1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/bio.h> 19 #include <linux/blkdev.h> 20 #include <linux/blk-mq.h> 21 #include <linux/highmem.h> 22 #include <linux/mm.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/string.h> 25 #include <linux/init.h> 26 #include <linux/completion.h> 27 #include <linux/slab.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/fault-inject.h> 32 #include <linux/list_sort.h> 33 #include <linux/delay.h> 34 #include <linux/ratelimit.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/blk-cgroup.h> 37 #include <linux/debugfs.h> 38 #include <linux/bpf.h> 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/block.h> 42 43 #include "blk.h" 44 #include "blk-mq.h" 45 #include "blk-mq-sched.h" 46 #include "blk-pm.h" 47 #include "blk-rq-qos.h" 48 49 #ifdef CONFIG_DEBUG_FS 50 struct dentry *blk_debugfs_root; 51 #endif 52 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 58 59 DEFINE_IDA(blk_queue_ida); 60 61 /* 62 * For queue allocation 63 */ 64 struct kmem_cache *blk_requestq_cachep; 65 66 /* 67 * Controlling structure to kblockd 68 */ 69 static struct workqueue_struct *kblockd_workqueue; 70 71 /** 72 * blk_queue_flag_set - atomically set a queue flag 73 * @flag: flag to be set 74 * @q: request queue 75 */ 76 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 77 { 78 set_bit(flag, &q->queue_flags); 79 } 80 EXPORT_SYMBOL(blk_queue_flag_set); 81 82 /** 83 * blk_queue_flag_clear - atomically clear a queue flag 84 * @flag: flag to be cleared 85 * @q: request queue 86 */ 87 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 88 { 89 clear_bit(flag, &q->queue_flags); 90 } 91 EXPORT_SYMBOL(blk_queue_flag_clear); 92 93 /** 94 * blk_queue_flag_test_and_set - atomically test and set a queue flag 95 * @flag: flag to be set 96 * @q: request queue 97 * 98 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 99 * the flag was already set. 100 */ 101 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 102 { 103 return test_and_set_bit(flag, &q->queue_flags); 104 } 105 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 106 107 void blk_rq_init(struct request_queue *q, struct request *rq) 108 { 109 memset(rq, 0, sizeof(*rq)); 110 111 INIT_LIST_HEAD(&rq->queuelist); 112 rq->q = q; 113 rq->__sector = (sector_t) -1; 114 INIT_HLIST_NODE(&rq->hash); 115 RB_CLEAR_NODE(&rq->rb_node); 116 rq->tag = -1; 117 rq->internal_tag = -1; 118 rq->start_time_ns = ktime_get_ns(); 119 rq->part = NULL; 120 } 121 EXPORT_SYMBOL(blk_rq_init); 122 123 static const struct { 124 int errno; 125 const char *name; 126 } blk_errors[] = { 127 [BLK_STS_OK] = { 0, "" }, 128 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 129 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 130 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 131 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 132 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 133 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 134 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 135 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 136 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 137 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 138 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 139 140 /* device mapper special case, should not leak out: */ 141 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 142 143 /* everything else not covered above: */ 144 [BLK_STS_IOERR] = { -EIO, "I/O" }, 145 }; 146 147 blk_status_t errno_to_blk_status(int errno) 148 { 149 int i; 150 151 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 152 if (blk_errors[i].errno == errno) 153 return (__force blk_status_t)i; 154 } 155 156 return BLK_STS_IOERR; 157 } 158 EXPORT_SYMBOL_GPL(errno_to_blk_status); 159 160 int blk_status_to_errno(blk_status_t status) 161 { 162 int idx = (__force int)status; 163 164 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 165 return -EIO; 166 return blk_errors[idx].errno; 167 } 168 EXPORT_SYMBOL_GPL(blk_status_to_errno); 169 170 static void print_req_error(struct request *req, blk_status_t status) 171 { 172 int idx = (__force int)status; 173 174 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 175 return; 176 177 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n", 178 __func__, blk_errors[idx].name, 179 req->rq_disk ? req->rq_disk->disk_name : "?", 180 (unsigned long long)blk_rq_pos(req), 181 req->cmd_flags); 182 } 183 184 static void req_bio_endio(struct request *rq, struct bio *bio, 185 unsigned int nbytes, blk_status_t error) 186 { 187 if (error) 188 bio->bi_status = error; 189 190 if (unlikely(rq->rq_flags & RQF_QUIET)) 191 bio_set_flag(bio, BIO_QUIET); 192 193 bio_advance(bio, nbytes); 194 195 /* don't actually finish bio if it's part of flush sequence */ 196 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 197 bio_endio(bio); 198 } 199 200 void blk_dump_rq_flags(struct request *rq, char *msg) 201 { 202 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 203 rq->rq_disk ? rq->rq_disk->disk_name : "?", 204 (unsigned long long) rq->cmd_flags); 205 206 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 207 (unsigned long long)blk_rq_pos(rq), 208 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 209 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 210 rq->bio, rq->biotail, blk_rq_bytes(rq)); 211 } 212 EXPORT_SYMBOL(blk_dump_rq_flags); 213 214 /** 215 * blk_sync_queue - cancel any pending callbacks on a queue 216 * @q: the queue 217 * 218 * Description: 219 * The block layer may perform asynchronous callback activity 220 * on a queue, such as calling the unplug function after a timeout. 221 * A block device may call blk_sync_queue to ensure that any 222 * such activity is cancelled, thus allowing it to release resources 223 * that the callbacks might use. The caller must already have made sure 224 * that its ->make_request_fn will not re-add plugging prior to calling 225 * this function. 226 * 227 * This function does not cancel any asynchronous activity arising 228 * out of elevator or throttling code. That would require elevator_exit() 229 * and blkcg_exit_queue() to be called with queue lock initialized. 230 * 231 */ 232 void blk_sync_queue(struct request_queue *q) 233 { 234 del_timer_sync(&q->timeout); 235 cancel_work_sync(&q->timeout_work); 236 } 237 EXPORT_SYMBOL(blk_sync_queue); 238 239 /** 240 * blk_set_pm_only - increment pm_only counter 241 * @q: request queue pointer 242 */ 243 void blk_set_pm_only(struct request_queue *q) 244 { 245 atomic_inc(&q->pm_only); 246 } 247 EXPORT_SYMBOL_GPL(blk_set_pm_only); 248 249 void blk_clear_pm_only(struct request_queue *q) 250 { 251 int pm_only; 252 253 pm_only = atomic_dec_return(&q->pm_only); 254 WARN_ON_ONCE(pm_only < 0); 255 if (pm_only == 0) 256 wake_up_all(&q->mq_freeze_wq); 257 } 258 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 259 260 void blk_put_queue(struct request_queue *q) 261 { 262 kobject_put(&q->kobj); 263 } 264 EXPORT_SYMBOL(blk_put_queue); 265 266 void blk_set_queue_dying(struct request_queue *q) 267 { 268 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 269 270 /* 271 * When queue DYING flag is set, we need to block new req 272 * entering queue, so we call blk_freeze_queue_start() to 273 * prevent I/O from crossing blk_queue_enter(). 274 */ 275 blk_freeze_queue_start(q); 276 277 if (queue_is_mq(q)) 278 blk_mq_wake_waiters(q); 279 280 /* Make blk_queue_enter() reexamine the DYING flag. */ 281 wake_up_all(&q->mq_freeze_wq); 282 } 283 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 284 285 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */ 286 void blk_exit_queue(struct request_queue *q) 287 { 288 /* 289 * Since the I/O scheduler exit code may access cgroup information, 290 * perform I/O scheduler exit before disassociating from the block 291 * cgroup controller. 292 */ 293 if (q->elevator) { 294 ioc_clear_queue(q); 295 elevator_exit(q, q->elevator); 296 q->elevator = NULL; 297 } 298 299 /* 300 * Remove all references to @q from the block cgroup controller before 301 * restoring @q->queue_lock to avoid that restoring this pointer causes 302 * e.g. blkcg_print_blkgs() to crash. 303 */ 304 blkcg_exit_queue(q); 305 306 /* 307 * Since the cgroup code may dereference the @q->backing_dev_info 308 * pointer, only decrease its reference count after having removed the 309 * association with the block cgroup controller. 310 */ 311 bdi_put(q->backing_dev_info); 312 } 313 314 /** 315 * blk_cleanup_queue - shutdown a request queue 316 * @q: request queue to shutdown 317 * 318 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 319 * put it. All future requests will be failed immediately with -ENODEV. 320 */ 321 void blk_cleanup_queue(struct request_queue *q) 322 { 323 /* mark @q DYING, no new request or merges will be allowed afterwards */ 324 mutex_lock(&q->sysfs_lock); 325 blk_set_queue_dying(q); 326 327 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 328 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 329 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 330 mutex_unlock(&q->sysfs_lock); 331 332 /* 333 * Drain all requests queued before DYING marking. Set DEAD flag to 334 * prevent that q->request_fn() gets invoked after draining finished. 335 */ 336 blk_freeze_queue(q); 337 338 rq_qos_exit(q); 339 340 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 341 342 /* for synchronous bio-based driver finish in-flight integrity i/o */ 343 blk_flush_integrity(); 344 345 /* @q won't process any more request, flush async actions */ 346 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 347 blk_sync_queue(q); 348 349 /* 350 * I/O scheduler exit is only safe after the sysfs scheduler attribute 351 * has been removed. 352 */ 353 WARN_ON_ONCE(q->kobj.state_in_sysfs); 354 355 blk_exit_queue(q); 356 357 if (queue_is_mq(q)) 358 blk_mq_exit_queue(q); 359 360 percpu_ref_exit(&q->q_usage_counter); 361 362 /* @q is and will stay empty, shutdown and put */ 363 blk_put_queue(q); 364 } 365 EXPORT_SYMBOL(blk_cleanup_queue); 366 367 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 368 { 369 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 370 } 371 EXPORT_SYMBOL(blk_alloc_queue); 372 373 /** 374 * blk_queue_enter() - try to increase q->q_usage_counter 375 * @q: request queue pointer 376 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 377 */ 378 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 379 { 380 const bool pm = flags & BLK_MQ_REQ_PREEMPT; 381 382 while (true) { 383 bool success = false; 384 385 rcu_read_lock(); 386 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 387 /* 388 * The code that increments the pm_only counter is 389 * responsible for ensuring that that counter is 390 * globally visible before the queue is unfrozen. 391 */ 392 if (pm || !blk_queue_pm_only(q)) { 393 success = true; 394 } else { 395 percpu_ref_put(&q->q_usage_counter); 396 } 397 } 398 rcu_read_unlock(); 399 400 if (success) 401 return 0; 402 403 if (flags & BLK_MQ_REQ_NOWAIT) 404 return -EBUSY; 405 406 /* 407 * read pair of barrier in blk_freeze_queue_start(), 408 * we need to order reading __PERCPU_REF_DEAD flag of 409 * .q_usage_counter and reading .mq_freeze_depth or 410 * queue dying flag, otherwise the following wait may 411 * never return if the two reads are reordered. 412 */ 413 smp_rmb(); 414 415 wait_event(q->mq_freeze_wq, 416 (atomic_read(&q->mq_freeze_depth) == 0 && 417 (pm || (blk_pm_request_resume(q), 418 !blk_queue_pm_only(q)))) || 419 blk_queue_dying(q)); 420 if (blk_queue_dying(q)) 421 return -ENODEV; 422 } 423 } 424 425 void blk_queue_exit(struct request_queue *q) 426 { 427 percpu_ref_put(&q->q_usage_counter); 428 } 429 430 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 431 { 432 struct request_queue *q = 433 container_of(ref, struct request_queue, q_usage_counter); 434 435 wake_up_all(&q->mq_freeze_wq); 436 } 437 438 static void blk_rq_timed_out_timer(struct timer_list *t) 439 { 440 struct request_queue *q = from_timer(q, t, timeout); 441 442 kblockd_schedule_work(&q->timeout_work); 443 } 444 445 static void blk_timeout_work(struct work_struct *work) 446 { 447 } 448 449 /** 450 * blk_alloc_queue_node - allocate a request queue 451 * @gfp_mask: memory allocation flags 452 * @node_id: NUMA node to allocate memory from 453 */ 454 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 455 { 456 struct request_queue *q; 457 int ret; 458 459 q = kmem_cache_alloc_node(blk_requestq_cachep, 460 gfp_mask | __GFP_ZERO, node_id); 461 if (!q) 462 return NULL; 463 464 INIT_LIST_HEAD(&q->queue_head); 465 q->last_merge = NULL; 466 467 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 468 if (q->id < 0) 469 goto fail_q; 470 471 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 472 if (ret) 473 goto fail_id; 474 475 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 476 if (!q->backing_dev_info) 477 goto fail_split; 478 479 q->stats = blk_alloc_queue_stats(); 480 if (!q->stats) 481 goto fail_stats; 482 483 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES; 484 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 485 q->backing_dev_info->name = "block"; 486 q->node = node_id; 487 488 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 489 laptop_mode_timer_fn, 0); 490 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 491 INIT_WORK(&q->timeout_work, blk_timeout_work); 492 INIT_LIST_HEAD(&q->icq_list); 493 #ifdef CONFIG_BLK_CGROUP 494 INIT_LIST_HEAD(&q->blkg_list); 495 #endif 496 497 kobject_init(&q->kobj, &blk_queue_ktype); 498 499 #ifdef CONFIG_BLK_DEV_IO_TRACE 500 mutex_init(&q->blk_trace_mutex); 501 #endif 502 mutex_init(&q->sysfs_lock); 503 spin_lock_init(&q->queue_lock); 504 505 init_waitqueue_head(&q->mq_freeze_wq); 506 507 /* 508 * Init percpu_ref in atomic mode so that it's faster to shutdown. 509 * See blk_register_queue() for details. 510 */ 511 if (percpu_ref_init(&q->q_usage_counter, 512 blk_queue_usage_counter_release, 513 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 514 goto fail_bdi; 515 516 if (blkcg_init_queue(q)) 517 goto fail_ref; 518 519 return q; 520 521 fail_ref: 522 percpu_ref_exit(&q->q_usage_counter); 523 fail_bdi: 524 blk_free_queue_stats(q->stats); 525 fail_stats: 526 bdi_put(q->backing_dev_info); 527 fail_split: 528 bioset_exit(&q->bio_split); 529 fail_id: 530 ida_simple_remove(&blk_queue_ida, q->id); 531 fail_q: 532 kmem_cache_free(blk_requestq_cachep, q); 533 return NULL; 534 } 535 EXPORT_SYMBOL(blk_alloc_queue_node); 536 537 bool blk_get_queue(struct request_queue *q) 538 { 539 if (likely(!blk_queue_dying(q))) { 540 __blk_get_queue(q); 541 return true; 542 } 543 544 return false; 545 } 546 EXPORT_SYMBOL(blk_get_queue); 547 548 /** 549 * blk_get_request - allocate a request 550 * @q: request queue to allocate a request for 551 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 552 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 553 */ 554 struct request *blk_get_request(struct request_queue *q, unsigned int op, 555 blk_mq_req_flags_t flags) 556 { 557 struct request *req; 558 559 WARN_ON_ONCE(op & REQ_NOWAIT); 560 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 561 562 req = blk_mq_alloc_request(q, op, flags); 563 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 564 q->mq_ops->initialize_rq_fn(req); 565 566 return req; 567 } 568 EXPORT_SYMBOL(blk_get_request); 569 570 void blk_put_request(struct request *req) 571 { 572 blk_mq_free_request(req); 573 } 574 EXPORT_SYMBOL(blk_put_request); 575 576 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 577 struct bio *bio) 578 { 579 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 580 581 if (!ll_back_merge_fn(q, req, bio)) 582 return false; 583 584 trace_block_bio_backmerge(q, req, bio); 585 586 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 587 blk_rq_set_mixed_merge(req); 588 589 req->biotail->bi_next = bio; 590 req->biotail = bio; 591 req->__data_len += bio->bi_iter.bi_size; 592 593 blk_account_io_start(req, false); 594 return true; 595 } 596 597 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 598 struct bio *bio) 599 { 600 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 601 602 if (!ll_front_merge_fn(q, req, bio)) 603 return false; 604 605 trace_block_bio_frontmerge(q, req, bio); 606 607 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 608 blk_rq_set_mixed_merge(req); 609 610 bio->bi_next = req->bio; 611 req->bio = bio; 612 613 req->__sector = bio->bi_iter.bi_sector; 614 req->__data_len += bio->bi_iter.bi_size; 615 616 blk_account_io_start(req, false); 617 return true; 618 } 619 620 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 621 struct bio *bio) 622 { 623 unsigned short segments = blk_rq_nr_discard_segments(req); 624 625 if (segments >= queue_max_discard_segments(q)) 626 goto no_merge; 627 if (blk_rq_sectors(req) + bio_sectors(bio) > 628 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 629 goto no_merge; 630 631 req->biotail->bi_next = bio; 632 req->biotail = bio; 633 req->__data_len += bio->bi_iter.bi_size; 634 req->nr_phys_segments = segments + 1; 635 636 blk_account_io_start(req, false); 637 return true; 638 no_merge: 639 req_set_nomerge(q, req); 640 return false; 641 } 642 643 /** 644 * blk_attempt_plug_merge - try to merge with %current's plugged list 645 * @q: request_queue new bio is being queued at 646 * @bio: new bio being queued 647 * @same_queue_rq: pointer to &struct request that gets filled in when 648 * another request associated with @q is found on the plug list 649 * (optional, may be %NULL) 650 * 651 * Determine whether @bio being queued on @q can be merged with a request 652 * on %current's plugged list. Returns %true if merge was successful, 653 * otherwise %false. 654 * 655 * Plugging coalesces IOs from the same issuer for the same purpose without 656 * going through @q->queue_lock. As such it's more of an issuing mechanism 657 * than scheduling, and the request, while may have elvpriv data, is not 658 * added on the elevator at this point. In addition, we don't have 659 * reliable access to the elevator outside queue lock. Only check basic 660 * merging parameters without querying the elevator. 661 * 662 * Caller must ensure !blk_queue_nomerges(q) beforehand. 663 */ 664 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 665 struct request **same_queue_rq) 666 { 667 struct blk_plug *plug; 668 struct request *rq; 669 struct list_head *plug_list; 670 671 plug = current->plug; 672 if (!plug) 673 return false; 674 675 plug_list = &plug->mq_list; 676 677 list_for_each_entry_reverse(rq, plug_list, queuelist) { 678 bool merged = false; 679 680 if (rq->q == q && same_queue_rq) { 681 /* 682 * Only blk-mq multiple hardware queues case checks the 683 * rq in the same queue, there should be only one such 684 * rq in a queue 685 **/ 686 *same_queue_rq = rq; 687 } 688 689 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 690 continue; 691 692 switch (blk_try_merge(rq, bio)) { 693 case ELEVATOR_BACK_MERGE: 694 merged = bio_attempt_back_merge(q, rq, bio); 695 break; 696 case ELEVATOR_FRONT_MERGE: 697 merged = bio_attempt_front_merge(q, rq, bio); 698 break; 699 case ELEVATOR_DISCARD_MERGE: 700 merged = bio_attempt_discard_merge(q, rq, bio); 701 break; 702 default: 703 break; 704 } 705 706 if (merged) 707 return true; 708 } 709 710 return false; 711 } 712 713 void blk_init_request_from_bio(struct request *req, struct bio *bio) 714 { 715 if (bio->bi_opf & REQ_RAHEAD) 716 req->cmd_flags |= REQ_FAILFAST_MASK; 717 718 req->__sector = bio->bi_iter.bi_sector; 719 req->ioprio = bio_prio(bio); 720 req->write_hint = bio->bi_write_hint; 721 blk_rq_bio_prep(req->q, req, bio); 722 } 723 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 724 725 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 726 { 727 char b[BDEVNAME_SIZE]; 728 729 printk(KERN_INFO "attempt to access beyond end of device\n"); 730 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 731 bio_devname(bio, b), bio->bi_opf, 732 (unsigned long long)bio_end_sector(bio), 733 (long long)maxsector); 734 } 735 736 #ifdef CONFIG_FAIL_MAKE_REQUEST 737 738 static DECLARE_FAULT_ATTR(fail_make_request); 739 740 static int __init setup_fail_make_request(char *str) 741 { 742 return setup_fault_attr(&fail_make_request, str); 743 } 744 __setup("fail_make_request=", setup_fail_make_request); 745 746 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 747 { 748 return part->make_it_fail && should_fail(&fail_make_request, bytes); 749 } 750 751 static int __init fail_make_request_debugfs(void) 752 { 753 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 754 NULL, &fail_make_request); 755 756 return PTR_ERR_OR_ZERO(dir); 757 } 758 759 late_initcall(fail_make_request_debugfs); 760 761 #else /* CONFIG_FAIL_MAKE_REQUEST */ 762 763 static inline bool should_fail_request(struct hd_struct *part, 764 unsigned int bytes) 765 { 766 return false; 767 } 768 769 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 770 771 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 772 { 773 const int op = bio_op(bio); 774 775 if (part->policy && op_is_write(op)) { 776 char b[BDEVNAME_SIZE]; 777 778 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 779 return false; 780 781 WARN_ONCE(1, 782 "generic_make_request: Trying to write " 783 "to read-only block-device %s (partno %d)\n", 784 bio_devname(bio, b), part->partno); 785 /* Older lvm-tools actually trigger this */ 786 return false; 787 } 788 789 return false; 790 } 791 792 static noinline int should_fail_bio(struct bio *bio) 793 { 794 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 795 return -EIO; 796 return 0; 797 } 798 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 799 800 /* 801 * Check whether this bio extends beyond the end of the device or partition. 802 * This may well happen - the kernel calls bread() without checking the size of 803 * the device, e.g., when mounting a file system. 804 */ 805 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 806 { 807 unsigned int nr_sectors = bio_sectors(bio); 808 809 if (nr_sectors && maxsector && 810 (nr_sectors > maxsector || 811 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 812 handle_bad_sector(bio, maxsector); 813 return -EIO; 814 } 815 return 0; 816 } 817 818 /* 819 * Remap block n of partition p to block n+start(p) of the disk. 820 */ 821 static inline int blk_partition_remap(struct bio *bio) 822 { 823 struct hd_struct *p; 824 int ret = -EIO; 825 826 rcu_read_lock(); 827 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 828 if (unlikely(!p)) 829 goto out; 830 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 831 goto out; 832 if (unlikely(bio_check_ro(bio, p))) 833 goto out; 834 835 /* 836 * Zone reset does not include bi_size so bio_sectors() is always 0. 837 * Include a test for the reset op code and perform the remap if needed. 838 */ 839 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) { 840 if (bio_check_eod(bio, part_nr_sects_read(p))) 841 goto out; 842 bio->bi_iter.bi_sector += p->start_sect; 843 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 844 bio->bi_iter.bi_sector - p->start_sect); 845 } 846 bio->bi_partno = 0; 847 ret = 0; 848 out: 849 rcu_read_unlock(); 850 return ret; 851 } 852 853 static noinline_for_stack bool 854 generic_make_request_checks(struct bio *bio) 855 { 856 struct request_queue *q; 857 int nr_sectors = bio_sectors(bio); 858 blk_status_t status = BLK_STS_IOERR; 859 char b[BDEVNAME_SIZE]; 860 861 might_sleep(); 862 863 q = bio->bi_disk->queue; 864 if (unlikely(!q)) { 865 printk(KERN_ERR 866 "generic_make_request: Trying to access " 867 "nonexistent block-device %s (%Lu)\n", 868 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 869 goto end_io; 870 } 871 872 /* 873 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 874 * if queue is not a request based queue. 875 */ 876 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q)) 877 goto not_supported; 878 879 if (should_fail_bio(bio)) 880 goto end_io; 881 882 if (bio->bi_partno) { 883 if (unlikely(blk_partition_remap(bio))) 884 goto end_io; 885 } else { 886 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 887 goto end_io; 888 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 889 goto end_io; 890 } 891 892 /* 893 * Filter flush bio's early so that make_request based 894 * drivers without flush support don't have to worry 895 * about them. 896 */ 897 if (op_is_flush(bio->bi_opf) && 898 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 899 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 900 if (!nr_sectors) { 901 status = BLK_STS_OK; 902 goto end_io; 903 } 904 } 905 906 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 907 bio->bi_opf &= ~REQ_HIPRI; 908 909 switch (bio_op(bio)) { 910 case REQ_OP_DISCARD: 911 if (!blk_queue_discard(q)) 912 goto not_supported; 913 break; 914 case REQ_OP_SECURE_ERASE: 915 if (!blk_queue_secure_erase(q)) 916 goto not_supported; 917 break; 918 case REQ_OP_WRITE_SAME: 919 if (!q->limits.max_write_same_sectors) 920 goto not_supported; 921 break; 922 case REQ_OP_ZONE_RESET: 923 if (!blk_queue_is_zoned(q)) 924 goto not_supported; 925 break; 926 case REQ_OP_WRITE_ZEROES: 927 if (!q->limits.max_write_zeroes_sectors) 928 goto not_supported; 929 break; 930 default: 931 break; 932 } 933 934 /* 935 * Various block parts want %current->io_context and lazy ioc 936 * allocation ends up trading a lot of pain for a small amount of 937 * memory. Just allocate it upfront. This may fail and block 938 * layer knows how to live with it. 939 */ 940 create_io_context(GFP_ATOMIC, q->node); 941 942 if (!blkcg_bio_issue_check(q, bio)) 943 return false; 944 945 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 946 trace_block_bio_queue(q, bio); 947 /* Now that enqueuing has been traced, we need to trace 948 * completion as well. 949 */ 950 bio_set_flag(bio, BIO_TRACE_COMPLETION); 951 } 952 return true; 953 954 not_supported: 955 status = BLK_STS_NOTSUPP; 956 end_io: 957 bio->bi_status = status; 958 bio_endio(bio); 959 return false; 960 } 961 962 /** 963 * generic_make_request - hand a buffer to its device driver for I/O 964 * @bio: The bio describing the location in memory and on the device. 965 * 966 * generic_make_request() is used to make I/O requests of block 967 * devices. It is passed a &struct bio, which describes the I/O that needs 968 * to be done. 969 * 970 * generic_make_request() does not return any status. The 971 * success/failure status of the request, along with notification of 972 * completion, is delivered asynchronously through the bio->bi_end_io 973 * function described (one day) else where. 974 * 975 * The caller of generic_make_request must make sure that bi_io_vec 976 * are set to describe the memory buffer, and that bi_dev and bi_sector are 977 * set to describe the device address, and the 978 * bi_end_io and optionally bi_private are set to describe how 979 * completion notification should be signaled. 980 * 981 * generic_make_request and the drivers it calls may use bi_next if this 982 * bio happens to be merged with someone else, and may resubmit the bio to 983 * a lower device by calling into generic_make_request recursively, which 984 * means the bio should NOT be touched after the call to ->make_request_fn. 985 */ 986 blk_qc_t generic_make_request(struct bio *bio) 987 { 988 /* 989 * bio_list_on_stack[0] contains bios submitted by the current 990 * make_request_fn. 991 * bio_list_on_stack[1] contains bios that were submitted before 992 * the current make_request_fn, but that haven't been processed 993 * yet. 994 */ 995 struct bio_list bio_list_on_stack[2]; 996 blk_mq_req_flags_t flags = 0; 997 struct request_queue *q = bio->bi_disk->queue; 998 blk_qc_t ret = BLK_QC_T_NONE; 999 1000 if (bio->bi_opf & REQ_NOWAIT) 1001 flags = BLK_MQ_REQ_NOWAIT; 1002 if (bio_flagged(bio, BIO_QUEUE_ENTERED)) 1003 blk_queue_enter_live(q); 1004 else if (blk_queue_enter(q, flags) < 0) { 1005 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT)) 1006 bio_wouldblock_error(bio); 1007 else 1008 bio_io_error(bio); 1009 return ret; 1010 } 1011 1012 if (!generic_make_request_checks(bio)) 1013 goto out; 1014 1015 /* 1016 * We only want one ->make_request_fn to be active at a time, else 1017 * stack usage with stacked devices could be a problem. So use 1018 * current->bio_list to keep a list of requests submited by a 1019 * make_request_fn function. current->bio_list is also used as a 1020 * flag to say if generic_make_request is currently active in this 1021 * task or not. If it is NULL, then no make_request is active. If 1022 * it is non-NULL, then a make_request is active, and new requests 1023 * should be added at the tail 1024 */ 1025 if (current->bio_list) { 1026 bio_list_add(¤t->bio_list[0], bio); 1027 goto out; 1028 } 1029 1030 /* following loop may be a bit non-obvious, and so deserves some 1031 * explanation. 1032 * Before entering the loop, bio->bi_next is NULL (as all callers 1033 * ensure that) so we have a list with a single bio. 1034 * We pretend that we have just taken it off a longer list, so 1035 * we assign bio_list to a pointer to the bio_list_on_stack, 1036 * thus initialising the bio_list of new bios to be 1037 * added. ->make_request() may indeed add some more bios 1038 * through a recursive call to generic_make_request. If it 1039 * did, we find a non-NULL value in bio_list and re-enter the loop 1040 * from the top. In this case we really did just take the bio 1041 * of the top of the list (no pretending) and so remove it from 1042 * bio_list, and call into ->make_request() again. 1043 */ 1044 BUG_ON(bio->bi_next); 1045 bio_list_init(&bio_list_on_stack[0]); 1046 current->bio_list = bio_list_on_stack; 1047 do { 1048 bool enter_succeeded = true; 1049 1050 if (unlikely(q != bio->bi_disk->queue)) { 1051 if (q) 1052 blk_queue_exit(q); 1053 q = bio->bi_disk->queue; 1054 flags = 0; 1055 if (bio->bi_opf & REQ_NOWAIT) 1056 flags = BLK_MQ_REQ_NOWAIT; 1057 if (blk_queue_enter(q, flags) < 0) { 1058 enter_succeeded = false; 1059 q = NULL; 1060 } 1061 } 1062 1063 if (enter_succeeded) { 1064 struct bio_list lower, same; 1065 1066 /* Create a fresh bio_list for all subordinate requests */ 1067 bio_list_on_stack[1] = bio_list_on_stack[0]; 1068 bio_list_init(&bio_list_on_stack[0]); 1069 ret = q->make_request_fn(q, bio); 1070 1071 /* sort new bios into those for a lower level 1072 * and those for the same level 1073 */ 1074 bio_list_init(&lower); 1075 bio_list_init(&same); 1076 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 1077 if (q == bio->bi_disk->queue) 1078 bio_list_add(&same, bio); 1079 else 1080 bio_list_add(&lower, bio); 1081 /* now assemble so we handle the lowest level first */ 1082 bio_list_merge(&bio_list_on_stack[0], &lower); 1083 bio_list_merge(&bio_list_on_stack[0], &same); 1084 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 1085 } else { 1086 if (unlikely(!blk_queue_dying(q) && 1087 (bio->bi_opf & REQ_NOWAIT))) 1088 bio_wouldblock_error(bio); 1089 else 1090 bio_io_error(bio); 1091 } 1092 bio = bio_list_pop(&bio_list_on_stack[0]); 1093 } while (bio); 1094 current->bio_list = NULL; /* deactivate */ 1095 1096 out: 1097 if (q) 1098 blk_queue_exit(q); 1099 return ret; 1100 } 1101 EXPORT_SYMBOL(generic_make_request); 1102 1103 /** 1104 * direct_make_request - hand a buffer directly to its device driver for I/O 1105 * @bio: The bio describing the location in memory and on the device. 1106 * 1107 * This function behaves like generic_make_request(), but does not protect 1108 * against recursion. Must only be used if the called driver is known 1109 * to not call generic_make_request (or direct_make_request) again from 1110 * its make_request function. (Calling direct_make_request again from 1111 * a workqueue is perfectly fine as that doesn't recurse). 1112 */ 1113 blk_qc_t direct_make_request(struct bio *bio) 1114 { 1115 struct request_queue *q = bio->bi_disk->queue; 1116 bool nowait = bio->bi_opf & REQ_NOWAIT; 1117 blk_qc_t ret; 1118 1119 if (!generic_make_request_checks(bio)) 1120 return BLK_QC_T_NONE; 1121 1122 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 1123 if (nowait && !blk_queue_dying(q)) 1124 bio->bi_status = BLK_STS_AGAIN; 1125 else 1126 bio->bi_status = BLK_STS_IOERR; 1127 bio_endio(bio); 1128 return BLK_QC_T_NONE; 1129 } 1130 1131 ret = q->make_request_fn(q, bio); 1132 blk_queue_exit(q); 1133 return ret; 1134 } 1135 EXPORT_SYMBOL_GPL(direct_make_request); 1136 1137 /** 1138 * submit_bio - submit a bio to the block device layer for I/O 1139 * @bio: The &struct bio which describes the I/O 1140 * 1141 * submit_bio() is very similar in purpose to generic_make_request(), and 1142 * uses that function to do most of the work. Both are fairly rough 1143 * interfaces; @bio must be presetup and ready for I/O. 1144 * 1145 */ 1146 blk_qc_t submit_bio(struct bio *bio) 1147 { 1148 /* 1149 * If it's a regular read/write or a barrier with data attached, 1150 * go through the normal accounting stuff before submission. 1151 */ 1152 if (bio_has_data(bio)) { 1153 unsigned int count; 1154 1155 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1156 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 1157 else 1158 count = bio_sectors(bio); 1159 1160 if (op_is_write(bio_op(bio))) { 1161 count_vm_events(PGPGOUT, count); 1162 } else { 1163 task_io_account_read(bio->bi_iter.bi_size); 1164 count_vm_events(PGPGIN, count); 1165 } 1166 1167 if (unlikely(block_dump)) { 1168 char b[BDEVNAME_SIZE]; 1169 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1170 current->comm, task_pid_nr(current), 1171 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 1172 (unsigned long long)bio->bi_iter.bi_sector, 1173 bio_devname(bio, b), count); 1174 } 1175 } 1176 1177 return generic_make_request(bio); 1178 } 1179 EXPORT_SYMBOL(submit_bio); 1180 1181 /** 1182 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1183 * for new the queue limits 1184 * @q: the queue 1185 * @rq: the request being checked 1186 * 1187 * Description: 1188 * @rq may have been made based on weaker limitations of upper-level queues 1189 * in request stacking drivers, and it may violate the limitation of @q. 1190 * Since the block layer and the underlying device driver trust @rq 1191 * after it is inserted to @q, it should be checked against @q before 1192 * the insertion using this generic function. 1193 * 1194 * Request stacking drivers like request-based dm may change the queue 1195 * limits when retrying requests on other queues. Those requests need 1196 * to be checked against the new queue limits again during dispatch. 1197 */ 1198 static int blk_cloned_rq_check_limits(struct request_queue *q, 1199 struct request *rq) 1200 { 1201 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 1202 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1203 return -EIO; 1204 } 1205 1206 /* 1207 * queue's settings related to segment counting like q->bounce_pfn 1208 * may differ from that of other stacking queues. 1209 * Recalculate it to check the request correctly on this queue's 1210 * limitation. 1211 */ 1212 blk_recalc_rq_segments(rq); 1213 if (rq->nr_phys_segments > queue_max_segments(q)) { 1214 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1215 return -EIO; 1216 } 1217 1218 return 0; 1219 } 1220 1221 /** 1222 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1223 * @q: the queue to submit the request 1224 * @rq: the request being queued 1225 */ 1226 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1227 { 1228 if (blk_cloned_rq_check_limits(q, rq)) 1229 return BLK_STS_IOERR; 1230 1231 if (rq->rq_disk && 1232 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1233 return BLK_STS_IOERR; 1234 1235 if (blk_queue_io_stat(q)) 1236 blk_account_io_start(rq, true); 1237 1238 /* 1239 * Since we have a scheduler attached on the top device, 1240 * bypass a potential scheduler on the bottom device for 1241 * insert. 1242 */ 1243 return blk_mq_request_issue_directly(rq, true); 1244 } 1245 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1246 1247 /** 1248 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1249 * @rq: request to examine 1250 * 1251 * Description: 1252 * A request could be merge of IOs which require different failure 1253 * handling. This function determines the number of bytes which 1254 * can be failed from the beginning of the request without 1255 * crossing into area which need to be retried further. 1256 * 1257 * Return: 1258 * The number of bytes to fail. 1259 */ 1260 unsigned int blk_rq_err_bytes(const struct request *rq) 1261 { 1262 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1263 unsigned int bytes = 0; 1264 struct bio *bio; 1265 1266 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1267 return blk_rq_bytes(rq); 1268 1269 /* 1270 * Currently the only 'mixing' which can happen is between 1271 * different fastfail types. We can safely fail portions 1272 * which have all the failfast bits that the first one has - 1273 * the ones which are at least as eager to fail as the first 1274 * one. 1275 */ 1276 for (bio = rq->bio; bio; bio = bio->bi_next) { 1277 if ((bio->bi_opf & ff) != ff) 1278 break; 1279 bytes += bio->bi_iter.bi_size; 1280 } 1281 1282 /* this could lead to infinite loop */ 1283 BUG_ON(blk_rq_bytes(rq) && !bytes); 1284 return bytes; 1285 } 1286 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1287 1288 void blk_account_io_completion(struct request *req, unsigned int bytes) 1289 { 1290 if (blk_do_io_stat(req)) { 1291 const int sgrp = op_stat_group(req_op(req)); 1292 struct hd_struct *part; 1293 1294 part_stat_lock(); 1295 part = req->part; 1296 part_stat_add(part, sectors[sgrp], bytes >> 9); 1297 part_stat_unlock(); 1298 } 1299 } 1300 1301 void blk_account_io_done(struct request *req, u64 now) 1302 { 1303 /* 1304 * Account IO completion. flush_rq isn't accounted as a 1305 * normal IO on queueing nor completion. Accounting the 1306 * containing request is enough. 1307 */ 1308 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 1309 const int sgrp = op_stat_group(req_op(req)); 1310 struct hd_struct *part; 1311 1312 part_stat_lock(); 1313 part = req->part; 1314 1315 update_io_ticks(part, jiffies); 1316 part_stat_inc(part, ios[sgrp]); 1317 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns); 1318 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns)); 1319 part_dec_in_flight(req->q, part, rq_data_dir(req)); 1320 1321 hd_struct_put(part); 1322 part_stat_unlock(); 1323 } 1324 } 1325 1326 void blk_account_io_start(struct request *rq, bool new_io) 1327 { 1328 struct hd_struct *part; 1329 int rw = rq_data_dir(rq); 1330 1331 if (!blk_do_io_stat(rq)) 1332 return; 1333 1334 part_stat_lock(); 1335 1336 if (!new_io) { 1337 part = rq->part; 1338 part_stat_inc(part, merges[rw]); 1339 } else { 1340 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 1341 if (!hd_struct_try_get(part)) { 1342 /* 1343 * The partition is already being removed, 1344 * the request will be accounted on the disk only 1345 * 1346 * We take a reference on disk->part0 although that 1347 * partition will never be deleted, so we can treat 1348 * it as any other partition. 1349 */ 1350 part = &rq->rq_disk->part0; 1351 hd_struct_get(part); 1352 } 1353 part_inc_in_flight(rq->q, part, rw); 1354 rq->part = part; 1355 } 1356 1357 update_io_ticks(part, jiffies); 1358 1359 part_stat_unlock(); 1360 } 1361 1362 /* 1363 * Steal bios from a request and add them to a bio list. 1364 * The request must not have been partially completed before. 1365 */ 1366 void blk_steal_bios(struct bio_list *list, struct request *rq) 1367 { 1368 if (rq->bio) { 1369 if (list->tail) 1370 list->tail->bi_next = rq->bio; 1371 else 1372 list->head = rq->bio; 1373 list->tail = rq->biotail; 1374 1375 rq->bio = NULL; 1376 rq->biotail = NULL; 1377 } 1378 1379 rq->__data_len = 0; 1380 } 1381 EXPORT_SYMBOL_GPL(blk_steal_bios); 1382 1383 /** 1384 * blk_update_request - Special helper function for request stacking drivers 1385 * @req: the request being processed 1386 * @error: block status code 1387 * @nr_bytes: number of bytes to complete @req 1388 * 1389 * Description: 1390 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1391 * the request structure even if @req doesn't have leftover. 1392 * If @req has leftover, sets it up for the next range of segments. 1393 * 1394 * This special helper function is only for request stacking drivers 1395 * (e.g. request-based dm) so that they can handle partial completion. 1396 * Actual device drivers should use blk_end_request instead. 1397 * 1398 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1399 * %false return from this function. 1400 * 1401 * Note: 1402 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both 1403 * blk_rq_bytes() and in blk_update_request(). 1404 * 1405 * Return: 1406 * %false - this request doesn't have any more data 1407 * %true - this request has more data 1408 **/ 1409 bool blk_update_request(struct request *req, blk_status_t error, 1410 unsigned int nr_bytes) 1411 { 1412 int total_bytes; 1413 1414 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 1415 1416 if (!req->bio) 1417 return false; 1418 1419 if (unlikely(error && !blk_rq_is_passthrough(req) && 1420 !(req->rq_flags & RQF_QUIET))) 1421 print_req_error(req, error); 1422 1423 blk_account_io_completion(req, nr_bytes); 1424 1425 total_bytes = 0; 1426 while (req->bio) { 1427 struct bio *bio = req->bio; 1428 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 1429 1430 if (bio_bytes == bio->bi_iter.bi_size) 1431 req->bio = bio->bi_next; 1432 1433 /* Completion has already been traced */ 1434 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1435 req_bio_endio(req, bio, bio_bytes, error); 1436 1437 total_bytes += bio_bytes; 1438 nr_bytes -= bio_bytes; 1439 1440 if (!nr_bytes) 1441 break; 1442 } 1443 1444 /* 1445 * completely done 1446 */ 1447 if (!req->bio) { 1448 /* 1449 * Reset counters so that the request stacking driver 1450 * can find how many bytes remain in the request 1451 * later. 1452 */ 1453 req->__data_len = 0; 1454 return false; 1455 } 1456 1457 req->__data_len -= total_bytes; 1458 1459 /* update sector only for requests with clear definition of sector */ 1460 if (!blk_rq_is_passthrough(req)) 1461 req->__sector += total_bytes >> 9; 1462 1463 /* mixed attributes always follow the first bio */ 1464 if (req->rq_flags & RQF_MIXED_MERGE) { 1465 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1466 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1467 } 1468 1469 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1470 /* 1471 * If total number of sectors is less than the first segment 1472 * size, something has gone terribly wrong. 1473 */ 1474 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1475 blk_dump_rq_flags(req, "request botched"); 1476 req->__data_len = blk_rq_cur_bytes(req); 1477 } 1478 1479 /* recalculate the number of segments */ 1480 blk_recalc_rq_segments(req); 1481 } 1482 1483 return true; 1484 } 1485 EXPORT_SYMBOL_GPL(blk_update_request); 1486 1487 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 1488 struct bio *bio) 1489 { 1490 if (bio_has_data(bio)) 1491 rq->nr_phys_segments = bio_phys_segments(q, bio); 1492 else if (bio_op(bio) == REQ_OP_DISCARD) 1493 rq->nr_phys_segments = 1; 1494 1495 rq->__data_len = bio->bi_iter.bi_size; 1496 rq->bio = rq->biotail = bio; 1497 1498 if (bio->bi_disk) 1499 rq->rq_disk = bio->bi_disk; 1500 } 1501 1502 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1503 /** 1504 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1505 * @rq: the request to be flushed 1506 * 1507 * Description: 1508 * Flush all pages in @rq. 1509 */ 1510 void rq_flush_dcache_pages(struct request *rq) 1511 { 1512 struct req_iterator iter; 1513 struct bio_vec bvec; 1514 1515 rq_for_each_segment(bvec, rq, iter) 1516 flush_dcache_page(bvec.bv_page); 1517 } 1518 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1519 #endif 1520 1521 /** 1522 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1523 * @q : the queue of the device being checked 1524 * 1525 * Description: 1526 * Check if underlying low-level drivers of a device are busy. 1527 * If the drivers want to export their busy state, they must set own 1528 * exporting function using blk_queue_lld_busy() first. 1529 * 1530 * Basically, this function is used only by request stacking drivers 1531 * to stop dispatching requests to underlying devices when underlying 1532 * devices are busy. This behavior helps more I/O merging on the queue 1533 * of the request stacking driver and prevents I/O throughput regression 1534 * on burst I/O load. 1535 * 1536 * Return: 1537 * 0 - Not busy (The request stacking driver should dispatch request) 1538 * 1 - Busy (The request stacking driver should stop dispatching request) 1539 */ 1540 int blk_lld_busy(struct request_queue *q) 1541 { 1542 if (queue_is_mq(q) && q->mq_ops->busy) 1543 return q->mq_ops->busy(q); 1544 1545 return 0; 1546 } 1547 EXPORT_SYMBOL_GPL(blk_lld_busy); 1548 1549 /** 1550 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1551 * @rq: the clone request to be cleaned up 1552 * 1553 * Description: 1554 * Free all bios in @rq for a cloned request. 1555 */ 1556 void blk_rq_unprep_clone(struct request *rq) 1557 { 1558 struct bio *bio; 1559 1560 while ((bio = rq->bio) != NULL) { 1561 rq->bio = bio->bi_next; 1562 1563 bio_put(bio); 1564 } 1565 } 1566 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1567 1568 /* 1569 * Copy attributes of the original request to the clone request. 1570 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 1571 */ 1572 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 1573 { 1574 dst->__sector = blk_rq_pos(src); 1575 dst->__data_len = blk_rq_bytes(src); 1576 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1577 dst->rq_flags |= RQF_SPECIAL_PAYLOAD; 1578 dst->special_vec = src->special_vec; 1579 } 1580 dst->nr_phys_segments = src->nr_phys_segments; 1581 dst->ioprio = src->ioprio; 1582 dst->extra_len = src->extra_len; 1583 } 1584 1585 /** 1586 * blk_rq_prep_clone - Helper function to setup clone request 1587 * @rq: the request to be setup 1588 * @rq_src: original request to be cloned 1589 * @bs: bio_set that bios for clone are allocated from 1590 * @gfp_mask: memory allocation mask for bio 1591 * @bio_ctr: setup function to be called for each clone bio. 1592 * Returns %0 for success, non %0 for failure. 1593 * @data: private data to be passed to @bio_ctr 1594 * 1595 * Description: 1596 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1597 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 1598 * are not copied, and copying such parts is the caller's responsibility. 1599 * Also, pages which the original bios are pointing to are not copied 1600 * and the cloned bios just point same pages. 1601 * So cloned bios must be completed before original bios, which means 1602 * the caller must complete @rq before @rq_src. 1603 */ 1604 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1605 struct bio_set *bs, gfp_t gfp_mask, 1606 int (*bio_ctr)(struct bio *, struct bio *, void *), 1607 void *data) 1608 { 1609 struct bio *bio, *bio_src; 1610 1611 if (!bs) 1612 bs = &fs_bio_set; 1613 1614 __rq_for_each_bio(bio_src, rq_src) { 1615 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1616 if (!bio) 1617 goto free_and_out; 1618 1619 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1620 goto free_and_out; 1621 1622 if (rq->bio) { 1623 rq->biotail->bi_next = bio; 1624 rq->biotail = bio; 1625 } else 1626 rq->bio = rq->biotail = bio; 1627 } 1628 1629 __blk_rq_prep_clone(rq, rq_src); 1630 1631 return 0; 1632 1633 free_and_out: 1634 if (bio) 1635 bio_put(bio); 1636 blk_rq_unprep_clone(rq); 1637 1638 return -ENOMEM; 1639 } 1640 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1641 1642 int kblockd_schedule_work(struct work_struct *work) 1643 { 1644 return queue_work(kblockd_workqueue, work); 1645 } 1646 EXPORT_SYMBOL(kblockd_schedule_work); 1647 1648 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 1649 { 1650 return queue_work_on(cpu, kblockd_workqueue, work); 1651 } 1652 EXPORT_SYMBOL(kblockd_schedule_work_on); 1653 1654 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1655 unsigned long delay) 1656 { 1657 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1658 } 1659 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1660 1661 /** 1662 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1663 * @plug: The &struct blk_plug that needs to be initialized 1664 * 1665 * Description: 1666 * blk_start_plug() indicates to the block layer an intent by the caller 1667 * to submit multiple I/O requests in a batch. The block layer may use 1668 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1669 * is called. However, the block layer may choose to submit requests 1670 * before a call to blk_finish_plug() if the number of queued I/Os 1671 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1672 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1673 * the task schedules (see below). 1674 * 1675 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1676 * pending I/O should the task end up blocking between blk_start_plug() and 1677 * blk_finish_plug(). This is important from a performance perspective, but 1678 * also ensures that we don't deadlock. For instance, if the task is blocking 1679 * for a memory allocation, memory reclaim could end up wanting to free a 1680 * page belonging to that request that is currently residing in our private 1681 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1682 * this kind of deadlock. 1683 */ 1684 void blk_start_plug(struct blk_plug *plug) 1685 { 1686 struct task_struct *tsk = current; 1687 1688 /* 1689 * If this is a nested plug, don't actually assign it. 1690 */ 1691 if (tsk->plug) 1692 return; 1693 1694 INIT_LIST_HEAD(&plug->mq_list); 1695 INIT_LIST_HEAD(&plug->cb_list); 1696 plug->rq_count = 0; 1697 plug->multiple_queues = false; 1698 1699 /* 1700 * Store ordering should not be needed here, since a potential 1701 * preempt will imply a full memory barrier 1702 */ 1703 tsk->plug = plug; 1704 } 1705 EXPORT_SYMBOL(blk_start_plug); 1706 1707 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1708 { 1709 LIST_HEAD(callbacks); 1710 1711 while (!list_empty(&plug->cb_list)) { 1712 list_splice_init(&plug->cb_list, &callbacks); 1713 1714 while (!list_empty(&callbacks)) { 1715 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1716 struct blk_plug_cb, 1717 list); 1718 list_del(&cb->list); 1719 cb->callback(cb, from_schedule); 1720 } 1721 } 1722 } 1723 1724 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1725 int size) 1726 { 1727 struct blk_plug *plug = current->plug; 1728 struct blk_plug_cb *cb; 1729 1730 if (!plug) 1731 return NULL; 1732 1733 list_for_each_entry(cb, &plug->cb_list, list) 1734 if (cb->callback == unplug && cb->data == data) 1735 return cb; 1736 1737 /* Not currently on the callback list */ 1738 BUG_ON(size < sizeof(*cb)); 1739 cb = kzalloc(size, GFP_ATOMIC); 1740 if (cb) { 1741 cb->data = data; 1742 cb->callback = unplug; 1743 list_add(&cb->list, &plug->cb_list); 1744 } 1745 return cb; 1746 } 1747 EXPORT_SYMBOL(blk_check_plugged); 1748 1749 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1750 { 1751 flush_plug_callbacks(plug, from_schedule); 1752 1753 if (!list_empty(&plug->mq_list)) 1754 blk_mq_flush_plug_list(plug, from_schedule); 1755 } 1756 1757 /** 1758 * blk_finish_plug - mark the end of a batch of submitted I/O 1759 * @plug: The &struct blk_plug passed to blk_start_plug() 1760 * 1761 * Description: 1762 * Indicate that a batch of I/O submissions is complete. This function 1763 * must be paired with an initial call to blk_start_plug(). The intent 1764 * is to allow the block layer to optimize I/O submission. See the 1765 * documentation for blk_start_plug() for more information. 1766 */ 1767 void blk_finish_plug(struct blk_plug *plug) 1768 { 1769 if (plug != current->plug) 1770 return; 1771 blk_flush_plug_list(plug, false); 1772 1773 current->plug = NULL; 1774 } 1775 EXPORT_SYMBOL(blk_finish_plug); 1776 1777 int __init blk_dev_init(void) 1778 { 1779 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1780 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1781 FIELD_SIZEOF(struct request, cmd_flags)); 1782 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1783 FIELD_SIZEOF(struct bio, bi_opf)); 1784 1785 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1786 kblockd_workqueue = alloc_workqueue("kblockd", 1787 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1788 if (!kblockd_workqueue) 1789 panic("Failed to create kblockd\n"); 1790 1791 blk_requestq_cachep = kmem_cache_create("request_queue", 1792 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1793 1794 #ifdef CONFIG_DEBUG_FS 1795 blk_debugfs_root = debugfs_create_dir("block", NULL); 1796 #endif 1797 1798 return 0; 1799 } 1800