1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 #include <linux/bpf.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/block.h> 41 42 #include "blk.h" 43 #include "blk-mq.h" 44 #include "blk-mq-sched.h" 45 #include "blk-pm.h" 46 #include "blk-rq-qos.h" 47 48 #ifdef CONFIG_DEBUG_FS 49 struct dentry *blk_debugfs_root; 50 #endif 51 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 57 58 DEFINE_IDA(blk_queue_ida); 59 60 /* 61 * For queue allocation 62 */ 63 struct kmem_cache *blk_requestq_cachep; 64 65 /* 66 * Controlling structure to kblockd 67 */ 68 static struct workqueue_struct *kblockd_workqueue; 69 70 /** 71 * blk_queue_flag_set - atomically set a queue flag 72 * @flag: flag to be set 73 * @q: request queue 74 */ 75 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 76 { 77 set_bit(flag, &q->queue_flags); 78 } 79 EXPORT_SYMBOL(blk_queue_flag_set); 80 81 /** 82 * blk_queue_flag_clear - atomically clear a queue flag 83 * @flag: flag to be cleared 84 * @q: request queue 85 */ 86 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 87 { 88 clear_bit(flag, &q->queue_flags); 89 } 90 EXPORT_SYMBOL(blk_queue_flag_clear); 91 92 /** 93 * blk_queue_flag_test_and_set - atomically test and set a queue flag 94 * @flag: flag to be set 95 * @q: request queue 96 * 97 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 98 * the flag was already set. 99 */ 100 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 101 { 102 return test_and_set_bit(flag, &q->queue_flags); 103 } 104 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 105 106 void blk_rq_init(struct request_queue *q, struct request *rq) 107 { 108 memset(rq, 0, sizeof(*rq)); 109 110 INIT_LIST_HEAD(&rq->queuelist); 111 rq->q = q; 112 rq->__sector = (sector_t) -1; 113 INIT_HLIST_NODE(&rq->hash); 114 RB_CLEAR_NODE(&rq->rb_node); 115 rq->tag = -1; 116 rq->internal_tag = -1; 117 rq->start_time_ns = ktime_get_ns(); 118 rq->part = NULL; 119 } 120 EXPORT_SYMBOL(blk_rq_init); 121 122 static const struct { 123 int errno; 124 const char *name; 125 } blk_errors[] = { 126 [BLK_STS_OK] = { 0, "" }, 127 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 128 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 129 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 130 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 131 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 132 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 133 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 134 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 135 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 136 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 137 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 138 139 /* device mapper special case, should not leak out: */ 140 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 141 142 /* everything else not covered above: */ 143 [BLK_STS_IOERR] = { -EIO, "I/O" }, 144 }; 145 146 blk_status_t errno_to_blk_status(int errno) 147 { 148 int i; 149 150 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 151 if (blk_errors[i].errno == errno) 152 return (__force blk_status_t)i; 153 } 154 155 return BLK_STS_IOERR; 156 } 157 EXPORT_SYMBOL_GPL(errno_to_blk_status); 158 159 int blk_status_to_errno(blk_status_t status) 160 { 161 int idx = (__force int)status; 162 163 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 164 return -EIO; 165 return blk_errors[idx].errno; 166 } 167 EXPORT_SYMBOL_GPL(blk_status_to_errno); 168 169 static void print_req_error(struct request *req, blk_status_t status) 170 { 171 int idx = (__force int)status; 172 173 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 174 return; 175 176 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n", 177 __func__, blk_errors[idx].name, 178 req->rq_disk ? req->rq_disk->disk_name : "?", 179 (unsigned long long)blk_rq_pos(req), 180 req->cmd_flags); 181 } 182 183 static void req_bio_endio(struct request *rq, struct bio *bio, 184 unsigned int nbytes, blk_status_t error) 185 { 186 if (error) 187 bio->bi_status = error; 188 189 if (unlikely(rq->rq_flags & RQF_QUIET)) 190 bio_set_flag(bio, BIO_QUIET); 191 192 bio_advance(bio, nbytes); 193 194 /* don't actually finish bio if it's part of flush sequence */ 195 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 196 bio_endio(bio); 197 } 198 199 void blk_dump_rq_flags(struct request *rq, char *msg) 200 { 201 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 202 rq->rq_disk ? rq->rq_disk->disk_name : "?", 203 (unsigned long long) rq->cmd_flags); 204 205 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 206 (unsigned long long)blk_rq_pos(rq), 207 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 208 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 209 rq->bio, rq->biotail, blk_rq_bytes(rq)); 210 } 211 EXPORT_SYMBOL(blk_dump_rq_flags); 212 213 /** 214 * blk_sync_queue - cancel any pending callbacks on a queue 215 * @q: the queue 216 * 217 * Description: 218 * The block layer may perform asynchronous callback activity 219 * on a queue, such as calling the unplug function after a timeout. 220 * A block device may call blk_sync_queue to ensure that any 221 * such activity is cancelled, thus allowing it to release resources 222 * that the callbacks might use. The caller must already have made sure 223 * that its ->make_request_fn will not re-add plugging prior to calling 224 * this function. 225 * 226 * This function does not cancel any asynchronous activity arising 227 * out of elevator or throttling code. That would require elevator_exit() 228 * and blkcg_exit_queue() to be called with queue lock initialized. 229 * 230 */ 231 void blk_sync_queue(struct request_queue *q) 232 { 233 del_timer_sync(&q->timeout); 234 cancel_work_sync(&q->timeout_work); 235 236 if (queue_is_mq(q)) { 237 struct blk_mq_hw_ctx *hctx; 238 int i; 239 240 cancel_delayed_work_sync(&q->requeue_work); 241 queue_for_each_hw_ctx(q, hctx, i) 242 cancel_delayed_work_sync(&hctx->run_work); 243 } 244 } 245 EXPORT_SYMBOL(blk_sync_queue); 246 247 /** 248 * blk_set_pm_only - increment pm_only counter 249 * @q: request queue pointer 250 */ 251 void blk_set_pm_only(struct request_queue *q) 252 { 253 atomic_inc(&q->pm_only); 254 } 255 EXPORT_SYMBOL_GPL(blk_set_pm_only); 256 257 void blk_clear_pm_only(struct request_queue *q) 258 { 259 int pm_only; 260 261 pm_only = atomic_dec_return(&q->pm_only); 262 WARN_ON_ONCE(pm_only < 0); 263 if (pm_only == 0) 264 wake_up_all(&q->mq_freeze_wq); 265 } 266 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 267 268 void blk_put_queue(struct request_queue *q) 269 { 270 kobject_put(&q->kobj); 271 } 272 EXPORT_SYMBOL(blk_put_queue); 273 274 void blk_set_queue_dying(struct request_queue *q) 275 { 276 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 277 278 /* 279 * When queue DYING flag is set, we need to block new req 280 * entering queue, so we call blk_freeze_queue_start() to 281 * prevent I/O from crossing blk_queue_enter(). 282 */ 283 blk_freeze_queue_start(q); 284 285 if (queue_is_mq(q)) 286 blk_mq_wake_waiters(q); 287 288 /* Make blk_queue_enter() reexamine the DYING flag. */ 289 wake_up_all(&q->mq_freeze_wq); 290 } 291 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 292 293 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */ 294 void blk_exit_queue(struct request_queue *q) 295 { 296 /* 297 * Since the I/O scheduler exit code may access cgroup information, 298 * perform I/O scheduler exit before disassociating from the block 299 * cgroup controller. 300 */ 301 if (q->elevator) { 302 ioc_clear_queue(q); 303 elevator_exit(q, q->elevator); 304 q->elevator = NULL; 305 } 306 307 /* 308 * Remove all references to @q from the block cgroup controller before 309 * restoring @q->queue_lock to avoid that restoring this pointer causes 310 * e.g. blkcg_print_blkgs() to crash. 311 */ 312 blkcg_exit_queue(q); 313 314 /* 315 * Since the cgroup code may dereference the @q->backing_dev_info 316 * pointer, only decrease its reference count after having removed the 317 * association with the block cgroup controller. 318 */ 319 bdi_put(q->backing_dev_info); 320 } 321 322 /** 323 * blk_cleanup_queue - shutdown a request queue 324 * @q: request queue to shutdown 325 * 326 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 327 * put it. All future requests will be failed immediately with -ENODEV. 328 */ 329 void blk_cleanup_queue(struct request_queue *q) 330 { 331 /* mark @q DYING, no new request or merges will be allowed afterwards */ 332 mutex_lock(&q->sysfs_lock); 333 blk_set_queue_dying(q); 334 335 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 336 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 337 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 338 mutex_unlock(&q->sysfs_lock); 339 340 /* 341 * Drain all requests queued before DYING marking. Set DEAD flag to 342 * prevent that q->request_fn() gets invoked after draining finished. 343 */ 344 blk_freeze_queue(q); 345 346 rq_qos_exit(q); 347 348 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 349 350 /* 351 * make sure all in-progress dispatch are completed because 352 * blk_freeze_queue() can only complete all requests, and 353 * dispatch may still be in-progress since we dispatch requests 354 * from more than one contexts. 355 * 356 * We rely on driver to deal with the race in case that queue 357 * initialization isn't done. 358 */ 359 if (queue_is_mq(q) && blk_queue_init_done(q)) 360 blk_mq_quiesce_queue(q); 361 362 /* for synchronous bio-based driver finish in-flight integrity i/o */ 363 blk_flush_integrity(); 364 365 /* @q won't process any more request, flush async actions */ 366 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 367 blk_sync_queue(q); 368 369 /* 370 * I/O scheduler exit is only safe after the sysfs scheduler attribute 371 * has been removed. 372 */ 373 WARN_ON_ONCE(q->kobj.state_in_sysfs); 374 375 blk_exit_queue(q); 376 377 if (queue_is_mq(q)) 378 blk_mq_free_queue(q); 379 380 percpu_ref_exit(&q->q_usage_counter); 381 382 /* @q is and will stay empty, shutdown and put */ 383 blk_put_queue(q); 384 } 385 EXPORT_SYMBOL(blk_cleanup_queue); 386 387 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 388 { 389 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 390 } 391 EXPORT_SYMBOL(blk_alloc_queue); 392 393 /** 394 * blk_queue_enter() - try to increase q->q_usage_counter 395 * @q: request queue pointer 396 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 397 */ 398 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 399 { 400 const bool pm = flags & BLK_MQ_REQ_PREEMPT; 401 402 while (true) { 403 bool success = false; 404 405 rcu_read_lock(); 406 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 407 /* 408 * The code that increments the pm_only counter is 409 * responsible for ensuring that that counter is 410 * globally visible before the queue is unfrozen. 411 */ 412 if (pm || !blk_queue_pm_only(q)) { 413 success = true; 414 } else { 415 percpu_ref_put(&q->q_usage_counter); 416 } 417 } 418 rcu_read_unlock(); 419 420 if (success) 421 return 0; 422 423 if (flags & BLK_MQ_REQ_NOWAIT) 424 return -EBUSY; 425 426 /* 427 * read pair of barrier in blk_freeze_queue_start(), 428 * we need to order reading __PERCPU_REF_DEAD flag of 429 * .q_usage_counter and reading .mq_freeze_depth or 430 * queue dying flag, otherwise the following wait may 431 * never return if the two reads are reordered. 432 */ 433 smp_rmb(); 434 435 wait_event(q->mq_freeze_wq, 436 (atomic_read(&q->mq_freeze_depth) == 0 && 437 (pm || (blk_pm_request_resume(q), 438 !blk_queue_pm_only(q)))) || 439 blk_queue_dying(q)); 440 if (blk_queue_dying(q)) 441 return -ENODEV; 442 } 443 } 444 445 void blk_queue_exit(struct request_queue *q) 446 { 447 percpu_ref_put(&q->q_usage_counter); 448 } 449 450 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 451 { 452 struct request_queue *q = 453 container_of(ref, struct request_queue, q_usage_counter); 454 455 wake_up_all(&q->mq_freeze_wq); 456 } 457 458 static void blk_rq_timed_out_timer(struct timer_list *t) 459 { 460 struct request_queue *q = from_timer(q, t, timeout); 461 462 kblockd_schedule_work(&q->timeout_work); 463 } 464 465 static void blk_timeout_work(struct work_struct *work) 466 { 467 } 468 469 /** 470 * blk_alloc_queue_node - allocate a request queue 471 * @gfp_mask: memory allocation flags 472 * @node_id: NUMA node to allocate memory from 473 */ 474 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 475 { 476 struct request_queue *q; 477 int ret; 478 479 q = kmem_cache_alloc_node(blk_requestq_cachep, 480 gfp_mask | __GFP_ZERO, node_id); 481 if (!q) 482 return NULL; 483 484 INIT_LIST_HEAD(&q->queue_head); 485 q->last_merge = NULL; 486 487 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 488 if (q->id < 0) 489 goto fail_q; 490 491 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 492 if (ret) 493 goto fail_id; 494 495 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 496 if (!q->backing_dev_info) 497 goto fail_split; 498 499 q->stats = blk_alloc_queue_stats(); 500 if (!q->stats) 501 goto fail_stats; 502 503 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES; 504 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 505 q->backing_dev_info->name = "block"; 506 q->node = node_id; 507 508 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 509 laptop_mode_timer_fn, 0); 510 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 511 INIT_WORK(&q->timeout_work, blk_timeout_work); 512 INIT_LIST_HEAD(&q->icq_list); 513 #ifdef CONFIG_BLK_CGROUP 514 INIT_LIST_HEAD(&q->blkg_list); 515 #endif 516 517 kobject_init(&q->kobj, &blk_queue_ktype); 518 519 #ifdef CONFIG_BLK_DEV_IO_TRACE 520 mutex_init(&q->blk_trace_mutex); 521 #endif 522 mutex_init(&q->sysfs_lock); 523 spin_lock_init(&q->queue_lock); 524 525 init_waitqueue_head(&q->mq_freeze_wq); 526 527 /* 528 * Init percpu_ref in atomic mode so that it's faster to shutdown. 529 * See blk_register_queue() for details. 530 */ 531 if (percpu_ref_init(&q->q_usage_counter, 532 blk_queue_usage_counter_release, 533 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 534 goto fail_bdi; 535 536 if (blkcg_init_queue(q)) 537 goto fail_ref; 538 539 return q; 540 541 fail_ref: 542 percpu_ref_exit(&q->q_usage_counter); 543 fail_bdi: 544 blk_free_queue_stats(q->stats); 545 fail_stats: 546 bdi_put(q->backing_dev_info); 547 fail_split: 548 bioset_exit(&q->bio_split); 549 fail_id: 550 ida_simple_remove(&blk_queue_ida, q->id); 551 fail_q: 552 kmem_cache_free(blk_requestq_cachep, q); 553 return NULL; 554 } 555 EXPORT_SYMBOL(blk_alloc_queue_node); 556 557 bool blk_get_queue(struct request_queue *q) 558 { 559 if (likely(!blk_queue_dying(q))) { 560 __blk_get_queue(q); 561 return true; 562 } 563 564 return false; 565 } 566 EXPORT_SYMBOL(blk_get_queue); 567 568 /** 569 * blk_get_request - allocate a request 570 * @q: request queue to allocate a request for 571 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 572 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 573 */ 574 struct request *blk_get_request(struct request_queue *q, unsigned int op, 575 blk_mq_req_flags_t flags) 576 { 577 struct request *req; 578 579 WARN_ON_ONCE(op & REQ_NOWAIT); 580 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 581 582 req = blk_mq_alloc_request(q, op, flags); 583 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 584 q->mq_ops->initialize_rq_fn(req); 585 586 return req; 587 } 588 EXPORT_SYMBOL(blk_get_request); 589 590 void blk_put_request(struct request *req) 591 { 592 blk_mq_free_request(req); 593 } 594 EXPORT_SYMBOL(blk_put_request); 595 596 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 597 struct bio *bio) 598 { 599 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 600 601 if (!ll_back_merge_fn(q, req, bio)) 602 return false; 603 604 trace_block_bio_backmerge(q, req, bio); 605 606 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 607 blk_rq_set_mixed_merge(req); 608 609 req->biotail->bi_next = bio; 610 req->biotail = bio; 611 req->__data_len += bio->bi_iter.bi_size; 612 613 blk_account_io_start(req, false); 614 return true; 615 } 616 617 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 618 struct bio *bio) 619 { 620 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 621 622 if (!ll_front_merge_fn(q, req, bio)) 623 return false; 624 625 trace_block_bio_frontmerge(q, req, bio); 626 627 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 628 blk_rq_set_mixed_merge(req); 629 630 bio->bi_next = req->bio; 631 req->bio = bio; 632 633 req->__sector = bio->bi_iter.bi_sector; 634 req->__data_len += bio->bi_iter.bi_size; 635 636 blk_account_io_start(req, false); 637 return true; 638 } 639 640 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 641 struct bio *bio) 642 { 643 unsigned short segments = blk_rq_nr_discard_segments(req); 644 645 if (segments >= queue_max_discard_segments(q)) 646 goto no_merge; 647 if (blk_rq_sectors(req) + bio_sectors(bio) > 648 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 649 goto no_merge; 650 651 req->biotail->bi_next = bio; 652 req->biotail = bio; 653 req->__data_len += bio->bi_iter.bi_size; 654 req->nr_phys_segments = segments + 1; 655 656 blk_account_io_start(req, false); 657 return true; 658 no_merge: 659 req_set_nomerge(q, req); 660 return false; 661 } 662 663 /** 664 * blk_attempt_plug_merge - try to merge with %current's plugged list 665 * @q: request_queue new bio is being queued at 666 * @bio: new bio being queued 667 * @same_queue_rq: pointer to &struct request that gets filled in when 668 * another request associated with @q is found on the plug list 669 * (optional, may be %NULL) 670 * 671 * Determine whether @bio being queued on @q can be merged with a request 672 * on %current's plugged list. Returns %true if merge was successful, 673 * otherwise %false. 674 * 675 * Plugging coalesces IOs from the same issuer for the same purpose without 676 * going through @q->queue_lock. As such it's more of an issuing mechanism 677 * than scheduling, and the request, while may have elvpriv data, is not 678 * added on the elevator at this point. In addition, we don't have 679 * reliable access to the elevator outside queue lock. Only check basic 680 * merging parameters without querying the elevator. 681 * 682 * Caller must ensure !blk_queue_nomerges(q) beforehand. 683 */ 684 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 685 struct request **same_queue_rq) 686 { 687 struct blk_plug *plug; 688 struct request *rq; 689 struct list_head *plug_list; 690 691 plug = current->plug; 692 if (!plug) 693 return false; 694 695 plug_list = &plug->mq_list; 696 697 list_for_each_entry_reverse(rq, plug_list, queuelist) { 698 bool merged = false; 699 700 if (rq->q == q && same_queue_rq) { 701 /* 702 * Only blk-mq multiple hardware queues case checks the 703 * rq in the same queue, there should be only one such 704 * rq in a queue 705 **/ 706 *same_queue_rq = rq; 707 } 708 709 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 710 continue; 711 712 switch (blk_try_merge(rq, bio)) { 713 case ELEVATOR_BACK_MERGE: 714 merged = bio_attempt_back_merge(q, rq, bio); 715 break; 716 case ELEVATOR_FRONT_MERGE: 717 merged = bio_attempt_front_merge(q, rq, bio); 718 break; 719 case ELEVATOR_DISCARD_MERGE: 720 merged = bio_attempt_discard_merge(q, rq, bio); 721 break; 722 default: 723 break; 724 } 725 726 if (merged) 727 return true; 728 } 729 730 return false; 731 } 732 733 void blk_init_request_from_bio(struct request *req, struct bio *bio) 734 { 735 if (bio->bi_opf & REQ_RAHEAD) 736 req->cmd_flags |= REQ_FAILFAST_MASK; 737 738 req->__sector = bio->bi_iter.bi_sector; 739 req->ioprio = bio_prio(bio); 740 req->write_hint = bio->bi_write_hint; 741 blk_rq_bio_prep(req->q, req, bio); 742 } 743 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 744 745 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 746 { 747 char b[BDEVNAME_SIZE]; 748 749 printk(KERN_INFO "attempt to access beyond end of device\n"); 750 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 751 bio_devname(bio, b), bio->bi_opf, 752 (unsigned long long)bio_end_sector(bio), 753 (long long)maxsector); 754 } 755 756 #ifdef CONFIG_FAIL_MAKE_REQUEST 757 758 static DECLARE_FAULT_ATTR(fail_make_request); 759 760 static int __init setup_fail_make_request(char *str) 761 { 762 return setup_fault_attr(&fail_make_request, str); 763 } 764 __setup("fail_make_request=", setup_fail_make_request); 765 766 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 767 { 768 return part->make_it_fail && should_fail(&fail_make_request, bytes); 769 } 770 771 static int __init fail_make_request_debugfs(void) 772 { 773 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 774 NULL, &fail_make_request); 775 776 return PTR_ERR_OR_ZERO(dir); 777 } 778 779 late_initcall(fail_make_request_debugfs); 780 781 #else /* CONFIG_FAIL_MAKE_REQUEST */ 782 783 static inline bool should_fail_request(struct hd_struct *part, 784 unsigned int bytes) 785 { 786 return false; 787 } 788 789 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 790 791 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 792 { 793 const int op = bio_op(bio); 794 795 if (part->policy && op_is_write(op)) { 796 char b[BDEVNAME_SIZE]; 797 798 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 799 return false; 800 801 WARN_ONCE(1, 802 "generic_make_request: Trying to write " 803 "to read-only block-device %s (partno %d)\n", 804 bio_devname(bio, b), part->partno); 805 /* Older lvm-tools actually trigger this */ 806 return false; 807 } 808 809 return false; 810 } 811 812 static noinline int should_fail_bio(struct bio *bio) 813 { 814 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 815 return -EIO; 816 return 0; 817 } 818 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 819 820 /* 821 * Check whether this bio extends beyond the end of the device or partition. 822 * This may well happen - the kernel calls bread() without checking the size of 823 * the device, e.g., when mounting a file system. 824 */ 825 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 826 { 827 unsigned int nr_sectors = bio_sectors(bio); 828 829 if (nr_sectors && maxsector && 830 (nr_sectors > maxsector || 831 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 832 handle_bad_sector(bio, maxsector); 833 return -EIO; 834 } 835 return 0; 836 } 837 838 /* 839 * Remap block n of partition p to block n+start(p) of the disk. 840 */ 841 static inline int blk_partition_remap(struct bio *bio) 842 { 843 struct hd_struct *p; 844 int ret = -EIO; 845 846 rcu_read_lock(); 847 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 848 if (unlikely(!p)) 849 goto out; 850 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 851 goto out; 852 if (unlikely(bio_check_ro(bio, p))) 853 goto out; 854 855 /* 856 * Zone reset does not include bi_size so bio_sectors() is always 0. 857 * Include a test for the reset op code and perform the remap if needed. 858 */ 859 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) { 860 if (bio_check_eod(bio, part_nr_sects_read(p))) 861 goto out; 862 bio->bi_iter.bi_sector += p->start_sect; 863 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 864 bio->bi_iter.bi_sector - p->start_sect); 865 } 866 bio->bi_partno = 0; 867 ret = 0; 868 out: 869 rcu_read_unlock(); 870 return ret; 871 } 872 873 static noinline_for_stack bool 874 generic_make_request_checks(struct bio *bio) 875 { 876 struct request_queue *q; 877 int nr_sectors = bio_sectors(bio); 878 blk_status_t status = BLK_STS_IOERR; 879 char b[BDEVNAME_SIZE]; 880 881 might_sleep(); 882 883 q = bio->bi_disk->queue; 884 if (unlikely(!q)) { 885 printk(KERN_ERR 886 "generic_make_request: Trying to access " 887 "nonexistent block-device %s (%Lu)\n", 888 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 889 goto end_io; 890 } 891 892 /* 893 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 894 * if queue is not a request based queue. 895 */ 896 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q)) 897 goto not_supported; 898 899 if (should_fail_bio(bio)) 900 goto end_io; 901 902 if (bio->bi_partno) { 903 if (unlikely(blk_partition_remap(bio))) 904 goto end_io; 905 } else { 906 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 907 goto end_io; 908 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 909 goto end_io; 910 } 911 912 /* 913 * Filter flush bio's early so that make_request based 914 * drivers without flush support don't have to worry 915 * about them. 916 */ 917 if (op_is_flush(bio->bi_opf) && 918 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 919 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 920 if (!nr_sectors) { 921 status = BLK_STS_OK; 922 goto end_io; 923 } 924 } 925 926 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 927 bio->bi_opf &= ~REQ_HIPRI; 928 929 switch (bio_op(bio)) { 930 case REQ_OP_DISCARD: 931 if (!blk_queue_discard(q)) 932 goto not_supported; 933 break; 934 case REQ_OP_SECURE_ERASE: 935 if (!blk_queue_secure_erase(q)) 936 goto not_supported; 937 break; 938 case REQ_OP_WRITE_SAME: 939 if (!q->limits.max_write_same_sectors) 940 goto not_supported; 941 break; 942 case REQ_OP_ZONE_RESET: 943 if (!blk_queue_is_zoned(q)) 944 goto not_supported; 945 break; 946 case REQ_OP_WRITE_ZEROES: 947 if (!q->limits.max_write_zeroes_sectors) 948 goto not_supported; 949 break; 950 default: 951 break; 952 } 953 954 /* 955 * Various block parts want %current->io_context and lazy ioc 956 * allocation ends up trading a lot of pain for a small amount of 957 * memory. Just allocate it upfront. This may fail and block 958 * layer knows how to live with it. 959 */ 960 create_io_context(GFP_ATOMIC, q->node); 961 962 if (!blkcg_bio_issue_check(q, bio)) 963 return false; 964 965 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 966 trace_block_bio_queue(q, bio); 967 /* Now that enqueuing has been traced, we need to trace 968 * completion as well. 969 */ 970 bio_set_flag(bio, BIO_TRACE_COMPLETION); 971 } 972 return true; 973 974 not_supported: 975 status = BLK_STS_NOTSUPP; 976 end_io: 977 bio->bi_status = status; 978 bio_endio(bio); 979 return false; 980 } 981 982 /** 983 * generic_make_request - hand a buffer to its device driver for I/O 984 * @bio: The bio describing the location in memory and on the device. 985 * 986 * generic_make_request() is used to make I/O requests of block 987 * devices. It is passed a &struct bio, which describes the I/O that needs 988 * to be done. 989 * 990 * generic_make_request() does not return any status. The 991 * success/failure status of the request, along with notification of 992 * completion, is delivered asynchronously through the bio->bi_end_io 993 * function described (one day) else where. 994 * 995 * The caller of generic_make_request must make sure that bi_io_vec 996 * are set to describe the memory buffer, and that bi_dev and bi_sector are 997 * set to describe the device address, and the 998 * bi_end_io and optionally bi_private are set to describe how 999 * completion notification should be signaled. 1000 * 1001 * generic_make_request and the drivers it calls may use bi_next if this 1002 * bio happens to be merged with someone else, and may resubmit the bio to 1003 * a lower device by calling into generic_make_request recursively, which 1004 * means the bio should NOT be touched after the call to ->make_request_fn. 1005 */ 1006 blk_qc_t generic_make_request(struct bio *bio) 1007 { 1008 /* 1009 * bio_list_on_stack[0] contains bios submitted by the current 1010 * make_request_fn. 1011 * bio_list_on_stack[1] contains bios that were submitted before 1012 * the current make_request_fn, but that haven't been processed 1013 * yet. 1014 */ 1015 struct bio_list bio_list_on_stack[2]; 1016 blk_mq_req_flags_t flags = 0; 1017 struct request_queue *q = bio->bi_disk->queue; 1018 blk_qc_t ret = BLK_QC_T_NONE; 1019 1020 if (bio->bi_opf & REQ_NOWAIT) 1021 flags = BLK_MQ_REQ_NOWAIT; 1022 if (bio_flagged(bio, BIO_QUEUE_ENTERED)) 1023 blk_queue_enter_live(q); 1024 else if (blk_queue_enter(q, flags) < 0) { 1025 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT)) 1026 bio_wouldblock_error(bio); 1027 else 1028 bio_io_error(bio); 1029 return ret; 1030 } 1031 1032 if (!generic_make_request_checks(bio)) 1033 goto out; 1034 1035 /* 1036 * We only want one ->make_request_fn to be active at a time, else 1037 * stack usage with stacked devices could be a problem. So use 1038 * current->bio_list to keep a list of requests submited by a 1039 * make_request_fn function. current->bio_list is also used as a 1040 * flag to say if generic_make_request is currently active in this 1041 * task or not. If it is NULL, then no make_request is active. If 1042 * it is non-NULL, then a make_request is active, and new requests 1043 * should be added at the tail 1044 */ 1045 if (current->bio_list) { 1046 bio_list_add(¤t->bio_list[0], bio); 1047 goto out; 1048 } 1049 1050 /* following loop may be a bit non-obvious, and so deserves some 1051 * explanation. 1052 * Before entering the loop, bio->bi_next is NULL (as all callers 1053 * ensure that) so we have a list with a single bio. 1054 * We pretend that we have just taken it off a longer list, so 1055 * we assign bio_list to a pointer to the bio_list_on_stack, 1056 * thus initialising the bio_list of new bios to be 1057 * added. ->make_request() may indeed add some more bios 1058 * through a recursive call to generic_make_request. If it 1059 * did, we find a non-NULL value in bio_list and re-enter the loop 1060 * from the top. In this case we really did just take the bio 1061 * of the top of the list (no pretending) and so remove it from 1062 * bio_list, and call into ->make_request() again. 1063 */ 1064 BUG_ON(bio->bi_next); 1065 bio_list_init(&bio_list_on_stack[0]); 1066 current->bio_list = bio_list_on_stack; 1067 do { 1068 bool enter_succeeded = true; 1069 1070 if (unlikely(q != bio->bi_disk->queue)) { 1071 if (q) 1072 blk_queue_exit(q); 1073 q = bio->bi_disk->queue; 1074 flags = 0; 1075 if (bio->bi_opf & REQ_NOWAIT) 1076 flags = BLK_MQ_REQ_NOWAIT; 1077 if (blk_queue_enter(q, flags) < 0) { 1078 enter_succeeded = false; 1079 q = NULL; 1080 } 1081 } 1082 1083 if (enter_succeeded) { 1084 struct bio_list lower, same; 1085 1086 /* Create a fresh bio_list for all subordinate requests */ 1087 bio_list_on_stack[1] = bio_list_on_stack[0]; 1088 bio_list_init(&bio_list_on_stack[0]); 1089 ret = q->make_request_fn(q, bio); 1090 1091 /* sort new bios into those for a lower level 1092 * and those for the same level 1093 */ 1094 bio_list_init(&lower); 1095 bio_list_init(&same); 1096 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 1097 if (q == bio->bi_disk->queue) 1098 bio_list_add(&same, bio); 1099 else 1100 bio_list_add(&lower, bio); 1101 /* now assemble so we handle the lowest level first */ 1102 bio_list_merge(&bio_list_on_stack[0], &lower); 1103 bio_list_merge(&bio_list_on_stack[0], &same); 1104 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 1105 } else { 1106 if (unlikely(!blk_queue_dying(q) && 1107 (bio->bi_opf & REQ_NOWAIT))) 1108 bio_wouldblock_error(bio); 1109 else 1110 bio_io_error(bio); 1111 } 1112 bio = bio_list_pop(&bio_list_on_stack[0]); 1113 } while (bio); 1114 current->bio_list = NULL; /* deactivate */ 1115 1116 out: 1117 if (q) 1118 blk_queue_exit(q); 1119 return ret; 1120 } 1121 EXPORT_SYMBOL(generic_make_request); 1122 1123 /** 1124 * direct_make_request - hand a buffer directly to its device driver for I/O 1125 * @bio: The bio describing the location in memory and on the device. 1126 * 1127 * This function behaves like generic_make_request(), but does not protect 1128 * against recursion. Must only be used if the called driver is known 1129 * to not call generic_make_request (or direct_make_request) again from 1130 * its make_request function. (Calling direct_make_request again from 1131 * a workqueue is perfectly fine as that doesn't recurse). 1132 */ 1133 blk_qc_t direct_make_request(struct bio *bio) 1134 { 1135 struct request_queue *q = bio->bi_disk->queue; 1136 bool nowait = bio->bi_opf & REQ_NOWAIT; 1137 blk_qc_t ret; 1138 1139 if (!generic_make_request_checks(bio)) 1140 return BLK_QC_T_NONE; 1141 1142 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 1143 if (nowait && !blk_queue_dying(q)) 1144 bio->bi_status = BLK_STS_AGAIN; 1145 else 1146 bio->bi_status = BLK_STS_IOERR; 1147 bio_endio(bio); 1148 return BLK_QC_T_NONE; 1149 } 1150 1151 ret = q->make_request_fn(q, bio); 1152 blk_queue_exit(q); 1153 return ret; 1154 } 1155 EXPORT_SYMBOL_GPL(direct_make_request); 1156 1157 /** 1158 * submit_bio - submit a bio to the block device layer for I/O 1159 * @bio: The &struct bio which describes the I/O 1160 * 1161 * submit_bio() is very similar in purpose to generic_make_request(), and 1162 * uses that function to do most of the work. Both are fairly rough 1163 * interfaces; @bio must be presetup and ready for I/O. 1164 * 1165 */ 1166 blk_qc_t submit_bio(struct bio *bio) 1167 { 1168 /* 1169 * If it's a regular read/write or a barrier with data attached, 1170 * go through the normal accounting stuff before submission. 1171 */ 1172 if (bio_has_data(bio)) { 1173 unsigned int count; 1174 1175 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1176 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 1177 else 1178 count = bio_sectors(bio); 1179 1180 if (op_is_write(bio_op(bio))) { 1181 count_vm_events(PGPGOUT, count); 1182 } else { 1183 task_io_account_read(bio->bi_iter.bi_size); 1184 count_vm_events(PGPGIN, count); 1185 } 1186 1187 if (unlikely(block_dump)) { 1188 char b[BDEVNAME_SIZE]; 1189 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1190 current->comm, task_pid_nr(current), 1191 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 1192 (unsigned long long)bio->bi_iter.bi_sector, 1193 bio_devname(bio, b), count); 1194 } 1195 } 1196 1197 return generic_make_request(bio); 1198 } 1199 EXPORT_SYMBOL(submit_bio); 1200 1201 /** 1202 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1203 * for new the queue limits 1204 * @q: the queue 1205 * @rq: the request being checked 1206 * 1207 * Description: 1208 * @rq may have been made based on weaker limitations of upper-level queues 1209 * in request stacking drivers, and it may violate the limitation of @q. 1210 * Since the block layer and the underlying device driver trust @rq 1211 * after it is inserted to @q, it should be checked against @q before 1212 * the insertion using this generic function. 1213 * 1214 * Request stacking drivers like request-based dm may change the queue 1215 * limits when retrying requests on other queues. Those requests need 1216 * to be checked against the new queue limits again during dispatch. 1217 */ 1218 static int blk_cloned_rq_check_limits(struct request_queue *q, 1219 struct request *rq) 1220 { 1221 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 1222 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1223 return -EIO; 1224 } 1225 1226 /* 1227 * queue's settings related to segment counting like q->bounce_pfn 1228 * may differ from that of other stacking queues. 1229 * Recalculate it to check the request correctly on this queue's 1230 * limitation. 1231 */ 1232 blk_recalc_rq_segments(rq); 1233 if (rq->nr_phys_segments > queue_max_segments(q)) { 1234 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1235 return -EIO; 1236 } 1237 1238 return 0; 1239 } 1240 1241 /** 1242 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1243 * @q: the queue to submit the request 1244 * @rq: the request being queued 1245 */ 1246 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1247 { 1248 blk_qc_t unused; 1249 1250 if (blk_cloned_rq_check_limits(q, rq)) 1251 return BLK_STS_IOERR; 1252 1253 if (rq->rq_disk && 1254 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1255 return BLK_STS_IOERR; 1256 1257 if (blk_queue_io_stat(q)) 1258 blk_account_io_start(rq, true); 1259 1260 /* 1261 * Since we have a scheduler attached on the top device, 1262 * bypass a potential scheduler on the bottom device for 1263 * insert. 1264 */ 1265 return blk_mq_try_issue_directly(rq->mq_hctx, rq, &unused, true, true); 1266 } 1267 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1268 1269 /** 1270 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1271 * @rq: request to examine 1272 * 1273 * Description: 1274 * A request could be merge of IOs which require different failure 1275 * handling. This function determines the number of bytes which 1276 * can be failed from the beginning of the request without 1277 * crossing into area which need to be retried further. 1278 * 1279 * Return: 1280 * The number of bytes to fail. 1281 */ 1282 unsigned int blk_rq_err_bytes(const struct request *rq) 1283 { 1284 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1285 unsigned int bytes = 0; 1286 struct bio *bio; 1287 1288 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1289 return blk_rq_bytes(rq); 1290 1291 /* 1292 * Currently the only 'mixing' which can happen is between 1293 * different fastfail types. We can safely fail portions 1294 * which have all the failfast bits that the first one has - 1295 * the ones which are at least as eager to fail as the first 1296 * one. 1297 */ 1298 for (bio = rq->bio; bio; bio = bio->bi_next) { 1299 if ((bio->bi_opf & ff) != ff) 1300 break; 1301 bytes += bio->bi_iter.bi_size; 1302 } 1303 1304 /* this could lead to infinite loop */ 1305 BUG_ON(blk_rq_bytes(rq) && !bytes); 1306 return bytes; 1307 } 1308 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1309 1310 void blk_account_io_completion(struct request *req, unsigned int bytes) 1311 { 1312 if (blk_do_io_stat(req)) { 1313 const int sgrp = op_stat_group(req_op(req)); 1314 struct hd_struct *part; 1315 1316 part_stat_lock(); 1317 part = req->part; 1318 part_stat_add(part, sectors[sgrp], bytes >> 9); 1319 part_stat_unlock(); 1320 } 1321 } 1322 1323 void blk_account_io_done(struct request *req, u64 now) 1324 { 1325 /* 1326 * Account IO completion. flush_rq isn't accounted as a 1327 * normal IO on queueing nor completion. Accounting the 1328 * containing request is enough. 1329 */ 1330 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 1331 const int sgrp = op_stat_group(req_op(req)); 1332 struct hd_struct *part; 1333 1334 part_stat_lock(); 1335 part = req->part; 1336 1337 update_io_ticks(part, jiffies); 1338 part_stat_inc(part, ios[sgrp]); 1339 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns); 1340 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns)); 1341 part_dec_in_flight(req->q, part, rq_data_dir(req)); 1342 1343 hd_struct_put(part); 1344 part_stat_unlock(); 1345 } 1346 } 1347 1348 void blk_account_io_start(struct request *rq, bool new_io) 1349 { 1350 struct hd_struct *part; 1351 int rw = rq_data_dir(rq); 1352 1353 if (!blk_do_io_stat(rq)) 1354 return; 1355 1356 part_stat_lock(); 1357 1358 if (!new_io) { 1359 part = rq->part; 1360 part_stat_inc(part, merges[rw]); 1361 } else { 1362 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 1363 if (!hd_struct_try_get(part)) { 1364 /* 1365 * The partition is already being removed, 1366 * the request will be accounted on the disk only 1367 * 1368 * We take a reference on disk->part0 although that 1369 * partition will never be deleted, so we can treat 1370 * it as any other partition. 1371 */ 1372 part = &rq->rq_disk->part0; 1373 hd_struct_get(part); 1374 } 1375 part_inc_in_flight(rq->q, part, rw); 1376 rq->part = part; 1377 } 1378 1379 update_io_ticks(part, jiffies); 1380 1381 part_stat_unlock(); 1382 } 1383 1384 /* 1385 * Steal bios from a request and add them to a bio list. 1386 * The request must not have been partially completed before. 1387 */ 1388 void blk_steal_bios(struct bio_list *list, struct request *rq) 1389 { 1390 if (rq->bio) { 1391 if (list->tail) 1392 list->tail->bi_next = rq->bio; 1393 else 1394 list->head = rq->bio; 1395 list->tail = rq->biotail; 1396 1397 rq->bio = NULL; 1398 rq->biotail = NULL; 1399 } 1400 1401 rq->__data_len = 0; 1402 } 1403 EXPORT_SYMBOL_GPL(blk_steal_bios); 1404 1405 /** 1406 * blk_update_request - Special helper function for request stacking drivers 1407 * @req: the request being processed 1408 * @error: block status code 1409 * @nr_bytes: number of bytes to complete @req 1410 * 1411 * Description: 1412 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1413 * the request structure even if @req doesn't have leftover. 1414 * If @req has leftover, sets it up for the next range of segments. 1415 * 1416 * This special helper function is only for request stacking drivers 1417 * (e.g. request-based dm) so that they can handle partial completion. 1418 * Actual device drivers should use blk_end_request instead. 1419 * 1420 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1421 * %false return from this function. 1422 * 1423 * Note: 1424 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both 1425 * blk_rq_bytes() and in blk_update_request(). 1426 * 1427 * Return: 1428 * %false - this request doesn't have any more data 1429 * %true - this request has more data 1430 **/ 1431 bool blk_update_request(struct request *req, blk_status_t error, 1432 unsigned int nr_bytes) 1433 { 1434 int total_bytes; 1435 1436 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 1437 1438 if (!req->bio) 1439 return false; 1440 1441 if (unlikely(error && !blk_rq_is_passthrough(req) && 1442 !(req->rq_flags & RQF_QUIET))) 1443 print_req_error(req, error); 1444 1445 blk_account_io_completion(req, nr_bytes); 1446 1447 total_bytes = 0; 1448 while (req->bio) { 1449 struct bio *bio = req->bio; 1450 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 1451 1452 if (bio_bytes == bio->bi_iter.bi_size) 1453 req->bio = bio->bi_next; 1454 1455 /* Completion has already been traced */ 1456 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1457 req_bio_endio(req, bio, bio_bytes, error); 1458 1459 total_bytes += bio_bytes; 1460 nr_bytes -= bio_bytes; 1461 1462 if (!nr_bytes) 1463 break; 1464 } 1465 1466 /* 1467 * completely done 1468 */ 1469 if (!req->bio) { 1470 /* 1471 * Reset counters so that the request stacking driver 1472 * can find how many bytes remain in the request 1473 * later. 1474 */ 1475 req->__data_len = 0; 1476 return false; 1477 } 1478 1479 req->__data_len -= total_bytes; 1480 1481 /* update sector only for requests with clear definition of sector */ 1482 if (!blk_rq_is_passthrough(req)) 1483 req->__sector += total_bytes >> 9; 1484 1485 /* mixed attributes always follow the first bio */ 1486 if (req->rq_flags & RQF_MIXED_MERGE) { 1487 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1488 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1489 } 1490 1491 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1492 /* 1493 * If total number of sectors is less than the first segment 1494 * size, something has gone terribly wrong. 1495 */ 1496 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1497 blk_dump_rq_flags(req, "request botched"); 1498 req->__data_len = blk_rq_cur_bytes(req); 1499 } 1500 1501 /* recalculate the number of segments */ 1502 blk_recalc_rq_segments(req); 1503 } 1504 1505 return true; 1506 } 1507 EXPORT_SYMBOL_GPL(blk_update_request); 1508 1509 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 1510 struct bio *bio) 1511 { 1512 if (bio_has_data(bio)) 1513 rq->nr_phys_segments = bio_phys_segments(q, bio); 1514 else if (bio_op(bio) == REQ_OP_DISCARD) 1515 rq->nr_phys_segments = 1; 1516 1517 rq->__data_len = bio->bi_iter.bi_size; 1518 rq->bio = rq->biotail = bio; 1519 1520 if (bio->bi_disk) 1521 rq->rq_disk = bio->bi_disk; 1522 } 1523 1524 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1525 /** 1526 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1527 * @rq: the request to be flushed 1528 * 1529 * Description: 1530 * Flush all pages in @rq. 1531 */ 1532 void rq_flush_dcache_pages(struct request *rq) 1533 { 1534 struct req_iterator iter; 1535 struct bio_vec bvec; 1536 1537 rq_for_each_segment(bvec, rq, iter) 1538 flush_dcache_page(bvec.bv_page); 1539 } 1540 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1541 #endif 1542 1543 /** 1544 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1545 * @q : the queue of the device being checked 1546 * 1547 * Description: 1548 * Check if underlying low-level drivers of a device are busy. 1549 * If the drivers want to export their busy state, they must set own 1550 * exporting function using blk_queue_lld_busy() first. 1551 * 1552 * Basically, this function is used only by request stacking drivers 1553 * to stop dispatching requests to underlying devices when underlying 1554 * devices are busy. This behavior helps more I/O merging on the queue 1555 * of the request stacking driver and prevents I/O throughput regression 1556 * on burst I/O load. 1557 * 1558 * Return: 1559 * 0 - Not busy (The request stacking driver should dispatch request) 1560 * 1 - Busy (The request stacking driver should stop dispatching request) 1561 */ 1562 int blk_lld_busy(struct request_queue *q) 1563 { 1564 if (queue_is_mq(q) && q->mq_ops->busy) 1565 return q->mq_ops->busy(q); 1566 1567 return 0; 1568 } 1569 EXPORT_SYMBOL_GPL(blk_lld_busy); 1570 1571 /** 1572 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1573 * @rq: the clone request to be cleaned up 1574 * 1575 * Description: 1576 * Free all bios in @rq for a cloned request. 1577 */ 1578 void blk_rq_unprep_clone(struct request *rq) 1579 { 1580 struct bio *bio; 1581 1582 while ((bio = rq->bio) != NULL) { 1583 rq->bio = bio->bi_next; 1584 1585 bio_put(bio); 1586 } 1587 } 1588 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1589 1590 /* 1591 * Copy attributes of the original request to the clone request. 1592 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 1593 */ 1594 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 1595 { 1596 dst->__sector = blk_rq_pos(src); 1597 dst->__data_len = blk_rq_bytes(src); 1598 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1599 dst->rq_flags |= RQF_SPECIAL_PAYLOAD; 1600 dst->special_vec = src->special_vec; 1601 } 1602 dst->nr_phys_segments = src->nr_phys_segments; 1603 dst->ioprio = src->ioprio; 1604 dst->extra_len = src->extra_len; 1605 } 1606 1607 /** 1608 * blk_rq_prep_clone - Helper function to setup clone request 1609 * @rq: the request to be setup 1610 * @rq_src: original request to be cloned 1611 * @bs: bio_set that bios for clone are allocated from 1612 * @gfp_mask: memory allocation mask for bio 1613 * @bio_ctr: setup function to be called for each clone bio. 1614 * Returns %0 for success, non %0 for failure. 1615 * @data: private data to be passed to @bio_ctr 1616 * 1617 * Description: 1618 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1619 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 1620 * are not copied, and copying such parts is the caller's responsibility. 1621 * Also, pages which the original bios are pointing to are not copied 1622 * and the cloned bios just point same pages. 1623 * So cloned bios must be completed before original bios, which means 1624 * the caller must complete @rq before @rq_src. 1625 */ 1626 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1627 struct bio_set *bs, gfp_t gfp_mask, 1628 int (*bio_ctr)(struct bio *, struct bio *, void *), 1629 void *data) 1630 { 1631 struct bio *bio, *bio_src; 1632 1633 if (!bs) 1634 bs = &fs_bio_set; 1635 1636 __rq_for_each_bio(bio_src, rq_src) { 1637 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1638 if (!bio) 1639 goto free_and_out; 1640 1641 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1642 goto free_and_out; 1643 1644 if (rq->bio) { 1645 rq->biotail->bi_next = bio; 1646 rq->biotail = bio; 1647 } else 1648 rq->bio = rq->biotail = bio; 1649 } 1650 1651 __blk_rq_prep_clone(rq, rq_src); 1652 1653 return 0; 1654 1655 free_and_out: 1656 if (bio) 1657 bio_put(bio); 1658 blk_rq_unprep_clone(rq); 1659 1660 return -ENOMEM; 1661 } 1662 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1663 1664 int kblockd_schedule_work(struct work_struct *work) 1665 { 1666 return queue_work(kblockd_workqueue, work); 1667 } 1668 EXPORT_SYMBOL(kblockd_schedule_work); 1669 1670 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 1671 { 1672 return queue_work_on(cpu, kblockd_workqueue, work); 1673 } 1674 EXPORT_SYMBOL(kblockd_schedule_work_on); 1675 1676 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1677 unsigned long delay) 1678 { 1679 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1680 } 1681 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1682 1683 /** 1684 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1685 * @plug: The &struct blk_plug that needs to be initialized 1686 * 1687 * Description: 1688 * blk_start_plug() indicates to the block layer an intent by the caller 1689 * to submit multiple I/O requests in a batch. The block layer may use 1690 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1691 * is called. However, the block layer may choose to submit requests 1692 * before a call to blk_finish_plug() if the number of queued I/Os 1693 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1694 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1695 * the task schedules (see below). 1696 * 1697 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1698 * pending I/O should the task end up blocking between blk_start_plug() and 1699 * blk_finish_plug(). This is important from a performance perspective, but 1700 * also ensures that we don't deadlock. For instance, if the task is blocking 1701 * for a memory allocation, memory reclaim could end up wanting to free a 1702 * page belonging to that request that is currently residing in our private 1703 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1704 * this kind of deadlock. 1705 */ 1706 void blk_start_plug(struct blk_plug *plug) 1707 { 1708 struct task_struct *tsk = current; 1709 1710 /* 1711 * If this is a nested plug, don't actually assign it. 1712 */ 1713 if (tsk->plug) 1714 return; 1715 1716 INIT_LIST_HEAD(&plug->mq_list); 1717 INIT_LIST_HEAD(&plug->cb_list); 1718 plug->rq_count = 0; 1719 plug->multiple_queues = false; 1720 1721 /* 1722 * Store ordering should not be needed here, since a potential 1723 * preempt will imply a full memory barrier 1724 */ 1725 tsk->plug = plug; 1726 } 1727 EXPORT_SYMBOL(blk_start_plug); 1728 1729 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1730 { 1731 LIST_HEAD(callbacks); 1732 1733 while (!list_empty(&plug->cb_list)) { 1734 list_splice_init(&plug->cb_list, &callbacks); 1735 1736 while (!list_empty(&callbacks)) { 1737 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1738 struct blk_plug_cb, 1739 list); 1740 list_del(&cb->list); 1741 cb->callback(cb, from_schedule); 1742 } 1743 } 1744 } 1745 1746 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1747 int size) 1748 { 1749 struct blk_plug *plug = current->plug; 1750 struct blk_plug_cb *cb; 1751 1752 if (!plug) 1753 return NULL; 1754 1755 list_for_each_entry(cb, &plug->cb_list, list) 1756 if (cb->callback == unplug && cb->data == data) 1757 return cb; 1758 1759 /* Not currently on the callback list */ 1760 BUG_ON(size < sizeof(*cb)); 1761 cb = kzalloc(size, GFP_ATOMIC); 1762 if (cb) { 1763 cb->data = data; 1764 cb->callback = unplug; 1765 list_add(&cb->list, &plug->cb_list); 1766 } 1767 return cb; 1768 } 1769 EXPORT_SYMBOL(blk_check_plugged); 1770 1771 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1772 { 1773 flush_plug_callbacks(plug, from_schedule); 1774 1775 if (!list_empty(&plug->mq_list)) 1776 blk_mq_flush_plug_list(plug, from_schedule); 1777 } 1778 1779 /** 1780 * blk_finish_plug - mark the end of a batch of submitted I/O 1781 * @plug: The &struct blk_plug passed to blk_start_plug() 1782 * 1783 * Description: 1784 * Indicate that a batch of I/O submissions is complete. This function 1785 * must be paired with an initial call to blk_start_plug(). The intent 1786 * is to allow the block layer to optimize I/O submission. See the 1787 * documentation for blk_start_plug() for more information. 1788 */ 1789 void blk_finish_plug(struct blk_plug *plug) 1790 { 1791 if (plug != current->plug) 1792 return; 1793 blk_flush_plug_list(plug, false); 1794 1795 current->plug = NULL; 1796 } 1797 EXPORT_SYMBOL(blk_finish_plug); 1798 1799 int __init blk_dev_init(void) 1800 { 1801 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1802 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1803 FIELD_SIZEOF(struct request, cmd_flags)); 1804 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1805 FIELD_SIZEOF(struct bio, bi_opf)); 1806 1807 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1808 kblockd_workqueue = alloc_workqueue("kblockd", 1809 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1810 if (!kblockd_workqueue) 1811 panic("Failed to create kblockd\n"); 1812 1813 blk_requestq_cachep = kmem_cache_create("request_queue", 1814 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1815 1816 #ifdef CONFIG_DEBUG_FS 1817 blk_debugfs_root = debugfs_create_dir("block", NULL); 1818 #endif 1819 1820 return 0; 1821 } 1822