1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/block.h> 38 39 #include "blk.h" 40 #include "blk-cgroup.h" 41 #include "blk-mq.h" 42 43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 48 49 DEFINE_IDA(blk_queue_ida); 50 51 /* 52 * For the allocated request tables 53 */ 54 struct kmem_cache *request_cachep = NULL; 55 56 /* 57 * For queue allocation 58 */ 59 struct kmem_cache *blk_requestq_cachep; 60 61 /* 62 * Controlling structure to kblockd 63 */ 64 static struct workqueue_struct *kblockd_workqueue; 65 66 void blk_queue_congestion_threshold(struct request_queue *q) 67 { 68 int nr; 69 70 nr = q->nr_requests - (q->nr_requests / 8) + 1; 71 if (nr > q->nr_requests) 72 nr = q->nr_requests; 73 q->nr_congestion_on = nr; 74 75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 76 if (nr < 1) 77 nr = 1; 78 q->nr_congestion_off = nr; 79 } 80 81 /** 82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 83 * @bdev: device 84 * 85 * Locates the passed device's request queue and returns the address of its 86 * backing_dev_info 87 * 88 * Will return NULL if the request queue cannot be located. 89 */ 90 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 91 { 92 struct backing_dev_info *ret = NULL; 93 struct request_queue *q = bdev_get_queue(bdev); 94 95 if (q) 96 ret = &q->backing_dev_info; 97 return ret; 98 } 99 EXPORT_SYMBOL(blk_get_backing_dev_info); 100 101 void blk_rq_init(struct request_queue *q, struct request *rq) 102 { 103 memset(rq, 0, sizeof(*rq)); 104 105 INIT_LIST_HEAD(&rq->queuelist); 106 INIT_LIST_HEAD(&rq->timeout_list); 107 rq->cpu = -1; 108 rq->q = q; 109 rq->__sector = (sector_t) -1; 110 INIT_HLIST_NODE(&rq->hash); 111 RB_CLEAR_NODE(&rq->rb_node); 112 rq->cmd = rq->__cmd; 113 rq->cmd_len = BLK_MAX_CDB; 114 rq->tag = -1; 115 rq->start_time = jiffies; 116 set_start_time_ns(rq); 117 rq->part = NULL; 118 } 119 EXPORT_SYMBOL(blk_rq_init); 120 121 static void req_bio_endio(struct request *rq, struct bio *bio, 122 unsigned int nbytes, int error) 123 { 124 if (error) 125 clear_bit(BIO_UPTODATE, &bio->bi_flags); 126 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 127 error = -EIO; 128 129 if (unlikely(rq->cmd_flags & REQ_QUIET)) 130 set_bit(BIO_QUIET, &bio->bi_flags); 131 132 bio_advance(bio, nbytes); 133 134 /* don't actually finish bio if it's part of flush sequence */ 135 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 136 bio_endio(bio, error); 137 } 138 139 void blk_dump_rq_flags(struct request *rq, char *msg) 140 { 141 int bit; 142 143 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg, 144 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 145 (unsigned long long) rq->cmd_flags); 146 147 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 148 (unsigned long long)blk_rq_pos(rq), 149 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 150 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 151 rq->bio, rq->biotail, blk_rq_bytes(rq)); 152 153 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 154 printk(KERN_INFO " cdb: "); 155 for (bit = 0; bit < BLK_MAX_CDB; bit++) 156 printk("%02x ", rq->cmd[bit]); 157 printk("\n"); 158 } 159 } 160 EXPORT_SYMBOL(blk_dump_rq_flags); 161 162 static void blk_delay_work(struct work_struct *work) 163 { 164 struct request_queue *q; 165 166 q = container_of(work, struct request_queue, delay_work.work); 167 spin_lock_irq(q->queue_lock); 168 __blk_run_queue(q); 169 spin_unlock_irq(q->queue_lock); 170 } 171 172 /** 173 * blk_delay_queue - restart queueing after defined interval 174 * @q: The &struct request_queue in question 175 * @msecs: Delay in msecs 176 * 177 * Description: 178 * Sometimes queueing needs to be postponed for a little while, to allow 179 * resources to come back. This function will make sure that queueing is 180 * restarted around the specified time. Queue lock must be held. 181 */ 182 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 183 { 184 if (likely(!blk_queue_dead(q))) 185 queue_delayed_work(kblockd_workqueue, &q->delay_work, 186 msecs_to_jiffies(msecs)); 187 } 188 EXPORT_SYMBOL(blk_delay_queue); 189 190 /** 191 * blk_start_queue - restart a previously stopped queue 192 * @q: The &struct request_queue in question 193 * 194 * Description: 195 * blk_start_queue() will clear the stop flag on the queue, and call 196 * the request_fn for the queue if it was in a stopped state when 197 * entered. Also see blk_stop_queue(). Queue lock must be held. 198 **/ 199 void blk_start_queue(struct request_queue *q) 200 { 201 WARN_ON(!irqs_disabled()); 202 203 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 204 __blk_run_queue(q); 205 } 206 EXPORT_SYMBOL(blk_start_queue); 207 208 /** 209 * blk_stop_queue - stop a queue 210 * @q: The &struct request_queue in question 211 * 212 * Description: 213 * The Linux block layer assumes that a block driver will consume all 214 * entries on the request queue when the request_fn strategy is called. 215 * Often this will not happen, because of hardware limitations (queue 216 * depth settings). If a device driver gets a 'queue full' response, 217 * or if it simply chooses not to queue more I/O at one point, it can 218 * call this function to prevent the request_fn from being called until 219 * the driver has signalled it's ready to go again. This happens by calling 220 * blk_start_queue() to restart queue operations. Queue lock must be held. 221 **/ 222 void blk_stop_queue(struct request_queue *q) 223 { 224 cancel_delayed_work(&q->delay_work); 225 queue_flag_set(QUEUE_FLAG_STOPPED, q); 226 } 227 EXPORT_SYMBOL(blk_stop_queue); 228 229 /** 230 * blk_sync_queue - cancel any pending callbacks on a queue 231 * @q: the queue 232 * 233 * Description: 234 * The block layer may perform asynchronous callback activity 235 * on a queue, such as calling the unplug function after a timeout. 236 * A block device may call blk_sync_queue to ensure that any 237 * such activity is cancelled, thus allowing it to release resources 238 * that the callbacks might use. The caller must already have made sure 239 * that its ->make_request_fn will not re-add plugging prior to calling 240 * this function. 241 * 242 * This function does not cancel any asynchronous activity arising 243 * out of elevator or throttling code. That would require elevaotor_exit() 244 * and blkcg_exit_queue() to be called with queue lock initialized. 245 * 246 */ 247 void blk_sync_queue(struct request_queue *q) 248 { 249 del_timer_sync(&q->timeout); 250 251 if (q->mq_ops) { 252 struct blk_mq_hw_ctx *hctx; 253 int i; 254 255 queue_for_each_hw_ctx(q, hctx, i) { 256 cancel_delayed_work_sync(&hctx->run_work); 257 cancel_delayed_work_sync(&hctx->delay_work); 258 } 259 } else { 260 cancel_delayed_work_sync(&q->delay_work); 261 } 262 } 263 EXPORT_SYMBOL(blk_sync_queue); 264 265 /** 266 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 267 * @q: The queue to run 268 * 269 * Description: 270 * Invoke request handling on a queue if there are any pending requests. 271 * May be used to restart request handling after a request has completed. 272 * This variant runs the queue whether or not the queue has been 273 * stopped. Must be called with the queue lock held and interrupts 274 * disabled. See also @blk_run_queue. 275 */ 276 inline void __blk_run_queue_uncond(struct request_queue *q) 277 { 278 if (unlikely(blk_queue_dead(q))) 279 return; 280 281 /* 282 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 283 * the queue lock internally. As a result multiple threads may be 284 * running such a request function concurrently. Keep track of the 285 * number of active request_fn invocations such that blk_drain_queue() 286 * can wait until all these request_fn calls have finished. 287 */ 288 q->request_fn_active++; 289 q->request_fn(q); 290 q->request_fn_active--; 291 } 292 293 /** 294 * __blk_run_queue - run a single device queue 295 * @q: The queue to run 296 * 297 * Description: 298 * See @blk_run_queue. This variant must be called with the queue lock 299 * held and interrupts disabled. 300 */ 301 void __blk_run_queue(struct request_queue *q) 302 { 303 if (unlikely(blk_queue_stopped(q))) 304 return; 305 306 __blk_run_queue_uncond(q); 307 } 308 EXPORT_SYMBOL(__blk_run_queue); 309 310 /** 311 * blk_run_queue_async - run a single device queue in workqueue context 312 * @q: The queue to run 313 * 314 * Description: 315 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 316 * of us. The caller must hold the queue lock. 317 */ 318 void blk_run_queue_async(struct request_queue *q) 319 { 320 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 321 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 322 } 323 EXPORT_SYMBOL(blk_run_queue_async); 324 325 /** 326 * blk_run_queue - run a single device queue 327 * @q: The queue to run 328 * 329 * Description: 330 * Invoke request handling on this queue, if it has pending work to do. 331 * May be used to restart queueing when a request has completed. 332 */ 333 void blk_run_queue(struct request_queue *q) 334 { 335 unsigned long flags; 336 337 spin_lock_irqsave(q->queue_lock, flags); 338 __blk_run_queue(q); 339 spin_unlock_irqrestore(q->queue_lock, flags); 340 } 341 EXPORT_SYMBOL(blk_run_queue); 342 343 void blk_put_queue(struct request_queue *q) 344 { 345 kobject_put(&q->kobj); 346 } 347 EXPORT_SYMBOL(blk_put_queue); 348 349 /** 350 * __blk_drain_queue - drain requests from request_queue 351 * @q: queue to drain 352 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 353 * 354 * Drain requests from @q. If @drain_all is set, all requests are drained. 355 * If not, only ELVPRIV requests are drained. The caller is responsible 356 * for ensuring that no new requests which need to be drained are queued. 357 */ 358 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 359 __releases(q->queue_lock) 360 __acquires(q->queue_lock) 361 { 362 int i; 363 364 lockdep_assert_held(q->queue_lock); 365 366 while (true) { 367 bool drain = false; 368 369 /* 370 * The caller might be trying to drain @q before its 371 * elevator is initialized. 372 */ 373 if (q->elevator) 374 elv_drain_elevator(q); 375 376 blkcg_drain_queue(q); 377 378 /* 379 * This function might be called on a queue which failed 380 * driver init after queue creation or is not yet fully 381 * active yet. Some drivers (e.g. fd and loop) get unhappy 382 * in such cases. Kick queue iff dispatch queue has 383 * something on it and @q has request_fn set. 384 */ 385 if (!list_empty(&q->queue_head) && q->request_fn) 386 __blk_run_queue(q); 387 388 drain |= q->nr_rqs_elvpriv; 389 drain |= q->request_fn_active; 390 391 /* 392 * Unfortunately, requests are queued at and tracked from 393 * multiple places and there's no single counter which can 394 * be drained. Check all the queues and counters. 395 */ 396 if (drain_all) { 397 drain |= !list_empty(&q->queue_head); 398 for (i = 0; i < 2; i++) { 399 drain |= q->nr_rqs[i]; 400 drain |= q->in_flight[i]; 401 drain |= !list_empty(&q->flush_queue[i]); 402 } 403 } 404 405 if (!drain) 406 break; 407 408 spin_unlock_irq(q->queue_lock); 409 410 msleep(10); 411 412 spin_lock_irq(q->queue_lock); 413 } 414 415 /* 416 * With queue marked dead, any woken up waiter will fail the 417 * allocation path, so the wakeup chaining is lost and we're 418 * left with hung waiters. We need to wake up those waiters. 419 */ 420 if (q->request_fn) { 421 struct request_list *rl; 422 423 blk_queue_for_each_rl(rl, q) 424 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 425 wake_up_all(&rl->wait[i]); 426 } 427 } 428 429 /** 430 * blk_queue_bypass_start - enter queue bypass mode 431 * @q: queue of interest 432 * 433 * In bypass mode, only the dispatch FIFO queue of @q is used. This 434 * function makes @q enter bypass mode and drains all requests which were 435 * throttled or issued before. On return, it's guaranteed that no request 436 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 437 * inside queue or RCU read lock. 438 */ 439 void blk_queue_bypass_start(struct request_queue *q) 440 { 441 bool drain; 442 443 spin_lock_irq(q->queue_lock); 444 drain = !q->bypass_depth++; 445 queue_flag_set(QUEUE_FLAG_BYPASS, q); 446 spin_unlock_irq(q->queue_lock); 447 448 if (drain) { 449 spin_lock_irq(q->queue_lock); 450 __blk_drain_queue(q, false); 451 spin_unlock_irq(q->queue_lock); 452 453 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 454 synchronize_rcu(); 455 } 456 } 457 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 458 459 /** 460 * blk_queue_bypass_end - leave queue bypass mode 461 * @q: queue of interest 462 * 463 * Leave bypass mode and restore the normal queueing behavior. 464 */ 465 void blk_queue_bypass_end(struct request_queue *q) 466 { 467 spin_lock_irq(q->queue_lock); 468 if (!--q->bypass_depth) 469 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 470 WARN_ON_ONCE(q->bypass_depth < 0); 471 spin_unlock_irq(q->queue_lock); 472 } 473 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 474 475 /** 476 * blk_cleanup_queue - shutdown a request queue 477 * @q: request queue to shutdown 478 * 479 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 480 * put it. All future requests will be failed immediately with -ENODEV. 481 */ 482 void blk_cleanup_queue(struct request_queue *q) 483 { 484 spinlock_t *lock = q->queue_lock; 485 486 /* mark @q DYING, no new request or merges will be allowed afterwards */ 487 mutex_lock(&q->sysfs_lock); 488 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q); 489 spin_lock_irq(lock); 490 491 /* 492 * A dying queue is permanently in bypass mode till released. Note 493 * that, unlike blk_queue_bypass_start(), we aren't performing 494 * synchronize_rcu() after entering bypass mode to avoid the delay 495 * as some drivers create and destroy a lot of queues while 496 * probing. This is still safe because blk_release_queue() will be 497 * called only after the queue refcnt drops to zero and nothing, 498 * RCU or not, would be traversing the queue by then. 499 */ 500 q->bypass_depth++; 501 queue_flag_set(QUEUE_FLAG_BYPASS, q); 502 503 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 504 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 505 queue_flag_set(QUEUE_FLAG_DYING, q); 506 spin_unlock_irq(lock); 507 mutex_unlock(&q->sysfs_lock); 508 509 /* 510 * Drain all requests queued before DYING marking. Set DEAD flag to 511 * prevent that q->request_fn() gets invoked after draining finished. 512 */ 513 if (q->mq_ops) { 514 blk_mq_drain_queue(q); 515 spin_lock_irq(lock); 516 } else { 517 spin_lock_irq(lock); 518 __blk_drain_queue(q, true); 519 } 520 queue_flag_set(QUEUE_FLAG_DEAD, q); 521 spin_unlock_irq(lock); 522 523 /* @q won't process any more request, flush async actions */ 524 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 525 blk_sync_queue(q); 526 527 spin_lock_irq(lock); 528 if (q->queue_lock != &q->__queue_lock) 529 q->queue_lock = &q->__queue_lock; 530 spin_unlock_irq(lock); 531 532 /* @q is and will stay empty, shutdown and put */ 533 blk_put_queue(q); 534 } 535 EXPORT_SYMBOL(blk_cleanup_queue); 536 537 int blk_init_rl(struct request_list *rl, struct request_queue *q, 538 gfp_t gfp_mask) 539 { 540 if (unlikely(rl->rq_pool)) 541 return 0; 542 543 rl->q = q; 544 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 545 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 546 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 547 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 548 549 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 550 mempool_free_slab, request_cachep, 551 gfp_mask, q->node); 552 if (!rl->rq_pool) 553 return -ENOMEM; 554 555 return 0; 556 } 557 558 void blk_exit_rl(struct request_list *rl) 559 { 560 if (rl->rq_pool) 561 mempool_destroy(rl->rq_pool); 562 } 563 564 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 565 { 566 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 567 } 568 EXPORT_SYMBOL(blk_alloc_queue); 569 570 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 571 { 572 struct request_queue *q; 573 int err; 574 575 q = kmem_cache_alloc_node(blk_requestq_cachep, 576 gfp_mask | __GFP_ZERO, node_id); 577 if (!q) 578 return NULL; 579 580 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 581 if (q->id < 0) 582 goto fail_q; 583 584 q->backing_dev_info.ra_pages = 585 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 586 q->backing_dev_info.state = 0; 587 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 588 q->backing_dev_info.name = "block"; 589 q->node = node_id; 590 591 err = bdi_init(&q->backing_dev_info); 592 if (err) 593 goto fail_id; 594 595 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 596 laptop_mode_timer_fn, (unsigned long) q); 597 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 598 INIT_LIST_HEAD(&q->queue_head); 599 INIT_LIST_HEAD(&q->timeout_list); 600 INIT_LIST_HEAD(&q->icq_list); 601 #ifdef CONFIG_BLK_CGROUP 602 INIT_LIST_HEAD(&q->blkg_list); 603 #endif 604 INIT_LIST_HEAD(&q->flush_queue[0]); 605 INIT_LIST_HEAD(&q->flush_queue[1]); 606 INIT_LIST_HEAD(&q->flush_data_in_flight); 607 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 608 609 kobject_init(&q->kobj, &blk_queue_ktype); 610 611 mutex_init(&q->sysfs_lock); 612 spin_lock_init(&q->__queue_lock); 613 614 /* 615 * By default initialize queue_lock to internal lock and driver can 616 * override it later if need be. 617 */ 618 q->queue_lock = &q->__queue_lock; 619 620 /* 621 * A queue starts its life with bypass turned on to avoid 622 * unnecessary bypass on/off overhead and nasty surprises during 623 * init. The initial bypass will be finished when the queue is 624 * registered by blk_register_queue(). 625 */ 626 q->bypass_depth = 1; 627 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 628 629 init_waitqueue_head(&q->mq_freeze_wq); 630 631 if (blkcg_init_queue(q)) 632 goto fail_bdi; 633 634 return q; 635 636 fail_bdi: 637 bdi_destroy(&q->backing_dev_info); 638 fail_id: 639 ida_simple_remove(&blk_queue_ida, q->id); 640 fail_q: 641 kmem_cache_free(blk_requestq_cachep, q); 642 return NULL; 643 } 644 EXPORT_SYMBOL(blk_alloc_queue_node); 645 646 /** 647 * blk_init_queue - prepare a request queue for use with a block device 648 * @rfn: The function to be called to process requests that have been 649 * placed on the queue. 650 * @lock: Request queue spin lock 651 * 652 * Description: 653 * If a block device wishes to use the standard request handling procedures, 654 * which sorts requests and coalesces adjacent requests, then it must 655 * call blk_init_queue(). The function @rfn will be called when there 656 * are requests on the queue that need to be processed. If the device 657 * supports plugging, then @rfn may not be called immediately when requests 658 * are available on the queue, but may be called at some time later instead. 659 * Plugged queues are generally unplugged when a buffer belonging to one 660 * of the requests on the queue is needed, or due to memory pressure. 661 * 662 * @rfn is not required, or even expected, to remove all requests off the 663 * queue, but only as many as it can handle at a time. If it does leave 664 * requests on the queue, it is responsible for arranging that the requests 665 * get dealt with eventually. 666 * 667 * The queue spin lock must be held while manipulating the requests on the 668 * request queue; this lock will be taken also from interrupt context, so irq 669 * disabling is needed for it. 670 * 671 * Function returns a pointer to the initialized request queue, or %NULL if 672 * it didn't succeed. 673 * 674 * Note: 675 * blk_init_queue() must be paired with a blk_cleanup_queue() call 676 * when the block device is deactivated (such as at module unload). 677 **/ 678 679 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 680 { 681 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 682 } 683 EXPORT_SYMBOL(blk_init_queue); 684 685 struct request_queue * 686 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 687 { 688 struct request_queue *uninit_q, *q; 689 690 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 691 if (!uninit_q) 692 return NULL; 693 694 q = blk_init_allocated_queue(uninit_q, rfn, lock); 695 if (!q) 696 blk_cleanup_queue(uninit_q); 697 698 return q; 699 } 700 EXPORT_SYMBOL(blk_init_queue_node); 701 702 struct request_queue * 703 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 704 spinlock_t *lock) 705 { 706 if (!q) 707 return NULL; 708 709 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL); 710 if (!q->flush_rq) 711 return NULL; 712 713 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 714 goto fail; 715 716 q->request_fn = rfn; 717 q->prep_rq_fn = NULL; 718 q->unprep_rq_fn = NULL; 719 q->queue_flags |= QUEUE_FLAG_DEFAULT; 720 721 /* Override internal queue lock with supplied lock pointer */ 722 if (lock) 723 q->queue_lock = lock; 724 725 /* 726 * This also sets hw/phys segments, boundary and size 727 */ 728 blk_queue_make_request(q, blk_queue_bio); 729 730 q->sg_reserved_size = INT_MAX; 731 732 /* Protect q->elevator from elevator_change */ 733 mutex_lock(&q->sysfs_lock); 734 735 /* init elevator */ 736 if (elevator_init(q, NULL)) { 737 mutex_unlock(&q->sysfs_lock); 738 goto fail; 739 } 740 741 mutex_unlock(&q->sysfs_lock); 742 743 return q; 744 745 fail: 746 kfree(q->flush_rq); 747 return NULL; 748 } 749 EXPORT_SYMBOL(blk_init_allocated_queue); 750 751 bool blk_get_queue(struct request_queue *q) 752 { 753 if (likely(!blk_queue_dying(q))) { 754 __blk_get_queue(q); 755 return true; 756 } 757 758 return false; 759 } 760 EXPORT_SYMBOL(blk_get_queue); 761 762 static inline void blk_free_request(struct request_list *rl, struct request *rq) 763 { 764 if (rq->cmd_flags & REQ_ELVPRIV) { 765 elv_put_request(rl->q, rq); 766 if (rq->elv.icq) 767 put_io_context(rq->elv.icq->ioc); 768 } 769 770 mempool_free(rq, rl->rq_pool); 771 } 772 773 /* 774 * ioc_batching returns true if the ioc is a valid batching request and 775 * should be given priority access to a request. 776 */ 777 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 778 { 779 if (!ioc) 780 return 0; 781 782 /* 783 * Make sure the process is able to allocate at least 1 request 784 * even if the batch times out, otherwise we could theoretically 785 * lose wakeups. 786 */ 787 return ioc->nr_batch_requests == q->nr_batching || 788 (ioc->nr_batch_requests > 0 789 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 790 } 791 792 /* 793 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 794 * will cause the process to be a "batcher" on all queues in the system. This 795 * is the behaviour we want though - once it gets a wakeup it should be given 796 * a nice run. 797 */ 798 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 799 { 800 if (!ioc || ioc_batching(q, ioc)) 801 return; 802 803 ioc->nr_batch_requests = q->nr_batching; 804 ioc->last_waited = jiffies; 805 } 806 807 static void __freed_request(struct request_list *rl, int sync) 808 { 809 struct request_queue *q = rl->q; 810 811 /* 812 * bdi isn't aware of blkcg yet. As all async IOs end up root 813 * blkcg anyway, just use root blkcg state. 814 */ 815 if (rl == &q->root_rl && 816 rl->count[sync] < queue_congestion_off_threshold(q)) 817 blk_clear_queue_congested(q, sync); 818 819 if (rl->count[sync] + 1 <= q->nr_requests) { 820 if (waitqueue_active(&rl->wait[sync])) 821 wake_up(&rl->wait[sync]); 822 823 blk_clear_rl_full(rl, sync); 824 } 825 } 826 827 /* 828 * A request has just been released. Account for it, update the full and 829 * congestion status, wake up any waiters. Called under q->queue_lock. 830 */ 831 static void freed_request(struct request_list *rl, unsigned int flags) 832 { 833 struct request_queue *q = rl->q; 834 int sync = rw_is_sync(flags); 835 836 q->nr_rqs[sync]--; 837 rl->count[sync]--; 838 if (flags & REQ_ELVPRIV) 839 q->nr_rqs_elvpriv--; 840 841 __freed_request(rl, sync); 842 843 if (unlikely(rl->starved[sync ^ 1])) 844 __freed_request(rl, sync ^ 1); 845 } 846 847 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 848 { 849 struct request_list *rl; 850 851 spin_lock_irq(q->queue_lock); 852 q->nr_requests = nr; 853 blk_queue_congestion_threshold(q); 854 855 /* congestion isn't cgroup aware and follows root blkcg for now */ 856 rl = &q->root_rl; 857 858 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q)) 859 blk_set_queue_congested(q, BLK_RW_SYNC); 860 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q)) 861 blk_clear_queue_congested(q, BLK_RW_SYNC); 862 863 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q)) 864 blk_set_queue_congested(q, BLK_RW_ASYNC); 865 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q)) 866 blk_clear_queue_congested(q, BLK_RW_ASYNC); 867 868 blk_queue_for_each_rl(rl, q) { 869 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 870 blk_set_rl_full(rl, BLK_RW_SYNC); 871 } else { 872 blk_clear_rl_full(rl, BLK_RW_SYNC); 873 wake_up(&rl->wait[BLK_RW_SYNC]); 874 } 875 876 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 877 blk_set_rl_full(rl, BLK_RW_ASYNC); 878 } else { 879 blk_clear_rl_full(rl, BLK_RW_ASYNC); 880 wake_up(&rl->wait[BLK_RW_ASYNC]); 881 } 882 } 883 884 spin_unlock_irq(q->queue_lock); 885 return 0; 886 } 887 888 /* 889 * Determine if elevator data should be initialized when allocating the 890 * request associated with @bio. 891 */ 892 static bool blk_rq_should_init_elevator(struct bio *bio) 893 { 894 if (!bio) 895 return true; 896 897 /* 898 * Flush requests do not use the elevator so skip initialization. 899 * This allows a request to share the flush and elevator data. 900 */ 901 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 902 return false; 903 904 return true; 905 } 906 907 /** 908 * rq_ioc - determine io_context for request allocation 909 * @bio: request being allocated is for this bio (can be %NULL) 910 * 911 * Determine io_context to use for request allocation for @bio. May return 912 * %NULL if %current->io_context doesn't exist. 913 */ 914 static struct io_context *rq_ioc(struct bio *bio) 915 { 916 #ifdef CONFIG_BLK_CGROUP 917 if (bio && bio->bi_ioc) 918 return bio->bi_ioc; 919 #endif 920 return current->io_context; 921 } 922 923 /** 924 * __get_request - get a free request 925 * @rl: request list to allocate from 926 * @rw_flags: RW and SYNC flags 927 * @bio: bio to allocate request for (can be %NULL) 928 * @gfp_mask: allocation mask 929 * 930 * Get a free request from @q. This function may fail under memory 931 * pressure or if @q is dead. 932 * 933 * Must be callled with @q->queue_lock held and, 934 * Returns %NULL on failure, with @q->queue_lock held. 935 * Returns !%NULL on success, with @q->queue_lock *not held*. 936 */ 937 static struct request *__get_request(struct request_list *rl, int rw_flags, 938 struct bio *bio, gfp_t gfp_mask) 939 { 940 struct request_queue *q = rl->q; 941 struct request *rq; 942 struct elevator_type *et = q->elevator->type; 943 struct io_context *ioc = rq_ioc(bio); 944 struct io_cq *icq = NULL; 945 const bool is_sync = rw_is_sync(rw_flags) != 0; 946 int may_queue; 947 948 if (unlikely(blk_queue_dying(q))) 949 return NULL; 950 951 may_queue = elv_may_queue(q, rw_flags); 952 if (may_queue == ELV_MQUEUE_NO) 953 goto rq_starved; 954 955 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 956 if (rl->count[is_sync]+1 >= q->nr_requests) { 957 /* 958 * The queue will fill after this allocation, so set 959 * it as full, and mark this process as "batching". 960 * This process will be allowed to complete a batch of 961 * requests, others will be blocked. 962 */ 963 if (!blk_rl_full(rl, is_sync)) { 964 ioc_set_batching(q, ioc); 965 blk_set_rl_full(rl, is_sync); 966 } else { 967 if (may_queue != ELV_MQUEUE_MUST 968 && !ioc_batching(q, ioc)) { 969 /* 970 * The queue is full and the allocating 971 * process is not a "batcher", and not 972 * exempted by the IO scheduler 973 */ 974 return NULL; 975 } 976 } 977 } 978 /* 979 * bdi isn't aware of blkcg yet. As all async IOs end up 980 * root blkcg anyway, just use root blkcg state. 981 */ 982 if (rl == &q->root_rl) 983 blk_set_queue_congested(q, is_sync); 984 } 985 986 /* 987 * Only allow batching queuers to allocate up to 50% over the defined 988 * limit of requests, otherwise we could have thousands of requests 989 * allocated with any setting of ->nr_requests 990 */ 991 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 992 return NULL; 993 994 q->nr_rqs[is_sync]++; 995 rl->count[is_sync]++; 996 rl->starved[is_sync] = 0; 997 998 /* 999 * Decide whether the new request will be managed by elevator. If 1000 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will 1001 * prevent the current elevator from being destroyed until the new 1002 * request is freed. This guarantees icq's won't be destroyed and 1003 * makes creating new ones safe. 1004 * 1005 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1006 * it will be created after releasing queue_lock. 1007 */ 1008 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 1009 rw_flags |= REQ_ELVPRIV; 1010 q->nr_rqs_elvpriv++; 1011 if (et->icq_cache && ioc) 1012 icq = ioc_lookup_icq(ioc, q); 1013 } 1014 1015 if (blk_queue_io_stat(q)) 1016 rw_flags |= REQ_IO_STAT; 1017 spin_unlock_irq(q->queue_lock); 1018 1019 /* allocate and init request */ 1020 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1021 if (!rq) 1022 goto fail_alloc; 1023 1024 blk_rq_init(q, rq); 1025 blk_rq_set_rl(rq, rl); 1026 rq->cmd_flags = rw_flags | REQ_ALLOCED; 1027 1028 /* init elvpriv */ 1029 if (rw_flags & REQ_ELVPRIV) { 1030 if (unlikely(et->icq_cache && !icq)) { 1031 if (ioc) 1032 icq = ioc_create_icq(ioc, q, gfp_mask); 1033 if (!icq) 1034 goto fail_elvpriv; 1035 } 1036 1037 rq->elv.icq = icq; 1038 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1039 goto fail_elvpriv; 1040 1041 /* @rq->elv.icq holds io_context until @rq is freed */ 1042 if (icq) 1043 get_io_context(icq->ioc); 1044 } 1045 out: 1046 /* 1047 * ioc may be NULL here, and ioc_batching will be false. That's 1048 * OK, if the queue is under the request limit then requests need 1049 * not count toward the nr_batch_requests limit. There will always 1050 * be some limit enforced by BLK_BATCH_TIME. 1051 */ 1052 if (ioc_batching(q, ioc)) 1053 ioc->nr_batch_requests--; 1054 1055 trace_block_getrq(q, bio, rw_flags & 1); 1056 return rq; 1057 1058 fail_elvpriv: 1059 /* 1060 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1061 * and may fail indefinitely under memory pressure and thus 1062 * shouldn't stall IO. Treat this request as !elvpriv. This will 1063 * disturb iosched and blkcg but weird is bettern than dead. 1064 */ 1065 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n", 1066 dev_name(q->backing_dev_info.dev)); 1067 1068 rq->cmd_flags &= ~REQ_ELVPRIV; 1069 rq->elv.icq = NULL; 1070 1071 spin_lock_irq(q->queue_lock); 1072 q->nr_rqs_elvpriv--; 1073 spin_unlock_irq(q->queue_lock); 1074 goto out; 1075 1076 fail_alloc: 1077 /* 1078 * Allocation failed presumably due to memory. Undo anything we 1079 * might have messed up. 1080 * 1081 * Allocating task should really be put onto the front of the wait 1082 * queue, but this is pretty rare. 1083 */ 1084 spin_lock_irq(q->queue_lock); 1085 freed_request(rl, rw_flags); 1086 1087 /* 1088 * in the very unlikely event that allocation failed and no 1089 * requests for this direction was pending, mark us starved so that 1090 * freeing of a request in the other direction will notice 1091 * us. another possible fix would be to split the rq mempool into 1092 * READ and WRITE 1093 */ 1094 rq_starved: 1095 if (unlikely(rl->count[is_sync] == 0)) 1096 rl->starved[is_sync] = 1; 1097 return NULL; 1098 } 1099 1100 /** 1101 * get_request - get a free request 1102 * @q: request_queue to allocate request from 1103 * @rw_flags: RW and SYNC flags 1104 * @bio: bio to allocate request for (can be %NULL) 1105 * @gfp_mask: allocation mask 1106 * 1107 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this 1108 * function keeps retrying under memory pressure and fails iff @q is dead. 1109 * 1110 * Must be callled with @q->queue_lock held and, 1111 * Returns %NULL on failure, with @q->queue_lock held. 1112 * Returns !%NULL on success, with @q->queue_lock *not held*. 1113 */ 1114 static struct request *get_request(struct request_queue *q, int rw_flags, 1115 struct bio *bio, gfp_t gfp_mask) 1116 { 1117 const bool is_sync = rw_is_sync(rw_flags) != 0; 1118 DEFINE_WAIT(wait); 1119 struct request_list *rl; 1120 struct request *rq; 1121 1122 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1123 retry: 1124 rq = __get_request(rl, rw_flags, bio, gfp_mask); 1125 if (rq) 1126 return rq; 1127 1128 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) { 1129 blk_put_rl(rl); 1130 return NULL; 1131 } 1132 1133 /* wait on @rl and retry */ 1134 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1135 TASK_UNINTERRUPTIBLE); 1136 1137 trace_block_sleeprq(q, bio, rw_flags & 1); 1138 1139 spin_unlock_irq(q->queue_lock); 1140 io_schedule(); 1141 1142 /* 1143 * After sleeping, we become a "batching" process and will be able 1144 * to allocate at least one request, and up to a big batch of them 1145 * for a small period time. See ioc_batching, ioc_set_batching 1146 */ 1147 ioc_set_batching(q, current->io_context); 1148 1149 spin_lock_irq(q->queue_lock); 1150 finish_wait(&rl->wait[is_sync], &wait); 1151 1152 goto retry; 1153 } 1154 1155 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1156 gfp_t gfp_mask) 1157 { 1158 struct request *rq; 1159 1160 BUG_ON(rw != READ && rw != WRITE); 1161 1162 /* create ioc upfront */ 1163 create_io_context(gfp_mask, q->node); 1164 1165 spin_lock_irq(q->queue_lock); 1166 rq = get_request(q, rw, NULL, gfp_mask); 1167 if (!rq) 1168 spin_unlock_irq(q->queue_lock); 1169 /* q->queue_lock is unlocked at this point */ 1170 1171 return rq; 1172 } 1173 1174 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1175 { 1176 if (q->mq_ops) 1177 return blk_mq_alloc_request(q, rw, gfp_mask, false); 1178 else 1179 return blk_old_get_request(q, rw, gfp_mask); 1180 } 1181 EXPORT_SYMBOL(blk_get_request); 1182 1183 /** 1184 * blk_make_request - given a bio, allocate a corresponding struct request. 1185 * @q: target request queue 1186 * @bio: The bio describing the memory mappings that will be submitted for IO. 1187 * It may be a chained-bio properly constructed by block/bio layer. 1188 * @gfp_mask: gfp flags to be used for memory allocation 1189 * 1190 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 1191 * type commands. Where the struct request needs to be farther initialized by 1192 * the caller. It is passed a &struct bio, which describes the memory info of 1193 * the I/O transfer. 1194 * 1195 * The caller of blk_make_request must make sure that bi_io_vec 1196 * are set to describe the memory buffers. That bio_data_dir() will return 1197 * the needed direction of the request. (And all bio's in the passed bio-chain 1198 * are properly set accordingly) 1199 * 1200 * If called under none-sleepable conditions, mapped bio buffers must not 1201 * need bouncing, by calling the appropriate masked or flagged allocator, 1202 * suitable for the target device. Otherwise the call to blk_queue_bounce will 1203 * BUG. 1204 * 1205 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 1206 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 1207 * anything but the first bio in the chain. Otherwise you risk waiting for IO 1208 * completion of a bio that hasn't been submitted yet, thus resulting in a 1209 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 1210 * of bio_alloc(), as that avoids the mempool deadlock. 1211 * If possible a big IO should be split into smaller parts when allocation 1212 * fails. Partial allocation should not be an error, or you risk a live-lock. 1213 */ 1214 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 1215 gfp_t gfp_mask) 1216 { 1217 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 1218 1219 if (unlikely(!rq)) 1220 return ERR_PTR(-ENOMEM); 1221 1222 blk_rq_set_block_pc(rq); 1223 1224 for_each_bio(bio) { 1225 struct bio *bounce_bio = bio; 1226 int ret; 1227 1228 blk_queue_bounce(q, &bounce_bio); 1229 ret = blk_rq_append_bio(q, rq, bounce_bio); 1230 if (unlikely(ret)) { 1231 blk_put_request(rq); 1232 return ERR_PTR(ret); 1233 } 1234 } 1235 1236 return rq; 1237 } 1238 EXPORT_SYMBOL(blk_make_request); 1239 1240 /** 1241 * blk_rq_set_block_pc - initialize a requeest to type BLOCK_PC 1242 * @rq: request to be initialized 1243 * 1244 */ 1245 void blk_rq_set_block_pc(struct request *rq) 1246 { 1247 rq->cmd_type = REQ_TYPE_BLOCK_PC; 1248 rq->__data_len = 0; 1249 rq->__sector = (sector_t) -1; 1250 rq->bio = rq->biotail = NULL; 1251 memset(rq->__cmd, 0, sizeof(rq->__cmd)); 1252 rq->cmd = rq->__cmd; 1253 } 1254 EXPORT_SYMBOL(blk_rq_set_block_pc); 1255 1256 /** 1257 * blk_requeue_request - put a request back on queue 1258 * @q: request queue where request should be inserted 1259 * @rq: request to be inserted 1260 * 1261 * Description: 1262 * Drivers often keep queueing requests until the hardware cannot accept 1263 * more, when that condition happens we need to put the request back 1264 * on the queue. Must be called with queue lock held. 1265 */ 1266 void blk_requeue_request(struct request_queue *q, struct request *rq) 1267 { 1268 blk_delete_timer(rq); 1269 blk_clear_rq_complete(rq); 1270 trace_block_rq_requeue(q, rq); 1271 1272 if (blk_rq_tagged(rq)) 1273 blk_queue_end_tag(q, rq); 1274 1275 BUG_ON(blk_queued_rq(rq)); 1276 1277 elv_requeue_request(q, rq); 1278 } 1279 EXPORT_SYMBOL(blk_requeue_request); 1280 1281 static void add_acct_request(struct request_queue *q, struct request *rq, 1282 int where) 1283 { 1284 blk_account_io_start(rq, true); 1285 __elv_add_request(q, rq, where); 1286 } 1287 1288 static void part_round_stats_single(int cpu, struct hd_struct *part, 1289 unsigned long now) 1290 { 1291 int inflight; 1292 1293 if (now == part->stamp) 1294 return; 1295 1296 inflight = part_in_flight(part); 1297 if (inflight) { 1298 __part_stat_add(cpu, part, time_in_queue, 1299 inflight * (now - part->stamp)); 1300 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1301 } 1302 part->stamp = now; 1303 } 1304 1305 /** 1306 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1307 * @cpu: cpu number for stats access 1308 * @part: target partition 1309 * 1310 * The average IO queue length and utilisation statistics are maintained 1311 * by observing the current state of the queue length and the amount of 1312 * time it has been in this state for. 1313 * 1314 * Normally, that accounting is done on IO completion, but that can result 1315 * in more than a second's worth of IO being accounted for within any one 1316 * second, leading to >100% utilisation. To deal with that, we call this 1317 * function to do a round-off before returning the results when reading 1318 * /proc/diskstats. This accounts immediately for all queue usage up to 1319 * the current jiffies and restarts the counters again. 1320 */ 1321 void part_round_stats(int cpu, struct hd_struct *part) 1322 { 1323 unsigned long now = jiffies; 1324 1325 if (part->partno) 1326 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1327 part_round_stats_single(cpu, part, now); 1328 } 1329 EXPORT_SYMBOL_GPL(part_round_stats); 1330 1331 #ifdef CONFIG_PM_RUNTIME 1332 static void blk_pm_put_request(struct request *rq) 1333 { 1334 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending) 1335 pm_runtime_mark_last_busy(rq->q->dev); 1336 } 1337 #else 1338 static inline void blk_pm_put_request(struct request *rq) {} 1339 #endif 1340 1341 /* 1342 * queue lock must be held 1343 */ 1344 void __blk_put_request(struct request_queue *q, struct request *req) 1345 { 1346 if (unlikely(!q)) 1347 return; 1348 1349 if (q->mq_ops) { 1350 blk_mq_free_request(req); 1351 return; 1352 } 1353 1354 blk_pm_put_request(req); 1355 1356 elv_completed_request(q, req); 1357 1358 /* this is a bio leak */ 1359 WARN_ON(req->bio != NULL); 1360 1361 /* 1362 * Request may not have originated from ll_rw_blk. if not, 1363 * it didn't come out of our reserved rq pools 1364 */ 1365 if (req->cmd_flags & REQ_ALLOCED) { 1366 unsigned int flags = req->cmd_flags; 1367 struct request_list *rl = blk_rq_rl(req); 1368 1369 BUG_ON(!list_empty(&req->queuelist)); 1370 BUG_ON(ELV_ON_HASH(req)); 1371 1372 blk_free_request(rl, req); 1373 freed_request(rl, flags); 1374 blk_put_rl(rl); 1375 } 1376 } 1377 EXPORT_SYMBOL_GPL(__blk_put_request); 1378 1379 void blk_put_request(struct request *req) 1380 { 1381 struct request_queue *q = req->q; 1382 1383 if (q->mq_ops) 1384 blk_mq_free_request(req); 1385 else { 1386 unsigned long flags; 1387 1388 spin_lock_irqsave(q->queue_lock, flags); 1389 __blk_put_request(q, req); 1390 spin_unlock_irqrestore(q->queue_lock, flags); 1391 } 1392 } 1393 EXPORT_SYMBOL(blk_put_request); 1394 1395 /** 1396 * blk_add_request_payload - add a payload to a request 1397 * @rq: request to update 1398 * @page: page backing the payload 1399 * @len: length of the payload. 1400 * 1401 * This allows to later add a payload to an already submitted request by 1402 * a block driver. The driver needs to take care of freeing the payload 1403 * itself. 1404 * 1405 * Note that this is a quite horrible hack and nothing but handling of 1406 * discard requests should ever use it. 1407 */ 1408 void blk_add_request_payload(struct request *rq, struct page *page, 1409 unsigned int len) 1410 { 1411 struct bio *bio = rq->bio; 1412 1413 bio->bi_io_vec->bv_page = page; 1414 bio->bi_io_vec->bv_offset = 0; 1415 bio->bi_io_vec->bv_len = len; 1416 1417 bio->bi_iter.bi_size = len; 1418 bio->bi_vcnt = 1; 1419 bio->bi_phys_segments = 1; 1420 1421 rq->__data_len = rq->resid_len = len; 1422 rq->nr_phys_segments = 1; 1423 } 1424 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1425 1426 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1427 struct bio *bio) 1428 { 1429 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1430 1431 if (!ll_back_merge_fn(q, req, bio)) 1432 return false; 1433 1434 trace_block_bio_backmerge(q, req, bio); 1435 1436 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1437 blk_rq_set_mixed_merge(req); 1438 1439 req->biotail->bi_next = bio; 1440 req->biotail = bio; 1441 req->__data_len += bio->bi_iter.bi_size; 1442 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1443 1444 blk_account_io_start(req, false); 1445 return true; 1446 } 1447 1448 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1449 struct bio *bio) 1450 { 1451 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1452 1453 if (!ll_front_merge_fn(q, req, bio)) 1454 return false; 1455 1456 trace_block_bio_frontmerge(q, req, bio); 1457 1458 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1459 blk_rq_set_mixed_merge(req); 1460 1461 bio->bi_next = req->bio; 1462 req->bio = bio; 1463 1464 req->__sector = bio->bi_iter.bi_sector; 1465 req->__data_len += bio->bi_iter.bi_size; 1466 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1467 1468 blk_account_io_start(req, false); 1469 return true; 1470 } 1471 1472 /** 1473 * blk_attempt_plug_merge - try to merge with %current's plugged list 1474 * @q: request_queue new bio is being queued at 1475 * @bio: new bio being queued 1476 * @request_count: out parameter for number of traversed plugged requests 1477 * 1478 * Determine whether @bio being queued on @q can be merged with a request 1479 * on %current's plugged list. Returns %true if merge was successful, 1480 * otherwise %false. 1481 * 1482 * Plugging coalesces IOs from the same issuer for the same purpose without 1483 * going through @q->queue_lock. As such it's more of an issuing mechanism 1484 * than scheduling, and the request, while may have elvpriv data, is not 1485 * added on the elevator at this point. In addition, we don't have 1486 * reliable access to the elevator outside queue lock. Only check basic 1487 * merging parameters without querying the elevator. 1488 * 1489 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1490 */ 1491 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1492 unsigned int *request_count) 1493 { 1494 struct blk_plug *plug; 1495 struct request *rq; 1496 bool ret = false; 1497 struct list_head *plug_list; 1498 1499 plug = current->plug; 1500 if (!plug) 1501 goto out; 1502 *request_count = 0; 1503 1504 if (q->mq_ops) 1505 plug_list = &plug->mq_list; 1506 else 1507 plug_list = &plug->list; 1508 1509 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1510 int el_ret; 1511 1512 if (rq->q == q) 1513 (*request_count)++; 1514 1515 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1516 continue; 1517 1518 el_ret = blk_try_merge(rq, bio); 1519 if (el_ret == ELEVATOR_BACK_MERGE) { 1520 ret = bio_attempt_back_merge(q, rq, bio); 1521 if (ret) 1522 break; 1523 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1524 ret = bio_attempt_front_merge(q, rq, bio); 1525 if (ret) 1526 break; 1527 } 1528 } 1529 out: 1530 return ret; 1531 } 1532 1533 void init_request_from_bio(struct request *req, struct bio *bio) 1534 { 1535 req->cmd_type = REQ_TYPE_FS; 1536 1537 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1538 if (bio->bi_rw & REQ_RAHEAD) 1539 req->cmd_flags |= REQ_FAILFAST_MASK; 1540 1541 req->errors = 0; 1542 req->__sector = bio->bi_iter.bi_sector; 1543 req->ioprio = bio_prio(bio); 1544 blk_rq_bio_prep(req->q, req, bio); 1545 } 1546 1547 void blk_queue_bio(struct request_queue *q, struct bio *bio) 1548 { 1549 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1550 struct blk_plug *plug; 1551 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1552 struct request *req; 1553 unsigned int request_count = 0; 1554 1555 /* 1556 * low level driver can indicate that it wants pages above a 1557 * certain limit bounced to low memory (ie for highmem, or even 1558 * ISA dma in theory) 1559 */ 1560 blk_queue_bounce(q, &bio); 1561 1562 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1563 bio_endio(bio, -EIO); 1564 return; 1565 } 1566 1567 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1568 spin_lock_irq(q->queue_lock); 1569 where = ELEVATOR_INSERT_FLUSH; 1570 goto get_rq; 1571 } 1572 1573 /* 1574 * Check if we can merge with the plugged list before grabbing 1575 * any locks. 1576 */ 1577 if (!blk_queue_nomerges(q) && 1578 blk_attempt_plug_merge(q, bio, &request_count)) 1579 return; 1580 1581 spin_lock_irq(q->queue_lock); 1582 1583 el_ret = elv_merge(q, &req, bio); 1584 if (el_ret == ELEVATOR_BACK_MERGE) { 1585 if (bio_attempt_back_merge(q, req, bio)) { 1586 elv_bio_merged(q, req, bio); 1587 if (!attempt_back_merge(q, req)) 1588 elv_merged_request(q, req, el_ret); 1589 goto out_unlock; 1590 } 1591 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1592 if (bio_attempt_front_merge(q, req, bio)) { 1593 elv_bio_merged(q, req, bio); 1594 if (!attempt_front_merge(q, req)) 1595 elv_merged_request(q, req, el_ret); 1596 goto out_unlock; 1597 } 1598 } 1599 1600 get_rq: 1601 /* 1602 * This sync check and mask will be re-done in init_request_from_bio(), 1603 * but we need to set it earlier to expose the sync flag to the 1604 * rq allocator and io schedulers. 1605 */ 1606 rw_flags = bio_data_dir(bio); 1607 if (sync) 1608 rw_flags |= REQ_SYNC; 1609 1610 /* 1611 * Grab a free request. This is might sleep but can not fail. 1612 * Returns with the queue unlocked. 1613 */ 1614 req = get_request(q, rw_flags, bio, GFP_NOIO); 1615 if (unlikely(!req)) { 1616 bio_endio(bio, -ENODEV); /* @q is dead */ 1617 goto out_unlock; 1618 } 1619 1620 /* 1621 * After dropping the lock and possibly sleeping here, our request 1622 * may now be mergeable after it had proven unmergeable (above). 1623 * We don't worry about that case for efficiency. It won't happen 1624 * often, and the elevators are able to handle it. 1625 */ 1626 init_request_from_bio(req, bio); 1627 1628 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1629 req->cpu = raw_smp_processor_id(); 1630 1631 plug = current->plug; 1632 if (plug) { 1633 /* 1634 * If this is the first request added after a plug, fire 1635 * of a plug trace. 1636 */ 1637 if (!request_count) 1638 trace_block_plug(q); 1639 else { 1640 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1641 blk_flush_plug_list(plug, false); 1642 trace_block_plug(q); 1643 } 1644 } 1645 list_add_tail(&req->queuelist, &plug->list); 1646 blk_account_io_start(req, true); 1647 } else { 1648 spin_lock_irq(q->queue_lock); 1649 add_acct_request(q, req, where); 1650 __blk_run_queue(q); 1651 out_unlock: 1652 spin_unlock_irq(q->queue_lock); 1653 } 1654 } 1655 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */ 1656 1657 /* 1658 * If bio->bi_dev is a partition, remap the location 1659 */ 1660 static inline void blk_partition_remap(struct bio *bio) 1661 { 1662 struct block_device *bdev = bio->bi_bdev; 1663 1664 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1665 struct hd_struct *p = bdev->bd_part; 1666 1667 bio->bi_iter.bi_sector += p->start_sect; 1668 bio->bi_bdev = bdev->bd_contains; 1669 1670 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1671 bdev->bd_dev, 1672 bio->bi_iter.bi_sector - p->start_sect); 1673 } 1674 } 1675 1676 static void handle_bad_sector(struct bio *bio) 1677 { 1678 char b[BDEVNAME_SIZE]; 1679 1680 printk(KERN_INFO "attempt to access beyond end of device\n"); 1681 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1682 bdevname(bio->bi_bdev, b), 1683 bio->bi_rw, 1684 (unsigned long long)bio_end_sector(bio), 1685 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1686 1687 set_bit(BIO_EOF, &bio->bi_flags); 1688 } 1689 1690 #ifdef CONFIG_FAIL_MAKE_REQUEST 1691 1692 static DECLARE_FAULT_ATTR(fail_make_request); 1693 1694 static int __init setup_fail_make_request(char *str) 1695 { 1696 return setup_fault_attr(&fail_make_request, str); 1697 } 1698 __setup("fail_make_request=", setup_fail_make_request); 1699 1700 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1701 { 1702 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1703 } 1704 1705 static int __init fail_make_request_debugfs(void) 1706 { 1707 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1708 NULL, &fail_make_request); 1709 1710 return PTR_ERR_OR_ZERO(dir); 1711 } 1712 1713 late_initcall(fail_make_request_debugfs); 1714 1715 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1716 1717 static inline bool should_fail_request(struct hd_struct *part, 1718 unsigned int bytes) 1719 { 1720 return false; 1721 } 1722 1723 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1724 1725 /* 1726 * Check whether this bio extends beyond the end of the device. 1727 */ 1728 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1729 { 1730 sector_t maxsector; 1731 1732 if (!nr_sectors) 1733 return 0; 1734 1735 /* Test device or partition size, when known. */ 1736 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1737 if (maxsector) { 1738 sector_t sector = bio->bi_iter.bi_sector; 1739 1740 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1741 /* 1742 * This may well happen - the kernel calls bread() 1743 * without checking the size of the device, e.g., when 1744 * mounting a device. 1745 */ 1746 handle_bad_sector(bio); 1747 return 1; 1748 } 1749 } 1750 1751 return 0; 1752 } 1753 1754 static noinline_for_stack bool 1755 generic_make_request_checks(struct bio *bio) 1756 { 1757 struct request_queue *q; 1758 int nr_sectors = bio_sectors(bio); 1759 int err = -EIO; 1760 char b[BDEVNAME_SIZE]; 1761 struct hd_struct *part; 1762 1763 might_sleep(); 1764 1765 if (bio_check_eod(bio, nr_sectors)) 1766 goto end_io; 1767 1768 q = bdev_get_queue(bio->bi_bdev); 1769 if (unlikely(!q)) { 1770 printk(KERN_ERR 1771 "generic_make_request: Trying to access " 1772 "nonexistent block-device %s (%Lu)\n", 1773 bdevname(bio->bi_bdev, b), 1774 (long long) bio->bi_iter.bi_sector); 1775 goto end_io; 1776 } 1777 1778 if (likely(bio_is_rw(bio) && 1779 nr_sectors > queue_max_hw_sectors(q))) { 1780 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1781 bdevname(bio->bi_bdev, b), 1782 bio_sectors(bio), 1783 queue_max_hw_sectors(q)); 1784 goto end_io; 1785 } 1786 1787 part = bio->bi_bdev->bd_part; 1788 if (should_fail_request(part, bio->bi_iter.bi_size) || 1789 should_fail_request(&part_to_disk(part)->part0, 1790 bio->bi_iter.bi_size)) 1791 goto end_io; 1792 1793 /* 1794 * If this device has partitions, remap block n 1795 * of partition p to block n+start(p) of the disk. 1796 */ 1797 blk_partition_remap(bio); 1798 1799 if (bio_check_eod(bio, nr_sectors)) 1800 goto end_io; 1801 1802 /* 1803 * Filter flush bio's early so that make_request based 1804 * drivers without flush support don't have to worry 1805 * about them. 1806 */ 1807 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1808 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1809 if (!nr_sectors) { 1810 err = 0; 1811 goto end_io; 1812 } 1813 } 1814 1815 if ((bio->bi_rw & REQ_DISCARD) && 1816 (!blk_queue_discard(q) || 1817 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) { 1818 err = -EOPNOTSUPP; 1819 goto end_io; 1820 } 1821 1822 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) { 1823 err = -EOPNOTSUPP; 1824 goto end_io; 1825 } 1826 1827 /* 1828 * Various block parts want %current->io_context and lazy ioc 1829 * allocation ends up trading a lot of pain for a small amount of 1830 * memory. Just allocate it upfront. This may fail and block 1831 * layer knows how to live with it. 1832 */ 1833 create_io_context(GFP_ATOMIC, q->node); 1834 1835 if (blk_throtl_bio(q, bio)) 1836 return false; /* throttled, will be resubmitted later */ 1837 1838 trace_block_bio_queue(q, bio); 1839 return true; 1840 1841 end_io: 1842 bio_endio(bio, err); 1843 return false; 1844 } 1845 1846 /** 1847 * generic_make_request - hand a buffer to its device driver for I/O 1848 * @bio: The bio describing the location in memory and on the device. 1849 * 1850 * generic_make_request() is used to make I/O requests of block 1851 * devices. It is passed a &struct bio, which describes the I/O that needs 1852 * to be done. 1853 * 1854 * generic_make_request() does not return any status. The 1855 * success/failure status of the request, along with notification of 1856 * completion, is delivered asynchronously through the bio->bi_end_io 1857 * function described (one day) else where. 1858 * 1859 * The caller of generic_make_request must make sure that bi_io_vec 1860 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1861 * set to describe the device address, and the 1862 * bi_end_io and optionally bi_private are set to describe how 1863 * completion notification should be signaled. 1864 * 1865 * generic_make_request and the drivers it calls may use bi_next if this 1866 * bio happens to be merged with someone else, and may resubmit the bio to 1867 * a lower device by calling into generic_make_request recursively, which 1868 * means the bio should NOT be touched after the call to ->make_request_fn. 1869 */ 1870 void generic_make_request(struct bio *bio) 1871 { 1872 struct bio_list bio_list_on_stack; 1873 1874 if (!generic_make_request_checks(bio)) 1875 return; 1876 1877 /* 1878 * We only want one ->make_request_fn to be active at a time, else 1879 * stack usage with stacked devices could be a problem. So use 1880 * current->bio_list to keep a list of requests submited by a 1881 * make_request_fn function. current->bio_list is also used as a 1882 * flag to say if generic_make_request is currently active in this 1883 * task or not. If it is NULL, then no make_request is active. If 1884 * it is non-NULL, then a make_request is active, and new requests 1885 * should be added at the tail 1886 */ 1887 if (current->bio_list) { 1888 bio_list_add(current->bio_list, bio); 1889 return; 1890 } 1891 1892 /* following loop may be a bit non-obvious, and so deserves some 1893 * explanation. 1894 * Before entering the loop, bio->bi_next is NULL (as all callers 1895 * ensure that) so we have a list with a single bio. 1896 * We pretend that we have just taken it off a longer list, so 1897 * we assign bio_list to a pointer to the bio_list_on_stack, 1898 * thus initialising the bio_list of new bios to be 1899 * added. ->make_request() may indeed add some more bios 1900 * through a recursive call to generic_make_request. If it 1901 * did, we find a non-NULL value in bio_list and re-enter the loop 1902 * from the top. In this case we really did just take the bio 1903 * of the top of the list (no pretending) and so remove it from 1904 * bio_list, and call into ->make_request() again. 1905 */ 1906 BUG_ON(bio->bi_next); 1907 bio_list_init(&bio_list_on_stack); 1908 current->bio_list = &bio_list_on_stack; 1909 do { 1910 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1911 1912 q->make_request_fn(q, bio); 1913 1914 bio = bio_list_pop(current->bio_list); 1915 } while (bio); 1916 current->bio_list = NULL; /* deactivate */ 1917 } 1918 EXPORT_SYMBOL(generic_make_request); 1919 1920 /** 1921 * submit_bio - submit a bio to the block device layer for I/O 1922 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1923 * @bio: The &struct bio which describes the I/O 1924 * 1925 * submit_bio() is very similar in purpose to generic_make_request(), and 1926 * uses that function to do most of the work. Both are fairly rough 1927 * interfaces; @bio must be presetup and ready for I/O. 1928 * 1929 */ 1930 void submit_bio(int rw, struct bio *bio) 1931 { 1932 bio->bi_rw |= rw; 1933 1934 /* 1935 * If it's a regular read/write or a barrier with data attached, 1936 * go through the normal accounting stuff before submission. 1937 */ 1938 if (bio_has_data(bio)) { 1939 unsigned int count; 1940 1941 if (unlikely(rw & REQ_WRITE_SAME)) 1942 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 1943 else 1944 count = bio_sectors(bio); 1945 1946 if (rw & WRITE) { 1947 count_vm_events(PGPGOUT, count); 1948 } else { 1949 task_io_account_read(bio->bi_iter.bi_size); 1950 count_vm_events(PGPGIN, count); 1951 } 1952 1953 if (unlikely(block_dump)) { 1954 char b[BDEVNAME_SIZE]; 1955 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1956 current->comm, task_pid_nr(current), 1957 (rw & WRITE) ? "WRITE" : "READ", 1958 (unsigned long long)bio->bi_iter.bi_sector, 1959 bdevname(bio->bi_bdev, b), 1960 count); 1961 } 1962 } 1963 1964 generic_make_request(bio); 1965 } 1966 EXPORT_SYMBOL(submit_bio); 1967 1968 /** 1969 * blk_rq_check_limits - Helper function to check a request for the queue limit 1970 * @q: the queue 1971 * @rq: the request being checked 1972 * 1973 * Description: 1974 * @rq may have been made based on weaker limitations of upper-level queues 1975 * in request stacking drivers, and it may violate the limitation of @q. 1976 * Since the block layer and the underlying device driver trust @rq 1977 * after it is inserted to @q, it should be checked against @q before 1978 * the insertion using this generic function. 1979 * 1980 * This function should also be useful for request stacking drivers 1981 * in some cases below, so export this function. 1982 * Request stacking drivers like request-based dm may change the queue 1983 * limits while requests are in the queue (e.g. dm's table swapping). 1984 * Such request stacking drivers should check those requests against 1985 * the new queue limits again when they dispatch those requests, 1986 * although such checkings are also done against the old queue limits 1987 * when submitting requests. 1988 */ 1989 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1990 { 1991 if (!rq_mergeable(rq)) 1992 return 0; 1993 1994 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) { 1995 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1996 return -EIO; 1997 } 1998 1999 /* 2000 * queue's settings related to segment counting like q->bounce_pfn 2001 * may differ from that of other stacking queues. 2002 * Recalculate it to check the request correctly on this queue's 2003 * limitation. 2004 */ 2005 blk_recalc_rq_segments(rq); 2006 if (rq->nr_phys_segments > queue_max_segments(q)) { 2007 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2008 return -EIO; 2009 } 2010 2011 return 0; 2012 } 2013 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 2014 2015 /** 2016 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2017 * @q: the queue to submit the request 2018 * @rq: the request being queued 2019 */ 2020 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2021 { 2022 unsigned long flags; 2023 int where = ELEVATOR_INSERT_BACK; 2024 2025 if (blk_rq_check_limits(q, rq)) 2026 return -EIO; 2027 2028 if (rq->rq_disk && 2029 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2030 return -EIO; 2031 2032 spin_lock_irqsave(q->queue_lock, flags); 2033 if (unlikely(blk_queue_dying(q))) { 2034 spin_unlock_irqrestore(q->queue_lock, flags); 2035 return -ENODEV; 2036 } 2037 2038 /* 2039 * Submitting request must be dequeued before calling this function 2040 * because it will be linked to another request_queue 2041 */ 2042 BUG_ON(blk_queued_rq(rq)); 2043 2044 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 2045 where = ELEVATOR_INSERT_FLUSH; 2046 2047 add_acct_request(q, rq, where); 2048 if (where == ELEVATOR_INSERT_FLUSH) 2049 __blk_run_queue(q); 2050 spin_unlock_irqrestore(q->queue_lock, flags); 2051 2052 return 0; 2053 } 2054 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2055 2056 /** 2057 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2058 * @rq: request to examine 2059 * 2060 * Description: 2061 * A request could be merge of IOs which require different failure 2062 * handling. This function determines the number of bytes which 2063 * can be failed from the beginning of the request without 2064 * crossing into area which need to be retried further. 2065 * 2066 * Return: 2067 * The number of bytes to fail. 2068 * 2069 * Context: 2070 * queue_lock must be held. 2071 */ 2072 unsigned int blk_rq_err_bytes(const struct request *rq) 2073 { 2074 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2075 unsigned int bytes = 0; 2076 struct bio *bio; 2077 2078 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 2079 return blk_rq_bytes(rq); 2080 2081 /* 2082 * Currently the only 'mixing' which can happen is between 2083 * different fastfail types. We can safely fail portions 2084 * which have all the failfast bits that the first one has - 2085 * the ones which are at least as eager to fail as the first 2086 * one. 2087 */ 2088 for (bio = rq->bio; bio; bio = bio->bi_next) { 2089 if ((bio->bi_rw & ff) != ff) 2090 break; 2091 bytes += bio->bi_iter.bi_size; 2092 } 2093 2094 /* this could lead to infinite loop */ 2095 BUG_ON(blk_rq_bytes(rq) && !bytes); 2096 return bytes; 2097 } 2098 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2099 2100 void blk_account_io_completion(struct request *req, unsigned int bytes) 2101 { 2102 if (blk_do_io_stat(req)) { 2103 const int rw = rq_data_dir(req); 2104 struct hd_struct *part; 2105 int cpu; 2106 2107 cpu = part_stat_lock(); 2108 part = req->part; 2109 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2110 part_stat_unlock(); 2111 } 2112 } 2113 2114 void blk_account_io_done(struct request *req) 2115 { 2116 /* 2117 * Account IO completion. flush_rq isn't accounted as a 2118 * normal IO on queueing nor completion. Accounting the 2119 * containing request is enough. 2120 */ 2121 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2122 unsigned long duration = jiffies - req->start_time; 2123 const int rw = rq_data_dir(req); 2124 struct hd_struct *part; 2125 int cpu; 2126 2127 cpu = part_stat_lock(); 2128 part = req->part; 2129 2130 part_stat_inc(cpu, part, ios[rw]); 2131 part_stat_add(cpu, part, ticks[rw], duration); 2132 part_round_stats(cpu, part); 2133 part_dec_in_flight(part, rw); 2134 2135 hd_struct_put(part); 2136 part_stat_unlock(); 2137 } 2138 } 2139 2140 #ifdef CONFIG_PM_RUNTIME 2141 /* 2142 * Don't process normal requests when queue is suspended 2143 * or in the process of suspending/resuming 2144 */ 2145 static struct request *blk_pm_peek_request(struct request_queue *q, 2146 struct request *rq) 2147 { 2148 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2149 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM)))) 2150 return NULL; 2151 else 2152 return rq; 2153 } 2154 #else 2155 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2156 struct request *rq) 2157 { 2158 return rq; 2159 } 2160 #endif 2161 2162 void blk_account_io_start(struct request *rq, bool new_io) 2163 { 2164 struct hd_struct *part; 2165 int rw = rq_data_dir(rq); 2166 int cpu; 2167 2168 if (!blk_do_io_stat(rq)) 2169 return; 2170 2171 cpu = part_stat_lock(); 2172 2173 if (!new_io) { 2174 part = rq->part; 2175 part_stat_inc(cpu, part, merges[rw]); 2176 } else { 2177 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2178 if (!hd_struct_try_get(part)) { 2179 /* 2180 * The partition is already being removed, 2181 * the request will be accounted on the disk only 2182 * 2183 * We take a reference on disk->part0 although that 2184 * partition will never be deleted, so we can treat 2185 * it as any other partition. 2186 */ 2187 part = &rq->rq_disk->part0; 2188 hd_struct_get(part); 2189 } 2190 part_round_stats(cpu, part); 2191 part_inc_in_flight(part, rw); 2192 rq->part = part; 2193 } 2194 2195 part_stat_unlock(); 2196 } 2197 2198 /** 2199 * blk_peek_request - peek at the top of a request queue 2200 * @q: request queue to peek at 2201 * 2202 * Description: 2203 * Return the request at the top of @q. The returned request 2204 * should be started using blk_start_request() before LLD starts 2205 * processing it. 2206 * 2207 * Return: 2208 * Pointer to the request at the top of @q if available. Null 2209 * otherwise. 2210 * 2211 * Context: 2212 * queue_lock must be held. 2213 */ 2214 struct request *blk_peek_request(struct request_queue *q) 2215 { 2216 struct request *rq; 2217 int ret; 2218 2219 while ((rq = __elv_next_request(q)) != NULL) { 2220 2221 rq = blk_pm_peek_request(q, rq); 2222 if (!rq) 2223 break; 2224 2225 if (!(rq->cmd_flags & REQ_STARTED)) { 2226 /* 2227 * This is the first time the device driver 2228 * sees this request (possibly after 2229 * requeueing). Notify IO scheduler. 2230 */ 2231 if (rq->cmd_flags & REQ_SORTED) 2232 elv_activate_rq(q, rq); 2233 2234 /* 2235 * just mark as started even if we don't start 2236 * it, a request that has been delayed should 2237 * not be passed by new incoming requests 2238 */ 2239 rq->cmd_flags |= REQ_STARTED; 2240 trace_block_rq_issue(q, rq); 2241 } 2242 2243 if (!q->boundary_rq || q->boundary_rq == rq) { 2244 q->end_sector = rq_end_sector(rq); 2245 q->boundary_rq = NULL; 2246 } 2247 2248 if (rq->cmd_flags & REQ_DONTPREP) 2249 break; 2250 2251 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2252 /* 2253 * make sure space for the drain appears we 2254 * know we can do this because max_hw_segments 2255 * has been adjusted to be one fewer than the 2256 * device can handle 2257 */ 2258 rq->nr_phys_segments++; 2259 } 2260 2261 if (!q->prep_rq_fn) 2262 break; 2263 2264 ret = q->prep_rq_fn(q, rq); 2265 if (ret == BLKPREP_OK) { 2266 break; 2267 } else if (ret == BLKPREP_DEFER) { 2268 /* 2269 * the request may have been (partially) prepped. 2270 * we need to keep this request in the front to 2271 * avoid resource deadlock. REQ_STARTED will 2272 * prevent other fs requests from passing this one. 2273 */ 2274 if (q->dma_drain_size && blk_rq_bytes(rq) && 2275 !(rq->cmd_flags & REQ_DONTPREP)) { 2276 /* 2277 * remove the space for the drain we added 2278 * so that we don't add it again 2279 */ 2280 --rq->nr_phys_segments; 2281 } 2282 2283 rq = NULL; 2284 break; 2285 } else if (ret == BLKPREP_KILL) { 2286 rq->cmd_flags |= REQ_QUIET; 2287 /* 2288 * Mark this request as started so we don't trigger 2289 * any debug logic in the end I/O path. 2290 */ 2291 blk_start_request(rq); 2292 __blk_end_request_all(rq, -EIO); 2293 } else { 2294 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2295 break; 2296 } 2297 } 2298 2299 return rq; 2300 } 2301 EXPORT_SYMBOL(blk_peek_request); 2302 2303 void blk_dequeue_request(struct request *rq) 2304 { 2305 struct request_queue *q = rq->q; 2306 2307 BUG_ON(list_empty(&rq->queuelist)); 2308 BUG_ON(ELV_ON_HASH(rq)); 2309 2310 list_del_init(&rq->queuelist); 2311 2312 /* 2313 * the time frame between a request being removed from the lists 2314 * and to it is freed is accounted as io that is in progress at 2315 * the driver side. 2316 */ 2317 if (blk_account_rq(rq)) { 2318 q->in_flight[rq_is_sync(rq)]++; 2319 set_io_start_time_ns(rq); 2320 } 2321 } 2322 2323 /** 2324 * blk_start_request - start request processing on the driver 2325 * @req: request to dequeue 2326 * 2327 * Description: 2328 * Dequeue @req and start timeout timer on it. This hands off the 2329 * request to the driver. 2330 * 2331 * Block internal functions which don't want to start timer should 2332 * call blk_dequeue_request(). 2333 * 2334 * Context: 2335 * queue_lock must be held. 2336 */ 2337 void blk_start_request(struct request *req) 2338 { 2339 blk_dequeue_request(req); 2340 2341 /* 2342 * We are now handing the request to the hardware, initialize 2343 * resid_len to full count and add the timeout handler. 2344 */ 2345 req->resid_len = blk_rq_bytes(req); 2346 if (unlikely(blk_bidi_rq(req))) 2347 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2348 2349 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2350 blk_add_timer(req); 2351 } 2352 EXPORT_SYMBOL(blk_start_request); 2353 2354 /** 2355 * blk_fetch_request - fetch a request from a request queue 2356 * @q: request queue to fetch a request from 2357 * 2358 * Description: 2359 * Return the request at the top of @q. The request is started on 2360 * return and LLD can start processing it immediately. 2361 * 2362 * Return: 2363 * Pointer to the request at the top of @q if available. Null 2364 * otherwise. 2365 * 2366 * Context: 2367 * queue_lock must be held. 2368 */ 2369 struct request *blk_fetch_request(struct request_queue *q) 2370 { 2371 struct request *rq; 2372 2373 rq = blk_peek_request(q); 2374 if (rq) 2375 blk_start_request(rq); 2376 return rq; 2377 } 2378 EXPORT_SYMBOL(blk_fetch_request); 2379 2380 /** 2381 * blk_update_request - Special helper function for request stacking drivers 2382 * @req: the request being processed 2383 * @error: %0 for success, < %0 for error 2384 * @nr_bytes: number of bytes to complete @req 2385 * 2386 * Description: 2387 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2388 * the request structure even if @req doesn't have leftover. 2389 * If @req has leftover, sets it up for the next range of segments. 2390 * 2391 * This special helper function is only for request stacking drivers 2392 * (e.g. request-based dm) so that they can handle partial completion. 2393 * Actual device drivers should use blk_end_request instead. 2394 * 2395 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2396 * %false return from this function. 2397 * 2398 * Return: 2399 * %false - this request doesn't have any more data 2400 * %true - this request has more data 2401 **/ 2402 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2403 { 2404 int total_bytes; 2405 2406 if (!req->bio) 2407 return false; 2408 2409 trace_block_rq_complete(req->q, req, nr_bytes); 2410 2411 /* 2412 * For fs requests, rq is just carrier of independent bio's 2413 * and each partial completion should be handled separately. 2414 * Reset per-request error on each partial completion. 2415 * 2416 * TODO: tj: This is too subtle. It would be better to let 2417 * low level drivers do what they see fit. 2418 */ 2419 if (req->cmd_type == REQ_TYPE_FS) 2420 req->errors = 0; 2421 2422 if (error && req->cmd_type == REQ_TYPE_FS && 2423 !(req->cmd_flags & REQ_QUIET)) { 2424 char *error_type; 2425 2426 switch (error) { 2427 case -ENOLINK: 2428 error_type = "recoverable transport"; 2429 break; 2430 case -EREMOTEIO: 2431 error_type = "critical target"; 2432 break; 2433 case -EBADE: 2434 error_type = "critical nexus"; 2435 break; 2436 case -ETIMEDOUT: 2437 error_type = "timeout"; 2438 break; 2439 case -ENOSPC: 2440 error_type = "critical space allocation"; 2441 break; 2442 case -ENODATA: 2443 error_type = "critical medium"; 2444 break; 2445 case -EIO: 2446 default: 2447 error_type = "I/O"; 2448 break; 2449 } 2450 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2451 error_type, req->rq_disk ? 2452 req->rq_disk->disk_name : "?", 2453 (unsigned long long)blk_rq_pos(req)); 2454 2455 } 2456 2457 blk_account_io_completion(req, nr_bytes); 2458 2459 total_bytes = 0; 2460 while (req->bio) { 2461 struct bio *bio = req->bio; 2462 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2463 2464 if (bio_bytes == bio->bi_iter.bi_size) 2465 req->bio = bio->bi_next; 2466 2467 req_bio_endio(req, bio, bio_bytes, error); 2468 2469 total_bytes += bio_bytes; 2470 nr_bytes -= bio_bytes; 2471 2472 if (!nr_bytes) 2473 break; 2474 } 2475 2476 /* 2477 * completely done 2478 */ 2479 if (!req->bio) { 2480 /* 2481 * Reset counters so that the request stacking driver 2482 * can find how many bytes remain in the request 2483 * later. 2484 */ 2485 req->__data_len = 0; 2486 return false; 2487 } 2488 2489 req->__data_len -= total_bytes; 2490 2491 /* update sector only for requests with clear definition of sector */ 2492 if (req->cmd_type == REQ_TYPE_FS) 2493 req->__sector += total_bytes >> 9; 2494 2495 /* mixed attributes always follow the first bio */ 2496 if (req->cmd_flags & REQ_MIXED_MERGE) { 2497 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2498 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2499 } 2500 2501 /* 2502 * If total number of sectors is less than the first segment 2503 * size, something has gone terribly wrong. 2504 */ 2505 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2506 blk_dump_rq_flags(req, "request botched"); 2507 req->__data_len = blk_rq_cur_bytes(req); 2508 } 2509 2510 /* recalculate the number of segments */ 2511 blk_recalc_rq_segments(req); 2512 2513 return true; 2514 } 2515 EXPORT_SYMBOL_GPL(blk_update_request); 2516 2517 static bool blk_update_bidi_request(struct request *rq, int error, 2518 unsigned int nr_bytes, 2519 unsigned int bidi_bytes) 2520 { 2521 if (blk_update_request(rq, error, nr_bytes)) 2522 return true; 2523 2524 /* Bidi request must be completed as a whole */ 2525 if (unlikely(blk_bidi_rq(rq)) && 2526 blk_update_request(rq->next_rq, error, bidi_bytes)) 2527 return true; 2528 2529 if (blk_queue_add_random(rq->q)) 2530 add_disk_randomness(rq->rq_disk); 2531 2532 return false; 2533 } 2534 2535 /** 2536 * blk_unprep_request - unprepare a request 2537 * @req: the request 2538 * 2539 * This function makes a request ready for complete resubmission (or 2540 * completion). It happens only after all error handling is complete, 2541 * so represents the appropriate moment to deallocate any resources 2542 * that were allocated to the request in the prep_rq_fn. The queue 2543 * lock is held when calling this. 2544 */ 2545 void blk_unprep_request(struct request *req) 2546 { 2547 struct request_queue *q = req->q; 2548 2549 req->cmd_flags &= ~REQ_DONTPREP; 2550 if (q->unprep_rq_fn) 2551 q->unprep_rq_fn(q, req); 2552 } 2553 EXPORT_SYMBOL_GPL(blk_unprep_request); 2554 2555 /* 2556 * queue lock must be held 2557 */ 2558 void blk_finish_request(struct request *req, int error) 2559 { 2560 if (blk_rq_tagged(req)) 2561 blk_queue_end_tag(req->q, req); 2562 2563 BUG_ON(blk_queued_rq(req)); 2564 2565 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2566 laptop_io_completion(&req->q->backing_dev_info); 2567 2568 blk_delete_timer(req); 2569 2570 if (req->cmd_flags & REQ_DONTPREP) 2571 blk_unprep_request(req); 2572 2573 blk_account_io_done(req); 2574 2575 if (req->end_io) 2576 req->end_io(req, error); 2577 else { 2578 if (blk_bidi_rq(req)) 2579 __blk_put_request(req->next_rq->q, req->next_rq); 2580 2581 __blk_put_request(req->q, req); 2582 } 2583 } 2584 EXPORT_SYMBOL(blk_finish_request); 2585 2586 /** 2587 * blk_end_bidi_request - Complete a bidi request 2588 * @rq: the request to complete 2589 * @error: %0 for success, < %0 for error 2590 * @nr_bytes: number of bytes to complete @rq 2591 * @bidi_bytes: number of bytes to complete @rq->next_rq 2592 * 2593 * Description: 2594 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2595 * Drivers that supports bidi can safely call this member for any 2596 * type of request, bidi or uni. In the later case @bidi_bytes is 2597 * just ignored. 2598 * 2599 * Return: 2600 * %false - we are done with this request 2601 * %true - still buffers pending for this request 2602 **/ 2603 static bool blk_end_bidi_request(struct request *rq, int error, 2604 unsigned int nr_bytes, unsigned int bidi_bytes) 2605 { 2606 struct request_queue *q = rq->q; 2607 unsigned long flags; 2608 2609 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2610 return true; 2611 2612 spin_lock_irqsave(q->queue_lock, flags); 2613 blk_finish_request(rq, error); 2614 spin_unlock_irqrestore(q->queue_lock, flags); 2615 2616 return false; 2617 } 2618 2619 /** 2620 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2621 * @rq: the request to complete 2622 * @error: %0 for success, < %0 for error 2623 * @nr_bytes: number of bytes to complete @rq 2624 * @bidi_bytes: number of bytes to complete @rq->next_rq 2625 * 2626 * Description: 2627 * Identical to blk_end_bidi_request() except that queue lock is 2628 * assumed to be locked on entry and remains so on return. 2629 * 2630 * Return: 2631 * %false - we are done with this request 2632 * %true - still buffers pending for this request 2633 **/ 2634 bool __blk_end_bidi_request(struct request *rq, int error, 2635 unsigned int nr_bytes, unsigned int bidi_bytes) 2636 { 2637 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2638 return true; 2639 2640 blk_finish_request(rq, error); 2641 2642 return false; 2643 } 2644 2645 /** 2646 * blk_end_request - Helper function for drivers to complete the request. 2647 * @rq: the request being processed 2648 * @error: %0 for success, < %0 for error 2649 * @nr_bytes: number of bytes to complete 2650 * 2651 * Description: 2652 * Ends I/O on a number of bytes attached to @rq. 2653 * If @rq has leftover, sets it up for the next range of segments. 2654 * 2655 * Return: 2656 * %false - we are done with this request 2657 * %true - still buffers pending for this request 2658 **/ 2659 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2660 { 2661 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2662 } 2663 EXPORT_SYMBOL(blk_end_request); 2664 2665 /** 2666 * blk_end_request_all - Helper function for drives to finish the request. 2667 * @rq: the request to finish 2668 * @error: %0 for success, < %0 for error 2669 * 2670 * Description: 2671 * Completely finish @rq. 2672 */ 2673 void blk_end_request_all(struct request *rq, int error) 2674 { 2675 bool pending; 2676 unsigned int bidi_bytes = 0; 2677 2678 if (unlikely(blk_bidi_rq(rq))) 2679 bidi_bytes = blk_rq_bytes(rq->next_rq); 2680 2681 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2682 BUG_ON(pending); 2683 } 2684 EXPORT_SYMBOL(blk_end_request_all); 2685 2686 /** 2687 * blk_end_request_cur - Helper function to finish the current request chunk. 2688 * @rq: the request to finish the current chunk for 2689 * @error: %0 for success, < %0 for error 2690 * 2691 * Description: 2692 * Complete the current consecutively mapped chunk from @rq. 2693 * 2694 * Return: 2695 * %false - we are done with this request 2696 * %true - still buffers pending for this request 2697 */ 2698 bool blk_end_request_cur(struct request *rq, int error) 2699 { 2700 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2701 } 2702 EXPORT_SYMBOL(blk_end_request_cur); 2703 2704 /** 2705 * blk_end_request_err - Finish a request till the next failure boundary. 2706 * @rq: the request to finish till the next failure boundary for 2707 * @error: must be negative errno 2708 * 2709 * Description: 2710 * Complete @rq till the next failure boundary. 2711 * 2712 * Return: 2713 * %false - we are done with this request 2714 * %true - still buffers pending for this request 2715 */ 2716 bool blk_end_request_err(struct request *rq, int error) 2717 { 2718 WARN_ON(error >= 0); 2719 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2720 } 2721 EXPORT_SYMBOL_GPL(blk_end_request_err); 2722 2723 /** 2724 * __blk_end_request - Helper function for drivers to complete the request. 2725 * @rq: the request being processed 2726 * @error: %0 for success, < %0 for error 2727 * @nr_bytes: number of bytes to complete 2728 * 2729 * Description: 2730 * Must be called with queue lock held unlike blk_end_request(). 2731 * 2732 * Return: 2733 * %false - we are done with this request 2734 * %true - still buffers pending for this request 2735 **/ 2736 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2737 { 2738 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2739 } 2740 EXPORT_SYMBOL(__blk_end_request); 2741 2742 /** 2743 * __blk_end_request_all - Helper function for drives to finish the request. 2744 * @rq: the request to finish 2745 * @error: %0 for success, < %0 for error 2746 * 2747 * Description: 2748 * Completely finish @rq. Must be called with queue lock held. 2749 */ 2750 void __blk_end_request_all(struct request *rq, int error) 2751 { 2752 bool pending; 2753 unsigned int bidi_bytes = 0; 2754 2755 if (unlikely(blk_bidi_rq(rq))) 2756 bidi_bytes = blk_rq_bytes(rq->next_rq); 2757 2758 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2759 BUG_ON(pending); 2760 } 2761 EXPORT_SYMBOL(__blk_end_request_all); 2762 2763 /** 2764 * __blk_end_request_cur - Helper function to finish the current request chunk. 2765 * @rq: the request to finish the current chunk for 2766 * @error: %0 for success, < %0 for error 2767 * 2768 * Description: 2769 * Complete the current consecutively mapped chunk from @rq. Must 2770 * be called with queue lock held. 2771 * 2772 * Return: 2773 * %false - we are done with this request 2774 * %true - still buffers pending for this request 2775 */ 2776 bool __blk_end_request_cur(struct request *rq, int error) 2777 { 2778 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2779 } 2780 EXPORT_SYMBOL(__blk_end_request_cur); 2781 2782 /** 2783 * __blk_end_request_err - Finish a request till the next failure boundary. 2784 * @rq: the request to finish till the next failure boundary for 2785 * @error: must be negative errno 2786 * 2787 * Description: 2788 * Complete @rq till the next failure boundary. Must be called 2789 * with queue lock held. 2790 * 2791 * Return: 2792 * %false - we are done with this request 2793 * %true - still buffers pending for this request 2794 */ 2795 bool __blk_end_request_err(struct request *rq, int error) 2796 { 2797 WARN_ON(error >= 0); 2798 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2799 } 2800 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2801 2802 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2803 struct bio *bio) 2804 { 2805 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2806 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2807 2808 if (bio_has_data(bio)) 2809 rq->nr_phys_segments = bio_phys_segments(q, bio); 2810 2811 rq->__data_len = bio->bi_iter.bi_size; 2812 rq->bio = rq->biotail = bio; 2813 2814 if (bio->bi_bdev) 2815 rq->rq_disk = bio->bi_bdev->bd_disk; 2816 } 2817 2818 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2819 /** 2820 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2821 * @rq: the request to be flushed 2822 * 2823 * Description: 2824 * Flush all pages in @rq. 2825 */ 2826 void rq_flush_dcache_pages(struct request *rq) 2827 { 2828 struct req_iterator iter; 2829 struct bio_vec bvec; 2830 2831 rq_for_each_segment(bvec, rq, iter) 2832 flush_dcache_page(bvec.bv_page); 2833 } 2834 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2835 #endif 2836 2837 /** 2838 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2839 * @q : the queue of the device being checked 2840 * 2841 * Description: 2842 * Check if underlying low-level drivers of a device are busy. 2843 * If the drivers want to export their busy state, they must set own 2844 * exporting function using blk_queue_lld_busy() first. 2845 * 2846 * Basically, this function is used only by request stacking drivers 2847 * to stop dispatching requests to underlying devices when underlying 2848 * devices are busy. This behavior helps more I/O merging on the queue 2849 * of the request stacking driver and prevents I/O throughput regression 2850 * on burst I/O load. 2851 * 2852 * Return: 2853 * 0 - Not busy (The request stacking driver should dispatch request) 2854 * 1 - Busy (The request stacking driver should stop dispatching request) 2855 */ 2856 int blk_lld_busy(struct request_queue *q) 2857 { 2858 if (q->lld_busy_fn) 2859 return q->lld_busy_fn(q); 2860 2861 return 0; 2862 } 2863 EXPORT_SYMBOL_GPL(blk_lld_busy); 2864 2865 /** 2866 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2867 * @rq: the clone request to be cleaned up 2868 * 2869 * Description: 2870 * Free all bios in @rq for a cloned request. 2871 */ 2872 void blk_rq_unprep_clone(struct request *rq) 2873 { 2874 struct bio *bio; 2875 2876 while ((bio = rq->bio) != NULL) { 2877 rq->bio = bio->bi_next; 2878 2879 bio_put(bio); 2880 } 2881 } 2882 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2883 2884 /* 2885 * Copy attributes of the original request to the clone request. 2886 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 2887 */ 2888 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2889 { 2890 dst->cpu = src->cpu; 2891 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2892 dst->cmd_type = src->cmd_type; 2893 dst->__sector = blk_rq_pos(src); 2894 dst->__data_len = blk_rq_bytes(src); 2895 dst->nr_phys_segments = src->nr_phys_segments; 2896 dst->ioprio = src->ioprio; 2897 dst->extra_len = src->extra_len; 2898 } 2899 2900 /** 2901 * blk_rq_prep_clone - Helper function to setup clone request 2902 * @rq: the request to be setup 2903 * @rq_src: original request to be cloned 2904 * @bs: bio_set that bios for clone are allocated from 2905 * @gfp_mask: memory allocation mask for bio 2906 * @bio_ctr: setup function to be called for each clone bio. 2907 * Returns %0 for success, non %0 for failure. 2908 * @data: private data to be passed to @bio_ctr 2909 * 2910 * Description: 2911 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2912 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 2913 * are not copied, and copying such parts is the caller's responsibility. 2914 * Also, pages which the original bios are pointing to are not copied 2915 * and the cloned bios just point same pages. 2916 * So cloned bios must be completed before original bios, which means 2917 * the caller must complete @rq before @rq_src. 2918 */ 2919 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2920 struct bio_set *bs, gfp_t gfp_mask, 2921 int (*bio_ctr)(struct bio *, struct bio *, void *), 2922 void *data) 2923 { 2924 struct bio *bio, *bio_src; 2925 2926 if (!bs) 2927 bs = fs_bio_set; 2928 2929 blk_rq_init(NULL, rq); 2930 2931 __rq_for_each_bio(bio_src, rq_src) { 2932 bio = bio_clone_bioset(bio_src, gfp_mask, bs); 2933 if (!bio) 2934 goto free_and_out; 2935 2936 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2937 goto free_and_out; 2938 2939 if (rq->bio) { 2940 rq->biotail->bi_next = bio; 2941 rq->biotail = bio; 2942 } else 2943 rq->bio = rq->biotail = bio; 2944 } 2945 2946 __blk_rq_prep_clone(rq, rq_src); 2947 2948 return 0; 2949 2950 free_and_out: 2951 if (bio) 2952 bio_put(bio); 2953 blk_rq_unprep_clone(rq); 2954 2955 return -ENOMEM; 2956 } 2957 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2958 2959 int kblockd_schedule_work(struct work_struct *work) 2960 { 2961 return queue_work(kblockd_workqueue, work); 2962 } 2963 EXPORT_SYMBOL(kblockd_schedule_work); 2964 2965 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 2966 unsigned long delay) 2967 { 2968 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2969 } 2970 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2971 2972 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 2973 unsigned long delay) 2974 { 2975 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 2976 } 2977 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 2978 2979 /** 2980 * blk_start_plug - initialize blk_plug and track it inside the task_struct 2981 * @plug: The &struct blk_plug that needs to be initialized 2982 * 2983 * Description: 2984 * Tracking blk_plug inside the task_struct will help with auto-flushing the 2985 * pending I/O should the task end up blocking between blk_start_plug() and 2986 * blk_finish_plug(). This is important from a performance perspective, but 2987 * also ensures that we don't deadlock. For instance, if the task is blocking 2988 * for a memory allocation, memory reclaim could end up wanting to free a 2989 * page belonging to that request that is currently residing in our private 2990 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 2991 * this kind of deadlock. 2992 */ 2993 void blk_start_plug(struct blk_plug *plug) 2994 { 2995 struct task_struct *tsk = current; 2996 2997 INIT_LIST_HEAD(&plug->list); 2998 INIT_LIST_HEAD(&plug->mq_list); 2999 INIT_LIST_HEAD(&plug->cb_list); 3000 3001 /* 3002 * If this is a nested plug, don't actually assign it. It will be 3003 * flushed on its own. 3004 */ 3005 if (!tsk->plug) { 3006 /* 3007 * Store ordering should not be needed here, since a potential 3008 * preempt will imply a full memory barrier 3009 */ 3010 tsk->plug = plug; 3011 } 3012 } 3013 EXPORT_SYMBOL(blk_start_plug); 3014 3015 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3016 { 3017 struct request *rqa = container_of(a, struct request, queuelist); 3018 struct request *rqb = container_of(b, struct request, queuelist); 3019 3020 return !(rqa->q < rqb->q || 3021 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3022 } 3023 3024 /* 3025 * If 'from_schedule' is true, then postpone the dispatch of requests 3026 * until a safe kblockd context. We due this to avoid accidental big 3027 * additional stack usage in driver dispatch, in places where the originally 3028 * plugger did not intend it. 3029 */ 3030 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3031 bool from_schedule) 3032 __releases(q->queue_lock) 3033 { 3034 trace_block_unplug(q, depth, !from_schedule); 3035 3036 if (from_schedule) 3037 blk_run_queue_async(q); 3038 else 3039 __blk_run_queue(q); 3040 spin_unlock(q->queue_lock); 3041 } 3042 3043 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3044 { 3045 LIST_HEAD(callbacks); 3046 3047 while (!list_empty(&plug->cb_list)) { 3048 list_splice_init(&plug->cb_list, &callbacks); 3049 3050 while (!list_empty(&callbacks)) { 3051 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3052 struct blk_plug_cb, 3053 list); 3054 list_del(&cb->list); 3055 cb->callback(cb, from_schedule); 3056 } 3057 } 3058 } 3059 3060 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3061 int size) 3062 { 3063 struct blk_plug *plug = current->plug; 3064 struct blk_plug_cb *cb; 3065 3066 if (!plug) 3067 return NULL; 3068 3069 list_for_each_entry(cb, &plug->cb_list, list) 3070 if (cb->callback == unplug && cb->data == data) 3071 return cb; 3072 3073 /* Not currently on the callback list */ 3074 BUG_ON(size < sizeof(*cb)); 3075 cb = kzalloc(size, GFP_ATOMIC); 3076 if (cb) { 3077 cb->data = data; 3078 cb->callback = unplug; 3079 list_add(&cb->list, &plug->cb_list); 3080 } 3081 return cb; 3082 } 3083 EXPORT_SYMBOL(blk_check_plugged); 3084 3085 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3086 { 3087 struct request_queue *q; 3088 unsigned long flags; 3089 struct request *rq; 3090 LIST_HEAD(list); 3091 unsigned int depth; 3092 3093 flush_plug_callbacks(plug, from_schedule); 3094 3095 if (!list_empty(&plug->mq_list)) 3096 blk_mq_flush_plug_list(plug, from_schedule); 3097 3098 if (list_empty(&plug->list)) 3099 return; 3100 3101 list_splice_init(&plug->list, &list); 3102 3103 list_sort(NULL, &list, plug_rq_cmp); 3104 3105 q = NULL; 3106 depth = 0; 3107 3108 /* 3109 * Save and disable interrupts here, to avoid doing it for every 3110 * queue lock we have to take. 3111 */ 3112 local_irq_save(flags); 3113 while (!list_empty(&list)) { 3114 rq = list_entry_rq(list.next); 3115 list_del_init(&rq->queuelist); 3116 BUG_ON(!rq->q); 3117 if (rq->q != q) { 3118 /* 3119 * This drops the queue lock 3120 */ 3121 if (q) 3122 queue_unplugged(q, depth, from_schedule); 3123 q = rq->q; 3124 depth = 0; 3125 spin_lock(q->queue_lock); 3126 } 3127 3128 /* 3129 * Short-circuit if @q is dead 3130 */ 3131 if (unlikely(blk_queue_dying(q))) { 3132 __blk_end_request_all(rq, -ENODEV); 3133 continue; 3134 } 3135 3136 /* 3137 * rq is already accounted, so use raw insert 3138 */ 3139 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 3140 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3141 else 3142 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3143 3144 depth++; 3145 } 3146 3147 /* 3148 * This drops the queue lock 3149 */ 3150 if (q) 3151 queue_unplugged(q, depth, from_schedule); 3152 3153 local_irq_restore(flags); 3154 } 3155 3156 void blk_finish_plug(struct blk_plug *plug) 3157 { 3158 blk_flush_plug_list(plug, false); 3159 3160 if (plug == current->plug) 3161 current->plug = NULL; 3162 } 3163 EXPORT_SYMBOL(blk_finish_plug); 3164 3165 #ifdef CONFIG_PM_RUNTIME 3166 /** 3167 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3168 * @q: the queue of the device 3169 * @dev: the device the queue belongs to 3170 * 3171 * Description: 3172 * Initialize runtime-PM-related fields for @q and start auto suspend for 3173 * @dev. Drivers that want to take advantage of request-based runtime PM 3174 * should call this function after @dev has been initialized, and its 3175 * request queue @q has been allocated, and runtime PM for it can not happen 3176 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3177 * cases, driver should call this function before any I/O has taken place. 3178 * 3179 * This function takes care of setting up using auto suspend for the device, 3180 * the autosuspend delay is set to -1 to make runtime suspend impossible 3181 * until an updated value is either set by user or by driver. Drivers do 3182 * not need to touch other autosuspend settings. 3183 * 3184 * The block layer runtime PM is request based, so only works for drivers 3185 * that use request as their IO unit instead of those directly use bio's. 3186 */ 3187 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3188 { 3189 q->dev = dev; 3190 q->rpm_status = RPM_ACTIVE; 3191 pm_runtime_set_autosuspend_delay(q->dev, -1); 3192 pm_runtime_use_autosuspend(q->dev); 3193 } 3194 EXPORT_SYMBOL(blk_pm_runtime_init); 3195 3196 /** 3197 * blk_pre_runtime_suspend - Pre runtime suspend check 3198 * @q: the queue of the device 3199 * 3200 * Description: 3201 * This function will check if runtime suspend is allowed for the device 3202 * by examining if there are any requests pending in the queue. If there 3203 * are requests pending, the device can not be runtime suspended; otherwise, 3204 * the queue's status will be updated to SUSPENDING and the driver can 3205 * proceed to suspend the device. 3206 * 3207 * For the not allowed case, we mark last busy for the device so that 3208 * runtime PM core will try to autosuspend it some time later. 3209 * 3210 * This function should be called near the start of the device's 3211 * runtime_suspend callback. 3212 * 3213 * Return: 3214 * 0 - OK to runtime suspend the device 3215 * -EBUSY - Device should not be runtime suspended 3216 */ 3217 int blk_pre_runtime_suspend(struct request_queue *q) 3218 { 3219 int ret = 0; 3220 3221 spin_lock_irq(q->queue_lock); 3222 if (q->nr_pending) { 3223 ret = -EBUSY; 3224 pm_runtime_mark_last_busy(q->dev); 3225 } else { 3226 q->rpm_status = RPM_SUSPENDING; 3227 } 3228 spin_unlock_irq(q->queue_lock); 3229 return ret; 3230 } 3231 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3232 3233 /** 3234 * blk_post_runtime_suspend - Post runtime suspend processing 3235 * @q: the queue of the device 3236 * @err: return value of the device's runtime_suspend function 3237 * 3238 * Description: 3239 * Update the queue's runtime status according to the return value of the 3240 * device's runtime suspend function and mark last busy for the device so 3241 * that PM core will try to auto suspend the device at a later time. 3242 * 3243 * This function should be called near the end of the device's 3244 * runtime_suspend callback. 3245 */ 3246 void blk_post_runtime_suspend(struct request_queue *q, int err) 3247 { 3248 spin_lock_irq(q->queue_lock); 3249 if (!err) { 3250 q->rpm_status = RPM_SUSPENDED; 3251 } else { 3252 q->rpm_status = RPM_ACTIVE; 3253 pm_runtime_mark_last_busy(q->dev); 3254 } 3255 spin_unlock_irq(q->queue_lock); 3256 } 3257 EXPORT_SYMBOL(blk_post_runtime_suspend); 3258 3259 /** 3260 * blk_pre_runtime_resume - Pre runtime resume processing 3261 * @q: the queue of the device 3262 * 3263 * Description: 3264 * Update the queue's runtime status to RESUMING in preparation for the 3265 * runtime resume of the device. 3266 * 3267 * This function should be called near the start of the device's 3268 * runtime_resume callback. 3269 */ 3270 void blk_pre_runtime_resume(struct request_queue *q) 3271 { 3272 spin_lock_irq(q->queue_lock); 3273 q->rpm_status = RPM_RESUMING; 3274 spin_unlock_irq(q->queue_lock); 3275 } 3276 EXPORT_SYMBOL(blk_pre_runtime_resume); 3277 3278 /** 3279 * blk_post_runtime_resume - Post runtime resume processing 3280 * @q: the queue of the device 3281 * @err: return value of the device's runtime_resume function 3282 * 3283 * Description: 3284 * Update the queue's runtime status according to the return value of the 3285 * device's runtime_resume function. If it is successfully resumed, process 3286 * the requests that are queued into the device's queue when it is resuming 3287 * and then mark last busy and initiate autosuspend for it. 3288 * 3289 * This function should be called near the end of the device's 3290 * runtime_resume callback. 3291 */ 3292 void blk_post_runtime_resume(struct request_queue *q, int err) 3293 { 3294 spin_lock_irq(q->queue_lock); 3295 if (!err) { 3296 q->rpm_status = RPM_ACTIVE; 3297 __blk_run_queue(q); 3298 pm_runtime_mark_last_busy(q->dev); 3299 pm_request_autosuspend(q->dev); 3300 } else { 3301 q->rpm_status = RPM_SUSPENDED; 3302 } 3303 spin_unlock_irq(q->queue_lock); 3304 } 3305 EXPORT_SYMBOL(blk_post_runtime_resume); 3306 #endif 3307 3308 int __init blk_dev_init(void) 3309 { 3310 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3311 sizeof(((struct request *)0)->cmd_flags)); 3312 3313 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3314 kblockd_workqueue = alloc_workqueue("kblockd", 3315 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3316 if (!kblockd_workqueue) 3317 panic("Failed to create kblockd\n"); 3318 3319 request_cachep = kmem_cache_create("blkdev_requests", 3320 sizeof(struct request), 0, SLAB_PANIC, NULL); 3321 3322 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 3323 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3324 3325 return 0; 3326 } 3327