xref: /openbmc/linux/block/blk-core.c (revision c4ee0af3)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38 
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
46 
47 DEFINE_IDA(blk_queue_ida);
48 
49 /*
50  * For the allocated request tables
51  */
52 struct kmem_cache *request_cachep = NULL;
53 
54 /*
55  * For queue allocation
56  */
57 struct kmem_cache *blk_requestq_cachep;
58 
59 /*
60  * Controlling structure to kblockd
61  */
62 static struct workqueue_struct *kblockd_workqueue;
63 
64 void blk_queue_congestion_threshold(struct request_queue *q)
65 {
66 	int nr;
67 
68 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
69 	if (nr > q->nr_requests)
70 		nr = q->nr_requests;
71 	q->nr_congestion_on = nr;
72 
73 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
74 	if (nr < 1)
75 		nr = 1;
76 	q->nr_congestion_off = nr;
77 }
78 
79 /**
80  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
81  * @bdev:	device
82  *
83  * Locates the passed device's request queue and returns the address of its
84  * backing_dev_info
85  *
86  * Will return NULL if the request queue cannot be located.
87  */
88 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
89 {
90 	struct backing_dev_info *ret = NULL;
91 	struct request_queue *q = bdev_get_queue(bdev);
92 
93 	if (q)
94 		ret = &q->backing_dev_info;
95 	return ret;
96 }
97 EXPORT_SYMBOL(blk_get_backing_dev_info);
98 
99 void blk_rq_init(struct request_queue *q, struct request *rq)
100 {
101 	memset(rq, 0, sizeof(*rq));
102 
103 	INIT_LIST_HEAD(&rq->queuelist);
104 	INIT_LIST_HEAD(&rq->timeout_list);
105 	rq->cpu = -1;
106 	rq->q = q;
107 	rq->__sector = (sector_t) -1;
108 	INIT_HLIST_NODE(&rq->hash);
109 	RB_CLEAR_NODE(&rq->rb_node);
110 	rq->cmd = rq->__cmd;
111 	rq->cmd_len = BLK_MAX_CDB;
112 	rq->tag = -1;
113 	rq->start_time = jiffies;
114 	set_start_time_ns(rq);
115 	rq->part = NULL;
116 }
117 EXPORT_SYMBOL(blk_rq_init);
118 
119 static void req_bio_endio(struct request *rq, struct bio *bio,
120 			  unsigned int nbytes, int error)
121 {
122 	if (error)
123 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
124 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
125 		error = -EIO;
126 
127 	if (unlikely(rq->cmd_flags & REQ_QUIET))
128 		set_bit(BIO_QUIET, &bio->bi_flags);
129 
130 	bio_advance(bio, nbytes);
131 
132 	/* don't actually finish bio if it's part of flush sequence */
133 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
134 		bio_endio(bio, error);
135 }
136 
137 void blk_dump_rq_flags(struct request *rq, char *msg)
138 {
139 	int bit;
140 
141 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
142 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
143 		(unsigned long long) rq->cmd_flags);
144 
145 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
146 	       (unsigned long long)blk_rq_pos(rq),
147 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
148 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
149 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
150 
151 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
152 		printk(KERN_INFO "  cdb: ");
153 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
154 			printk("%02x ", rq->cmd[bit]);
155 		printk("\n");
156 	}
157 }
158 EXPORT_SYMBOL(blk_dump_rq_flags);
159 
160 static void blk_delay_work(struct work_struct *work)
161 {
162 	struct request_queue *q;
163 
164 	q = container_of(work, struct request_queue, delay_work.work);
165 	spin_lock_irq(q->queue_lock);
166 	__blk_run_queue(q);
167 	spin_unlock_irq(q->queue_lock);
168 }
169 
170 /**
171  * blk_delay_queue - restart queueing after defined interval
172  * @q:		The &struct request_queue in question
173  * @msecs:	Delay in msecs
174  *
175  * Description:
176  *   Sometimes queueing needs to be postponed for a little while, to allow
177  *   resources to come back. This function will make sure that queueing is
178  *   restarted around the specified time. Queue lock must be held.
179  */
180 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
181 {
182 	if (likely(!blk_queue_dead(q)))
183 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
184 				   msecs_to_jiffies(msecs));
185 }
186 EXPORT_SYMBOL(blk_delay_queue);
187 
188 /**
189  * blk_start_queue - restart a previously stopped queue
190  * @q:    The &struct request_queue in question
191  *
192  * Description:
193  *   blk_start_queue() will clear the stop flag on the queue, and call
194  *   the request_fn for the queue if it was in a stopped state when
195  *   entered. Also see blk_stop_queue(). Queue lock must be held.
196  **/
197 void blk_start_queue(struct request_queue *q)
198 {
199 	WARN_ON(!irqs_disabled());
200 
201 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 	__blk_run_queue(q);
203 }
204 EXPORT_SYMBOL(blk_start_queue);
205 
206 /**
207  * blk_stop_queue - stop a queue
208  * @q:    The &struct request_queue in question
209  *
210  * Description:
211  *   The Linux block layer assumes that a block driver will consume all
212  *   entries on the request queue when the request_fn strategy is called.
213  *   Often this will not happen, because of hardware limitations (queue
214  *   depth settings). If a device driver gets a 'queue full' response,
215  *   or if it simply chooses not to queue more I/O at one point, it can
216  *   call this function to prevent the request_fn from being called until
217  *   the driver has signalled it's ready to go again. This happens by calling
218  *   blk_start_queue() to restart queue operations. Queue lock must be held.
219  **/
220 void blk_stop_queue(struct request_queue *q)
221 {
222 	cancel_delayed_work(&q->delay_work);
223 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
224 }
225 EXPORT_SYMBOL(blk_stop_queue);
226 
227 /**
228  * blk_sync_queue - cancel any pending callbacks on a queue
229  * @q: the queue
230  *
231  * Description:
232  *     The block layer may perform asynchronous callback activity
233  *     on a queue, such as calling the unplug function after a timeout.
234  *     A block device may call blk_sync_queue to ensure that any
235  *     such activity is cancelled, thus allowing it to release resources
236  *     that the callbacks might use. The caller must already have made sure
237  *     that its ->make_request_fn will not re-add plugging prior to calling
238  *     this function.
239  *
240  *     This function does not cancel any asynchronous activity arising
241  *     out of elevator or throttling code. That would require elevaotor_exit()
242  *     and blkcg_exit_queue() to be called with queue lock initialized.
243  *
244  */
245 void blk_sync_queue(struct request_queue *q)
246 {
247 	del_timer_sync(&q->timeout);
248 	cancel_delayed_work_sync(&q->delay_work);
249 }
250 EXPORT_SYMBOL(blk_sync_queue);
251 
252 /**
253  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
254  * @q:	The queue to run
255  *
256  * Description:
257  *    Invoke request handling on a queue if there are any pending requests.
258  *    May be used to restart request handling after a request has completed.
259  *    This variant runs the queue whether or not the queue has been
260  *    stopped. Must be called with the queue lock held and interrupts
261  *    disabled. See also @blk_run_queue.
262  */
263 inline void __blk_run_queue_uncond(struct request_queue *q)
264 {
265 	if (unlikely(blk_queue_dead(q)))
266 		return;
267 
268 	/*
269 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
270 	 * the queue lock internally. As a result multiple threads may be
271 	 * running such a request function concurrently. Keep track of the
272 	 * number of active request_fn invocations such that blk_drain_queue()
273 	 * can wait until all these request_fn calls have finished.
274 	 */
275 	q->request_fn_active++;
276 	q->request_fn(q);
277 	q->request_fn_active--;
278 }
279 
280 /**
281  * __blk_run_queue - run a single device queue
282  * @q:	The queue to run
283  *
284  * Description:
285  *    See @blk_run_queue. This variant must be called with the queue lock
286  *    held and interrupts disabled.
287  */
288 void __blk_run_queue(struct request_queue *q)
289 {
290 	if (unlikely(blk_queue_stopped(q)))
291 		return;
292 
293 	__blk_run_queue_uncond(q);
294 }
295 EXPORT_SYMBOL(__blk_run_queue);
296 
297 /**
298  * blk_run_queue_async - run a single device queue in workqueue context
299  * @q:	The queue to run
300  *
301  * Description:
302  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
303  *    of us. The caller must hold the queue lock.
304  */
305 void blk_run_queue_async(struct request_queue *q)
306 {
307 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
308 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
309 }
310 EXPORT_SYMBOL(blk_run_queue_async);
311 
312 /**
313  * blk_run_queue - run a single device queue
314  * @q: The queue to run
315  *
316  * Description:
317  *    Invoke request handling on this queue, if it has pending work to do.
318  *    May be used to restart queueing when a request has completed.
319  */
320 void blk_run_queue(struct request_queue *q)
321 {
322 	unsigned long flags;
323 
324 	spin_lock_irqsave(q->queue_lock, flags);
325 	__blk_run_queue(q);
326 	spin_unlock_irqrestore(q->queue_lock, flags);
327 }
328 EXPORT_SYMBOL(blk_run_queue);
329 
330 void blk_put_queue(struct request_queue *q)
331 {
332 	kobject_put(&q->kobj);
333 }
334 EXPORT_SYMBOL(blk_put_queue);
335 
336 /**
337  * __blk_drain_queue - drain requests from request_queue
338  * @q: queue to drain
339  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
340  *
341  * Drain requests from @q.  If @drain_all is set, all requests are drained.
342  * If not, only ELVPRIV requests are drained.  The caller is responsible
343  * for ensuring that no new requests which need to be drained are queued.
344  */
345 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
346 	__releases(q->queue_lock)
347 	__acquires(q->queue_lock)
348 {
349 	int i;
350 
351 	lockdep_assert_held(q->queue_lock);
352 
353 	while (true) {
354 		bool drain = false;
355 
356 		/*
357 		 * The caller might be trying to drain @q before its
358 		 * elevator is initialized.
359 		 */
360 		if (q->elevator)
361 			elv_drain_elevator(q);
362 
363 		blkcg_drain_queue(q);
364 
365 		/*
366 		 * This function might be called on a queue which failed
367 		 * driver init after queue creation or is not yet fully
368 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
369 		 * in such cases.  Kick queue iff dispatch queue has
370 		 * something on it and @q has request_fn set.
371 		 */
372 		if (!list_empty(&q->queue_head) && q->request_fn)
373 			__blk_run_queue(q);
374 
375 		drain |= q->nr_rqs_elvpriv;
376 		drain |= q->request_fn_active;
377 
378 		/*
379 		 * Unfortunately, requests are queued at and tracked from
380 		 * multiple places and there's no single counter which can
381 		 * be drained.  Check all the queues and counters.
382 		 */
383 		if (drain_all) {
384 			drain |= !list_empty(&q->queue_head);
385 			for (i = 0; i < 2; i++) {
386 				drain |= q->nr_rqs[i];
387 				drain |= q->in_flight[i];
388 				drain |= !list_empty(&q->flush_queue[i]);
389 			}
390 		}
391 
392 		if (!drain)
393 			break;
394 
395 		spin_unlock_irq(q->queue_lock);
396 
397 		msleep(10);
398 
399 		spin_lock_irq(q->queue_lock);
400 	}
401 
402 	/*
403 	 * With queue marked dead, any woken up waiter will fail the
404 	 * allocation path, so the wakeup chaining is lost and we're
405 	 * left with hung waiters. We need to wake up those waiters.
406 	 */
407 	if (q->request_fn) {
408 		struct request_list *rl;
409 
410 		blk_queue_for_each_rl(rl, q)
411 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
412 				wake_up_all(&rl->wait[i]);
413 	}
414 }
415 
416 /**
417  * blk_queue_bypass_start - enter queue bypass mode
418  * @q: queue of interest
419  *
420  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
421  * function makes @q enter bypass mode and drains all requests which were
422  * throttled or issued before.  On return, it's guaranteed that no request
423  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
424  * inside queue or RCU read lock.
425  */
426 void blk_queue_bypass_start(struct request_queue *q)
427 {
428 	bool drain;
429 
430 	spin_lock_irq(q->queue_lock);
431 	drain = !q->bypass_depth++;
432 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
433 	spin_unlock_irq(q->queue_lock);
434 
435 	if (drain) {
436 		spin_lock_irq(q->queue_lock);
437 		__blk_drain_queue(q, false);
438 		spin_unlock_irq(q->queue_lock);
439 
440 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
441 		synchronize_rcu();
442 	}
443 }
444 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
445 
446 /**
447  * blk_queue_bypass_end - leave queue bypass mode
448  * @q: queue of interest
449  *
450  * Leave bypass mode and restore the normal queueing behavior.
451  */
452 void blk_queue_bypass_end(struct request_queue *q)
453 {
454 	spin_lock_irq(q->queue_lock);
455 	if (!--q->bypass_depth)
456 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
457 	WARN_ON_ONCE(q->bypass_depth < 0);
458 	spin_unlock_irq(q->queue_lock);
459 }
460 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
461 
462 /**
463  * blk_cleanup_queue - shutdown a request queue
464  * @q: request queue to shutdown
465  *
466  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
467  * put it.  All future requests will be failed immediately with -ENODEV.
468  */
469 void blk_cleanup_queue(struct request_queue *q)
470 {
471 	spinlock_t *lock = q->queue_lock;
472 
473 	/* mark @q DYING, no new request or merges will be allowed afterwards */
474 	mutex_lock(&q->sysfs_lock);
475 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
476 	spin_lock_irq(lock);
477 
478 	/*
479 	 * A dying queue is permanently in bypass mode till released.  Note
480 	 * that, unlike blk_queue_bypass_start(), we aren't performing
481 	 * synchronize_rcu() after entering bypass mode to avoid the delay
482 	 * as some drivers create and destroy a lot of queues while
483 	 * probing.  This is still safe because blk_release_queue() will be
484 	 * called only after the queue refcnt drops to zero and nothing,
485 	 * RCU or not, would be traversing the queue by then.
486 	 */
487 	q->bypass_depth++;
488 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
489 
490 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
491 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
492 	queue_flag_set(QUEUE_FLAG_DYING, q);
493 	spin_unlock_irq(lock);
494 	mutex_unlock(&q->sysfs_lock);
495 
496 	/*
497 	 * Drain all requests queued before DYING marking. Set DEAD flag to
498 	 * prevent that q->request_fn() gets invoked after draining finished.
499 	 */
500 	spin_lock_irq(lock);
501 	__blk_drain_queue(q, true);
502 	queue_flag_set(QUEUE_FLAG_DEAD, q);
503 	spin_unlock_irq(lock);
504 
505 	/* @q won't process any more request, flush async actions */
506 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
507 	blk_sync_queue(q);
508 
509 	spin_lock_irq(lock);
510 	if (q->queue_lock != &q->__queue_lock)
511 		q->queue_lock = &q->__queue_lock;
512 	spin_unlock_irq(lock);
513 
514 	/* @q is and will stay empty, shutdown and put */
515 	blk_put_queue(q);
516 }
517 EXPORT_SYMBOL(blk_cleanup_queue);
518 
519 int blk_init_rl(struct request_list *rl, struct request_queue *q,
520 		gfp_t gfp_mask)
521 {
522 	if (unlikely(rl->rq_pool))
523 		return 0;
524 
525 	rl->q = q;
526 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
527 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
528 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
529 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
530 
531 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
532 					  mempool_free_slab, request_cachep,
533 					  gfp_mask, q->node);
534 	if (!rl->rq_pool)
535 		return -ENOMEM;
536 
537 	return 0;
538 }
539 
540 void blk_exit_rl(struct request_list *rl)
541 {
542 	if (rl->rq_pool)
543 		mempool_destroy(rl->rq_pool);
544 }
545 
546 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
547 {
548 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
549 }
550 EXPORT_SYMBOL(blk_alloc_queue);
551 
552 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
553 {
554 	struct request_queue *q;
555 	int err;
556 
557 	q = kmem_cache_alloc_node(blk_requestq_cachep,
558 				gfp_mask | __GFP_ZERO, node_id);
559 	if (!q)
560 		return NULL;
561 
562 	if (percpu_counter_init(&q->mq_usage_counter, 0))
563 		goto fail_q;
564 
565 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
566 	if (q->id < 0)
567 		goto fail_c;
568 
569 	q->backing_dev_info.ra_pages =
570 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
571 	q->backing_dev_info.state = 0;
572 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
573 	q->backing_dev_info.name = "block";
574 	q->node = node_id;
575 
576 	err = bdi_init(&q->backing_dev_info);
577 	if (err)
578 		goto fail_id;
579 
580 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
581 		    laptop_mode_timer_fn, (unsigned long) q);
582 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
583 	INIT_LIST_HEAD(&q->queue_head);
584 	INIT_LIST_HEAD(&q->timeout_list);
585 	INIT_LIST_HEAD(&q->icq_list);
586 #ifdef CONFIG_BLK_CGROUP
587 	INIT_LIST_HEAD(&q->blkg_list);
588 #endif
589 	INIT_LIST_HEAD(&q->flush_queue[0]);
590 	INIT_LIST_HEAD(&q->flush_queue[1]);
591 	INIT_LIST_HEAD(&q->flush_data_in_flight);
592 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
593 
594 	kobject_init(&q->kobj, &blk_queue_ktype);
595 
596 	mutex_init(&q->sysfs_lock);
597 	spin_lock_init(&q->__queue_lock);
598 
599 	/*
600 	 * By default initialize queue_lock to internal lock and driver can
601 	 * override it later if need be.
602 	 */
603 	q->queue_lock = &q->__queue_lock;
604 
605 	/*
606 	 * A queue starts its life with bypass turned on to avoid
607 	 * unnecessary bypass on/off overhead and nasty surprises during
608 	 * init.  The initial bypass will be finished when the queue is
609 	 * registered by blk_register_queue().
610 	 */
611 	q->bypass_depth = 1;
612 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
613 
614 	init_waitqueue_head(&q->mq_freeze_wq);
615 
616 	if (blkcg_init_queue(q))
617 		goto fail_bdi;
618 
619 	return q;
620 
621 fail_bdi:
622 	bdi_destroy(&q->backing_dev_info);
623 fail_id:
624 	ida_simple_remove(&blk_queue_ida, q->id);
625 fail_c:
626 	percpu_counter_destroy(&q->mq_usage_counter);
627 fail_q:
628 	kmem_cache_free(blk_requestq_cachep, q);
629 	return NULL;
630 }
631 EXPORT_SYMBOL(blk_alloc_queue_node);
632 
633 /**
634  * blk_init_queue  - prepare a request queue for use with a block device
635  * @rfn:  The function to be called to process requests that have been
636  *        placed on the queue.
637  * @lock: Request queue spin lock
638  *
639  * Description:
640  *    If a block device wishes to use the standard request handling procedures,
641  *    which sorts requests and coalesces adjacent requests, then it must
642  *    call blk_init_queue().  The function @rfn will be called when there
643  *    are requests on the queue that need to be processed.  If the device
644  *    supports plugging, then @rfn may not be called immediately when requests
645  *    are available on the queue, but may be called at some time later instead.
646  *    Plugged queues are generally unplugged when a buffer belonging to one
647  *    of the requests on the queue is needed, or due to memory pressure.
648  *
649  *    @rfn is not required, or even expected, to remove all requests off the
650  *    queue, but only as many as it can handle at a time.  If it does leave
651  *    requests on the queue, it is responsible for arranging that the requests
652  *    get dealt with eventually.
653  *
654  *    The queue spin lock must be held while manipulating the requests on the
655  *    request queue; this lock will be taken also from interrupt context, so irq
656  *    disabling is needed for it.
657  *
658  *    Function returns a pointer to the initialized request queue, or %NULL if
659  *    it didn't succeed.
660  *
661  * Note:
662  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
663  *    when the block device is deactivated (such as at module unload).
664  **/
665 
666 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
667 {
668 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
669 }
670 EXPORT_SYMBOL(blk_init_queue);
671 
672 struct request_queue *
673 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
674 {
675 	struct request_queue *uninit_q, *q;
676 
677 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
678 	if (!uninit_q)
679 		return NULL;
680 
681 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
682 	if (!q)
683 		blk_cleanup_queue(uninit_q);
684 
685 	return q;
686 }
687 EXPORT_SYMBOL(blk_init_queue_node);
688 
689 struct request_queue *
690 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
691 			 spinlock_t *lock)
692 {
693 	if (!q)
694 		return NULL;
695 
696 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
697 		return NULL;
698 
699 	q->request_fn		= rfn;
700 	q->prep_rq_fn		= NULL;
701 	q->unprep_rq_fn		= NULL;
702 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
703 
704 	/* Override internal queue lock with supplied lock pointer */
705 	if (lock)
706 		q->queue_lock		= lock;
707 
708 	/*
709 	 * This also sets hw/phys segments, boundary and size
710 	 */
711 	blk_queue_make_request(q, blk_queue_bio);
712 
713 	q->sg_reserved_size = INT_MAX;
714 
715 	/* Protect q->elevator from elevator_change */
716 	mutex_lock(&q->sysfs_lock);
717 
718 	/* init elevator */
719 	if (elevator_init(q, NULL)) {
720 		mutex_unlock(&q->sysfs_lock);
721 		return NULL;
722 	}
723 
724 	mutex_unlock(&q->sysfs_lock);
725 
726 	return q;
727 }
728 EXPORT_SYMBOL(blk_init_allocated_queue);
729 
730 bool blk_get_queue(struct request_queue *q)
731 {
732 	if (likely(!blk_queue_dying(q))) {
733 		__blk_get_queue(q);
734 		return true;
735 	}
736 
737 	return false;
738 }
739 EXPORT_SYMBOL(blk_get_queue);
740 
741 static inline void blk_free_request(struct request_list *rl, struct request *rq)
742 {
743 	if (rq->cmd_flags & REQ_ELVPRIV) {
744 		elv_put_request(rl->q, rq);
745 		if (rq->elv.icq)
746 			put_io_context(rq->elv.icq->ioc);
747 	}
748 
749 	mempool_free(rq, rl->rq_pool);
750 }
751 
752 /*
753  * ioc_batching returns true if the ioc is a valid batching request and
754  * should be given priority access to a request.
755  */
756 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
757 {
758 	if (!ioc)
759 		return 0;
760 
761 	/*
762 	 * Make sure the process is able to allocate at least 1 request
763 	 * even if the batch times out, otherwise we could theoretically
764 	 * lose wakeups.
765 	 */
766 	return ioc->nr_batch_requests == q->nr_batching ||
767 		(ioc->nr_batch_requests > 0
768 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
769 }
770 
771 /*
772  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
773  * will cause the process to be a "batcher" on all queues in the system. This
774  * is the behaviour we want though - once it gets a wakeup it should be given
775  * a nice run.
776  */
777 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
778 {
779 	if (!ioc || ioc_batching(q, ioc))
780 		return;
781 
782 	ioc->nr_batch_requests = q->nr_batching;
783 	ioc->last_waited = jiffies;
784 }
785 
786 static void __freed_request(struct request_list *rl, int sync)
787 {
788 	struct request_queue *q = rl->q;
789 
790 	/*
791 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
792 	 * blkcg anyway, just use root blkcg state.
793 	 */
794 	if (rl == &q->root_rl &&
795 	    rl->count[sync] < queue_congestion_off_threshold(q))
796 		blk_clear_queue_congested(q, sync);
797 
798 	if (rl->count[sync] + 1 <= q->nr_requests) {
799 		if (waitqueue_active(&rl->wait[sync]))
800 			wake_up(&rl->wait[sync]);
801 
802 		blk_clear_rl_full(rl, sync);
803 	}
804 }
805 
806 /*
807  * A request has just been released.  Account for it, update the full and
808  * congestion status, wake up any waiters.   Called under q->queue_lock.
809  */
810 static void freed_request(struct request_list *rl, unsigned int flags)
811 {
812 	struct request_queue *q = rl->q;
813 	int sync = rw_is_sync(flags);
814 
815 	q->nr_rqs[sync]--;
816 	rl->count[sync]--;
817 	if (flags & REQ_ELVPRIV)
818 		q->nr_rqs_elvpriv--;
819 
820 	__freed_request(rl, sync);
821 
822 	if (unlikely(rl->starved[sync ^ 1]))
823 		__freed_request(rl, sync ^ 1);
824 }
825 
826 /*
827  * Determine if elevator data should be initialized when allocating the
828  * request associated with @bio.
829  */
830 static bool blk_rq_should_init_elevator(struct bio *bio)
831 {
832 	if (!bio)
833 		return true;
834 
835 	/*
836 	 * Flush requests do not use the elevator so skip initialization.
837 	 * This allows a request to share the flush and elevator data.
838 	 */
839 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
840 		return false;
841 
842 	return true;
843 }
844 
845 /**
846  * rq_ioc - determine io_context for request allocation
847  * @bio: request being allocated is for this bio (can be %NULL)
848  *
849  * Determine io_context to use for request allocation for @bio.  May return
850  * %NULL if %current->io_context doesn't exist.
851  */
852 static struct io_context *rq_ioc(struct bio *bio)
853 {
854 #ifdef CONFIG_BLK_CGROUP
855 	if (bio && bio->bi_ioc)
856 		return bio->bi_ioc;
857 #endif
858 	return current->io_context;
859 }
860 
861 /**
862  * __get_request - get a free request
863  * @rl: request list to allocate from
864  * @rw_flags: RW and SYNC flags
865  * @bio: bio to allocate request for (can be %NULL)
866  * @gfp_mask: allocation mask
867  *
868  * Get a free request from @q.  This function may fail under memory
869  * pressure or if @q is dead.
870  *
871  * Must be callled with @q->queue_lock held and,
872  * Returns %NULL on failure, with @q->queue_lock held.
873  * Returns !%NULL on success, with @q->queue_lock *not held*.
874  */
875 static struct request *__get_request(struct request_list *rl, int rw_flags,
876 				     struct bio *bio, gfp_t gfp_mask)
877 {
878 	struct request_queue *q = rl->q;
879 	struct request *rq;
880 	struct elevator_type *et = q->elevator->type;
881 	struct io_context *ioc = rq_ioc(bio);
882 	struct io_cq *icq = NULL;
883 	const bool is_sync = rw_is_sync(rw_flags) != 0;
884 	int may_queue;
885 
886 	if (unlikely(blk_queue_dying(q)))
887 		return NULL;
888 
889 	may_queue = elv_may_queue(q, rw_flags);
890 	if (may_queue == ELV_MQUEUE_NO)
891 		goto rq_starved;
892 
893 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
894 		if (rl->count[is_sync]+1 >= q->nr_requests) {
895 			/*
896 			 * The queue will fill after this allocation, so set
897 			 * it as full, and mark this process as "batching".
898 			 * This process will be allowed to complete a batch of
899 			 * requests, others will be blocked.
900 			 */
901 			if (!blk_rl_full(rl, is_sync)) {
902 				ioc_set_batching(q, ioc);
903 				blk_set_rl_full(rl, is_sync);
904 			} else {
905 				if (may_queue != ELV_MQUEUE_MUST
906 						&& !ioc_batching(q, ioc)) {
907 					/*
908 					 * The queue is full and the allocating
909 					 * process is not a "batcher", and not
910 					 * exempted by the IO scheduler
911 					 */
912 					return NULL;
913 				}
914 			}
915 		}
916 		/*
917 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
918 		 * root blkcg anyway, just use root blkcg state.
919 		 */
920 		if (rl == &q->root_rl)
921 			blk_set_queue_congested(q, is_sync);
922 	}
923 
924 	/*
925 	 * Only allow batching queuers to allocate up to 50% over the defined
926 	 * limit of requests, otherwise we could have thousands of requests
927 	 * allocated with any setting of ->nr_requests
928 	 */
929 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
930 		return NULL;
931 
932 	q->nr_rqs[is_sync]++;
933 	rl->count[is_sync]++;
934 	rl->starved[is_sync] = 0;
935 
936 	/*
937 	 * Decide whether the new request will be managed by elevator.  If
938 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
939 	 * prevent the current elevator from being destroyed until the new
940 	 * request is freed.  This guarantees icq's won't be destroyed and
941 	 * makes creating new ones safe.
942 	 *
943 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
944 	 * it will be created after releasing queue_lock.
945 	 */
946 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
947 		rw_flags |= REQ_ELVPRIV;
948 		q->nr_rqs_elvpriv++;
949 		if (et->icq_cache && ioc)
950 			icq = ioc_lookup_icq(ioc, q);
951 	}
952 
953 	if (blk_queue_io_stat(q))
954 		rw_flags |= REQ_IO_STAT;
955 	spin_unlock_irq(q->queue_lock);
956 
957 	/* allocate and init request */
958 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
959 	if (!rq)
960 		goto fail_alloc;
961 
962 	blk_rq_init(q, rq);
963 	blk_rq_set_rl(rq, rl);
964 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
965 
966 	/* init elvpriv */
967 	if (rw_flags & REQ_ELVPRIV) {
968 		if (unlikely(et->icq_cache && !icq)) {
969 			if (ioc)
970 				icq = ioc_create_icq(ioc, q, gfp_mask);
971 			if (!icq)
972 				goto fail_elvpriv;
973 		}
974 
975 		rq->elv.icq = icq;
976 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
977 			goto fail_elvpriv;
978 
979 		/* @rq->elv.icq holds io_context until @rq is freed */
980 		if (icq)
981 			get_io_context(icq->ioc);
982 	}
983 out:
984 	/*
985 	 * ioc may be NULL here, and ioc_batching will be false. That's
986 	 * OK, if the queue is under the request limit then requests need
987 	 * not count toward the nr_batch_requests limit. There will always
988 	 * be some limit enforced by BLK_BATCH_TIME.
989 	 */
990 	if (ioc_batching(q, ioc))
991 		ioc->nr_batch_requests--;
992 
993 	trace_block_getrq(q, bio, rw_flags & 1);
994 	return rq;
995 
996 fail_elvpriv:
997 	/*
998 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
999 	 * and may fail indefinitely under memory pressure and thus
1000 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1001 	 * disturb iosched and blkcg but weird is bettern than dead.
1002 	 */
1003 	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1004 			   dev_name(q->backing_dev_info.dev));
1005 
1006 	rq->cmd_flags &= ~REQ_ELVPRIV;
1007 	rq->elv.icq = NULL;
1008 
1009 	spin_lock_irq(q->queue_lock);
1010 	q->nr_rqs_elvpriv--;
1011 	spin_unlock_irq(q->queue_lock);
1012 	goto out;
1013 
1014 fail_alloc:
1015 	/*
1016 	 * Allocation failed presumably due to memory. Undo anything we
1017 	 * might have messed up.
1018 	 *
1019 	 * Allocating task should really be put onto the front of the wait
1020 	 * queue, but this is pretty rare.
1021 	 */
1022 	spin_lock_irq(q->queue_lock);
1023 	freed_request(rl, rw_flags);
1024 
1025 	/*
1026 	 * in the very unlikely event that allocation failed and no
1027 	 * requests for this direction was pending, mark us starved so that
1028 	 * freeing of a request in the other direction will notice
1029 	 * us. another possible fix would be to split the rq mempool into
1030 	 * READ and WRITE
1031 	 */
1032 rq_starved:
1033 	if (unlikely(rl->count[is_sync] == 0))
1034 		rl->starved[is_sync] = 1;
1035 	return NULL;
1036 }
1037 
1038 /**
1039  * get_request - get a free request
1040  * @q: request_queue to allocate request from
1041  * @rw_flags: RW and SYNC flags
1042  * @bio: bio to allocate request for (can be %NULL)
1043  * @gfp_mask: allocation mask
1044  *
1045  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1046  * function keeps retrying under memory pressure and fails iff @q is dead.
1047  *
1048  * Must be callled with @q->queue_lock held and,
1049  * Returns %NULL on failure, with @q->queue_lock held.
1050  * Returns !%NULL on success, with @q->queue_lock *not held*.
1051  */
1052 static struct request *get_request(struct request_queue *q, int rw_flags,
1053 				   struct bio *bio, gfp_t gfp_mask)
1054 {
1055 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1056 	DEFINE_WAIT(wait);
1057 	struct request_list *rl;
1058 	struct request *rq;
1059 
1060 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1061 retry:
1062 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1063 	if (rq)
1064 		return rq;
1065 
1066 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1067 		blk_put_rl(rl);
1068 		return NULL;
1069 	}
1070 
1071 	/* wait on @rl and retry */
1072 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1073 				  TASK_UNINTERRUPTIBLE);
1074 
1075 	trace_block_sleeprq(q, bio, rw_flags & 1);
1076 
1077 	spin_unlock_irq(q->queue_lock);
1078 	io_schedule();
1079 
1080 	/*
1081 	 * After sleeping, we become a "batching" process and will be able
1082 	 * to allocate at least one request, and up to a big batch of them
1083 	 * for a small period time.  See ioc_batching, ioc_set_batching
1084 	 */
1085 	ioc_set_batching(q, current->io_context);
1086 
1087 	spin_lock_irq(q->queue_lock);
1088 	finish_wait(&rl->wait[is_sync], &wait);
1089 
1090 	goto retry;
1091 }
1092 
1093 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1094 		gfp_t gfp_mask)
1095 {
1096 	struct request *rq;
1097 
1098 	BUG_ON(rw != READ && rw != WRITE);
1099 
1100 	/* create ioc upfront */
1101 	create_io_context(gfp_mask, q->node);
1102 
1103 	spin_lock_irq(q->queue_lock);
1104 	rq = get_request(q, rw, NULL, gfp_mask);
1105 	if (!rq)
1106 		spin_unlock_irq(q->queue_lock);
1107 	/* q->queue_lock is unlocked at this point */
1108 
1109 	return rq;
1110 }
1111 
1112 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1113 {
1114 	if (q->mq_ops)
1115 		return blk_mq_alloc_request(q, rw, gfp_mask, false);
1116 	else
1117 		return blk_old_get_request(q, rw, gfp_mask);
1118 }
1119 EXPORT_SYMBOL(blk_get_request);
1120 
1121 /**
1122  * blk_make_request - given a bio, allocate a corresponding struct request.
1123  * @q: target request queue
1124  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1125  *        It may be a chained-bio properly constructed by block/bio layer.
1126  * @gfp_mask: gfp flags to be used for memory allocation
1127  *
1128  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1129  * type commands. Where the struct request needs to be farther initialized by
1130  * the caller. It is passed a &struct bio, which describes the memory info of
1131  * the I/O transfer.
1132  *
1133  * The caller of blk_make_request must make sure that bi_io_vec
1134  * are set to describe the memory buffers. That bio_data_dir() will return
1135  * the needed direction of the request. (And all bio's in the passed bio-chain
1136  * are properly set accordingly)
1137  *
1138  * If called under none-sleepable conditions, mapped bio buffers must not
1139  * need bouncing, by calling the appropriate masked or flagged allocator,
1140  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1141  * BUG.
1142  *
1143  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1144  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1145  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1146  * completion of a bio that hasn't been submitted yet, thus resulting in a
1147  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1148  * of bio_alloc(), as that avoids the mempool deadlock.
1149  * If possible a big IO should be split into smaller parts when allocation
1150  * fails. Partial allocation should not be an error, or you risk a live-lock.
1151  */
1152 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1153 				 gfp_t gfp_mask)
1154 {
1155 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1156 
1157 	if (unlikely(!rq))
1158 		return ERR_PTR(-ENOMEM);
1159 
1160 	for_each_bio(bio) {
1161 		struct bio *bounce_bio = bio;
1162 		int ret;
1163 
1164 		blk_queue_bounce(q, &bounce_bio);
1165 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1166 		if (unlikely(ret)) {
1167 			blk_put_request(rq);
1168 			return ERR_PTR(ret);
1169 		}
1170 	}
1171 
1172 	return rq;
1173 }
1174 EXPORT_SYMBOL(blk_make_request);
1175 
1176 /**
1177  * blk_requeue_request - put a request back on queue
1178  * @q:		request queue where request should be inserted
1179  * @rq:		request to be inserted
1180  *
1181  * Description:
1182  *    Drivers often keep queueing requests until the hardware cannot accept
1183  *    more, when that condition happens we need to put the request back
1184  *    on the queue. Must be called with queue lock held.
1185  */
1186 void blk_requeue_request(struct request_queue *q, struct request *rq)
1187 {
1188 	blk_delete_timer(rq);
1189 	blk_clear_rq_complete(rq);
1190 	trace_block_rq_requeue(q, rq);
1191 
1192 	if (blk_rq_tagged(rq))
1193 		blk_queue_end_tag(q, rq);
1194 
1195 	BUG_ON(blk_queued_rq(rq));
1196 
1197 	elv_requeue_request(q, rq);
1198 }
1199 EXPORT_SYMBOL(blk_requeue_request);
1200 
1201 static void add_acct_request(struct request_queue *q, struct request *rq,
1202 			     int where)
1203 {
1204 	blk_account_io_start(rq, true);
1205 	__elv_add_request(q, rq, where);
1206 }
1207 
1208 static void part_round_stats_single(int cpu, struct hd_struct *part,
1209 				    unsigned long now)
1210 {
1211 	if (now == part->stamp)
1212 		return;
1213 
1214 	if (part_in_flight(part)) {
1215 		__part_stat_add(cpu, part, time_in_queue,
1216 				part_in_flight(part) * (now - part->stamp));
1217 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1218 	}
1219 	part->stamp = now;
1220 }
1221 
1222 /**
1223  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1224  * @cpu: cpu number for stats access
1225  * @part: target partition
1226  *
1227  * The average IO queue length and utilisation statistics are maintained
1228  * by observing the current state of the queue length and the amount of
1229  * time it has been in this state for.
1230  *
1231  * Normally, that accounting is done on IO completion, but that can result
1232  * in more than a second's worth of IO being accounted for within any one
1233  * second, leading to >100% utilisation.  To deal with that, we call this
1234  * function to do a round-off before returning the results when reading
1235  * /proc/diskstats.  This accounts immediately for all queue usage up to
1236  * the current jiffies and restarts the counters again.
1237  */
1238 void part_round_stats(int cpu, struct hd_struct *part)
1239 {
1240 	unsigned long now = jiffies;
1241 
1242 	if (part->partno)
1243 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1244 	part_round_stats_single(cpu, part, now);
1245 }
1246 EXPORT_SYMBOL_GPL(part_round_stats);
1247 
1248 #ifdef CONFIG_PM_RUNTIME
1249 static void blk_pm_put_request(struct request *rq)
1250 {
1251 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1252 		pm_runtime_mark_last_busy(rq->q->dev);
1253 }
1254 #else
1255 static inline void blk_pm_put_request(struct request *rq) {}
1256 #endif
1257 
1258 /*
1259  * queue lock must be held
1260  */
1261 void __blk_put_request(struct request_queue *q, struct request *req)
1262 {
1263 	if (unlikely(!q))
1264 		return;
1265 
1266 	blk_pm_put_request(req);
1267 
1268 	elv_completed_request(q, req);
1269 
1270 	/* this is a bio leak */
1271 	WARN_ON(req->bio != NULL);
1272 
1273 	/*
1274 	 * Request may not have originated from ll_rw_blk. if not,
1275 	 * it didn't come out of our reserved rq pools
1276 	 */
1277 	if (req->cmd_flags & REQ_ALLOCED) {
1278 		unsigned int flags = req->cmd_flags;
1279 		struct request_list *rl = blk_rq_rl(req);
1280 
1281 		BUG_ON(!list_empty(&req->queuelist));
1282 		BUG_ON(!hlist_unhashed(&req->hash));
1283 
1284 		blk_free_request(rl, req);
1285 		freed_request(rl, flags);
1286 		blk_put_rl(rl);
1287 	}
1288 }
1289 EXPORT_SYMBOL_GPL(__blk_put_request);
1290 
1291 void blk_put_request(struct request *req)
1292 {
1293 	struct request_queue *q = req->q;
1294 
1295 	if (q->mq_ops)
1296 		blk_mq_free_request(req);
1297 	else {
1298 		unsigned long flags;
1299 
1300 		spin_lock_irqsave(q->queue_lock, flags);
1301 		__blk_put_request(q, req);
1302 		spin_unlock_irqrestore(q->queue_lock, flags);
1303 	}
1304 }
1305 EXPORT_SYMBOL(blk_put_request);
1306 
1307 /**
1308  * blk_add_request_payload - add a payload to a request
1309  * @rq: request to update
1310  * @page: page backing the payload
1311  * @len: length of the payload.
1312  *
1313  * This allows to later add a payload to an already submitted request by
1314  * a block driver.  The driver needs to take care of freeing the payload
1315  * itself.
1316  *
1317  * Note that this is a quite horrible hack and nothing but handling of
1318  * discard requests should ever use it.
1319  */
1320 void blk_add_request_payload(struct request *rq, struct page *page,
1321 		unsigned int len)
1322 {
1323 	struct bio *bio = rq->bio;
1324 
1325 	bio->bi_io_vec->bv_page = page;
1326 	bio->bi_io_vec->bv_offset = 0;
1327 	bio->bi_io_vec->bv_len = len;
1328 
1329 	bio->bi_size = len;
1330 	bio->bi_vcnt = 1;
1331 	bio->bi_phys_segments = 1;
1332 
1333 	rq->__data_len = rq->resid_len = len;
1334 	rq->nr_phys_segments = 1;
1335 	rq->buffer = bio_data(bio);
1336 }
1337 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1338 
1339 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1340 			    struct bio *bio)
1341 {
1342 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1343 
1344 	if (!ll_back_merge_fn(q, req, bio))
1345 		return false;
1346 
1347 	trace_block_bio_backmerge(q, req, bio);
1348 
1349 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1350 		blk_rq_set_mixed_merge(req);
1351 
1352 	req->biotail->bi_next = bio;
1353 	req->biotail = bio;
1354 	req->__data_len += bio->bi_size;
1355 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1356 
1357 	blk_account_io_start(req, false);
1358 	return true;
1359 }
1360 
1361 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1362 			     struct bio *bio)
1363 {
1364 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1365 
1366 	if (!ll_front_merge_fn(q, req, bio))
1367 		return false;
1368 
1369 	trace_block_bio_frontmerge(q, req, bio);
1370 
1371 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1372 		blk_rq_set_mixed_merge(req);
1373 
1374 	bio->bi_next = req->bio;
1375 	req->bio = bio;
1376 
1377 	/*
1378 	 * may not be valid. if the low level driver said
1379 	 * it didn't need a bounce buffer then it better
1380 	 * not touch req->buffer either...
1381 	 */
1382 	req->buffer = bio_data(bio);
1383 	req->__sector = bio->bi_sector;
1384 	req->__data_len += bio->bi_size;
1385 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1386 
1387 	blk_account_io_start(req, false);
1388 	return true;
1389 }
1390 
1391 /**
1392  * blk_attempt_plug_merge - try to merge with %current's plugged list
1393  * @q: request_queue new bio is being queued at
1394  * @bio: new bio being queued
1395  * @request_count: out parameter for number of traversed plugged requests
1396  *
1397  * Determine whether @bio being queued on @q can be merged with a request
1398  * on %current's plugged list.  Returns %true if merge was successful,
1399  * otherwise %false.
1400  *
1401  * Plugging coalesces IOs from the same issuer for the same purpose without
1402  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1403  * than scheduling, and the request, while may have elvpriv data, is not
1404  * added on the elevator at this point.  In addition, we don't have
1405  * reliable access to the elevator outside queue lock.  Only check basic
1406  * merging parameters without querying the elevator.
1407  */
1408 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1409 			    unsigned int *request_count)
1410 {
1411 	struct blk_plug *plug;
1412 	struct request *rq;
1413 	bool ret = false;
1414 	struct list_head *plug_list;
1415 
1416 	if (blk_queue_nomerges(q))
1417 		goto out;
1418 
1419 	plug = current->plug;
1420 	if (!plug)
1421 		goto out;
1422 	*request_count = 0;
1423 
1424 	if (q->mq_ops)
1425 		plug_list = &plug->mq_list;
1426 	else
1427 		plug_list = &plug->list;
1428 
1429 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1430 		int el_ret;
1431 
1432 		if (rq->q == q)
1433 			(*request_count)++;
1434 
1435 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1436 			continue;
1437 
1438 		el_ret = blk_try_merge(rq, bio);
1439 		if (el_ret == ELEVATOR_BACK_MERGE) {
1440 			ret = bio_attempt_back_merge(q, rq, bio);
1441 			if (ret)
1442 				break;
1443 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1444 			ret = bio_attempt_front_merge(q, rq, bio);
1445 			if (ret)
1446 				break;
1447 		}
1448 	}
1449 out:
1450 	return ret;
1451 }
1452 
1453 void init_request_from_bio(struct request *req, struct bio *bio)
1454 {
1455 	req->cmd_type = REQ_TYPE_FS;
1456 
1457 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1458 	if (bio->bi_rw & REQ_RAHEAD)
1459 		req->cmd_flags |= REQ_FAILFAST_MASK;
1460 
1461 	req->errors = 0;
1462 	req->__sector = bio->bi_sector;
1463 	req->ioprio = bio_prio(bio);
1464 	blk_rq_bio_prep(req->q, req, bio);
1465 }
1466 
1467 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1468 {
1469 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1470 	struct blk_plug *plug;
1471 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1472 	struct request *req;
1473 	unsigned int request_count = 0;
1474 
1475 	/*
1476 	 * low level driver can indicate that it wants pages above a
1477 	 * certain limit bounced to low memory (ie for highmem, or even
1478 	 * ISA dma in theory)
1479 	 */
1480 	blk_queue_bounce(q, &bio);
1481 
1482 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1483 		bio_endio(bio, -EIO);
1484 		return;
1485 	}
1486 
1487 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1488 		spin_lock_irq(q->queue_lock);
1489 		where = ELEVATOR_INSERT_FLUSH;
1490 		goto get_rq;
1491 	}
1492 
1493 	/*
1494 	 * Check if we can merge with the plugged list before grabbing
1495 	 * any locks.
1496 	 */
1497 	if (blk_attempt_plug_merge(q, bio, &request_count))
1498 		return;
1499 
1500 	spin_lock_irq(q->queue_lock);
1501 
1502 	el_ret = elv_merge(q, &req, bio);
1503 	if (el_ret == ELEVATOR_BACK_MERGE) {
1504 		if (bio_attempt_back_merge(q, req, bio)) {
1505 			elv_bio_merged(q, req, bio);
1506 			if (!attempt_back_merge(q, req))
1507 				elv_merged_request(q, req, el_ret);
1508 			goto out_unlock;
1509 		}
1510 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1511 		if (bio_attempt_front_merge(q, req, bio)) {
1512 			elv_bio_merged(q, req, bio);
1513 			if (!attempt_front_merge(q, req))
1514 				elv_merged_request(q, req, el_ret);
1515 			goto out_unlock;
1516 		}
1517 	}
1518 
1519 get_rq:
1520 	/*
1521 	 * This sync check and mask will be re-done in init_request_from_bio(),
1522 	 * but we need to set it earlier to expose the sync flag to the
1523 	 * rq allocator and io schedulers.
1524 	 */
1525 	rw_flags = bio_data_dir(bio);
1526 	if (sync)
1527 		rw_flags |= REQ_SYNC;
1528 
1529 	/*
1530 	 * Grab a free request. This is might sleep but can not fail.
1531 	 * Returns with the queue unlocked.
1532 	 */
1533 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1534 	if (unlikely(!req)) {
1535 		bio_endio(bio, -ENODEV);	/* @q is dead */
1536 		goto out_unlock;
1537 	}
1538 
1539 	/*
1540 	 * After dropping the lock and possibly sleeping here, our request
1541 	 * may now be mergeable after it had proven unmergeable (above).
1542 	 * We don't worry about that case for efficiency. It won't happen
1543 	 * often, and the elevators are able to handle it.
1544 	 */
1545 	init_request_from_bio(req, bio);
1546 
1547 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1548 		req->cpu = raw_smp_processor_id();
1549 
1550 	plug = current->plug;
1551 	if (plug) {
1552 		/*
1553 		 * If this is the first request added after a plug, fire
1554 		 * of a plug trace.
1555 		 */
1556 		if (!request_count)
1557 			trace_block_plug(q);
1558 		else {
1559 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1560 				blk_flush_plug_list(plug, false);
1561 				trace_block_plug(q);
1562 			}
1563 		}
1564 		list_add_tail(&req->queuelist, &plug->list);
1565 		blk_account_io_start(req, true);
1566 	} else {
1567 		spin_lock_irq(q->queue_lock);
1568 		add_acct_request(q, req, where);
1569 		__blk_run_queue(q);
1570 out_unlock:
1571 		spin_unlock_irq(q->queue_lock);
1572 	}
1573 }
1574 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1575 
1576 /*
1577  * If bio->bi_dev is a partition, remap the location
1578  */
1579 static inline void blk_partition_remap(struct bio *bio)
1580 {
1581 	struct block_device *bdev = bio->bi_bdev;
1582 
1583 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1584 		struct hd_struct *p = bdev->bd_part;
1585 
1586 		bio->bi_sector += p->start_sect;
1587 		bio->bi_bdev = bdev->bd_contains;
1588 
1589 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1590 				      bdev->bd_dev,
1591 				      bio->bi_sector - p->start_sect);
1592 	}
1593 }
1594 
1595 static void handle_bad_sector(struct bio *bio)
1596 {
1597 	char b[BDEVNAME_SIZE];
1598 
1599 	printk(KERN_INFO "attempt to access beyond end of device\n");
1600 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1601 			bdevname(bio->bi_bdev, b),
1602 			bio->bi_rw,
1603 			(unsigned long long)bio_end_sector(bio),
1604 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1605 
1606 	set_bit(BIO_EOF, &bio->bi_flags);
1607 }
1608 
1609 #ifdef CONFIG_FAIL_MAKE_REQUEST
1610 
1611 static DECLARE_FAULT_ATTR(fail_make_request);
1612 
1613 static int __init setup_fail_make_request(char *str)
1614 {
1615 	return setup_fault_attr(&fail_make_request, str);
1616 }
1617 __setup("fail_make_request=", setup_fail_make_request);
1618 
1619 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1620 {
1621 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1622 }
1623 
1624 static int __init fail_make_request_debugfs(void)
1625 {
1626 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1627 						NULL, &fail_make_request);
1628 
1629 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1630 }
1631 
1632 late_initcall(fail_make_request_debugfs);
1633 
1634 #else /* CONFIG_FAIL_MAKE_REQUEST */
1635 
1636 static inline bool should_fail_request(struct hd_struct *part,
1637 					unsigned int bytes)
1638 {
1639 	return false;
1640 }
1641 
1642 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1643 
1644 /*
1645  * Check whether this bio extends beyond the end of the device.
1646  */
1647 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1648 {
1649 	sector_t maxsector;
1650 
1651 	if (!nr_sectors)
1652 		return 0;
1653 
1654 	/* Test device or partition size, when known. */
1655 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1656 	if (maxsector) {
1657 		sector_t sector = bio->bi_sector;
1658 
1659 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1660 			/*
1661 			 * This may well happen - the kernel calls bread()
1662 			 * without checking the size of the device, e.g., when
1663 			 * mounting a device.
1664 			 */
1665 			handle_bad_sector(bio);
1666 			return 1;
1667 		}
1668 	}
1669 
1670 	return 0;
1671 }
1672 
1673 static noinline_for_stack bool
1674 generic_make_request_checks(struct bio *bio)
1675 {
1676 	struct request_queue *q;
1677 	int nr_sectors = bio_sectors(bio);
1678 	int err = -EIO;
1679 	char b[BDEVNAME_SIZE];
1680 	struct hd_struct *part;
1681 
1682 	might_sleep();
1683 
1684 	if (bio_check_eod(bio, nr_sectors))
1685 		goto end_io;
1686 
1687 	q = bdev_get_queue(bio->bi_bdev);
1688 	if (unlikely(!q)) {
1689 		printk(KERN_ERR
1690 		       "generic_make_request: Trying to access "
1691 			"nonexistent block-device %s (%Lu)\n",
1692 			bdevname(bio->bi_bdev, b),
1693 			(long long) bio->bi_sector);
1694 		goto end_io;
1695 	}
1696 
1697 	if (likely(bio_is_rw(bio) &&
1698 		   nr_sectors > queue_max_hw_sectors(q))) {
1699 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1700 		       bdevname(bio->bi_bdev, b),
1701 		       bio_sectors(bio),
1702 		       queue_max_hw_sectors(q));
1703 		goto end_io;
1704 	}
1705 
1706 	part = bio->bi_bdev->bd_part;
1707 	if (should_fail_request(part, bio->bi_size) ||
1708 	    should_fail_request(&part_to_disk(part)->part0,
1709 				bio->bi_size))
1710 		goto end_io;
1711 
1712 	/*
1713 	 * If this device has partitions, remap block n
1714 	 * of partition p to block n+start(p) of the disk.
1715 	 */
1716 	blk_partition_remap(bio);
1717 
1718 	if (bio_check_eod(bio, nr_sectors))
1719 		goto end_io;
1720 
1721 	/*
1722 	 * Filter flush bio's early so that make_request based
1723 	 * drivers without flush support don't have to worry
1724 	 * about them.
1725 	 */
1726 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1727 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1728 		if (!nr_sectors) {
1729 			err = 0;
1730 			goto end_io;
1731 		}
1732 	}
1733 
1734 	if ((bio->bi_rw & REQ_DISCARD) &&
1735 	    (!blk_queue_discard(q) ||
1736 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1737 		err = -EOPNOTSUPP;
1738 		goto end_io;
1739 	}
1740 
1741 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1742 		err = -EOPNOTSUPP;
1743 		goto end_io;
1744 	}
1745 
1746 	/*
1747 	 * Various block parts want %current->io_context and lazy ioc
1748 	 * allocation ends up trading a lot of pain for a small amount of
1749 	 * memory.  Just allocate it upfront.  This may fail and block
1750 	 * layer knows how to live with it.
1751 	 */
1752 	create_io_context(GFP_ATOMIC, q->node);
1753 
1754 	if (blk_throtl_bio(q, bio))
1755 		return false;	/* throttled, will be resubmitted later */
1756 
1757 	trace_block_bio_queue(q, bio);
1758 	return true;
1759 
1760 end_io:
1761 	bio_endio(bio, err);
1762 	return false;
1763 }
1764 
1765 /**
1766  * generic_make_request - hand a buffer to its device driver for I/O
1767  * @bio:  The bio describing the location in memory and on the device.
1768  *
1769  * generic_make_request() is used to make I/O requests of block
1770  * devices. It is passed a &struct bio, which describes the I/O that needs
1771  * to be done.
1772  *
1773  * generic_make_request() does not return any status.  The
1774  * success/failure status of the request, along with notification of
1775  * completion, is delivered asynchronously through the bio->bi_end_io
1776  * function described (one day) else where.
1777  *
1778  * The caller of generic_make_request must make sure that bi_io_vec
1779  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1780  * set to describe the device address, and the
1781  * bi_end_io and optionally bi_private are set to describe how
1782  * completion notification should be signaled.
1783  *
1784  * generic_make_request and the drivers it calls may use bi_next if this
1785  * bio happens to be merged with someone else, and may resubmit the bio to
1786  * a lower device by calling into generic_make_request recursively, which
1787  * means the bio should NOT be touched after the call to ->make_request_fn.
1788  */
1789 void generic_make_request(struct bio *bio)
1790 {
1791 	struct bio_list bio_list_on_stack;
1792 
1793 	if (!generic_make_request_checks(bio))
1794 		return;
1795 
1796 	/*
1797 	 * We only want one ->make_request_fn to be active at a time, else
1798 	 * stack usage with stacked devices could be a problem.  So use
1799 	 * current->bio_list to keep a list of requests submited by a
1800 	 * make_request_fn function.  current->bio_list is also used as a
1801 	 * flag to say if generic_make_request is currently active in this
1802 	 * task or not.  If it is NULL, then no make_request is active.  If
1803 	 * it is non-NULL, then a make_request is active, and new requests
1804 	 * should be added at the tail
1805 	 */
1806 	if (current->bio_list) {
1807 		bio_list_add(current->bio_list, bio);
1808 		return;
1809 	}
1810 
1811 	/* following loop may be a bit non-obvious, and so deserves some
1812 	 * explanation.
1813 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1814 	 * ensure that) so we have a list with a single bio.
1815 	 * We pretend that we have just taken it off a longer list, so
1816 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1817 	 * thus initialising the bio_list of new bios to be
1818 	 * added.  ->make_request() may indeed add some more bios
1819 	 * through a recursive call to generic_make_request.  If it
1820 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1821 	 * from the top.  In this case we really did just take the bio
1822 	 * of the top of the list (no pretending) and so remove it from
1823 	 * bio_list, and call into ->make_request() again.
1824 	 */
1825 	BUG_ON(bio->bi_next);
1826 	bio_list_init(&bio_list_on_stack);
1827 	current->bio_list = &bio_list_on_stack;
1828 	do {
1829 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1830 
1831 		q->make_request_fn(q, bio);
1832 
1833 		bio = bio_list_pop(current->bio_list);
1834 	} while (bio);
1835 	current->bio_list = NULL; /* deactivate */
1836 }
1837 EXPORT_SYMBOL(generic_make_request);
1838 
1839 /**
1840  * submit_bio - submit a bio to the block device layer for I/O
1841  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1842  * @bio: The &struct bio which describes the I/O
1843  *
1844  * submit_bio() is very similar in purpose to generic_make_request(), and
1845  * uses that function to do most of the work. Both are fairly rough
1846  * interfaces; @bio must be presetup and ready for I/O.
1847  *
1848  */
1849 void submit_bio(int rw, struct bio *bio)
1850 {
1851 	bio->bi_rw |= rw;
1852 
1853 	/*
1854 	 * If it's a regular read/write or a barrier with data attached,
1855 	 * go through the normal accounting stuff before submission.
1856 	 */
1857 	if (bio_has_data(bio)) {
1858 		unsigned int count;
1859 
1860 		if (unlikely(rw & REQ_WRITE_SAME))
1861 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1862 		else
1863 			count = bio_sectors(bio);
1864 
1865 		if (rw & WRITE) {
1866 			count_vm_events(PGPGOUT, count);
1867 		} else {
1868 			task_io_account_read(bio->bi_size);
1869 			count_vm_events(PGPGIN, count);
1870 		}
1871 
1872 		if (unlikely(block_dump)) {
1873 			char b[BDEVNAME_SIZE];
1874 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1875 			current->comm, task_pid_nr(current),
1876 				(rw & WRITE) ? "WRITE" : "READ",
1877 				(unsigned long long)bio->bi_sector,
1878 				bdevname(bio->bi_bdev, b),
1879 				count);
1880 		}
1881 	}
1882 
1883 	generic_make_request(bio);
1884 }
1885 EXPORT_SYMBOL(submit_bio);
1886 
1887 /**
1888  * blk_rq_check_limits - Helper function to check a request for the queue limit
1889  * @q:  the queue
1890  * @rq: the request being checked
1891  *
1892  * Description:
1893  *    @rq may have been made based on weaker limitations of upper-level queues
1894  *    in request stacking drivers, and it may violate the limitation of @q.
1895  *    Since the block layer and the underlying device driver trust @rq
1896  *    after it is inserted to @q, it should be checked against @q before
1897  *    the insertion using this generic function.
1898  *
1899  *    This function should also be useful for request stacking drivers
1900  *    in some cases below, so export this function.
1901  *    Request stacking drivers like request-based dm may change the queue
1902  *    limits while requests are in the queue (e.g. dm's table swapping).
1903  *    Such request stacking drivers should check those requests agaist
1904  *    the new queue limits again when they dispatch those requests,
1905  *    although such checkings are also done against the old queue limits
1906  *    when submitting requests.
1907  */
1908 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1909 {
1910 	if (!rq_mergeable(rq))
1911 		return 0;
1912 
1913 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1914 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1915 		return -EIO;
1916 	}
1917 
1918 	/*
1919 	 * queue's settings related to segment counting like q->bounce_pfn
1920 	 * may differ from that of other stacking queues.
1921 	 * Recalculate it to check the request correctly on this queue's
1922 	 * limitation.
1923 	 */
1924 	blk_recalc_rq_segments(rq);
1925 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1926 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1927 		return -EIO;
1928 	}
1929 
1930 	return 0;
1931 }
1932 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1933 
1934 /**
1935  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1936  * @q:  the queue to submit the request
1937  * @rq: the request being queued
1938  */
1939 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1940 {
1941 	unsigned long flags;
1942 	int where = ELEVATOR_INSERT_BACK;
1943 
1944 	if (blk_rq_check_limits(q, rq))
1945 		return -EIO;
1946 
1947 	if (rq->rq_disk &&
1948 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1949 		return -EIO;
1950 
1951 	spin_lock_irqsave(q->queue_lock, flags);
1952 	if (unlikely(blk_queue_dying(q))) {
1953 		spin_unlock_irqrestore(q->queue_lock, flags);
1954 		return -ENODEV;
1955 	}
1956 
1957 	/*
1958 	 * Submitting request must be dequeued before calling this function
1959 	 * because it will be linked to another request_queue
1960 	 */
1961 	BUG_ON(blk_queued_rq(rq));
1962 
1963 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1964 		where = ELEVATOR_INSERT_FLUSH;
1965 
1966 	add_acct_request(q, rq, where);
1967 	if (where == ELEVATOR_INSERT_FLUSH)
1968 		__blk_run_queue(q);
1969 	spin_unlock_irqrestore(q->queue_lock, flags);
1970 
1971 	return 0;
1972 }
1973 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1974 
1975 /**
1976  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1977  * @rq: request to examine
1978  *
1979  * Description:
1980  *     A request could be merge of IOs which require different failure
1981  *     handling.  This function determines the number of bytes which
1982  *     can be failed from the beginning of the request without
1983  *     crossing into area which need to be retried further.
1984  *
1985  * Return:
1986  *     The number of bytes to fail.
1987  *
1988  * Context:
1989  *     queue_lock must be held.
1990  */
1991 unsigned int blk_rq_err_bytes(const struct request *rq)
1992 {
1993 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1994 	unsigned int bytes = 0;
1995 	struct bio *bio;
1996 
1997 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1998 		return blk_rq_bytes(rq);
1999 
2000 	/*
2001 	 * Currently the only 'mixing' which can happen is between
2002 	 * different fastfail types.  We can safely fail portions
2003 	 * which have all the failfast bits that the first one has -
2004 	 * the ones which are at least as eager to fail as the first
2005 	 * one.
2006 	 */
2007 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2008 		if ((bio->bi_rw & ff) != ff)
2009 			break;
2010 		bytes += bio->bi_size;
2011 	}
2012 
2013 	/* this could lead to infinite loop */
2014 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2015 	return bytes;
2016 }
2017 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2018 
2019 void blk_account_io_completion(struct request *req, unsigned int bytes)
2020 {
2021 	if (blk_do_io_stat(req)) {
2022 		const int rw = rq_data_dir(req);
2023 		struct hd_struct *part;
2024 		int cpu;
2025 
2026 		cpu = part_stat_lock();
2027 		part = req->part;
2028 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2029 		part_stat_unlock();
2030 	}
2031 }
2032 
2033 void blk_account_io_done(struct request *req)
2034 {
2035 	/*
2036 	 * Account IO completion.  flush_rq isn't accounted as a
2037 	 * normal IO on queueing nor completion.  Accounting the
2038 	 * containing request is enough.
2039 	 */
2040 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2041 		unsigned long duration = jiffies - req->start_time;
2042 		const int rw = rq_data_dir(req);
2043 		struct hd_struct *part;
2044 		int cpu;
2045 
2046 		cpu = part_stat_lock();
2047 		part = req->part;
2048 
2049 		part_stat_inc(cpu, part, ios[rw]);
2050 		part_stat_add(cpu, part, ticks[rw], duration);
2051 		part_round_stats(cpu, part);
2052 		part_dec_in_flight(part, rw);
2053 
2054 		hd_struct_put(part);
2055 		part_stat_unlock();
2056 	}
2057 }
2058 
2059 #ifdef CONFIG_PM_RUNTIME
2060 /*
2061  * Don't process normal requests when queue is suspended
2062  * or in the process of suspending/resuming
2063  */
2064 static struct request *blk_pm_peek_request(struct request_queue *q,
2065 					   struct request *rq)
2066 {
2067 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2068 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2069 		return NULL;
2070 	else
2071 		return rq;
2072 }
2073 #else
2074 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2075 						  struct request *rq)
2076 {
2077 	return rq;
2078 }
2079 #endif
2080 
2081 void blk_account_io_start(struct request *rq, bool new_io)
2082 {
2083 	struct hd_struct *part;
2084 	int rw = rq_data_dir(rq);
2085 	int cpu;
2086 
2087 	if (!blk_do_io_stat(rq))
2088 		return;
2089 
2090 	cpu = part_stat_lock();
2091 
2092 	if (!new_io) {
2093 		part = rq->part;
2094 		part_stat_inc(cpu, part, merges[rw]);
2095 	} else {
2096 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2097 		if (!hd_struct_try_get(part)) {
2098 			/*
2099 			 * The partition is already being removed,
2100 			 * the request will be accounted on the disk only
2101 			 *
2102 			 * We take a reference on disk->part0 although that
2103 			 * partition will never be deleted, so we can treat
2104 			 * it as any other partition.
2105 			 */
2106 			part = &rq->rq_disk->part0;
2107 			hd_struct_get(part);
2108 		}
2109 		part_round_stats(cpu, part);
2110 		part_inc_in_flight(part, rw);
2111 		rq->part = part;
2112 	}
2113 
2114 	part_stat_unlock();
2115 }
2116 
2117 /**
2118  * blk_peek_request - peek at the top of a request queue
2119  * @q: request queue to peek at
2120  *
2121  * Description:
2122  *     Return the request at the top of @q.  The returned request
2123  *     should be started using blk_start_request() before LLD starts
2124  *     processing it.
2125  *
2126  * Return:
2127  *     Pointer to the request at the top of @q if available.  Null
2128  *     otherwise.
2129  *
2130  * Context:
2131  *     queue_lock must be held.
2132  */
2133 struct request *blk_peek_request(struct request_queue *q)
2134 {
2135 	struct request *rq;
2136 	int ret;
2137 
2138 	while ((rq = __elv_next_request(q)) != NULL) {
2139 
2140 		rq = blk_pm_peek_request(q, rq);
2141 		if (!rq)
2142 			break;
2143 
2144 		if (!(rq->cmd_flags & REQ_STARTED)) {
2145 			/*
2146 			 * This is the first time the device driver
2147 			 * sees this request (possibly after
2148 			 * requeueing).  Notify IO scheduler.
2149 			 */
2150 			if (rq->cmd_flags & REQ_SORTED)
2151 				elv_activate_rq(q, rq);
2152 
2153 			/*
2154 			 * just mark as started even if we don't start
2155 			 * it, a request that has been delayed should
2156 			 * not be passed by new incoming requests
2157 			 */
2158 			rq->cmd_flags |= REQ_STARTED;
2159 			trace_block_rq_issue(q, rq);
2160 		}
2161 
2162 		if (!q->boundary_rq || q->boundary_rq == rq) {
2163 			q->end_sector = rq_end_sector(rq);
2164 			q->boundary_rq = NULL;
2165 		}
2166 
2167 		if (rq->cmd_flags & REQ_DONTPREP)
2168 			break;
2169 
2170 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2171 			/*
2172 			 * make sure space for the drain appears we
2173 			 * know we can do this because max_hw_segments
2174 			 * has been adjusted to be one fewer than the
2175 			 * device can handle
2176 			 */
2177 			rq->nr_phys_segments++;
2178 		}
2179 
2180 		if (!q->prep_rq_fn)
2181 			break;
2182 
2183 		ret = q->prep_rq_fn(q, rq);
2184 		if (ret == BLKPREP_OK) {
2185 			break;
2186 		} else if (ret == BLKPREP_DEFER) {
2187 			/*
2188 			 * the request may have been (partially) prepped.
2189 			 * we need to keep this request in the front to
2190 			 * avoid resource deadlock.  REQ_STARTED will
2191 			 * prevent other fs requests from passing this one.
2192 			 */
2193 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2194 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2195 				/*
2196 				 * remove the space for the drain we added
2197 				 * so that we don't add it again
2198 				 */
2199 				--rq->nr_phys_segments;
2200 			}
2201 
2202 			rq = NULL;
2203 			break;
2204 		} else if (ret == BLKPREP_KILL) {
2205 			rq->cmd_flags |= REQ_QUIET;
2206 			/*
2207 			 * Mark this request as started so we don't trigger
2208 			 * any debug logic in the end I/O path.
2209 			 */
2210 			blk_start_request(rq);
2211 			__blk_end_request_all(rq, -EIO);
2212 		} else {
2213 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2214 			break;
2215 		}
2216 	}
2217 
2218 	return rq;
2219 }
2220 EXPORT_SYMBOL(blk_peek_request);
2221 
2222 void blk_dequeue_request(struct request *rq)
2223 {
2224 	struct request_queue *q = rq->q;
2225 
2226 	BUG_ON(list_empty(&rq->queuelist));
2227 	BUG_ON(ELV_ON_HASH(rq));
2228 
2229 	list_del_init(&rq->queuelist);
2230 
2231 	/*
2232 	 * the time frame between a request being removed from the lists
2233 	 * and to it is freed is accounted as io that is in progress at
2234 	 * the driver side.
2235 	 */
2236 	if (blk_account_rq(rq)) {
2237 		q->in_flight[rq_is_sync(rq)]++;
2238 		set_io_start_time_ns(rq);
2239 	}
2240 }
2241 
2242 /**
2243  * blk_start_request - start request processing on the driver
2244  * @req: request to dequeue
2245  *
2246  * Description:
2247  *     Dequeue @req and start timeout timer on it.  This hands off the
2248  *     request to the driver.
2249  *
2250  *     Block internal functions which don't want to start timer should
2251  *     call blk_dequeue_request().
2252  *
2253  * Context:
2254  *     queue_lock must be held.
2255  */
2256 void blk_start_request(struct request *req)
2257 {
2258 	blk_dequeue_request(req);
2259 
2260 	/*
2261 	 * We are now handing the request to the hardware, initialize
2262 	 * resid_len to full count and add the timeout handler.
2263 	 */
2264 	req->resid_len = blk_rq_bytes(req);
2265 	if (unlikely(blk_bidi_rq(req)))
2266 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2267 
2268 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2269 	blk_add_timer(req);
2270 }
2271 EXPORT_SYMBOL(blk_start_request);
2272 
2273 /**
2274  * blk_fetch_request - fetch a request from a request queue
2275  * @q: request queue to fetch a request from
2276  *
2277  * Description:
2278  *     Return the request at the top of @q.  The request is started on
2279  *     return and LLD can start processing it immediately.
2280  *
2281  * Return:
2282  *     Pointer to the request at the top of @q if available.  Null
2283  *     otherwise.
2284  *
2285  * Context:
2286  *     queue_lock must be held.
2287  */
2288 struct request *blk_fetch_request(struct request_queue *q)
2289 {
2290 	struct request *rq;
2291 
2292 	rq = blk_peek_request(q);
2293 	if (rq)
2294 		blk_start_request(rq);
2295 	return rq;
2296 }
2297 EXPORT_SYMBOL(blk_fetch_request);
2298 
2299 /**
2300  * blk_update_request - Special helper function for request stacking drivers
2301  * @req:      the request being processed
2302  * @error:    %0 for success, < %0 for error
2303  * @nr_bytes: number of bytes to complete @req
2304  *
2305  * Description:
2306  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2307  *     the request structure even if @req doesn't have leftover.
2308  *     If @req has leftover, sets it up for the next range of segments.
2309  *
2310  *     This special helper function is only for request stacking drivers
2311  *     (e.g. request-based dm) so that they can handle partial completion.
2312  *     Actual device drivers should use blk_end_request instead.
2313  *
2314  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2315  *     %false return from this function.
2316  *
2317  * Return:
2318  *     %false - this request doesn't have any more data
2319  *     %true  - this request has more data
2320  **/
2321 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2322 {
2323 	int total_bytes;
2324 
2325 	if (!req->bio)
2326 		return false;
2327 
2328 	trace_block_rq_complete(req->q, req);
2329 
2330 	/*
2331 	 * For fs requests, rq is just carrier of independent bio's
2332 	 * and each partial completion should be handled separately.
2333 	 * Reset per-request error on each partial completion.
2334 	 *
2335 	 * TODO: tj: This is too subtle.  It would be better to let
2336 	 * low level drivers do what they see fit.
2337 	 */
2338 	if (req->cmd_type == REQ_TYPE_FS)
2339 		req->errors = 0;
2340 
2341 	if (error && req->cmd_type == REQ_TYPE_FS &&
2342 	    !(req->cmd_flags & REQ_QUIET)) {
2343 		char *error_type;
2344 
2345 		switch (error) {
2346 		case -ENOLINK:
2347 			error_type = "recoverable transport";
2348 			break;
2349 		case -EREMOTEIO:
2350 			error_type = "critical target";
2351 			break;
2352 		case -EBADE:
2353 			error_type = "critical nexus";
2354 			break;
2355 		case -ETIMEDOUT:
2356 			error_type = "timeout";
2357 			break;
2358 		case -ENOSPC:
2359 			error_type = "critical space allocation";
2360 			break;
2361 		case -ENODATA:
2362 			error_type = "critical medium";
2363 			break;
2364 		case -EIO:
2365 		default:
2366 			error_type = "I/O";
2367 			break;
2368 		}
2369 		printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2370 				   error_type, req->rq_disk ?
2371 				   req->rq_disk->disk_name : "?",
2372 				   (unsigned long long)blk_rq_pos(req));
2373 
2374 	}
2375 
2376 	blk_account_io_completion(req, nr_bytes);
2377 
2378 	total_bytes = 0;
2379 	while (req->bio) {
2380 		struct bio *bio = req->bio;
2381 		unsigned bio_bytes = min(bio->bi_size, nr_bytes);
2382 
2383 		if (bio_bytes == bio->bi_size)
2384 			req->bio = bio->bi_next;
2385 
2386 		req_bio_endio(req, bio, bio_bytes, error);
2387 
2388 		total_bytes += bio_bytes;
2389 		nr_bytes -= bio_bytes;
2390 
2391 		if (!nr_bytes)
2392 			break;
2393 	}
2394 
2395 	/*
2396 	 * completely done
2397 	 */
2398 	if (!req->bio) {
2399 		/*
2400 		 * Reset counters so that the request stacking driver
2401 		 * can find how many bytes remain in the request
2402 		 * later.
2403 		 */
2404 		req->__data_len = 0;
2405 		return false;
2406 	}
2407 
2408 	req->__data_len -= total_bytes;
2409 	req->buffer = bio_data(req->bio);
2410 
2411 	/* update sector only for requests with clear definition of sector */
2412 	if (req->cmd_type == REQ_TYPE_FS)
2413 		req->__sector += total_bytes >> 9;
2414 
2415 	/* mixed attributes always follow the first bio */
2416 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2417 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2418 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2419 	}
2420 
2421 	/*
2422 	 * If total number of sectors is less than the first segment
2423 	 * size, something has gone terribly wrong.
2424 	 */
2425 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2426 		blk_dump_rq_flags(req, "request botched");
2427 		req->__data_len = blk_rq_cur_bytes(req);
2428 	}
2429 
2430 	/* recalculate the number of segments */
2431 	blk_recalc_rq_segments(req);
2432 
2433 	return true;
2434 }
2435 EXPORT_SYMBOL_GPL(blk_update_request);
2436 
2437 static bool blk_update_bidi_request(struct request *rq, int error,
2438 				    unsigned int nr_bytes,
2439 				    unsigned int bidi_bytes)
2440 {
2441 	if (blk_update_request(rq, error, nr_bytes))
2442 		return true;
2443 
2444 	/* Bidi request must be completed as a whole */
2445 	if (unlikely(blk_bidi_rq(rq)) &&
2446 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2447 		return true;
2448 
2449 	if (blk_queue_add_random(rq->q))
2450 		add_disk_randomness(rq->rq_disk);
2451 
2452 	return false;
2453 }
2454 
2455 /**
2456  * blk_unprep_request - unprepare a request
2457  * @req:	the request
2458  *
2459  * This function makes a request ready for complete resubmission (or
2460  * completion).  It happens only after all error handling is complete,
2461  * so represents the appropriate moment to deallocate any resources
2462  * that were allocated to the request in the prep_rq_fn.  The queue
2463  * lock is held when calling this.
2464  */
2465 void blk_unprep_request(struct request *req)
2466 {
2467 	struct request_queue *q = req->q;
2468 
2469 	req->cmd_flags &= ~REQ_DONTPREP;
2470 	if (q->unprep_rq_fn)
2471 		q->unprep_rq_fn(q, req);
2472 }
2473 EXPORT_SYMBOL_GPL(blk_unprep_request);
2474 
2475 /*
2476  * queue lock must be held
2477  */
2478 static void blk_finish_request(struct request *req, int error)
2479 {
2480 	if (blk_rq_tagged(req))
2481 		blk_queue_end_tag(req->q, req);
2482 
2483 	BUG_ON(blk_queued_rq(req));
2484 
2485 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2486 		laptop_io_completion(&req->q->backing_dev_info);
2487 
2488 	blk_delete_timer(req);
2489 
2490 	if (req->cmd_flags & REQ_DONTPREP)
2491 		blk_unprep_request(req);
2492 
2493 	blk_account_io_done(req);
2494 
2495 	if (req->end_io)
2496 		req->end_io(req, error);
2497 	else {
2498 		if (blk_bidi_rq(req))
2499 			__blk_put_request(req->next_rq->q, req->next_rq);
2500 
2501 		__blk_put_request(req->q, req);
2502 	}
2503 }
2504 
2505 /**
2506  * blk_end_bidi_request - Complete a bidi request
2507  * @rq:         the request to complete
2508  * @error:      %0 for success, < %0 for error
2509  * @nr_bytes:   number of bytes to complete @rq
2510  * @bidi_bytes: number of bytes to complete @rq->next_rq
2511  *
2512  * Description:
2513  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2514  *     Drivers that supports bidi can safely call this member for any
2515  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2516  *     just ignored.
2517  *
2518  * Return:
2519  *     %false - we are done with this request
2520  *     %true  - still buffers pending for this request
2521  **/
2522 static bool blk_end_bidi_request(struct request *rq, int error,
2523 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2524 {
2525 	struct request_queue *q = rq->q;
2526 	unsigned long flags;
2527 
2528 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2529 		return true;
2530 
2531 	spin_lock_irqsave(q->queue_lock, flags);
2532 	blk_finish_request(rq, error);
2533 	spin_unlock_irqrestore(q->queue_lock, flags);
2534 
2535 	return false;
2536 }
2537 
2538 /**
2539  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2540  * @rq:         the request to complete
2541  * @error:      %0 for success, < %0 for error
2542  * @nr_bytes:   number of bytes to complete @rq
2543  * @bidi_bytes: number of bytes to complete @rq->next_rq
2544  *
2545  * Description:
2546  *     Identical to blk_end_bidi_request() except that queue lock is
2547  *     assumed to be locked on entry and remains so on return.
2548  *
2549  * Return:
2550  *     %false - we are done with this request
2551  *     %true  - still buffers pending for this request
2552  **/
2553 bool __blk_end_bidi_request(struct request *rq, int error,
2554 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2555 {
2556 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2557 		return true;
2558 
2559 	blk_finish_request(rq, error);
2560 
2561 	return false;
2562 }
2563 
2564 /**
2565  * blk_end_request - Helper function for drivers to complete the request.
2566  * @rq:       the request being processed
2567  * @error:    %0 for success, < %0 for error
2568  * @nr_bytes: number of bytes to complete
2569  *
2570  * Description:
2571  *     Ends I/O on a number of bytes attached to @rq.
2572  *     If @rq has leftover, sets it up for the next range of segments.
2573  *
2574  * Return:
2575  *     %false - we are done with this request
2576  *     %true  - still buffers pending for this request
2577  **/
2578 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2579 {
2580 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2581 }
2582 EXPORT_SYMBOL(blk_end_request);
2583 
2584 /**
2585  * blk_end_request_all - Helper function for drives to finish the request.
2586  * @rq: the request to finish
2587  * @error: %0 for success, < %0 for error
2588  *
2589  * Description:
2590  *     Completely finish @rq.
2591  */
2592 void blk_end_request_all(struct request *rq, int error)
2593 {
2594 	bool pending;
2595 	unsigned int bidi_bytes = 0;
2596 
2597 	if (unlikely(blk_bidi_rq(rq)))
2598 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2599 
2600 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2601 	BUG_ON(pending);
2602 }
2603 EXPORT_SYMBOL(blk_end_request_all);
2604 
2605 /**
2606  * blk_end_request_cur - Helper function to finish the current request chunk.
2607  * @rq: the request to finish the current chunk for
2608  * @error: %0 for success, < %0 for error
2609  *
2610  * Description:
2611  *     Complete the current consecutively mapped chunk from @rq.
2612  *
2613  * Return:
2614  *     %false - we are done with this request
2615  *     %true  - still buffers pending for this request
2616  */
2617 bool blk_end_request_cur(struct request *rq, int error)
2618 {
2619 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2620 }
2621 EXPORT_SYMBOL(blk_end_request_cur);
2622 
2623 /**
2624  * blk_end_request_err - Finish a request till the next failure boundary.
2625  * @rq: the request to finish till the next failure boundary for
2626  * @error: must be negative errno
2627  *
2628  * Description:
2629  *     Complete @rq till the next failure boundary.
2630  *
2631  * Return:
2632  *     %false - we are done with this request
2633  *     %true  - still buffers pending for this request
2634  */
2635 bool blk_end_request_err(struct request *rq, int error)
2636 {
2637 	WARN_ON(error >= 0);
2638 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2639 }
2640 EXPORT_SYMBOL_GPL(blk_end_request_err);
2641 
2642 /**
2643  * __blk_end_request - Helper function for drivers to complete the request.
2644  * @rq:       the request being processed
2645  * @error:    %0 for success, < %0 for error
2646  * @nr_bytes: number of bytes to complete
2647  *
2648  * Description:
2649  *     Must be called with queue lock held unlike blk_end_request().
2650  *
2651  * Return:
2652  *     %false - we are done with this request
2653  *     %true  - still buffers pending for this request
2654  **/
2655 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2656 {
2657 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2658 }
2659 EXPORT_SYMBOL(__blk_end_request);
2660 
2661 /**
2662  * __blk_end_request_all - Helper function for drives to finish the request.
2663  * @rq: the request to finish
2664  * @error: %0 for success, < %0 for error
2665  *
2666  * Description:
2667  *     Completely finish @rq.  Must be called with queue lock held.
2668  */
2669 void __blk_end_request_all(struct request *rq, int error)
2670 {
2671 	bool pending;
2672 	unsigned int bidi_bytes = 0;
2673 
2674 	if (unlikely(blk_bidi_rq(rq)))
2675 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2676 
2677 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2678 	BUG_ON(pending);
2679 }
2680 EXPORT_SYMBOL(__blk_end_request_all);
2681 
2682 /**
2683  * __blk_end_request_cur - Helper function to finish the current request chunk.
2684  * @rq: the request to finish the current chunk for
2685  * @error: %0 for success, < %0 for error
2686  *
2687  * Description:
2688  *     Complete the current consecutively mapped chunk from @rq.  Must
2689  *     be called with queue lock held.
2690  *
2691  * Return:
2692  *     %false - we are done with this request
2693  *     %true  - still buffers pending for this request
2694  */
2695 bool __blk_end_request_cur(struct request *rq, int error)
2696 {
2697 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2698 }
2699 EXPORT_SYMBOL(__blk_end_request_cur);
2700 
2701 /**
2702  * __blk_end_request_err - Finish a request till the next failure boundary.
2703  * @rq: the request to finish till the next failure boundary for
2704  * @error: must be negative errno
2705  *
2706  * Description:
2707  *     Complete @rq till the next failure boundary.  Must be called
2708  *     with queue lock held.
2709  *
2710  * Return:
2711  *     %false - we are done with this request
2712  *     %true  - still buffers pending for this request
2713  */
2714 bool __blk_end_request_err(struct request *rq, int error)
2715 {
2716 	WARN_ON(error >= 0);
2717 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2718 }
2719 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2720 
2721 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2722 		     struct bio *bio)
2723 {
2724 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2725 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2726 
2727 	if (bio_has_data(bio)) {
2728 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2729 		rq->buffer = bio_data(bio);
2730 	}
2731 	rq->__data_len = bio->bi_size;
2732 	rq->bio = rq->biotail = bio;
2733 
2734 	if (bio->bi_bdev)
2735 		rq->rq_disk = bio->bi_bdev->bd_disk;
2736 }
2737 
2738 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2739 /**
2740  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2741  * @rq: the request to be flushed
2742  *
2743  * Description:
2744  *     Flush all pages in @rq.
2745  */
2746 void rq_flush_dcache_pages(struct request *rq)
2747 {
2748 	struct req_iterator iter;
2749 	struct bio_vec *bvec;
2750 
2751 	rq_for_each_segment(bvec, rq, iter)
2752 		flush_dcache_page(bvec->bv_page);
2753 }
2754 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2755 #endif
2756 
2757 /**
2758  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2759  * @q : the queue of the device being checked
2760  *
2761  * Description:
2762  *    Check if underlying low-level drivers of a device are busy.
2763  *    If the drivers want to export their busy state, they must set own
2764  *    exporting function using blk_queue_lld_busy() first.
2765  *
2766  *    Basically, this function is used only by request stacking drivers
2767  *    to stop dispatching requests to underlying devices when underlying
2768  *    devices are busy.  This behavior helps more I/O merging on the queue
2769  *    of the request stacking driver and prevents I/O throughput regression
2770  *    on burst I/O load.
2771  *
2772  * Return:
2773  *    0 - Not busy (The request stacking driver should dispatch request)
2774  *    1 - Busy (The request stacking driver should stop dispatching request)
2775  */
2776 int blk_lld_busy(struct request_queue *q)
2777 {
2778 	if (q->lld_busy_fn)
2779 		return q->lld_busy_fn(q);
2780 
2781 	return 0;
2782 }
2783 EXPORT_SYMBOL_GPL(blk_lld_busy);
2784 
2785 /**
2786  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2787  * @rq: the clone request to be cleaned up
2788  *
2789  * Description:
2790  *     Free all bios in @rq for a cloned request.
2791  */
2792 void blk_rq_unprep_clone(struct request *rq)
2793 {
2794 	struct bio *bio;
2795 
2796 	while ((bio = rq->bio) != NULL) {
2797 		rq->bio = bio->bi_next;
2798 
2799 		bio_put(bio);
2800 	}
2801 }
2802 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2803 
2804 /*
2805  * Copy attributes of the original request to the clone request.
2806  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2807  */
2808 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2809 {
2810 	dst->cpu = src->cpu;
2811 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2812 	dst->cmd_type = src->cmd_type;
2813 	dst->__sector = blk_rq_pos(src);
2814 	dst->__data_len = blk_rq_bytes(src);
2815 	dst->nr_phys_segments = src->nr_phys_segments;
2816 	dst->ioprio = src->ioprio;
2817 	dst->extra_len = src->extra_len;
2818 }
2819 
2820 /**
2821  * blk_rq_prep_clone - Helper function to setup clone request
2822  * @rq: the request to be setup
2823  * @rq_src: original request to be cloned
2824  * @bs: bio_set that bios for clone are allocated from
2825  * @gfp_mask: memory allocation mask for bio
2826  * @bio_ctr: setup function to be called for each clone bio.
2827  *           Returns %0 for success, non %0 for failure.
2828  * @data: private data to be passed to @bio_ctr
2829  *
2830  * Description:
2831  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2832  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2833  *     are not copied, and copying such parts is the caller's responsibility.
2834  *     Also, pages which the original bios are pointing to are not copied
2835  *     and the cloned bios just point same pages.
2836  *     So cloned bios must be completed before original bios, which means
2837  *     the caller must complete @rq before @rq_src.
2838  */
2839 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2840 		      struct bio_set *bs, gfp_t gfp_mask,
2841 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2842 		      void *data)
2843 {
2844 	struct bio *bio, *bio_src;
2845 
2846 	if (!bs)
2847 		bs = fs_bio_set;
2848 
2849 	blk_rq_init(NULL, rq);
2850 
2851 	__rq_for_each_bio(bio_src, rq_src) {
2852 		bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2853 		if (!bio)
2854 			goto free_and_out;
2855 
2856 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2857 			goto free_and_out;
2858 
2859 		if (rq->bio) {
2860 			rq->biotail->bi_next = bio;
2861 			rq->biotail = bio;
2862 		} else
2863 			rq->bio = rq->biotail = bio;
2864 	}
2865 
2866 	__blk_rq_prep_clone(rq, rq_src);
2867 
2868 	return 0;
2869 
2870 free_and_out:
2871 	if (bio)
2872 		bio_put(bio);
2873 	blk_rq_unprep_clone(rq);
2874 
2875 	return -ENOMEM;
2876 }
2877 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2878 
2879 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2880 {
2881 	return queue_work(kblockd_workqueue, work);
2882 }
2883 EXPORT_SYMBOL(kblockd_schedule_work);
2884 
2885 int kblockd_schedule_delayed_work(struct request_queue *q,
2886 			struct delayed_work *dwork, unsigned long delay)
2887 {
2888 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2889 }
2890 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2891 
2892 #define PLUG_MAGIC	0x91827364
2893 
2894 /**
2895  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2896  * @plug:	The &struct blk_plug that needs to be initialized
2897  *
2898  * Description:
2899  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2900  *   pending I/O should the task end up blocking between blk_start_plug() and
2901  *   blk_finish_plug(). This is important from a performance perspective, but
2902  *   also ensures that we don't deadlock. For instance, if the task is blocking
2903  *   for a memory allocation, memory reclaim could end up wanting to free a
2904  *   page belonging to that request that is currently residing in our private
2905  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2906  *   this kind of deadlock.
2907  */
2908 void blk_start_plug(struct blk_plug *plug)
2909 {
2910 	struct task_struct *tsk = current;
2911 
2912 	plug->magic = PLUG_MAGIC;
2913 	INIT_LIST_HEAD(&plug->list);
2914 	INIT_LIST_HEAD(&plug->mq_list);
2915 	INIT_LIST_HEAD(&plug->cb_list);
2916 
2917 	/*
2918 	 * If this is a nested plug, don't actually assign it. It will be
2919 	 * flushed on its own.
2920 	 */
2921 	if (!tsk->plug) {
2922 		/*
2923 		 * Store ordering should not be needed here, since a potential
2924 		 * preempt will imply a full memory barrier
2925 		 */
2926 		tsk->plug = plug;
2927 	}
2928 }
2929 EXPORT_SYMBOL(blk_start_plug);
2930 
2931 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2932 {
2933 	struct request *rqa = container_of(a, struct request, queuelist);
2934 	struct request *rqb = container_of(b, struct request, queuelist);
2935 
2936 	return !(rqa->q < rqb->q ||
2937 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2938 }
2939 
2940 /*
2941  * If 'from_schedule' is true, then postpone the dispatch of requests
2942  * until a safe kblockd context. We due this to avoid accidental big
2943  * additional stack usage in driver dispatch, in places where the originally
2944  * plugger did not intend it.
2945  */
2946 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2947 			    bool from_schedule)
2948 	__releases(q->queue_lock)
2949 {
2950 	trace_block_unplug(q, depth, !from_schedule);
2951 
2952 	if (from_schedule)
2953 		blk_run_queue_async(q);
2954 	else
2955 		__blk_run_queue(q);
2956 	spin_unlock(q->queue_lock);
2957 }
2958 
2959 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2960 {
2961 	LIST_HEAD(callbacks);
2962 
2963 	while (!list_empty(&plug->cb_list)) {
2964 		list_splice_init(&plug->cb_list, &callbacks);
2965 
2966 		while (!list_empty(&callbacks)) {
2967 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
2968 							  struct blk_plug_cb,
2969 							  list);
2970 			list_del(&cb->list);
2971 			cb->callback(cb, from_schedule);
2972 		}
2973 	}
2974 }
2975 
2976 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2977 				      int size)
2978 {
2979 	struct blk_plug *plug = current->plug;
2980 	struct blk_plug_cb *cb;
2981 
2982 	if (!plug)
2983 		return NULL;
2984 
2985 	list_for_each_entry(cb, &plug->cb_list, list)
2986 		if (cb->callback == unplug && cb->data == data)
2987 			return cb;
2988 
2989 	/* Not currently on the callback list */
2990 	BUG_ON(size < sizeof(*cb));
2991 	cb = kzalloc(size, GFP_ATOMIC);
2992 	if (cb) {
2993 		cb->data = data;
2994 		cb->callback = unplug;
2995 		list_add(&cb->list, &plug->cb_list);
2996 	}
2997 	return cb;
2998 }
2999 EXPORT_SYMBOL(blk_check_plugged);
3000 
3001 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3002 {
3003 	struct request_queue *q;
3004 	unsigned long flags;
3005 	struct request *rq;
3006 	LIST_HEAD(list);
3007 	unsigned int depth;
3008 
3009 	BUG_ON(plug->magic != PLUG_MAGIC);
3010 
3011 	flush_plug_callbacks(plug, from_schedule);
3012 
3013 	if (!list_empty(&plug->mq_list))
3014 		blk_mq_flush_plug_list(plug, from_schedule);
3015 
3016 	if (list_empty(&plug->list))
3017 		return;
3018 
3019 	list_splice_init(&plug->list, &list);
3020 
3021 	list_sort(NULL, &list, plug_rq_cmp);
3022 
3023 	q = NULL;
3024 	depth = 0;
3025 
3026 	/*
3027 	 * Save and disable interrupts here, to avoid doing it for every
3028 	 * queue lock we have to take.
3029 	 */
3030 	local_irq_save(flags);
3031 	while (!list_empty(&list)) {
3032 		rq = list_entry_rq(list.next);
3033 		list_del_init(&rq->queuelist);
3034 		BUG_ON(!rq->q);
3035 		if (rq->q != q) {
3036 			/*
3037 			 * This drops the queue lock
3038 			 */
3039 			if (q)
3040 				queue_unplugged(q, depth, from_schedule);
3041 			q = rq->q;
3042 			depth = 0;
3043 			spin_lock(q->queue_lock);
3044 		}
3045 
3046 		/*
3047 		 * Short-circuit if @q is dead
3048 		 */
3049 		if (unlikely(blk_queue_dying(q))) {
3050 			__blk_end_request_all(rq, -ENODEV);
3051 			continue;
3052 		}
3053 
3054 		/*
3055 		 * rq is already accounted, so use raw insert
3056 		 */
3057 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3058 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3059 		else
3060 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3061 
3062 		depth++;
3063 	}
3064 
3065 	/*
3066 	 * This drops the queue lock
3067 	 */
3068 	if (q)
3069 		queue_unplugged(q, depth, from_schedule);
3070 
3071 	local_irq_restore(flags);
3072 }
3073 
3074 void blk_finish_plug(struct blk_plug *plug)
3075 {
3076 	blk_flush_plug_list(plug, false);
3077 
3078 	if (plug == current->plug)
3079 		current->plug = NULL;
3080 }
3081 EXPORT_SYMBOL(blk_finish_plug);
3082 
3083 #ifdef CONFIG_PM_RUNTIME
3084 /**
3085  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3086  * @q: the queue of the device
3087  * @dev: the device the queue belongs to
3088  *
3089  * Description:
3090  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3091  *    @dev. Drivers that want to take advantage of request-based runtime PM
3092  *    should call this function after @dev has been initialized, and its
3093  *    request queue @q has been allocated, and runtime PM for it can not happen
3094  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3095  *    cases, driver should call this function before any I/O has taken place.
3096  *
3097  *    This function takes care of setting up using auto suspend for the device,
3098  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3099  *    until an updated value is either set by user or by driver. Drivers do
3100  *    not need to touch other autosuspend settings.
3101  *
3102  *    The block layer runtime PM is request based, so only works for drivers
3103  *    that use request as their IO unit instead of those directly use bio's.
3104  */
3105 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3106 {
3107 	q->dev = dev;
3108 	q->rpm_status = RPM_ACTIVE;
3109 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3110 	pm_runtime_use_autosuspend(q->dev);
3111 }
3112 EXPORT_SYMBOL(blk_pm_runtime_init);
3113 
3114 /**
3115  * blk_pre_runtime_suspend - Pre runtime suspend check
3116  * @q: the queue of the device
3117  *
3118  * Description:
3119  *    This function will check if runtime suspend is allowed for the device
3120  *    by examining if there are any requests pending in the queue. If there
3121  *    are requests pending, the device can not be runtime suspended; otherwise,
3122  *    the queue's status will be updated to SUSPENDING and the driver can
3123  *    proceed to suspend the device.
3124  *
3125  *    For the not allowed case, we mark last busy for the device so that
3126  *    runtime PM core will try to autosuspend it some time later.
3127  *
3128  *    This function should be called near the start of the device's
3129  *    runtime_suspend callback.
3130  *
3131  * Return:
3132  *    0		- OK to runtime suspend the device
3133  *    -EBUSY	- Device should not be runtime suspended
3134  */
3135 int blk_pre_runtime_suspend(struct request_queue *q)
3136 {
3137 	int ret = 0;
3138 
3139 	spin_lock_irq(q->queue_lock);
3140 	if (q->nr_pending) {
3141 		ret = -EBUSY;
3142 		pm_runtime_mark_last_busy(q->dev);
3143 	} else {
3144 		q->rpm_status = RPM_SUSPENDING;
3145 	}
3146 	spin_unlock_irq(q->queue_lock);
3147 	return ret;
3148 }
3149 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3150 
3151 /**
3152  * blk_post_runtime_suspend - Post runtime suspend processing
3153  * @q: the queue of the device
3154  * @err: return value of the device's runtime_suspend function
3155  *
3156  * Description:
3157  *    Update the queue's runtime status according to the return value of the
3158  *    device's runtime suspend function and mark last busy for the device so
3159  *    that PM core will try to auto suspend the device at a later time.
3160  *
3161  *    This function should be called near the end of the device's
3162  *    runtime_suspend callback.
3163  */
3164 void blk_post_runtime_suspend(struct request_queue *q, int err)
3165 {
3166 	spin_lock_irq(q->queue_lock);
3167 	if (!err) {
3168 		q->rpm_status = RPM_SUSPENDED;
3169 	} else {
3170 		q->rpm_status = RPM_ACTIVE;
3171 		pm_runtime_mark_last_busy(q->dev);
3172 	}
3173 	spin_unlock_irq(q->queue_lock);
3174 }
3175 EXPORT_SYMBOL(blk_post_runtime_suspend);
3176 
3177 /**
3178  * blk_pre_runtime_resume - Pre runtime resume processing
3179  * @q: the queue of the device
3180  *
3181  * Description:
3182  *    Update the queue's runtime status to RESUMING in preparation for the
3183  *    runtime resume of the device.
3184  *
3185  *    This function should be called near the start of the device's
3186  *    runtime_resume callback.
3187  */
3188 void blk_pre_runtime_resume(struct request_queue *q)
3189 {
3190 	spin_lock_irq(q->queue_lock);
3191 	q->rpm_status = RPM_RESUMING;
3192 	spin_unlock_irq(q->queue_lock);
3193 }
3194 EXPORT_SYMBOL(blk_pre_runtime_resume);
3195 
3196 /**
3197  * blk_post_runtime_resume - Post runtime resume processing
3198  * @q: the queue of the device
3199  * @err: return value of the device's runtime_resume function
3200  *
3201  * Description:
3202  *    Update the queue's runtime status according to the return value of the
3203  *    device's runtime_resume function. If it is successfully resumed, process
3204  *    the requests that are queued into the device's queue when it is resuming
3205  *    and then mark last busy and initiate autosuspend for it.
3206  *
3207  *    This function should be called near the end of the device's
3208  *    runtime_resume callback.
3209  */
3210 void blk_post_runtime_resume(struct request_queue *q, int err)
3211 {
3212 	spin_lock_irq(q->queue_lock);
3213 	if (!err) {
3214 		q->rpm_status = RPM_ACTIVE;
3215 		__blk_run_queue(q);
3216 		pm_runtime_mark_last_busy(q->dev);
3217 		pm_request_autosuspend(q->dev);
3218 	} else {
3219 		q->rpm_status = RPM_SUSPENDED;
3220 	}
3221 	spin_unlock_irq(q->queue_lock);
3222 }
3223 EXPORT_SYMBOL(blk_post_runtime_resume);
3224 #endif
3225 
3226 int __init blk_dev_init(void)
3227 {
3228 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3229 			sizeof(((struct request *)0)->cmd_flags));
3230 
3231 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3232 	kblockd_workqueue = alloc_workqueue("kblockd",
3233 					    WQ_MEM_RECLAIM | WQ_HIGHPRI |
3234 					    WQ_POWER_EFFICIENT, 0);
3235 	if (!kblockd_workqueue)
3236 		panic("Failed to create kblockd\n");
3237 
3238 	request_cachep = kmem_cache_create("blkdev_requests",
3239 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3240 
3241 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3242 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3243 
3244 	return 0;
3245 }
3246