xref: /openbmc/linux/block/blk-core.c (revision d3741027)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/psi.h>
41 #include <linux/part_stat.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
47 
48 #include "blk.h"
49 #include "blk-mq-sched.h"
50 #include "blk-pm.h"
51 #include "blk-cgroup.h"
52 #include "blk-throttle.h"
53 
54 struct dentry *blk_debugfs_root;
55 
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
62 
63 DEFINE_IDA(blk_queue_ida);
64 
65 /*
66  * For queue allocation
67  */
68 struct kmem_cache *blk_requestq_cachep;
69 struct kmem_cache *blk_requestq_srcu_cachep;
70 
71 /*
72  * Controlling structure to kblockd
73  */
74 static struct workqueue_struct *kblockd_workqueue;
75 
76 /**
77  * blk_queue_flag_set - atomically set a queue flag
78  * @flag: flag to be set
79  * @q: request queue
80  */
81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82 {
83 	set_bit(flag, &q->queue_flags);
84 }
85 EXPORT_SYMBOL(blk_queue_flag_set);
86 
87 /**
88  * blk_queue_flag_clear - atomically clear a queue flag
89  * @flag: flag to be cleared
90  * @q: request queue
91  */
92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
93 {
94 	clear_bit(flag, &q->queue_flags);
95 }
96 EXPORT_SYMBOL(blk_queue_flag_clear);
97 
98 /**
99  * blk_queue_flag_test_and_set - atomically test and set a queue flag
100  * @flag: flag to be set
101  * @q: request queue
102  *
103  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104  * the flag was already set.
105  */
106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
107 {
108 	return test_and_set_bit(flag, &q->queue_flags);
109 }
110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
111 
112 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
113 static const char *const blk_op_name[] = {
114 	REQ_OP_NAME(READ),
115 	REQ_OP_NAME(WRITE),
116 	REQ_OP_NAME(FLUSH),
117 	REQ_OP_NAME(DISCARD),
118 	REQ_OP_NAME(SECURE_ERASE),
119 	REQ_OP_NAME(ZONE_RESET),
120 	REQ_OP_NAME(ZONE_RESET_ALL),
121 	REQ_OP_NAME(ZONE_OPEN),
122 	REQ_OP_NAME(ZONE_CLOSE),
123 	REQ_OP_NAME(ZONE_FINISH),
124 	REQ_OP_NAME(ZONE_APPEND),
125 	REQ_OP_NAME(WRITE_ZEROES),
126 	REQ_OP_NAME(DRV_IN),
127 	REQ_OP_NAME(DRV_OUT),
128 };
129 #undef REQ_OP_NAME
130 
131 /**
132  * blk_op_str - Return string XXX in the REQ_OP_XXX.
133  * @op: REQ_OP_XXX.
134  *
135  * Description: Centralize block layer function to convert REQ_OP_XXX into
136  * string format. Useful in the debugging and tracing bio or request. For
137  * invalid REQ_OP_XXX it returns string "UNKNOWN".
138  */
139 inline const char *blk_op_str(unsigned int op)
140 {
141 	const char *op_str = "UNKNOWN";
142 
143 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
144 		op_str = blk_op_name[op];
145 
146 	return op_str;
147 }
148 EXPORT_SYMBOL_GPL(blk_op_str);
149 
150 static const struct {
151 	int		errno;
152 	const char	*name;
153 } blk_errors[] = {
154 	[BLK_STS_OK]		= { 0,		"" },
155 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
156 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
157 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
158 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
159 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
160 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
161 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
162 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
163 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
164 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
165 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
166 	[BLK_STS_OFFLINE]	= { -ENODEV,	"device offline" },
167 
168 	/* device mapper special case, should not leak out: */
169 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
170 
171 	/* zone device specific errors */
172 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
173 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
174 
175 	/* everything else not covered above: */
176 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
177 };
178 
179 blk_status_t errno_to_blk_status(int errno)
180 {
181 	int i;
182 
183 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
184 		if (blk_errors[i].errno == errno)
185 			return (__force blk_status_t)i;
186 	}
187 
188 	return BLK_STS_IOERR;
189 }
190 EXPORT_SYMBOL_GPL(errno_to_blk_status);
191 
192 int blk_status_to_errno(blk_status_t status)
193 {
194 	int idx = (__force int)status;
195 
196 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
197 		return -EIO;
198 	return blk_errors[idx].errno;
199 }
200 EXPORT_SYMBOL_GPL(blk_status_to_errno);
201 
202 const char *blk_status_to_str(blk_status_t status)
203 {
204 	int idx = (__force int)status;
205 
206 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
207 		return "<null>";
208 	return blk_errors[idx].name;
209 }
210 
211 /**
212  * blk_sync_queue - cancel any pending callbacks on a queue
213  * @q: the queue
214  *
215  * Description:
216  *     The block layer may perform asynchronous callback activity
217  *     on a queue, such as calling the unplug function after a timeout.
218  *     A block device may call blk_sync_queue to ensure that any
219  *     such activity is cancelled, thus allowing it to release resources
220  *     that the callbacks might use. The caller must already have made sure
221  *     that its ->submit_bio will not re-add plugging prior to calling
222  *     this function.
223  *
224  *     This function does not cancel any asynchronous activity arising
225  *     out of elevator or throttling code. That would require elevator_exit()
226  *     and blkcg_exit_queue() to be called with queue lock initialized.
227  *
228  */
229 void blk_sync_queue(struct request_queue *q)
230 {
231 	del_timer_sync(&q->timeout);
232 	cancel_work_sync(&q->timeout_work);
233 }
234 EXPORT_SYMBOL(blk_sync_queue);
235 
236 /**
237  * blk_set_pm_only - increment pm_only counter
238  * @q: request queue pointer
239  */
240 void blk_set_pm_only(struct request_queue *q)
241 {
242 	atomic_inc(&q->pm_only);
243 }
244 EXPORT_SYMBOL_GPL(blk_set_pm_only);
245 
246 void blk_clear_pm_only(struct request_queue *q)
247 {
248 	int pm_only;
249 
250 	pm_only = atomic_dec_return(&q->pm_only);
251 	WARN_ON_ONCE(pm_only < 0);
252 	if (pm_only == 0)
253 		wake_up_all(&q->mq_freeze_wq);
254 }
255 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
256 
257 /**
258  * blk_put_queue - decrement the request_queue refcount
259  * @q: the request_queue structure to decrement the refcount for
260  *
261  * Decrements the refcount of the request_queue kobject. When this reaches 0
262  * we'll have blk_release_queue() called.
263  *
264  * Context: Any context, but the last reference must not be dropped from
265  *          atomic context.
266  */
267 void blk_put_queue(struct request_queue *q)
268 {
269 	kobject_put(&q->kobj);
270 }
271 EXPORT_SYMBOL(blk_put_queue);
272 
273 void blk_queue_start_drain(struct request_queue *q)
274 {
275 	/*
276 	 * When queue DYING flag is set, we need to block new req
277 	 * entering queue, so we call blk_freeze_queue_start() to
278 	 * prevent I/O from crossing blk_queue_enter().
279 	 */
280 	blk_freeze_queue_start(q);
281 	if (queue_is_mq(q))
282 		blk_mq_wake_waiters(q);
283 	/* Make blk_queue_enter() reexamine the DYING flag. */
284 	wake_up_all(&q->mq_freeze_wq);
285 }
286 
287 /**
288  * blk_cleanup_queue - shutdown a request queue
289  * @q: request queue to shutdown
290  *
291  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
292  * put it.  All future requests will be failed immediately with -ENODEV.
293  *
294  * Context: can sleep
295  */
296 void blk_cleanup_queue(struct request_queue *q)
297 {
298 	/* cannot be called from atomic context */
299 	might_sleep();
300 
301 	WARN_ON_ONCE(blk_queue_registered(q));
302 
303 	/* mark @q DYING, no new request or merges will be allowed afterwards */
304 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
305 	blk_queue_start_drain(q);
306 
307 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
308 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
309 
310 	/*
311 	 * Drain all requests queued before DYING marking. Set DEAD flag to
312 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
313 	 * after draining finished.
314 	 */
315 	blk_freeze_queue(q);
316 
317 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
318 
319 	blk_sync_queue(q);
320 	if (queue_is_mq(q)) {
321 		blk_mq_cancel_work_sync(q);
322 		blk_mq_exit_queue(q);
323 	}
324 
325 	/*
326 	 * In theory, request pool of sched_tags belongs to request queue.
327 	 * However, the current implementation requires tag_set for freeing
328 	 * requests, so free the pool now.
329 	 *
330 	 * Queue has become frozen, there can't be any in-queue requests, so
331 	 * it is safe to free requests now.
332 	 */
333 	mutex_lock(&q->sysfs_lock);
334 	if (q->elevator)
335 		blk_mq_sched_free_rqs(q);
336 	mutex_unlock(&q->sysfs_lock);
337 
338 	/* @q is and will stay empty, shutdown and put */
339 	blk_put_queue(q);
340 }
341 EXPORT_SYMBOL(blk_cleanup_queue);
342 
343 /**
344  * blk_queue_enter() - try to increase q->q_usage_counter
345  * @q: request queue pointer
346  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
347  */
348 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
349 {
350 	const bool pm = flags & BLK_MQ_REQ_PM;
351 
352 	while (!blk_try_enter_queue(q, pm)) {
353 		if (flags & BLK_MQ_REQ_NOWAIT)
354 			return -EBUSY;
355 
356 		/*
357 		 * read pair of barrier in blk_freeze_queue_start(), we need to
358 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
359 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
360 		 * following wait may never return if the two reads are
361 		 * reordered.
362 		 */
363 		smp_rmb();
364 		wait_event(q->mq_freeze_wq,
365 			   (!q->mq_freeze_depth &&
366 			    blk_pm_resume_queue(pm, q)) ||
367 			   blk_queue_dying(q));
368 		if (blk_queue_dying(q))
369 			return -ENODEV;
370 	}
371 
372 	return 0;
373 }
374 
375 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
376 {
377 	while (!blk_try_enter_queue(q, false)) {
378 		struct gendisk *disk = bio->bi_bdev->bd_disk;
379 
380 		if (bio->bi_opf & REQ_NOWAIT) {
381 			if (test_bit(GD_DEAD, &disk->state))
382 				goto dead;
383 			bio_wouldblock_error(bio);
384 			return -EBUSY;
385 		}
386 
387 		/*
388 		 * read pair of barrier in blk_freeze_queue_start(), we need to
389 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
390 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
391 		 * following wait may never return if the two reads are
392 		 * reordered.
393 		 */
394 		smp_rmb();
395 		wait_event(q->mq_freeze_wq,
396 			   (!q->mq_freeze_depth &&
397 			    blk_pm_resume_queue(false, q)) ||
398 			   test_bit(GD_DEAD, &disk->state));
399 		if (test_bit(GD_DEAD, &disk->state))
400 			goto dead;
401 	}
402 
403 	return 0;
404 dead:
405 	bio_io_error(bio);
406 	return -ENODEV;
407 }
408 
409 void blk_queue_exit(struct request_queue *q)
410 {
411 	percpu_ref_put(&q->q_usage_counter);
412 }
413 
414 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
415 {
416 	struct request_queue *q =
417 		container_of(ref, struct request_queue, q_usage_counter);
418 
419 	wake_up_all(&q->mq_freeze_wq);
420 }
421 
422 static void blk_rq_timed_out_timer(struct timer_list *t)
423 {
424 	struct request_queue *q = from_timer(q, t, timeout);
425 
426 	kblockd_schedule_work(&q->timeout_work);
427 }
428 
429 static void blk_timeout_work(struct work_struct *work)
430 {
431 }
432 
433 struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu)
434 {
435 	struct request_queue *q;
436 	int ret;
437 
438 	q = kmem_cache_alloc_node(blk_get_queue_kmem_cache(alloc_srcu),
439 			GFP_KERNEL | __GFP_ZERO, node_id);
440 	if (!q)
441 		return NULL;
442 
443 	if (alloc_srcu) {
444 		blk_queue_flag_set(QUEUE_FLAG_HAS_SRCU, q);
445 		if (init_srcu_struct(q->srcu) != 0)
446 			goto fail_q;
447 	}
448 
449 	q->last_merge = NULL;
450 
451 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
452 	if (q->id < 0)
453 		goto fail_srcu;
454 
455 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
456 	if (ret)
457 		goto fail_id;
458 
459 	q->stats = blk_alloc_queue_stats();
460 	if (!q->stats)
461 		goto fail_split;
462 
463 	q->node = node_id;
464 
465 	atomic_set(&q->nr_active_requests_shared_tags, 0);
466 
467 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
468 	INIT_WORK(&q->timeout_work, blk_timeout_work);
469 	INIT_LIST_HEAD(&q->icq_list);
470 
471 	kobject_init(&q->kobj, &blk_queue_ktype);
472 
473 	mutex_init(&q->debugfs_mutex);
474 	mutex_init(&q->sysfs_lock);
475 	mutex_init(&q->sysfs_dir_lock);
476 	spin_lock_init(&q->queue_lock);
477 
478 	init_waitqueue_head(&q->mq_freeze_wq);
479 	mutex_init(&q->mq_freeze_lock);
480 
481 	/*
482 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
483 	 * See blk_register_queue() for details.
484 	 */
485 	if (percpu_ref_init(&q->q_usage_counter,
486 				blk_queue_usage_counter_release,
487 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
488 		goto fail_stats;
489 
490 	blk_queue_dma_alignment(q, 511);
491 	blk_set_default_limits(&q->limits);
492 	q->nr_requests = BLKDEV_DEFAULT_RQ;
493 
494 	return q;
495 
496 fail_stats:
497 	blk_free_queue_stats(q->stats);
498 fail_split:
499 	bioset_exit(&q->bio_split);
500 fail_id:
501 	ida_simple_remove(&blk_queue_ida, q->id);
502 fail_srcu:
503 	if (alloc_srcu)
504 		cleanup_srcu_struct(q->srcu);
505 fail_q:
506 	kmem_cache_free(blk_get_queue_kmem_cache(alloc_srcu), q);
507 	return NULL;
508 }
509 
510 /**
511  * blk_get_queue - increment the request_queue refcount
512  * @q: the request_queue structure to increment the refcount for
513  *
514  * Increment the refcount of the request_queue kobject.
515  *
516  * Context: Any context.
517  */
518 bool blk_get_queue(struct request_queue *q)
519 {
520 	if (likely(!blk_queue_dying(q))) {
521 		__blk_get_queue(q);
522 		return true;
523 	}
524 
525 	return false;
526 }
527 EXPORT_SYMBOL(blk_get_queue);
528 
529 #ifdef CONFIG_FAIL_MAKE_REQUEST
530 
531 static DECLARE_FAULT_ATTR(fail_make_request);
532 
533 static int __init setup_fail_make_request(char *str)
534 {
535 	return setup_fault_attr(&fail_make_request, str);
536 }
537 __setup("fail_make_request=", setup_fail_make_request);
538 
539 bool should_fail_request(struct block_device *part, unsigned int bytes)
540 {
541 	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
542 }
543 
544 static int __init fail_make_request_debugfs(void)
545 {
546 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
547 						NULL, &fail_make_request);
548 
549 	return PTR_ERR_OR_ZERO(dir);
550 }
551 
552 late_initcall(fail_make_request_debugfs);
553 #endif /* CONFIG_FAIL_MAKE_REQUEST */
554 
555 static inline bool bio_check_ro(struct bio *bio)
556 {
557 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
558 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
559 			return false;
560 		pr_warn("Trying to write to read-only block-device %pg\n",
561 			bio->bi_bdev);
562 		/* Older lvm-tools actually trigger this */
563 		return false;
564 	}
565 
566 	return false;
567 }
568 
569 static noinline int should_fail_bio(struct bio *bio)
570 {
571 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
572 		return -EIO;
573 	return 0;
574 }
575 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
576 
577 /*
578  * Check whether this bio extends beyond the end of the device or partition.
579  * This may well happen - the kernel calls bread() without checking the size of
580  * the device, e.g., when mounting a file system.
581  */
582 static inline int bio_check_eod(struct bio *bio)
583 {
584 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
585 	unsigned int nr_sectors = bio_sectors(bio);
586 
587 	if (nr_sectors && maxsector &&
588 	    (nr_sectors > maxsector ||
589 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
590 		pr_info_ratelimited("%s: attempt to access beyond end of device\n"
591 				    "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
592 				    current->comm, bio->bi_bdev, bio->bi_opf,
593 				    bio->bi_iter.bi_sector, nr_sectors, maxsector);
594 		return -EIO;
595 	}
596 	return 0;
597 }
598 
599 /*
600  * Remap block n of partition p to block n+start(p) of the disk.
601  */
602 static int blk_partition_remap(struct bio *bio)
603 {
604 	struct block_device *p = bio->bi_bdev;
605 
606 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
607 		return -EIO;
608 	if (bio_sectors(bio)) {
609 		bio->bi_iter.bi_sector += p->bd_start_sect;
610 		trace_block_bio_remap(bio, p->bd_dev,
611 				      bio->bi_iter.bi_sector -
612 				      p->bd_start_sect);
613 	}
614 	bio_set_flag(bio, BIO_REMAPPED);
615 	return 0;
616 }
617 
618 /*
619  * Check write append to a zoned block device.
620  */
621 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
622 						 struct bio *bio)
623 {
624 	sector_t pos = bio->bi_iter.bi_sector;
625 	int nr_sectors = bio_sectors(bio);
626 
627 	/* Only applicable to zoned block devices */
628 	if (!blk_queue_is_zoned(q))
629 		return BLK_STS_NOTSUPP;
630 
631 	/* The bio sector must point to the start of a sequential zone */
632 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
633 	    !blk_queue_zone_is_seq(q, pos))
634 		return BLK_STS_IOERR;
635 
636 	/*
637 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
638 	 * split and could result in non-contiguous sectors being written in
639 	 * different zones.
640 	 */
641 	if (nr_sectors > q->limits.chunk_sectors)
642 		return BLK_STS_IOERR;
643 
644 	/* Make sure the BIO is small enough and will not get split */
645 	if (nr_sectors > q->limits.max_zone_append_sectors)
646 		return BLK_STS_IOERR;
647 
648 	bio->bi_opf |= REQ_NOMERGE;
649 
650 	return BLK_STS_OK;
651 }
652 
653 static void __submit_bio(struct bio *bio)
654 {
655 	struct gendisk *disk = bio->bi_bdev->bd_disk;
656 
657 	if (unlikely(!blk_crypto_bio_prep(&bio)))
658 		return;
659 
660 	if (!disk->fops->submit_bio) {
661 		blk_mq_submit_bio(bio);
662 	} else if (likely(bio_queue_enter(bio) == 0)) {
663 		disk->fops->submit_bio(bio);
664 		blk_queue_exit(disk->queue);
665 	}
666 }
667 
668 /*
669  * The loop in this function may be a bit non-obvious, and so deserves some
670  * explanation:
671  *
672  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
673  *    that), so we have a list with a single bio.
674  *  - We pretend that we have just taken it off a longer list, so we assign
675  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
676  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
677  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
678  *    non-NULL value in bio_list and re-enter the loop from the top.
679  *  - In this case we really did just take the bio of the top of the list (no
680  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
681  *    again.
682  *
683  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
684  * bio_list_on_stack[1] contains bios that were submitted before the current
685  *	->submit_bio, but that haven't been processed yet.
686  */
687 static void __submit_bio_noacct(struct bio *bio)
688 {
689 	struct bio_list bio_list_on_stack[2];
690 
691 	BUG_ON(bio->bi_next);
692 
693 	bio_list_init(&bio_list_on_stack[0]);
694 	current->bio_list = bio_list_on_stack;
695 
696 	do {
697 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
698 		struct bio_list lower, same;
699 
700 		/*
701 		 * Create a fresh bio_list for all subordinate requests.
702 		 */
703 		bio_list_on_stack[1] = bio_list_on_stack[0];
704 		bio_list_init(&bio_list_on_stack[0]);
705 
706 		__submit_bio(bio);
707 
708 		/*
709 		 * Sort new bios into those for a lower level and those for the
710 		 * same level.
711 		 */
712 		bio_list_init(&lower);
713 		bio_list_init(&same);
714 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
715 			if (q == bdev_get_queue(bio->bi_bdev))
716 				bio_list_add(&same, bio);
717 			else
718 				bio_list_add(&lower, bio);
719 
720 		/*
721 		 * Now assemble so we handle the lowest level first.
722 		 */
723 		bio_list_merge(&bio_list_on_stack[0], &lower);
724 		bio_list_merge(&bio_list_on_stack[0], &same);
725 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
726 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
727 
728 	current->bio_list = NULL;
729 }
730 
731 static void __submit_bio_noacct_mq(struct bio *bio)
732 {
733 	struct bio_list bio_list[2] = { };
734 
735 	current->bio_list = bio_list;
736 
737 	do {
738 		__submit_bio(bio);
739 	} while ((bio = bio_list_pop(&bio_list[0])));
740 
741 	current->bio_list = NULL;
742 }
743 
744 void submit_bio_noacct_nocheck(struct bio *bio)
745 {
746 	/*
747 	 * We only want one ->submit_bio to be active at a time, else stack
748 	 * usage with stacked devices could be a problem.  Use current->bio_list
749 	 * to collect a list of requests submited by a ->submit_bio method while
750 	 * it is active, and then process them after it returned.
751 	 */
752 	if (current->bio_list)
753 		bio_list_add(&current->bio_list[0], bio);
754 	else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
755 		__submit_bio_noacct_mq(bio);
756 	else
757 		__submit_bio_noacct(bio);
758 }
759 
760 /**
761  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
762  * @bio:  The bio describing the location in memory and on the device.
763  *
764  * This is a version of submit_bio() that shall only be used for I/O that is
765  * resubmitted to lower level drivers by stacking block drivers.  All file
766  * systems and other upper level users of the block layer should use
767  * submit_bio() instead.
768  */
769 void submit_bio_noacct(struct bio *bio)
770 {
771 	struct block_device *bdev = bio->bi_bdev;
772 	struct request_queue *q = bdev_get_queue(bdev);
773 	blk_status_t status = BLK_STS_IOERR;
774 	struct blk_plug *plug;
775 
776 	might_sleep();
777 
778 	plug = blk_mq_plug(q, bio);
779 	if (plug && plug->nowait)
780 		bio->bi_opf |= REQ_NOWAIT;
781 
782 	/*
783 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
784 	 * if queue does not support NOWAIT.
785 	 */
786 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
787 		goto not_supported;
788 
789 	if (should_fail_bio(bio))
790 		goto end_io;
791 	if (unlikely(bio_check_ro(bio)))
792 		goto end_io;
793 	if (!bio_flagged(bio, BIO_REMAPPED)) {
794 		if (unlikely(bio_check_eod(bio)))
795 			goto end_io;
796 		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
797 			goto end_io;
798 	}
799 
800 	/*
801 	 * Filter flush bio's early so that bio based drivers without flush
802 	 * support don't have to worry about them.
803 	 */
804 	if (op_is_flush(bio->bi_opf) &&
805 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
806 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
807 		if (!bio_sectors(bio)) {
808 			status = BLK_STS_OK;
809 			goto end_io;
810 		}
811 	}
812 
813 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
814 		bio_clear_polled(bio);
815 
816 	switch (bio_op(bio)) {
817 	case REQ_OP_DISCARD:
818 		if (!bdev_max_discard_sectors(bdev))
819 			goto not_supported;
820 		break;
821 	case REQ_OP_SECURE_ERASE:
822 		if (!bdev_max_secure_erase_sectors(bdev))
823 			goto not_supported;
824 		break;
825 	case REQ_OP_ZONE_APPEND:
826 		status = blk_check_zone_append(q, bio);
827 		if (status != BLK_STS_OK)
828 			goto end_io;
829 		break;
830 	case REQ_OP_ZONE_RESET:
831 	case REQ_OP_ZONE_OPEN:
832 	case REQ_OP_ZONE_CLOSE:
833 	case REQ_OP_ZONE_FINISH:
834 		if (!blk_queue_is_zoned(q))
835 			goto not_supported;
836 		break;
837 	case REQ_OP_ZONE_RESET_ALL:
838 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
839 			goto not_supported;
840 		break;
841 	case REQ_OP_WRITE_ZEROES:
842 		if (!q->limits.max_write_zeroes_sectors)
843 			goto not_supported;
844 		break;
845 	default:
846 		break;
847 	}
848 
849 	if (blk_throtl_bio(bio))
850 		return;
851 
852 	blk_cgroup_bio_start(bio);
853 	blkcg_bio_issue_init(bio);
854 
855 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
856 		trace_block_bio_queue(bio);
857 		/* Now that enqueuing has been traced, we need to trace
858 		 * completion as well.
859 		 */
860 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
861 	}
862 	submit_bio_noacct_nocheck(bio);
863 	return;
864 
865 not_supported:
866 	status = BLK_STS_NOTSUPP;
867 end_io:
868 	bio->bi_status = status;
869 	bio_endio(bio);
870 }
871 EXPORT_SYMBOL(submit_bio_noacct);
872 
873 /**
874  * submit_bio - submit a bio to the block device layer for I/O
875  * @bio: The &struct bio which describes the I/O
876  *
877  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
878  * fully set up &struct bio that describes the I/O that needs to be done.  The
879  * bio will be send to the device described by the bi_bdev field.
880  *
881  * The success/failure status of the request, along with notification of
882  * completion, is delivered asynchronously through the ->bi_end_io() callback
883  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
884  * been called.
885  */
886 void submit_bio(struct bio *bio)
887 {
888 	if (blkcg_punt_bio_submit(bio))
889 		return;
890 
891 	if (bio_op(bio) == REQ_OP_READ) {
892 		task_io_account_read(bio->bi_iter.bi_size);
893 		count_vm_events(PGPGIN, bio_sectors(bio));
894 	} else if (bio_op(bio) == REQ_OP_WRITE) {
895 		count_vm_events(PGPGOUT, bio_sectors(bio));
896 	}
897 
898 	/*
899 	 * If we're reading data that is part of the userspace workingset, count
900 	 * submission time as memory stall.  When the device is congested, or
901 	 * the submitting cgroup IO-throttled, submission can be a significant
902 	 * part of overall IO time.
903 	 */
904 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
905 	    bio_flagged(bio, BIO_WORKINGSET))) {
906 		unsigned long pflags;
907 
908 		psi_memstall_enter(&pflags);
909 		submit_bio_noacct(bio);
910 		psi_memstall_leave(&pflags);
911 		return;
912 	}
913 
914 	submit_bio_noacct(bio);
915 }
916 EXPORT_SYMBOL(submit_bio);
917 
918 /**
919  * bio_poll - poll for BIO completions
920  * @bio: bio to poll for
921  * @iob: batches of IO
922  * @flags: BLK_POLL_* flags that control the behavior
923  *
924  * Poll for completions on queue associated with the bio. Returns number of
925  * completed entries found.
926  *
927  * Note: the caller must either be the context that submitted @bio, or
928  * be in a RCU critical section to prevent freeing of @bio.
929  */
930 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
931 {
932 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
933 	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
934 	int ret = 0;
935 
936 	if (cookie == BLK_QC_T_NONE ||
937 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
938 		return 0;
939 
940 	blk_flush_plug(current->plug, false);
941 
942 	if (bio_queue_enter(bio))
943 		return 0;
944 	if (queue_is_mq(q)) {
945 		ret = blk_mq_poll(q, cookie, iob, flags);
946 	} else {
947 		struct gendisk *disk = q->disk;
948 
949 		if (disk && disk->fops->poll_bio)
950 			ret = disk->fops->poll_bio(bio, iob, flags);
951 	}
952 	blk_queue_exit(q);
953 	return ret;
954 }
955 EXPORT_SYMBOL_GPL(bio_poll);
956 
957 /*
958  * Helper to implement file_operations.iopoll.  Requires the bio to be stored
959  * in iocb->private, and cleared before freeing the bio.
960  */
961 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
962 		    unsigned int flags)
963 {
964 	struct bio *bio;
965 	int ret = 0;
966 
967 	/*
968 	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
969 	 * point to a freshly allocated bio at this point.  If that happens
970 	 * we have a few cases to consider:
971 	 *
972 	 *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
973 	 *     simply nothing in this case
974 	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
975 	 *     this and return 0
976 	 *  3) the bio points to a poll capable device, including but not
977 	 *     limited to the one that the original bio pointed to.  In this
978 	 *     case we will call into the actual poll method and poll for I/O,
979 	 *     even if we don't need to, but it won't cause harm either.
980 	 *
981 	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
982 	 * is still allocated. Because partitions hold a reference to the whole
983 	 * device bdev and thus disk, the disk is also still valid.  Grabbing
984 	 * a reference to the queue in bio_poll() ensures the hctxs and requests
985 	 * are still valid as well.
986 	 */
987 	rcu_read_lock();
988 	bio = READ_ONCE(kiocb->private);
989 	if (bio && bio->bi_bdev)
990 		ret = bio_poll(bio, iob, flags);
991 	rcu_read_unlock();
992 
993 	return ret;
994 }
995 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
996 
997 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
998 {
999 	unsigned long stamp;
1000 again:
1001 	stamp = READ_ONCE(part->bd_stamp);
1002 	if (unlikely(time_after(now, stamp))) {
1003 		if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1004 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1005 	}
1006 	if (part->bd_partno) {
1007 		part = bdev_whole(part);
1008 		goto again;
1009 	}
1010 }
1011 
1012 unsigned long bdev_start_io_acct(struct block_device *bdev,
1013 				 unsigned int sectors, unsigned int op,
1014 				 unsigned long start_time)
1015 {
1016 	const int sgrp = op_stat_group(op);
1017 
1018 	part_stat_lock();
1019 	update_io_ticks(bdev, start_time, false);
1020 	part_stat_inc(bdev, ios[sgrp]);
1021 	part_stat_add(bdev, sectors[sgrp], sectors);
1022 	part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
1023 	part_stat_unlock();
1024 
1025 	return start_time;
1026 }
1027 EXPORT_SYMBOL(bdev_start_io_acct);
1028 
1029 /**
1030  * bio_start_io_acct_time - start I/O accounting for bio based drivers
1031  * @bio:	bio to start account for
1032  * @start_time:	start time that should be passed back to bio_end_io_acct().
1033  */
1034 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time)
1035 {
1036 	bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1037 			   bio_op(bio), start_time);
1038 }
1039 EXPORT_SYMBOL_GPL(bio_start_io_acct_time);
1040 
1041 /**
1042  * bio_start_io_acct - start I/O accounting for bio based drivers
1043  * @bio:	bio to start account for
1044  *
1045  * Returns the start time that should be passed back to bio_end_io_acct().
1046  */
1047 unsigned long bio_start_io_acct(struct bio *bio)
1048 {
1049 	return bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1050 				  bio_op(bio), jiffies);
1051 }
1052 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1053 
1054 void bdev_end_io_acct(struct block_device *bdev, unsigned int op,
1055 		      unsigned long start_time)
1056 {
1057 	const int sgrp = op_stat_group(op);
1058 	unsigned long now = READ_ONCE(jiffies);
1059 	unsigned long duration = now - start_time;
1060 
1061 	part_stat_lock();
1062 	update_io_ticks(bdev, now, true);
1063 	part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1064 	part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1065 	part_stat_unlock();
1066 }
1067 EXPORT_SYMBOL(bdev_end_io_acct);
1068 
1069 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1070 			      struct block_device *orig_bdev)
1071 {
1072 	bdev_end_io_acct(orig_bdev, bio_op(bio), start_time);
1073 }
1074 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1075 
1076 /**
1077  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1078  * @q : the queue of the device being checked
1079  *
1080  * Description:
1081  *    Check if underlying low-level drivers of a device are busy.
1082  *    If the drivers want to export their busy state, they must set own
1083  *    exporting function using blk_queue_lld_busy() first.
1084  *
1085  *    Basically, this function is used only by request stacking drivers
1086  *    to stop dispatching requests to underlying devices when underlying
1087  *    devices are busy.  This behavior helps more I/O merging on the queue
1088  *    of the request stacking driver and prevents I/O throughput regression
1089  *    on burst I/O load.
1090  *
1091  * Return:
1092  *    0 - Not busy (The request stacking driver should dispatch request)
1093  *    1 - Busy (The request stacking driver should stop dispatching request)
1094  */
1095 int blk_lld_busy(struct request_queue *q)
1096 {
1097 	if (queue_is_mq(q) && q->mq_ops->busy)
1098 		return q->mq_ops->busy(q);
1099 
1100 	return 0;
1101 }
1102 EXPORT_SYMBOL_GPL(blk_lld_busy);
1103 
1104 int kblockd_schedule_work(struct work_struct *work)
1105 {
1106 	return queue_work(kblockd_workqueue, work);
1107 }
1108 EXPORT_SYMBOL(kblockd_schedule_work);
1109 
1110 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1111 				unsigned long delay)
1112 {
1113 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1114 }
1115 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1116 
1117 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1118 {
1119 	struct task_struct *tsk = current;
1120 
1121 	/*
1122 	 * If this is a nested plug, don't actually assign it.
1123 	 */
1124 	if (tsk->plug)
1125 		return;
1126 
1127 	plug->mq_list = NULL;
1128 	plug->cached_rq = NULL;
1129 	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1130 	plug->rq_count = 0;
1131 	plug->multiple_queues = false;
1132 	plug->has_elevator = false;
1133 	plug->nowait = false;
1134 	INIT_LIST_HEAD(&plug->cb_list);
1135 
1136 	/*
1137 	 * Store ordering should not be needed here, since a potential
1138 	 * preempt will imply a full memory barrier
1139 	 */
1140 	tsk->plug = plug;
1141 }
1142 
1143 /**
1144  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1145  * @plug:	The &struct blk_plug that needs to be initialized
1146  *
1147  * Description:
1148  *   blk_start_plug() indicates to the block layer an intent by the caller
1149  *   to submit multiple I/O requests in a batch.  The block layer may use
1150  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1151  *   is called.  However, the block layer may choose to submit requests
1152  *   before a call to blk_finish_plug() if the number of queued I/Os
1153  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1154  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1155  *   the task schedules (see below).
1156  *
1157  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1158  *   pending I/O should the task end up blocking between blk_start_plug() and
1159  *   blk_finish_plug(). This is important from a performance perspective, but
1160  *   also ensures that we don't deadlock. For instance, if the task is blocking
1161  *   for a memory allocation, memory reclaim could end up wanting to free a
1162  *   page belonging to that request that is currently residing in our private
1163  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1164  *   this kind of deadlock.
1165  */
1166 void blk_start_plug(struct blk_plug *plug)
1167 {
1168 	blk_start_plug_nr_ios(plug, 1);
1169 }
1170 EXPORT_SYMBOL(blk_start_plug);
1171 
1172 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1173 {
1174 	LIST_HEAD(callbacks);
1175 
1176 	while (!list_empty(&plug->cb_list)) {
1177 		list_splice_init(&plug->cb_list, &callbacks);
1178 
1179 		while (!list_empty(&callbacks)) {
1180 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1181 							  struct blk_plug_cb,
1182 							  list);
1183 			list_del(&cb->list);
1184 			cb->callback(cb, from_schedule);
1185 		}
1186 	}
1187 }
1188 
1189 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1190 				      int size)
1191 {
1192 	struct blk_plug *plug = current->plug;
1193 	struct blk_plug_cb *cb;
1194 
1195 	if (!plug)
1196 		return NULL;
1197 
1198 	list_for_each_entry(cb, &plug->cb_list, list)
1199 		if (cb->callback == unplug && cb->data == data)
1200 			return cb;
1201 
1202 	/* Not currently on the callback list */
1203 	BUG_ON(size < sizeof(*cb));
1204 	cb = kzalloc(size, GFP_ATOMIC);
1205 	if (cb) {
1206 		cb->data = data;
1207 		cb->callback = unplug;
1208 		list_add(&cb->list, &plug->cb_list);
1209 	}
1210 	return cb;
1211 }
1212 EXPORT_SYMBOL(blk_check_plugged);
1213 
1214 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1215 {
1216 	if (!list_empty(&plug->cb_list))
1217 		flush_plug_callbacks(plug, from_schedule);
1218 	if (!rq_list_empty(plug->mq_list))
1219 		blk_mq_flush_plug_list(plug, from_schedule);
1220 	/*
1221 	 * Unconditionally flush out cached requests, even if the unplug
1222 	 * event came from schedule. Since we know hold references to the
1223 	 * queue for cached requests, we don't want a blocked task holding
1224 	 * up a queue freeze/quiesce event.
1225 	 */
1226 	if (unlikely(!rq_list_empty(plug->cached_rq)))
1227 		blk_mq_free_plug_rqs(plug);
1228 }
1229 
1230 /**
1231  * blk_finish_plug - mark the end of a batch of submitted I/O
1232  * @plug:	The &struct blk_plug passed to blk_start_plug()
1233  *
1234  * Description:
1235  * Indicate that a batch of I/O submissions is complete.  This function
1236  * must be paired with an initial call to blk_start_plug().  The intent
1237  * is to allow the block layer to optimize I/O submission.  See the
1238  * documentation for blk_start_plug() for more information.
1239  */
1240 void blk_finish_plug(struct blk_plug *plug)
1241 {
1242 	if (plug == current->plug) {
1243 		__blk_flush_plug(plug, false);
1244 		current->plug = NULL;
1245 	}
1246 }
1247 EXPORT_SYMBOL(blk_finish_plug);
1248 
1249 void blk_io_schedule(void)
1250 {
1251 	/* Prevent hang_check timer from firing at us during very long I/O */
1252 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1253 
1254 	if (timeout)
1255 		io_schedule_timeout(timeout);
1256 	else
1257 		io_schedule();
1258 }
1259 EXPORT_SYMBOL_GPL(blk_io_schedule);
1260 
1261 int __init blk_dev_init(void)
1262 {
1263 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1264 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1265 			sizeof_field(struct request, cmd_flags));
1266 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1267 			sizeof_field(struct bio, bi_opf));
1268 	BUILD_BUG_ON(ALIGN(offsetof(struct request_queue, srcu),
1269 			   __alignof__(struct request_queue)) !=
1270 		     sizeof(struct request_queue));
1271 
1272 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1273 	kblockd_workqueue = alloc_workqueue("kblockd",
1274 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1275 	if (!kblockd_workqueue)
1276 		panic("Failed to create kblockd\n");
1277 
1278 	blk_requestq_cachep = kmem_cache_create("request_queue",
1279 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1280 
1281 	blk_requestq_srcu_cachep = kmem_cache_create("request_queue_srcu",
1282 			sizeof(struct request_queue) +
1283 			sizeof(struct srcu_struct), 0, SLAB_PANIC, NULL);
1284 
1285 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1286 
1287 	return 0;
1288 }
1289