xref: /openbmc/linux/block/blk-core.c (revision cb3908c133f1285069673f11ad651d14ae0406cf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/debugfs.h>
38 #include <linux/bpf.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/block.h>
42 
43 #include "blk.h"
44 #include "blk-mq.h"
45 #include "blk-mq-sched.h"
46 #include "blk-pm.h"
47 #include "blk-rq-qos.h"
48 
49 #ifdef CONFIG_DEBUG_FS
50 struct dentry *blk_debugfs_root;
51 #endif
52 
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
58 
59 DEFINE_IDA(blk_queue_ida);
60 
61 /*
62  * For queue allocation
63  */
64 struct kmem_cache *blk_requestq_cachep;
65 
66 /*
67  * Controlling structure to kblockd
68  */
69 static struct workqueue_struct *kblockd_workqueue;
70 
71 /**
72  * blk_queue_flag_set - atomically set a queue flag
73  * @flag: flag to be set
74  * @q: request queue
75  */
76 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
77 {
78 	set_bit(flag, &q->queue_flags);
79 }
80 EXPORT_SYMBOL(blk_queue_flag_set);
81 
82 /**
83  * blk_queue_flag_clear - atomically clear a queue flag
84  * @flag: flag to be cleared
85  * @q: request queue
86  */
87 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
88 {
89 	clear_bit(flag, &q->queue_flags);
90 }
91 EXPORT_SYMBOL(blk_queue_flag_clear);
92 
93 /**
94  * blk_queue_flag_test_and_set - atomically test and set a queue flag
95  * @flag: flag to be set
96  * @q: request queue
97  *
98  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
99  * the flag was already set.
100  */
101 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
102 {
103 	return test_and_set_bit(flag, &q->queue_flags);
104 }
105 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
106 
107 void blk_rq_init(struct request_queue *q, struct request *rq)
108 {
109 	memset(rq, 0, sizeof(*rq));
110 
111 	INIT_LIST_HEAD(&rq->queuelist);
112 	rq->q = q;
113 	rq->__sector = (sector_t) -1;
114 	INIT_HLIST_NODE(&rq->hash);
115 	RB_CLEAR_NODE(&rq->rb_node);
116 	rq->tag = -1;
117 	rq->internal_tag = -1;
118 	rq->start_time_ns = ktime_get_ns();
119 	rq->part = NULL;
120 }
121 EXPORT_SYMBOL(blk_rq_init);
122 
123 static const struct {
124 	int		errno;
125 	const char	*name;
126 } blk_errors[] = {
127 	[BLK_STS_OK]		= { 0,		"" },
128 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
129 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
130 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
131 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
132 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
133 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
134 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
135 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
136 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
137 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
138 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
139 
140 	/* device mapper special case, should not leak out: */
141 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
142 
143 	/* everything else not covered above: */
144 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
145 };
146 
147 blk_status_t errno_to_blk_status(int errno)
148 {
149 	int i;
150 
151 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
152 		if (blk_errors[i].errno == errno)
153 			return (__force blk_status_t)i;
154 	}
155 
156 	return BLK_STS_IOERR;
157 }
158 EXPORT_SYMBOL_GPL(errno_to_blk_status);
159 
160 int blk_status_to_errno(blk_status_t status)
161 {
162 	int idx = (__force int)status;
163 
164 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
165 		return -EIO;
166 	return blk_errors[idx].errno;
167 }
168 EXPORT_SYMBOL_GPL(blk_status_to_errno);
169 
170 static void print_req_error(struct request *req, blk_status_t status)
171 {
172 	int idx = (__force int)status;
173 
174 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
175 		return;
176 
177 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n",
178 				__func__, blk_errors[idx].name,
179 				req->rq_disk ?  req->rq_disk->disk_name : "?",
180 				(unsigned long long)blk_rq_pos(req),
181 				req->cmd_flags);
182 }
183 
184 static void req_bio_endio(struct request *rq, struct bio *bio,
185 			  unsigned int nbytes, blk_status_t error)
186 {
187 	if (error)
188 		bio->bi_status = error;
189 
190 	if (unlikely(rq->rq_flags & RQF_QUIET))
191 		bio_set_flag(bio, BIO_QUIET);
192 
193 	bio_advance(bio, nbytes);
194 
195 	/* don't actually finish bio if it's part of flush sequence */
196 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
197 		bio_endio(bio);
198 }
199 
200 void blk_dump_rq_flags(struct request *rq, char *msg)
201 {
202 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
203 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
204 		(unsigned long long) rq->cmd_flags);
205 
206 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
207 	       (unsigned long long)blk_rq_pos(rq),
208 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
209 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
210 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
211 }
212 EXPORT_SYMBOL(blk_dump_rq_flags);
213 
214 /**
215  * blk_sync_queue - cancel any pending callbacks on a queue
216  * @q: the queue
217  *
218  * Description:
219  *     The block layer may perform asynchronous callback activity
220  *     on a queue, such as calling the unplug function after a timeout.
221  *     A block device may call blk_sync_queue to ensure that any
222  *     such activity is cancelled, thus allowing it to release resources
223  *     that the callbacks might use. The caller must already have made sure
224  *     that its ->make_request_fn will not re-add plugging prior to calling
225  *     this function.
226  *
227  *     This function does not cancel any asynchronous activity arising
228  *     out of elevator or throttling code. That would require elevator_exit()
229  *     and blkcg_exit_queue() to be called with queue lock initialized.
230  *
231  */
232 void blk_sync_queue(struct request_queue *q)
233 {
234 	del_timer_sync(&q->timeout);
235 	cancel_work_sync(&q->timeout_work);
236 }
237 EXPORT_SYMBOL(blk_sync_queue);
238 
239 /**
240  * blk_set_pm_only - increment pm_only counter
241  * @q: request queue pointer
242  */
243 void blk_set_pm_only(struct request_queue *q)
244 {
245 	atomic_inc(&q->pm_only);
246 }
247 EXPORT_SYMBOL_GPL(blk_set_pm_only);
248 
249 void blk_clear_pm_only(struct request_queue *q)
250 {
251 	int pm_only;
252 
253 	pm_only = atomic_dec_return(&q->pm_only);
254 	WARN_ON_ONCE(pm_only < 0);
255 	if (pm_only == 0)
256 		wake_up_all(&q->mq_freeze_wq);
257 }
258 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
259 
260 void blk_put_queue(struct request_queue *q)
261 {
262 	kobject_put(&q->kobj);
263 }
264 EXPORT_SYMBOL(blk_put_queue);
265 
266 void blk_set_queue_dying(struct request_queue *q)
267 {
268 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
269 
270 	/*
271 	 * When queue DYING flag is set, we need to block new req
272 	 * entering queue, so we call blk_freeze_queue_start() to
273 	 * prevent I/O from crossing blk_queue_enter().
274 	 */
275 	blk_freeze_queue_start(q);
276 
277 	if (queue_is_mq(q))
278 		blk_mq_wake_waiters(q);
279 
280 	/* Make blk_queue_enter() reexamine the DYING flag. */
281 	wake_up_all(&q->mq_freeze_wq);
282 }
283 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
284 
285 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
286 void blk_exit_queue(struct request_queue *q)
287 {
288 	/*
289 	 * Since the I/O scheduler exit code may access cgroup information,
290 	 * perform I/O scheduler exit before disassociating from the block
291 	 * cgroup controller.
292 	 */
293 	if (q->elevator) {
294 		ioc_clear_queue(q);
295 		elevator_exit(q, q->elevator);
296 		q->elevator = NULL;
297 	}
298 
299 	/*
300 	 * Remove all references to @q from the block cgroup controller before
301 	 * restoring @q->queue_lock to avoid that restoring this pointer causes
302 	 * e.g. blkcg_print_blkgs() to crash.
303 	 */
304 	blkcg_exit_queue(q);
305 
306 	/*
307 	 * Since the cgroup code may dereference the @q->backing_dev_info
308 	 * pointer, only decrease its reference count after having removed the
309 	 * association with the block cgroup controller.
310 	 */
311 	bdi_put(q->backing_dev_info);
312 }
313 
314 /**
315  * blk_cleanup_queue - shutdown a request queue
316  * @q: request queue to shutdown
317  *
318  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
319  * put it.  All future requests will be failed immediately with -ENODEV.
320  */
321 void blk_cleanup_queue(struct request_queue *q)
322 {
323 	/* mark @q DYING, no new request or merges will be allowed afterwards */
324 	mutex_lock(&q->sysfs_lock);
325 	blk_set_queue_dying(q);
326 
327 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
328 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
329 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
330 	mutex_unlock(&q->sysfs_lock);
331 
332 	/*
333 	 * Drain all requests queued before DYING marking. Set DEAD flag to
334 	 * prevent that q->request_fn() gets invoked after draining finished.
335 	 */
336 	blk_freeze_queue(q);
337 
338 	rq_qos_exit(q);
339 
340 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
341 
342 	/* for synchronous bio-based driver finish in-flight integrity i/o */
343 	blk_flush_integrity();
344 
345 	/* @q won't process any more request, flush async actions */
346 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
347 	blk_sync_queue(q);
348 
349 	/*
350 	 * I/O scheduler exit is only safe after the sysfs scheduler attribute
351 	 * has been removed.
352 	 */
353 	WARN_ON_ONCE(q->kobj.state_in_sysfs);
354 
355 	blk_exit_queue(q);
356 
357 	if (queue_is_mq(q))
358 		blk_mq_exit_queue(q);
359 
360 	percpu_ref_exit(&q->q_usage_counter);
361 
362 	/* @q is and will stay empty, shutdown and put */
363 	blk_put_queue(q);
364 }
365 EXPORT_SYMBOL(blk_cleanup_queue);
366 
367 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
368 {
369 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
370 }
371 EXPORT_SYMBOL(blk_alloc_queue);
372 
373 /**
374  * blk_queue_enter() - try to increase q->q_usage_counter
375  * @q: request queue pointer
376  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
377  */
378 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
379 {
380 	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
381 
382 	while (true) {
383 		bool success = false;
384 
385 		rcu_read_lock();
386 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
387 			/*
388 			 * The code that increments the pm_only counter is
389 			 * responsible for ensuring that that counter is
390 			 * globally visible before the queue is unfrozen.
391 			 */
392 			if (pm || !blk_queue_pm_only(q)) {
393 				success = true;
394 			} else {
395 				percpu_ref_put(&q->q_usage_counter);
396 			}
397 		}
398 		rcu_read_unlock();
399 
400 		if (success)
401 			return 0;
402 
403 		if (flags & BLK_MQ_REQ_NOWAIT)
404 			return -EBUSY;
405 
406 		/*
407 		 * read pair of barrier in blk_freeze_queue_start(),
408 		 * we need to order reading __PERCPU_REF_DEAD flag of
409 		 * .q_usage_counter and reading .mq_freeze_depth or
410 		 * queue dying flag, otherwise the following wait may
411 		 * never return if the two reads are reordered.
412 		 */
413 		smp_rmb();
414 
415 		wait_event(q->mq_freeze_wq,
416 			   (!q->mq_freeze_depth &&
417 			    (pm || (blk_pm_request_resume(q),
418 				    !blk_queue_pm_only(q)))) ||
419 			   blk_queue_dying(q));
420 		if (blk_queue_dying(q))
421 			return -ENODEV;
422 	}
423 }
424 
425 void blk_queue_exit(struct request_queue *q)
426 {
427 	percpu_ref_put(&q->q_usage_counter);
428 }
429 
430 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
431 {
432 	struct request_queue *q =
433 		container_of(ref, struct request_queue, q_usage_counter);
434 
435 	wake_up_all(&q->mq_freeze_wq);
436 }
437 
438 static void blk_rq_timed_out_timer(struct timer_list *t)
439 {
440 	struct request_queue *q = from_timer(q, t, timeout);
441 
442 	kblockd_schedule_work(&q->timeout_work);
443 }
444 
445 static void blk_timeout_work(struct work_struct *work)
446 {
447 }
448 
449 /**
450  * blk_alloc_queue_node - allocate a request queue
451  * @gfp_mask: memory allocation flags
452  * @node_id: NUMA node to allocate memory from
453  */
454 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
455 {
456 	struct request_queue *q;
457 	int ret;
458 
459 	q = kmem_cache_alloc_node(blk_requestq_cachep,
460 				gfp_mask | __GFP_ZERO, node_id);
461 	if (!q)
462 		return NULL;
463 
464 	INIT_LIST_HEAD(&q->queue_head);
465 	q->last_merge = NULL;
466 
467 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
468 	if (q->id < 0)
469 		goto fail_q;
470 
471 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
472 	if (ret)
473 		goto fail_id;
474 
475 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
476 	if (!q->backing_dev_info)
477 		goto fail_split;
478 
479 	q->stats = blk_alloc_queue_stats();
480 	if (!q->stats)
481 		goto fail_stats;
482 
483 	q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
484 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
485 	q->backing_dev_info->name = "block";
486 	q->node = node_id;
487 
488 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
489 		    laptop_mode_timer_fn, 0);
490 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
491 	INIT_WORK(&q->timeout_work, blk_timeout_work);
492 	INIT_LIST_HEAD(&q->icq_list);
493 #ifdef CONFIG_BLK_CGROUP
494 	INIT_LIST_HEAD(&q->blkg_list);
495 #endif
496 
497 	kobject_init(&q->kobj, &blk_queue_ktype);
498 
499 #ifdef CONFIG_BLK_DEV_IO_TRACE
500 	mutex_init(&q->blk_trace_mutex);
501 #endif
502 	mutex_init(&q->sysfs_lock);
503 	spin_lock_init(&q->queue_lock);
504 
505 	init_waitqueue_head(&q->mq_freeze_wq);
506 	mutex_init(&q->mq_freeze_lock);
507 
508 	/*
509 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
510 	 * See blk_register_queue() for details.
511 	 */
512 	if (percpu_ref_init(&q->q_usage_counter,
513 				blk_queue_usage_counter_release,
514 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
515 		goto fail_bdi;
516 
517 	if (blkcg_init_queue(q))
518 		goto fail_ref;
519 
520 	return q;
521 
522 fail_ref:
523 	percpu_ref_exit(&q->q_usage_counter);
524 fail_bdi:
525 	blk_free_queue_stats(q->stats);
526 fail_stats:
527 	bdi_put(q->backing_dev_info);
528 fail_split:
529 	bioset_exit(&q->bio_split);
530 fail_id:
531 	ida_simple_remove(&blk_queue_ida, q->id);
532 fail_q:
533 	kmem_cache_free(blk_requestq_cachep, q);
534 	return NULL;
535 }
536 EXPORT_SYMBOL(blk_alloc_queue_node);
537 
538 bool blk_get_queue(struct request_queue *q)
539 {
540 	if (likely(!blk_queue_dying(q))) {
541 		__blk_get_queue(q);
542 		return true;
543 	}
544 
545 	return false;
546 }
547 EXPORT_SYMBOL(blk_get_queue);
548 
549 /**
550  * blk_get_request - allocate a request
551  * @q: request queue to allocate a request for
552  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
553  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
554  */
555 struct request *blk_get_request(struct request_queue *q, unsigned int op,
556 				blk_mq_req_flags_t flags)
557 {
558 	struct request *req;
559 
560 	WARN_ON_ONCE(op & REQ_NOWAIT);
561 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
562 
563 	req = blk_mq_alloc_request(q, op, flags);
564 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
565 		q->mq_ops->initialize_rq_fn(req);
566 
567 	return req;
568 }
569 EXPORT_SYMBOL(blk_get_request);
570 
571 void blk_put_request(struct request *req)
572 {
573 	blk_mq_free_request(req);
574 }
575 EXPORT_SYMBOL(blk_put_request);
576 
577 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
578 			    struct bio *bio)
579 {
580 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
581 
582 	if (!ll_back_merge_fn(q, req, bio))
583 		return false;
584 
585 	trace_block_bio_backmerge(q, req, bio);
586 
587 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
588 		blk_rq_set_mixed_merge(req);
589 
590 	req->biotail->bi_next = bio;
591 	req->biotail = bio;
592 	req->__data_len += bio->bi_iter.bi_size;
593 
594 	blk_account_io_start(req, false);
595 	return true;
596 }
597 
598 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
599 			     struct bio *bio)
600 {
601 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
602 
603 	if (!ll_front_merge_fn(q, req, bio))
604 		return false;
605 
606 	trace_block_bio_frontmerge(q, req, bio);
607 
608 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
609 		blk_rq_set_mixed_merge(req);
610 
611 	bio->bi_next = req->bio;
612 	req->bio = bio;
613 
614 	req->__sector = bio->bi_iter.bi_sector;
615 	req->__data_len += bio->bi_iter.bi_size;
616 
617 	blk_account_io_start(req, false);
618 	return true;
619 }
620 
621 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
622 		struct bio *bio)
623 {
624 	unsigned short segments = blk_rq_nr_discard_segments(req);
625 
626 	if (segments >= queue_max_discard_segments(q))
627 		goto no_merge;
628 	if (blk_rq_sectors(req) + bio_sectors(bio) >
629 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
630 		goto no_merge;
631 
632 	req->biotail->bi_next = bio;
633 	req->biotail = bio;
634 	req->__data_len += bio->bi_iter.bi_size;
635 	req->nr_phys_segments = segments + 1;
636 
637 	blk_account_io_start(req, false);
638 	return true;
639 no_merge:
640 	req_set_nomerge(q, req);
641 	return false;
642 }
643 
644 /**
645  * blk_attempt_plug_merge - try to merge with %current's plugged list
646  * @q: request_queue new bio is being queued at
647  * @bio: new bio being queued
648  * @same_queue_rq: pointer to &struct request that gets filled in when
649  * another request associated with @q is found on the plug list
650  * (optional, may be %NULL)
651  *
652  * Determine whether @bio being queued on @q can be merged with a request
653  * on %current's plugged list.  Returns %true if merge was successful,
654  * otherwise %false.
655  *
656  * Plugging coalesces IOs from the same issuer for the same purpose without
657  * going through @q->queue_lock.  As such it's more of an issuing mechanism
658  * than scheduling, and the request, while may have elvpriv data, is not
659  * added on the elevator at this point.  In addition, we don't have
660  * reliable access to the elevator outside queue lock.  Only check basic
661  * merging parameters without querying the elevator.
662  *
663  * Caller must ensure !blk_queue_nomerges(q) beforehand.
664  */
665 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
666 			    struct request **same_queue_rq)
667 {
668 	struct blk_plug *plug;
669 	struct request *rq;
670 	struct list_head *plug_list;
671 
672 	plug = current->plug;
673 	if (!plug)
674 		return false;
675 
676 	plug_list = &plug->mq_list;
677 
678 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
679 		bool merged = false;
680 
681 		if (rq->q == q && same_queue_rq) {
682 			/*
683 			 * Only blk-mq multiple hardware queues case checks the
684 			 * rq in the same queue, there should be only one such
685 			 * rq in a queue
686 			 **/
687 			*same_queue_rq = rq;
688 		}
689 
690 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
691 			continue;
692 
693 		switch (blk_try_merge(rq, bio)) {
694 		case ELEVATOR_BACK_MERGE:
695 			merged = bio_attempt_back_merge(q, rq, bio);
696 			break;
697 		case ELEVATOR_FRONT_MERGE:
698 			merged = bio_attempt_front_merge(q, rq, bio);
699 			break;
700 		case ELEVATOR_DISCARD_MERGE:
701 			merged = bio_attempt_discard_merge(q, rq, bio);
702 			break;
703 		default:
704 			break;
705 		}
706 
707 		if (merged)
708 			return true;
709 	}
710 
711 	return false;
712 }
713 
714 void blk_init_request_from_bio(struct request *req, struct bio *bio)
715 {
716 	if (bio->bi_opf & REQ_RAHEAD)
717 		req->cmd_flags |= REQ_FAILFAST_MASK;
718 
719 	req->__sector = bio->bi_iter.bi_sector;
720 	req->ioprio = bio_prio(bio);
721 	req->write_hint = bio->bi_write_hint;
722 	blk_rq_bio_prep(req->q, req, bio);
723 }
724 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
725 
726 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
727 {
728 	char b[BDEVNAME_SIZE];
729 
730 	printk(KERN_INFO "attempt to access beyond end of device\n");
731 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
732 			bio_devname(bio, b), bio->bi_opf,
733 			(unsigned long long)bio_end_sector(bio),
734 			(long long)maxsector);
735 }
736 
737 #ifdef CONFIG_FAIL_MAKE_REQUEST
738 
739 static DECLARE_FAULT_ATTR(fail_make_request);
740 
741 static int __init setup_fail_make_request(char *str)
742 {
743 	return setup_fault_attr(&fail_make_request, str);
744 }
745 __setup("fail_make_request=", setup_fail_make_request);
746 
747 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
748 {
749 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
750 }
751 
752 static int __init fail_make_request_debugfs(void)
753 {
754 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
755 						NULL, &fail_make_request);
756 
757 	return PTR_ERR_OR_ZERO(dir);
758 }
759 
760 late_initcall(fail_make_request_debugfs);
761 
762 #else /* CONFIG_FAIL_MAKE_REQUEST */
763 
764 static inline bool should_fail_request(struct hd_struct *part,
765 					unsigned int bytes)
766 {
767 	return false;
768 }
769 
770 #endif /* CONFIG_FAIL_MAKE_REQUEST */
771 
772 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
773 {
774 	const int op = bio_op(bio);
775 
776 	if (part->policy && op_is_write(op)) {
777 		char b[BDEVNAME_SIZE];
778 
779 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
780 			return false;
781 
782 		WARN_ONCE(1,
783 		       "generic_make_request: Trying to write "
784 			"to read-only block-device %s (partno %d)\n",
785 			bio_devname(bio, b), part->partno);
786 		/* Older lvm-tools actually trigger this */
787 		return false;
788 	}
789 
790 	return false;
791 }
792 
793 static noinline int should_fail_bio(struct bio *bio)
794 {
795 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
796 		return -EIO;
797 	return 0;
798 }
799 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
800 
801 /*
802  * Check whether this bio extends beyond the end of the device or partition.
803  * This may well happen - the kernel calls bread() without checking the size of
804  * the device, e.g., when mounting a file system.
805  */
806 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
807 {
808 	unsigned int nr_sectors = bio_sectors(bio);
809 
810 	if (nr_sectors && maxsector &&
811 	    (nr_sectors > maxsector ||
812 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
813 		handle_bad_sector(bio, maxsector);
814 		return -EIO;
815 	}
816 	return 0;
817 }
818 
819 /*
820  * Remap block n of partition p to block n+start(p) of the disk.
821  */
822 static inline int blk_partition_remap(struct bio *bio)
823 {
824 	struct hd_struct *p;
825 	int ret = -EIO;
826 
827 	rcu_read_lock();
828 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
829 	if (unlikely(!p))
830 		goto out;
831 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
832 		goto out;
833 	if (unlikely(bio_check_ro(bio, p)))
834 		goto out;
835 
836 	/*
837 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
838 	 * Include a test for the reset op code and perform the remap if needed.
839 	 */
840 	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
841 		if (bio_check_eod(bio, part_nr_sects_read(p)))
842 			goto out;
843 		bio->bi_iter.bi_sector += p->start_sect;
844 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
845 				      bio->bi_iter.bi_sector - p->start_sect);
846 	}
847 	bio->bi_partno = 0;
848 	ret = 0;
849 out:
850 	rcu_read_unlock();
851 	return ret;
852 }
853 
854 static noinline_for_stack bool
855 generic_make_request_checks(struct bio *bio)
856 {
857 	struct request_queue *q;
858 	int nr_sectors = bio_sectors(bio);
859 	blk_status_t status = BLK_STS_IOERR;
860 	char b[BDEVNAME_SIZE];
861 
862 	might_sleep();
863 
864 	q = bio->bi_disk->queue;
865 	if (unlikely(!q)) {
866 		printk(KERN_ERR
867 		       "generic_make_request: Trying to access "
868 			"nonexistent block-device %s (%Lu)\n",
869 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
870 		goto end_io;
871 	}
872 
873 	/*
874 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
875 	 * if queue is not a request based queue.
876 	 */
877 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
878 		goto not_supported;
879 
880 	if (should_fail_bio(bio))
881 		goto end_io;
882 
883 	if (bio->bi_partno) {
884 		if (unlikely(blk_partition_remap(bio)))
885 			goto end_io;
886 	} else {
887 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
888 			goto end_io;
889 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
890 			goto end_io;
891 	}
892 
893 	/*
894 	 * Filter flush bio's early so that make_request based
895 	 * drivers without flush support don't have to worry
896 	 * about them.
897 	 */
898 	if (op_is_flush(bio->bi_opf) &&
899 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
900 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
901 		if (!nr_sectors) {
902 			status = BLK_STS_OK;
903 			goto end_io;
904 		}
905 	}
906 
907 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
908 		bio->bi_opf &= ~REQ_HIPRI;
909 
910 	switch (bio_op(bio)) {
911 	case REQ_OP_DISCARD:
912 		if (!blk_queue_discard(q))
913 			goto not_supported;
914 		break;
915 	case REQ_OP_SECURE_ERASE:
916 		if (!blk_queue_secure_erase(q))
917 			goto not_supported;
918 		break;
919 	case REQ_OP_WRITE_SAME:
920 		if (!q->limits.max_write_same_sectors)
921 			goto not_supported;
922 		break;
923 	case REQ_OP_ZONE_RESET:
924 		if (!blk_queue_is_zoned(q))
925 			goto not_supported;
926 		break;
927 	case REQ_OP_WRITE_ZEROES:
928 		if (!q->limits.max_write_zeroes_sectors)
929 			goto not_supported;
930 		break;
931 	default:
932 		break;
933 	}
934 
935 	/*
936 	 * Various block parts want %current->io_context and lazy ioc
937 	 * allocation ends up trading a lot of pain for a small amount of
938 	 * memory.  Just allocate it upfront.  This may fail and block
939 	 * layer knows how to live with it.
940 	 */
941 	create_io_context(GFP_ATOMIC, q->node);
942 
943 	if (!blkcg_bio_issue_check(q, bio))
944 		return false;
945 
946 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
947 		trace_block_bio_queue(q, bio);
948 		/* Now that enqueuing has been traced, we need to trace
949 		 * completion as well.
950 		 */
951 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
952 	}
953 	return true;
954 
955 not_supported:
956 	status = BLK_STS_NOTSUPP;
957 end_io:
958 	bio->bi_status = status;
959 	bio_endio(bio);
960 	return false;
961 }
962 
963 /**
964  * generic_make_request - hand a buffer to its device driver for I/O
965  * @bio:  The bio describing the location in memory and on the device.
966  *
967  * generic_make_request() is used to make I/O requests of block
968  * devices. It is passed a &struct bio, which describes the I/O that needs
969  * to be done.
970  *
971  * generic_make_request() does not return any status.  The
972  * success/failure status of the request, along with notification of
973  * completion, is delivered asynchronously through the bio->bi_end_io
974  * function described (one day) else where.
975  *
976  * The caller of generic_make_request must make sure that bi_io_vec
977  * are set to describe the memory buffer, and that bi_dev and bi_sector are
978  * set to describe the device address, and the
979  * bi_end_io and optionally bi_private are set to describe how
980  * completion notification should be signaled.
981  *
982  * generic_make_request and the drivers it calls may use bi_next if this
983  * bio happens to be merged with someone else, and may resubmit the bio to
984  * a lower device by calling into generic_make_request recursively, which
985  * means the bio should NOT be touched after the call to ->make_request_fn.
986  */
987 blk_qc_t generic_make_request(struct bio *bio)
988 {
989 	/*
990 	 * bio_list_on_stack[0] contains bios submitted by the current
991 	 * make_request_fn.
992 	 * bio_list_on_stack[1] contains bios that were submitted before
993 	 * the current make_request_fn, but that haven't been processed
994 	 * yet.
995 	 */
996 	struct bio_list bio_list_on_stack[2];
997 	blk_mq_req_flags_t flags = 0;
998 	struct request_queue *q = bio->bi_disk->queue;
999 	blk_qc_t ret = BLK_QC_T_NONE;
1000 
1001 	if (bio->bi_opf & REQ_NOWAIT)
1002 		flags = BLK_MQ_REQ_NOWAIT;
1003 	if (bio_flagged(bio, BIO_QUEUE_ENTERED))
1004 		blk_queue_enter_live(q);
1005 	else if (blk_queue_enter(q, flags) < 0) {
1006 		if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
1007 			bio_wouldblock_error(bio);
1008 		else
1009 			bio_io_error(bio);
1010 		return ret;
1011 	}
1012 
1013 	if (!generic_make_request_checks(bio))
1014 		goto out;
1015 
1016 	/*
1017 	 * We only want one ->make_request_fn to be active at a time, else
1018 	 * stack usage with stacked devices could be a problem.  So use
1019 	 * current->bio_list to keep a list of requests submited by a
1020 	 * make_request_fn function.  current->bio_list is also used as a
1021 	 * flag to say if generic_make_request is currently active in this
1022 	 * task or not.  If it is NULL, then no make_request is active.  If
1023 	 * it is non-NULL, then a make_request is active, and new requests
1024 	 * should be added at the tail
1025 	 */
1026 	if (current->bio_list) {
1027 		bio_list_add(&current->bio_list[0], bio);
1028 		goto out;
1029 	}
1030 
1031 	/* following loop may be a bit non-obvious, and so deserves some
1032 	 * explanation.
1033 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1034 	 * ensure that) so we have a list with a single bio.
1035 	 * We pretend that we have just taken it off a longer list, so
1036 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1037 	 * thus initialising the bio_list of new bios to be
1038 	 * added.  ->make_request() may indeed add some more bios
1039 	 * through a recursive call to generic_make_request.  If it
1040 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1041 	 * from the top.  In this case we really did just take the bio
1042 	 * of the top of the list (no pretending) and so remove it from
1043 	 * bio_list, and call into ->make_request() again.
1044 	 */
1045 	BUG_ON(bio->bi_next);
1046 	bio_list_init(&bio_list_on_stack[0]);
1047 	current->bio_list = bio_list_on_stack;
1048 	do {
1049 		bool enter_succeeded = true;
1050 
1051 		if (unlikely(q != bio->bi_disk->queue)) {
1052 			if (q)
1053 				blk_queue_exit(q);
1054 			q = bio->bi_disk->queue;
1055 			flags = 0;
1056 			if (bio->bi_opf & REQ_NOWAIT)
1057 				flags = BLK_MQ_REQ_NOWAIT;
1058 			if (blk_queue_enter(q, flags) < 0) {
1059 				enter_succeeded = false;
1060 				q = NULL;
1061 			}
1062 		}
1063 
1064 		if (enter_succeeded) {
1065 			struct bio_list lower, same;
1066 
1067 			/* Create a fresh bio_list for all subordinate requests */
1068 			bio_list_on_stack[1] = bio_list_on_stack[0];
1069 			bio_list_init(&bio_list_on_stack[0]);
1070 			ret = q->make_request_fn(q, bio);
1071 
1072 			/* sort new bios into those for a lower level
1073 			 * and those for the same level
1074 			 */
1075 			bio_list_init(&lower);
1076 			bio_list_init(&same);
1077 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1078 				if (q == bio->bi_disk->queue)
1079 					bio_list_add(&same, bio);
1080 				else
1081 					bio_list_add(&lower, bio);
1082 			/* now assemble so we handle the lowest level first */
1083 			bio_list_merge(&bio_list_on_stack[0], &lower);
1084 			bio_list_merge(&bio_list_on_stack[0], &same);
1085 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1086 		} else {
1087 			if (unlikely(!blk_queue_dying(q) &&
1088 					(bio->bi_opf & REQ_NOWAIT)))
1089 				bio_wouldblock_error(bio);
1090 			else
1091 				bio_io_error(bio);
1092 		}
1093 		bio = bio_list_pop(&bio_list_on_stack[0]);
1094 	} while (bio);
1095 	current->bio_list = NULL; /* deactivate */
1096 
1097 out:
1098 	if (q)
1099 		blk_queue_exit(q);
1100 	return ret;
1101 }
1102 EXPORT_SYMBOL(generic_make_request);
1103 
1104 /**
1105  * direct_make_request - hand a buffer directly to its device driver for I/O
1106  * @bio:  The bio describing the location in memory and on the device.
1107  *
1108  * This function behaves like generic_make_request(), but does not protect
1109  * against recursion.  Must only be used if the called driver is known
1110  * to not call generic_make_request (or direct_make_request) again from
1111  * its make_request function.  (Calling direct_make_request again from
1112  * a workqueue is perfectly fine as that doesn't recurse).
1113  */
1114 blk_qc_t direct_make_request(struct bio *bio)
1115 {
1116 	struct request_queue *q = bio->bi_disk->queue;
1117 	bool nowait = bio->bi_opf & REQ_NOWAIT;
1118 	blk_qc_t ret;
1119 
1120 	if (!generic_make_request_checks(bio))
1121 		return BLK_QC_T_NONE;
1122 
1123 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1124 		if (nowait && !blk_queue_dying(q))
1125 			bio->bi_status = BLK_STS_AGAIN;
1126 		else
1127 			bio->bi_status = BLK_STS_IOERR;
1128 		bio_endio(bio);
1129 		return BLK_QC_T_NONE;
1130 	}
1131 
1132 	ret = q->make_request_fn(q, bio);
1133 	blk_queue_exit(q);
1134 	return ret;
1135 }
1136 EXPORT_SYMBOL_GPL(direct_make_request);
1137 
1138 /**
1139  * submit_bio - submit a bio to the block device layer for I/O
1140  * @bio: The &struct bio which describes the I/O
1141  *
1142  * submit_bio() is very similar in purpose to generic_make_request(), and
1143  * uses that function to do most of the work. Both are fairly rough
1144  * interfaces; @bio must be presetup and ready for I/O.
1145  *
1146  */
1147 blk_qc_t submit_bio(struct bio *bio)
1148 {
1149 	/*
1150 	 * If it's a regular read/write or a barrier with data attached,
1151 	 * go through the normal accounting stuff before submission.
1152 	 */
1153 	if (bio_has_data(bio)) {
1154 		unsigned int count;
1155 
1156 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1157 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1158 		else
1159 			count = bio_sectors(bio);
1160 
1161 		if (op_is_write(bio_op(bio))) {
1162 			count_vm_events(PGPGOUT, count);
1163 		} else {
1164 			task_io_account_read(bio->bi_iter.bi_size);
1165 			count_vm_events(PGPGIN, count);
1166 		}
1167 
1168 		if (unlikely(block_dump)) {
1169 			char b[BDEVNAME_SIZE];
1170 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1171 			current->comm, task_pid_nr(current),
1172 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1173 				(unsigned long long)bio->bi_iter.bi_sector,
1174 				bio_devname(bio, b), count);
1175 		}
1176 	}
1177 
1178 	return generic_make_request(bio);
1179 }
1180 EXPORT_SYMBOL(submit_bio);
1181 
1182 /**
1183  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1184  *                              for new the queue limits
1185  * @q:  the queue
1186  * @rq: the request being checked
1187  *
1188  * Description:
1189  *    @rq may have been made based on weaker limitations of upper-level queues
1190  *    in request stacking drivers, and it may violate the limitation of @q.
1191  *    Since the block layer and the underlying device driver trust @rq
1192  *    after it is inserted to @q, it should be checked against @q before
1193  *    the insertion using this generic function.
1194  *
1195  *    Request stacking drivers like request-based dm may change the queue
1196  *    limits when retrying requests on other queues. Those requests need
1197  *    to be checked against the new queue limits again during dispatch.
1198  */
1199 static int blk_cloned_rq_check_limits(struct request_queue *q,
1200 				      struct request *rq)
1201 {
1202 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1203 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1204 		return -EIO;
1205 	}
1206 
1207 	/*
1208 	 * queue's settings related to segment counting like q->bounce_pfn
1209 	 * may differ from that of other stacking queues.
1210 	 * Recalculate it to check the request correctly on this queue's
1211 	 * limitation.
1212 	 */
1213 	blk_recalc_rq_segments(rq);
1214 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1215 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1216 		return -EIO;
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 /**
1223  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1224  * @q:  the queue to submit the request
1225  * @rq: the request being queued
1226  */
1227 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1228 {
1229 	if (blk_cloned_rq_check_limits(q, rq))
1230 		return BLK_STS_IOERR;
1231 
1232 	if (rq->rq_disk &&
1233 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1234 		return BLK_STS_IOERR;
1235 
1236 	if (blk_queue_io_stat(q))
1237 		blk_account_io_start(rq, true);
1238 
1239 	/*
1240 	 * Since we have a scheduler attached on the top device,
1241 	 * bypass a potential scheduler on the bottom device for
1242 	 * insert.
1243 	 */
1244 	return blk_mq_request_issue_directly(rq, true);
1245 }
1246 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1247 
1248 /**
1249  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1250  * @rq: request to examine
1251  *
1252  * Description:
1253  *     A request could be merge of IOs which require different failure
1254  *     handling.  This function determines the number of bytes which
1255  *     can be failed from the beginning of the request without
1256  *     crossing into area which need to be retried further.
1257  *
1258  * Return:
1259  *     The number of bytes to fail.
1260  */
1261 unsigned int blk_rq_err_bytes(const struct request *rq)
1262 {
1263 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1264 	unsigned int bytes = 0;
1265 	struct bio *bio;
1266 
1267 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1268 		return blk_rq_bytes(rq);
1269 
1270 	/*
1271 	 * Currently the only 'mixing' which can happen is between
1272 	 * different fastfail types.  We can safely fail portions
1273 	 * which have all the failfast bits that the first one has -
1274 	 * the ones which are at least as eager to fail as the first
1275 	 * one.
1276 	 */
1277 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1278 		if ((bio->bi_opf & ff) != ff)
1279 			break;
1280 		bytes += bio->bi_iter.bi_size;
1281 	}
1282 
1283 	/* this could lead to infinite loop */
1284 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1285 	return bytes;
1286 }
1287 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1288 
1289 void blk_account_io_completion(struct request *req, unsigned int bytes)
1290 {
1291 	if (blk_do_io_stat(req)) {
1292 		const int sgrp = op_stat_group(req_op(req));
1293 		struct hd_struct *part;
1294 
1295 		part_stat_lock();
1296 		part = req->part;
1297 		part_stat_add(part, sectors[sgrp], bytes >> 9);
1298 		part_stat_unlock();
1299 	}
1300 }
1301 
1302 void blk_account_io_done(struct request *req, u64 now)
1303 {
1304 	/*
1305 	 * Account IO completion.  flush_rq isn't accounted as a
1306 	 * normal IO on queueing nor completion.  Accounting the
1307 	 * containing request is enough.
1308 	 */
1309 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1310 		const int sgrp = op_stat_group(req_op(req));
1311 		struct hd_struct *part;
1312 
1313 		part_stat_lock();
1314 		part = req->part;
1315 
1316 		update_io_ticks(part, jiffies);
1317 		part_stat_inc(part, ios[sgrp]);
1318 		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1319 		part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1320 		part_dec_in_flight(req->q, part, rq_data_dir(req));
1321 
1322 		hd_struct_put(part);
1323 		part_stat_unlock();
1324 	}
1325 }
1326 
1327 void blk_account_io_start(struct request *rq, bool new_io)
1328 {
1329 	struct hd_struct *part;
1330 	int rw = rq_data_dir(rq);
1331 
1332 	if (!blk_do_io_stat(rq))
1333 		return;
1334 
1335 	part_stat_lock();
1336 
1337 	if (!new_io) {
1338 		part = rq->part;
1339 		part_stat_inc(part, merges[rw]);
1340 	} else {
1341 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1342 		if (!hd_struct_try_get(part)) {
1343 			/*
1344 			 * The partition is already being removed,
1345 			 * the request will be accounted on the disk only
1346 			 *
1347 			 * We take a reference on disk->part0 although that
1348 			 * partition will never be deleted, so we can treat
1349 			 * it as any other partition.
1350 			 */
1351 			part = &rq->rq_disk->part0;
1352 			hd_struct_get(part);
1353 		}
1354 		part_inc_in_flight(rq->q, part, rw);
1355 		rq->part = part;
1356 	}
1357 
1358 	update_io_ticks(part, jiffies);
1359 
1360 	part_stat_unlock();
1361 }
1362 
1363 /*
1364  * Steal bios from a request and add them to a bio list.
1365  * The request must not have been partially completed before.
1366  */
1367 void blk_steal_bios(struct bio_list *list, struct request *rq)
1368 {
1369 	if (rq->bio) {
1370 		if (list->tail)
1371 			list->tail->bi_next = rq->bio;
1372 		else
1373 			list->head = rq->bio;
1374 		list->tail = rq->biotail;
1375 
1376 		rq->bio = NULL;
1377 		rq->biotail = NULL;
1378 	}
1379 
1380 	rq->__data_len = 0;
1381 }
1382 EXPORT_SYMBOL_GPL(blk_steal_bios);
1383 
1384 /**
1385  * blk_update_request - Special helper function for request stacking drivers
1386  * @req:      the request being processed
1387  * @error:    block status code
1388  * @nr_bytes: number of bytes to complete @req
1389  *
1390  * Description:
1391  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1392  *     the request structure even if @req doesn't have leftover.
1393  *     If @req has leftover, sets it up for the next range of segments.
1394  *
1395  *     This special helper function is only for request stacking drivers
1396  *     (e.g. request-based dm) so that they can handle partial completion.
1397  *     Actual device drivers should use blk_end_request instead.
1398  *
1399  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1400  *     %false return from this function.
1401  *
1402  * Note:
1403  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1404  *	blk_rq_bytes() and in blk_update_request().
1405  *
1406  * Return:
1407  *     %false - this request doesn't have any more data
1408  *     %true  - this request has more data
1409  **/
1410 bool blk_update_request(struct request *req, blk_status_t error,
1411 		unsigned int nr_bytes)
1412 {
1413 	int total_bytes;
1414 
1415 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1416 
1417 	if (!req->bio)
1418 		return false;
1419 
1420 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1421 		     !(req->rq_flags & RQF_QUIET)))
1422 		print_req_error(req, error);
1423 
1424 	blk_account_io_completion(req, nr_bytes);
1425 
1426 	total_bytes = 0;
1427 	while (req->bio) {
1428 		struct bio *bio = req->bio;
1429 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1430 
1431 		if (bio_bytes == bio->bi_iter.bi_size)
1432 			req->bio = bio->bi_next;
1433 
1434 		/* Completion has already been traced */
1435 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1436 		req_bio_endio(req, bio, bio_bytes, error);
1437 
1438 		total_bytes += bio_bytes;
1439 		nr_bytes -= bio_bytes;
1440 
1441 		if (!nr_bytes)
1442 			break;
1443 	}
1444 
1445 	/*
1446 	 * completely done
1447 	 */
1448 	if (!req->bio) {
1449 		/*
1450 		 * Reset counters so that the request stacking driver
1451 		 * can find how many bytes remain in the request
1452 		 * later.
1453 		 */
1454 		req->__data_len = 0;
1455 		return false;
1456 	}
1457 
1458 	req->__data_len -= total_bytes;
1459 
1460 	/* update sector only for requests with clear definition of sector */
1461 	if (!blk_rq_is_passthrough(req))
1462 		req->__sector += total_bytes >> 9;
1463 
1464 	/* mixed attributes always follow the first bio */
1465 	if (req->rq_flags & RQF_MIXED_MERGE) {
1466 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1467 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1468 	}
1469 
1470 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1471 		/*
1472 		 * If total number of sectors is less than the first segment
1473 		 * size, something has gone terribly wrong.
1474 		 */
1475 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1476 			blk_dump_rq_flags(req, "request botched");
1477 			req->__data_len = blk_rq_cur_bytes(req);
1478 		}
1479 
1480 		/* recalculate the number of segments */
1481 		blk_recalc_rq_segments(req);
1482 	}
1483 
1484 	return true;
1485 }
1486 EXPORT_SYMBOL_GPL(blk_update_request);
1487 
1488 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1489 		     struct bio *bio)
1490 {
1491 	if (bio_has_data(bio))
1492 		rq->nr_phys_segments = bio_phys_segments(q, bio);
1493 	else if (bio_op(bio) == REQ_OP_DISCARD)
1494 		rq->nr_phys_segments = 1;
1495 
1496 	rq->__data_len = bio->bi_iter.bi_size;
1497 	rq->bio = rq->biotail = bio;
1498 
1499 	if (bio->bi_disk)
1500 		rq->rq_disk = bio->bi_disk;
1501 }
1502 
1503 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1504 /**
1505  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1506  * @rq: the request to be flushed
1507  *
1508  * Description:
1509  *     Flush all pages in @rq.
1510  */
1511 void rq_flush_dcache_pages(struct request *rq)
1512 {
1513 	struct req_iterator iter;
1514 	struct bio_vec bvec;
1515 
1516 	rq_for_each_segment(bvec, rq, iter)
1517 		flush_dcache_page(bvec.bv_page);
1518 }
1519 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1520 #endif
1521 
1522 /**
1523  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1524  * @q : the queue of the device being checked
1525  *
1526  * Description:
1527  *    Check if underlying low-level drivers of a device are busy.
1528  *    If the drivers want to export their busy state, they must set own
1529  *    exporting function using blk_queue_lld_busy() first.
1530  *
1531  *    Basically, this function is used only by request stacking drivers
1532  *    to stop dispatching requests to underlying devices when underlying
1533  *    devices are busy.  This behavior helps more I/O merging on the queue
1534  *    of the request stacking driver and prevents I/O throughput regression
1535  *    on burst I/O load.
1536  *
1537  * Return:
1538  *    0 - Not busy (The request stacking driver should dispatch request)
1539  *    1 - Busy (The request stacking driver should stop dispatching request)
1540  */
1541 int blk_lld_busy(struct request_queue *q)
1542 {
1543 	if (queue_is_mq(q) && q->mq_ops->busy)
1544 		return q->mq_ops->busy(q);
1545 
1546 	return 0;
1547 }
1548 EXPORT_SYMBOL_GPL(blk_lld_busy);
1549 
1550 /**
1551  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1552  * @rq: the clone request to be cleaned up
1553  *
1554  * Description:
1555  *     Free all bios in @rq for a cloned request.
1556  */
1557 void blk_rq_unprep_clone(struct request *rq)
1558 {
1559 	struct bio *bio;
1560 
1561 	while ((bio = rq->bio) != NULL) {
1562 		rq->bio = bio->bi_next;
1563 
1564 		bio_put(bio);
1565 	}
1566 }
1567 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1568 
1569 /*
1570  * Copy attributes of the original request to the clone request.
1571  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1572  */
1573 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1574 {
1575 	dst->__sector = blk_rq_pos(src);
1576 	dst->__data_len = blk_rq_bytes(src);
1577 	if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1578 		dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1579 		dst->special_vec = src->special_vec;
1580 	}
1581 	dst->nr_phys_segments = src->nr_phys_segments;
1582 	dst->ioprio = src->ioprio;
1583 	dst->extra_len = src->extra_len;
1584 }
1585 
1586 /**
1587  * blk_rq_prep_clone - Helper function to setup clone request
1588  * @rq: the request to be setup
1589  * @rq_src: original request to be cloned
1590  * @bs: bio_set that bios for clone are allocated from
1591  * @gfp_mask: memory allocation mask for bio
1592  * @bio_ctr: setup function to be called for each clone bio.
1593  *           Returns %0 for success, non %0 for failure.
1594  * @data: private data to be passed to @bio_ctr
1595  *
1596  * Description:
1597  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1598  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1599  *     are not copied, and copying such parts is the caller's responsibility.
1600  *     Also, pages which the original bios are pointing to are not copied
1601  *     and the cloned bios just point same pages.
1602  *     So cloned bios must be completed before original bios, which means
1603  *     the caller must complete @rq before @rq_src.
1604  */
1605 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1606 		      struct bio_set *bs, gfp_t gfp_mask,
1607 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1608 		      void *data)
1609 {
1610 	struct bio *bio, *bio_src;
1611 
1612 	if (!bs)
1613 		bs = &fs_bio_set;
1614 
1615 	__rq_for_each_bio(bio_src, rq_src) {
1616 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1617 		if (!bio)
1618 			goto free_and_out;
1619 
1620 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1621 			goto free_and_out;
1622 
1623 		if (rq->bio) {
1624 			rq->biotail->bi_next = bio;
1625 			rq->biotail = bio;
1626 		} else
1627 			rq->bio = rq->biotail = bio;
1628 	}
1629 
1630 	__blk_rq_prep_clone(rq, rq_src);
1631 
1632 	return 0;
1633 
1634 free_and_out:
1635 	if (bio)
1636 		bio_put(bio);
1637 	blk_rq_unprep_clone(rq);
1638 
1639 	return -ENOMEM;
1640 }
1641 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1642 
1643 int kblockd_schedule_work(struct work_struct *work)
1644 {
1645 	return queue_work(kblockd_workqueue, work);
1646 }
1647 EXPORT_SYMBOL(kblockd_schedule_work);
1648 
1649 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1650 {
1651 	return queue_work_on(cpu, kblockd_workqueue, work);
1652 }
1653 EXPORT_SYMBOL(kblockd_schedule_work_on);
1654 
1655 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1656 				unsigned long delay)
1657 {
1658 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1659 }
1660 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1661 
1662 /**
1663  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1664  * @plug:	The &struct blk_plug that needs to be initialized
1665  *
1666  * Description:
1667  *   blk_start_plug() indicates to the block layer an intent by the caller
1668  *   to submit multiple I/O requests in a batch.  The block layer may use
1669  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1670  *   is called.  However, the block layer may choose to submit requests
1671  *   before a call to blk_finish_plug() if the number of queued I/Os
1672  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1673  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1674  *   the task schedules (see below).
1675  *
1676  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1677  *   pending I/O should the task end up blocking between blk_start_plug() and
1678  *   blk_finish_plug(). This is important from a performance perspective, but
1679  *   also ensures that we don't deadlock. For instance, if the task is blocking
1680  *   for a memory allocation, memory reclaim could end up wanting to free a
1681  *   page belonging to that request that is currently residing in our private
1682  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1683  *   this kind of deadlock.
1684  */
1685 void blk_start_plug(struct blk_plug *plug)
1686 {
1687 	struct task_struct *tsk = current;
1688 
1689 	/*
1690 	 * If this is a nested plug, don't actually assign it.
1691 	 */
1692 	if (tsk->plug)
1693 		return;
1694 
1695 	INIT_LIST_HEAD(&plug->mq_list);
1696 	INIT_LIST_HEAD(&plug->cb_list);
1697 	plug->rq_count = 0;
1698 	plug->multiple_queues = false;
1699 
1700 	/*
1701 	 * Store ordering should not be needed here, since a potential
1702 	 * preempt will imply a full memory barrier
1703 	 */
1704 	tsk->plug = plug;
1705 }
1706 EXPORT_SYMBOL(blk_start_plug);
1707 
1708 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1709 {
1710 	LIST_HEAD(callbacks);
1711 
1712 	while (!list_empty(&plug->cb_list)) {
1713 		list_splice_init(&plug->cb_list, &callbacks);
1714 
1715 		while (!list_empty(&callbacks)) {
1716 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1717 							  struct blk_plug_cb,
1718 							  list);
1719 			list_del(&cb->list);
1720 			cb->callback(cb, from_schedule);
1721 		}
1722 	}
1723 }
1724 
1725 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1726 				      int size)
1727 {
1728 	struct blk_plug *plug = current->plug;
1729 	struct blk_plug_cb *cb;
1730 
1731 	if (!plug)
1732 		return NULL;
1733 
1734 	list_for_each_entry(cb, &plug->cb_list, list)
1735 		if (cb->callback == unplug && cb->data == data)
1736 			return cb;
1737 
1738 	/* Not currently on the callback list */
1739 	BUG_ON(size < sizeof(*cb));
1740 	cb = kzalloc(size, GFP_ATOMIC);
1741 	if (cb) {
1742 		cb->data = data;
1743 		cb->callback = unplug;
1744 		list_add(&cb->list, &plug->cb_list);
1745 	}
1746 	return cb;
1747 }
1748 EXPORT_SYMBOL(blk_check_plugged);
1749 
1750 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1751 {
1752 	flush_plug_callbacks(plug, from_schedule);
1753 
1754 	if (!list_empty(&plug->mq_list))
1755 		blk_mq_flush_plug_list(plug, from_schedule);
1756 }
1757 
1758 /**
1759  * blk_finish_plug - mark the end of a batch of submitted I/O
1760  * @plug:	The &struct blk_plug passed to blk_start_plug()
1761  *
1762  * Description:
1763  * Indicate that a batch of I/O submissions is complete.  This function
1764  * must be paired with an initial call to blk_start_plug().  The intent
1765  * is to allow the block layer to optimize I/O submission.  See the
1766  * documentation for blk_start_plug() for more information.
1767  */
1768 void blk_finish_plug(struct blk_plug *plug)
1769 {
1770 	if (plug != current->plug)
1771 		return;
1772 	blk_flush_plug_list(plug, false);
1773 
1774 	current->plug = NULL;
1775 }
1776 EXPORT_SYMBOL(blk_finish_plug);
1777 
1778 int __init blk_dev_init(void)
1779 {
1780 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1781 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1782 			FIELD_SIZEOF(struct request, cmd_flags));
1783 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1784 			FIELD_SIZEOF(struct bio, bi_opf));
1785 
1786 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1787 	kblockd_workqueue = alloc_workqueue("kblockd",
1788 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1789 	if (!kblockd_workqueue)
1790 		panic("Failed to create kblockd\n");
1791 
1792 	blk_requestq_cachep = kmem_cache_create("request_queue",
1793 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1794 
1795 #ifdef CONFIG_DEBUG_FS
1796 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1797 #endif
1798 
1799 	return 0;
1800 }
1801