1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/part_stat.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/blk-crypto.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/block.h>
46
47 #include "blk.h"
48 #include "blk-mq-sched.h"
49 #include "blk-pm.h"
50 #include "blk-cgroup.h"
51 #include "blk-throttle.h"
52 #include "blk-ioprio.h"
53
54 struct dentry *blk_debugfs_root;
55
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
62
63 static DEFINE_IDA(blk_queue_ida);
64
65 /*
66 * For queue allocation
67 */
68 static struct kmem_cache *blk_requestq_cachep;
69
70 /*
71 * Controlling structure to kblockd
72 */
73 static struct workqueue_struct *kblockd_workqueue;
74
75 /**
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
78 * @q: request queue
79 */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 {
82 set_bit(flag, &q->queue_flags);
83 }
84 EXPORT_SYMBOL(blk_queue_flag_set);
85
86 /**
87 * blk_queue_flag_clear - atomically clear a queue flag
88 * @flag: flag to be cleared
89 * @q: request queue
90 */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92 {
93 clear_bit(flag, &q->queue_flags);
94 }
95 EXPORT_SYMBOL(blk_queue_flag_clear);
96
97 /**
98 * blk_queue_flag_test_and_set - atomically test and set a queue flag
99 * @flag: flag to be set
100 * @q: request queue
101 *
102 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103 * the flag was already set.
104 */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)105 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
106 {
107 return test_and_set_bit(flag, &q->queue_flags);
108 }
109 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
110
111 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
112 static const char *const blk_op_name[] = {
113 REQ_OP_NAME(READ),
114 REQ_OP_NAME(WRITE),
115 REQ_OP_NAME(FLUSH),
116 REQ_OP_NAME(DISCARD),
117 REQ_OP_NAME(SECURE_ERASE),
118 REQ_OP_NAME(ZONE_RESET),
119 REQ_OP_NAME(ZONE_RESET_ALL),
120 REQ_OP_NAME(ZONE_OPEN),
121 REQ_OP_NAME(ZONE_CLOSE),
122 REQ_OP_NAME(ZONE_FINISH),
123 REQ_OP_NAME(ZONE_APPEND),
124 REQ_OP_NAME(WRITE_ZEROES),
125 REQ_OP_NAME(DRV_IN),
126 REQ_OP_NAME(DRV_OUT),
127 };
128 #undef REQ_OP_NAME
129
130 /**
131 * blk_op_str - Return string XXX in the REQ_OP_XXX.
132 * @op: REQ_OP_XXX.
133 *
134 * Description: Centralize block layer function to convert REQ_OP_XXX into
135 * string format. Useful in the debugging and tracing bio or request. For
136 * invalid REQ_OP_XXX it returns string "UNKNOWN".
137 */
blk_op_str(enum req_op op)138 inline const char *blk_op_str(enum req_op op)
139 {
140 const char *op_str = "UNKNOWN";
141
142 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
143 op_str = blk_op_name[op];
144
145 return op_str;
146 }
147 EXPORT_SYMBOL_GPL(blk_op_str);
148
149 static const struct {
150 int errno;
151 const char *name;
152 } blk_errors[] = {
153 [BLK_STS_OK] = { 0, "" },
154 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
155 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
156 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
157 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
158 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
159 [BLK_STS_RESV_CONFLICT] = { -EBADE, "reservation conflict" },
160 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
161 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
162 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
163 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
164 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
165 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
166
167 /* device mapper special case, should not leak out: */
168 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
169
170 /* zone device specific errors */
171 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
172 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
173
174 /* Command duration limit device-side timeout */
175 [BLK_STS_DURATION_LIMIT] = { -ETIME, "duration limit exceeded" },
176
177 /* everything else not covered above: */
178 [BLK_STS_IOERR] = { -EIO, "I/O" },
179 };
180
errno_to_blk_status(int errno)181 blk_status_t errno_to_blk_status(int errno)
182 {
183 int i;
184
185 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
186 if (blk_errors[i].errno == errno)
187 return (__force blk_status_t)i;
188 }
189
190 return BLK_STS_IOERR;
191 }
192 EXPORT_SYMBOL_GPL(errno_to_blk_status);
193
blk_status_to_errno(blk_status_t status)194 int blk_status_to_errno(blk_status_t status)
195 {
196 int idx = (__force int)status;
197
198 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
199 return -EIO;
200 return blk_errors[idx].errno;
201 }
202 EXPORT_SYMBOL_GPL(blk_status_to_errno);
203
blk_status_to_str(blk_status_t status)204 const char *blk_status_to_str(blk_status_t status)
205 {
206 int idx = (__force int)status;
207
208 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
209 return "<null>";
210 return blk_errors[idx].name;
211 }
212 EXPORT_SYMBOL_GPL(blk_status_to_str);
213
214 /**
215 * blk_sync_queue - cancel any pending callbacks on a queue
216 * @q: the queue
217 *
218 * Description:
219 * The block layer may perform asynchronous callback activity
220 * on a queue, such as calling the unplug function after a timeout.
221 * A block device may call blk_sync_queue to ensure that any
222 * such activity is cancelled, thus allowing it to release resources
223 * that the callbacks might use. The caller must already have made sure
224 * that its ->submit_bio will not re-add plugging prior to calling
225 * this function.
226 *
227 * This function does not cancel any asynchronous activity arising
228 * out of elevator or throttling code. That would require elevator_exit()
229 * and blkcg_exit_queue() to be called with queue lock initialized.
230 *
231 */
blk_sync_queue(struct request_queue * q)232 void blk_sync_queue(struct request_queue *q)
233 {
234 del_timer_sync(&q->timeout);
235 cancel_work_sync(&q->timeout_work);
236 }
237 EXPORT_SYMBOL(blk_sync_queue);
238
239 /**
240 * blk_set_pm_only - increment pm_only counter
241 * @q: request queue pointer
242 */
blk_set_pm_only(struct request_queue * q)243 void blk_set_pm_only(struct request_queue *q)
244 {
245 atomic_inc(&q->pm_only);
246 }
247 EXPORT_SYMBOL_GPL(blk_set_pm_only);
248
blk_clear_pm_only(struct request_queue * q)249 void blk_clear_pm_only(struct request_queue *q)
250 {
251 int pm_only;
252
253 pm_only = atomic_dec_return(&q->pm_only);
254 WARN_ON_ONCE(pm_only < 0);
255 if (pm_only == 0)
256 wake_up_all(&q->mq_freeze_wq);
257 }
258 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
259
blk_free_queue_rcu(struct rcu_head * rcu_head)260 static void blk_free_queue_rcu(struct rcu_head *rcu_head)
261 {
262 struct request_queue *q = container_of(rcu_head,
263 struct request_queue, rcu_head);
264
265 percpu_ref_exit(&q->q_usage_counter);
266 kmem_cache_free(blk_requestq_cachep, q);
267 }
268
blk_free_queue(struct request_queue * q)269 static void blk_free_queue(struct request_queue *q)
270 {
271 blk_free_queue_stats(q->stats);
272 if (queue_is_mq(q))
273 blk_mq_release(q);
274
275 ida_free(&blk_queue_ida, q->id);
276 call_rcu(&q->rcu_head, blk_free_queue_rcu);
277 }
278
279 /**
280 * blk_put_queue - decrement the request_queue refcount
281 * @q: the request_queue structure to decrement the refcount for
282 *
283 * Decrements the refcount of the request_queue and free it when the refcount
284 * reaches 0.
285 */
blk_put_queue(struct request_queue * q)286 void blk_put_queue(struct request_queue *q)
287 {
288 if (refcount_dec_and_test(&q->refs))
289 blk_free_queue(q);
290 }
291 EXPORT_SYMBOL(blk_put_queue);
292
blk_queue_start_drain(struct request_queue * q)293 void blk_queue_start_drain(struct request_queue *q)
294 {
295 /*
296 * When queue DYING flag is set, we need to block new req
297 * entering queue, so we call blk_freeze_queue_start() to
298 * prevent I/O from crossing blk_queue_enter().
299 */
300 blk_freeze_queue_start(q);
301 if (queue_is_mq(q))
302 blk_mq_wake_waiters(q);
303 /* Make blk_queue_enter() reexamine the DYING flag. */
304 wake_up_all(&q->mq_freeze_wq);
305 }
306
307 /**
308 * blk_queue_enter() - try to increase q->q_usage_counter
309 * @q: request queue pointer
310 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
311 */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)312 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
313 {
314 const bool pm = flags & BLK_MQ_REQ_PM;
315
316 while (!blk_try_enter_queue(q, pm)) {
317 if (flags & BLK_MQ_REQ_NOWAIT)
318 return -EAGAIN;
319
320 /*
321 * read pair of barrier in blk_freeze_queue_start(), we need to
322 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
323 * reading .mq_freeze_depth or queue dying flag, otherwise the
324 * following wait may never return if the two reads are
325 * reordered.
326 */
327 smp_rmb();
328 wait_event(q->mq_freeze_wq,
329 (!q->mq_freeze_depth &&
330 blk_pm_resume_queue(pm, q)) ||
331 blk_queue_dying(q));
332 if (blk_queue_dying(q))
333 return -ENODEV;
334 }
335
336 return 0;
337 }
338
__bio_queue_enter(struct request_queue * q,struct bio * bio)339 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
340 {
341 while (!blk_try_enter_queue(q, false)) {
342 struct gendisk *disk = bio->bi_bdev->bd_disk;
343
344 if (bio->bi_opf & REQ_NOWAIT) {
345 if (test_bit(GD_DEAD, &disk->state))
346 goto dead;
347 bio_wouldblock_error(bio);
348 return -EAGAIN;
349 }
350
351 /*
352 * read pair of barrier in blk_freeze_queue_start(), we need to
353 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
354 * reading .mq_freeze_depth or queue dying flag, otherwise the
355 * following wait may never return if the two reads are
356 * reordered.
357 */
358 smp_rmb();
359 wait_event(q->mq_freeze_wq,
360 (!q->mq_freeze_depth &&
361 blk_pm_resume_queue(false, q)) ||
362 test_bit(GD_DEAD, &disk->state));
363 if (test_bit(GD_DEAD, &disk->state))
364 goto dead;
365 }
366
367 return 0;
368 dead:
369 bio_io_error(bio);
370 return -ENODEV;
371 }
372
blk_queue_exit(struct request_queue * q)373 void blk_queue_exit(struct request_queue *q)
374 {
375 percpu_ref_put(&q->q_usage_counter);
376 }
377
blk_queue_usage_counter_release(struct percpu_ref * ref)378 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
379 {
380 struct request_queue *q =
381 container_of(ref, struct request_queue, q_usage_counter);
382
383 wake_up_all(&q->mq_freeze_wq);
384 }
385
blk_rq_timed_out_timer(struct timer_list * t)386 static void blk_rq_timed_out_timer(struct timer_list *t)
387 {
388 struct request_queue *q = from_timer(q, t, timeout);
389
390 kblockd_schedule_work(&q->timeout_work);
391 }
392
blk_timeout_work(struct work_struct * work)393 static void blk_timeout_work(struct work_struct *work)
394 {
395 }
396
blk_alloc_queue(int node_id)397 struct request_queue *blk_alloc_queue(int node_id)
398 {
399 struct request_queue *q;
400
401 q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
402 node_id);
403 if (!q)
404 return NULL;
405
406 q->last_merge = NULL;
407
408 q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
409 if (q->id < 0)
410 goto fail_q;
411
412 q->stats = blk_alloc_queue_stats();
413 if (!q->stats)
414 goto fail_id;
415
416 q->node = node_id;
417
418 atomic_set(&q->nr_active_requests_shared_tags, 0);
419
420 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
421 INIT_WORK(&q->timeout_work, blk_timeout_work);
422 INIT_LIST_HEAD(&q->icq_list);
423
424 refcount_set(&q->refs, 1);
425 mutex_init(&q->debugfs_mutex);
426 mutex_init(&q->sysfs_lock);
427 mutex_init(&q->sysfs_dir_lock);
428 mutex_init(&q->rq_qos_mutex);
429 spin_lock_init(&q->queue_lock);
430
431 init_waitqueue_head(&q->mq_freeze_wq);
432 mutex_init(&q->mq_freeze_lock);
433
434 blkg_init_queue(q);
435
436 /*
437 * Init percpu_ref in atomic mode so that it's faster to shutdown.
438 * See blk_register_queue() for details.
439 */
440 if (percpu_ref_init(&q->q_usage_counter,
441 blk_queue_usage_counter_release,
442 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
443 goto fail_stats;
444
445 blk_set_default_limits(&q->limits);
446 q->nr_requests = BLKDEV_DEFAULT_RQ;
447
448 return q;
449
450 fail_stats:
451 blk_free_queue_stats(q->stats);
452 fail_id:
453 ida_free(&blk_queue_ida, q->id);
454 fail_q:
455 kmem_cache_free(blk_requestq_cachep, q);
456 return NULL;
457 }
458
459 /**
460 * blk_get_queue - increment the request_queue refcount
461 * @q: the request_queue structure to increment the refcount for
462 *
463 * Increment the refcount of the request_queue kobject.
464 *
465 * Context: Any context.
466 */
blk_get_queue(struct request_queue * q)467 bool blk_get_queue(struct request_queue *q)
468 {
469 if (unlikely(blk_queue_dying(q)))
470 return false;
471 refcount_inc(&q->refs);
472 return true;
473 }
474 EXPORT_SYMBOL(blk_get_queue);
475
476 #ifdef CONFIG_FAIL_MAKE_REQUEST
477
478 static DECLARE_FAULT_ATTR(fail_make_request);
479
setup_fail_make_request(char * str)480 static int __init setup_fail_make_request(char *str)
481 {
482 return setup_fault_attr(&fail_make_request, str);
483 }
484 __setup("fail_make_request=", setup_fail_make_request);
485
should_fail_request(struct block_device * part,unsigned int bytes)486 bool should_fail_request(struct block_device *part, unsigned int bytes)
487 {
488 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
489 }
490
fail_make_request_debugfs(void)491 static int __init fail_make_request_debugfs(void)
492 {
493 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
494 NULL, &fail_make_request);
495
496 return PTR_ERR_OR_ZERO(dir);
497 }
498
499 late_initcall(fail_make_request_debugfs);
500 #endif /* CONFIG_FAIL_MAKE_REQUEST */
501
bio_check_ro(struct bio * bio)502 static inline void bio_check_ro(struct bio *bio)
503 {
504 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
505 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
506 return;
507
508 if (bio->bi_bdev->bd_ro_warned)
509 return;
510
511 bio->bi_bdev->bd_ro_warned = true;
512 /*
513 * Use ioctl to set underlying disk of raid/dm to read-only
514 * will trigger this.
515 */
516 pr_warn("Trying to write to read-only block-device %pg\n",
517 bio->bi_bdev);
518 }
519 }
520
should_fail_bio(struct bio * bio)521 static noinline int should_fail_bio(struct bio *bio)
522 {
523 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
524 return -EIO;
525 return 0;
526 }
527 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
528
529 /*
530 * Check whether this bio extends beyond the end of the device or partition.
531 * This may well happen - the kernel calls bread() without checking the size of
532 * the device, e.g., when mounting a file system.
533 */
bio_check_eod(struct bio * bio)534 static inline int bio_check_eod(struct bio *bio)
535 {
536 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
537 unsigned int nr_sectors = bio_sectors(bio);
538
539 if (nr_sectors &&
540 (nr_sectors > maxsector ||
541 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
542 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
543 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
544 current->comm, bio->bi_bdev, bio->bi_opf,
545 bio->bi_iter.bi_sector, nr_sectors, maxsector);
546 return -EIO;
547 }
548 return 0;
549 }
550
551 /*
552 * Remap block n of partition p to block n+start(p) of the disk.
553 */
blk_partition_remap(struct bio * bio)554 static int blk_partition_remap(struct bio *bio)
555 {
556 struct block_device *p = bio->bi_bdev;
557
558 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
559 return -EIO;
560 if (bio_sectors(bio)) {
561 bio->bi_iter.bi_sector += p->bd_start_sect;
562 trace_block_bio_remap(bio, p->bd_dev,
563 bio->bi_iter.bi_sector -
564 p->bd_start_sect);
565 }
566 bio_set_flag(bio, BIO_REMAPPED);
567 return 0;
568 }
569
570 /*
571 * Check write append to a zoned block device.
572 */
blk_check_zone_append(struct request_queue * q,struct bio * bio)573 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
574 struct bio *bio)
575 {
576 int nr_sectors = bio_sectors(bio);
577
578 /* Only applicable to zoned block devices */
579 if (!bdev_is_zoned(bio->bi_bdev))
580 return BLK_STS_NOTSUPP;
581
582 /* The bio sector must point to the start of a sequential zone */
583 if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector) ||
584 !bio_zone_is_seq(bio))
585 return BLK_STS_IOERR;
586
587 /*
588 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
589 * split and could result in non-contiguous sectors being written in
590 * different zones.
591 */
592 if (nr_sectors > q->limits.chunk_sectors)
593 return BLK_STS_IOERR;
594
595 /* Make sure the BIO is small enough and will not get split */
596 if (nr_sectors > q->limits.max_zone_append_sectors)
597 return BLK_STS_IOERR;
598
599 bio->bi_opf |= REQ_NOMERGE;
600
601 return BLK_STS_OK;
602 }
603
__submit_bio(struct bio * bio)604 static void __submit_bio(struct bio *bio)
605 {
606 if (unlikely(!blk_crypto_bio_prep(&bio)))
607 return;
608
609 if (!bio->bi_bdev->bd_has_submit_bio) {
610 blk_mq_submit_bio(bio);
611 } else if (likely(bio_queue_enter(bio) == 0)) {
612 struct gendisk *disk = bio->bi_bdev->bd_disk;
613
614 disk->fops->submit_bio(bio);
615 blk_queue_exit(disk->queue);
616 }
617 }
618
619 /*
620 * The loop in this function may be a bit non-obvious, and so deserves some
621 * explanation:
622 *
623 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
624 * that), so we have a list with a single bio.
625 * - We pretend that we have just taken it off a longer list, so we assign
626 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
627 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
628 * bios through a recursive call to submit_bio_noacct. If it did, we find a
629 * non-NULL value in bio_list and re-enter the loop from the top.
630 * - In this case we really did just take the bio of the top of the list (no
631 * pretending) and so remove it from bio_list, and call into ->submit_bio()
632 * again.
633 *
634 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
635 * bio_list_on_stack[1] contains bios that were submitted before the current
636 * ->submit_bio, but that haven't been processed yet.
637 */
__submit_bio_noacct(struct bio * bio)638 static void __submit_bio_noacct(struct bio *bio)
639 {
640 struct bio_list bio_list_on_stack[2];
641
642 BUG_ON(bio->bi_next);
643
644 bio_list_init(&bio_list_on_stack[0]);
645 current->bio_list = bio_list_on_stack;
646
647 do {
648 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
649 struct bio_list lower, same;
650
651 /*
652 * Create a fresh bio_list for all subordinate requests.
653 */
654 bio_list_on_stack[1] = bio_list_on_stack[0];
655 bio_list_init(&bio_list_on_stack[0]);
656
657 __submit_bio(bio);
658
659 /*
660 * Sort new bios into those for a lower level and those for the
661 * same level.
662 */
663 bio_list_init(&lower);
664 bio_list_init(&same);
665 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
666 if (q == bdev_get_queue(bio->bi_bdev))
667 bio_list_add(&same, bio);
668 else
669 bio_list_add(&lower, bio);
670
671 /*
672 * Now assemble so we handle the lowest level first.
673 */
674 bio_list_merge(&bio_list_on_stack[0], &lower);
675 bio_list_merge(&bio_list_on_stack[0], &same);
676 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
677 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
678
679 current->bio_list = NULL;
680 }
681
__submit_bio_noacct_mq(struct bio * bio)682 static void __submit_bio_noacct_mq(struct bio *bio)
683 {
684 struct bio_list bio_list[2] = { };
685
686 current->bio_list = bio_list;
687
688 do {
689 __submit_bio(bio);
690 } while ((bio = bio_list_pop(&bio_list[0])));
691
692 current->bio_list = NULL;
693 }
694
submit_bio_noacct_nocheck(struct bio * bio)695 void submit_bio_noacct_nocheck(struct bio *bio)
696 {
697 blk_cgroup_bio_start(bio);
698 blkcg_bio_issue_init(bio);
699
700 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
701 trace_block_bio_queue(bio);
702 /*
703 * Now that enqueuing has been traced, we need to trace
704 * completion as well.
705 */
706 bio_set_flag(bio, BIO_TRACE_COMPLETION);
707 }
708
709 /*
710 * We only want one ->submit_bio to be active at a time, else stack
711 * usage with stacked devices could be a problem. Use current->bio_list
712 * to collect a list of requests submited by a ->submit_bio method while
713 * it is active, and then process them after it returned.
714 */
715 if (current->bio_list)
716 bio_list_add(¤t->bio_list[0], bio);
717 else if (!bio->bi_bdev->bd_has_submit_bio)
718 __submit_bio_noacct_mq(bio);
719 else
720 __submit_bio_noacct(bio);
721 }
722
723 /**
724 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
725 * @bio: The bio describing the location in memory and on the device.
726 *
727 * This is a version of submit_bio() that shall only be used for I/O that is
728 * resubmitted to lower level drivers by stacking block drivers. All file
729 * systems and other upper level users of the block layer should use
730 * submit_bio() instead.
731 */
submit_bio_noacct(struct bio * bio)732 void submit_bio_noacct(struct bio *bio)
733 {
734 struct block_device *bdev = bio->bi_bdev;
735 struct request_queue *q = bdev_get_queue(bdev);
736 blk_status_t status = BLK_STS_IOERR;
737
738 might_sleep();
739
740 /*
741 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
742 * if queue does not support NOWAIT.
743 */
744 if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
745 goto not_supported;
746
747 if (should_fail_bio(bio))
748 goto end_io;
749 bio_check_ro(bio);
750 if (!bio_flagged(bio, BIO_REMAPPED)) {
751 if (unlikely(bio_check_eod(bio)))
752 goto end_io;
753 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
754 goto end_io;
755 }
756
757 /*
758 * Filter flush bio's early so that bio based drivers without flush
759 * support don't have to worry about them.
760 */
761 if (op_is_flush(bio->bi_opf)) {
762 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
763 bio_op(bio) != REQ_OP_ZONE_APPEND))
764 goto end_io;
765 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
766 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
767 if (!bio_sectors(bio)) {
768 status = BLK_STS_OK;
769 goto end_io;
770 }
771 }
772 }
773
774 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
775 bio_clear_polled(bio);
776
777 switch (bio_op(bio)) {
778 case REQ_OP_DISCARD:
779 if (!bdev_max_discard_sectors(bdev))
780 goto not_supported;
781 break;
782 case REQ_OP_SECURE_ERASE:
783 if (!bdev_max_secure_erase_sectors(bdev))
784 goto not_supported;
785 break;
786 case REQ_OP_ZONE_APPEND:
787 status = blk_check_zone_append(q, bio);
788 if (status != BLK_STS_OK)
789 goto end_io;
790 break;
791 case REQ_OP_ZONE_RESET:
792 case REQ_OP_ZONE_OPEN:
793 case REQ_OP_ZONE_CLOSE:
794 case REQ_OP_ZONE_FINISH:
795 if (!bdev_is_zoned(bio->bi_bdev))
796 goto not_supported;
797 break;
798 case REQ_OP_ZONE_RESET_ALL:
799 if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
800 goto not_supported;
801 break;
802 case REQ_OP_WRITE_ZEROES:
803 if (!q->limits.max_write_zeroes_sectors)
804 goto not_supported;
805 break;
806 default:
807 break;
808 }
809
810 if (blk_throtl_bio(bio))
811 return;
812 submit_bio_noacct_nocheck(bio);
813 return;
814
815 not_supported:
816 status = BLK_STS_NOTSUPP;
817 end_io:
818 bio->bi_status = status;
819 bio_endio(bio);
820 }
821 EXPORT_SYMBOL(submit_bio_noacct);
822
bio_set_ioprio(struct bio * bio)823 static void bio_set_ioprio(struct bio *bio)
824 {
825 /* Nobody set ioprio so far? Initialize it based on task's nice value */
826 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
827 bio->bi_ioprio = get_current_ioprio();
828 blkcg_set_ioprio(bio);
829 }
830
831 /**
832 * submit_bio - submit a bio to the block device layer for I/O
833 * @bio: The &struct bio which describes the I/O
834 *
835 * submit_bio() is used to submit I/O requests to block devices. It is passed a
836 * fully set up &struct bio that describes the I/O that needs to be done. The
837 * bio will be send to the device described by the bi_bdev field.
838 *
839 * The success/failure status of the request, along with notification of
840 * completion, is delivered asynchronously through the ->bi_end_io() callback
841 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
842 * been called.
843 */
submit_bio(struct bio * bio)844 void submit_bio(struct bio *bio)
845 {
846 if (bio_op(bio) == REQ_OP_READ) {
847 task_io_account_read(bio->bi_iter.bi_size);
848 count_vm_events(PGPGIN, bio_sectors(bio));
849 } else if (bio_op(bio) == REQ_OP_WRITE) {
850 count_vm_events(PGPGOUT, bio_sectors(bio));
851 }
852
853 bio_set_ioprio(bio);
854 submit_bio_noacct(bio);
855 }
856 EXPORT_SYMBOL(submit_bio);
857
858 /**
859 * bio_poll - poll for BIO completions
860 * @bio: bio to poll for
861 * @iob: batches of IO
862 * @flags: BLK_POLL_* flags that control the behavior
863 *
864 * Poll for completions on queue associated with the bio. Returns number of
865 * completed entries found.
866 *
867 * Note: the caller must either be the context that submitted @bio, or
868 * be in a RCU critical section to prevent freeing of @bio.
869 */
bio_poll(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)870 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
871 {
872 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
873 struct block_device *bdev;
874 struct request_queue *q;
875 int ret = 0;
876
877 bdev = READ_ONCE(bio->bi_bdev);
878 if (!bdev)
879 return 0;
880
881 q = bdev_get_queue(bdev);
882 if (cookie == BLK_QC_T_NONE ||
883 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
884 return 0;
885
886 /*
887 * As the requests that require a zone lock are not plugged in the
888 * first place, directly accessing the plug instead of using
889 * blk_mq_plug() should not have any consequences during flushing for
890 * zoned devices.
891 */
892 blk_flush_plug(current->plug, false);
893
894 /*
895 * We need to be able to enter a frozen queue, similar to how
896 * timeouts also need to do that. If that is blocked, then we can
897 * have pending IO when a queue freeze is started, and then the
898 * wait for the freeze to finish will wait for polled requests to
899 * timeout as the poller is preventer from entering the queue and
900 * completing them. As long as we prevent new IO from being queued,
901 * that should be all that matters.
902 */
903 if (!percpu_ref_tryget(&q->q_usage_counter))
904 return 0;
905 if (queue_is_mq(q)) {
906 ret = blk_mq_poll(q, cookie, iob, flags);
907 } else {
908 struct gendisk *disk = q->disk;
909
910 if (disk && disk->fops->poll_bio)
911 ret = disk->fops->poll_bio(bio, iob, flags);
912 }
913 blk_queue_exit(q);
914 return ret;
915 }
916 EXPORT_SYMBOL_GPL(bio_poll);
917
918 /*
919 * Helper to implement file_operations.iopoll. Requires the bio to be stored
920 * in iocb->private, and cleared before freeing the bio.
921 */
iocb_bio_iopoll(struct kiocb * kiocb,struct io_comp_batch * iob,unsigned int flags)922 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
923 unsigned int flags)
924 {
925 struct bio *bio;
926 int ret = 0;
927
928 /*
929 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
930 * point to a freshly allocated bio at this point. If that happens
931 * we have a few cases to consider:
932 *
933 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
934 * simply nothing in this case
935 * 2) the bio points to a not poll enabled device. bio_poll will catch
936 * this and return 0
937 * 3) the bio points to a poll capable device, including but not
938 * limited to the one that the original bio pointed to. In this
939 * case we will call into the actual poll method and poll for I/O,
940 * even if we don't need to, but it won't cause harm either.
941 *
942 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
943 * is still allocated. Because partitions hold a reference to the whole
944 * device bdev and thus disk, the disk is also still valid. Grabbing
945 * a reference to the queue in bio_poll() ensures the hctxs and requests
946 * are still valid as well.
947 */
948 rcu_read_lock();
949 bio = READ_ONCE(kiocb->private);
950 if (bio)
951 ret = bio_poll(bio, iob, flags);
952 rcu_read_unlock();
953
954 return ret;
955 }
956 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
957
update_io_ticks(struct block_device * part,unsigned long now,bool end)958 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
959 {
960 unsigned long stamp;
961 again:
962 stamp = READ_ONCE(part->bd_stamp);
963 if (unlikely(time_after(now, stamp)) &&
964 likely(try_cmpxchg(&part->bd_stamp, &stamp, now)) &&
965 (end || part_in_flight(part)))
966 __part_stat_add(part, io_ticks, now - stamp);
967
968 if (part->bd_partno) {
969 part = bdev_whole(part);
970 goto again;
971 }
972 }
973
bdev_start_io_acct(struct block_device * bdev,enum req_op op,unsigned long start_time)974 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
975 unsigned long start_time)
976 {
977 part_stat_lock();
978 update_io_ticks(bdev, start_time, false);
979 part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
980 part_stat_unlock();
981
982 return start_time;
983 }
984 EXPORT_SYMBOL(bdev_start_io_acct);
985
986 /**
987 * bio_start_io_acct - start I/O accounting for bio based drivers
988 * @bio: bio to start account for
989 *
990 * Returns the start time that should be passed back to bio_end_io_acct().
991 */
bio_start_io_acct(struct bio * bio)992 unsigned long bio_start_io_acct(struct bio *bio)
993 {
994 return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
995 }
996 EXPORT_SYMBOL_GPL(bio_start_io_acct);
997
bdev_end_io_acct(struct block_device * bdev,enum req_op op,unsigned int sectors,unsigned long start_time)998 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
999 unsigned int sectors, unsigned long start_time)
1000 {
1001 const int sgrp = op_stat_group(op);
1002 unsigned long now = READ_ONCE(jiffies);
1003 unsigned long duration = now - start_time;
1004
1005 part_stat_lock();
1006 update_io_ticks(bdev, now, true);
1007 part_stat_inc(bdev, ios[sgrp]);
1008 part_stat_add(bdev, sectors[sgrp], sectors);
1009 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1010 part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1011 part_stat_unlock();
1012 }
1013 EXPORT_SYMBOL(bdev_end_io_acct);
1014
bio_end_io_acct_remapped(struct bio * bio,unsigned long start_time,struct block_device * orig_bdev)1015 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1016 struct block_device *orig_bdev)
1017 {
1018 bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
1019 }
1020 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1021
1022 /**
1023 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1024 * @q : the queue of the device being checked
1025 *
1026 * Description:
1027 * Check if underlying low-level drivers of a device are busy.
1028 * If the drivers want to export their busy state, they must set own
1029 * exporting function using blk_queue_lld_busy() first.
1030 *
1031 * Basically, this function is used only by request stacking drivers
1032 * to stop dispatching requests to underlying devices when underlying
1033 * devices are busy. This behavior helps more I/O merging on the queue
1034 * of the request stacking driver and prevents I/O throughput regression
1035 * on burst I/O load.
1036 *
1037 * Return:
1038 * 0 - Not busy (The request stacking driver should dispatch request)
1039 * 1 - Busy (The request stacking driver should stop dispatching request)
1040 */
blk_lld_busy(struct request_queue * q)1041 int blk_lld_busy(struct request_queue *q)
1042 {
1043 if (queue_is_mq(q) && q->mq_ops->busy)
1044 return q->mq_ops->busy(q);
1045
1046 return 0;
1047 }
1048 EXPORT_SYMBOL_GPL(blk_lld_busy);
1049
kblockd_schedule_work(struct work_struct * work)1050 int kblockd_schedule_work(struct work_struct *work)
1051 {
1052 return queue_work(kblockd_workqueue, work);
1053 }
1054 EXPORT_SYMBOL(kblockd_schedule_work);
1055
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1056 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1057 unsigned long delay)
1058 {
1059 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1060 }
1061 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1062
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1063 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1064 {
1065 struct task_struct *tsk = current;
1066
1067 /*
1068 * If this is a nested plug, don't actually assign it.
1069 */
1070 if (tsk->plug)
1071 return;
1072
1073 plug->mq_list = NULL;
1074 plug->cached_rq = NULL;
1075 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1076 plug->rq_count = 0;
1077 plug->multiple_queues = false;
1078 plug->has_elevator = false;
1079 INIT_LIST_HEAD(&plug->cb_list);
1080
1081 /*
1082 * Store ordering should not be needed here, since a potential
1083 * preempt will imply a full memory barrier
1084 */
1085 tsk->plug = plug;
1086 }
1087
1088 /**
1089 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1090 * @plug: The &struct blk_plug that needs to be initialized
1091 *
1092 * Description:
1093 * blk_start_plug() indicates to the block layer an intent by the caller
1094 * to submit multiple I/O requests in a batch. The block layer may use
1095 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1096 * is called. However, the block layer may choose to submit requests
1097 * before a call to blk_finish_plug() if the number of queued I/Os
1098 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1099 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1100 * the task schedules (see below).
1101 *
1102 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1103 * pending I/O should the task end up blocking between blk_start_plug() and
1104 * blk_finish_plug(). This is important from a performance perspective, but
1105 * also ensures that we don't deadlock. For instance, if the task is blocking
1106 * for a memory allocation, memory reclaim could end up wanting to free a
1107 * page belonging to that request that is currently residing in our private
1108 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1109 * this kind of deadlock.
1110 */
blk_start_plug(struct blk_plug * plug)1111 void blk_start_plug(struct blk_plug *plug)
1112 {
1113 blk_start_plug_nr_ios(plug, 1);
1114 }
1115 EXPORT_SYMBOL(blk_start_plug);
1116
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1117 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1118 {
1119 LIST_HEAD(callbacks);
1120
1121 while (!list_empty(&plug->cb_list)) {
1122 list_splice_init(&plug->cb_list, &callbacks);
1123
1124 while (!list_empty(&callbacks)) {
1125 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1126 struct blk_plug_cb,
1127 list);
1128 list_del(&cb->list);
1129 cb->callback(cb, from_schedule);
1130 }
1131 }
1132 }
1133
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1134 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1135 int size)
1136 {
1137 struct blk_plug *plug = current->plug;
1138 struct blk_plug_cb *cb;
1139
1140 if (!plug)
1141 return NULL;
1142
1143 list_for_each_entry(cb, &plug->cb_list, list)
1144 if (cb->callback == unplug && cb->data == data)
1145 return cb;
1146
1147 /* Not currently on the callback list */
1148 BUG_ON(size < sizeof(*cb));
1149 cb = kzalloc(size, GFP_ATOMIC);
1150 if (cb) {
1151 cb->data = data;
1152 cb->callback = unplug;
1153 list_add(&cb->list, &plug->cb_list);
1154 }
1155 return cb;
1156 }
1157 EXPORT_SYMBOL(blk_check_plugged);
1158
__blk_flush_plug(struct blk_plug * plug,bool from_schedule)1159 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1160 {
1161 if (!list_empty(&plug->cb_list))
1162 flush_plug_callbacks(plug, from_schedule);
1163 blk_mq_flush_plug_list(plug, from_schedule);
1164 /*
1165 * Unconditionally flush out cached requests, even if the unplug
1166 * event came from schedule. Since we know hold references to the
1167 * queue for cached requests, we don't want a blocked task holding
1168 * up a queue freeze/quiesce event.
1169 */
1170 if (unlikely(!rq_list_empty(plug->cached_rq)))
1171 blk_mq_free_plug_rqs(plug);
1172 }
1173
1174 /**
1175 * blk_finish_plug - mark the end of a batch of submitted I/O
1176 * @plug: The &struct blk_plug passed to blk_start_plug()
1177 *
1178 * Description:
1179 * Indicate that a batch of I/O submissions is complete. This function
1180 * must be paired with an initial call to blk_start_plug(). The intent
1181 * is to allow the block layer to optimize I/O submission. See the
1182 * documentation for blk_start_plug() for more information.
1183 */
blk_finish_plug(struct blk_plug * plug)1184 void blk_finish_plug(struct blk_plug *plug)
1185 {
1186 if (plug == current->plug) {
1187 __blk_flush_plug(plug, false);
1188 current->plug = NULL;
1189 }
1190 }
1191 EXPORT_SYMBOL(blk_finish_plug);
1192
blk_io_schedule(void)1193 void blk_io_schedule(void)
1194 {
1195 /* Prevent hang_check timer from firing at us during very long I/O */
1196 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1197
1198 if (timeout)
1199 io_schedule_timeout(timeout);
1200 else
1201 io_schedule();
1202 }
1203 EXPORT_SYMBOL_GPL(blk_io_schedule);
1204
blk_dev_init(void)1205 int __init blk_dev_init(void)
1206 {
1207 BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1208 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1209 sizeof_field(struct request, cmd_flags));
1210 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1211 sizeof_field(struct bio, bi_opf));
1212
1213 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1214 kblockd_workqueue = alloc_workqueue("kblockd",
1215 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1216 if (!kblockd_workqueue)
1217 panic("Failed to create kblockd\n");
1218
1219 blk_requestq_cachep = kmem_cache_create("request_queue",
1220 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1221
1222 blk_debugfs_root = debugfs_create_dir("block", NULL);
1223
1224 return 0;
1225 }
1226