xref: /openbmc/linux/block/blk-core.c (revision c819e2cf)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38 
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42 
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48 
49 DEFINE_IDA(blk_queue_ida);
50 
51 /*
52  * For the allocated request tables
53  */
54 struct kmem_cache *request_cachep = NULL;
55 
56 /*
57  * For queue allocation
58  */
59 struct kmem_cache *blk_requestq_cachep;
60 
61 /*
62  * Controlling structure to kblockd
63  */
64 static struct workqueue_struct *kblockd_workqueue;
65 
66 void blk_queue_congestion_threshold(struct request_queue *q)
67 {
68 	int nr;
69 
70 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 	if (nr > q->nr_requests)
72 		nr = q->nr_requests;
73 	q->nr_congestion_on = nr;
74 
75 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 	if (nr < 1)
77 		nr = 1;
78 	q->nr_congestion_off = nr;
79 }
80 
81 /**
82  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83  * @bdev:	device
84  *
85  * Locates the passed device's request queue and returns the address of its
86  * backing_dev_info.  This function can only be called if @bdev is opened
87  * and the return value is never NULL.
88  */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 	struct request_queue *q = bdev_get_queue(bdev);
92 
93 	return &q->backing_dev_info;
94 }
95 EXPORT_SYMBOL(blk_get_backing_dev_info);
96 
97 void blk_rq_init(struct request_queue *q, struct request *rq)
98 {
99 	memset(rq, 0, sizeof(*rq));
100 
101 	INIT_LIST_HEAD(&rq->queuelist);
102 	INIT_LIST_HEAD(&rq->timeout_list);
103 	rq->cpu = -1;
104 	rq->q = q;
105 	rq->__sector = (sector_t) -1;
106 	INIT_HLIST_NODE(&rq->hash);
107 	RB_CLEAR_NODE(&rq->rb_node);
108 	rq->cmd = rq->__cmd;
109 	rq->cmd_len = BLK_MAX_CDB;
110 	rq->tag = -1;
111 	rq->start_time = jiffies;
112 	set_start_time_ns(rq);
113 	rq->part = NULL;
114 }
115 EXPORT_SYMBOL(blk_rq_init);
116 
117 static void req_bio_endio(struct request *rq, struct bio *bio,
118 			  unsigned int nbytes, int error)
119 {
120 	if (error)
121 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 		error = -EIO;
124 
125 	if (unlikely(rq->cmd_flags & REQ_QUIET))
126 		set_bit(BIO_QUIET, &bio->bi_flags);
127 
128 	bio_advance(bio, nbytes);
129 
130 	/* don't actually finish bio if it's part of flush sequence */
131 	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
132 		bio_endio(bio, error);
133 }
134 
135 void blk_dump_rq_flags(struct request *rq, char *msg)
136 {
137 	int bit;
138 
139 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
140 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
141 		(unsigned long long) rq->cmd_flags);
142 
143 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
144 	       (unsigned long long)blk_rq_pos(rq),
145 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
146 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
147 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
148 
149 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
150 		printk(KERN_INFO "  cdb: ");
151 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
152 			printk("%02x ", rq->cmd[bit]);
153 		printk("\n");
154 	}
155 }
156 EXPORT_SYMBOL(blk_dump_rq_flags);
157 
158 static void blk_delay_work(struct work_struct *work)
159 {
160 	struct request_queue *q;
161 
162 	q = container_of(work, struct request_queue, delay_work.work);
163 	spin_lock_irq(q->queue_lock);
164 	__blk_run_queue(q);
165 	spin_unlock_irq(q->queue_lock);
166 }
167 
168 /**
169  * blk_delay_queue - restart queueing after defined interval
170  * @q:		The &struct request_queue in question
171  * @msecs:	Delay in msecs
172  *
173  * Description:
174  *   Sometimes queueing needs to be postponed for a little while, to allow
175  *   resources to come back. This function will make sure that queueing is
176  *   restarted around the specified time. Queue lock must be held.
177  */
178 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
179 {
180 	if (likely(!blk_queue_dead(q)))
181 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
182 				   msecs_to_jiffies(msecs));
183 }
184 EXPORT_SYMBOL(blk_delay_queue);
185 
186 /**
187  * blk_start_queue - restart a previously stopped queue
188  * @q:    The &struct request_queue in question
189  *
190  * Description:
191  *   blk_start_queue() will clear the stop flag on the queue, and call
192  *   the request_fn for the queue if it was in a stopped state when
193  *   entered. Also see blk_stop_queue(). Queue lock must be held.
194  **/
195 void blk_start_queue(struct request_queue *q)
196 {
197 	WARN_ON(!irqs_disabled());
198 
199 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
200 	__blk_run_queue(q);
201 }
202 EXPORT_SYMBOL(blk_start_queue);
203 
204 /**
205  * blk_stop_queue - stop a queue
206  * @q:    The &struct request_queue in question
207  *
208  * Description:
209  *   The Linux block layer assumes that a block driver will consume all
210  *   entries on the request queue when the request_fn strategy is called.
211  *   Often this will not happen, because of hardware limitations (queue
212  *   depth settings). If a device driver gets a 'queue full' response,
213  *   or if it simply chooses not to queue more I/O at one point, it can
214  *   call this function to prevent the request_fn from being called until
215  *   the driver has signalled it's ready to go again. This happens by calling
216  *   blk_start_queue() to restart queue operations. Queue lock must be held.
217  **/
218 void blk_stop_queue(struct request_queue *q)
219 {
220 	cancel_delayed_work(&q->delay_work);
221 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
222 }
223 EXPORT_SYMBOL(blk_stop_queue);
224 
225 /**
226  * blk_sync_queue - cancel any pending callbacks on a queue
227  * @q: the queue
228  *
229  * Description:
230  *     The block layer may perform asynchronous callback activity
231  *     on a queue, such as calling the unplug function after a timeout.
232  *     A block device may call blk_sync_queue to ensure that any
233  *     such activity is cancelled, thus allowing it to release resources
234  *     that the callbacks might use. The caller must already have made sure
235  *     that its ->make_request_fn will not re-add plugging prior to calling
236  *     this function.
237  *
238  *     This function does not cancel any asynchronous activity arising
239  *     out of elevator or throttling code. That would require elevator_exit()
240  *     and blkcg_exit_queue() to be called with queue lock initialized.
241  *
242  */
243 void blk_sync_queue(struct request_queue *q)
244 {
245 	del_timer_sync(&q->timeout);
246 
247 	if (q->mq_ops) {
248 		struct blk_mq_hw_ctx *hctx;
249 		int i;
250 
251 		queue_for_each_hw_ctx(q, hctx, i) {
252 			cancel_delayed_work_sync(&hctx->run_work);
253 			cancel_delayed_work_sync(&hctx->delay_work);
254 		}
255 	} else {
256 		cancel_delayed_work_sync(&q->delay_work);
257 	}
258 }
259 EXPORT_SYMBOL(blk_sync_queue);
260 
261 /**
262  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
263  * @q:	The queue to run
264  *
265  * Description:
266  *    Invoke request handling on a queue if there are any pending requests.
267  *    May be used to restart request handling after a request has completed.
268  *    This variant runs the queue whether or not the queue has been
269  *    stopped. Must be called with the queue lock held and interrupts
270  *    disabled. See also @blk_run_queue.
271  */
272 inline void __blk_run_queue_uncond(struct request_queue *q)
273 {
274 	if (unlikely(blk_queue_dead(q)))
275 		return;
276 
277 	/*
278 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
279 	 * the queue lock internally. As a result multiple threads may be
280 	 * running such a request function concurrently. Keep track of the
281 	 * number of active request_fn invocations such that blk_drain_queue()
282 	 * can wait until all these request_fn calls have finished.
283 	 */
284 	q->request_fn_active++;
285 	q->request_fn(q);
286 	q->request_fn_active--;
287 }
288 
289 /**
290  * __blk_run_queue - run a single device queue
291  * @q:	The queue to run
292  *
293  * Description:
294  *    See @blk_run_queue. This variant must be called with the queue lock
295  *    held and interrupts disabled.
296  */
297 void __blk_run_queue(struct request_queue *q)
298 {
299 	if (unlikely(blk_queue_stopped(q)))
300 		return;
301 
302 	__blk_run_queue_uncond(q);
303 }
304 EXPORT_SYMBOL(__blk_run_queue);
305 
306 /**
307  * blk_run_queue_async - run a single device queue in workqueue context
308  * @q:	The queue to run
309  *
310  * Description:
311  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
312  *    of us. The caller must hold the queue lock.
313  */
314 void blk_run_queue_async(struct request_queue *q)
315 {
316 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
317 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
318 }
319 EXPORT_SYMBOL(blk_run_queue_async);
320 
321 /**
322  * blk_run_queue - run a single device queue
323  * @q: The queue to run
324  *
325  * Description:
326  *    Invoke request handling on this queue, if it has pending work to do.
327  *    May be used to restart queueing when a request has completed.
328  */
329 void blk_run_queue(struct request_queue *q)
330 {
331 	unsigned long flags;
332 
333 	spin_lock_irqsave(q->queue_lock, flags);
334 	__blk_run_queue(q);
335 	spin_unlock_irqrestore(q->queue_lock, flags);
336 }
337 EXPORT_SYMBOL(blk_run_queue);
338 
339 void blk_put_queue(struct request_queue *q)
340 {
341 	kobject_put(&q->kobj);
342 }
343 EXPORT_SYMBOL(blk_put_queue);
344 
345 /**
346  * __blk_drain_queue - drain requests from request_queue
347  * @q: queue to drain
348  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
349  *
350  * Drain requests from @q.  If @drain_all is set, all requests are drained.
351  * If not, only ELVPRIV requests are drained.  The caller is responsible
352  * for ensuring that no new requests which need to be drained are queued.
353  */
354 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
355 	__releases(q->queue_lock)
356 	__acquires(q->queue_lock)
357 {
358 	int i;
359 
360 	lockdep_assert_held(q->queue_lock);
361 
362 	while (true) {
363 		bool drain = false;
364 
365 		/*
366 		 * The caller might be trying to drain @q before its
367 		 * elevator is initialized.
368 		 */
369 		if (q->elevator)
370 			elv_drain_elevator(q);
371 
372 		blkcg_drain_queue(q);
373 
374 		/*
375 		 * This function might be called on a queue which failed
376 		 * driver init after queue creation or is not yet fully
377 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
378 		 * in such cases.  Kick queue iff dispatch queue has
379 		 * something on it and @q has request_fn set.
380 		 */
381 		if (!list_empty(&q->queue_head) && q->request_fn)
382 			__blk_run_queue(q);
383 
384 		drain |= q->nr_rqs_elvpriv;
385 		drain |= q->request_fn_active;
386 
387 		/*
388 		 * Unfortunately, requests are queued at and tracked from
389 		 * multiple places and there's no single counter which can
390 		 * be drained.  Check all the queues and counters.
391 		 */
392 		if (drain_all) {
393 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
394 			drain |= !list_empty(&q->queue_head);
395 			for (i = 0; i < 2; i++) {
396 				drain |= q->nr_rqs[i];
397 				drain |= q->in_flight[i];
398 				if (fq)
399 				    drain |= !list_empty(&fq->flush_queue[i]);
400 			}
401 		}
402 
403 		if (!drain)
404 			break;
405 
406 		spin_unlock_irq(q->queue_lock);
407 
408 		msleep(10);
409 
410 		spin_lock_irq(q->queue_lock);
411 	}
412 
413 	/*
414 	 * With queue marked dead, any woken up waiter will fail the
415 	 * allocation path, so the wakeup chaining is lost and we're
416 	 * left with hung waiters. We need to wake up those waiters.
417 	 */
418 	if (q->request_fn) {
419 		struct request_list *rl;
420 
421 		blk_queue_for_each_rl(rl, q)
422 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
423 				wake_up_all(&rl->wait[i]);
424 	}
425 }
426 
427 /**
428  * blk_queue_bypass_start - enter queue bypass mode
429  * @q: queue of interest
430  *
431  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
432  * function makes @q enter bypass mode and drains all requests which were
433  * throttled or issued before.  On return, it's guaranteed that no request
434  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
435  * inside queue or RCU read lock.
436  */
437 void blk_queue_bypass_start(struct request_queue *q)
438 {
439 	spin_lock_irq(q->queue_lock);
440 	q->bypass_depth++;
441 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
442 	spin_unlock_irq(q->queue_lock);
443 
444 	/*
445 	 * Queues start drained.  Skip actual draining till init is
446 	 * complete.  This avoids lenghty delays during queue init which
447 	 * can happen many times during boot.
448 	 */
449 	if (blk_queue_init_done(q)) {
450 		spin_lock_irq(q->queue_lock);
451 		__blk_drain_queue(q, false);
452 		spin_unlock_irq(q->queue_lock);
453 
454 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
455 		synchronize_rcu();
456 	}
457 }
458 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
459 
460 /**
461  * blk_queue_bypass_end - leave queue bypass mode
462  * @q: queue of interest
463  *
464  * Leave bypass mode and restore the normal queueing behavior.
465  */
466 void blk_queue_bypass_end(struct request_queue *q)
467 {
468 	spin_lock_irq(q->queue_lock);
469 	if (!--q->bypass_depth)
470 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
471 	WARN_ON_ONCE(q->bypass_depth < 0);
472 	spin_unlock_irq(q->queue_lock);
473 }
474 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
475 
476 void blk_set_queue_dying(struct request_queue *q)
477 {
478 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
479 
480 	if (q->mq_ops)
481 		blk_mq_wake_waiters(q);
482 	else {
483 		struct request_list *rl;
484 
485 		blk_queue_for_each_rl(rl, q) {
486 			if (rl->rq_pool) {
487 				wake_up(&rl->wait[BLK_RW_SYNC]);
488 				wake_up(&rl->wait[BLK_RW_ASYNC]);
489 			}
490 		}
491 	}
492 }
493 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
494 
495 /**
496  * blk_cleanup_queue - shutdown a request queue
497  * @q: request queue to shutdown
498  *
499  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
500  * put it.  All future requests will be failed immediately with -ENODEV.
501  */
502 void blk_cleanup_queue(struct request_queue *q)
503 {
504 	spinlock_t *lock = q->queue_lock;
505 
506 	/* mark @q DYING, no new request or merges will be allowed afterwards */
507 	mutex_lock(&q->sysfs_lock);
508 	blk_set_queue_dying(q);
509 	spin_lock_irq(lock);
510 
511 	/*
512 	 * A dying queue is permanently in bypass mode till released.  Note
513 	 * that, unlike blk_queue_bypass_start(), we aren't performing
514 	 * synchronize_rcu() after entering bypass mode to avoid the delay
515 	 * as some drivers create and destroy a lot of queues while
516 	 * probing.  This is still safe because blk_release_queue() will be
517 	 * called only after the queue refcnt drops to zero and nothing,
518 	 * RCU or not, would be traversing the queue by then.
519 	 */
520 	q->bypass_depth++;
521 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
522 
523 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
524 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
525 	queue_flag_set(QUEUE_FLAG_DYING, q);
526 	spin_unlock_irq(lock);
527 	mutex_unlock(&q->sysfs_lock);
528 
529 	/*
530 	 * Drain all requests queued before DYING marking. Set DEAD flag to
531 	 * prevent that q->request_fn() gets invoked after draining finished.
532 	 */
533 	if (q->mq_ops) {
534 		blk_mq_freeze_queue(q);
535 		spin_lock_irq(lock);
536 	} else {
537 		spin_lock_irq(lock);
538 		__blk_drain_queue(q, true);
539 	}
540 	queue_flag_set(QUEUE_FLAG_DEAD, q);
541 	spin_unlock_irq(lock);
542 
543 	/* @q won't process any more request, flush async actions */
544 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
545 	blk_sync_queue(q);
546 
547 	if (q->mq_ops)
548 		blk_mq_free_queue(q);
549 
550 	spin_lock_irq(lock);
551 	if (q->queue_lock != &q->__queue_lock)
552 		q->queue_lock = &q->__queue_lock;
553 	spin_unlock_irq(lock);
554 
555 	/* @q is and will stay empty, shutdown and put */
556 	blk_put_queue(q);
557 }
558 EXPORT_SYMBOL(blk_cleanup_queue);
559 
560 int blk_init_rl(struct request_list *rl, struct request_queue *q,
561 		gfp_t gfp_mask)
562 {
563 	if (unlikely(rl->rq_pool))
564 		return 0;
565 
566 	rl->q = q;
567 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
568 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
569 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
570 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
571 
572 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
573 					  mempool_free_slab, request_cachep,
574 					  gfp_mask, q->node);
575 	if (!rl->rq_pool)
576 		return -ENOMEM;
577 
578 	return 0;
579 }
580 
581 void blk_exit_rl(struct request_list *rl)
582 {
583 	if (rl->rq_pool)
584 		mempool_destroy(rl->rq_pool);
585 }
586 
587 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
588 {
589 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
590 }
591 EXPORT_SYMBOL(blk_alloc_queue);
592 
593 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
594 {
595 	struct request_queue *q;
596 	int err;
597 
598 	q = kmem_cache_alloc_node(blk_requestq_cachep,
599 				gfp_mask | __GFP_ZERO, node_id);
600 	if (!q)
601 		return NULL;
602 
603 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
604 	if (q->id < 0)
605 		goto fail_q;
606 
607 	q->backing_dev_info.ra_pages =
608 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
609 	q->backing_dev_info.state = 0;
610 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
611 	q->backing_dev_info.name = "block";
612 	q->node = node_id;
613 
614 	err = bdi_init(&q->backing_dev_info);
615 	if (err)
616 		goto fail_id;
617 
618 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
619 		    laptop_mode_timer_fn, (unsigned long) q);
620 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
621 	INIT_LIST_HEAD(&q->queue_head);
622 	INIT_LIST_HEAD(&q->timeout_list);
623 	INIT_LIST_HEAD(&q->icq_list);
624 #ifdef CONFIG_BLK_CGROUP
625 	INIT_LIST_HEAD(&q->blkg_list);
626 #endif
627 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
628 
629 	kobject_init(&q->kobj, &blk_queue_ktype);
630 
631 	mutex_init(&q->sysfs_lock);
632 	spin_lock_init(&q->__queue_lock);
633 
634 	/*
635 	 * By default initialize queue_lock to internal lock and driver can
636 	 * override it later if need be.
637 	 */
638 	q->queue_lock = &q->__queue_lock;
639 
640 	/*
641 	 * A queue starts its life with bypass turned on to avoid
642 	 * unnecessary bypass on/off overhead and nasty surprises during
643 	 * init.  The initial bypass will be finished when the queue is
644 	 * registered by blk_register_queue().
645 	 */
646 	q->bypass_depth = 1;
647 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
648 
649 	init_waitqueue_head(&q->mq_freeze_wq);
650 
651 	if (blkcg_init_queue(q))
652 		goto fail_bdi;
653 
654 	return q;
655 
656 fail_bdi:
657 	bdi_destroy(&q->backing_dev_info);
658 fail_id:
659 	ida_simple_remove(&blk_queue_ida, q->id);
660 fail_q:
661 	kmem_cache_free(blk_requestq_cachep, q);
662 	return NULL;
663 }
664 EXPORT_SYMBOL(blk_alloc_queue_node);
665 
666 /**
667  * blk_init_queue  - prepare a request queue for use with a block device
668  * @rfn:  The function to be called to process requests that have been
669  *        placed on the queue.
670  * @lock: Request queue spin lock
671  *
672  * Description:
673  *    If a block device wishes to use the standard request handling procedures,
674  *    which sorts requests and coalesces adjacent requests, then it must
675  *    call blk_init_queue().  The function @rfn will be called when there
676  *    are requests on the queue that need to be processed.  If the device
677  *    supports plugging, then @rfn may not be called immediately when requests
678  *    are available on the queue, but may be called at some time later instead.
679  *    Plugged queues are generally unplugged when a buffer belonging to one
680  *    of the requests on the queue is needed, or due to memory pressure.
681  *
682  *    @rfn is not required, or even expected, to remove all requests off the
683  *    queue, but only as many as it can handle at a time.  If it does leave
684  *    requests on the queue, it is responsible for arranging that the requests
685  *    get dealt with eventually.
686  *
687  *    The queue spin lock must be held while manipulating the requests on the
688  *    request queue; this lock will be taken also from interrupt context, so irq
689  *    disabling is needed for it.
690  *
691  *    Function returns a pointer to the initialized request queue, or %NULL if
692  *    it didn't succeed.
693  *
694  * Note:
695  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
696  *    when the block device is deactivated (such as at module unload).
697  **/
698 
699 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
700 {
701 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
702 }
703 EXPORT_SYMBOL(blk_init_queue);
704 
705 struct request_queue *
706 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
707 {
708 	struct request_queue *uninit_q, *q;
709 
710 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
711 	if (!uninit_q)
712 		return NULL;
713 
714 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
715 	if (!q)
716 		blk_cleanup_queue(uninit_q);
717 
718 	return q;
719 }
720 EXPORT_SYMBOL(blk_init_queue_node);
721 
722 struct request_queue *
723 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
724 			 spinlock_t *lock)
725 {
726 	if (!q)
727 		return NULL;
728 
729 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
730 	if (!q->fq)
731 		return NULL;
732 
733 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
734 		goto fail;
735 
736 	q->request_fn		= rfn;
737 	q->prep_rq_fn		= NULL;
738 	q->unprep_rq_fn		= NULL;
739 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
740 
741 	/* Override internal queue lock with supplied lock pointer */
742 	if (lock)
743 		q->queue_lock		= lock;
744 
745 	/*
746 	 * This also sets hw/phys segments, boundary and size
747 	 */
748 	blk_queue_make_request(q, blk_queue_bio);
749 
750 	q->sg_reserved_size = INT_MAX;
751 
752 	/* Protect q->elevator from elevator_change */
753 	mutex_lock(&q->sysfs_lock);
754 
755 	/* init elevator */
756 	if (elevator_init(q, NULL)) {
757 		mutex_unlock(&q->sysfs_lock);
758 		goto fail;
759 	}
760 
761 	mutex_unlock(&q->sysfs_lock);
762 
763 	return q;
764 
765 fail:
766 	blk_free_flush_queue(q->fq);
767 	return NULL;
768 }
769 EXPORT_SYMBOL(blk_init_allocated_queue);
770 
771 bool blk_get_queue(struct request_queue *q)
772 {
773 	if (likely(!blk_queue_dying(q))) {
774 		__blk_get_queue(q);
775 		return true;
776 	}
777 
778 	return false;
779 }
780 EXPORT_SYMBOL(blk_get_queue);
781 
782 static inline void blk_free_request(struct request_list *rl, struct request *rq)
783 {
784 	if (rq->cmd_flags & REQ_ELVPRIV) {
785 		elv_put_request(rl->q, rq);
786 		if (rq->elv.icq)
787 			put_io_context(rq->elv.icq->ioc);
788 	}
789 
790 	mempool_free(rq, rl->rq_pool);
791 }
792 
793 /*
794  * ioc_batching returns true if the ioc is a valid batching request and
795  * should be given priority access to a request.
796  */
797 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
798 {
799 	if (!ioc)
800 		return 0;
801 
802 	/*
803 	 * Make sure the process is able to allocate at least 1 request
804 	 * even if the batch times out, otherwise we could theoretically
805 	 * lose wakeups.
806 	 */
807 	return ioc->nr_batch_requests == q->nr_batching ||
808 		(ioc->nr_batch_requests > 0
809 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
810 }
811 
812 /*
813  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
814  * will cause the process to be a "batcher" on all queues in the system. This
815  * is the behaviour we want though - once it gets a wakeup it should be given
816  * a nice run.
817  */
818 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
819 {
820 	if (!ioc || ioc_batching(q, ioc))
821 		return;
822 
823 	ioc->nr_batch_requests = q->nr_batching;
824 	ioc->last_waited = jiffies;
825 }
826 
827 static void __freed_request(struct request_list *rl, int sync)
828 {
829 	struct request_queue *q = rl->q;
830 
831 	/*
832 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
833 	 * blkcg anyway, just use root blkcg state.
834 	 */
835 	if (rl == &q->root_rl &&
836 	    rl->count[sync] < queue_congestion_off_threshold(q))
837 		blk_clear_queue_congested(q, sync);
838 
839 	if (rl->count[sync] + 1 <= q->nr_requests) {
840 		if (waitqueue_active(&rl->wait[sync]))
841 			wake_up(&rl->wait[sync]);
842 
843 		blk_clear_rl_full(rl, sync);
844 	}
845 }
846 
847 /*
848  * A request has just been released.  Account for it, update the full and
849  * congestion status, wake up any waiters.   Called under q->queue_lock.
850  */
851 static void freed_request(struct request_list *rl, unsigned int flags)
852 {
853 	struct request_queue *q = rl->q;
854 	int sync = rw_is_sync(flags);
855 
856 	q->nr_rqs[sync]--;
857 	rl->count[sync]--;
858 	if (flags & REQ_ELVPRIV)
859 		q->nr_rqs_elvpriv--;
860 
861 	__freed_request(rl, sync);
862 
863 	if (unlikely(rl->starved[sync ^ 1]))
864 		__freed_request(rl, sync ^ 1);
865 }
866 
867 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
868 {
869 	struct request_list *rl;
870 
871 	spin_lock_irq(q->queue_lock);
872 	q->nr_requests = nr;
873 	blk_queue_congestion_threshold(q);
874 
875 	/* congestion isn't cgroup aware and follows root blkcg for now */
876 	rl = &q->root_rl;
877 
878 	if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
879 		blk_set_queue_congested(q, BLK_RW_SYNC);
880 	else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
881 		blk_clear_queue_congested(q, BLK_RW_SYNC);
882 
883 	if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
884 		blk_set_queue_congested(q, BLK_RW_ASYNC);
885 	else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
886 		blk_clear_queue_congested(q, BLK_RW_ASYNC);
887 
888 	blk_queue_for_each_rl(rl, q) {
889 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
890 			blk_set_rl_full(rl, BLK_RW_SYNC);
891 		} else {
892 			blk_clear_rl_full(rl, BLK_RW_SYNC);
893 			wake_up(&rl->wait[BLK_RW_SYNC]);
894 		}
895 
896 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
897 			blk_set_rl_full(rl, BLK_RW_ASYNC);
898 		} else {
899 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
900 			wake_up(&rl->wait[BLK_RW_ASYNC]);
901 		}
902 	}
903 
904 	spin_unlock_irq(q->queue_lock);
905 	return 0;
906 }
907 
908 /*
909  * Determine if elevator data should be initialized when allocating the
910  * request associated with @bio.
911  */
912 static bool blk_rq_should_init_elevator(struct bio *bio)
913 {
914 	if (!bio)
915 		return true;
916 
917 	/*
918 	 * Flush requests do not use the elevator so skip initialization.
919 	 * This allows a request to share the flush and elevator data.
920 	 */
921 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
922 		return false;
923 
924 	return true;
925 }
926 
927 /**
928  * rq_ioc - determine io_context for request allocation
929  * @bio: request being allocated is for this bio (can be %NULL)
930  *
931  * Determine io_context to use for request allocation for @bio.  May return
932  * %NULL if %current->io_context doesn't exist.
933  */
934 static struct io_context *rq_ioc(struct bio *bio)
935 {
936 #ifdef CONFIG_BLK_CGROUP
937 	if (bio && bio->bi_ioc)
938 		return bio->bi_ioc;
939 #endif
940 	return current->io_context;
941 }
942 
943 /**
944  * __get_request - get a free request
945  * @rl: request list to allocate from
946  * @rw_flags: RW and SYNC flags
947  * @bio: bio to allocate request for (can be %NULL)
948  * @gfp_mask: allocation mask
949  *
950  * Get a free request from @q.  This function may fail under memory
951  * pressure or if @q is dead.
952  *
953  * Must be called with @q->queue_lock held and,
954  * Returns ERR_PTR on failure, with @q->queue_lock held.
955  * Returns request pointer on success, with @q->queue_lock *not held*.
956  */
957 static struct request *__get_request(struct request_list *rl, int rw_flags,
958 				     struct bio *bio, gfp_t gfp_mask)
959 {
960 	struct request_queue *q = rl->q;
961 	struct request *rq;
962 	struct elevator_type *et = q->elevator->type;
963 	struct io_context *ioc = rq_ioc(bio);
964 	struct io_cq *icq = NULL;
965 	const bool is_sync = rw_is_sync(rw_flags) != 0;
966 	int may_queue;
967 
968 	if (unlikely(blk_queue_dying(q)))
969 		return ERR_PTR(-ENODEV);
970 
971 	may_queue = elv_may_queue(q, rw_flags);
972 	if (may_queue == ELV_MQUEUE_NO)
973 		goto rq_starved;
974 
975 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
976 		if (rl->count[is_sync]+1 >= q->nr_requests) {
977 			/*
978 			 * The queue will fill after this allocation, so set
979 			 * it as full, and mark this process as "batching".
980 			 * This process will be allowed to complete a batch of
981 			 * requests, others will be blocked.
982 			 */
983 			if (!blk_rl_full(rl, is_sync)) {
984 				ioc_set_batching(q, ioc);
985 				blk_set_rl_full(rl, is_sync);
986 			} else {
987 				if (may_queue != ELV_MQUEUE_MUST
988 						&& !ioc_batching(q, ioc)) {
989 					/*
990 					 * The queue is full and the allocating
991 					 * process is not a "batcher", and not
992 					 * exempted by the IO scheduler
993 					 */
994 					return ERR_PTR(-ENOMEM);
995 				}
996 			}
997 		}
998 		/*
999 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
1000 		 * root blkcg anyway, just use root blkcg state.
1001 		 */
1002 		if (rl == &q->root_rl)
1003 			blk_set_queue_congested(q, is_sync);
1004 	}
1005 
1006 	/*
1007 	 * Only allow batching queuers to allocate up to 50% over the defined
1008 	 * limit of requests, otherwise we could have thousands of requests
1009 	 * allocated with any setting of ->nr_requests
1010 	 */
1011 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1012 		return ERR_PTR(-ENOMEM);
1013 
1014 	q->nr_rqs[is_sync]++;
1015 	rl->count[is_sync]++;
1016 	rl->starved[is_sync] = 0;
1017 
1018 	/*
1019 	 * Decide whether the new request will be managed by elevator.  If
1020 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
1021 	 * prevent the current elevator from being destroyed until the new
1022 	 * request is freed.  This guarantees icq's won't be destroyed and
1023 	 * makes creating new ones safe.
1024 	 *
1025 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1026 	 * it will be created after releasing queue_lock.
1027 	 */
1028 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1029 		rw_flags |= REQ_ELVPRIV;
1030 		q->nr_rqs_elvpriv++;
1031 		if (et->icq_cache && ioc)
1032 			icq = ioc_lookup_icq(ioc, q);
1033 	}
1034 
1035 	if (blk_queue_io_stat(q))
1036 		rw_flags |= REQ_IO_STAT;
1037 	spin_unlock_irq(q->queue_lock);
1038 
1039 	/* allocate and init request */
1040 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1041 	if (!rq)
1042 		goto fail_alloc;
1043 
1044 	blk_rq_init(q, rq);
1045 	blk_rq_set_rl(rq, rl);
1046 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
1047 
1048 	/* init elvpriv */
1049 	if (rw_flags & REQ_ELVPRIV) {
1050 		if (unlikely(et->icq_cache && !icq)) {
1051 			if (ioc)
1052 				icq = ioc_create_icq(ioc, q, gfp_mask);
1053 			if (!icq)
1054 				goto fail_elvpriv;
1055 		}
1056 
1057 		rq->elv.icq = icq;
1058 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1059 			goto fail_elvpriv;
1060 
1061 		/* @rq->elv.icq holds io_context until @rq is freed */
1062 		if (icq)
1063 			get_io_context(icq->ioc);
1064 	}
1065 out:
1066 	/*
1067 	 * ioc may be NULL here, and ioc_batching will be false. That's
1068 	 * OK, if the queue is under the request limit then requests need
1069 	 * not count toward the nr_batch_requests limit. There will always
1070 	 * be some limit enforced by BLK_BATCH_TIME.
1071 	 */
1072 	if (ioc_batching(q, ioc))
1073 		ioc->nr_batch_requests--;
1074 
1075 	trace_block_getrq(q, bio, rw_flags & 1);
1076 	return rq;
1077 
1078 fail_elvpriv:
1079 	/*
1080 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1081 	 * and may fail indefinitely under memory pressure and thus
1082 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1083 	 * disturb iosched and blkcg but weird is bettern than dead.
1084 	 */
1085 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1086 			   __func__, dev_name(q->backing_dev_info.dev));
1087 
1088 	rq->cmd_flags &= ~REQ_ELVPRIV;
1089 	rq->elv.icq = NULL;
1090 
1091 	spin_lock_irq(q->queue_lock);
1092 	q->nr_rqs_elvpriv--;
1093 	spin_unlock_irq(q->queue_lock);
1094 	goto out;
1095 
1096 fail_alloc:
1097 	/*
1098 	 * Allocation failed presumably due to memory. Undo anything we
1099 	 * might have messed up.
1100 	 *
1101 	 * Allocating task should really be put onto the front of the wait
1102 	 * queue, but this is pretty rare.
1103 	 */
1104 	spin_lock_irq(q->queue_lock);
1105 	freed_request(rl, rw_flags);
1106 
1107 	/*
1108 	 * in the very unlikely event that allocation failed and no
1109 	 * requests for this direction was pending, mark us starved so that
1110 	 * freeing of a request in the other direction will notice
1111 	 * us. another possible fix would be to split the rq mempool into
1112 	 * READ and WRITE
1113 	 */
1114 rq_starved:
1115 	if (unlikely(rl->count[is_sync] == 0))
1116 		rl->starved[is_sync] = 1;
1117 	return ERR_PTR(-ENOMEM);
1118 }
1119 
1120 /**
1121  * get_request - get a free request
1122  * @q: request_queue to allocate request from
1123  * @rw_flags: RW and SYNC flags
1124  * @bio: bio to allocate request for (can be %NULL)
1125  * @gfp_mask: allocation mask
1126  *
1127  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1128  * function keeps retrying under memory pressure and fails iff @q is dead.
1129  *
1130  * Must be called with @q->queue_lock held and,
1131  * Returns ERR_PTR on failure, with @q->queue_lock held.
1132  * Returns request pointer on success, with @q->queue_lock *not held*.
1133  */
1134 static struct request *get_request(struct request_queue *q, int rw_flags,
1135 				   struct bio *bio, gfp_t gfp_mask)
1136 {
1137 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1138 	DEFINE_WAIT(wait);
1139 	struct request_list *rl;
1140 	struct request *rq;
1141 
1142 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1143 retry:
1144 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1145 	if (!IS_ERR(rq))
1146 		return rq;
1147 
1148 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1149 		blk_put_rl(rl);
1150 		return rq;
1151 	}
1152 
1153 	/* wait on @rl and retry */
1154 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1155 				  TASK_UNINTERRUPTIBLE);
1156 
1157 	trace_block_sleeprq(q, bio, rw_flags & 1);
1158 
1159 	spin_unlock_irq(q->queue_lock);
1160 	io_schedule();
1161 
1162 	/*
1163 	 * After sleeping, we become a "batching" process and will be able
1164 	 * to allocate at least one request, and up to a big batch of them
1165 	 * for a small period time.  See ioc_batching, ioc_set_batching
1166 	 */
1167 	ioc_set_batching(q, current->io_context);
1168 
1169 	spin_lock_irq(q->queue_lock);
1170 	finish_wait(&rl->wait[is_sync], &wait);
1171 
1172 	goto retry;
1173 }
1174 
1175 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1176 		gfp_t gfp_mask)
1177 {
1178 	struct request *rq;
1179 
1180 	BUG_ON(rw != READ && rw != WRITE);
1181 
1182 	/* create ioc upfront */
1183 	create_io_context(gfp_mask, q->node);
1184 
1185 	spin_lock_irq(q->queue_lock);
1186 	rq = get_request(q, rw, NULL, gfp_mask);
1187 	if (IS_ERR(rq))
1188 		spin_unlock_irq(q->queue_lock);
1189 	/* q->queue_lock is unlocked at this point */
1190 
1191 	return rq;
1192 }
1193 
1194 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1195 {
1196 	if (q->mq_ops)
1197 		return blk_mq_alloc_request(q, rw, gfp_mask, false);
1198 	else
1199 		return blk_old_get_request(q, rw, gfp_mask);
1200 }
1201 EXPORT_SYMBOL(blk_get_request);
1202 
1203 /**
1204  * blk_make_request - given a bio, allocate a corresponding struct request.
1205  * @q: target request queue
1206  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1207  *        It may be a chained-bio properly constructed by block/bio layer.
1208  * @gfp_mask: gfp flags to be used for memory allocation
1209  *
1210  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1211  * type commands. Where the struct request needs to be farther initialized by
1212  * the caller. It is passed a &struct bio, which describes the memory info of
1213  * the I/O transfer.
1214  *
1215  * The caller of blk_make_request must make sure that bi_io_vec
1216  * are set to describe the memory buffers. That bio_data_dir() will return
1217  * the needed direction of the request. (And all bio's in the passed bio-chain
1218  * are properly set accordingly)
1219  *
1220  * If called under none-sleepable conditions, mapped bio buffers must not
1221  * need bouncing, by calling the appropriate masked or flagged allocator,
1222  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1223  * BUG.
1224  *
1225  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1226  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1227  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1228  * completion of a bio that hasn't been submitted yet, thus resulting in a
1229  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1230  * of bio_alloc(), as that avoids the mempool deadlock.
1231  * If possible a big IO should be split into smaller parts when allocation
1232  * fails. Partial allocation should not be an error, or you risk a live-lock.
1233  */
1234 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1235 				 gfp_t gfp_mask)
1236 {
1237 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1238 
1239 	if (IS_ERR(rq))
1240 		return rq;
1241 
1242 	blk_rq_set_block_pc(rq);
1243 
1244 	for_each_bio(bio) {
1245 		struct bio *bounce_bio = bio;
1246 		int ret;
1247 
1248 		blk_queue_bounce(q, &bounce_bio);
1249 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1250 		if (unlikely(ret)) {
1251 			blk_put_request(rq);
1252 			return ERR_PTR(ret);
1253 		}
1254 	}
1255 
1256 	return rq;
1257 }
1258 EXPORT_SYMBOL(blk_make_request);
1259 
1260 /**
1261  * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1262  * @rq:		request to be initialized
1263  *
1264  */
1265 void blk_rq_set_block_pc(struct request *rq)
1266 {
1267 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1268 	rq->__data_len = 0;
1269 	rq->__sector = (sector_t) -1;
1270 	rq->bio = rq->biotail = NULL;
1271 	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1272 }
1273 EXPORT_SYMBOL(blk_rq_set_block_pc);
1274 
1275 /**
1276  * blk_requeue_request - put a request back on queue
1277  * @q:		request queue where request should be inserted
1278  * @rq:		request to be inserted
1279  *
1280  * Description:
1281  *    Drivers often keep queueing requests until the hardware cannot accept
1282  *    more, when that condition happens we need to put the request back
1283  *    on the queue. Must be called with queue lock held.
1284  */
1285 void blk_requeue_request(struct request_queue *q, struct request *rq)
1286 {
1287 	blk_delete_timer(rq);
1288 	blk_clear_rq_complete(rq);
1289 	trace_block_rq_requeue(q, rq);
1290 
1291 	if (rq->cmd_flags & REQ_QUEUED)
1292 		blk_queue_end_tag(q, rq);
1293 
1294 	BUG_ON(blk_queued_rq(rq));
1295 
1296 	elv_requeue_request(q, rq);
1297 }
1298 EXPORT_SYMBOL(blk_requeue_request);
1299 
1300 static void add_acct_request(struct request_queue *q, struct request *rq,
1301 			     int where)
1302 {
1303 	blk_account_io_start(rq, true);
1304 	__elv_add_request(q, rq, where);
1305 }
1306 
1307 static void part_round_stats_single(int cpu, struct hd_struct *part,
1308 				    unsigned long now)
1309 {
1310 	int inflight;
1311 
1312 	if (now == part->stamp)
1313 		return;
1314 
1315 	inflight = part_in_flight(part);
1316 	if (inflight) {
1317 		__part_stat_add(cpu, part, time_in_queue,
1318 				inflight * (now - part->stamp));
1319 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1320 	}
1321 	part->stamp = now;
1322 }
1323 
1324 /**
1325  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1326  * @cpu: cpu number for stats access
1327  * @part: target partition
1328  *
1329  * The average IO queue length and utilisation statistics are maintained
1330  * by observing the current state of the queue length and the amount of
1331  * time it has been in this state for.
1332  *
1333  * Normally, that accounting is done on IO completion, but that can result
1334  * in more than a second's worth of IO being accounted for within any one
1335  * second, leading to >100% utilisation.  To deal with that, we call this
1336  * function to do a round-off before returning the results when reading
1337  * /proc/diskstats.  This accounts immediately for all queue usage up to
1338  * the current jiffies and restarts the counters again.
1339  */
1340 void part_round_stats(int cpu, struct hd_struct *part)
1341 {
1342 	unsigned long now = jiffies;
1343 
1344 	if (part->partno)
1345 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1346 	part_round_stats_single(cpu, part, now);
1347 }
1348 EXPORT_SYMBOL_GPL(part_round_stats);
1349 
1350 #ifdef CONFIG_PM
1351 static void blk_pm_put_request(struct request *rq)
1352 {
1353 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1354 		pm_runtime_mark_last_busy(rq->q->dev);
1355 }
1356 #else
1357 static inline void blk_pm_put_request(struct request *rq) {}
1358 #endif
1359 
1360 /*
1361  * queue lock must be held
1362  */
1363 void __blk_put_request(struct request_queue *q, struct request *req)
1364 {
1365 	if (unlikely(!q))
1366 		return;
1367 
1368 	if (q->mq_ops) {
1369 		blk_mq_free_request(req);
1370 		return;
1371 	}
1372 
1373 	blk_pm_put_request(req);
1374 
1375 	elv_completed_request(q, req);
1376 
1377 	/* this is a bio leak */
1378 	WARN_ON(req->bio != NULL);
1379 
1380 	/*
1381 	 * Request may not have originated from ll_rw_blk. if not,
1382 	 * it didn't come out of our reserved rq pools
1383 	 */
1384 	if (req->cmd_flags & REQ_ALLOCED) {
1385 		unsigned int flags = req->cmd_flags;
1386 		struct request_list *rl = blk_rq_rl(req);
1387 
1388 		BUG_ON(!list_empty(&req->queuelist));
1389 		BUG_ON(ELV_ON_HASH(req));
1390 
1391 		blk_free_request(rl, req);
1392 		freed_request(rl, flags);
1393 		blk_put_rl(rl);
1394 	}
1395 }
1396 EXPORT_SYMBOL_GPL(__blk_put_request);
1397 
1398 void blk_put_request(struct request *req)
1399 {
1400 	struct request_queue *q = req->q;
1401 
1402 	if (q->mq_ops)
1403 		blk_mq_free_request(req);
1404 	else {
1405 		unsigned long flags;
1406 
1407 		spin_lock_irqsave(q->queue_lock, flags);
1408 		__blk_put_request(q, req);
1409 		spin_unlock_irqrestore(q->queue_lock, flags);
1410 	}
1411 }
1412 EXPORT_SYMBOL(blk_put_request);
1413 
1414 /**
1415  * blk_add_request_payload - add a payload to a request
1416  * @rq: request to update
1417  * @page: page backing the payload
1418  * @len: length of the payload.
1419  *
1420  * This allows to later add a payload to an already submitted request by
1421  * a block driver.  The driver needs to take care of freeing the payload
1422  * itself.
1423  *
1424  * Note that this is a quite horrible hack and nothing but handling of
1425  * discard requests should ever use it.
1426  */
1427 void blk_add_request_payload(struct request *rq, struct page *page,
1428 		unsigned int len)
1429 {
1430 	struct bio *bio = rq->bio;
1431 
1432 	bio->bi_io_vec->bv_page = page;
1433 	bio->bi_io_vec->bv_offset = 0;
1434 	bio->bi_io_vec->bv_len = len;
1435 
1436 	bio->bi_iter.bi_size = len;
1437 	bio->bi_vcnt = 1;
1438 	bio->bi_phys_segments = 1;
1439 
1440 	rq->__data_len = rq->resid_len = len;
1441 	rq->nr_phys_segments = 1;
1442 }
1443 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1444 
1445 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1446 			    struct bio *bio)
1447 {
1448 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1449 
1450 	if (!ll_back_merge_fn(q, req, bio))
1451 		return false;
1452 
1453 	trace_block_bio_backmerge(q, req, bio);
1454 
1455 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1456 		blk_rq_set_mixed_merge(req);
1457 
1458 	req->biotail->bi_next = bio;
1459 	req->biotail = bio;
1460 	req->__data_len += bio->bi_iter.bi_size;
1461 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1462 
1463 	blk_account_io_start(req, false);
1464 	return true;
1465 }
1466 
1467 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1468 			     struct bio *bio)
1469 {
1470 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1471 
1472 	if (!ll_front_merge_fn(q, req, bio))
1473 		return false;
1474 
1475 	trace_block_bio_frontmerge(q, req, bio);
1476 
1477 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1478 		blk_rq_set_mixed_merge(req);
1479 
1480 	bio->bi_next = req->bio;
1481 	req->bio = bio;
1482 
1483 	req->__sector = bio->bi_iter.bi_sector;
1484 	req->__data_len += bio->bi_iter.bi_size;
1485 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1486 
1487 	blk_account_io_start(req, false);
1488 	return true;
1489 }
1490 
1491 /**
1492  * blk_attempt_plug_merge - try to merge with %current's plugged list
1493  * @q: request_queue new bio is being queued at
1494  * @bio: new bio being queued
1495  * @request_count: out parameter for number of traversed plugged requests
1496  *
1497  * Determine whether @bio being queued on @q can be merged with a request
1498  * on %current's plugged list.  Returns %true if merge was successful,
1499  * otherwise %false.
1500  *
1501  * Plugging coalesces IOs from the same issuer for the same purpose without
1502  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1503  * than scheduling, and the request, while may have elvpriv data, is not
1504  * added on the elevator at this point.  In addition, we don't have
1505  * reliable access to the elevator outside queue lock.  Only check basic
1506  * merging parameters without querying the elevator.
1507  *
1508  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1509  */
1510 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1511 			    unsigned int *request_count)
1512 {
1513 	struct blk_plug *plug;
1514 	struct request *rq;
1515 	bool ret = false;
1516 	struct list_head *plug_list;
1517 
1518 	plug = current->plug;
1519 	if (!plug)
1520 		goto out;
1521 	*request_count = 0;
1522 
1523 	if (q->mq_ops)
1524 		plug_list = &plug->mq_list;
1525 	else
1526 		plug_list = &plug->list;
1527 
1528 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1529 		int el_ret;
1530 
1531 		if (rq->q == q)
1532 			(*request_count)++;
1533 
1534 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1535 			continue;
1536 
1537 		el_ret = blk_try_merge(rq, bio);
1538 		if (el_ret == ELEVATOR_BACK_MERGE) {
1539 			ret = bio_attempt_back_merge(q, rq, bio);
1540 			if (ret)
1541 				break;
1542 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1543 			ret = bio_attempt_front_merge(q, rq, bio);
1544 			if (ret)
1545 				break;
1546 		}
1547 	}
1548 out:
1549 	return ret;
1550 }
1551 
1552 void init_request_from_bio(struct request *req, struct bio *bio)
1553 {
1554 	req->cmd_type = REQ_TYPE_FS;
1555 
1556 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1557 	if (bio->bi_rw & REQ_RAHEAD)
1558 		req->cmd_flags |= REQ_FAILFAST_MASK;
1559 
1560 	req->errors = 0;
1561 	req->__sector = bio->bi_iter.bi_sector;
1562 	req->ioprio = bio_prio(bio);
1563 	blk_rq_bio_prep(req->q, req, bio);
1564 }
1565 
1566 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1567 {
1568 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1569 	struct blk_plug *plug;
1570 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1571 	struct request *req;
1572 	unsigned int request_count = 0;
1573 
1574 	/*
1575 	 * low level driver can indicate that it wants pages above a
1576 	 * certain limit bounced to low memory (ie for highmem, or even
1577 	 * ISA dma in theory)
1578 	 */
1579 	blk_queue_bounce(q, &bio);
1580 
1581 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1582 		bio_endio(bio, -EIO);
1583 		return;
1584 	}
1585 
1586 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1587 		spin_lock_irq(q->queue_lock);
1588 		where = ELEVATOR_INSERT_FLUSH;
1589 		goto get_rq;
1590 	}
1591 
1592 	/*
1593 	 * Check if we can merge with the plugged list before grabbing
1594 	 * any locks.
1595 	 */
1596 	if (!blk_queue_nomerges(q) &&
1597 	    blk_attempt_plug_merge(q, bio, &request_count))
1598 		return;
1599 
1600 	spin_lock_irq(q->queue_lock);
1601 
1602 	el_ret = elv_merge(q, &req, bio);
1603 	if (el_ret == ELEVATOR_BACK_MERGE) {
1604 		if (bio_attempt_back_merge(q, req, bio)) {
1605 			elv_bio_merged(q, req, bio);
1606 			if (!attempt_back_merge(q, req))
1607 				elv_merged_request(q, req, el_ret);
1608 			goto out_unlock;
1609 		}
1610 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1611 		if (bio_attempt_front_merge(q, req, bio)) {
1612 			elv_bio_merged(q, req, bio);
1613 			if (!attempt_front_merge(q, req))
1614 				elv_merged_request(q, req, el_ret);
1615 			goto out_unlock;
1616 		}
1617 	}
1618 
1619 get_rq:
1620 	/*
1621 	 * This sync check and mask will be re-done in init_request_from_bio(),
1622 	 * but we need to set it earlier to expose the sync flag to the
1623 	 * rq allocator and io schedulers.
1624 	 */
1625 	rw_flags = bio_data_dir(bio);
1626 	if (sync)
1627 		rw_flags |= REQ_SYNC;
1628 
1629 	/*
1630 	 * Grab a free request. This is might sleep but can not fail.
1631 	 * Returns with the queue unlocked.
1632 	 */
1633 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1634 	if (IS_ERR(req)) {
1635 		bio_endio(bio, PTR_ERR(req));	/* @q is dead */
1636 		goto out_unlock;
1637 	}
1638 
1639 	/*
1640 	 * After dropping the lock and possibly sleeping here, our request
1641 	 * may now be mergeable after it had proven unmergeable (above).
1642 	 * We don't worry about that case for efficiency. It won't happen
1643 	 * often, and the elevators are able to handle it.
1644 	 */
1645 	init_request_from_bio(req, bio);
1646 
1647 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1648 		req->cpu = raw_smp_processor_id();
1649 
1650 	plug = current->plug;
1651 	if (plug) {
1652 		/*
1653 		 * If this is the first request added after a plug, fire
1654 		 * of a plug trace.
1655 		 */
1656 		if (!request_count)
1657 			trace_block_plug(q);
1658 		else {
1659 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1660 				blk_flush_plug_list(plug, false);
1661 				trace_block_plug(q);
1662 			}
1663 		}
1664 		list_add_tail(&req->queuelist, &plug->list);
1665 		blk_account_io_start(req, true);
1666 	} else {
1667 		spin_lock_irq(q->queue_lock);
1668 		add_acct_request(q, req, where);
1669 		__blk_run_queue(q);
1670 out_unlock:
1671 		spin_unlock_irq(q->queue_lock);
1672 	}
1673 }
1674 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1675 
1676 /*
1677  * If bio->bi_dev is a partition, remap the location
1678  */
1679 static inline void blk_partition_remap(struct bio *bio)
1680 {
1681 	struct block_device *bdev = bio->bi_bdev;
1682 
1683 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1684 		struct hd_struct *p = bdev->bd_part;
1685 
1686 		bio->bi_iter.bi_sector += p->start_sect;
1687 		bio->bi_bdev = bdev->bd_contains;
1688 
1689 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1690 				      bdev->bd_dev,
1691 				      bio->bi_iter.bi_sector - p->start_sect);
1692 	}
1693 }
1694 
1695 static void handle_bad_sector(struct bio *bio)
1696 {
1697 	char b[BDEVNAME_SIZE];
1698 
1699 	printk(KERN_INFO "attempt to access beyond end of device\n");
1700 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1701 			bdevname(bio->bi_bdev, b),
1702 			bio->bi_rw,
1703 			(unsigned long long)bio_end_sector(bio),
1704 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1705 
1706 	set_bit(BIO_EOF, &bio->bi_flags);
1707 }
1708 
1709 #ifdef CONFIG_FAIL_MAKE_REQUEST
1710 
1711 static DECLARE_FAULT_ATTR(fail_make_request);
1712 
1713 static int __init setup_fail_make_request(char *str)
1714 {
1715 	return setup_fault_attr(&fail_make_request, str);
1716 }
1717 __setup("fail_make_request=", setup_fail_make_request);
1718 
1719 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1720 {
1721 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1722 }
1723 
1724 static int __init fail_make_request_debugfs(void)
1725 {
1726 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1727 						NULL, &fail_make_request);
1728 
1729 	return PTR_ERR_OR_ZERO(dir);
1730 }
1731 
1732 late_initcall(fail_make_request_debugfs);
1733 
1734 #else /* CONFIG_FAIL_MAKE_REQUEST */
1735 
1736 static inline bool should_fail_request(struct hd_struct *part,
1737 					unsigned int bytes)
1738 {
1739 	return false;
1740 }
1741 
1742 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1743 
1744 /*
1745  * Check whether this bio extends beyond the end of the device.
1746  */
1747 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1748 {
1749 	sector_t maxsector;
1750 
1751 	if (!nr_sectors)
1752 		return 0;
1753 
1754 	/* Test device or partition size, when known. */
1755 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1756 	if (maxsector) {
1757 		sector_t sector = bio->bi_iter.bi_sector;
1758 
1759 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1760 			/*
1761 			 * This may well happen - the kernel calls bread()
1762 			 * without checking the size of the device, e.g., when
1763 			 * mounting a device.
1764 			 */
1765 			handle_bad_sector(bio);
1766 			return 1;
1767 		}
1768 	}
1769 
1770 	return 0;
1771 }
1772 
1773 static noinline_for_stack bool
1774 generic_make_request_checks(struct bio *bio)
1775 {
1776 	struct request_queue *q;
1777 	int nr_sectors = bio_sectors(bio);
1778 	int err = -EIO;
1779 	char b[BDEVNAME_SIZE];
1780 	struct hd_struct *part;
1781 
1782 	might_sleep();
1783 
1784 	if (bio_check_eod(bio, nr_sectors))
1785 		goto end_io;
1786 
1787 	q = bdev_get_queue(bio->bi_bdev);
1788 	if (unlikely(!q)) {
1789 		printk(KERN_ERR
1790 		       "generic_make_request: Trying to access "
1791 			"nonexistent block-device %s (%Lu)\n",
1792 			bdevname(bio->bi_bdev, b),
1793 			(long long) bio->bi_iter.bi_sector);
1794 		goto end_io;
1795 	}
1796 
1797 	if (likely(bio_is_rw(bio) &&
1798 		   nr_sectors > queue_max_hw_sectors(q))) {
1799 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1800 		       bdevname(bio->bi_bdev, b),
1801 		       bio_sectors(bio),
1802 		       queue_max_hw_sectors(q));
1803 		goto end_io;
1804 	}
1805 
1806 	part = bio->bi_bdev->bd_part;
1807 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1808 	    should_fail_request(&part_to_disk(part)->part0,
1809 				bio->bi_iter.bi_size))
1810 		goto end_io;
1811 
1812 	/*
1813 	 * If this device has partitions, remap block n
1814 	 * of partition p to block n+start(p) of the disk.
1815 	 */
1816 	blk_partition_remap(bio);
1817 
1818 	if (bio_check_eod(bio, nr_sectors))
1819 		goto end_io;
1820 
1821 	/*
1822 	 * Filter flush bio's early so that make_request based
1823 	 * drivers without flush support don't have to worry
1824 	 * about them.
1825 	 */
1826 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1827 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1828 		if (!nr_sectors) {
1829 			err = 0;
1830 			goto end_io;
1831 		}
1832 	}
1833 
1834 	if ((bio->bi_rw & REQ_DISCARD) &&
1835 	    (!blk_queue_discard(q) ||
1836 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1837 		err = -EOPNOTSUPP;
1838 		goto end_io;
1839 	}
1840 
1841 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1842 		err = -EOPNOTSUPP;
1843 		goto end_io;
1844 	}
1845 
1846 	/*
1847 	 * Various block parts want %current->io_context and lazy ioc
1848 	 * allocation ends up trading a lot of pain for a small amount of
1849 	 * memory.  Just allocate it upfront.  This may fail and block
1850 	 * layer knows how to live with it.
1851 	 */
1852 	create_io_context(GFP_ATOMIC, q->node);
1853 
1854 	if (blk_throtl_bio(q, bio))
1855 		return false;	/* throttled, will be resubmitted later */
1856 
1857 	trace_block_bio_queue(q, bio);
1858 	return true;
1859 
1860 end_io:
1861 	bio_endio(bio, err);
1862 	return false;
1863 }
1864 
1865 /**
1866  * generic_make_request - hand a buffer to its device driver for I/O
1867  * @bio:  The bio describing the location in memory and on the device.
1868  *
1869  * generic_make_request() is used to make I/O requests of block
1870  * devices. It is passed a &struct bio, which describes the I/O that needs
1871  * to be done.
1872  *
1873  * generic_make_request() does not return any status.  The
1874  * success/failure status of the request, along with notification of
1875  * completion, is delivered asynchronously through the bio->bi_end_io
1876  * function described (one day) else where.
1877  *
1878  * The caller of generic_make_request must make sure that bi_io_vec
1879  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1880  * set to describe the device address, and the
1881  * bi_end_io and optionally bi_private are set to describe how
1882  * completion notification should be signaled.
1883  *
1884  * generic_make_request and the drivers it calls may use bi_next if this
1885  * bio happens to be merged with someone else, and may resubmit the bio to
1886  * a lower device by calling into generic_make_request recursively, which
1887  * means the bio should NOT be touched after the call to ->make_request_fn.
1888  */
1889 void generic_make_request(struct bio *bio)
1890 {
1891 	struct bio_list bio_list_on_stack;
1892 
1893 	if (!generic_make_request_checks(bio))
1894 		return;
1895 
1896 	/*
1897 	 * We only want one ->make_request_fn to be active at a time, else
1898 	 * stack usage with stacked devices could be a problem.  So use
1899 	 * current->bio_list to keep a list of requests submited by a
1900 	 * make_request_fn function.  current->bio_list is also used as a
1901 	 * flag to say if generic_make_request is currently active in this
1902 	 * task or not.  If it is NULL, then no make_request is active.  If
1903 	 * it is non-NULL, then a make_request is active, and new requests
1904 	 * should be added at the tail
1905 	 */
1906 	if (current->bio_list) {
1907 		bio_list_add(current->bio_list, bio);
1908 		return;
1909 	}
1910 
1911 	/* following loop may be a bit non-obvious, and so deserves some
1912 	 * explanation.
1913 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1914 	 * ensure that) so we have a list with a single bio.
1915 	 * We pretend that we have just taken it off a longer list, so
1916 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1917 	 * thus initialising the bio_list of new bios to be
1918 	 * added.  ->make_request() may indeed add some more bios
1919 	 * through a recursive call to generic_make_request.  If it
1920 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1921 	 * from the top.  In this case we really did just take the bio
1922 	 * of the top of the list (no pretending) and so remove it from
1923 	 * bio_list, and call into ->make_request() again.
1924 	 */
1925 	BUG_ON(bio->bi_next);
1926 	bio_list_init(&bio_list_on_stack);
1927 	current->bio_list = &bio_list_on_stack;
1928 	do {
1929 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1930 
1931 		q->make_request_fn(q, bio);
1932 
1933 		bio = bio_list_pop(current->bio_list);
1934 	} while (bio);
1935 	current->bio_list = NULL; /* deactivate */
1936 }
1937 EXPORT_SYMBOL(generic_make_request);
1938 
1939 /**
1940  * submit_bio - submit a bio to the block device layer for I/O
1941  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1942  * @bio: The &struct bio which describes the I/O
1943  *
1944  * submit_bio() is very similar in purpose to generic_make_request(), and
1945  * uses that function to do most of the work. Both are fairly rough
1946  * interfaces; @bio must be presetup and ready for I/O.
1947  *
1948  */
1949 void submit_bio(int rw, struct bio *bio)
1950 {
1951 	bio->bi_rw |= rw;
1952 
1953 	/*
1954 	 * If it's a regular read/write or a barrier with data attached,
1955 	 * go through the normal accounting stuff before submission.
1956 	 */
1957 	if (bio_has_data(bio)) {
1958 		unsigned int count;
1959 
1960 		if (unlikely(rw & REQ_WRITE_SAME))
1961 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1962 		else
1963 			count = bio_sectors(bio);
1964 
1965 		if (rw & WRITE) {
1966 			count_vm_events(PGPGOUT, count);
1967 		} else {
1968 			task_io_account_read(bio->bi_iter.bi_size);
1969 			count_vm_events(PGPGIN, count);
1970 		}
1971 
1972 		if (unlikely(block_dump)) {
1973 			char b[BDEVNAME_SIZE];
1974 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1975 			current->comm, task_pid_nr(current),
1976 				(rw & WRITE) ? "WRITE" : "READ",
1977 				(unsigned long long)bio->bi_iter.bi_sector,
1978 				bdevname(bio->bi_bdev, b),
1979 				count);
1980 		}
1981 	}
1982 
1983 	generic_make_request(bio);
1984 }
1985 EXPORT_SYMBOL(submit_bio);
1986 
1987 /**
1988  * blk_rq_check_limits - Helper function to check a request for the queue limit
1989  * @q:  the queue
1990  * @rq: the request being checked
1991  *
1992  * Description:
1993  *    @rq may have been made based on weaker limitations of upper-level queues
1994  *    in request stacking drivers, and it may violate the limitation of @q.
1995  *    Since the block layer and the underlying device driver trust @rq
1996  *    after it is inserted to @q, it should be checked against @q before
1997  *    the insertion using this generic function.
1998  *
1999  *    This function should also be useful for request stacking drivers
2000  *    in some cases below, so export this function.
2001  *    Request stacking drivers like request-based dm may change the queue
2002  *    limits while requests are in the queue (e.g. dm's table swapping).
2003  *    Such request stacking drivers should check those requests against
2004  *    the new queue limits again when they dispatch those requests,
2005  *    although such checkings are also done against the old queue limits
2006  *    when submitting requests.
2007  */
2008 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2009 {
2010 	if (!rq_mergeable(rq))
2011 		return 0;
2012 
2013 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2014 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2015 		return -EIO;
2016 	}
2017 
2018 	/*
2019 	 * queue's settings related to segment counting like q->bounce_pfn
2020 	 * may differ from that of other stacking queues.
2021 	 * Recalculate it to check the request correctly on this queue's
2022 	 * limitation.
2023 	 */
2024 	blk_recalc_rq_segments(rq);
2025 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2026 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2027 		return -EIO;
2028 	}
2029 
2030 	return 0;
2031 }
2032 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2033 
2034 /**
2035  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2036  * @q:  the queue to submit the request
2037  * @rq: the request being queued
2038  */
2039 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2040 {
2041 	unsigned long flags;
2042 	int where = ELEVATOR_INSERT_BACK;
2043 
2044 	if (blk_rq_check_limits(q, rq))
2045 		return -EIO;
2046 
2047 	if (rq->rq_disk &&
2048 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2049 		return -EIO;
2050 
2051 	spin_lock_irqsave(q->queue_lock, flags);
2052 	if (unlikely(blk_queue_dying(q))) {
2053 		spin_unlock_irqrestore(q->queue_lock, flags);
2054 		return -ENODEV;
2055 	}
2056 
2057 	/*
2058 	 * Submitting request must be dequeued before calling this function
2059 	 * because it will be linked to another request_queue
2060 	 */
2061 	BUG_ON(blk_queued_rq(rq));
2062 
2063 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2064 		where = ELEVATOR_INSERT_FLUSH;
2065 
2066 	add_acct_request(q, rq, where);
2067 	if (where == ELEVATOR_INSERT_FLUSH)
2068 		__blk_run_queue(q);
2069 	spin_unlock_irqrestore(q->queue_lock, flags);
2070 
2071 	return 0;
2072 }
2073 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2074 
2075 /**
2076  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2077  * @rq: request to examine
2078  *
2079  * Description:
2080  *     A request could be merge of IOs which require different failure
2081  *     handling.  This function determines the number of bytes which
2082  *     can be failed from the beginning of the request without
2083  *     crossing into area which need to be retried further.
2084  *
2085  * Return:
2086  *     The number of bytes to fail.
2087  *
2088  * Context:
2089  *     queue_lock must be held.
2090  */
2091 unsigned int blk_rq_err_bytes(const struct request *rq)
2092 {
2093 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2094 	unsigned int bytes = 0;
2095 	struct bio *bio;
2096 
2097 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2098 		return blk_rq_bytes(rq);
2099 
2100 	/*
2101 	 * Currently the only 'mixing' which can happen is between
2102 	 * different fastfail types.  We can safely fail portions
2103 	 * which have all the failfast bits that the first one has -
2104 	 * the ones which are at least as eager to fail as the first
2105 	 * one.
2106 	 */
2107 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2108 		if ((bio->bi_rw & ff) != ff)
2109 			break;
2110 		bytes += bio->bi_iter.bi_size;
2111 	}
2112 
2113 	/* this could lead to infinite loop */
2114 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2115 	return bytes;
2116 }
2117 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2118 
2119 void blk_account_io_completion(struct request *req, unsigned int bytes)
2120 {
2121 	if (blk_do_io_stat(req)) {
2122 		const int rw = rq_data_dir(req);
2123 		struct hd_struct *part;
2124 		int cpu;
2125 
2126 		cpu = part_stat_lock();
2127 		part = req->part;
2128 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2129 		part_stat_unlock();
2130 	}
2131 }
2132 
2133 void blk_account_io_done(struct request *req)
2134 {
2135 	/*
2136 	 * Account IO completion.  flush_rq isn't accounted as a
2137 	 * normal IO on queueing nor completion.  Accounting the
2138 	 * containing request is enough.
2139 	 */
2140 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2141 		unsigned long duration = jiffies - req->start_time;
2142 		const int rw = rq_data_dir(req);
2143 		struct hd_struct *part;
2144 		int cpu;
2145 
2146 		cpu = part_stat_lock();
2147 		part = req->part;
2148 
2149 		part_stat_inc(cpu, part, ios[rw]);
2150 		part_stat_add(cpu, part, ticks[rw], duration);
2151 		part_round_stats(cpu, part);
2152 		part_dec_in_flight(part, rw);
2153 
2154 		hd_struct_put(part);
2155 		part_stat_unlock();
2156 	}
2157 }
2158 
2159 #ifdef CONFIG_PM
2160 /*
2161  * Don't process normal requests when queue is suspended
2162  * or in the process of suspending/resuming
2163  */
2164 static struct request *blk_pm_peek_request(struct request_queue *q,
2165 					   struct request *rq)
2166 {
2167 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2168 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2169 		return NULL;
2170 	else
2171 		return rq;
2172 }
2173 #else
2174 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2175 						  struct request *rq)
2176 {
2177 	return rq;
2178 }
2179 #endif
2180 
2181 void blk_account_io_start(struct request *rq, bool new_io)
2182 {
2183 	struct hd_struct *part;
2184 	int rw = rq_data_dir(rq);
2185 	int cpu;
2186 
2187 	if (!blk_do_io_stat(rq))
2188 		return;
2189 
2190 	cpu = part_stat_lock();
2191 
2192 	if (!new_io) {
2193 		part = rq->part;
2194 		part_stat_inc(cpu, part, merges[rw]);
2195 	} else {
2196 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2197 		if (!hd_struct_try_get(part)) {
2198 			/*
2199 			 * The partition is already being removed,
2200 			 * the request will be accounted on the disk only
2201 			 *
2202 			 * We take a reference on disk->part0 although that
2203 			 * partition will never be deleted, so we can treat
2204 			 * it as any other partition.
2205 			 */
2206 			part = &rq->rq_disk->part0;
2207 			hd_struct_get(part);
2208 		}
2209 		part_round_stats(cpu, part);
2210 		part_inc_in_flight(part, rw);
2211 		rq->part = part;
2212 	}
2213 
2214 	part_stat_unlock();
2215 }
2216 
2217 /**
2218  * blk_peek_request - peek at the top of a request queue
2219  * @q: request queue to peek at
2220  *
2221  * Description:
2222  *     Return the request at the top of @q.  The returned request
2223  *     should be started using blk_start_request() before LLD starts
2224  *     processing it.
2225  *
2226  * Return:
2227  *     Pointer to the request at the top of @q if available.  Null
2228  *     otherwise.
2229  *
2230  * Context:
2231  *     queue_lock must be held.
2232  */
2233 struct request *blk_peek_request(struct request_queue *q)
2234 {
2235 	struct request *rq;
2236 	int ret;
2237 
2238 	while ((rq = __elv_next_request(q)) != NULL) {
2239 
2240 		rq = blk_pm_peek_request(q, rq);
2241 		if (!rq)
2242 			break;
2243 
2244 		if (!(rq->cmd_flags & REQ_STARTED)) {
2245 			/*
2246 			 * This is the first time the device driver
2247 			 * sees this request (possibly after
2248 			 * requeueing).  Notify IO scheduler.
2249 			 */
2250 			if (rq->cmd_flags & REQ_SORTED)
2251 				elv_activate_rq(q, rq);
2252 
2253 			/*
2254 			 * just mark as started even if we don't start
2255 			 * it, a request that has been delayed should
2256 			 * not be passed by new incoming requests
2257 			 */
2258 			rq->cmd_flags |= REQ_STARTED;
2259 			trace_block_rq_issue(q, rq);
2260 		}
2261 
2262 		if (!q->boundary_rq || q->boundary_rq == rq) {
2263 			q->end_sector = rq_end_sector(rq);
2264 			q->boundary_rq = NULL;
2265 		}
2266 
2267 		if (rq->cmd_flags & REQ_DONTPREP)
2268 			break;
2269 
2270 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2271 			/*
2272 			 * make sure space for the drain appears we
2273 			 * know we can do this because max_hw_segments
2274 			 * has been adjusted to be one fewer than the
2275 			 * device can handle
2276 			 */
2277 			rq->nr_phys_segments++;
2278 		}
2279 
2280 		if (!q->prep_rq_fn)
2281 			break;
2282 
2283 		ret = q->prep_rq_fn(q, rq);
2284 		if (ret == BLKPREP_OK) {
2285 			break;
2286 		} else if (ret == BLKPREP_DEFER) {
2287 			/*
2288 			 * the request may have been (partially) prepped.
2289 			 * we need to keep this request in the front to
2290 			 * avoid resource deadlock.  REQ_STARTED will
2291 			 * prevent other fs requests from passing this one.
2292 			 */
2293 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2294 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2295 				/*
2296 				 * remove the space for the drain we added
2297 				 * so that we don't add it again
2298 				 */
2299 				--rq->nr_phys_segments;
2300 			}
2301 
2302 			rq = NULL;
2303 			break;
2304 		} else if (ret == BLKPREP_KILL) {
2305 			rq->cmd_flags |= REQ_QUIET;
2306 			/*
2307 			 * Mark this request as started so we don't trigger
2308 			 * any debug logic in the end I/O path.
2309 			 */
2310 			blk_start_request(rq);
2311 			__blk_end_request_all(rq, -EIO);
2312 		} else {
2313 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2314 			break;
2315 		}
2316 	}
2317 
2318 	return rq;
2319 }
2320 EXPORT_SYMBOL(blk_peek_request);
2321 
2322 void blk_dequeue_request(struct request *rq)
2323 {
2324 	struct request_queue *q = rq->q;
2325 
2326 	BUG_ON(list_empty(&rq->queuelist));
2327 	BUG_ON(ELV_ON_HASH(rq));
2328 
2329 	list_del_init(&rq->queuelist);
2330 
2331 	/*
2332 	 * the time frame between a request being removed from the lists
2333 	 * and to it is freed is accounted as io that is in progress at
2334 	 * the driver side.
2335 	 */
2336 	if (blk_account_rq(rq)) {
2337 		q->in_flight[rq_is_sync(rq)]++;
2338 		set_io_start_time_ns(rq);
2339 	}
2340 }
2341 
2342 /**
2343  * blk_start_request - start request processing on the driver
2344  * @req: request to dequeue
2345  *
2346  * Description:
2347  *     Dequeue @req and start timeout timer on it.  This hands off the
2348  *     request to the driver.
2349  *
2350  *     Block internal functions which don't want to start timer should
2351  *     call blk_dequeue_request().
2352  *
2353  * Context:
2354  *     queue_lock must be held.
2355  */
2356 void blk_start_request(struct request *req)
2357 {
2358 	blk_dequeue_request(req);
2359 
2360 	/*
2361 	 * We are now handing the request to the hardware, initialize
2362 	 * resid_len to full count and add the timeout handler.
2363 	 */
2364 	req->resid_len = blk_rq_bytes(req);
2365 	if (unlikely(blk_bidi_rq(req)))
2366 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2367 
2368 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2369 	blk_add_timer(req);
2370 }
2371 EXPORT_SYMBOL(blk_start_request);
2372 
2373 /**
2374  * blk_fetch_request - fetch a request from a request queue
2375  * @q: request queue to fetch a request from
2376  *
2377  * Description:
2378  *     Return the request at the top of @q.  The request is started on
2379  *     return and LLD can start processing it immediately.
2380  *
2381  * Return:
2382  *     Pointer to the request at the top of @q if available.  Null
2383  *     otherwise.
2384  *
2385  * Context:
2386  *     queue_lock must be held.
2387  */
2388 struct request *blk_fetch_request(struct request_queue *q)
2389 {
2390 	struct request *rq;
2391 
2392 	rq = blk_peek_request(q);
2393 	if (rq)
2394 		blk_start_request(rq);
2395 	return rq;
2396 }
2397 EXPORT_SYMBOL(blk_fetch_request);
2398 
2399 /**
2400  * blk_update_request - Special helper function for request stacking drivers
2401  * @req:      the request being processed
2402  * @error:    %0 for success, < %0 for error
2403  * @nr_bytes: number of bytes to complete @req
2404  *
2405  * Description:
2406  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2407  *     the request structure even if @req doesn't have leftover.
2408  *     If @req has leftover, sets it up for the next range of segments.
2409  *
2410  *     This special helper function is only for request stacking drivers
2411  *     (e.g. request-based dm) so that they can handle partial completion.
2412  *     Actual device drivers should use blk_end_request instead.
2413  *
2414  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2415  *     %false return from this function.
2416  *
2417  * Return:
2418  *     %false - this request doesn't have any more data
2419  *     %true  - this request has more data
2420  **/
2421 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2422 {
2423 	int total_bytes;
2424 
2425 	trace_block_rq_complete(req->q, req, nr_bytes);
2426 
2427 	if (!req->bio)
2428 		return false;
2429 
2430 	/*
2431 	 * For fs requests, rq is just carrier of independent bio's
2432 	 * and each partial completion should be handled separately.
2433 	 * Reset per-request error on each partial completion.
2434 	 *
2435 	 * TODO: tj: This is too subtle.  It would be better to let
2436 	 * low level drivers do what they see fit.
2437 	 */
2438 	if (req->cmd_type == REQ_TYPE_FS)
2439 		req->errors = 0;
2440 
2441 	if (error && req->cmd_type == REQ_TYPE_FS &&
2442 	    !(req->cmd_flags & REQ_QUIET)) {
2443 		char *error_type;
2444 
2445 		switch (error) {
2446 		case -ENOLINK:
2447 			error_type = "recoverable transport";
2448 			break;
2449 		case -EREMOTEIO:
2450 			error_type = "critical target";
2451 			break;
2452 		case -EBADE:
2453 			error_type = "critical nexus";
2454 			break;
2455 		case -ETIMEDOUT:
2456 			error_type = "timeout";
2457 			break;
2458 		case -ENOSPC:
2459 			error_type = "critical space allocation";
2460 			break;
2461 		case -ENODATA:
2462 			error_type = "critical medium";
2463 			break;
2464 		case -EIO:
2465 		default:
2466 			error_type = "I/O";
2467 			break;
2468 		}
2469 		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2470 				   __func__, error_type, req->rq_disk ?
2471 				   req->rq_disk->disk_name : "?",
2472 				   (unsigned long long)blk_rq_pos(req));
2473 
2474 	}
2475 
2476 	blk_account_io_completion(req, nr_bytes);
2477 
2478 	total_bytes = 0;
2479 	while (req->bio) {
2480 		struct bio *bio = req->bio;
2481 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2482 
2483 		if (bio_bytes == bio->bi_iter.bi_size)
2484 			req->bio = bio->bi_next;
2485 
2486 		req_bio_endio(req, bio, bio_bytes, error);
2487 
2488 		total_bytes += bio_bytes;
2489 		nr_bytes -= bio_bytes;
2490 
2491 		if (!nr_bytes)
2492 			break;
2493 	}
2494 
2495 	/*
2496 	 * completely done
2497 	 */
2498 	if (!req->bio) {
2499 		/*
2500 		 * Reset counters so that the request stacking driver
2501 		 * can find how many bytes remain in the request
2502 		 * later.
2503 		 */
2504 		req->__data_len = 0;
2505 		return false;
2506 	}
2507 
2508 	req->__data_len -= total_bytes;
2509 
2510 	/* update sector only for requests with clear definition of sector */
2511 	if (req->cmd_type == REQ_TYPE_FS)
2512 		req->__sector += total_bytes >> 9;
2513 
2514 	/* mixed attributes always follow the first bio */
2515 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2516 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2517 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2518 	}
2519 
2520 	/*
2521 	 * If total number of sectors is less than the first segment
2522 	 * size, something has gone terribly wrong.
2523 	 */
2524 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2525 		blk_dump_rq_flags(req, "request botched");
2526 		req->__data_len = blk_rq_cur_bytes(req);
2527 	}
2528 
2529 	/* recalculate the number of segments */
2530 	blk_recalc_rq_segments(req);
2531 
2532 	return true;
2533 }
2534 EXPORT_SYMBOL_GPL(blk_update_request);
2535 
2536 static bool blk_update_bidi_request(struct request *rq, int error,
2537 				    unsigned int nr_bytes,
2538 				    unsigned int bidi_bytes)
2539 {
2540 	if (blk_update_request(rq, error, nr_bytes))
2541 		return true;
2542 
2543 	/* Bidi request must be completed as a whole */
2544 	if (unlikely(blk_bidi_rq(rq)) &&
2545 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2546 		return true;
2547 
2548 	if (blk_queue_add_random(rq->q))
2549 		add_disk_randomness(rq->rq_disk);
2550 
2551 	return false;
2552 }
2553 
2554 /**
2555  * blk_unprep_request - unprepare a request
2556  * @req:	the request
2557  *
2558  * This function makes a request ready for complete resubmission (or
2559  * completion).  It happens only after all error handling is complete,
2560  * so represents the appropriate moment to deallocate any resources
2561  * that were allocated to the request in the prep_rq_fn.  The queue
2562  * lock is held when calling this.
2563  */
2564 void blk_unprep_request(struct request *req)
2565 {
2566 	struct request_queue *q = req->q;
2567 
2568 	req->cmd_flags &= ~REQ_DONTPREP;
2569 	if (q->unprep_rq_fn)
2570 		q->unprep_rq_fn(q, req);
2571 }
2572 EXPORT_SYMBOL_GPL(blk_unprep_request);
2573 
2574 /*
2575  * queue lock must be held
2576  */
2577 void blk_finish_request(struct request *req, int error)
2578 {
2579 	if (req->cmd_flags & REQ_QUEUED)
2580 		blk_queue_end_tag(req->q, req);
2581 
2582 	BUG_ON(blk_queued_rq(req));
2583 
2584 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2585 		laptop_io_completion(&req->q->backing_dev_info);
2586 
2587 	blk_delete_timer(req);
2588 
2589 	if (req->cmd_flags & REQ_DONTPREP)
2590 		blk_unprep_request(req);
2591 
2592 	blk_account_io_done(req);
2593 
2594 	if (req->end_io)
2595 		req->end_io(req, error);
2596 	else {
2597 		if (blk_bidi_rq(req))
2598 			__blk_put_request(req->next_rq->q, req->next_rq);
2599 
2600 		__blk_put_request(req->q, req);
2601 	}
2602 }
2603 EXPORT_SYMBOL(blk_finish_request);
2604 
2605 /**
2606  * blk_end_bidi_request - Complete a bidi request
2607  * @rq:         the request to complete
2608  * @error:      %0 for success, < %0 for error
2609  * @nr_bytes:   number of bytes to complete @rq
2610  * @bidi_bytes: number of bytes to complete @rq->next_rq
2611  *
2612  * Description:
2613  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2614  *     Drivers that supports bidi can safely call this member for any
2615  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2616  *     just ignored.
2617  *
2618  * Return:
2619  *     %false - we are done with this request
2620  *     %true  - still buffers pending for this request
2621  **/
2622 static bool blk_end_bidi_request(struct request *rq, int error,
2623 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2624 {
2625 	struct request_queue *q = rq->q;
2626 	unsigned long flags;
2627 
2628 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2629 		return true;
2630 
2631 	spin_lock_irqsave(q->queue_lock, flags);
2632 	blk_finish_request(rq, error);
2633 	spin_unlock_irqrestore(q->queue_lock, flags);
2634 
2635 	return false;
2636 }
2637 
2638 /**
2639  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2640  * @rq:         the request to complete
2641  * @error:      %0 for success, < %0 for error
2642  * @nr_bytes:   number of bytes to complete @rq
2643  * @bidi_bytes: number of bytes to complete @rq->next_rq
2644  *
2645  * Description:
2646  *     Identical to blk_end_bidi_request() except that queue lock is
2647  *     assumed to be locked on entry and remains so on return.
2648  *
2649  * Return:
2650  *     %false - we are done with this request
2651  *     %true  - still buffers pending for this request
2652  **/
2653 bool __blk_end_bidi_request(struct request *rq, int error,
2654 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2655 {
2656 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2657 		return true;
2658 
2659 	blk_finish_request(rq, error);
2660 
2661 	return false;
2662 }
2663 
2664 /**
2665  * blk_end_request - Helper function for drivers to complete the request.
2666  * @rq:       the request being processed
2667  * @error:    %0 for success, < %0 for error
2668  * @nr_bytes: number of bytes to complete
2669  *
2670  * Description:
2671  *     Ends I/O on a number of bytes attached to @rq.
2672  *     If @rq has leftover, sets it up for the next range of segments.
2673  *
2674  * Return:
2675  *     %false - we are done with this request
2676  *     %true  - still buffers pending for this request
2677  **/
2678 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2679 {
2680 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2681 }
2682 EXPORT_SYMBOL(blk_end_request);
2683 
2684 /**
2685  * blk_end_request_all - Helper function for drives to finish the request.
2686  * @rq: the request to finish
2687  * @error: %0 for success, < %0 for error
2688  *
2689  * Description:
2690  *     Completely finish @rq.
2691  */
2692 void blk_end_request_all(struct request *rq, int error)
2693 {
2694 	bool pending;
2695 	unsigned int bidi_bytes = 0;
2696 
2697 	if (unlikely(blk_bidi_rq(rq)))
2698 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2699 
2700 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2701 	BUG_ON(pending);
2702 }
2703 EXPORT_SYMBOL(blk_end_request_all);
2704 
2705 /**
2706  * blk_end_request_cur - Helper function to finish the current request chunk.
2707  * @rq: the request to finish the current chunk for
2708  * @error: %0 for success, < %0 for error
2709  *
2710  * Description:
2711  *     Complete the current consecutively mapped chunk from @rq.
2712  *
2713  * Return:
2714  *     %false - we are done with this request
2715  *     %true  - still buffers pending for this request
2716  */
2717 bool blk_end_request_cur(struct request *rq, int error)
2718 {
2719 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2720 }
2721 EXPORT_SYMBOL(blk_end_request_cur);
2722 
2723 /**
2724  * blk_end_request_err - Finish a request till the next failure boundary.
2725  * @rq: the request to finish till the next failure boundary for
2726  * @error: must be negative errno
2727  *
2728  * Description:
2729  *     Complete @rq till the next failure boundary.
2730  *
2731  * Return:
2732  *     %false - we are done with this request
2733  *     %true  - still buffers pending for this request
2734  */
2735 bool blk_end_request_err(struct request *rq, int error)
2736 {
2737 	WARN_ON(error >= 0);
2738 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2739 }
2740 EXPORT_SYMBOL_GPL(blk_end_request_err);
2741 
2742 /**
2743  * __blk_end_request - Helper function for drivers to complete the request.
2744  * @rq:       the request being processed
2745  * @error:    %0 for success, < %0 for error
2746  * @nr_bytes: number of bytes to complete
2747  *
2748  * Description:
2749  *     Must be called with queue lock held unlike blk_end_request().
2750  *
2751  * Return:
2752  *     %false - we are done with this request
2753  *     %true  - still buffers pending for this request
2754  **/
2755 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2756 {
2757 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2758 }
2759 EXPORT_SYMBOL(__blk_end_request);
2760 
2761 /**
2762  * __blk_end_request_all - Helper function for drives to finish the request.
2763  * @rq: the request to finish
2764  * @error: %0 for success, < %0 for error
2765  *
2766  * Description:
2767  *     Completely finish @rq.  Must be called with queue lock held.
2768  */
2769 void __blk_end_request_all(struct request *rq, int error)
2770 {
2771 	bool pending;
2772 	unsigned int bidi_bytes = 0;
2773 
2774 	if (unlikely(blk_bidi_rq(rq)))
2775 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2776 
2777 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2778 	BUG_ON(pending);
2779 }
2780 EXPORT_SYMBOL(__blk_end_request_all);
2781 
2782 /**
2783  * __blk_end_request_cur - Helper function to finish the current request chunk.
2784  * @rq: the request to finish the current chunk for
2785  * @error: %0 for success, < %0 for error
2786  *
2787  * Description:
2788  *     Complete the current consecutively mapped chunk from @rq.  Must
2789  *     be called with queue lock held.
2790  *
2791  * Return:
2792  *     %false - we are done with this request
2793  *     %true  - still buffers pending for this request
2794  */
2795 bool __blk_end_request_cur(struct request *rq, int error)
2796 {
2797 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2798 }
2799 EXPORT_SYMBOL(__blk_end_request_cur);
2800 
2801 /**
2802  * __blk_end_request_err - Finish a request till the next failure boundary.
2803  * @rq: the request to finish till the next failure boundary for
2804  * @error: must be negative errno
2805  *
2806  * Description:
2807  *     Complete @rq till the next failure boundary.  Must be called
2808  *     with queue lock held.
2809  *
2810  * Return:
2811  *     %false - we are done with this request
2812  *     %true  - still buffers pending for this request
2813  */
2814 bool __blk_end_request_err(struct request *rq, int error)
2815 {
2816 	WARN_ON(error >= 0);
2817 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2818 }
2819 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2820 
2821 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2822 		     struct bio *bio)
2823 {
2824 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2825 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2826 
2827 	if (bio_has_data(bio))
2828 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2829 
2830 	rq->__data_len = bio->bi_iter.bi_size;
2831 	rq->bio = rq->biotail = bio;
2832 
2833 	if (bio->bi_bdev)
2834 		rq->rq_disk = bio->bi_bdev->bd_disk;
2835 }
2836 
2837 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2838 /**
2839  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2840  * @rq: the request to be flushed
2841  *
2842  * Description:
2843  *     Flush all pages in @rq.
2844  */
2845 void rq_flush_dcache_pages(struct request *rq)
2846 {
2847 	struct req_iterator iter;
2848 	struct bio_vec bvec;
2849 
2850 	rq_for_each_segment(bvec, rq, iter)
2851 		flush_dcache_page(bvec.bv_page);
2852 }
2853 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2854 #endif
2855 
2856 /**
2857  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2858  * @q : the queue of the device being checked
2859  *
2860  * Description:
2861  *    Check if underlying low-level drivers of a device are busy.
2862  *    If the drivers want to export their busy state, they must set own
2863  *    exporting function using blk_queue_lld_busy() first.
2864  *
2865  *    Basically, this function is used only by request stacking drivers
2866  *    to stop dispatching requests to underlying devices when underlying
2867  *    devices are busy.  This behavior helps more I/O merging on the queue
2868  *    of the request stacking driver and prevents I/O throughput regression
2869  *    on burst I/O load.
2870  *
2871  * Return:
2872  *    0 - Not busy (The request stacking driver should dispatch request)
2873  *    1 - Busy (The request stacking driver should stop dispatching request)
2874  */
2875 int blk_lld_busy(struct request_queue *q)
2876 {
2877 	if (q->lld_busy_fn)
2878 		return q->lld_busy_fn(q);
2879 
2880 	return 0;
2881 }
2882 EXPORT_SYMBOL_GPL(blk_lld_busy);
2883 
2884 /**
2885  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2886  * @rq: the clone request to be cleaned up
2887  *
2888  * Description:
2889  *     Free all bios in @rq for a cloned request.
2890  */
2891 void blk_rq_unprep_clone(struct request *rq)
2892 {
2893 	struct bio *bio;
2894 
2895 	while ((bio = rq->bio) != NULL) {
2896 		rq->bio = bio->bi_next;
2897 
2898 		bio_put(bio);
2899 	}
2900 }
2901 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2902 
2903 /*
2904  * Copy attributes of the original request to the clone request.
2905  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2906  */
2907 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2908 {
2909 	dst->cpu = src->cpu;
2910 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2911 	dst->cmd_type = src->cmd_type;
2912 	dst->__sector = blk_rq_pos(src);
2913 	dst->__data_len = blk_rq_bytes(src);
2914 	dst->nr_phys_segments = src->nr_phys_segments;
2915 	dst->ioprio = src->ioprio;
2916 	dst->extra_len = src->extra_len;
2917 }
2918 
2919 /**
2920  * blk_rq_prep_clone - Helper function to setup clone request
2921  * @rq: the request to be setup
2922  * @rq_src: original request to be cloned
2923  * @bs: bio_set that bios for clone are allocated from
2924  * @gfp_mask: memory allocation mask for bio
2925  * @bio_ctr: setup function to be called for each clone bio.
2926  *           Returns %0 for success, non %0 for failure.
2927  * @data: private data to be passed to @bio_ctr
2928  *
2929  * Description:
2930  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2931  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2932  *     are not copied, and copying such parts is the caller's responsibility.
2933  *     Also, pages which the original bios are pointing to are not copied
2934  *     and the cloned bios just point same pages.
2935  *     So cloned bios must be completed before original bios, which means
2936  *     the caller must complete @rq before @rq_src.
2937  */
2938 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2939 		      struct bio_set *bs, gfp_t gfp_mask,
2940 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2941 		      void *data)
2942 {
2943 	struct bio *bio, *bio_src;
2944 
2945 	if (!bs)
2946 		bs = fs_bio_set;
2947 
2948 	blk_rq_init(NULL, rq);
2949 
2950 	__rq_for_each_bio(bio_src, rq_src) {
2951 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
2952 		if (!bio)
2953 			goto free_and_out;
2954 
2955 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2956 			goto free_and_out;
2957 
2958 		if (rq->bio) {
2959 			rq->biotail->bi_next = bio;
2960 			rq->biotail = bio;
2961 		} else
2962 			rq->bio = rq->biotail = bio;
2963 	}
2964 
2965 	__blk_rq_prep_clone(rq, rq_src);
2966 
2967 	return 0;
2968 
2969 free_and_out:
2970 	if (bio)
2971 		bio_put(bio);
2972 	blk_rq_unprep_clone(rq);
2973 
2974 	return -ENOMEM;
2975 }
2976 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2977 
2978 int kblockd_schedule_work(struct work_struct *work)
2979 {
2980 	return queue_work(kblockd_workqueue, work);
2981 }
2982 EXPORT_SYMBOL(kblockd_schedule_work);
2983 
2984 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2985 				  unsigned long delay)
2986 {
2987 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2988 }
2989 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2990 
2991 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2992 				     unsigned long delay)
2993 {
2994 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2995 }
2996 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2997 
2998 /**
2999  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3000  * @plug:	The &struct blk_plug that needs to be initialized
3001  *
3002  * Description:
3003  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3004  *   pending I/O should the task end up blocking between blk_start_plug() and
3005  *   blk_finish_plug(). This is important from a performance perspective, but
3006  *   also ensures that we don't deadlock. For instance, if the task is blocking
3007  *   for a memory allocation, memory reclaim could end up wanting to free a
3008  *   page belonging to that request that is currently residing in our private
3009  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3010  *   this kind of deadlock.
3011  */
3012 void blk_start_plug(struct blk_plug *plug)
3013 {
3014 	struct task_struct *tsk = current;
3015 
3016 	INIT_LIST_HEAD(&plug->list);
3017 	INIT_LIST_HEAD(&plug->mq_list);
3018 	INIT_LIST_HEAD(&plug->cb_list);
3019 
3020 	/*
3021 	 * If this is a nested plug, don't actually assign it. It will be
3022 	 * flushed on its own.
3023 	 */
3024 	if (!tsk->plug) {
3025 		/*
3026 		 * Store ordering should not be needed here, since a potential
3027 		 * preempt will imply a full memory barrier
3028 		 */
3029 		tsk->plug = plug;
3030 	}
3031 }
3032 EXPORT_SYMBOL(blk_start_plug);
3033 
3034 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3035 {
3036 	struct request *rqa = container_of(a, struct request, queuelist);
3037 	struct request *rqb = container_of(b, struct request, queuelist);
3038 
3039 	return !(rqa->q < rqb->q ||
3040 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3041 }
3042 
3043 /*
3044  * If 'from_schedule' is true, then postpone the dispatch of requests
3045  * until a safe kblockd context. We due this to avoid accidental big
3046  * additional stack usage in driver dispatch, in places where the originally
3047  * plugger did not intend it.
3048  */
3049 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3050 			    bool from_schedule)
3051 	__releases(q->queue_lock)
3052 {
3053 	trace_block_unplug(q, depth, !from_schedule);
3054 
3055 	if (from_schedule)
3056 		blk_run_queue_async(q);
3057 	else
3058 		__blk_run_queue(q);
3059 	spin_unlock(q->queue_lock);
3060 }
3061 
3062 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3063 {
3064 	LIST_HEAD(callbacks);
3065 
3066 	while (!list_empty(&plug->cb_list)) {
3067 		list_splice_init(&plug->cb_list, &callbacks);
3068 
3069 		while (!list_empty(&callbacks)) {
3070 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3071 							  struct blk_plug_cb,
3072 							  list);
3073 			list_del(&cb->list);
3074 			cb->callback(cb, from_schedule);
3075 		}
3076 	}
3077 }
3078 
3079 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3080 				      int size)
3081 {
3082 	struct blk_plug *plug = current->plug;
3083 	struct blk_plug_cb *cb;
3084 
3085 	if (!plug)
3086 		return NULL;
3087 
3088 	list_for_each_entry(cb, &plug->cb_list, list)
3089 		if (cb->callback == unplug && cb->data == data)
3090 			return cb;
3091 
3092 	/* Not currently on the callback list */
3093 	BUG_ON(size < sizeof(*cb));
3094 	cb = kzalloc(size, GFP_ATOMIC);
3095 	if (cb) {
3096 		cb->data = data;
3097 		cb->callback = unplug;
3098 		list_add(&cb->list, &plug->cb_list);
3099 	}
3100 	return cb;
3101 }
3102 EXPORT_SYMBOL(blk_check_plugged);
3103 
3104 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3105 {
3106 	struct request_queue *q;
3107 	unsigned long flags;
3108 	struct request *rq;
3109 	LIST_HEAD(list);
3110 	unsigned int depth;
3111 
3112 	flush_plug_callbacks(plug, from_schedule);
3113 
3114 	if (!list_empty(&plug->mq_list))
3115 		blk_mq_flush_plug_list(plug, from_schedule);
3116 
3117 	if (list_empty(&plug->list))
3118 		return;
3119 
3120 	list_splice_init(&plug->list, &list);
3121 
3122 	list_sort(NULL, &list, plug_rq_cmp);
3123 
3124 	q = NULL;
3125 	depth = 0;
3126 
3127 	/*
3128 	 * Save and disable interrupts here, to avoid doing it for every
3129 	 * queue lock we have to take.
3130 	 */
3131 	local_irq_save(flags);
3132 	while (!list_empty(&list)) {
3133 		rq = list_entry_rq(list.next);
3134 		list_del_init(&rq->queuelist);
3135 		BUG_ON(!rq->q);
3136 		if (rq->q != q) {
3137 			/*
3138 			 * This drops the queue lock
3139 			 */
3140 			if (q)
3141 				queue_unplugged(q, depth, from_schedule);
3142 			q = rq->q;
3143 			depth = 0;
3144 			spin_lock(q->queue_lock);
3145 		}
3146 
3147 		/*
3148 		 * Short-circuit if @q is dead
3149 		 */
3150 		if (unlikely(blk_queue_dying(q))) {
3151 			__blk_end_request_all(rq, -ENODEV);
3152 			continue;
3153 		}
3154 
3155 		/*
3156 		 * rq is already accounted, so use raw insert
3157 		 */
3158 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3159 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3160 		else
3161 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3162 
3163 		depth++;
3164 	}
3165 
3166 	/*
3167 	 * This drops the queue lock
3168 	 */
3169 	if (q)
3170 		queue_unplugged(q, depth, from_schedule);
3171 
3172 	local_irq_restore(flags);
3173 }
3174 
3175 void blk_finish_plug(struct blk_plug *plug)
3176 {
3177 	blk_flush_plug_list(plug, false);
3178 
3179 	if (plug == current->plug)
3180 		current->plug = NULL;
3181 }
3182 EXPORT_SYMBOL(blk_finish_plug);
3183 
3184 #ifdef CONFIG_PM
3185 /**
3186  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3187  * @q: the queue of the device
3188  * @dev: the device the queue belongs to
3189  *
3190  * Description:
3191  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3192  *    @dev. Drivers that want to take advantage of request-based runtime PM
3193  *    should call this function after @dev has been initialized, and its
3194  *    request queue @q has been allocated, and runtime PM for it can not happen
3195  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3196  *    cases, driver should call this function before any I/O has taken place.
3197  *
3198  *    This function takes care of setting up using auto suspend for the device,
3199  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3200  *    until an updated value is either set by user or by driver. Drivers do
3201  *    not need to touch other autosuspend settings.
3202  *
3203  *    The block layer runtime PM is request based, so only works for drivers
3204  *    that use request as their IO unit instead of those directly use bio's.
3205  */
3206 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3207 {
3208 	q->dev = dev;
3209 	q->rpm_status = RPM_ACTIVE;
3210 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3211 	pm_runtime_use_autosuspend(q->dev);
3212 }
3213 EXPORT_SYMBOL(blk_pm_runtime_init);
3214 
3215 /**
3216  * blk_pre_runtime_suspend - Pre runtime suspend check
3217  * @q: the queue of the device
3218  *
3219  * Description:
3220  *    This function will check if runtime suspend is allowed for the device
3221  *    by examining if there are any requests pending in the queue. If there
3222  *    are requests pending, the device can not be runtime suspended; otherwise,
3223  *    the queue's status will be updated to SUSPENDING and the driver can
3224  *    proceed to suspend the device.
3225  *
3226  *    For the not allowed case, we mark last busy for the device so that
3227  *    runtime PM core will try to autosuspend it some time later.
3228  *
3229  *    This function should be called near the start of the device's
3230  *    runtime_suspend callback.
3231  *
3232  * Return:
3233  *    0		- OK to runtime suspend the device
3234  *    -EBUSY	- Device should not be runtime suspended
3235  */
3236 int blk_pre_runtime_suspend(struct request_queue *q)
3237 {
3238 	int ret = 0;
3239 
3240 	spin_lock_irq(q->queue_lock);
3241 	if (q->nr_pending) {
3242 		ret = -EBUSY;
3243 		pm_runtime_mark_last_busy(q->dev);
3244 	} else {
3245 		q->rpm_status = RPM_SUSPENDING;
3246 	}
3247 	spin_unlock_irq(q->queue_lock);
3248 	return ret;
3249 }
3250 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3251 
3252 /**
3253  * blk_post_runtime_suspend - Post runtime suspend processing
3254  * @q: the queue of the device
3255  * @err: return value of the device's runtime_suspend function
3256  *
3257  * Description:
3258  *    Update the queue's runtime status according to the return value of the
3259  *    device's runtime suspend function and mark last busy for the device so
3260  *    that PM core will try to auto suspend the device at a later time.
3261  *
3262  *    This function should be called near the end of the device's
3263  *    runtime_suspend callback.
3264  */
3265 void blk_post_runtime_suspend(struct request_queue *q, int err)
3266 {
3267 	spin_lock_irq(q->queue_lock);
3268 	if (!err) {
3269 		q->rpm_status = RPM_SUSPENDED;
3270 	} else {
3271 		q->rpm_status = RPM_ACTIVE;
3272 		pm_runtime_mark_last_busy(q->dev);
3273 	}
3274 	spin_unlock_irq(q->queue_lock);
3275 }
3276 EXPORT_SYMBOL(blk_post_runtime_suspend);
3277 
3278 /**
3279  * blk_pre_runtime_resume - Pre runtime resume processing
3280  * @q: the queue of the device
3281  *
3282  * Description:
3283  *    Update the queue's runtime status to RESUMING in preparation for the
3284  *    runtime resume of the device.
3285  *
3286  *    This function should be called near the start of the device's
3287  *    runtime_resume callback.
3288  */
3289 void blk_pre_runtime_resume(struct request_queue *q)
3290 {
3291 	spin_lock_irq(q->queue_lock);
3292 	q->rpm_status = RPM_RESUMING;
3293 	spin_unlock_irq(q->queue_lock);
3294 }
3295 EXPORT_SYMBOL(blk_pre_runtime_resume);
3296 
3297 /**
3298  * blk_post_runtime_resume - Post runtime resume processing
3299  * @q: the queue of the device
3300  * @err: return value of the device's runtime_resume function
3301  *
3302  * Description:
3303  *    Update the queue's runtime status according to the return value of the
3304  *    device's runtime_resume function. If it is successfully resumed, process
3305  *    the requests that are queued into the device's queue when it is resuming
3306  *    and then mark last busy and initiate autosuspend for it.
3307  *
3308  *    This function should be called near the end of the device's
3309  *    runtime_resume callback.
3310  */
3311 void blk_post_runtime_resume(struct request_queue *q, int err)
3312 {
3313 	spin_lock_irq(q->queue_lock);
3314 	if (!err) {
3315 		q->rpm_status = RPM_ACTIVE;
3316 		__blk_run_queue(q);
3317 		pm_runtime_mark_last_busy(q->dev);
3318 		pm_request_autosuspend(q->dev);
3319 	} else {
3320 		q->rpm_status = RPM_SUSPENDED;
3321 	}
3322 	spin_unlock_irq(q->queue_lock);
3323 }
3324 EXPORT_SYMBOL(blk_post_runtime_resume);
3325 #endif
3326 
3327 int __init blk_dev_init(void)
3328 {
3329 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3330 			sizeof(((struct request *)0)->cmd_flags));
3331 
3332 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3333 	kblockd_workqueue = alloc_workqueue("kblockd",
3334 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3335 	if (!kblockd_workqueue)
3336 		panic("Failed to create kblockd\n");
3337 
3338 	request_cachep = kmem_cache_create("blkdev_requests",
3339 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3340 
3341 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3342 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3343 
3344 	return 0;
3345 }
3346