1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/blk-pm.h> 21 #include <linux/highmem.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kernel_stat.h> 25 #include <linux/string.h> 26 #include <linux/init.h> 27 #include <linux/completion.h> 28 #include <linux/slab.h> 29 #include <linux/swap.h> 30 #include <linux/writeback.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/fault-inject.h> 33 #include <linux/list_sort.h> 34 #include <linux/delay.h> 35 #include <linux/ratelimit.h> 36 #include <linux/pm_runtime.h> 37 #include <linux/blk-cgroup.h> 38 #include <linux/t10-pi.h> 39 #include <linux/debugfs.h> 40 #include <linux/bpf.h> 41 #include <linux/psi.h> 42 #include <linux/sched/sysctl.h> 43 #include <linux/blk-crypto.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/block.h> 47 48 #include "blk.h" 49 #include "blk-mq.h" 50 #include "blk-mq-sched.h" 51 #include "blk-pm.h" 52 #include "blk-rq-qos.h" 53 54 struct dentry *blk_debugfs_root; 55 56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert); 62 63 DEFINE_IDA(blk_queue_ida); 64 65 /* 66 * For queue allocation 67 */ 68 struct kmem_cache *blk_requestq_cachep; 69 70 /* 71 * Controlling structure to kblockd 72 */ 73 static struct workqueue_struct *kblockd_workqueue; 74 75 /** 76 * blk_queue_flag_set - atomically set a queue flag 77 * @flag: flag to be set 78 * @q: request queue 79 */ 80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 81 { 82 set_bit(flag, &q->queue_flags); 83 } 84 EXPORT_SYMBOL(blk_queue_flag_set); 85 86 /** 87 * blk_queue_flag_clear - atomically clear a queue flag 88 * @flag: flag to be cleared 89 * @q: request queue 90 */ 91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 92 { 93 clear_bit(flag, &q->queue_flags); 94 } 95 EXPORT_SYMBOL(blk_queue_flag_clear); 96 97 /** 98 * blk_queue_flag_test_and_set - atomically test and set a queue flag 99 * @flag: flag to be set 100 * @q: request queue 101 * 102 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 103 * the flag was already set. 104 */ 105 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 106 { 107 return test_and_set_bit(flag, &q->queue_flags); 108 } 109 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 110 111 void blk_rq_init(struct request_queue *q, struct request *rq) 112 { 113 memset(rq, 0, sizeof(*rq)); 114 115 INIT_LIST_HEAD(&rq->queuelist); 116 rq->q = q; 117 rq->__sector = (sector_t) -1; 118 INIT_HLIST_NODE(&rq->hash); 119 RB_CLEAR_NODE(&rq->rb_node); 120 rq->tag = BLK_MQ_NO_TAG; 121 rq->internal_tag = BLK_MQ_NO_TAG; 122 rq->start_time_ns = ktime_get_ns(); 123 rq->part = NULL; 124 blk_crypto_rq_set_defaults(rq); 125 } 126 EXPORT_SYMBOL(blk_rq_init); 127 128 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 129 static const char *const blk_op_name[] = { 130 REQ_OP_NAME(READ), 131 REQ_OP_NAME(WRITE), 132 REQ_OP_NAME(FLUSH), 133 REQ_OP_NAME(DISCARD), 134 REQ_OP_NAME(SECURE_ERASE), 135 REQ_OP_NAME(ZONE_RESET), 136 REQ_OP_NAME(ZONE_RESET_ALL), 137 REQ_OP_NAME(ZONE_OPEN), 138 REQ_OP_NAME(ZONE_CLOSE), 139 REQ_OP_NAME(ZONE_FINISH), 140 REQ_OP_NAME(ZONE_APPEND), 141 REQ_OP_NAME(WRITE_SAME), 142 REQ_OP_NAME(WRITE_ZEROES), 143 REQ_OP_NAME(DRV_IN), 144 REQ_OP_NAME(DRV_OUT), 145 }; 146 #undef REQ_OP_NAME 147 148 /** 149 * blk_op_str - Return string XXX in the REQ_OP_XXX. 150 * @op: REQ_OP_XXX. 151 * 152 * Description: Centralize block layer function to convert REQ_OP_XXX into 153 * string format. Useful in the debugging and tracing bio or request. For 154 * invalid REQ_OP_XXX it returns string "UNKNOWN". 155 */ 156 inline const char *blk_op_str(unsigned int op) 157 { 158 const char *op_str = "UNKNOWN"; 159 160 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 161 op_str = blk_op_name[op]; 162 163 return op_str; 164 } 165 EXPORT_SYMBOL_GPL(blk_op_str); 166 167 static const struct { 168 int errno; 169 const char *name; 170 } blk_errors[] = { 171 [BLK_STS_OK] = { 0, "" }, 172 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 173 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 174 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 175 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 176 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 177 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 178 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 179 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 180 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 181 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 182 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 183 184 /* device mapper special case, should not leak out: */ 185 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 186 187 /* zone device specific errors */ 188 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" }, 189 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" }, 190 191 /* everything else not covered above: */ 192 [BLK_STS_IOERR] = { -EIO, "I/O" }, 193 }; 194 195 blk_status_t errno_to_blk_status(int errno) 196 { 197 int i; 198 199 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 200 if (blk_errors[i].errno == errno) 201 return (__force blk_status_t)i; 202 } 203 204 return BLK_STS_IOERR; 205 } 206 EXPORT_SYMBOL_GPL(errno_to_blk_status); 207 208 int blk_status_to_errno(blk_status_t status) 209 { 210 int idx = (__force int)status; 211 212 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 213 return -EIO; 214 return blk_errors[idx].errno; 215 } 216 EXPORT_SYMBOL_GPL(blk_status_to_errno); 217 218 static void print_req_error(struct request *req, blk_status_t status, 219 const char *caller) 220 { 221 int idx = (__force int)status; 222 223 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 224 return; 225 226 printk_ratelimited(KERN_ERR 227 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 228 "phys_seg %u prio class %u\n", 229 caller, blk_errors[idx].name, 230 req->rq_disk ? req->rq_disk->disk_name : "?", 231 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 232 req->cmd_flags & ~REQ_OP_MASK, 233 req->nr_phys_segments, 234 IOPRIO_PRIO_CLASS(req->ioprio)); 235 } 236 237 static void req_bio_endio(struct request *rq, struct bio *bio, 238 unsigned int nbytes, blk_status_t error) 239 { 240 if (error) 241 bio->bi_status = error; 242 243 if (unlikely(rq->rq_flags & RQF_QUIET)) 244 bio_set_flag(bio, BIO_QUIET); 245 246 bio_advance(bio, nbytes); 247 248 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) { 249 /* 250 * Partial zone append completions cannot be supported as the 251 * BIO fragments may end up not being written sequentially. 252 */ 253 if (bio->bi_iter.bi_size) 254 bio->bi_status = BLK_STS_IOERR; 255 else 256 bio->bi_iter.bi_sector = rq->__sector; 257 } 258 259 /* don't actually finish bio if it's part of flush sequence */ 260 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 261 bio_endio(bio); 262 } 263 264 void blk_dump_rq_flags(struct request *rq, char *msg) 265 { 266 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 267 rq->rq_disk ? rq->rq_disk->disk_name : "?", 268 (unsigned long long) rq->cmd_flags); 269 270 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 271 (unsigned long long)blk_rq_pos(rq), 272 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 273 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 274 rq->bio, rq->biotail, blk_rq_bytes(rq)); 275 } 276 EXPORT_SYMBOL(blk_dump_rq_flags); 277 278 /** 279 * blk_sync_queue - cancel any pending callbacks on a queue 280 * @q: the queue 281 * 282 * Description: 283 * The block layer may perform asynchronous callback activity 284 * on a queue, such as calling the unplug function after a timeout. 285 * A block device may call blk_sync_queue to ensure that any 286 * such activity is cancelled, thus allowing it to release resources 287 * that the callbacks might use. The caller must already have made sure 288 * that its ->submit_bio will not re-add plugging prior to calling 289 * this function. 290 * 291 * This function does not cancel any asynchronous activity arising 292 * out of elevator or throttling code. That would require elevator_exit() 293 * and blkcg_exit_queue() to be called with queue lock initialized. 294 * 295 */ 296 void blk_sync_queue(struct request_queue *q) 297 { 298 del_timer_sync(&q->timeout); 299 cancel_work_sync(&q->timeout_work); 300 } 301 EXPORT_SYMBOL(blk_sync_queue); 302 303 /** 304 * blk_set_pm_only - increment pm_only counter 305 * @q: request queue pointer 306 */ 307 void blk_set_pm_only(struct request_queue *q) 308 { 309 atomic_inc(&q->pm_only); 310 } 311 EXPORT_SYMBOL_GPL(blk_set_pm_only); 312 313 void blk_clear_pm_only(struct request_queue *q) 314 { 315 int pm_only; 316 317 pm_only = atomic_dec_return(&q->pm_only); 318 WARN_ON_ONCE(pm_only < 0); 319 if (pm_only == 0) 320 wake_up_all(&q->mq_freeze_wq); 321 } 322 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 323 324 /** 325 * blk_put_queue - decrement the request_queue refcount 326 * @q: the request_queue structure to decrement the refcount for 327 * 328 * Decrements the refcount of the request_queue kobject. When this reaches 0 329 * we'll have blk_release_queue() called. 330 * 331 * Context: Any context, but the last reference must not be dropped from 332 * atomic context. 333 */ 334 void blk_put_queue(struct request_queue *q) 335 { 336 kobject_put(&q->kobj); 337 } 338 EXPORT_SYMBOL(blk_put_queue); 339 340 void blk_set_queue_dying(struct request_queue *q) 341 { 342 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 343 344 /* 345 * When queue DYING flag is set, we need to block new req 346 * entering queue, so we call blk_freeze_queue_start() to 347 * prevent I/O from crossing blk_queue_enter(). 348 */ 349 blk_freeze_queue_start(q); 350 351 if (queue_is_mq(q)) 352 blk_mq_wake_waiters(q); 353 354 /* Make blk_queue_enter() reexamine the DYING flag. */ 355 wake_up_all(&q->mq_freeze_wq); 356 } 357 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 358 359 /** 360 * blk_cleanup_queue - shutdown a request queue 361 * @q: request queue to shutdown 362 * 363 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 364 * put it. All future requests will be failed immediately with -ENODEV. 365 * 366 * Context: can sleep 367 */ 368 void blk_cleanup_queue(struct request_queue *q) 369 { 370 /* cannot be called from atomic context */ 371 might_sleep(); 372 373 WARN_ON_ONCE(blk_queue_registered(q)); 374 375 /* mark @q DYING, no new request or merges will be allowed afterwards */ 376 blk_set_queue_dying(q); 377 378 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 379 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 380 381 /* 382 * Drain all requests queued before DYING marking. Set DEAD flag to 383 * prevent that blk_mq_run_hw_queues() accesses the hardware queues 384 * after draining finished. 385 */ 386 blk_freeze_queue(q); 387 388 rq_qos_exit(q); 389 390 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 391 392 /* for synchronous bio-based driver finish in-flight integrity i/o */ 393 blk_flush_integrity(); 394 395 blk_sync_queue(q); 396 if (queue_is_mq(q)) 397 blk_mq_exit_queue(q); 398 399 /* 400 * In theory, request pool of sched_tags belongs to request queue. 401 * However, the current implementation requires tag_set for freeing 402 * requests, so free the pool now. 403 * 404 * Queue has become frozen, there can't be any in-queue requests, so 405 * it is safe to free requests now. 406 */ 407 mutex_lock(&q->sysfs_lock); 408 if (q->elevator) 409 blk_mq_sched_free_requests(q); 410 mutex_unlock(&q->sysfs_lock); 411 412 percpu_ref_exit(&q->q_usage_counter); 413 414 /* @q is and will stay empty, shutdown and put */ 415 blk_put_queue(q); 416 } 417 EXPORT_SYMBOL(blk_cleanup_queue); 418 419 /** 420 * blk_queue_enter() - try to increase q->q_usage_counter 421 * @q: request queue pointer 422 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM 423 */ 424 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 425 { 426 const bool pm = flags & BLK_MQ_REQ_PM; 427 428 while (true) { 429 bool success = false; 430 431 rcu_read_lock(); 432 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 433 /* 434 * The code that increments the pm_only counter is 435 * responsible for ensuring that that counter is 436 * globally visible before the queue is unfrozen. 437 */ 438 if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) || 439 !blk_queue_pm_only(q)) { 440 success = true; 441 } else { 442 percpu_ref_put(&q->q_usage_counter); 443 } 444 } 445 rcu_read_unlock(); 446 447 if (success) 448 return 0; 449 450 if (flags & BLK_MQ_REQ_NOWAIT) 451 return -EBUSY; 452 453 /* 454 * read pair of barrier in blk_freeze_queue_start(), 455 * we need to order reading __PERCPU_REF_DEAD flag of 456 * .q_usage_counter and reading .mq_freeze_depth or 457 * queue dying flag, otherwise the following wait may 458 * never return if the two reads are reordered. 459 */ 460 smp_rmb(); 461 462 wait_event(q->mq_freeze_wq, 463 (!q->mq_freeze_depth && 464 blk_pm_resume_queue(pm, q)) || 465 blk_queue_dying(q)); 466 if (blk_queue_dying(q)) 467 return -ENODEV; 468 } 469 } 470 471 static inline int bio_queue_enter(struct bio *bio) 472 { 473 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 474 bool nowait = bio->bi_opf & REQ_NOWAIT; 475 int ret; 476 477 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0); 478 if (unlikely(ret)) { 479 if (nowait && !blk_queue_dying(q)) 480 bio_wouldblock_error(bio); 481 else 482 bio_io_error(bio); 483 } 484 485 return ret; 486 } 487 488 void blk_queue_exit(struct request_queue *q) 489 { 490 percpu_ref_put(&q->q_usage_counter); 491 } 492 493 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 494 { 495 struct request_queue *q = 496 container_of(ref, struct request_queue, q_usage_counter); 497 498 wake_up_all(&q->mq_freeze_wq); 499 } 500 501 static void blk_rq_timed_out_timer(struct timer_list *t) 502 { 503 struct request_queue *q = from_timer(q, t, timeout); 504 505 kblockd_schedule_work(&q->timeout_work); 506 } 507 508 static void blk_timeout_work(struct work_struct *work) 509 { 510 } 511 512 struct request_queue *blk_alloc_queue(int node_id) 513 { 514 struct request_queue *q; 515 int ret; 516 517 q = kmem_cache_alloc_node(blk_requestq_cachep, 518 GFP_KERNEL | __GFP_ZERO, node_id); 519 if (!q) 520 return NULL; 521 522 q->last_merge = NULL; 523 524 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL); 525 if (q->id < 0) 526 goto fail_q; 527 528 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0); 529 if (ret) 530 goto fail_id; 531 532 q->stats = blk_alloc_queue_stats(); 533 if (!q->stats) 534 goto fail_split; 535 536 q->node = node_id; 537 538 atomic_set(&q->nr_active_requests_shared_sbitmap, 0); 539 540 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 541 INIT_WORK(&q->timeout_work, blk_timeout_work); 542 INIT_LIST_HEAD(&q->icq_list); 543 #ifdef CONFIG_BLK_CGROUP 544 INIT_LIST_HEAD(&q->blkg_list); 545 #endif 546 547 kobject_init(&q->kobj, &blk_queue_ktype); 548 549 mutex_init(&q->debugfs_mutex); 550 mutex_init(&q->sysfs_lock); 551 mutex_init(&q->sysfs_dir_lock); 552 spin_lock_init(&q->queue_lock); 553 554 init_waitqueue_head(&q->mq_freeze_wq); 555 mutex_init(&q->mq_freeze_lock); 556 557 /* 558 * Init percpu_ref in atomic mode so that it's faster to shutdown. 559 * See blk_register_queue() for details. 560 */ 561 if (percpu_ref_init(&q->q_usage_counter, 562 blk_queue_usage_counter_release, 563 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 564 goto fail_stats; 565 566 if (blkcg_init_queue(q)) 567 goto fail_ref; 568 569 blk_queue_dma_alignment(q, 511); 570 blk_set_default_limits(&q->limits); 571 q->nr_requests = BLKDEV_MAX_RQ; 572 573 return q; 574 575 fail_ref: 576 percpu_ref_exit(&q->q_usage_counter); 577 fail_stats: 578 blk_free_queue_stats(q->stats); 579 fail_split: 580 bioset_exit(&q->bio_split); 581 fail_id: 582 ida_simple_remove(&blk_queue_ida, q->id); 583 fail_q: 584 kmem_cache_free(blk_requestq_cachep, q); 585 return NULL; 586 } 587 588 /** 589 * blk_get_queue - increment the request_queue refcount 590 * @q: the request_queue structure to increment the refcount for 591 * 592 * Increment the refcount of the request_queue kobject. 593 * 594 * Context: Any context. 595 */ 596 bool blk_get_queue(struct request_queue *q) 597 { 598 if (likely(!blk_queue_dying(q))) { 599 __blk_get_queue(q); 600 return true; 601 } 602 603 return false; 604 } 605 EXPORT_SYMBOL(blk_get_queue); 606 607 /** 608 * blk_get_request - allocate a request 609 * @q: request queue to allocate a request for 610 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 611 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 612 */ 613 struct request *blk_get_request(struct request_queue *q, unsigned int op, 614 blk_mq_req_flags_t flags) 615 { 616 struct request *req; 617 618 WARN_ON_ONCE(op & REQ_NOWAIT); 619 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM)); 620 621 req = blk_mq_alloc_request(q, op, flags); 622 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 623 q->mq_ops->initialize_rq_fn(req); 624 625 return req; 626 } 627 EXPORT_SYMBOL(blk_get_request); 628 629 void blk_put_request(struct request *req) 630 { 631 blk_mq_free_request(req); 632 } 633 EXPORT_SYMBOL(blk_put_request); 634 635 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 636 { 637 char b[BDEVNAME_SIZE]; 638 639 pr_info_ratelimited("attempt to access beyond end of device\n" 640 "%s: rw=%d, want=%llu, limit=%llu\n", 641 bio_devname(bio, b), bio->bi_opf, 642 bio_end_sector(bio), maxsector); 643 } 644 645 #ifdef CONFIG_FAIL_MAKE_REQUEST 646 647 static DECLARE_FAULT_ATTR(fail_make_request); 648 649 static int __init setup_fail_make_request(char *str) 650 { 651 return setup_fault_attr(&fail_make_request, str); 652 } 653 __setup("fail_make_request=", setup_fail_make_request); 654 655 static bool should_fail_request(struct block_device *part, unsigned int bytes) 656 { 657 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes); 658 } 659 660 static int __init fail_make_request_debugfs(void) 661 { 662 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 663 NULL, &fail_make_request); 664 665 return PTR_ERR_OR_ZERO(dir); 666 } 667 668 late_initcall(fail_make_request_debugfs); 669 670 #else /* CONFIG_FAIL_MAKE_REQUEST */ 671 672 static inline bool should_fail_request(struct block_device *part, 673 unsigned int bytes) 674 { 675 return false; 676 } 677 678 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 679 680 static inline bool bio_check_ro(struct bio *bio) 681 { 682 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) { 683 char b[BDEVNAME_SIZE]; 684 685 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 686 return false; 687 688 WARN_ONCE(1, 689 "Trying to write to read-only block-device %s (partno %d)\n", 690 bio_devname(bio, b), bio->bi_bdev->bd_partno); 691 /* Older lvm-tools actually trigger this */ 692 return false; 693 } 694 695 return false; 696 } 697 698 static noinline int should_fail_bio(struct bio *bio) 699 { 700 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size)) 701 return -EIO; 702 return 0; 703 } 704 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 705 706 /* 707 * Check whether this bio extends beyond the end of the device or partition. 708 * This may well happen - the kernel calls bread() without checking the size of 709 * the device, e.g., when mounting a file system. 710 */ 711 static inline int bio_check_eod(struct bio *bio) 712 { 713 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 714 unsigned int nr_sectors = bio_sectors(bio); 715 716 if (nr_sectors && maxsector && 717 (nr_sectors > maxsector || 718 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 719 handle_bad_sector(bio, maxsector); 720 return -EIO; 721 } 722 return 0; 723 } 724 725 /* 726 * Remap block n of partition p to block n+start(p) of the disk. 727 */ 728 static int blk_partition_remap(struct bio *bio) 729 { 730 struct block_device *p = bio->bi_bdev; 731 732 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 733 return -EIO; 734 if (bio_sectors(bio)) { 735 bio->bi_iter.bi_sector += p->bd_start_sect; 736 trace_block_bio_remap(bio, p->bd_dev, 737 bio->bi_iter.bi_sector - 738 p->bd_start_sect); 739 } 740 bio_set_flag(bio, BIO_REMAPPED); 741 return 0; 742 } 743 744 /* 745 * Check write append to a zoned block device. 746 */ 747 static inline blk_status_t blk_check_zone_append(struct request_queue *q, 748 struct bio *bio) 749 { 750 sector_t pos = bio->bi_iter.bi_sector; 751 int nr_sectors = bio_sectors(bio); 752 753 /* Only applicable to zoned block devices */ 754 if (!blk_queue_is_zoned(q)) 755 return BLK_STS_NOTSUPP; 756 757 /* The bio sector must point to the start of a sequential zone */ 758 if (pos & (blk_queue_zone_sectors(q) - 1) || 759 !blk_queue_zone_is_seq(q, pos)) 760 return BLK_STS_IOERR; 761 762 /* 763 * Not allowed to cross zone boundaries. Otherwise, the BIO will be 764 * split and could result in non-contiguous sectors being written in 765 * different zones. 766 */ 767 if (nr_sectors > q->limits.chunk_sectors) 768 return BLK_STS_IOERR; 769 770 /* Make sure the BIO is small enough and will not get split */ 771 if (nr_sectors > q->limits.max_zone_append_sectors) 772 return BLK_STS_IOERR; 773 774 bio->bi_opf |= REQ_NOMERGE; 775 776 return BLK_STS_OK; 777 } 778 779 static noinline_for_stack bool submit_bio_checks(struct bio *bio) 780 { 781 struct block_device *bdev = bio->bi_bdev; 782 struct request_queue *q = bdev->bd_disk->queue; 783 blk_status_t status = BLK_STS_IOERR; 784 struct blk_plug *plug; 785 786 might_sleep(); 787 788 plug = blk_mq_plug(q, bio); 789 if (plug && plug->nowait) 790 bio->bi_opf |= REQ_NOWAIT; 791 792 /* 793 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 794 * if queue does not support NOWAIT. 795 */ 796 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q)) 797 goto not_supported; 798 799 if (should_fail_bio(bio)) 800 goto end_io; 801 if (unlikely(bio_check_ro(bio))) 802 goto end_io; 803 if (!bio_flagged(bio, BIO_REMAPPED)) { 804 if (unlikely(bio_check_eod(bio))) 805 goto end_io; 806 if (bdev->bd_partno && unlikely(blk_partition_remap(bio))) 807 goto end_io; 808 } 809 810 /* 811 * Filter flush bio's early so that bio based drivers without flush 812 * support don't have to worry about them. 813 */ 814 if (op_is_flush(bio->bi_opf) && 815 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 816 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 817 if (!bio_sectors(bio)) { 818 status = BLK_STS_OK; 819 goto end_io; 820 } 821 } 822 823 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 824 bio_clear_hipri(bio); 825 826 switch (bio_op(bio)) { 827 case REQ_OP_DISCARD: 828 if (!blk_queue_discard(q)) 829 goto not_supported; 830 break; 831 case REQ_OP_SECURE_ERASE: 832 if (!blk_queue_secure_erase(q)) 833 goto not_supported; 834 break; 835 case REQ_OP_WRITE_SAME: 836 if (!q->limits.max_write_same_sectors) 837 goto not_supported; 838 break; 839 case REQ_OP_ZONE_APPEND: 840 status = blk_check_zone_append(q, bio); 841 if (status != BLK_STS_OK) 842 goto end_io; 843 break; 844 case REQ_OP_ZONE_RESET: 845 case REQ_OP_ZONE_OPEN: 846 case REQ_OP_ZONE_CLOSE: 847 case REQ_OP_ZONE_FINISH: 848 if (!blk_queue_is_zoned(q)) 849 goto not_supported; 850 break; 851 case REQ_OP_ZONE_RESET_ALL: 852 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q)) 853 goto not_supported; 854 break; 855 case REQ_OP_WRITE_ZEROES: 856 if (!q->limits.max_write_zeroes_sectors) 857 goto not_supported; 858 break; 859 default: 860 break; 861 } 862 863 /* 864 * Various block parts want %current->io_context, so allocate it up 865 * front rather than dealing with lots of pain to allocate it only 866 * where needed. This may fail and the block layer knows how to live 867 * with it. 868 */ 869 if (unlikely(!current->io_context)) 870 create_task_io_context(current, GFP_ATOMIC, q->node); 871 872 if (blk_throtl_bio(bio)) { 873 blkcg_bio_issue_init(bio); 874 return false; 875 } 876 877 blk_cgroup_bio_start(bio); 878 blkcg_bio_issue_init(bio); 879 880 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 881 trace_block_bio_queue(bio); 882 /* Now that enqueuing has been traced, we need to trace 883 * completion as well. 884 */ 885 bio_set_flag(bio, BIO_TRACE_COMPLETION); 886 } 887 return true; 888 889 not_supported: 890 status = BLK_STS_NOTSUPP; 891 end_io: 892 bio->bi_status = status; 893 bio_endio(bio); 894 return false; 895 } 896 897 static blk_qc_t __submit_bio(struct bio *bio) 898 { 899 struct gendisk *disk = bio->bi_bdev->bd_disk; 900 blk_qc_t ret = BLK_QC_T_NONE; 901 902 if (blk_crypto_bio_prep(&bio)) { 903 if (!disk->fops->submit_bio) 904 return blk_mq_submit_bio(bio); 905 ret = disk->fops->submit_bio(bio); 906 } 907 blk_queue_exit(disk->queue); 908 return ret; 909 } 910 911 /* 912 * The loop in this function may be a bit non-obvious, and so deserves some 913 * explanation: 914 * 915 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure 916 * that), so we have a list with a single bio. 917 * - We pretend that we have just taken it off a longer list, so we assign 918 * bio_list to a pointer to the bio_list_on_stack, thus initialising the 919 * bio_list of new bios to be added. ->submit_bio() may indeed add some more 920 * bios through a recursive call to submit_bio_noacct. If it did, we find a 921 * non-NULL value in bio_list and re-enter the loop from the top. 922 * - In this case we really did just take the bio of the top of the list (no 923 * pretending) and so remove it from bio_list, and call into ->submit_bio() 924 * again. 925 * 926 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio. 927 * bio_list_on_stack[1] contains bios that were submitted before the current 928 * ->submit_bio_bio, but that haven't been processed yet. 929 */ 930 static blk_qc_t __submit_bio_noacct(struct bio *bio) 931 { 932 struct bio_list bio_list_on_stack[2]; 933 blk_qc_t ret = BLK_QC_T_NONE; 934 935 BUG_ON(bio->bi_next); 936 937 bio_list_init(&bio_list_on_stack[0]); 938 current->bio_list = bio_list_on_stack; 939 940 do { 941 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 942 struct bio_list lower, same; 943 944 if (unlikely(bio_queue_enter(bio) != 0)) 945 continue; 946 947 /* 948 * Create a fresh bio_list for all subordinate requests. 949 */ 950 bio_list_on_stack[1] = bio_list_on_stack[0]; 951 bio_list_init(&bio_list_on_stack[0]); 952 953 ret = __submit_bio(bio); 954 955 /* 956 * Sort new bios into those for a lower level and those for the 957 * same level. 958 */ 959 bio_list_init(&lower); 960 bio_list_init(&same); 961 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 962 if (q == bio->bi_bdev->bd_disk->queue) 963 bio_list_add(&same, bio); 964 else 965 bio_list_add(&lower, bio); 966 967 /* 968 * Now assemble so we handle the lowest level first. 969 */ 970 bio_list_merge(&bio_list_on_stack[0], &lower); 971 bio_list_merge(&bio_list_on_stack[0], &same); 972 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 973 } while ((bio = bio_list_pop(&bio_list_on_stack[0]))); 974 975 current->bio_list = NULL; 976 return ret; 977 } 978 979 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio) 980 { 981 struct bio_list bio_list[2] = { }; 982 blk_qc_t ret = BLK_QC_T_NONE; 983 984 current->bio_list = bio_list; 985 986 do { 987 struct gendisk *disk = bio->bi_bdev->bd_disk; 988 989 if (unlikely(bio_queue_enter(bio) != 0)) 990 continue; 991 992 if (!blk_crypto_bio_prep(&bio)) { 993 blk_queue_exit(disk->queue); 994 ret = BLK_QC_T_NONE; 995 continue; 996 } 997 998 ret = blk_mq_submit_bio(bio); 999 } while ((bio = bio_list_pop(&bio_list[0]))); 1000 1001 current->bio_list = NULL; 1002 return ret; 1003 } 1004 1005 /** 1006 * submit_bio_noacct - re-submit a bio to the block device layer for I/O 1007 * @bio: The bio describing the location in memory and on the device. 1008 * 1009 * This is a version of submit_bio() that shall only be used for I/O that is 1010 * resubmitted to lower level drivers by stacking block drivers. All file 1011 * systems and other upper level users of the block layer should use 1012 * submit_bio() instead. 1013 */ 1014 blk_qc_t submit_bio_noacct(struct bio *bio) 1015 { 1016 if (!submit_bio_checks(bio)) 1017 return BLK_QC_T_NONE; 1018 1019 /* 1020 * We only want one ->submit_bio to be active at a time, else stack 1021 * usage with stacked devices could be a problem. Use current->bio_list 1022 * to collect a list of requests submited by a ->submit_bio method while 1023 * it is active, and then process them after it returned. 1024 */ 1025 if (current->bio_list) { 1026 bio_list_add(¤t->bio_list[0], bio); 1027 return BLK_QC_T_NONE; 1028 } 1029 1030 if (!bio->bi_bdev->bd_disk->fops->submit_bio) 1031 return __submit_bio_noacct_mq(bio); 1032 return __submit_bio_noacct(bio); 1033 } 1034 EXPORT_SYMBOL(submit_bio_noacct); 1035 1036 /** 1037 * submit_bio - submit a bio to the block device layer for I/O 1038 * @bio: The &struct bio which describes the I/O 1039 * 1040 * submit_bio() is used to submit I/O requests to block devices. It is passed a 1041 * fully set up &struct bio that describes the I/O that needs to be done. The 1042 * bio will be send to the device described by the bi_bdev field. 1043 * 1044 * The success/failure status of the request, along with notification of 1045 * completion, is delivered asynchronously through the ->bi_end_io() callback 1046 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has 1047 * been called. 1048 */ 1049 blk_qc_t submit_bio(struct bio *bio) 1050 { 1051 if (blkcg_punt_bio_submit(bio)) 1052 return BLK_QC_T_NONE; 1053 1054 /* 1055 * If it's a regular read/write or a barrier with data attached, 1056 * go through the normal accounting stuff before submission. 1057 */ 1058 if (bio_has_data(bio)) { 1059 unsigned int count; 1060 1061 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1062 count = queue_logical_block_size( 1063 bio->bi_bdev->bd_disk->queue) >> 9; 1064 else 1065 count = bio_sectors(bio); 1066 1067 if (op_is_write(bio_op(bio))) { 1068 count_vm_events(PGPGOUT, count); 1069 } else { 1070 task_io_account_read(bio->bi_iter.bi_size); 1071 count_vm_events(PGPGIN, count); 1072 } 1073 } 1074 1075 /* 1076 * If we're reading data that is part of the userspace workingset, count 1077 * submission time as memory stall. When the device is congested, or 1078 * the submitting cgroup IO-throttled, submission can be a significant 1079 * part of overall IO time. 1080 */ 1081 if (unlikely(bio_op(bio) == REQ_OP_READ && 1082 bio_flagged(bio, BIO_WORKINGSET))) { 1083 unsigned long pflags; 1084 blk_qc_t ret; 1085 1086 psi_memstall_enter(&pflags); 1087 ret = submit_bio_noacct(bio); 1088 psi_memstall_leave(&pflags); 1089 1090 return ret; 1091 } 1092 1093 return submit_bio_noacct(bio); 1094 } 1095 EXPORT_SYMBOL(submit_bio); 1096 1097 /** 1098 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1099 * for the new queue limits 1100 * @q: the queue 1101 * @rq: the request being checked 1102 * 1103 * Description: 1104 * @rq may have been made based on weaker limitations of upper-level queues 1105 * in request stacking drivers, and it may violate the limitation of @q. 1106 * Since the block layer and the underlying device driver trust @rq 1107 * after it is inserted to @q, it should be checked against @q before 1108 * the insertion using this generic function. 1109 * 1110 * Request stacking drivers like request-based dm may change the queue 1111 * limits when retrying requests on other queues. Those requests need 1112 * to be checked against the new queue limits again during dispatch. 1113 */ 1114 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q, 1115 struct request *rq) 1116 { 1117 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 1118 1119 if (blk_rq_sectors(rq) > max_sectors) { 1120 /* 1121 * SCSI device does not have a good way to return if 1122 * Write Same/Zero is actually supported. If a device rejects 1123 * a non-read/write command (discard, write same,etc.) the 1124 * low-level device driver will set the relevant queue limit to 1125 * 0 to prevent blk-lib from issuing more of the offending 1126 * operations. Commands queued prior to the queue limit being 1127 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 1128 * errors being propagated to upper layers. 1129 */ 1130 if (max_sectors == 0) 1131 return BLK_STS_NOTSUPP; 1132 1133 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 1134 __func__, blk_rq_sectors(rq), max_sectors); 1135 return BLK_STS_IOERR; 1136 } 1137 1138 /* 1139 * The queue settings related to segment counting may differ from the 1140 * original queue. 1141 */ 1142 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 1143 if (rq->nr_phys_segments > queue_max_segments(q)) { 1144 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 1145 __func__, rq->nr_phys_segments, queue_max_segments(q)); 1146 return BLK_STS_IOERR; 1147 } 1148 1149 return BLK_STS_OK; 1150 } 1151 1152 /** 1153 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1154 * @q: the queue to submit the request 1155 * @rq: the request being queued 1156 */ 1157 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1158 { 1159 blk_status_t ret; 1160 1161 ret = blk_cloned_rq_check_limits(q, rq); 1162 if (ret != BLK_STS_OK) 1163 return ret; 1164 1165 if (rq->rq_disk && 1166 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq))) 1167 return BLK_STS_IOERR; 1168 1169 if (blk_crypto_insert_cloned_request(rq)) 1170 return BLK_STS_IOERR; 1171 1172 if (blk_queue_io_stat(q)) 1173 blk_account_io_start(rq); 1174 1175 /* 1176 * Since we have a scheduler attached on the top device, 1177 * bypass a potential scheduler on the bottom device for 1178 * insert. 1179 */ 1180 return blk_mq_request_issue_directly(rq, true); 1181 } 1182 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1183 1184 /** 1185 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1186 * @rq: request to examine 1187 * 1188 * Description: 1189 * A request could be merge of IOs which require different failure 1190 * handling. This function determines the number of bytes which 1191 * can be failed from the beginning of the request without 1192 * crossing into area which need to be retried further. 1193 * 1194 * Return: 1195 * The number of bytes to fail. 1196 */ 1197 unsigned int blk_rq_err_bytes(const struct request *rq) 1198 { 1199 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1200 unsigned int bytes = 0; 1201 struct bio *bio; 1202 1203 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1204 return blk_rq_bytes(rq); 1205 1206 /* 1207 * Currently the only 'mixing' which can happen is between 1208 * different fastfail types. We can safely fail portions 1209 * which have all the failfast bits that the first one has - 1210 * the ones which are at least as eager to fail as the first 1211 * one. 1212 */ 1213 for (bio = rq->bio; bio; bio = bio->bi_next) { 1214 if ((bio->bi_opf & ff) != ff) 1215 break; 1216 bytes += bio->bi_iter.bi_size; 1217 } 1218 1219 /* this could lead to infinite loop */ 1220 BUG_ON(blk_rq_bytes(rq) && !bytes); 1221 return bytes; 1222 } 1223 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1224 1225 static void update_io_ticks(struct block_device *part, unsigned long now, 1226 bool end) 1227 { 1228 unsigned long stamp; 1229 again: 1230 stamp = READ_ONCE(part->bd_stamp); 1231 if (unlikely(time_after(now, stamp))) { 1232 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp)) 1233 __part_stat_add(part, io_ticks, end ? now - stamp : 1); 1234 } 1235 if (part->bd_partno) { 1236 part = bdev_whole(part); 1237 goto again; 1238 } 1239 } 1240 1241 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1242 { 1243 if (req->part && blk_do_io_stat(req)) { 1244 const int sgrp = op_stat_group(req_op(req)); 1245 1246 part_stat_lock(); 1247 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 1248 part_stat_unlock(); 1249 } 1250 } 1251 1252 void blk_account_io_done(struct request *req, u64 now) 1253 { 1254 /* 1255 * Account IO completion. flush_rq isn't accounted as a 1256 * normal IO on queueing nor completion. Accounting the 1257 * containing request is enough. 1258 */ 1259 if (req->part && blk_do_io_stat(req) && 1260 !(req->rq_flags & RQF_FLUSH_SEQ)) { 1261 const int sgrp = op_stat_group(req_op(req)); 1262 1263 part_stat_lock(); 1264 update_io_ticks(req->part, jiffies, true); 1265 part_stat_inc(req->part, ios[sgrp]); 1266 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1267 part_stat_unlock(); 1268 } 1269 } 1270 1271 void blk_account_io_start(struct request *rq) 1272 { 1273 if (!blk_do_io_stat(rq)) 1274 return; 1275 1276 /* passthrough requests can hold bios that do not have ->bi_bdev set */ 1277 if (rq->bio && rq->bio->bi_bdev) 1278 rq->part = rq->bio->bi_bdev; 1279 else 1280 rq->part = rq->rq_disk->part0; 1281 1282 part_stat_lock(); 1283 update_io_ticks(rq->part, jiffies, false); 1284 part_stat_unlock(); 1285 } 1286 1287 static unsigned long __part_start_io_acct(struct block_device *part, 1288 unsigned int sectors, unsigned int op) 1289 { 1290 const int sgrp = op_stat_group(op); 1291 unsigned long now = READ_ONCE(jiffies); 1292 1293 part_stat_lock(); 1294 update_io_ticks(part, now, false); 1295 part_stat_inc(part, ios[sgrp]); 1296 part_stat_add(part, sectors[sgrp], sectors); 1297 part_stat_local_inc(part, in_flight[op_is_write(op)]); 1298 part_stat_unlock(); 1299 1300 return now; 1301 } 1302 1303 /** 1304 * bio_start_io_acct - start I/O accounting for bio based drivers 1305 * @bio: bio to start account for 1306 * 1307 * Returns the start time that should be passed back to bio_end_io_acct(). 1308 */ 1309 unsigned long bio_start_io_acct(struct bio *bio) 1310 { 1311 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio)); 1312 } 1313 EXPORT_SYMBOL_GPL(bio_start_io_acct); 1314 1315 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1316 unsigned int op) 1317 { 1318 return __part_start_io_acct(disk->part0, sectors, op); 1319 } 1320 EXPORT_SYMBOL(disk_start_io_acct); 1321 1322 static void __part_end_io_acct(struct block_device *part, unsigned int op, 1323 unsigned long start_time) 1324 { 1325 const int sgrp = op_stat_group(op); 1326 unsigned long now = READ_ONCE(jiffies); 1327 unsigned long duration = now - start_time; 1328 1329 part_stat_lock(); 1330 update_io_ticks(part, now, true); 1331 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1332 part_stat_local_dec(part, in_flight[op_is_write(op)]); 1333 part_stat_unlock(); 1334 } 1335 1336 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1337 struct block_device *orig_bdev) 1338 { 1339 __part_end_io_acct(orig_bdev, bio_op(bio), start_time); 1340 } 1341 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped); 1342 1343 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1344 unsigned long start_time) 1345 { 1346 __part_end_io_acct(disk->part0, op, start_time); 1347 } 1348 EXPORT_SYMBOL(disk_end_io_acct); 1349 1350 /* 1351 * Steal bios from a request and add them to a bio list. 1352 * The request must not have been partially completed before. 1353 */ 1354 void blk_steal_bios(struct bio_list *list, struct request *rq) 1355 { 1356 if (rq->bio) { 1357 if (list->tail) 1358 list->tail->bi_next = rq->bio; 1359 else 1360 list->head = rq->bio; 1361 list->tail = rq->biotail; 1362 1363 rq->bio = NULL; 1364 rq->biotail = NULL; 1365 } 1366 1367 rq->__data_len = 0; 1368 } 1369 EXPORT_SYMBOL_GPL(blk_steal_bios); 1370 1371 /** 1372 * blk_update_request - Complete multiple bytes without completing the request 1373 * @req: the request being processed 1374 * @error: block status code 1375 * @nr_bytes: number of bytes to complete for @req 1376 * 1377 * Description: 1378 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1379 * the request structure even if @req doesn't have leftover. 1380 * If @req has leftover, sets it up for the next range of segments. 1381 * 1382 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1383 * %false return from this function. 1384 * 1385 * Note: 1386 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 1387 * except in the consistency check at the end of this function. 1388 * 1389 * Return: 1390 * %false - this request doesn't have any more data 1391 * %true - this request has more data 1392 **/ 1393 bool blk_update_request(struct request *req, blk_status_t error, 1394 unsigned int nr_bytes) 1395 { 1396 int total_bytes; 1397 1398 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 1399 1400 if (!req->bio) 1401 return false; 1402 1403 #ifdef CONFIG_BLK_DEV_INTEGRITY 1404 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 1405 error == BLK_STS_OK) 1406 req->q->integrity.profile->complete_fn(req, nr_bytes); 1407 #endif 1408 1409 if (unlikely(error && !blk_rq_is_passthrough(req) && 1410 !(req->rq_flags & RQF_QUIET))) 1411 print_req_error(req, error, __func__); 1412 1413 blk_account_io_completion(req, nr_bytes); 1414 1415 total_bytes = 0; 1416 while (req->bio) { 1417 struct bio *bio = req->bio; 1418 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 1419 1420 if (bio_bytes == bio->bi_iter.bi_size) 1421 req->bio = bio->bi_next; 1422 1423 /* Completion has already been traced */ 1424 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1425 req_bio_endio(req, bio, bio_bytes, error); 1426 1427 total_bytes += bio_bytes; 1428 nr_bytes -= bio_bytes; 1429 1430 if (!nr_bytes) 1431 break; 1432 } 1433 1434 /* 1435 * completely done 1436 */ 1437 if (!req->bio) { 1438 /* 1439 * Reset counters so that the request stacking driver 1440 * can find how many bytes remain in the request 1441 * later. 1442 */ 1443 req->__data_len = 0; 1444 return false; 1445 } 1446 1447 req->__data_len -= total_bytes; 1448 1449 /* update sector only for requests with clear definition of sector */ 1450 if (!blk_rq_is_passthrough(req)) 1451 req->__sector += total_bytes >> 9; 1452 1453 /* mixed attributes always follow the first bio */ 1454 if (req->rq_flags & RQF_MIXED_MERGE) { 1455 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1456 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1457 } 1458 1459 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1460 /* 1461 * If total number of sectors is less than the first segment 1462 * size, something has gone terribly wrong. 1463 */ 1464 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1465 blk_dump_rq_flags(req, "request botched"); 1466 req->__data_len = blk_rq_cur_bytes(req); 1467 } 1468 1469 /* recalculate the number of segments */ 1470 req->nr_phys_segments = blk_recalc_rq_segments(req); 1471 } 1472 1473 return true; 1474 } 1475 EXPORT_SYMBOL_GPL(blk_update_request); 1476 1477 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1478 /** 1479 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1480 * @rq: the request to be flushed 1481 * 1482 * Description: 1483 * Flush all pages in @rq. 1484 */ 1485 void rq_flush_dcache_pages(struct request *rq) 1486 { 1487 struct req_iterator iter; 1488 struct bio_vec bvec; 1489 1490 rq_for_each_segment(bvec, rq, iter) 1491 flush_dcache_page(bvec.bv_page); 1492 } 1493 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1494 #endif 1495 1496 /** 1497 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1498 * @q : the queue of the device being checked 1499 * 1500 * Description: 1501 * Check if underlying low-level drivers of a device are busy. 1502 * If the drivers want to export their busy state, they must set own 1503 * exporting function using blk_queue_lld_busy() first. 1504 * 1505 * Basically, this function is used only by request stacking drivers 1506 * to stop dispatching requests to underlying devices when underlying 1507 * devices are busy. This behavior helps more I/O merging on the queue 1508 * of the request stacking driver and prevents I/O throughput regression 1509 * on burst I/O load. 1510 * 1511 * Return: 1512 * 0 - Not busy (The request stacking driver should dispatch request) 1513 * 1 - Busy (The request stacking driver should stop dispatching request) 1514 */ 1515 int blk_lld_busy(struct request_queue *q) 1516 { 1517 if (queue_is_mq(q) && q->mq_ops->busy) 1518 return q->mq_ops->busy(q); 1519 1520 return 0; 1521 } 1522 EXPORT_SYMBOL_GPL(blk_lld_busy); 1523 1524 /** 1525 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1526 * @rq: the clone request to be cleaned up 1527 * 1528 * Description: 1529 * Free all bios in @rq for a cloned request. 1530 */ 1531 void blk_rq_unprep_clone(struct request *rq) 1532 { 1533 struct bio *bio; 1534 1535 while ((bio = rq->bio) != NULL) { 1536 rq->bio = bio->bi_next; 1537 1538 bio_put(bio); 1539 } 1540 } 1541 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1542 1543 /** 1544 * blk_rq_prep_clone - Helper function to setup clone request 1545 * @rq: the request to be setup 1546 * @rq_src: original request to be cloned 1547 * @bs: bio_set that bios for clone are allocated from 1548 * @gfp_mask: memory allocation mask for bio 1549 * @bio_ctr: setup function to be called for each clone bio. 1550 * Returns %0 for success, non %0 for failure. 1551 * @data: private data to be passed to @bio_ctr 1552 * 1553 * Description: 1554 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1555 * Also, pages which the original bios are pointing to are not copied 1556 * and the cloned bios just point same pages. 1557 * So cloned bios must be completed before original bios, which means 1558 * the caller must complete @rq before @rq_src. 1559 */ 1560 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1561 struct bio_set *bs, gfp_t gfp_mask, 1562 int (*bio_ctr)(struct bio *, struct bio *, void *), 1563 void *data) 1564 { 1565 struct bio *bio, *bio_src; 1566 1567 if (!bs) 1568 bs = &fs_bio_set; 1569 1570 __rq_for_each_bio(bio_src, rq_src) { 1571 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1572 if (!bio) 1573 goto free_and_out; 1574 1575 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1576 goto free_and_out; 1577 1578 if (rq->bio) { 1579 rq->biotail->bi_next = bio; 1580 rq->biotail = bio; 1581 } else { 1582 rq->bio = rq->biotail = bio; 1583 } 1584 bio = NULL; 1585 } 1586 1587 /* Copy attributes of the original request to the clone request. */ 1588 rq->__sector = blk_rq_pos(rq_src); 1589 rq->__data_len = blk_rq_bytes(rq_src); 1590 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1591 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 1592 rq->special_vec = rq_src->special_vec; 1593 } 1594 rq->nr_phys_segments = rq_src->nr_phys_segments; 1595 rq->ioprio = rq_src->ioprio; 1596 1597 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 1598 goto free_and_out; 1599 1600 return 0; 1601 1602 free_and_out: 1603 if (bio) 1604 bio_put(bio); 1605 blk_rq_unprep_clone(rq); 1606 1607 return -ENOMEM; 1608 } 1609 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1610 1611 int kblockd_schedule_work(struct work_struct *work) 1612 { 1613 return queue_work(kblockd_workqueue, work); 1614 } 1615 EXPORT_SYMBOL(kblockd_schedule_work); 1616 1617 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1618 unsigned long delay) 1619 { 1620 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1621 } 1622 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1623 1624 /** 1625 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1626 * @plug: The &struct blk_plug that needs to be initialized 1627 * 1628 * Description: 1629 * blk_start_plug() indicates to the block layer an intent by the caller 1630 * to submit multiple I/O requests in a batch. The block layer may use 1631 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1632 * is called. However, the block layer may choose to submit requests 1633 * before a call to blk_finish_plug() if the number of queued I/Os 1634 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1635 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1636 * the task schedules (see below). 1637 * 1638 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1639 * pending I/O should the task end up blocking between blk_start_plug() and 1640 * blk_finish_plug(). This is important from a performance perspective, but 1641 * also ensures that we don't deadlock. For instance, if the task is blocking 1642 * for a memory allocation, memory reclaim could end up wanting to free a 1643 * page belonging to that request that is currently residing in our private 1644 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1645 * this kind of deadlock. 1646 */ 1647 void blk_start_plug(struct blk_plug *plug) 1648 { 1649 struct task_struct *tsk = current; 1650 1651 /* 1652 * If this is a nested plug, don't actually assign it. 1653 */ 1654 if (tsk->plug) 1655 return; 1656 1657 INIT_LIST_HEAD(&plug->mq_list); 1658 INIT_LIST_HEAD(&plug->cb_list); 1659 plug->rq_count = 0; 1660 plug->multiple_queues = false; 1661 plug->nowait = false; 1662 1663 /* 1664 * Store ordering should not be needed here, since a potential 1665 * preempt will imply a full memory barrier 1666 */ 1667 tsk->plug = plug; 1668 } 1669 EXPORT_SYMBOL(blk_start_plug); 1670 1671 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1672 { 1673 LIST_HEAD(callbacks); 1674 1675 while (!list_empty(&plug->cb_list)) { 1676 list_splice_init(&plug->cb_list, &callbacks); 1677 1678 while (!list_empty(&callbacks)) { 1679 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1680 struct blk_plug_cb, 1681 list); 1682 list_del(&cb->list); 1683 cb->callback(cb, from_schedule); 1684 } 1685 } 1686 } 1687 1688 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1689 int size) 1690 { 1691 struct blk_plug *plug = current->plug; 1692 struct blk_plug_cb *cb; 1693 1694 if (!plug) 1695 return NULL; 1696 1697 list_for_each_entry(cb, &plug->cb_list, list) 1698 if (cb->callback == unplug && cb->data == data) 1699 return cb; 1700 1701 /* Not currently on the callback list */ 1702 BUG_ON(size < sizeof(*cb)); 1703 cb = kzalloc(size, GFP_ATOMIC); 1704 if (cb) { 1705 cb->data = data; 1706 cb->callback = unplug; 1707 list_add(&cb->list, &plug->cb_list); 1708 } 1709 return cb; 1710 } 1711 EXPORT_SYMBOL(blk_check_plugged); 1712 1713 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1714 { 1715 flush_plug_callbacks(plug, from_schedule); 1716 1717 if (!list_empty(&plug->mq_list)) 1718 blk_mq_flush_plug_list(plug, from_schedule); 1719 } 1720 1721 /** 1722 * blk_finish_plug - mark the end of a batch of submitted I/O 1723 * @plug: The &struct blk_plug passed to blk_start_plug() 1724 * 1725 * Description: 1726 * Indicate that a batch of I/O submissions is complete. This function 1727 * must be paired with an initial call to blk_start_plug(). The intent 1728 * is to allow the block layer to optimize I/O submission. See the 1729 * documentation for blk_start_plug() for more information. 1730 */ 1731 void blk_finish_plug(struct blk_plug *plug) 1732 { 1733 if (plug != current->plug) 1734 return; 1735 blk_flush_plug_list(plug, false); 1736 1737 current->plug = NULL; 1738 } 1739 EXPORT_SYMBOL(blk_finish_plug); 1740 1741 void blk_io_schedule(void) 1742 { 1743 /* Prevent hang_check timer from firing at us during very long I/O */ 1744 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 1745 1746 if (timeout) 1747 io_schedule_timeout(timeout); 1748 else 1749 io_schedule(); 1750 } 1751 EXPORT_SYMBOL_GPL(blk_io_schedule); 1752 1753 int __init blk_dev_init(void) 1754 { 1755 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1756 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1757 sizeof_field(struct request, cmd_flags)); 1758 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1759 sizeof_field(struct bio, bi_opf)); 1760 1761 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1762 kblockd_workqueue = alloc_workqueue("kblockd", 1763 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1764 if (!kblockd_workqueue) 1765 panic("Failed to create kblockd\n"); 1766 1767 blk_requestq_cachep = kmem_cache_create("request_queue", 1768 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1769 1770 blk_debugfs_root = debugfs_create_dir("block", NULL); 1771 1772 return 0; 1773 } 1774