-NULL, then a make_request is active, and new requests
2397 	 * should be added at the tail
2398 	 */
2399 	if (current->bio_list) {
2400 		bio_list_add(&current->bio_list[0], bio);
2401 		goto out;
2402 	}
2403 
2404 	/* following loop may be a bit non-obvious, and so deserves some
2405 	 * explanation.
2406 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2407 	 * ensure that) so we have a list with a single bio.
2408 	 * We pretend that we have just taken it off a longer list, so
2409 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2410 	 * thus initialising the bio_list of new bios to be
2411 	 * added.  ->make_request() may indeed add some more bios
2412 	 * through a recursive call to generic_make_request.  If it
2413 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2414 	 * from the top.  In this case we really did just take the bio
2415 	 * of the top of the list (no pretending) and so remove it from
2416 	 * bio_list, and call into ->make_request() again.
2417 	 */
2418 	BUG_ON(bio->bi_next);
2419 	bio_list_init(&bio_list_on_stack[0]);
2420 	current->bio_list = bio_list_on_stack;
2421 	do {
2422 		bool enter_succeeded = true;
2423 
2424 		if (unlikely(q != bio->bi_disk->queue)) {
2425 			if (q)
2426 				blk_queue_exit(q);
2427 			q = bio->bi_disk->queue;
2428 			flags = 0;
2429 			if (bio->bi_opf & REQ_NOWAIT)
2430 				flags = BLK_MQ_REQ_NOWAIT;
2431 			if (blk_queue_enter(q, flags) < 0) {
2432 				enter_succeeded = false;
2433 				q = NULL;
2434 			}
2435 		}
2436 
2437 		if (enter_succeeded) {
2438 			struct bio_list lower, same;
2439 
2440 			/* Create a fresh bio_list for all subordinate requests */
2441 			bio_list_on_stack[1] = bio_list_on_stack[0];
2442 			bio_list_init(&bio_list_on_stack[0]);
2443 			ret = q->make_request_fn(q, bio);
2444 
2445 			/* sort new bios into those for a lower level
2446 			 * and those for the same level
2447 			 */
2448 			bio_list_init(&lower);
2449 			bio_list_init(&same);
2450 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2451 				if (q == bio->bi_disk->queue)
2452 					bio_list_add(&same, bio);
2453 				else
2454 					bio_list_add(&lower, bio);
2455 			/* now assemble so we handle the lowest level first */
2456 			bio_list_merge(&bio_list_on_stack[0], &lower);
2457 			bio_list_merge(&bio_list_on_stack[0], &same);
2458 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2459 		} else {
2460 			if (unlikely(!blk_queue_dying(q) &&
2461 					(bio->bi_opf & REQ_NOWAIT)))
2462 				bio_wouldblock_error(bio);
2463 			else
2464 				bio_io_error(bio);
2465 		}
2466 		bio = bio_list_pop(&bio_list_on_stack[0]);
2467 	} while (bio);
2468 	current->bio_list = NULL; /* deactivate */
2469 
2470 out:
2471 	if (q)
2472 		blk_queue_exit(q);
2473 	return ret;
2474 }
2475 EXPORT_SYMBOL(generic_make_request);
2476 
2477 /**
2478  * direct_make_request - hand a buffer directly to its device driver for I/O
2479  * @bio:  The bio describing the location in memory and on the device.
2480  *
2481  * This function behaves like generic_make_request(), but does not protect
2482  * against recursion.  Must only be used if the called driver is known
2483  * to not call generic_make_request (or direct_make_request) again from
2484  * its make_request function.  (Calling direct_make_request again from
2485  * a workqueue is perfectly fine as that doesn't recurse).
2486  */
2487 blk_qc_t direct_make_request(struct bio *bio)
2488 {
2489 	struct request_queue *q = bio->bi_disk->queue;
2490 	bool nowait = bio->bi_opf & REQ_NOWAIT;
2491 	blk_qc_t ret;
2492 
2493 	if (!generic_make_request_checks(bio))
2494 		return BLK_QC_T_NONE;
2495 
2496 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2497 		if (nowait && !blk_queue_dying(q))
2498 			bio->bi_status = BLK_STS_AGAIN;
2499 		else
2500 			bio->bi_status = BLK_STS_IOERR;
2501 		bio_endio(bio);
2502 		return BLK_QC_T_NONE;
2503 	}
2504 
2505 	ret = q->make_request_fn(q, bio);
2506 	blk_queue_exit(q);
2507 	return ret;
2508 }
2509 EXPORT_SYMBOL_GPL(direct_make_request);
2510 
2511 /**
2512  * submit_bio - submit a bio to the block device layer for I/O
2513  * @bio: The &struct bio which describes the I/O
2514  *
2515  * submit_bio() is very similar in purpose to generic_make_request(), and
2516  * uses that function to do most of the work. Both are fairly rough
2517  * interfaces; @bio must be presetup and ready for I/O.
2518  *
2519  */
2520 blk_qc_t submit_bio(struct bio *bio)
2521 {
2522 	/*
2523 	 * If it's a regular read/write or a barrier with data attached,
2524 	 * go through the normal accounting stuff before submission.
2525 	 */
2526 	if (bio_has_data(bio)) {
2527 		unsigned int count;
2528 
2529 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2530 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2531 		else
2532 			count = bio_sectors(bio);
2533 
2534 		if (op_is_write(bio_op(bio))) {
2535 			count_vm_events(PGPGOUT, count);
2536 		} else {
2537 			task_io_account_read(bio->bi_iter.bi_size);
2538 			count_vm_events(PGPGIN, count);
2539 		}
2540 
2541 		if (unlikely(block_dump)) {
2542 			char b[BDEVNAME_SIZE];
2543 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2544 			current->comm, task_pid_nr(current),
2545 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2546 				(unsigned long long)bio->bi_iter.bi_sector,
2547 				bio_devname(bio, b), count);
2548 		}
2549 	}
2550 
2551 	return generic_make_request(bio);
2552 }
2553 EXPORT_SYMBOL(submit_bio);
2554 
2555 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2556 {
2557 	if (!q->poll_fn || !blk_qc_t_valid(cookie))
2558 		return false;
2559 
2560 	if (current->plug)
2561 		blk_flush_plug_list(current->plug, false);
2562 	return q->poll_fn(q, cookie);
2563 }
2564 EXPORT_SYMBOL_GPL(blk_poll);
2565 
2566 /**
2567  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2568  *                              for new the queue limits
2569  * @q:  the queue
2570  * @rq: the request being checked
2571  *
2572  * Description:
2573  *    @rq may have been made based on weaker limitations of upper-level queues
2574  *    in request stacking drivers, and it may violate the limitation of @q.
2575  *    Since the block layer and the underlying device driver trust @rq
2576  *    after it is inserted to @q, it should be checked against @q before
2577  *    the insertion using this generic function.
2578  *
2579  *    Request stacking drivers like request-based dm may change the queue
2580  *    limits when retrying requests on other queues. Those requests need
2581  *    to be checked against the new queue limits again during dispatch.
2582  */
2583 static int blk_cloned_rq_check_limits(struct request_queue *q,
2584 				      struct request *rq)
2585 {
2586 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2587 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2588 		return -EIO;
2589 	}
2590 
2591 	/*
2592 	 * queue's settings related to segment counting like q->bounce_pfn
2593 	 * may differ from that of other stacking queues.
2594 	 * Recalculate it to check the request correctly on this queue's
2595 	 * limitation.
2596 	 */
2597 	blk_recalc_rq_segments(rq);
2598 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2599 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2600 		return -EIO;
2601 	}
2602 
2603 	return 0;
2604 }
2605 
2606 /**
2607  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2608  * @q:  the queue to submit the request
2609  * @rq: the request being queued
2610  */
2611 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2612 {
2613 	unsigned long flags;
2614 	int where = ELEVATOR_INSERT_BACK;
2615 
2616 	if (blk_cloned_rq_check_limits(q, rq))
2617 		return BLK_STS_IOERR;
2618 
2619 	if (rq->rq_disk &&
2620 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2621 		return BLK_STS_IOERR;
2622 
2623 	if (q->mq_ops) {
2624 		if (blk_queue_io_stat(q))
2625 			blk_account_io_start(rq, true);
2626 		/*
2627 		 * Since we have a scheduler attached on the top device,
2628 		 * bypass a potential scheduler on the bottom device for
2629 		 * insert.
2630 		 */
2631 		return blk_mq_request_issue_directly(rq);
2632 	}
2633 
2634 	spin_lock_irqsave(q->queue_lock, flags);
2635 	if (unlikely(blk_queue_dying(q))) {
2636 		spin_unlock_irqrestore(q->queue_lock, flags);
2637 		return BLK_STS_IOERR;
2638 	}
2639 
2640 	/*
2641 	 * Submitting request must be dequeued before calling this function
2642 	 * because it will be linked to another request_queue
2643 	 */
2644 	BUG_ON(blk_queued_rq(rq));
2645 
2646 	if (op_is_flush(rq->cmd_flags))
2647 		where = ELEVATOR_INSERT_FLUSH;
2648 
2649 	add_acct_request(q, rq, where);
2650 	if (where == ELEVATOR_INSERT_FLUSH)
2651 		__blk_run_queue(q);
2652 	spin_unlock_irqrestore(q->queue_lock, flags);
2653 
2654 	return BLK_STS_OK;
2655 }
2656 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2657 
2658 /**
2659  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2660  * @rq: request to examine
2661  *
2662  * Description:
2663  *     A request could be merge of IOs which require different failure
2664  *     handling.  This function determines the number of bytes which
2665  *     can be failed from the beginning of the request without
2666  *     crossing into area which need to be retried further.
2667  *
2668  * Return:
2669  *     The number of bytes to fail.
2670  */
2671 unsigned int blk_rq_err_bytes(const struct request *rq)
2672 {
2673 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2674 	unsigned int bytes = 0;
2675 	struct bio *bio;
2676 
2677 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2678 		return blk_rq_bytes(rq);
2679 
2680 	/*
2681 	 * Currently the only 'mixing' which can happen is between
2682 	 * different fastfail types.  We can safely fail portions
2683 	 * which have all the failfast bits that the first one has -
2684 	 * the ones which are at least as eager to fail as the first
2685 	 * one.
2686 	 */
2687 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2688 		if ((bio->bi_opf & ff) != ff)
2689 			break;
2690 		bytes += bio->bi_iter.bi_size;
2691 	}
2692 
2693 	/* this could lead to infinite loop */
2694 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2695 	return bytes;
2696 }
2697 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2698 
2699 void blk_account_io_completion(struct request *req, unsigned int bytes)
2700 {
2701 	if (blk_do_io_stat(req)) {
2702 		const int rw = rq_data_dir(req);
2703 		struct hd_struct *part;
2704 		int cpu;
2705 
2706 		cpu = part_stat_lock();
2707 		part = req->part;
2708 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2709 		part_stat_unlock();
2710 	}
2711 }
2712 
2713 void blk_account_io_done(struct request *req, u64 now)
2714 {
2715 	/*
2716 	 * Account IO completion.  flush_rq isn't accounted as a
2717 	 * normal IO on queueing nor completion.  Accounting the
2718 	 * containing request is enough.
2719 	 */
2720 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2721 		unsigned long duration;
2722 		const int rw = rq_data_dir(req);
2723 		struct hd_struct *part;
2724 		int cpu;
2725 
2726 		duration = nsecs_to_jiffies(now - req->start_time_ns);
2727 		cpu = part_stat_lock();
2728 		part = req->part;
2729 
2730 		part_stat_inc(cpu, part, ios[rw]);
2731 		part_stat_add(cpu, part, ticks[rw], duration);
2732 		part_round_stats(req->q, cpu, part);
2733 		part_dec_in_flight(req->q, part, rw);
2734 
2735 		hd_struct_put(part);
2736 		part_stat_unlock();
2737 	}
2738 }
2739 
2740 #ifdef CONFIG_PM
2741 /*
2742  * Don't process normal requests when queue is suspended
2743  * or in the process of suspending/resuming
2744  */
2745 static bool blk_pm_allow_request(struct request *rq)
2746 {
2747 	switch (rq->q->rpm_status) {
2748 	case RPM_RESUMING:
2749 	case RPM_SUSPENDING:
2750 		return rq->rq_flags & RQF_PM;
2751 	case RPM_SUSPENDED:
2752 		return false;
2753 	}
2754 
2755 	return true;
2756 }
2757 #else
2758 static bool blk_pm_allow_request(struct request *rq)
2759 {
2760 	return true;
2761 }
2762 #endif
2763 
2764 void blk_account_io_start(struct request *rq, bool new_io)
2765 {
2766 	struct hd_struct *part;
2767 	int rw = rq_data_dir(rq);
2768 	int cpu;
2769 
2770 	if (!blk_do_io_stat(rq))
2771 		return;
2772 
2773 	cpu = part_stat_lock();
2774 
2775 	if (!new_io) {
2776 		part = rq->part;
2777 		part_stat_inc(cpu, part, merges[rw]);
2778 	} else {
2779 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2780 		if (!hd_struct_try_get(part)) {
2781 			/*
2782 			 * The partition is already being removed,
2783 			 * the request will be accounted on the disk only
2784 			 *
2785 			 * We take a reference on disk->part0 although that
2786 			 * partition will never be deleted, so we can treat
2787 			 * it as any other partition.
2788 			 */
2789 			part = &rq->rq_disk->part0;
2790 			hd_struct_get(part);
2791 		}
2792 		part_round_stats(rq->q, cpu, part);
2793 		part_inc_in_flight(rq->q, part, rw);
2794 		rq->part = part;
2795 	}
2796 
2797 	part_stat_unlock();
2798 }
2799 
2800 static struct request *elv_next_request(struct request_queue *q)
2801 {
2802 	struct request *rq;
2803 	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2804 
2805 	WARN_ON_ONCE(q->mq_ops);
2806 
2807 	while (1) {
2808 		list_for_each_entry(rq, &q->queue_head, queuelist) {
2809 			if (blk_pm_allow_request(rq))
2810 				return rq;
2811 
2812 			if (rq->rq_flags & RQF_SOFTBARRIER)
2813 				break;
2814 		}
2815 
2816 		/*
2817 		 * Flush request is running and flush request isn't queueable
2818 		 * in the drive, we can hold the queue till flush request is
2819 		 * finished. Even we don't do this, driver can't dispatch next
2820 		 * requests and will requeue them. And this can improve
2821 		 * throughput too. For example, we have request flush1, write1,
2822 		 * flush 2. flush1 is dispatched, then queue is hold, write1
2823 		 * isn't inserted to queue. After flush1 is finished, flush2
2824 		 * will be dispatched. Since disk cache is already clean,
2825 		 * flush2 will be finished very soon, so looks like flush2 is
2826 		 * folded to flush1.
2827 		 * Since the queue is hold, a flag is set to indicate the queue
2828 		 * should be restarted later. Please see flush_end_io() for
2829 		 * details.
2830 		 */
2831 		if (fq->flush_pending_idx != fq->flush_running_idx &&
2832 				!queue_flush_queueable(q)) {
2833 			fq->flush_queue_delayed = 1;
2834 			return NULL;
2835 		}
2836 		if (unlikely(blk_queue_bypass(q)) ||
2837 		    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2838 			return NULL;
2839 	}
2840 }
2841 
2842 /**
2843  * blk_peek_request - peek at the top of a request queue
2844  * @q: request queue to peek at
2845  *
2846  * Description:
2847  *     Return the request at the top of @q.  The returned request
2848  *     should be started using blk_start_request() before LLD starts
2849  *     processing it.
2850  *
2851  * Return:
2852  *     Pointer to the request at the top of @q if available.  Null
2853  *     otherwise.
2854  */
2855 struct request *blk_peek_request(struct request_queue *q)
2856 {
2857 	struct request *rq;
2858 	int ret;
2859 
2860 	lockdep_assert_held(q->queue_lock);
2861 	WARN_ON_ONCE(q->mq_ops);
2862 
2863 	while ((rq = elv_next_request(q)) != NULL) {
2864 		if (!(rq->rq_flags & RQF_STARTED)) {
2865 			/*
2866 			 * This is the first time the device driver
2867 			 * sees this request (possibly after
2868 			 * requeueing).  Notify IO scheduler.
2869 			 */
2870 			if (rq->rq_flags & RQF_SORTED)
2871 				elv_activate_rq(q, rq);
2872 
2873 			/*
2874 			 * just mark as started even if we don't start
2875 			 * it, a request that has been delayed should
2876 			 * not be passed by new incoming requests
2877 			 */
2878 			rq->rq_flags |= RQF_STARTED;
2879 			trace_block_rq_issue(q, rq);
2880 		}
2881 
2882 		if (!q->boundary_rq || q->boundary_rq == rq) {
2883 			q->end_sector = rq_end_sector(rq);
2884 			q->boundary_rq = NULL;
2885 		}
2886 
2887 		if (rq->rq_flags & RQF_DONTPREP)
2888 			break;
2889 
2890 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2891 			/*
2892 			 * make sure space for the drain appears we
2893 			 * know we can do this because max_hw_segments
2894 			 * has been adjusted to be one fewer than the
2895 			 * device can handle
2896 			 */
2897 			rq->nr_phys_segments++;
2898 		}
2899 
2900 		if (!q->prep_rq_fn)
2901 			break;
2902 
2903 		ret = q->prep_rq_fn(q, rq);
2904 		if (ret == BLKPREP_OK) {
2905 			break;
2906 		} else if (ret == BLKPREP_DEFER) {
2907 			/*
2908 			 * the request may have been (partially) prepped.
2909 			 * we need to keep this request in the front to
2910 			 * avoid resource deadlock.  RQF_STARTED will
2911 			 * prevent other fs requests from passing this one.
2912 			 */
2913 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2914 			    !(rq->rq_flags & RQF_DONTPREP)) {
2915 				/*
2916 				 * remove the space for the drain we added
2917 				 * so that we don't add it again
2918 				 */
2919 				--rq->nr_phys_segments;
2920 			}
2921 
2922 			rq = NULL;
2923 			break;
2924 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2925 			rq->rq_flags |= RQF_QUIET;
2926 			/*
2927 			 * Mark this request as started so we don't trigger
2928 			 * any debug logic in the end I/O path.
2929 			 */
2930 			blk_start_request(rq);
2931 			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2932 					BLK_STS_TARGET : BLK_STS_IOERR);
2933 		} else {
2934 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2935 			break;
2936 		}
2937 	}
2938 
2939 	return rq;
2940 }
2941 EXPORT_SYMBOL(blk_peek_request);
2942 
2943 static void blk_dequeue_request(struct request *rq)
2944 {
2945 	struct request_queue *q = rq->q;
2946 
2947 	BUG_ON(list_empty(&rq->queuelist));
2948 	BUG_ON(ELV_ON_HASH(rq));
2949 
2950 	list_del_init(&rq->queuelist);
2951 
2952 	/*
2953 	 * the time frame between a request being removed from the lists
2954 	 * and to it is freed is accounted as io that is in progress at
2955 	 * the driver side.
2956 	 */
2957 	if (blk_account_rq(rq))
2958 		q->in_flight[rq_is_sync(rq)]++;
2959 }
2960 
2961 /**
2962  * blk_start_request - start request processing on the driver
2963  * @req: request to dequeue
2964  *
2965  * Description:
2966  *     Dequeue @req and start timeout timer on it.  This hands off the
2967  *     request to the driver.
2968  */
2969 void blk_start_request(struct request *req)
2970 {
2971 	lockdep_assert_held(req->q->queue_lock);
2972 	WARN_ON_ONCE(req->q->mq_ops);
2973 
2974 	blk_dequeue_request(req);
2975 
2976 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2977 		req->io_start_time_ns = ktime_get_ns();
2978 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2979 		req->throtl_size = blk_rq_sectors(req);
2980 #endif
2981 		req->rq_flags |= RQF_STATS;
2982 		wbt_issue(req->q->rq_wb, req);
2983 	}
2984 
2985 	BUG_ON(blk_rq_is_complete(req));
2986 	blk_add_timer(req);
2987 }
2988 EXPORT_SYMBOL(blk_start_request);
2989 
2990 /**
2991  * blk_fetch_request - fetch a request from a request queue
2992  * @q: request queue to fetch a request from
2993  *
2994  * Description:
2995  *     Return the request at the top of @q.  The request is started on
2996  *     return and LLD can start processing it immediately.
2997  *
2998  * Return:
2999  *     Pointer to the request at the top of @q if available.  Null
3000  *     otherwise.
3001  */
3002 struct request *blk_fetch_request(struct request_queue *q)
3003 {
3004 	struct request *rq;
3005 
3006 	lockdep_assert_held(q->queue_lock);
3007 	WARN_ON_ONCE(q->mq_ops);
3008 
3009 	rq = blk_peek_request(q);
3010 	if (rq)
3011 		blk_start_request(rq);
3012 	return rq;
3013 }
3014 EXPORT_SYMBOL(blk_fetch_request);
3015 
3016 /*
3017  * Steal bios from a request and add them to a bio list.
3018  * The request must not have been partially completed before.
3019  */
3020 void blk_steal_bios(struct bio_list *list, struct request *rq)
3021 {
3022 	if (rq->bio) {
3023 		if (list->tail)
3024 			list->tail->bi_next = rq->bio;
3025 		else
3026 			list->head = rq->bio;
3027 		list->tail = rq->biotail;
3028 
3029 		rq->bio = NULL;
3030 		rq->biotail = NULL;
3031 	}
3032 
3033 	rq->__data_len = 0;
3034 }
3035 EXPORT_SYMBOL_GPL(blk_steal_bios);
3036 
3037 /**
3038  * blk_update_request - Special helper function for request stacking drivers
3039  * @req:      the request being processed
3040  * @error:    block status code
3041  * @nr_bytes: number of bytes to complete @req
3042  *
3043  * Description:
3044  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
3045  *     the request structure even if @req doesn't have leftover.
3046  *     If @req has leftover, sets it up for the next range of segments.
3047  *
3048  *     This special helper function is only for request stacking drivers
3049  *     (e.g. request-based dm) so that they can handle partial completion.
3050  *     Actual device drivers should use blk_end_request instead.
3051  *
3052  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3053  *     %false return from this function.
3054  *
3055  * Return:
3056  *     %false - this request doesn't have any more data
3057  *     %true  - this request has more data
3058  **/
3059 bool blk_update_request(struct request *req, blk_status_t error,
3060 		unsigned int nr_bytes)
3061 {
3062 	int total_bytes;
3063 
3064 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3065 
3066 	if (!req->bio)
3067 		return false;
3068 
3069 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
3070 		     !(req->rq_flags & RQF_QUIET)))
3071 		print_req_error(req, error);
3072 
3073 	blk_account_io_completion(req, nr_bytes);
3074 
3075 	total_bytes = 0;
3076 	while (req->bio) {
3077 		struct bio *bio = req->bio;
3078 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3079 
3080 		if (bio_bytes == bio->bi_iter.bi_size)
3081 			req->bio = bio->bi_next;
3082 
3083 		/* Completion has already been traced */
3084 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3085 		req_bio_endio(req, bio, bio_bytes, error);
3086 
3087 		total_bytes += bio_bytes;
3088 		nr_bytes -= bio_bytes;
3089 
3090 		if (!nr_bytes)
3091 			break;
3092 	}
3093 
3094 	/*
3095 	 * completely done
3096 	 */
3097 	if (!req->bio) {
3098 		/*
3099 		 * Reset counters so that the request stacking driver
3100 		 * can find how many bytes remain in the request
3101 		 * later.
3102 		 */
3103 		req->__data_len = 0;
3104 		return false;
3105 	}
3106 
3107 	req->__data_len -= total_bytes;
3108 
3109 	/* update sector only for requests with clear definition of sector */
3110 	if (!blk_rq_is_passthrough(req))
3111 		req->__sector += total_bytes >> 9;
3112 
3113 	/* mixed attributes always follow the first bio */
3114 	if (req->rq_flags & RQF_MIXED_MERGE) {
3115 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
3116 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3117 	}
3118 
3119 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3120 		/*
3121 		 * If total number of sectors is less than the first segment
3122 		 * size, something has gone terribly wrong.
3123 		 */
3124 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3125 			blk_dump_rq_flags(req, "request botched");
3126 			req->__data_len = blk_rq_cur_bytes(req);
3127 		}
3128 
3129 		/* recalculate the number of segments */
3130 		blk_recalc_rq_segments(req);
3131 	}
3132 
3133 	return true;
3134 }
3135 EXPORT_SYMBOL_GPL(blk_update_request);
3136 
3137 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3138 				    unsigned int nr_bytes,
3139 				    unsigned int bidi_bytes)
3140 {
3141 	if (blk_update_request(rq, error, nr_bytes))
3142 		return true;
3143 
3144 	/* Bidi request must be completed as a whole */
3145 	if (unlikely(blk_bidi_rq(rq)) &&
3146 	    blk_update_request(rq->next_rq, error, bidi_bytes))
3147 		return true;
3148 
3149 	if (blk_queue_add_random(rq->q))
3150 		add_disk_randomness(rq->rq_disk);
3151 
3152 	return false;
3153 }
3154 
3155 /**
3156  * blk_unprep_request - unprepare a request
3157  * @req:	the request
3158  *
3159  * This function makes a request ready for complete resubmission (or
3160  * completion).  It happens only after all error handling is complete,
3161  * so represents the appropriate moment to deallocate any resources
3162  * that were allocated to the request in the prep_rq_fn.  The queue
3163  * lock is held when calling this.
3164  */
3165 void blk_unprep_request(struct request *req)
3166 {
3167 	struct request_queue *q = req->q;
3168 
3169 	req->rq_flags &= ~RQF_DONTPREP;
3170 	if (q->unprep_rq_fn)
3171 		q->unprep_rq_fn(q, req);
3172 }
3173 EXPORT_SYMBOL_GPL(blk_unprep_request);
3174 
3175 void blk_finish_request(struct request *req, blk_status_t error)
3176 {
3177 	struct request_queue *q = req->q;
3178 	u64 now = ktime_get_ns();
3179 
3180 	lockdep_assert_held(req->q->queue_lock);
3181 	WARN_ON_ONCE(q->mq_ops);
3182 
3183 	if (req->rq_flags & RQF_STATS)
3184 		blk_stat_add(req, now);
3185 
3186 	if (req->rq_flags & RQF_QUEUED)
3187 		blk_queue_end_tag(q, req);
3188 
3189 	BUG_ON(blk_queued_rq(req));
3190 
3191 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3192 		laptop_io_completion(req->q->backing_dev_info);
3193 
3194 	blk_delete_timer(req);
3195 
3196 	if (req->rq_flags & RQF_DONTPREP)
3197 		blk_unprep_request(req);
3198 
3199 	blk_account_io_done(req, now);
3200 
3201 	if (req->end_io) {
3202 		wbt_done(req->q->rq_wb, req);
3203 		req->end_io(req, error);
3204 	} else {
3205 		if (blk_bidi_rq(req))
3206 			__blk_put_request(req->next_rq->q, req->next_rq);
3207 
3208 		__blk_put_request(q, req);
3209 	}
3210 }
3211 EXPORT_SYMBOL(blk_finish_request);
3212 
3213 /**
3214  * blk_end_bidi_request - Complete a bidi request
3215  * @rq:         the request to complete
3216  * @error:      block status code
3217  * @nr_bytes:   number of bytes to complete @rq
3218  * @bidi_bytes: number of bytes to complete @rq->next_rq
3219  *
3220  * Description:
3221  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3222  *     Drivers that supports bidi can safely call this member for any
3223  *     type of request, bidi or uni.  In the later case @bidi_bytes is
3224  *     just ignored.
3225  *
3226  * Return:
3227  *     %false - we are done with this request
3228  *     %true  - still buffers pending for this request
3229  **/
3230 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3231 				 unsigned int nr_bytes, unsigned int bidi_bytes)
3232 {
3233 	struct request_queue *q = rq->q;
3234 	unsigned long flags;
3235 
3236 	WARN_ON_ONCE(q->mq_ops);
3237 
3238 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3239 		return true;
3240 
3241 	spin_lock_irqsave(q->queue_lock, flags);
3242 	blk_finish_request(rq, error);
3243 	spin_unlock_irqrestore(q->queue_lock, flags);
3244 
3245 	return false;
3246 }
3247 
3248 /**
3249  * __blk_end_bidi_request - Complete a bidi request with queue lock held
3250  * @rq:         the request to complete
3251  * @error:      block status code
3252  * @nr_bytes:   number of bytes to complete @rq
3253  * @bidi_bytes: number of bytes to complete @rq->next_rq
3254  *
3255  * Description:
3256  *     Identical to blk_end_bidi_request() except that queue lock is
3257  *     assumed to be locked on entry and remains so on return.
3258  *
3259  * Return:
3260  *     %false - we are done with this request
3261  *     %true  - still buffers pending for this request
3262  **/
3263 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3264 				   unsigned int nr_bytes, unsigned int bidi_bytes)
3265 {
3266 	lockdep_assert_held(rq->q->queue_lock);
3267 	WARN_ON_ONCE(rq->q->mq_ops);
3268 
3269 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3270 		return true;
3271 
3272 	blk_finish_request(rq, error);
3273 
3274 	return false;
3275 }
3276 
3277 /**
3278  * blk_end_request - Helper function for drivers to complete the request.
3279  * @rq:       the request being processed
3280  * @error:    block status code
3281  * @nr_bytes: number of bytes to complete
3282  *
3283  * Description:
3284  *     Ends I/O on a number of bytes attached to @rq.
3285  *     If @rq has leftover, sets it up for the next range of segments.
3286  *
3287  * Return:
3288  *     %false - we are done with this request
3289  *     %true  - still buffers pending for this request
3290  **/
3291 bool blk_end_request(struct request *rq, blk_status_t error,
3292 		unsigned int nr_bytes)
3293 {
3294 	WARN_ON_ONCE(rq->q->mq_ops);
3295 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
3296 }
3297 EXPORT_SYMBOL(blk_end_request);
3298 
3299 /**
3300  * blk_end_request_all - Helper function for drives to finish the request.
3301  * @rq: the request to finish
3302  * @error: block status code
3303  *
3304  * Description:
3305  *     Completely finish @rq.
3306  */
3307 void blk_end_request_all(struct request *rq, blk_status_t error)
3308 {
3309 	bool pending;
3310 	unsigned int bidi_bytes = 0;
3311 
3312 	if (unlikely(blk_bidi_rq(rq)))
3313 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3314 
3315 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3316 	BUG_ON(pending);
3317 }
3318 EXPORT_SYMBOL(blk_end_request_all);
3319 
3320 /**
3321  * __blk_end_request - Helper function for drivers to complete the request.
3322  * @rq:       the request being processed
3323  * @error:    block status code
3324  * @nr_bytes: number of bytes to complete
3325  *
3326  * Description:
3327  *     Must be called with queue lock held unlike blk_end_request().
3328  *
3329  * Return:
3330  *     %false - we are done with this request
3331  *     %true  - still buffers pending for this request
3332  **/
3333 bool __blk_end_request(struct request *rq, blk_status_t error,
3334 		unsigned int nr_bytes)
3335 {
3336 	lockdep_assert_held(rq->q->queue_lock);
3337 	WARN_ON_ONCE(rq->q->mq_ops);
3338 
3339 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3340 }
3341 EXPORT_SYMBOL(__blk_end_request);
3342 
3343 /**
3344  * __blk_end_request_all - Helper function for drives to finish the request.
3345  * @rq: the request to finish
3346  * @error:    block status code
3347  *
3348  * Description:
3349  *     Completely finish @rq.  Must be called with queue lock held.
3350  */
3351 void __blk_end_request_all(struct request *rq, blk_status_t error)
3352 {
3353 	bool pending;
3354 	unsigned int bidi_bytes = 0;
3355 
3356 	lockdep_assert_held(rq->q->queue_lock);
3357 	WARN_ON_ONCE(rq->q->mq_ops);
3358 
3359 	if (unlikely(blk_bidi_rq(rq)))
3360 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3361 
3362 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3363 	BUG_ON(pending);
3364 }
3365 EXPORT_SYMBOL(__blk_end_request_all);
3366 
3367 /**
3368  * __blk_end_request_cur - Helper function to finish the current request chunk.
3369  * @rq: the request to finish the current chunk for
3370  * @error:    block status code
3371  *
3372  * Description:
3373  *     Complete the current consecutively mapped chunk from @rq.  Must
3374  *     be called with queue lock held.
3375  *
3376  * Return:
3377  *     %false - we are done with this request
3378  *     %true  - still buffers pending for this request
3379  */
3380 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3381 {
3382 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3383 }
3384 EXPORT_SYMBOL(__blk_end_request_cur);
3385 
3386 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3387 		     struct bio *bio)
3388 {
3389 	if (bio_has_data(bio))
3390 		rq->nr_phys_segments = bio_phys_segments(q, bio);
3391 	else if (bio_op(bio) == REQ_OP_DISCARD)
3392 		rq->nr_phys_segments = 1;
3393 
3394 	rq->__data_len = bio->bi_iter.bi_size;
3395 	rq->bio = rq->biotail = bio;
3396 
3397 	if (bio->bi_disk)
3398 		rq->rq_disk = bio->bi_disk;
3399 }
3400 
3401 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3402 /**
3403  * rq_flush_dcache_pages - Helper function to flush all pages in a request
3404  * @rq: the request to be flushed
3405  *
3406  * Description:
3407  *     Flush all pages in @rq.
3408  */
3409 void rq_flush_dcache_pages(struct request *rq)
3410 {
3411 	struct req_iterator iter;
3412 	struct bio_vec bvec;
3413 
3414 	rq_for_each_segment(bvec, rq, iter)
3415 		flush_dcache_page(bvec.bv_page);
3416 }
3417 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3418 #endif
3419 
3420 /**
3421  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3422  * @q : the queue of the device being checked
3423  *
3424  * Description:
3425  *    Check if underlying low-level drivers of a device are busy.
3426  *    If the drivers want to export their busy state, they must set own
3427  *    exporting function using blk_queue_lld_busy() first.
3428  *
3429  *    Basically, this function is used only by request stacking drivers
3430  *    to stop dispatching requests to underlying devices when underlying
3431  *    devices are busy.  This behavior helps more I/O merging on the queue
3432  *    of the request stacking driver and prevents I/O throughput regression
3433  *    on burst I/O load.
3434  *
3435  * Return:
3436  *    0 - Not busy (The request stacking driver should dispatch request)
3437  *    1 - Busy (The request stacking driver should stop dispatching request)
3438  */
3439 int blk_lld_busy(struct request_queue *q)
3440 {
3441 	if (q->lld_busy_fn)
3442 		return q->lld_busy_fn(q);
3443 
3444 	return 0;
3445 }
3446 EXPORT_SYMBOL_GPL(blk_lld_busy);
3447 
3448 /**
3449  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3450  * @rq: the clone request to be cleaned up
3451  *
3452  * Description:
3453  *     Free all bios in @rq for a cloned request.
3454  */
3455 void blk_rq_unprep_clone(struct request *rq)
3456 {
3457 	struct bio *bio;
3458 
3459 	while ((bio = rq->bio) != NULL) {
3460 		rq->bio = bio->bi_next;
3461 
3462 		bio_put(bio);
3463 	}
3464 }
3465 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3466 
3467 /*
3468  * Copy attributes of the original request to the clone request.
3469  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3470  */
3471 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3472 {
3473 	dst->cpu = src->cpu;
3474 	dst->__sector = blk_rq_pos(src);
3475 	dst->__data_len = blk_rq_bytes(src);
3476 	if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3477 		dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3478 		dst->special_vec = src->special_vec;
3479 	}
3480 	dst->nr_phys_segments = src->nr_phys_segments;
3481 	dst->ioprio = src->ioprio;
3482 	dst->extra_len = src->extra_len;
3483 }
3484 
3485 /**
3486  * blk_rq_prep_clone - Helper function to setup clone request
3487  * @rq: the request to be setup
3488  * @rq_src: original request to be cloned
3489  * @bs: bio_set that bios for clone are allocated from
3490  * @gfp_mask: memory allocation mask for bio
3491  * @bio_ctr: setup function to be called for each clone bio.
3492  *           Returns %0 for success, non %0 for failure.
3493  * @data: private data to be passed to @bio_ctr
3494  *
3495  * Description:
3496  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3497  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3498  *     are not copied, and copying such parts is the caller's responsibility.
3499  *     Also, pages which the original bios are pointing to are not copied
3500  *     and the cloned bios just point same pages.
3501  *     So cloned bios must be completed before original bios, which means
3502  *     the caller must complete @rq before @rq_src.
3503  */
3504 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3505 		      struct bio_set *bs, gfp_t gfp_mask,
3506 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3507 		      void *data)
3508 {
3509 	struct bio *bio, *bio_src;
3510 
3511 	if (!bs)
3512 		bs = &fs_bio_set;
3513 
3514 	__rq_for_each_bio(bio_src, rq_src) {
3515 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3516 		if (!bio)
3517 			goto free_and_out;
3518 
3519 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3520 			goto free_and_out;
3521 
3522 		if (rq->bio) {
3523 			rq->biotail->bi_next = bio;
3524 			rq->biotail = bio;
3525 		} else
3526 			rq->bio = rq->biotail = bio;
3527 	}
3528 
3529 	__blk_rq_prep_clone(rq, rq_src);
3530 
3531 	return 0;
3532 
3533 free_and_out:
3534 	if (bio)
3535 		bio_put(bio);
3536 	blk_rq_unprep_clone(rq);
3537 
3538 	return -ENOMEM;
3539 }
3540 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3541 
3542 int kblockd_schedule_work(struct work_struct *work)
3543 {
3544 	return queue_work(kblockd_workqueue, work);
3545 }
3546 EXPORT_SYMBOL(kblockd_schedule_work);
3547 
3548 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3549 {
3550 	return queue_work_on(cpu, kblockd_workqueue, work);
3551 }
3552 EXPORT_SYMBOL(kblockd_schedule_work_on);
3553 
3554 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3555 				unsigned long delay)
3556 {
3557 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3558 }
3559 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3560 
3561 /**
3562  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3563  * @plug:	The &struct blk_plug that needs to be initialized
3564  *
3565  * Description:
3566  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3567  *   pending I/O should the task end up blocking between blk_start_plug() and
3568  *   blk_finish_plug(). This is important from a performance perspective, but
3569  *   also ensures that we don't deadlock. For instance, if the task is blocking
3570  *   for a memory allocation, memory reclaim could end up wanting to free a
3571  *   page belonging to that request that is currently residing in our private
3572  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3573  *   this kind of deadlock.
3574  */
3575 void blk_start_plug(struct blk_plug *plug)
3576 {
3577 	struct task_struct *tsk = current;
3578 
3579 	/*
3580 	 * If this is a nested plug, don't actually assign it.
3581 	 */
3582 	if (tsk->plug)
3583 		return;
3584 
3585 	INIT_LIST_HEAD(&plug->list);
3586 	INIT_LIST_HEAD(&plug->mq_list);
3587 	INIT_LIST_HEAD(&plug->cb_list);
3588 	/*
3589 	 * Store ordering should not be needed here, since a potential
3590 	 * preempt will imply a full memory barrier
3591 	 */
3592 	tsk->plug = plug;
3593 }
3594 EXPORT_SYMBOL(blk_start_plug);
3595 
3596 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3597 {
3598 	struct request *rqa = container_of(a, struct request, queuelist);
3599 	struct request *rqb = container_of(b, struct request, queuelist);
3600 
3601 	return !(rqa->q < rqb->q ||
3602 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3603 }
3604 
3605 /*
3606  * If 'from_schedule' is true, then postpone the dispatch of requests
3607  * until a safe kblockd context. We due this to avoid accidental big
3608  * additional stack usage in driver dispatch, in places where the originally
3609  * plugger did not intend it.
3610  */
3611 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3612 			    bool from_schedule)
3613 	__releases(q->queue_lock)
3614 {
3615 	lockdep_assert_held(q->queue_lock);
3616 
3617 	trace_block_unplug(q, depth, !from_schedule);
3618 
3619 	if (from_schedule)
3620 		blk_run_queue_async(q);
3621 	else
3622 		__blk_run_queue(q);
3623 	spin_unlock_irq(q->queue_lock);
3624 }
3625 
3626 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3627 {
3628 	LIST_HEAD(callbacks);
3629 
3630 	while (!list_empty(&plug->cb_list)) {
3631 		list_splice_init(&plug->cb_list, &callbacks);
3632 
3633 		while (!list_empty(&callbacks)) {
3634 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3635 							  struct blk_plug_cb,
3636 							  list);
3637 			list_del(&cb->list);
3638 			cb->callback(cb, from_schedule);
3639 		}
3640 	}
3641 }
3642 
3643 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3644 				      int size)
3645 {
3646 	struct blk_plug *plug = current->plug;
3647 	struct blk_plug_cb *cb;
3648 
3649 	if (!plug)
3650 		return NULL;
3651 
3652 	list_for_each_entry(cb, &plug->cb_list, list)
3653 		if (cb->callback == unplug && cb->data == data)
3654 			return cb;
3655 
3656 	/* Not currently on the callback list */
3657 	BUG_ON(size < sizeof(*cb));
3658 	cb = kzalloc(size, GFP_ATOMIC);
3659 	if (cb) {
3660 		cb->data = data;
3661 		cb->callback = unplug;
3662 		list_add(&cb->list, &plug->cb_list);
3663 	}
3664 	return cb;
3665 }
3666 EXPORT_SYMBOL(blk_check_plugged);
3667 
3668 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3669 {
3670 	struct request_queue *q;
3671 	struct request *rq;
3672 	LIST_HEAD(list);
3673 	unsigned int depth;
3674 
3675 	flush_plug_callbacks(plug, from_schedule);
3676 
3677 	if (!list_empty(&plug->mq_list))
3678 		blk_mq_flush_plug_list(plug, from_schedule);
3679 
3680 	if (list_empty(&plug->list))
3681 		return;
3682 
3683 	list_splice_init(&plug->list, &list);
3684 
3685 	list_sort(NULL, &list, plug_rq_cmp);
3686 
3687 	q = NULL;
3688 	depth = 0;
3689 
3690 	while (!list_empty(&list)) {
3691 		rq = list_entry_rq(list.next);
3692 		list_del_init(&rq->queuelist);
3693 		BUG_ON(!rq->q);
3694 		if (rq->q != q) {
3695 			/*
3696 			 * This drops the queue lock
3697 			 */
3698 			if (q)
3699 				queue_unplugged(q, depth, from_schedule);
3700 			q = rq->q;
3701 			depth = 0;
3702 			spin_lock_irq(q->queue_lock);
3703 		}
3704 
3705 		/*
3706 		 * Short-circuit if @q is dead
3707 		 */
3708 		if (unlikely(blk_queue_dying(q))) {
3709 			__blk_end_request_all(rq, BLK_STS_IOERR);
3710 			continue;
3711 		}
3712 
3713 		/*
3714 		 * rq is already accounted, so use raw insert
3715 		 */
3716 		if (op_is_flush(rq->cmd_flags))
3717 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3718 		else
3719 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3720 
3721 		depth++;
3722 	}
3723 
3724 	/*
3725 	 * This drops the queue lock
3726 	 */
3727 	if (q)
3728 		queue_unplugged(q, depth, from_schedule);
3729 }
3730 
3731 void blk_finish_plug(struct blk_plug *plug)
3732 {
3733 	if (plug != current->plug)
3734 		return;
3735 	blk_flush_plug_list(plug, false);
3736 
3737 	current->plug = NULL;
3738 }
3739 EXPORT_SYMBOL(blk_finish_plug);
3740 
3741 #ifdef CONFIG_PM
3742 /**
3743  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3744  * @q: the queue of the device
3745  * @dev: the device the queue belongs to
3746  *
3747  * Description:
3748  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3749  *    @dev. Drivers that want to take advantage of request-based runtime PM
3750  *    should call this function after @dev has been initialized, and its
3751  *    request queue @q has been allocated, and runtime PM for it can not happen
3752  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3753  *    cases, driver should call this function before any I/O has taken place.
3754  *
3755  *    This function takes care of setting up using auto suspend for the device,
3756  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3757  *    until an updated value is either set by user or by driver. Drivers do
3758  *    not need to touch other autosuspend settings.
3759  *
3760  *    The block layer runtime PM is request based, so only works for drivers
3761  *    that use request as their IO unit instead of those directly use bio's.
3762  */
3763 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3764 {
3765 	/* not support for RQF_PM and ->rpm_status in blk-mq yet */
3766 	if (q->mq_ops)
3767 		return;
3768 
3769 	q->dev = dev;
3770 	q->rpm_status = RPM_ACTIVE;
3771 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3772 	pm_runtime_use_autosuspend(q->dev);
3773 }
3774 EXPORT_SYMBOL(blk_pm_runtime_init);
3775 
3776 /**
3777  * blk_pre_runtime_suspend - Pre runtime suspend check
3778  * @q: the queue of the device
3779  *
3780  * Description:
3781  *    This function will check if runtime suspend is allowed for the device
3782  *    by examining if there are any requests pending in the queue. If there
3783  *    are requests pending, the device can not be runtime suspended; otherwise,
3784  *    the queue's status will be updated to SUSPENDING and the driver can
3785  *    proceed to suspend the device.
3786  *
3787  *    For the not allowed case, we mark last busy for the device so that
3788  *    runtime PM core will try to autosuspend it some time later.
3789  *
3790  *    This function should be called near the start of the device's
3791  *    runtime_suspend callback.
3792  *
3793  * Return:
3794  *    0		- OK to runtime suspend the device
3795  *    -EBUSY	- Device should not be runtime suspended
3796  */
3797 int blk_pre_runtime_suspend(struct request_queue *q)
3798 {
3799 	int ret = 0;
3800 
3801 	if (!q->dev)
3802 		return ret;
3803 
3804 	spin_lock_irq(q->queue_lock);
3805 	if (q->nr_pending) {
3806 		ret = -EBUSY;
3807 		pm_runtime_mark_last_busy(q->dev);
3808 	} else {
3809 		q->rpm_status = RPM_SUSPENDING;
3810 	}
3811 	spin_unlock_irq(q->queue_lock);
3812 	return ret;
3813 }
3814 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3815 
3816 /**
3817  * blk_post_runtime_suspend - Post runtime suspend processing
3818  * @q: the queue of the device
3819  * @err: return value of the device's runtime_suspend function
3820  *
3821  * Description:
3822  *    Update the queue's runtime status according to the return value of the
3823  *    device's runtime suspend function and mark last busy for the device so
3824  *    that PM core will try to auto suspend the device at a later time.
3825  *
3826  *    This function should be called near the end of the device's
3827  *    runtime_suspend callback.
3828  */
3829 void blk_post_runtime_suspend(struct request_queue *q, int err)
3830 {
3831 	if (!q->dev)
3832 		return;
3833 
3834 	spin_lock_irq(q->queue_lock);
3835 	if (!err) {
3836 		q->rpm_status = RPM_SUSPENDED;
3837 	} else {
3838 		q->rpm_status = RPM_ACTIVE;
3839 		pm_runtime_mark_last_busy(q->dev);
3840 	}
3841 	spin_unlock_irq(q->queue_lock);
3842 }
3843 EXPORT_SYMBOL(blk_post_runtime_suspend);
3844 
3845 /**
3846  * blk_pre_runtime_resume - Pre runtime resume processing
3847  * @q: the queue of the device
3848  *
3849  * Description:
3850  *    Update the queue's runtime status to RESUMING in preparation for the
3851  *    runtime resume of the device.
3852  *
3853  *    This function should be called near the start of the device's
3854  *    runtime_resume callback.
3855  */
3856 void blk_pre_runtime_resume(struct request_queue *q)
3857 {
3858 	if (!q->dev)
3859 		return;
3860 
3861 	spin_lock_irq(q->queue_lock);
3862 	q->rpm_status = RPM_RESUMING;
3863 	spin_unlock_irq(q->queue_lock);
3864 }
3865 EXPORT_SYMBOL(blk_pre_runtime_resume);
3866 
3867 /**
3868  * blk_post_runtime_resume - Post runtime resume processing
3869  * @q: the queue of the device
3870  * @err: return value of the device's runtime_resume function
3871  *
3872  * Description:
3873  *    Update the queue's runtime status according to the return value of the
3874  *    device's runtime_resume function. If it is successfully resumed, process
3875  *    the requests that are queued into the device's queue when it is resuming
3876  *    and then mark last busy and initiate autosuspend for it.
3877  *
3878  *    This function should be called near the end of the device's
3879  *    runtime_resume callback.
3880  */
3881 void blk_post_runtime_resume(struct request_queue *q, int err)
3882 {
3883 	if (!q->dev)
3884 		return;
3885 
3886 	spin_lock_irq(q->queue_lock);
3887 	if (!err) {
3888 		q->rpm_status = RPM_ACTIVE;
3889 		__blk_run_queue(q);
3890 		pm_runtime_mark_last_busy(q->dev);
3891 		pm_request_autosuspend(q->dev);
3892 	} else {
3893 		q->rpm_status = RPM_SUSPENDED;
3894 	}
3895 	spin_unlock_irq(q->queue_lock);
3896 }
3897 EXPORT_SYMBOL(blk_post_runtime_resume);
3898 
3899 /**
3900  * blk_set_runtime_active - Force runtime status of the queue to be active
3901  * @q: the queue of the device
3902  *
3903  * If the device is left runtime suspended during system suspend the resume
3904  * hook typically resumes the device and corrects runtime status
3905  * accordingly. However, that does not affect the queue runtime PM status
3906  * which is still "suspended". This prevents processing requests from the
3907  * queue.
3908  *
3909  * This function can be used in driver's resume hook to correct queue
3910  * runtime PM status and re-enable peeking requests from the queue. It
3911  * should be called before first request is added to the queue.
3912  */
3913 void blk_set_runtime_active(struct request_queue *q)
3914 {
3915 	spin_lock_irq(q->queue_lock);
3916 	q->rpm_status = RPM_ACTIVE;
3917 	pm_runtime_mark_last_busy(q->dev);
3918 	pm_request_autosuspend(q->dev);
3919 	spin_unlock_irq(q->queue_lock);
3920 }
3921 EXPORT_SYMBOL(blk_set_runtime_active);
3922 #endif
3923 
3924 int __init blk_dev_init(void)
3925 {
3926 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3927 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3928 			FIELD_SIZEOF(struct request, cmd_flags));
3929 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3930 			FIELD_SIZEOF(struct bio, bi_opf));
3931 
3932 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3933 	kblockd_workqueue = alloc_workqueue("kblockd",
3934 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3935 	if (!kblockd_workqueue)
3936 		panic("Failed to create kblockd\n");
3937 
3938 	request_cachep = kmem_cache_create("blkdev_requests",
3939 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3940 
3941 	blk_requestq_cachep = kmem_cache_create("request_queue",
3942 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3943 
3944 #ifdef CONFIG_DEBUG_FS
3945 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3946 #endif
3947 
3948 	return 0;
3949 }
3950