1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 #include <linux/bpf.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/block.h> 41 42 #include "blk.h" 43 #include "blk-mq.h" 44 #include "blk-mq-sched.h" 45 #include "blk-wbt.h" 46 47 #ifdef CONFIG_DEBUG_FS 48 struct dentry *blk_debugfs_root; 49 #endif 50 51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 56 57 DEFINE_IDA(blk_queue_ida); 58 59 /* 60 * For the allocated request tables 61 */ 62 struct kmem_cache *request_cachep; 63 64 /* 65 * For queue allocation 66 */ 67 struct kmem_cache *blk_requestq_cachep; 68 69 /* 70 * Controlling structure to kblockd 71 */ 72 static struct workqueue_struct *kblockd_workqueue; 73 74 static void blk_clear_congested(struct request_list *rl, int sync) 75 { 76 #ifdef CONFIG_CGROUP_WRITEBACK 77 clear_wb_congested(rl->blkg->wb_congested, sync); 78 #else 79 /* 80 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 81 * flip its congestion state for events on other blkcgs. 82 */ 83 if (rl == &rl->q->root_rl) 84 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 85 #endif 86 } 87 88 static void blk_set_congested(struct request_list *rl, int sync) 89 { 90 #ifdef CONFIG_CGROUP_WRITEBACK 91 set_wb_congested(rl->blkg->wb_congested, sync); 92 #else 93 /* see blk_clear_congested() */ 94 if (rl == &rl->q->root_rl) 95 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 96 #endif 97 } 98 99 void blk_queue_congestion_threshold(struct request_queue *q) 100 { 101 int nr; 102 103 nr = q->nr_requests - (q->nr_requests / 8) + 1; 104 if (nr > q->nr_requests) 105 nr = q->nr_requests; 106 q->nr_congestion_on = nr; 107 108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 109 if (nr < 1) 110 nr = 1; 111 q->nr_congestion_off = nr; 112 } 113 114 void blk_rq_init(struct request_queue *q, struct request *rq) 115 { 116 memset(rq, 0, sizeof(*rq)); 117 118 INIT_LIST_HEAD(&rq->queuelist); 119 INIT_LIST_HEAD(&rq->timeout_list); 120 rq->cpu = -1; 121 rq->q = q; 122 rq->__sector = (sector_t) -1; 123 INIT_HLIST_NODE(&rq->hash); 124 RB_CLEAR_NODE(&rq->rb_node); 125 rq->tag = -1; 126 rq->internal_tag = -1; 127 rq->start_time = jiffies; 128 set_start_time_ns(rq); 129 rq->part = NULL; 130 seqcount_init(&rq->gstate_seq); 131 u64_stats_init(&rq->aborted_gstate_sync); 132 } 133 EXPORT_SYMBOL(blk_rq_init); 134 135 static const struct { 136 int errno; 137 const char *name; 138 } blk_errors[] = { 139 [BLK_STS_OK] = { 0, "" }, 140 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 141 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 142 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 143 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 144 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 145 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 146 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 147 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 148 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 149 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 150 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 151 152 /* device mapper special case, should not leak out: */ 153 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 154 155 /* everything else not covered above: */ 156 [BLK_STS_IOERR] = { -EIO, "I/O" }, 157 }; 158 159 blk_status_t errno_to_blk_status(int errno) 160 { 161 int i; 162 163 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 164 if (blk_errors[i].errno == errno) 165 return (__force blk_status_t)i; 166 } 167 168 return BLK_STS_IOERR; 169 } 170 EXPORT_SYMBOL_GPL(errno_to_blk_status); 171 172 int blk_status_to_errno(blk_status_t status) 173 { 174 int idx = (__force int)status; 175 176 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 177 return -EIO; 178 return blk_errors[idx].errno; 179 } 180 EXPORT_SYMBOL_GPL(blk_status_to_errno); 181 182 static void print_req_error(struct request *req, blk_status_t status) 183 { 184 int idx = (__force int)status; 185 186 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 187 return; 188 189 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 190 __func__, blk_errors[idx].name, req->rq_disk ? 191 req->rq_disk->disk_name : "?", 192 (unsigned long long)blk_rq_pos(req)); 193 } 194 195 static void req_bio_endio(struct request *rq, struct bio *bio, 196 unsigned int nbytes, blk_status_t error) 197 { 198 if (error) 199 bio->bi_status = error; 200 201 if (unlikely(rq->rq_flags & RQF_QUIET)) 202 bio_set_flag(bio, BIO_QUIET); 203 204 bio_advance(bio, nbytes); 205 206 /* don't actually finish bio if it's part of flush sequence */ 207 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 208 bio_endio(bio); 209 } 210 211 void blk_dump_rq_flags(struct request *rq, char *msg) 212 { 213 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 214 rq->rq_disk ? rq->rq_disk->disk_name : "?", 215 (unsigned long long) rq->cmd_flags); 216 217 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 218 (unsigned long long)blk_rq_pos(rq), 219 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 220 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 221 rq->bio, rq->biotail, blk_rq_bytes(rq)); 222 } 223 EXPORT_SYMBOL(blk_dump_rq_flags); 224 225 static void blk_delay_work(struct work_struct *work) 226 { 227 struct request_queue *q; 228 229 q = container_of(work, struct request_queue, delay_work.work); 230 spin_lock_irq(q->queue_lock); 231 __blk_run_queue(q); 232 spin_unlock_irq(q->queue_lock); 233 } 234 235 /** 236 * blk_delay_queue - restart queueing after defined interval 237 * @q: The &struct request_queue in question 238 * @msecs: Delay in msecs 239 * 240 * Description: 241 * Sometimes queueing needs to be postponed for a little while, to allow 242 * resources to come back. This function will make sure that queueing is 243 * restarted around the specified time. 244 */ 245 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 246 { 247 lockdep_assert_held(q->queue_lock); 248 WARN_ON_ONCE(q->mq_ops); 249 250 if (likely(!blk_queue_dead(q))) 251 queue_delayed_work(kblockd_workqueue, &q->delay_work, 252 msecs_to_jiffies(msecs)); 253 } 254 EXPORT_SYMBOL(blk_delay_queue); 255 256 /** 257 * blk_start_queue_async - asynchronously restart a previously stopped queue 258 * @q: The &struct request_queue in question 259 * 260 * Description: 261 * blk_start_queue_async() will clear the stop flag on the queue, and 262 * ensure that the request_fn for the queue is run from an async 263 * context. 264 **/ 265 void blk_start_queue_async(struct request_queue *q) 266 { 267 lockdep_assert_held(q->queue_lock); 268 WARN_ON_ONCE(q->mq_ops); 269 270 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 271 blk_run_queue_async(q); 272 } 273 EXPORT_SYMBOL(blk_start_queue_async); 274 275 /** 276 * blk_start_queue - restart a previously stopped queue 277 * @q: The &struct request_queue in question 278 * 279 * Description: 280 * blk_start_queue() will clear the stop flag on the queue, and call 281 * the request_fn for the queue if it was in a stopped state when 282 * entered. Also see blk_stop_queue(). 283 **/ 284 void blk_start_queue(struct request_queue *q) 285 { 286 lockdep_assert_held(q->queue_lock); 287 WARN_ON(!in_interrupt() && !irqs_disabled()); 288 WARN_ON_ONCE(q->mq_ops); 289 290 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 291 __blk_run_queue(q); 292 } 293 EXPORT_SYMBOL(blk_start_queue); 294 295 /** 296 * blk_stop_queue - stop a queue 297 * @q: The &struct request_queue in question 298 * 299 * Description: 300 * The Linux block layer assumes that a block driver will consume all 301 * entries on the request queue when the request_fn strategy is called. 302 * Often this will not happen, because of hardware limitations (queue 303 * depth settings). If a device driver gets a 'queue full' response, 304 * or if it simply chooses not to queue more I/O at one point, it can 305 * call this function to prevent the request_fn from being called until 306 * the driver has signalled it's ready to go again. This happens by calling 307 * blk_start_queue() to restart queue operations. 308 **/ 309 void blk_stop_queue(struct request_queue *q) 310 { 311 lockdep_assert_held(q->queue_lock); 312 WARN_ON_ONCE(q->mq_ops); 313 314 cancel_delayed_work(&q->delay_work); 315 queue_flag_set(QUEUE_FLAG_STOPPED, q); 316 } 317 EXPORT_SYMBOL(blk_stop_queue); 318 319 /** 320 * blk_sync_queue - cancel any pending callbacks on a queue 321 * @q: the queue 322 * 323 * Description: 324 * The block layer may perform asynchronous callback activity 325 * on a queue, such as calling the unplug function after a timeout. 326 * A block device may call blk_sync_queue to ensure that any 327 * such activity is cancelled, thus allowing it to release resources 328 * that the callbacks might use. The caller must already have made sure 329 * that its ->make_request_fn will not re-add plugging prior to calling 330 * this function. 331 * 332 * This function does not cancel any asynchronous activity arising 333 * out of elevator or throttling code. That would require elevator_exit() 334 * and blkcg_exit_queue() to be called with queue lock initialized. 335 * 336 */ 337 void blk_sync_queue(struct request_queue *q) 338 { 339 del_timer_sync(&q->timeout); 340 cancel_work_sync(&q->timeout_work); 341 342 if (q->mq_ops) { 343 struct blk_mq_hw_ctx *hctx; 344 int i; 345 346 cancel_delayed_work_sync(&q->requeue_work); 347 queue_for_each_hw_ctx(q, hctx, i) 348 cancel_delayed_work_sync(&hctx->run_work); 349 } else { 350 cancel_delayed_work_sync(&q->delay_work); 351 } 352 } 353 EXPORT_SYMBOL(blk_sync_queue); 354 355 /** 356 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY 357 * @q: request queue pointer 358 * 359 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not 360 * set and 1 if the flag was already set. 361 */ 362 int blk_set_preempt_only(struct request_queue *q) 363 { 364 unsigned long flags; 365 int res; 366 367 spin_lock_irqsave(q->queue_lock, flags); 368 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q); 369 spin_unlock_irqrestore(q->queue_lock, flags); 370 371 return res; 372 } 373 EXPORT_SYMBOL_GPL(blk_set_preempt_only); 374 375 void blk_clear_preempt_only(struct request_queue *q) 376 { 377 unsigned long flags; 378 379 spin_lock_irqsave(q->queue_lock, flags); 380 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q); 381 wake_up_all(&q->mq_freeze_wq); 382 spin_unlock_irqrestore(q->queue_lock, flags); 383 } 384 EXPORT_SYMBOL_GPL(blk_clear_preempt_only); 385 386 /** 387 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 388 * @q: The queue to run 389 * 390 * Description: 391 * Invoke request handling on a queue if there are any pending requests. 392 * May be used to restart request handling after a request has completed. 393 * This variant runs the queue whether or not the queue has been 394 * stopped. Must be called with the queue lock held and interrupts 395 * disabled. See also @blk_run_queue. 396 */ 397 inline void __blk_run_queue_uncond(struct request_queue *q) 398 { 399 lockdep_assert_held(q->queue_lock); 400 WARN_ON_ONCE(q->mq_ops); 401 402 if (unlikely(blk_queue_dead(q))) 403 return; 404 405 /* 406 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 407 * the queue lock internally. As a result multiple threads may be 408 * running such a request function concurrently. Keep track of the 409 * number of active request_fn invocations such that blk_drain_queue() 410 * can wait until all these request_fn calls have finished. 411 */ 412 q->request_fn_active++; 413 q->request_fn(q); 414 q->request_fn_active--; 415 } 416 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 417 418 /** 419 * __blk_run_queue - run a single device queue 420 * @q: The queue to run 421 * 422 * Description: 423 * See @blk_run_queue. 424 */ 425 void __blk_run_queue(struct request_queue *q) 426 { 427 lockdep_assert_held(q->queue_lock); 428 WARN_ON_ONCE(q->mq_ops); 429 430 if (unlikely(blk_queue_stopped(q))) 431 return; 432 433 __blk_run_queue_uncond(q); 434 } 435 EXPORT_SYMBOL(__blk_run_queue); 436 437 /** 438 * blk_run_queue_async - run a single device queue in workqueue context 439 * @q: The queue to run 440 * 441 * Description: 442 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 443 * of us. 444 * 445 * Note: 446 * Since it is not allowed to run q->delay_work after blk_cleanup_queue() 447 * has canceled q->delay_work, callers must hold the queue lock to avoid 448 * race conditions between blk_cleanup_queue() and blk_run_queue_async(). 449 */ 450 void blk_run_queue_async(struct request_queue *q) 451 { 452 lockdep_assert_held(q->queue_lock); 453 WARN_ON_ONCE(q->mq_ops); 454 455 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 456 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 457 } 458 EXPORT_SYMBOL(blk_run_queue_async); 459 460 /** 461 * blk_run_queue - run a single device queue 462 * @q: The queue to run 463 * 464 * Description: 465 * Invoke request handling on this queue, if it has pending work to do. 466 * May be used to restart queueing when a request has completed. 467 */ 468 void blk_run_queue(struct request_queue *q) 469 { 470 unsigned long flags; 471 472 WARN_ON_ONCE(q->mq_ops); 473 474 spin_lock_irqsave(q->queue_lock, flags); 475 __blk_run_queue(q); 476 spin_unlock_irqrestore(q->queue_lock, flags); 477 } 478 EXPORT_SYMBOL(blk_run_queue); 479 480 void blk_put_queue(struct request_queue *q) 481 { 482 kobject_put(&q->kobj); 483 } 484 EXPORT_SYMBOL(blk_put_queue); 485 486 /** 487 * __blk_drain_queue - drain requests from request_queue 488 * @q: queue to drain 489 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 490 * 491 * Drain requests from @q. If @drain_all is set, all requests are drained. 492 * If not, only ELVPRIV requests are drained. The caller is responsible 493 * for ensuring that no new requests which need to be drained are queued. 494 */ 495 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 496 __releases(q->queue_lock) 497 __acquires(q->queue_lock) 498 { 499 int i; 500 501 lockdep_assert_held(q->queue_lock); 502 WARN_ON_ONCE(q->mq_ops); 503 504 while (true) { 505 bool drain = false; 506 507 /* 508 * The caller might be trying to drain @q before its 509 * elevator is initialized. 510 */ 511 if (q->elevator) 512 elv_drain_elevator(q); 513 514 blkcg_drain_queue(q); 515 516 /* 517 * This function might be called on a queue which failed 518 * driver init after queue creation or is not yet fully 519 * active yet. Some drivers (e.g. fd and loop) get unhappy 520 * in such cases. Kick queue iff dispatch queue has 521 * something on it and @q has request_fn set. 522 */ 523 if (!list_empty(&q->queue_head) && q->request_fn) 524 __blk_run_queue(q); 525 526 drain |= q->nr_rqs_elvpriv; 527 drain |= q->request_fn_active; 528 529 /* 530 * Unfortunately, requests are queued at and tracked from 531 * multiple places and there's no single counter which can 532 * be drained. Check all the queues and counters. 533 */ 534 if (drain_all) { 535 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 536 drain |= !list_empty(&q->queue_head); 537 for (i = 0; i < 2; i++) { 538 drain |= q->nr_rqs[i]; 539 drain |= q->in_flight[i]; 540 if (fq) 541 drain |= !list_empty(&fq->flush_queue[i]); 542 } 543 } 544 545 if (!drain) 546 break; 547 548 spin_unlock_irq(q->queue_lock); 549 550 msleep(10); 551 552 spin_lock_irq(q->queue_lock); 553 } 554 555 /* 556 * With queue marked dead, any woken up waiter will fail the 557 * allocation path, so the wakeup chaining is lost and we're 558 * left with hung waiters. We need to wake up those waiters. 559 */ 560 if (q->request_fn) { 561 struct request_list *rl; 562 563 blk_queue_for_each_rl(rl, q) 564 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 565 wake_up_all(&rl->wait[i]); 566 } 567 } 568 569 void blk_drain_queue(struct request_queue *q) 570 { 571 spin_lock_irq(q->queue_lock); 572 __blk_drain_queue(q, true); 573 spin_unlock_irq(q->queue_lock); 574 } 575 576 /** 577 * blk_queue_bypass_start - enter queue bypass mode 578 * @q: queue of interest 579 * 580 * In bypass mode, only the dispatch FIFO queue of @q is used. This 581 * function makes @q enter bypass mode and drains all requests which were 582 * throttled or issued before. On return, it's guaranteed that no request 583 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 584 * inside queue or RCU read lock. 585 */ 586 void blk_queue_bypass_start(struct request_queue *q) 587 { 588 WARN_ON_ONCE(q->mq_ops); 589 590 spin_lock_irq(q->queue_lock); 591 q->bypass_depth++; 592 queue_flag_set(QUEUE_FLAG_BYPASS, q); 593 spin_unlock_irq(q->queue_lock); 594 595 /* 596 * Queues start drained. Skip actual draining till init is 597 * complete. This avoids lenghty delays during queue init which 598 * can happen many times during boot. 599 */ 600 if (blk_queue_init_done(q)) { 601 spin_lock_irq(q->queue_lock); 602 __blk_drain_queue(q, false); 603 spin_unlock_irq(q->queue_lock); 604 605 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 606 synchronize_rcu(); 607 } 608 } 609 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 610 611 /** 612 * blk_queue_bypass_end - leave queue bypass mode 613 * @q: queue of interest 614 * 615 * Leave bypass mode and restore the normal queueing behavior. 616 * 617 * Note: although blk_queue_bypass_start() is only called for blk-sq queues, 618 * this function is called for both blk-sq and blk-mq queues. 619 */ 620 void blk_queue_bypass_end(struct request_queue *q) 621 { 622 spin_lock_irq(q->queue_lock); 623 if (!--q->bypass_depth) 624 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 625 WARN_ON_ONCE(q->bypass_depth < 0); 626 spin_unlock_irq(q->queue_lock); 627 } 628 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 629 630 void blk_set_queue_dying(struct request_queue *q) 631 { 632 spin_lock_irq(q->queue_lock); 633 queue_flag_set(QUEUE_FLAG_DYING, q); 634 spin_unlock_irq(q->queue_lock); 635 636 /* 637 * When queue DYING flag is set, we need to block new req 638 * entering queue, so we call blk_freeze_queue_start() to 639 * prevent I/O from crossing blk_queue_enter(). 640 */ 641 blk_freeze_queue_start(q); 642 643 if (q->mq_ops) 644 blk_mq_wake_waiters(q); 645 else { 646 struct request_list *rl; 647 648 spin_lock_irq(q->queue_lock); 649 blk_queue_for_each_rl(rl, q) { 650 if (rl->rq_pool) { 651 wake_up_all(&rl->wait[BLK_RW_SYNC]); 652 wake_up_all(&rl->wait[BLK_RW_ASYNC]); 653 } 654 } 655 spin_unlock_irq(q->queue_lock); 656 } 657 658 /* Make blk_queue_enter() reexamine the DYING flag. */ 659 wake_up_all(&q->mq_freeze_wq); 660 } 661 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 662 663 /** 664 * blk_cleanup_queue - shutdown a request queue 665 * @q: request queue to shutdown 666 * 667 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 668 * put it. All future requests will be failed immediately with -ENODEV. 669 */ 670 void blk_cleanup_queue(struct request_queue *q) 671 { 672 spinlock_t *lock = q->queue_lock; 673 674 /* mark @q DYING, no new request or merges will be allowed afterwards */ 675 mutex_lock(&q->sysfs_lock); 676 blk_set_queue_dying(q); 677 spin_lock_irq(lock); 678 679 /* 680 * A dying queue is permanently in bypass mode till released. Note 681 * that, unlike blk_queue_bypass_start(), we aren't performing 682 * synchronize_rcu() after entering bypass mode to avoid the delay 683 * as some drivers create and destroy a lot of queues while 684 * probing. This is still safe because blk_release_queue() will be 685 * called only after the queue refcnt drops to zero and nothing, 686 * RCU or not, would be traversing the queue by then. 687 */ 688 q->bypass_depth++; 689 queue_flag_set(QUEUE_FLAG_BYPASS, q); 690 691 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 692 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 693 queue_flag_set(QUEUE_FLAG_DYING, q); 694 spin_unlock_irq(lock); 695 mutex_unlock(&q->sysfs_lock); 696 697 /* 698 * Drain all requests queued before DYING marking. Set DEAD flag to 699 * prevent that q->request_fn() gets invoked after draining finished. 700 */ 701 blk_freeze_queue(q); 702 spin_lock_irq(lock); 703 queue_flag_set(QUEUE_FLAG_DEAD, q); 704 spin_unlock_irq(lock); 705 706 /* 707 * make sure all in-progress dispatch are completed because 708 * blk_freeze_queue() can only complete all requests, and 709 * dispatch may still be in-progress since we dispatch requests 710 * from more than one contexts 711 */ 712 if (q->mq_ops) 713 blk_mq_quiesce_queue(q); 714 715 /* for synchronous bio-based driver finish in-flight integrity i/o */ 716 blk_flush_integrity(); 717 718 /* @q won't process any more request, flush async actions */ 719 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 720 blk_sync_queue(q); 721 722 if (q->mq_ops) 723 blk_mq_free_queue(q); 724 percpu_ref_exit(&q->q_usage_counter); 725 726 spin_lock_irq(lock); 727 if (q->queue_lock != &q->__queue_lock) 728 q->queue_lock = &q->__queue_lock; 729 spin_unlock_irq(lock); 730 731 /* @q is and will stay empty, shutdown and put */ 732 blk_put_queue(q); 733 } 734 EXPORT_SYMBOL(blk_cleanup_queue); 735 736 /* Allocate memory local to the request queue */ 737 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 738 { 739 struct request_queue *q = data; 740 741 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 742 } 743 744 static void free_request_simple(void *element, void *data) 745 { 746 kmem_cache_free(request_cachep, element); 747 } 748 749 static void *alloc_request_size(gfp_t gfp_mask, void *data) 750 { 751 struct request_queue *q = data; 752 struct request *rq; 753 754 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 755 q->node); 756 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 757 kfree(rq); 758 rq = NULL; 759 } 760 return rq; 761 } 762 763 static void free_request_size(void *element, void *data) 764 { 765 struct request_queue *q = data; 766 767 if (q->exit_rq_fn) 768 q->exit_rq_fn(q, element); 769 kfree(element); 770 } 771 772 int blk_init_rl(struct request_list *rl, struct request_queue *q, 773 gfp_t gfp_mask) 774 { 775 if (unlikely(rl->rq_pool) || q->mq_ops) 776 return 0; 777 778 rl->q = q; 779 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 780 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 781 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 782 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 783 784 if (q->cmd_size) { 785 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 786 alloc_request_size, free_request_size, 787 q, gfp_mask, q->node); 788 } else { 789 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 790 alloc_request_simple, free_request_simple, 791 q, gfp_mask, q->node); 792 } 793 if (!rl->rq_pool) 794 return -ENOMEM; 795 796 if (rl != &q->root_rl) 797 WARN_ON_ONCE(!blk_get_queue(q)); 798 799 return 0; 800 } 801 802 void blk_exit_rl(struct request_queue *q, struct request_list *rl) 803 { 804 if (rl->rq_pool) { 805 mempool_destroy(rl->rq_pool); 806 if (rl != &q->root_rl) 807 blk_put_queue(q); 808 } 809 } 810 811 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 812 { 813 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 814 } 815 EXPORT_SYMBOL(blk_alloc_queue); 816 817 /** 818 * blk_queue_enter() - try to increase q->q_usage_counter 819 * @q: request queue pointer 820 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 821 */ 822 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 823 { 824 const bool preempt = flags & BLK_MQ_REQ_PREEMPT; 825 826 while (true) { 827 bool success = false; 828 int ret; 829 830 rcu_read_lock_sched(); 831 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 832 /* 833 * The code that sets the PREEMPT_ONLY flag is 834 * responsible for ensuring that that flag is globally 835 * visible before the queue is unfrozen. 836 */ 837 if (preempt || !blk_queue_preempt_only(q)) { 838 success = true; 839 } else { 840 percpu_ref_put(&q->q_usage_counter); 841 } 842 } 843 rcu_read_unlock_sched(); 844 845 if (success) 846 return 0; 847 848 if (flags & BLK_MQ_REQ_NOWAIT) 849 return -EBUSY; 850 851 /* 852 * read pair of barrier in blk_freeze_queue_start(), 853 * we need to order reading __PERCPU_REF_DEAD flag of 854 * .q_usage_counter and reading .mq_freeze_depth or 855 * queue dying flag, otherwise the following wait may 856 * never return if the two reads are reordered. 857 */ 858 smp_rmb(); 859 860 ret = wait_event_interruptible(q->mq_freeze_wq, 861 (atomic_read(&q->mq_freeze_depth) == 0 && 862 (preempt || !blk_queue_preempt_only(q))) || 863 blk_queue_dying(q)); 864 if (blk_queue_dying(q)) 865 return -ENODEV; 866 if (ret) 867 return ret; 868 } 869 } 870 871 void blk_queue_exit(struct request_queue *q) 872 { 873 percpu_ref_put(&q->q_usage_counter); 874 } 875 876 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 877 { 878 struct request_queue *q = 879 container_of(ref, struct request_queue, q_usage_counter); 880 881 wake_up_all(&q->mq_freeze_wq); 882 } 883 884 static void blk_rq_timed_out_timer(struct timer_list *t) 885 { 886 struct request_queue *q = from_timer(q, t, timeout); 887 888 kblockd_schedule_work(&q->timeout_work); 889 } 890 891 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 892 { 893 struct request_queue *q; 894 895 q = kmem_cache_alloc_node(blk_requestq_cachep, 896 gfp_mask | __GFP_ZERO, node_id); 897 if (!q) 898 return NULL; 899 900 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 901 if (q->id < 0) 902 goto fail_q; 903 904 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 905 if (!q->bio_split) 906 goto fail_id; 907 908 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 909 if (!q->backing_dev_info) 910 goto fail_split; 911 912 q->stats = blk_alloc_queue_stats(); 913 if (!q->stats) 914 goto fail_stats; 915 916 q->backing_dev_info->ra_pages = 917 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 918 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 919 q->backing_dev_info->name = "block"; 920 q->node = node_id; 921 922 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 923 laptop_mode_timer_fn, 0); 924 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 925 INIT_WORK(&q->timeout_work, NULL); 926 INIT_LIST_HEAD(&q->queue_head); 927 INIT_LIST_HEAD(&q->timeout_list); 928 INIT_LIST_HEAD(&q->icq_list); 929 #ifdef CONFIG_BLK_CGROUP 930 INIT_LIST_HEAD(&q->blkg_list); 931 #endif 932 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 933 934 kobject_init(&q->kobj, &blk_queue_ktype); 935 936 #ifdef CONFIG_BLK_DEV_IO_TRACE 937 mutex_init(&q->blk_trace_mutex); 938 #endif 939 mutex_init(&q->sysfs_lock); 940 spin_lock_init(&q->__queue_lock); 941 942 /* 943 * By default initialize queue_lock to internal lock and driver can 944 * override it later if need be. 945 */ 946 q->queue_lock = &q->__queue_lock; 947 948 /* 949 * A queue starts its life with bypass turned on to avoid 950 * unnecessary bypass on/off overhead and nasty surprises during 951 * init. The initial bypass will be finished when the queue is 952 * registered by blk_register_queue(). 953 */ 954 q->bypass_depth = 1; 955 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 956 957 init_waitqueue_head(&q->mq_freeze_wq); 958 959 /* 960 * Init percpu_ref in atomic mode so that it's faster to shutdown. 961 * See blk_register_queue() for details. 962 */ 963 if (percpu_ref_init(&q->q_usage_counter, 964 blk_queue_usage_counter_release, 965 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 966 goto fail_bdi; 967 968 if (blkcg_init_queue(q)) 969 goto fail_ref; 970 971 return q; 972 973 fail_ref: 974 percpu_ref_exit(&q->q_usage_counter); 975 fail_bdi: 976 blk_free_queue_stats(q->stats); 977 fail_stats: 978 bdi_put(q->backing_dev_info); 979 fail_split: 980 bioset_free(q->bio_split); 981 fail_id: 982 ida_simple_remove(&blk_queue_ida, q->id); 983 fail_q: 984 kmem_cache_free(blk_requestq_cachep, q); 985 return NULL; 986 } 987 EXPORT_SYMBOL(blk_alloc_queue_node); 988 989 /** 990 * blk_init_queue - prepare a request queue for use with a block device 991 * @rfn: The function to be called to process requests that have been 992 * placed on the queue. 993 * @lock: Request queue spin lock 994 * 995 * Description: 996 * If a block device wishes to use the standard request handling procedures, 997 * which sorts requests and coalesces adjacent requests, then it must 998 * call blk_init_queue(). The function @rfn will be called when there 999 * are requests on the queue that need to be processed. If the device 1000 * supports plugging, then @rfn may not be called immediately when requests 1001 * are available on the queue, but may be called at some time later instead. 1002 * Plugged queues are generally unplugged when a buffer belonging to one 1003 * of the requests on the queue is needed, or due to memory pressure. 1004 * 1005 * @rfn is not required, or even expected, to remove all requests off the 1006 * queue, but only as many as it can handle at a time. If it does leave 1007 * requests on the queue, it is responsible for arranging that the requests 1008 * get dealt with eventually. 1009 * 1010 * The queue spin lock must be held while manipulating the requests on the 1011 * request queue; this lock will be taken also from interrupt context, so irq 1012 * disabling is needed for it. 1013 * 1014 * Function returns a pointer to the initialized request queue, or %NULL if 1015 * it didn't succeed. 1016 * 1017 * Note: 1018 * blk_init_queue() must be paired with a blk_cleanup_queue() call 1019 * when the block device is deactivated (such as at module unload). 1020 **/ 1021 1022 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 1023 { 1024 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 1025 } 1026 EXPORT_SYMBOL(blk_init_queue); 1027 1028 struct request_queue * 1029 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 1030 { 1031 struct request_queue *q; 1032 1033 q = blk_alloc_queue_node(GFP_KERNEL, node_id); 1034 if (!q) 1035 return NULL; 1036 1037 q->request_fn = rfn; 1038 if (lock) 1039 q->queue_lock = lock; 1040 if (blk_init_allocated_queue(q) < 0) { 1041 blk_cleanup_queue(q); 1042 return NULL; 1043 } 1044 1045 return q; 1046 } 1047 EXPORT_SYMBOL(blk_init_queue_node); 1048 1049 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 1050 1051 1052 int blk_init_allocated_queue(struct request_queue *q) 1053 { 1054 WARN_ON_ONCE(q->mq_ops); 1055 1056 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); 1057 if (!q->fq) 1058 return -ENOMEM; 1059 1060 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 1061 goto out_free_flush_queue; 1062 1063 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 1064 goto out_exit_flush_rq; 1065 1066 INIT_WORK(&q->timeout_work, blk_timeout_work); 1067 q->queue_flags |= QUEUE_FLAG_DEFAULT; 1068 1069 /* 1070 * This also sets hw/phys segments, boundary and size 1071 */ 1072 blk_queue_make_request(q, blk_queue_bio); 1073 1074 q->sg_reserved_size = INT_MAX; 1075 1076 /* Protect q->elevator from elevator_change */ 1077 mutex_lock(&q->sysfs_lock); 1078 1079 /* init elevator */ 1080 if (elevator_init(q, NULL)) { 1081 mutex_unlock(&q->sysfs_lock); 1082 goto out_exit_flush_rq; 1083 } 1084 1085 mutex_unlock(&q->sysfs_lock); 1086 return 0; 1087 1088 out_exit_flush_rq: 1089 if (q->exit_rq_fn) 1090 q->exit_rq_fn(q, q->fq->flush_rq); 1091 out_free_flush_queue: 1092 blk_free_flush_queue(q->fq); 1093 return -ENOMEM; 1094 } 1095 EXPORT_SYMBOL(blk_init_allocated_queue); 1096 1097 bool blk_get_queue(struct request_queue *q) 1098 { 1099 if (likely(!blk_queue_dying(q))) { 1100 __blk_get_queue(q); 1101 return true; 1102 } 1103 1104 return false; 1105 } 1106 EXPORT_SYMBOL(blk_get_queue); 1107 1108 static inline void blk_free_request(struct request_list *rl, struct request *rq) 1109 { 1110 if (rq->rq_flags & RQF_ELVPRIV) { 1111 elv_put_request(rl->q, rq); 1112 if (rq->elv.icq) 1113 put_io_context(rq->elv.icq->ioc); 1114 } 1115 1116 mempool_free(rq, rl->rq_pool); 1117 } 1118 1119 /* 1120 * ioc_batching returns true if the ioc is a valid batching request and 1121 * should be given priority access to a request. 1122 */ 1123 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 1124 { 1125 if (!ioc) 1126 return 0; 1127 1128 /* 1129 * Make sure the process is able to allocate at least 1 request 1130 * even if the batch times out, otherwise we could theoretically 1131 * lose wakeups. 1132 */ 1133 return ioc->nr_batch_requests == q->nr_batching || 1134 (ioc->nr_batch_requests > 0 1135 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 1136 } 1137 1138 /* 1139 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 1140 * will cause the process to be a "batcher" on all queues in the system. This 1141 * is the behaviour we want though - once it gets a wakeup it should be given 1142 * a nice run. 1143 */ 1144 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 1145 { 1146 if (!ioc || ioc_batching(q, ioc)) 1147 return; 1148 1149 ioc->nr_batch_requests = q->nr_batching; 1150 ioc->last_waited = jiffies; 1151 } 1152 1153 static void __freed_request(struct request_list *rl, int sync) 1154 { 1155 struct request_queue *q = rl->q; 1156 1157 if (rl->count[sync] < queue_congestion_off_threshold(q)) 1158 blk_clear_congested(rl, sync); 1159 1160 if (rl->count[sync] + 1 <= q->nr_requests) { 1161 if (waitqueue_active(&rl->wait[sync])) 1162 wake_up(&rl->wait[sync]); 1163 1164 blk_clear_rl_full(rl, sync); 1165 } 1166 } 1167 1168 /* 1169 * A request has just been released. Account for it, update the full and 1170 * congestion status, wake up any waiters. Called under q->queue_lock. 1171 */ 1172 static void freed_request(struct request_list *rl, bool sync, 1173 req_flags_t rq_flags) 1174 { 1175 struct request_queue *q = rl->q; 1176 1177 q->nr_rqs[sync]--; 1178 rl->count[sync]--; 1179 if (rq_flags & RQF_ELVPRIV) 1180 q->nr_rqs_elvpriv--; 1181 1182 __freed_request(rl, sync); 1183 1184 if (unlikely(rl->starved[sync ^ 1])) 1185 __freed_request(rl, sync ^ 1); 1186 } 1187 1188 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 1189 { 1190 struct request_list *rl; 1191 int on_thresh, off_thresh; 1192 1193 WARN_ON_ONCE(q->mq_ops); 1194 1195 spin_lock_irq(q->queue_lock); 1196 q->nr_requests = nr; 1197 blk_queue_congestion_threshold(q); 1198 on_thresh = queue_congestion_on_threshold(q); 1199 off_thresh = queue_congestion_off_threshold(q); 1200 1201 blk_queue_for_each_rl(rl, q) { 1202 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1203 blk_set_congested(rl, BLK_RW_SYNC); 1204 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1205 blk_clear_congested(rl, BLK_RW_SYNC); 1206 1207 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1208 blk_set_congested(rl, BLK_RW_ASYNC); 1209 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1210 blk_clear_congested(rl, BLK_RW_ASYNC); 1211 1212 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1213 blk_set_rl_full(rl, BLK_RW_SYNC); 1214 } else { 1215 blk_clear_rl_full(rl, BLK_RW_SYNC); 1216 wake_up(&rl->wait[BLK_RW_SYNC]); 1217 } 1218 1219 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1220 blk_set_rl_full(rl, BLK_RW_ASYNC); 1221 } else { 1222 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1223 wake_up(&rl->wait[BLK_RW_ASYNC]); 1224 } 1225 } 1226 1227 spin_unlock_irq(q->queue_lock); 1228 return 0; 1229 } 1230 1231 /** 1232 * __get_request - get a free request 1233 * @rl: request list to allocate from 1234 * @op: operation and flags 1235 * @bio: bio to allocate request for (can be %NULL) 1236 * @flags: BLQ_MQ_REQ_* flags 1237 * 1238 * Get a free request from @q. This function may fail under memory 1239 * pressure or if @q is dead. 1240 * 1241 * Must be called with @q->queue_lock held and, 1242 * Returns ERR_PTR on failure, with @q->queue_lock held. 1243 * Returns request pointer on success, with @q->queue_lock *not held*. 1244 */ 1245 static struct request *__get_request(struct request_list *rl, unsigned int op, 1246 struct bio *bio, blk_mq_req_flags_t flags) 1247 { 1248 struct request_queue *q = rl->q; 1249 struct request *rq; 1250 struct elevator_type *et = q->elevator->type; 1251 struct io_context *ioc = rq_ioc(bio); 1252 struct io_cq *icq = NULL; 1253 const bool is_sync = op_is_sync(op); 1254 int may_queue; 1255 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : 1256 __GFP_DIRECT_RECLAIM; 1257 req_flags_t rq_flags = RQF_ALLOCED; 1258 1259 lockdep_assert_held(q->queue_lock); 1260 1261 if (unlikely(blk_queue_dying(q))) 1262 return ERR_PTR(-ENODEV); 1263 1264 may_queue = elv_may_queue(q, op); 1265 if (may_queue == ELV_MQUEUE_NO) 1266 goto rq_starved; 1267 1268 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1269 if (rl->count[is_sync]+1 >= q->nr_requests) { 1270 /* 1271 * The queue will fill after this allocation, so set 1272 * it as full, and mark this process as "batching". 1273 * This process will be allowed to complete a batch of 1274 * requests, others will be blocked. 1275 */ 1276 if (!blk_rl_full(rl, is_sync)) { 1277 ioc_set_batching(q, ioc); 1278 blk_set_rl_full(rl, is_sync); 1279 } else { 1280 if (may_queue != ELV_MQUEUE_MUST 1281 && !ioc_batching(q, ioc)) { 1282 /* 1283 * The queue is full and the allocating 1284 * process is not a "batcher", and not 1285 * exempted by the IO scheduler 1286 */ 1287 return ERR_PTR(-ENOMEM); 1288 } 1289 } 1290 } 1291 blk_set_congested(rl, is_sync); 1292 } 1293 1294 /* 1295 * Only allow batching queuers to allocate up to 50% over the defined 1296 * limit of requests, otherwise we could have thousands of requests 1297 * allocated with any setting of ->nr_requests 1298 */ 1299 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1300 return ERR_PTR(-ENOMEM); 1301 1302 q->nr_rqs[is_sync]++; 1303 rl->count[is_sync]++; 1304 rl->starved[is_sync] = 0; 1305 1306 /* 1307 * Decide whether the new request will be managed by elevator. If 1308 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1309 * prevent the current elevator from being destroyed until the new 1310 * request is freed. This guarantees icq's won't be destroyed and 1311 * makes creating new ones safe. 1312 * 1313 * Flush requests do not use the elevator so skip initialization. 1314 * This allows a request to share the flush and elevator data. 1315 * 1316 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1317 * it will be created after releasing queue_lock. 1318 */ 1319 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1320 rq_flags |= RQF_ELVPRIV; 1321 q->nr_rqs_elvpriv++; 1322 if (et->icq_cache && ioc) 1323 icq = ioc_lookup_icq(ioc, q); 1324 } 1325 1326 if (blk_queue_io_stat(q)) 1327 rq_flags |= RQF_IO_STAT; 1328 spin_unlock_irq(q->queue_lock); 1329 1330 /* allocate and init request */ 1331 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1332 if (!rq) 1333 goto fail_alloc; 1334 1335 blk_rq_init(q, rq); 1336 blk_rq_set_rl(rq, rl); 1337 rq->cmd_flags = op; 1338 rq->rq_flags = rq_flags; 1339 if (flags & BLK_MQ_REQ_PREEMPT) 1340 rq->rq_flags |= RQF_PREEMPT; 1341 1342 /* init elvpriv */ 1343 if (rq_flags & RQF_ELVPRIV) { 1344 if (unlikely(et->icq_cache && !icq)) { 1345 if (ioc) 1346 icq = ioc_create_icq(ioc, q, gfp_mask); 1347 if (!icq) 1348 goto fail_elvpriv; 1349 } 1350 1351 rq->elv.icq = icq; 1352 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1353 goto fail_elvpriv; 1354 1355 /* @rq->elv.icq holds io_context until @rq is freed */ 1356 if (icq) 1357 get_io_context(icq->ioc); 1358 } 1359 out: 1360 /* 1361 * ioc may be NULL here, and ioc_batching will be false. That's 1362 * OK, if the queue is under the request limit then requests need 1363 * not count toward the nr_batch_requests limit. There will always 1364 * be some limit enforced by BLK_BATCH_TIME. 1365 */ 1366 if (ioc_batching(q, ioc)) 1367 ioc->nr_batch_requests--; 1368 1369 trace_block_getrq(q, bio, op); 1370 return rq; 1371 1372 fail_elvpriv: 1373 /* 1374 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1375 * and may fail indefinitely under memory pressure and thus 1376 * shouldn't stall IO. Treat this request as !elvpriv. This will 1377 * disturb iosched and blkcg but weird is bettern than dead. 1378 */ 1379 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1380 __func__, dev_name(q->backing_dev_info->dev)); 1381 1382 rq->rq_flags &= ~RQF_ELVPRIV; 1383 rq->elv.icq = NULL; 1384 1385 spin_lock_irq(q->queue_lock); 1386 q->nr_rqs_elvpriv--; 1387 spin_unlock_irq(q->queue_lock); 1388 goto out; 1389 1390 fail_alloc: 1391 /* 1392 * Allocation failed presumably due to memory. Undo anything we 1393 * might have messed up. 1394 * 1395 * Allocating task should really be put onto the front of the wait 1396 * queue, but this is pretty rare. 1397 */ 1398 spin_lock_irq(q->queue_lock); 1399 freed_request(rl, is_sync, rq_flags); 1400 1401 /* 1402 * in the very unlikely event that allocation failed and no 1403 * requests for this direction was pending, mark us starved so that 1404 * freeing of a request in the other direction will notice 1405 * us. another possible fix would be to split the rq mempool into 1406 * READ and WRITE 1407 */ 1408 rq_starved: 1409 if (unlikely(rl->count[is_sync] == 0)) 1410 rl->starved[is_sync] = 1; 1411 return ERR_PTR(-ENOMEM); 1412 } 1413 1414 /** 1415 * get_request - get a free request 1416 * @q: request_queue to allocate request from 1417 * @op: operation and flags 1418 * @bio: bio to allocate request for (can be %NULL) 1419 * @flags: BLK_MQ_REQ_* flags. 1420 * 1421 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1422 * this function keeps retrying under memory pressure and fails iff @q is dead. 1423 * 1424 * Must be called with @q->queue_lock held and, 1425 * Returns ERR_PTR on failure, with @q->queue_lock held. 1426 * Returns request pointer on success, with @q->queue_lock *not held*. 1427 */ 1428 static struct request *get_request(struct request_queue *q, unsigned int op, 1429 struct bio *bio, blk_mq_req_flags_t flags) 1430 { 1431 const bool is_sync = op_is_sync(op); 1432 DEFINE_WAIT(wait); 1433 struct request_list *rl; 1434 struct request *rq; 1435 1436 lockdep_assert_held(q->queue_lock); 1437 WARN_ON_ONCE(q->mq_ops); 1438 1439 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1440 retry: 1441 rq = __get_request(rl, op, bio, flags); 1442 if (!IS_ERR(rq)) 1443 return rq; 1444 1445 if (op & REQ_NOWAIT) { 1446 blk_put_rl(rl); 1447 return ERR_PTR(-EAGAIN); 1448 } 1449 1450 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) { 1451 blk_put_rl(rl); 1452 return rq; 1453 } 1454 1455 /* wait on @rl and retry */ 1456 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1457 TASK_UNINTERRUPTIBLE); 1458 1459 trace_block_sleeprq(q, bio, op); 1460 1461 spin_unlock_irq(q->queue_lock); 1462 io_schedule(); 1463 1464 /* 1465 * After sleeping, we become a "batching" process and will be able 1466 * to allocate at least one request, and up to a big batch of them 1467 * for a small period time. See ioc_batching, ioc_set_batching 1468 */ 1469 ioc_set_batching(q, current->io_context); 1470 1471 spin_lock_irq(q->queue_lock); 1472 finish_wait(&rl->wait[is_sync], &wait); 1473 1474 goto retry; 1475 } 1476 1477 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */ 1478 static struct request *blk_old_get_request(struct request_queue *q, 1479 unsigned int op, blk_mq_req_flags_t flags) 1480 { 1481 struct request *rq; 1482 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : 1483 __GFP_DIRECT_RECLAIM; 1484 int ret = 0; 1485 1486 WARN_ON_ONCE(q->mq_ops); 1487 1488 /* create ioc upfront */ 1489 create_io_context(gfp_mask, q->node); 1490 1491 ret = blk_queue_enter(q, flags); 1492 if (ret) 1493 return ERR_PTR(ret); 1494 spin_lock_irq(q->queue_lock); 1495 rq = get_request(q, op, NULL, flags); 1496 if (IS_ERR(rq)) { 1497 spin_unlock_irq(q->queue_lock); 1498 blk_queue_exit(q); 1499 return rq; 1500 } 1501 1502 /* q->queue_lock is unlocked at this point */ 1503 rq->__data_len = 0; 1504 rq->__sector = (sector_t) -1; 1505 rq->bio = rq->biotail = NULL; 1506 return rq; 1507 } 1508 1509 /** 1510 * blk_get_request_flags - allocate a request 1511 * @q: request queue to allocate a request for 1512 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 1513 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 1514 */ 1515 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op, 1516 blk_mq_req_flags_t flags) 1517 { 1518 struct request *req; 1519 1520 WARN_ON_ONCE(op & REQ_NOWAIT); 1521 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 1522 1523 if (q->mq_ops) { 1524 req = blk_mq_alloc_request(q, op, flags); 1525 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 1526 q->mq_ops->initialize_rq_fn(req); 1527 } else { 1528 req = blk_old_get_request(q, op, flags); 1529 if (!IS_ERR(req) && q->initialize_rq_fn) 1530 q->initialize_rq_fn(req); 1531 } 1532 1533 return req; 1534 } 1535 EXPORT_SYMBOL(blk_get_request_flags); 1536 1537 struct request *blk_get_request(struct request_queue *q, unsigned int op, 1538 gfp_t gfp_mask) 1539 { 1540 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ? 1541 0 : BLK_MQ_REQ_NOWAIT); 1542 } 1543 EXPORT_SYMBOL(blk_get_request); 1544 1545 /** 1546 * blk_requeue_request - put a request back on queue 1547 * @q: request queue where request should be inserted 1548 * @rq: request to be inserted 1549 * 1550 * Description: 1551 * Drivers often keep queueing requests until the hardware cannot accept 1552 * more, when that condition happens we need to put the request back 1553 * on the queue. Must be called with queue lock held. 1554 */ 1555 void blk_requeue_request(struct request_queue *q, struct request *rq) 1556 { 1557 lockdep_assert_held(q->queue_lock); 1558 WARN_ON_ONCE(q->mq_ops); 1559 1560 blk_delete_timer(rq); 1561 blk_clear_rq_complete(rq); 1562 trace_block_rq_requeue(q, rq); 1563 wbt_requeue(q->rq_wb, &rq->issue_stat); 1564 1565 if (rq->rq_flags & RQF_QUEUED) 1566 blk_queue_end_tag(q, rq); 1567 1568 BUG_ON(blk_queued_rq(rq)); 1569 1570 elv_requeue_request(q, rq); 1571 } 1572 EXPORT_SYMBOL(blk_requeue_request); 1573 1574 static void add_acct_request(struct request_queue *q, struct request *rq, 1575 int where) 1576 { 1577 blk_account_io_start(rq, true); 1578 __elv_add_request(q, rq, where); 1579 } 1580 1581 static void part_round_stats_single(struct request_queue *q, int cpu, 1582 struct hd_struct *part, unsigned long now, 1583 unsigned int inflight) 1584 { 1585 if (inflight) { 1586 __part_stat_add(cpu, part, time_in_queue, 1587 inflight * (now - part->stamp)); 1588 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1589 } 1590 part->stamp = now; 1591 } 1592 1593 /** 1594 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1595 * @q: target block queue 1596 * @cpu: cpu number for stats access 1597 * @part: target partition 1598 * 1599 * The average IO queue length and utilisation statistics are maintained 1600 * by observing the current state of the queue length and the amount of 1601 * time it has been in this state for. 1602 * 1603 * Normally, that accounting is done on IO completion, but that can result 1604 * in more than a second's worth of IO being accounted for within any one 1605 * second, leading to >100% utilisation. To deal with that, we call this 1606 * function to do a round-off before returning the results when reading 1607 * /proc/diskstats. This accounts immediately for all queue usage up to 1608 * the current jiffies and restarts the counters again. 1609 */ 1610 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part) 1611 { 1612 struct hd_struct *part2 = NULL; 1613 unsigned long now = jiffies; 1614 unsigned int inflight[2]; 1615 int stats = 0; 1616 1617 if (part->stamp != now) 1618 stats |= 1; 1619 1620 if (part->partno) { 1621 part2 = &part_to_disk(part)->part0; 1622 if (part2->stamp != now) 1623 stats |= 2; 1624 } 1625 1626 if (!stats) 1627 return; 1628 1629 part_in_flight(q, part, inflight); 1630 1631 if (stats & 2) 1632 part_round_stats_single(q, cpu, part2, now, inflight[1]); 1633 if (stats & 1) 1634 part_round_stats_single(q, cpu, part, now, inflight[0]); 1635 } 1636 EXPORT_SYMBOL_GPL(part_round_stats); 1637 1638 #ifdef CONFIG_PM 1639 static void blk_pm_put_request(struct request *rq) 1640 { 1641 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1642 pm_runtime_mark_last_busy(rq->q->dev); 1643 } 1644 #else 1645 static inline void blk_pm_put_request(struct request *rq) {} 1646 #endif 1647 1648 void __blk_put_request(struct request_queue *q, struct request *req) 1649 { 1650 req_flags_t rq_flags = req->rq_flags; 1651 1652 if (unlikely(!q)) 1653 return; 1654 1655 if (q->mq_ops) { 1656 blk_mq_free_request(req); 1657 return; 1658 } 1659 1660 lockdep_assert_held(q->queue_lock); 1661 1662 blk_req_zone_write_unlock(req); 1663 blk_pm_put_request(req); 1664 1665 elv_completed_request(q, req); 1666 1667 /* this is a bio leak */ 1668 WARN_ON(req->bio != NULL); 1669 1670 wbt_done(q->rq_wb, &req->issue_stat); 1671 1672 /* 1673 * Request may not have originated from ll_rw_blk. if not, 1674 * it didn't come out of our reserved rq pools 1675 */ 1676 if (rq_flags & RQF_ALLOCED) { 1677 struct request_list *rl = blk_rq_rl(req); 1678 bool sync = op_is_sync(req->cmd_flags); 1679 1680 BUG_ON(!list_empty(&req->queuelist)); 1681 BUG_ON(ELV_ON_HASH(req)); 1682 1683 blk_free_request(rl, req); 1684 freed_request(rl, sync, rq_flags); 1685 blk_put_rl(rl); 1686 blk_queue_exit(q); 1687 } 1688 } 1689 EXPORT_SYMBOL_GPL(__blk_put_request); 1690 1691 void blk_put_request(struct request *req) 1692 { 1693 struct request_queue *q = req->q; 1694 1695 if (q->mq_ops) 1696 blk_mq_free_request(req); 1697 else { 1698 unsigned long flags; 1699 1700 spin_lock_irqsave(q->queue_lock, flags); 1701 __blk_put_request(q, req); 1702 spin_unlock_irqrestore(q->queue_lock, flags); 1703 } 1704 } 1705 EXPORT_SYMBOL(blk_put_request); 1706 1707 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1708 struct bio *bio) 1709 { 1710 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1711 1712 if (!ll_back_merge_fn(q, req, bio)) 1713 return false; 1714 1715 trace_block_bio_backmerge(q, req, bio); 1716 1717 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1718 blk_rq_set_mixed_merge(req); 1719 1720 req->biotail->bi_next = bio; 1721 req->biotail = bio; 1722 req->__data_len += bio->bi_iter.bi_size; 1723 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1724 1725 blk_account_io_start(req, false); 1726 return true; 1727 } 1728 1729 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1730 struct bio *bio) 1731 { 1732 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1733 1734 if (!ll_front_merge_fn(q, req, bio)) 1735 return false; 1736 1737 trace_block_bio_frontmerge(q, req, bio); 1738 1739 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1740 blk_rq_set_mixed_merge(req); 1741 1742 bio->bi_next = req->bio; 1743 req->bio = bio; 1744 1745 req->__sector = bio->bi_iter.bi_sector; 1746 req->__data_len += bio->bi_iter.bi_size; 1747 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1748 1749 blk_account_io_start(req, false); 1750 return true; 1751 } 1752 1753 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1754 struct bio *bio) 1755 { 1756 unsigned short segments = blk_rq_nr_discard_segments(req); 1757 1758 if (segments >= queue_max_discard_segments(q)) 1759 goto no_merge; 1760 if (blk_rq_sectors(req) + bio_sectors(bio) > 1761 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1762 goto no_merge; 1763 1764 req->biotail->bi_next = bio; 1765 req->biotail = bio; 1766 req->__data_len += bio->bi_iter.bi_size; 1767 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1768 req->nr_phys_segments = segments + 1; 1769 1770 blk_account_io_start(req, false); 1771 return true; 1772 no_merge: 1773 req_set_nomerge(q, req); 1774 return false; 1775 } 1776 1777 /** 1778 * blk_attempt_plug_merge - try to merge with %current's plugged list 1779 * @q: request_queue new bio is being queued at 1780 * @bio: new bio being queued 1781 * @request_count: out parameter for number of traversed plugged requests 1782 * @same_queue_rq: pointer to &struct request that gets filled in when 1783 * another request associated with @q is found on the plug list 1784 * (optional, may be %NULL) 1785 * 1786 * Determine whether @bio being queued on @q can be merged with a request 1787 * on %current's plugged list. Returns %true if merge was successful, 1788 * otherwise %false. 1789 * 1790 * Plugging coalesces IOs from the same issuer for the same purpose without 1791 * going through @q->queue_lock. As such it's more of an issuing mechanism 1792 * than scheduling, and the request, while may have elvpriv data, is not 1793 * added on the elevator at this point. In addition, we don't have 1794 * reliable access to the elevator outside queue lock. Only check basic 1795 * merging parameters without querying the elevator. 1796 * 1797 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1798 */ 1799 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1800 unsigned int *request_count, 1801 struct request **same_queue_rq) 1802 { 1803 struct blk_plug *plug; 1804 struct request *rq; 1805 struct list_head *plug_list; 1806 1807 plug = current->plug; 1808 if (!plug) 1809 return false; 1810 *request_count = 0; 1811 1812 if (q->mq_ops) 1813 plug_list = &plug->mq_list; 1814 else 1815 plug_list = &plug->list; 1816 1817 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1818 bool merged = false; 1819 1820 if (rq->q == q) { 1821 (*request_count)++; 1822 /* 1823 * Only blk-mq multiple hardware queues case checks the 1824 * rq in the same queue, there should be only one such 1825 * rq in a queue 1826 **/ 1827 if (same_queue_rq) 1828 *same_queue_rq = rq; 1829 } 1830 1831 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1832 continue; 1833 1834 switch (blk_try_merge(rq, bio)) { 1835 case ELEVATOR_BACK_MERGE: 1836 merged = bio_attempt_back_merge(q, rq, bio); 1837 break; 1838 case ELEVATOR_FRONT_MERGE: 1839 merged = bio_attempt_front_merge(q, rq, bio); 1840 break; 1841 case ELEVATOR_DISCARD_MERGE: 1842 merged = bio_attempt_discard_merge(q, rq, bio); 1843 break; 1844 default: 1845 break; 1846 } 1847 1848 if (merged) 1849 return true; 1850 } 1851 1852 return false; 1853 } 1854 1855 unsigned int blk_plug_queued_count(struct request_queue *q) 1856 { 1857 struct blk_plug *plug; 1858 struct request *rq; 1859 struct list_head *plug_list; 1860 unsigned int ret = 0; 1861 1862 plug = current->plug; 1863 if (!plug) 1864 goto out; 1865 1866 if (q->mq_ops) 1867 plug_list = &plug->mq_list; 1868 else 1869 plug_list = &plug->list; 1870 1871 list_for_each_entry(rq, plug_list, queuelist) { 1872 if (rq->q == q) 1873 ret++; 1874 } 1875 out: 1876 return ret; 1877 } 1878 1879 void blk_init_request_from_bio(struct request *req, struct bio *bio) 1880 { 1881 struct io_context *ioc = rq_ioc(bio); 1882 1883 if (bio->bi_opf & REQ_RAHEAD) 1884 req->cmd_flags |= REQ_FAILFAST_MASK; 1885 1886 req->__sector = bio->bi_iter.bi_sector; 1887 if (ioprio_valid(bio_prio(bio))) 1888 req->ioprio = bio_prio(bio); 1889 else if (ioc) 1890 req->ioprio = ioc->ioprio; 1891 else 1892 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1893 req->write_hint = bio->bi_write_hint; 1894 blk_rq_bio_prep(req->q, req, bio); 1895 } 1896 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 1897 1898 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1899 { 1900 struct blk_plug *plug; 1901 int where = ELEVATOR_INSERT_SORT; 1902 struct request *req, *free; 1903 unsigned int request_count = 0; 1904 unsigned int wb_acct; 1905 1906 /* 1907 * low level driver can indicate that it wants pages above a 1908 * certain limit bounced to low memory (ie for highmem, or even 1909 * ISA dma in theory) 1910 */ 1911 blk_queue_bounce(q, &bio); 1912 1913 blk_queue_split(q, &bio); 1914 1915 if (!bio_integrity_prep(bio)) 1916 return BLK_QC_T_NONE; 1917 1918 if (op_is_flush(bio->bi_opf)) { 1919 spin_lock_irq(q->queue_lock); 1920 where = ELEVATOR_INSERT_FLUSH; 1921 goto get_rq; 1922 } 1923 1924 /* 1925 * Check if we can merge with the plugged list before grabbing 1926 * any locks. 1927 */ 1928 if (!blk_queue_nomerges(q)) { 1929 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1930 return BLK_QC_T_NONE; 1931 } else 1932 request_count = blk_plug_queued_count(q); 1933 1934 spin_lock_irq(q->queue_lock); 1935 1936 switch (elv_merge(q, &req, bio)) { 1937 case ELEVATOR_BACK_MERGE: 1938 if (!bio_attempt_back_merge(q, req, bio)) 1939 break; 1940 elv_bio_merged(q, req, bio); 1941 free = attempt_back_merge(q, req); 1942 if (free) 1943 __blk_put_request(q, free); 1944 else 1945 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 1946 goto out_unlock; 1947 case ELEVATOR_FRONT_MERGE: 1948 if (!bio_attempt_front_merge(q, req, bio)) 1949 break; 1950 elv_bio_merged(q, req, bio); 1951 free = attempt_front_merge(q, req); 1952 if (free) 1953 __blk_put_request(q, free); 1954 else 1955 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 1956 goto out_unlock; 1957 default: 1958 break; 1959 } 1960 1961 get_rq: 1962 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock); 1963 1964 /* 1965 * Grab a free request. This is might sleep but can not fail. 1966 * Returns with the queue unlocked. 1967 */ 1968 blk_queue_enter_live(q); 1969 req = get_request(q, bio->bi_opf, bio, 0); 1970 if (IS_ERR(req)) { 1971 blk_queue_exit(q); 1972 __wbt_done(q->rq_wb, wb_acct); 1973 if (PTR_ERR(req) == -ENOMEM) 1974 bio->bi_status = BLK_STS_RESOURCE; 1975 else 1976 bio->bi_status = BLK_STS_IOERR; 1977 bio_endio(bio); 1978 goto out_unlock; 1979 } 1980 1981 wbt_track(&req->issue_stat, wb_acct); 1982 1983 /* 1984 * After dropping the lock and possibly sleeping here, our request 1985 * may now be mergeable after it had proven unmergeable (above). 1986 * We don't worry about that case for efficiency. It won't happen 1987 * often, and the elevators are able to handle it. 1988 */ 1989 blk_init_request_from_bio(req, bio); 1990 1991 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1992 req->cpu = raw_smp_processor_id(); 1993 1994 plug = current->plug; 1995 if (plug) { 1996 /* 1997 * If this is the first request added after a plug, fire 1998 * of a plug trace. 1999 * 2000 * @request_count may become stale because of schedule 2001 * out, so check plug list again. 2002 */ 2003 if (!request_count || list_empty(&plug->list)) 2004 trace_block_plug(q); 2005 else { 2006 struct request *last = list_entry_rq(plug->list.prev); 2007 if (request_count >= BLK_MAX_REQUEST_COUNT || 2008 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 2009 blk_flush_plug_list(plug, false); 2010 trace_block_plug(q); 2011 } 2012 } 2013 list_add_tail(&req->queuelist, &plug->list); 2014 blk_account_io_start(req, true); 2015 } else { 2016 spin_lock_irq(q->queue_lock); 2017 add_acct_request(q, req, where); 2018 __blk_run_queue(q); 2019 out_unlock: 2020 spin_unlock_irq(q->queue_lock); 2021 } 2022 2023 return BLK_QC_T_NONE; 2024 } 2025 2026 static void handle_bad_sector(struct bio *bio) 2027 { 2028 char b[BDEVNAME_SIZE]; 2029 2030 printk(KERN_INFO "attempt to access beyond end of device\n"); 2031 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 2032 bio_devname(bio, b), bio->bi_opf, 2033 (unsigned long long)bio_end_sector(bio), 2034 (long long)get_capacity(bio->bi_disk)); 2035 } 2036 2037 #ifdef CONFIG_FAIL_MAKE_REQUEST 2038 2039 static DECLARE_FAULT_ATTR(fail_make_request); 2040 2041 static int __init setup_fail_make_request(char *str) 2042 { 2043 return setup_fault_attr(&fail_make_request, str); 2044 } 2045 __setup("fail_make_request=", setup_fail_make_request); 2046 2047 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 2048 { 2049 return part->make_it_fail && should_fail(&fail_make_request, bytes); 2050 } 2051 2052 static int __init fail_make_request_debugfs(void) 2053 { 2054 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 2055 NULL, &fail_make_request); 2056 2057 return PTR_ERR_OR_ZERO(dir); 2058 } 2059 2060 late_initcall(fail_make_request_debugfs); 2061 2062 #else /* CONFIG_FAIL_MAKE_REQUEST */ 2063 2064 static inline bool should_fail_request(struct hd_struct *part, 2065 unsigned int bytes) 2066 { 2067 return false; 2068 } 2069 2070 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 2071 2072 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 2073 { 2074 if (part->policy && op_is_write(bio_op(bio))) { 2075 char b[BDEVNAME_SIZE]; 2076 2077 printk(KERN_ERR 2078 "generic_make_request: Trying to write " 2079 "to read-only block-device %s (partno %d)\n", 2080 bio_devname(bio, b), part->partno); 2081 return true; 2082 } 2083 2084 return false; 2085 } 2086 2087 static noinline int should_fail_bio(struct bio *bio) 2088 { 2089 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 2090 return -EIO; 2091 return 0; 2092 } 2093 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 2094 2095 /* 2096 * Remap block n of partition p to block n+start(p) of the disk. 2097 */ 2098 static inline int blk_partition_remap(struct bio *bio) 2099 { 2100 struct hd_struct *p; 2101 int ret = 0; 2102 2103 rcu_read_lock(); 2104 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 2105 if (unlikely(!p || should_fail_request(p, bio->bi_iter.bi_size) || 2106 bio_check_ro(bio, p))) { 2107 ret = -EIO; 2108 goto out; 2109 } 2110 2111 /* 2112 * Zone reset does not include bi_size so bio_sectors() is always 0. 2113 * Include a test for the reset op code and perform the remap if needed. 2114 */ 2115 if (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET) 2116 goto out; 2117 2118 bio->bi_iter.bi_sector += p->start_sect; 2119 bio->bi_partno = 0; 2120 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 2121 bio->bi_iter.bi_sector - p->start_sect); 2122 2123 out: 2124 rcu_read_unlock(); 2125 return ret; 2126 } 2127 2128 /* 2129 * Check whether this bio extends beyond the end of the device. 2130 */ 2131 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 2132 { 2133 sector_t maxsector; 2134 2135 if (!nr_sectors) 2136 return 0; 2137 2138 /* Test device or partition size, when known. */ 2139 maxsector = get_capacity(bio->bi_disk); 2140 if (maxsector) { 2141 sector_t sector = bio->bi_iter.bi_sector; 2142 2143 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 2144 /* 2145 * This may well happen - the kernel calls bread() 2146 * without checking the size of the device, e.g., when 2147 * mounting a device. 2148 */ 2149 handle_bad_sector(bio); 2150 return 1; 2151 } 2152 } 2153 2154 return 0; 2155 } 2156 2157 static noinline_for_stack bool 2158 generic_make_request_checks(struct bio *bio) 2159 { 2160 struct request_queue *q; 2161 int nr_sectors = bio_sectors(bio); 2162 blk_status_t status = BLK_STS_IOERR; 2163 char b[BDEVNAME_SIZE]; 2164 2165 might_sleep(); 2166 2167 if (bio_check_eod(bio, nr_sectors)) 2168 goto end_io; 2169 2170 q = bio->bi_disk->queue; 2171 if (unlikely(!q)) { 2172 printk(KERN_ERR 2173 "generic_make_request: Trying to access " 2174 "nonexistent block-device %s (%Lu)\n", 2175 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 2176 goto end_io; 2177 } 2178 2179 /* 2180 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 2181 * if queue is not a request based queue. 2182 */ 2183 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q)) 2184 goto not_supported; 2185 2186 if (should_fail_bio(bio)) 2187 goto end_io; 2188 2189 if (!bio->bi_partno) { 2190 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 2191 goto end_io; 2192 } else { 2193 if (blk_partition_remap(bio)) 2194 goto end_io; 2195 } 2196 2197 if (bio_check_eod(bio, nr_sectors)) 2198 goto end_io; 2199 2200 /* 2201 * Filter flush bio's early so that make_request based 2202 * drivers without flush support don't have to worry 2203 * about them. 2204 */ 2205 if (op_is_flush(bio->bi_opf) && 2206 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 2207 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 2208 if (!nr_sectors) { 2209 status = BLK_STS_OK; 2210 goto end_io; 2211 } 2212 } 2213 2214 switch (bio_op(bio)) { 2215 case REQ_OP_DISCARD: 2216 if (!blk_queue_discard(q)) 2217 goto not_supported; 2218 break; 2219 case REQ_OP_SECURE_ERASE: 2220 if (!blk_queue_secure_erase(q)) 2221 goto not_supported; 2222 break; 2223 case REQ_OP_WRITE_SAME: 2224 if (!q->limits.max_write_same_sectors) 2225 goto not_supported; 2226 break; 2227 case REQ_OP_ZONE_REPORT: 2228 case REQ_OP_ZONE_RESET: 2229 if (!blk_queue_is_zoned(q)) 2230 goto not_supported; 2231 break; 2232 case REQ_OP_WRITE_ZEROES: 2233 if (!q->limits.max_write_zeroes_sectors) 2234 goto not_supported; 2235 break; 2236 default: 2237 break; 2238 } 2239 2240 /* 2241 * Various block parts want %current->io_context and lazy ioc 2242 * allocation ends up trading a lot of pain for a small amount of 2243 * memory. Just allocate it upfront. This may fail and block 2244 * layer knows how to live with it. 2245 */ 2246 create_io_context(GFP_ATOMIC, q->node); 2247 2248 if (!blkcg_bio_issue_check(q, bio)) 2249 return false; 2250 2251 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 2252 trace_block_bio_queue(q, bio); 2253 /* Now that enqueuing has been traced, we need to trace 2254 * completion as well. 2255 */ 2256 bio_set_flag(bio, BIO_TRACE_COMPLETION); 2257 } 2258 return true; 2259 2260 not_supported: 2261 status = BLK_STS_NOTSUPP; 2262 end_io: 2263 bio->bi_status = status; 2264 bio_endio(bio); 2265 return false; 2266 } 2267 2268 /** 2269 * generic_make_request - hand a buffer to its device driver for I/O 2270 * @bio: The bio describing the location in memory and on the device. 2271 * 2272 * generic_make_request() is used to make I/O requests of block 2273 * devices. It is passed a &struct bio, which describes the I/O that needs 2274 * to be done. 2275 * 2276 * generic_make_request() does not return any status. The 2277 * success/failure status of the request, along with notification of 2278 * completion, is delivered asynchronously through the bio->bi_end_io 2279 * function described (one day) else where. 2280 * 2281 * The caller of generic_make_request must make sure that bi_io_vec 2282 * are set to describe the memory buffer, and that bi_dev and bi_sector are 2283 * set to describe the device address, and the 2284 * bi_end_io and optionally bi_private are set to describe how 2285 * completion notification should be signaled. 2286 * 2287 * generic_make_request and the drivers it calls may use bi_next if this 2288 * bio happens to be merged with someone else, and may resubmit the bio to 2289 * a lower device by calling into generic_make_request recursively, which 2290 * means the bio should NOT be touched after the call to ->make_request_fn. 2291 */ 2292 blk_qc_t generic_make_request(struct bio *bio) 2293 { 2294 /* 2295 * bio_list_on_stack[0] contains bios submitted by the current 2296 * make_request_fn. 2297 * bio_list_on_stack[1] contains bios that were submitted before 2298 * the current make_request_fn, but that haven't been processed 2299 * yet. 2300 */ 2301 struct bio_list bio_list_on_stack[2]; 2302 blk_qc_t ret = BLK_QC_T_NONE; 2303 2304 if (!generic_make_request_checks(bio)) 2305 goto out; 2306 2307 /* 2308 * We only want one ->make_request_fn to be active at a time, else 2309 * stack usage with stacked devices could be a problem. So use 2310 * current->bio_list to keep a list of requests submited by a 2311 * make_request_fn function. current->bio_list is also used as a 2312 * flag to say if generic_make_request is currently active in this 2313 * task or not. If it is NULL, then no make_request is active. If 2314 * it is non-NULL, then a make_request is active, and new requests 2315 * should be added at the tail 2316 */ 2317 if (current->bio_list) { 2318 bio_list_add(¤t->bio_list[0], bio); 2319 goto out; 2320 } 2321 2322 /* following loop may be a bit non-obvious, and so deserves some 2323 * explanation. 2324 * Before entering the loop, bio->bi_next is NULL (as all callers 2325 * ensure that) so we have a list with a single bio. 2326 * We pretend that we have just taken it off a longer list, so 2327 * we assign bio_list to a pointer to the bio_list_on_stack, 2328 * thus initialising the bio_list of new bios to be 2329 * added. ->make_request() may indeed add some more bios 2330 * through a recursive call to generic_make_request. If it 2331 * did, we find a non-NULL value in bio_list and re-enter the loop 2332 * from the top. In this case we really did just take the bio 2333 * of the top of the list (no pretending) and so remove it from 2334 * bio_list, and call into ->make_request() again. 2335 */ 2336 BUG_ON(bio->bi_next); 2337 bio_list_init(&bio_list_on_stack[0]); 2338 current->bio_list = bio_list_on_stack; 2339 do { 2340 struct request_queue *q = bio->bi_disk->queue; 2341 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ? 2342 BLK_MQ_REQ_NOWAIT : 0; 2343 2344 if (likely(blk_queue_enter(q, flags) == 0)) { 2345 struct bio_list lower, same; 2346 2347 /* Create a fresh bio_list for all subordinate requests */ 2348 bio_list_on_stack[1] = bio_list_on_stack[0]; 2349 bio_list_init(&bio_list_on_stack[0]); 2350 ret = q->make_request_fn(q, bio); 2351 2352 blk_queue_exit(q); 2353 2354 /* sort new bios into those for a lower level 2355 * and those for the same level 2356 */ 2357 bio_list_init(&lower); 2358 bio_list_init(&same); 2359 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 2360 if (q == bio->bi_disk->queue) 2361 bio_list_add(&same, bio); 2362 else 2363 bio_list_add(&lower, bio); 2364 /* now assemble so we handle the lowest level first */ 2365 bio_list_merge(&bio_list_on_stack[0], &lower); 2366 bio_list_merge(&bio_list_on_stack[0], &same); 2367 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 2368 } else { 2369 if (unlikely(!blk_queue_dying(q) && 2370 (bio->bi_opf & REQ_NOWAIT))) 2371 bio_wouldblock_error(bio); 2372 else 2373 bio_io_error(bio); 2374 } 2375 bio = bio_list_pop(&bio_list_on_stack[0]); 2376 } while (bio); 2377 current->bio_list = NULL; /* deactivate */ 2378 2379 out: 2380 return ret; 2381 } 2382 EXPORT_SYMBOL(generic_make_request); 2383 2384 /** 2385 * direct_make_request - hand a buffer directly to its device driver for I/O 2386 * @bio: The bio describing the location in memory and on the device. 2387 * 2388 * This function behaves like generic_make_request(), but does not protect 2389 * against recursion. Must only be used if the called driver is known 2390 * to not call generic_make_request (or direct_make_request) again from 2391 * its make_request function. (Calling direct_make_request again from 2392 * a workqueue is perfectly fine as that doesn't recurse). 2393 */ 2394 blk_qc_t direct_make_request(struct bio *bio) 2395 { 2396 struct request_queue *q = bio->bi_disk->queue; 2397 bool nowait = bio->bi_opf & REQ_NOWAIT; 2398 blk_qc_t ret; 2399 2400 if (!generic_make_request_checks(bio)) 2401 return BLK_QC_T_NONE; 2402 2403 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 2404 if (nowait && !blk_queue_dying(q)) 2405 bio->bi_status = BLK_STS_AGAIN; 2406 else 2407 bio->bi_status = BLK_STS_IOERR; 2408 bio_endio(bio); 2409 return BLK_QC_T_NONE; 2410 } 2411 2412 ret = q->make_request_fn(q, bio); 2413 blk_queue_exit(q); 2414 return ret; 2415 } 2416 EXPORT_SYMBOL_GPL(direct_make_request); 2417 2418 /** 2419 * submit_bio - submit a bio to the block device layer for I/O 2420 * @bio: The &struct bio which describes the I/O 2421 * 2422 * submit_bio() is very similar in purpose to generic_make_request(), and 2423 * uses that function to do most of the work. Both are fairly rough 2424 * interfaces; @bio must be presetup and ready for I/O. 2425 * 2426 */ 2427 blk_qc_t submit_bio(struct bio *bio) 2428 { 2429 /* 2430 * If it's a regular read/write or a barrier with data attached, 2431 * go through the normal accounting stuff before submission. 2432 */ 2433 if (bio_has_data(bio)) { 2434 unsigned int count; 2435 2436 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2437 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 2438 else 2439 count = bio_sectors(bio); 2440 2441 if (op_is_write(bio_op(bio))) { 2442 count_vm_events(PGPGOUT, count); 2443 } else { 2444 task_io_account_read(bio->bi_iter.bi_size); 2445 count_vm_events(PGPGIN, count); 2446 } 2447 2448 if (unlikely(block_dump)) { 2449 char b[BDEVNAME_SIZE]; 2450 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2451 current->comm, task_pid_nr(current), 2452 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2453 (unsigned long long)bio->bi_iter.bi_sector, 2454 bio_devname(bio, b), count); 2455 } 2456 } 2457 2458 return generic_make_request(bio); 2459 } 2460 EXPORT_SYMBOL(submit_bio); 2461 2462 bool blk_poll(struct request_queue *q, blk_qc_t cookie) 2463 { 2464 if (!q->poll_fn || !blk_qc_t_valid(cookie)) 2465 return false; 2466 2467 if (current->plug) 2468 blk_flush_plug_list(current->plug, false); 2469 return q->poll_fn(q, cookie); 2470 } 2471 EXPORT_SYMBOL_GPL(blk_poll); 2472 2473 /** 2474 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2475 * for new the queue limits 2476 * @q: the queue 2477 * @rq: the request being checked 2478 * 2479 * Description: 2480 * @rq may have been made based on weaker limitations of upper-level queues 2481 * in request stacking drivers, and it may violate the limitation of @q. 2482 * Since the block layer and the underlying device driver trust @rq 2483 * after it is inserted to @q, it should be checked against @q before 2484 * the insertion using this generic function. 2485 * 2486 * Request stacking drivers like request-based dm may change the queue 2487 * limits when retrying requests on other queues. Those requests need 2488 * to be checked against the new queue limits again during dispatch. 2489 */ 2490 static int blk_cloned_rq_check_limits(struct request_queue *q, 2491 struct request *rq) 2492 { 2493 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2494 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2495 return -EIO; 2496 } 2497 2498 /* 2499 * queue's settings related to segment counting like q->bounce_pfn 2500 * may differ from that of other stacking queues. 2501 * Recalculate it to check the request correctly on this queue's 2502 * limitation. 2503 */ 2504 blk_recalc_rq_segments(rq); 2505 if (rq->nr_phys_segments > queue_max_segments(q)) { 2506 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2507 return -EIO; 2508 } 2509 2510 return 0; 2511 } 2512 2513 /** 2514 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2515 * @q: the queue to submit the request 2516 * @rq: the request being queued 2517 */ 2518 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2519 { 2520 unsigned long flags; 2521 int where = ELEVATOR_INSERT_BACK; 2522 2523 if (blk_cloned_rq_check_limits(q, rq)) 2524 return BLK_STS_IOERR; 2525 2526 if (rq->rq_disk && 2527 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2528 return BLK_STS_IOERR; 2529 2530 if (q->mq_ops) { 2531 if (blk_queue_io_stat(q)) 2532 blk_account_io_start(rq, true); 2533 /* 2534 * Since we have a scheduler attached on the top device, 2535 * bypass a potential scheduler on the bottom device for 2536 * insert. 2537 */ 2538 return blk_mq_request_issue_directly(rq); 2539 } 2540 2541 spin_lock_irqsave(q->queue_lock, flags); 2542 if (unlikely(blk_queue_dying(q))) { 2543 spin_unlock_irqrestore(q->queue_lock, flags); 2544 return BLK_STS_IOERR; 2545 } 2546 2547 /* 2548 * Submitting request must be dequeued before calling this function 2549 * because it will be linked to another request_queue 2550 */ 2551 BUG_ON(blk_queued_rq(rq)); 2552 2553 if (op_is_flush(rq->cmd_flags)) 2554 where = ELEVATOR_INSERT_FLUSH; 2555 2556 add_acct_request(q, rq, where); 2557 if (where == ELEVATOR_INSERT_FLUSH) 2558 __blk_run_queue(q); 2559 spin_unlock_irqrestore(q->queue_lock, flags); 2560 2561 return BLK_STS_OK; 2562 } 2563 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2564 2565 /** 2566 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2567 * @rq: request to examine 2568 * 2569 * Description: 2570 * A request could be merge of IOs which require different failure 2571 * handling. This function determines the number of bytes which 2572 * can be failed from the beginning of the request without 2573 * crossing into area which need to be retried further. 2574 * 2575 * Return: 2576 * The number of bytes to fail. 2577 */ 2578 unsigned int blk_rq_err_bytes(const struct request *rq) 2579 { 2580 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2581 unsigned int bytes = 0; 2582 struct bio *bio; 2583 2584 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2585 return blk_rq_bytes(rq); 2586 2587 /* 2588 * Currently the only 'mixing' which can happen is between 2589 * different fastfail types. We can safely fail portions 2590 * which have all the failfast bits that the first one has - 2591 * the ones which are at least as eager to fail as the first 2592 * one. 2593 */ 2594 for (bio = rq->bio; bio; bio = bio->bi_next) { 2595 if ((bio->bi_opf & ff) != ff) 2596 break; 2597 bytes += bio->bi_iter.bi_size; 2598 } 2599 2600 /* this could lead to infinite loop */ 2601 BUG_ON(blk_rq_bytes(rq) && !bytes); 2602 return bytes; 2603 } 2604 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2605 2606 void blk_account_io_completion(struct request *req, unsigned int bytes) 2607 { 2608 if (blk_do_io_stat(req)) { 2609 const int rw = rq_data_dir(req); 2610 struct hd_struct *part; 2611 int cpu; 2612 2613 cpu = part_stat_lock(); 2614 part = req->part; 2615 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2616 part_stat_unlock(); 2617 } 2618 } 2619 2620 void blk_account_io_done(struct request *req) 2621 { 2622 /* 2623 * Account IO completion. flush_rq isn't accounted as a 2624 * normal IO on queueing nor completion. Accounting the 2625 * containing request is enough. 2626 */ 2627 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2628 unsigned long duration = jiffies - req->start_time; 2629 const int rw = rq_data_dir(req); 2630 struct hd_struct *part; 2631 int cpu; 2632 2633 cpu = part_stat_lock(); 2634 part = req->part; 2635 2636 part_stat_inc(cpu, part, ios[rw]); 2637 part_stat_add(cpu, part, ticks[rw], duration); 2638 part_round_stats(req->q, cpu, part); 2639 part_dec_in_flight(req->q, part, rw); 2640 2641 hd_struct_put(part); 2642 part_stat_unlock(); 2643 } 2644 } 2645 2646 #ifdef CONFIG_PM 2647 /* 2648 * Don't process normal requests when queue is suspended 2649 * or in the process of suspending/resuming 2650 */ 2651 static bool blk_pm_allow_request(struct request *rq) 2652 { 2653 switch (rq->q->rpm_status) { 2654 case RPM_RESUMING: 2655 case RPM_SUSPENDING: 2656 return rq->rq_flags & RQF_PM; 2657 case RPM_SUSPENDED: 2658 return false; 2659 } 2660 2661 return true; 2662 } 2663 #else 2664 static bool blk_pm_allow_request(struct request *rq) 2665 { 2666 return true; 2667 } 2668 #endif 2669 2670 void blk_account_io_start(struct request *rq, bool new_io) 2671 { 2672 struct hd_struct *part; 2673 int rw = rq_data_dir(rq); 2674 int cpu; 2675 2676 if (!blk_do_io_stat(rq)) 2677 return; 2678 2679 cpu = part_stat_lock(); 2680 2681 if (!new_io) { 2682 part = rq->part; 2683 part_stat_inc(cpu, part, merges[rw]); 2684 } else { 2685 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2686 if (!hd_struct_try_get(part)) { 2687 /* 2688 * The partition is already being removed, 2689 * the request will be accounted on the disk only 2690 * 2691 * We take a reference on disk->part0 although that 2692 * partition will never be deleted, so we can treat 2693 * it as any other partition. 2694 */ 2695 part = &rq->rq_disk->part0; 2696 hd_struct_get(part); 2697 } 2698 part_round_stats(rq->q, cpu, part); 2699 part_inc_in_flight(rq->q, part, rw); 2700 rq->part = part; 2701 } 2702 2703 part_stat_unlock(); 2704 } 2705 2706 static struct request *elv_next_request(struct request_queue *q) 2707 { 2708 struct request *rq; 2709 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 2710 2711 WARN_ON_ONCE(q->mq_ops); 2712 2713 while (1) { 2714 list_for_each_entry(rq, &q->queue_head, queuelist) { 2715 if (blk_pm_allow_request(rq)) 2716 return rq; 2717 2718 if (rq->rq_flags & RQF_SOFTBARRIER) 2719 break; 2720 } 2721 2722 /* 2723 * Flush request is running and flush request isn't queueable 2724 * in the drive, we can hold the queue till flush request is 2725 * finished. Even we don't do this, driver can't dispatch next 2726 * requests and will requeue them. And this can improve 2727 * throughput too. For example, we have request flush1, write1, 2728 * flush 2. flush1 is dispatched, then queue is hold, write1 2729 * isn't inserted to queue. After flush1 is finished, flush2 2730 * will be dispatched. Since disk cache is already clean, 2731 * flush2 will be finished very soon, so looks like flush2 is 2732 * folded to flush1. 2733 * Since the queue is hold, a flag is set to indicate the queue 2734 * should be restarted later. Please see flush_end_io() for 2735 * details. 2736 */ 2737 if (fq->flush_pending_idx != fq->flush_running_idx && 2738 !queue_flush_queueable(q)) { 2739 fq->flush_queue_delayed = 1; 2740 return NULL; 2741 } 2742 if (unlikely(blk_queue_bypass(q)) || 2743 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0)) 2744 return NULL; 2745 } 2746 } 2747 2748 /** 2749 * blk_peek_request - peek at the top of a request queue 2750 * @q: request queue to peek at 2751 * 2752 * Description: 2753 * Return the request at the top of @q. The returned request 2754 * should be started using blk_start_request() before LLD starts 2755 * processing it. 2756 * 2757 * Return: 2758 * Pointer to the request at the top of @q if available. Null 2759 * otherwise. 2760 */ 2761 struct request *blk_peek_request(struct request_queue *q) 2762 { 2763 struct request *rq; 2764 int ret; 2765 2766 lockdep_assert_held(q->queue_lock); 2767 WARN_ON_ONCE(q->mq_ops); 2768 2769 while ((rq = elv_next_request(q)) != NULL) { 2770 if (!(rq->rq_flags & RQF_STARTED)) { 2771 /* 2772 * This is the first time the device driver 2773 * sees this request (possibly after 2774 * requeueing). Notify IO scheduler. 2775 */ 2776 if (rq->rq_flags & RQF_SORTED) 2777 elv_activate_rq(q, rq); 2778 2779 /* 2780 * just mark as started even if we don't start 2781 * it, a request that has been delayed should 2782 * not be passed by new incoming requests 2783 */ 2784 rq->rq_flags |= RQF_STARTED; 2785 trace_block_rq_issue(q, rq); 2786 } 2787 2788 if (!q->boundary_rq || q->boundary_rq == rq) { 2789 q->end_sector = rq_end_sector(rq); 2790 q->boundary_rq = NULL; 2791 } 2792 2793 if (rq->rq_flags & RQF_DONTPREP) 2794 break; 2795 2796 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2797 /* 2798 * make sure space for the drain appears we 2799 * know we can do this because max_hw_segments 2800 * has been adjusted to be one fewer than the 2801 * device can handle 2802 */ 2803 rq->nr_phys_segments++; 2804 } 2805 2806 if (!q->prep_rq_fn) 2807 break; 2808 2809 ret = q->prep_rq_fn(q, rq); 2810 if (ret == BLKPREP_OK) { 2811 break; 2812 } else if (ret == BLKPREP_DEFER) { 2813 /* 2814 * the request may have been (partially) prepped. 2815 * we need to keep this request in the front to 2816 * avoid resource deadlock. RQF_STARTED will 2817 * prevent other fs requests from passing this one. 2818 */ 2819 if (q->dma_drain_size && blk_rq_bytes(rq) && 2820 !(rq->rq_flags & RQF_DONTPREP)) { 2821 /* 2822 * remove the space for the drain we added 2823 * so that we don't add it again 2824 */ 2825 --rq->nr_phys_segments; 2826 } 2827 2828 rq = NULL; 2829 break; 2830 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2831 rq->rq_flags |= RQF_QUIET; 2832 /* 2833 * Mark this request as started so we don't trigger 2834 * any debug logic in the end I/O path. 2835 */ 2836 blk_start_request(rq); 2837 __blk_end_request_all(rq, ret == BLKPREP_INVALID ? 2838 BLK_STS_TARGET : BLK_STS_IOERR); 2839 } else { 2840 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2841 break; 2842 } 2843 } 2844 2845 return rq; 2846 } 2847 EXPORT_SYMBOL(blk_peek_request); 2848 2849 static void blk_dequeue_request(struct request *rq) 2850 { 2851 struct request_queue *q = rq->q; 2852 2853 BUG_ON(list_empty(&rq->queuelist)); 2854 BUG_ON(ELV_ON_HASH(rq)); 2855 2856 list_del_init(&rq->queuelist); 2857 2858 /* 2859 * the time frame between a request being removed from the lists 2860 * and to it is freed is accounted as io that is in progress at 2861 * the driver side. 2862 */ 2863 if (blk_account_rq(rq)) { 2864 q->in_flight[rq_is_sync(rq)]++; 2865 set_io_start_time_ns(rq); 2866 } 2867 } 2868 2869 /** 2870 * blk_start_request - start request processing on the driver 2871 * @req: request to dequeue 2872 * 2873 * Description: 2874 * Dequeue @req and start timeout timer on it. This hands off the 2875 * request to the driver. 2876 */ 2877 void blk_start_request(struct request *req) 2878 { 2879 lockdep_assert_held(req->q->queue_lock); 2880 WARN_ON_ONCE(req->q->mq_ops); 2881 2882 blk_dequeue_request(req); 2883 2884 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2885 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req)); 2886 req->rq_flags |= RQF_STATS; 2887 wbt_issue(req->q->rq_wb, &req->issue_stat); 2888 } 2889 2890 BUG_ON(blk_rq_is_complete(req)); 2891 blk_add_timer(req); 2892 } 2893 EXPORT_SYMBOL(blk_start_request); 2894 2895 /** 2896 * blk_fetch_request - fetch a request from a request queue 2897 * @q: request queue to fetch a request from 2898 * 2899 * Description: 2900 * Return the request at the top of @q. The request is started on 2901 * return and LLD can start processing it immediately. 2902 * 2903 * Return: 2904 * Pointer to the request at the top of @q if available. Null 2905 * otherwise. 2906 */ 2907 struct request *blk_fetch_request(struct request_queue *q) 2908 { 2909 struct request *rq; 2910 2911 lockdep_assert_held(q->queue_lock); 2912 WARN_ON_ONCE(q->mq_ops); 2913 2914 rq = blk_peek_request(q); 2915 if (rq) 2916 blk_start_request(rq); 2917 return rq; 2918 } 2919 EXPORT_SYMBOL(blk_fetch_request); 2920 2921 /* 2922 * Steal bios from a request and add them to a bio list. 2923 * The request must not have been partially completed before. 2924 */ 2925 void blk_steal_bios(struct bio_list *list, struct request *rq) 2926 { 2927 if (rq->bio) { 2928 if (list->tail) 2929 list->tail->bi_next = rq->bio; 2930 else 2931 list->head = rq->bio; 2932 list->tail = rq->biotail; 2933 2934 rq->bio = NULL; 2935 rq->biotail = NULL; 2936 } 2937 2938 rq->__data_len = 0; 2939 } 2940 EXPORT_SYMBOL_GPL(blk_steal_bios); 2941 2942 /** 2943 * blk_update_request - Special helper function for request stacking drivers 2944 * @req: the request being processed 2945 * @error: block status code 2946 * @nr_bytes: number of bytes to complete @req 2947 * 2948 * Description: 2949 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2950 * the request structure even if @req doesn't have leftover. 2951 * If @req has leftover, sets it up for the next range of segments. 2952 * 2953 * This special helper function is only for request stacking drivers 2954 * (e.g. request-based dm) so that they can handle partial completion. 2955 * Actual device drivers should use blk_end_request instead. 2956 * 2957 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2958 * %false return from this function. 2959 * 2960 * Return: 2961 * %false - this request doesn't have any more data 2962 * %true - this request has more data 2963 **/ 2964 bool blk_update_request(struct request *req, blk_status_t error, 2965 unsigned int nr_bytes) 2966 { 2967 int total_bytes; 2968 2969 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 2970 2971 if (!req->bio) 2972 return false; 2973 2974 if (unlikely(error && !blk_rq_is_passthrough(req) && 2975 !(req->rq_flags & RQF_QUIET))) 2976 print_req_error(req, error); 2977 2978 blk_account_io_completion(req, nr_bytes); 2979 2980 total_bytes = 0; 2981 while (req->bio) { 2982 struct bio *bio = req->bio; 2983 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2984 2985 if (bio_bytes == bio->bi_iter.bi_size) 2986 req->bio = bio->bi_next; 2987 2988 /* Completion has already been traced */ 2989 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 2990 req_bio_endio(req, bio, bio_bytes, error); 2991 2992 total_bytes += bio_bytes; 2993 nr_bytes -= bio_bytes; 2994 2995 if (!nr_bytes) 2996 break; 2997 } 2998 2999 /* 3000 * completely done 3001 */ 3002 if (!req->bio) { 3003 /* 3004 * Reset counters so that the request stacking driver 3005 * can find how many bytes remain in the request 3006 * later. 3007 */ 3008 req->__data_len = 0; 3009 return false; 3010 } 3011 3012 req->__data_len -= total_bytes; 3013 3014 /* update sector only for requests with clear definition of sector */ 3015 if (!blk_rq_is_passthrough(req)) 3016 req->__sector += total_bytes >> 9; 3017 3018 /* mixed attributes always follow the first bio */ 3019 if (req->rq_flags & RQF_MIXED_MERGE) { 3020 req->cmd_flags &= ~REQ_FAILFAST_MASK; 3021 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 3022 } 3023 3024 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 3025 /* 3026 * If total number of sectors is less than the first segment 3027 * size, something has gone terribly wrong. 3028 */ 3029 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 3030 blk_dump_rq_flags(req, "request botched"); 3031 req->__data_len = blk_rq_cur_bytes(req); 3032 } 3033 3034 /* recalculate the number of segments */ 3035 blk_recalc_rq_segments(req); 3036 } 3037 3038 return true; 3039 } 3040 EXPORT_SYMBOL_GPL(blk_update_request); 3041 3042 static bool blk_update_bidi_request(struct request *rq, blk_status_t error, 3043 unsigned int nr_bytes, 3044 unsigned int bidi_bytes) 3045 { 3046 if (blk_update_request(rq, error, nr_bytes)) 3047 return true; 3048 3049 /* Bidi request must be completed as a whole */ 3050 if (unlikely(blk_bidi_rq(rq)) && 3051 blk_update_request(rq->next_rq, error, bidi_bytes)) 3052 return true; 3053 3054 if (blk_queue_add_random(rq->q)) 3055 add_disk_randomness(rq->rq_disk); 3056 3057 return false; 3058 } 3059 3060 /** 3061 * blk_unprep_request - unprepare a request 3062 * @req: the request 3063 * 3064 * This function makes a request ready for complete resubmission (or 3065 * completion). It happens only after all error handling is complete, 3066 * so represents the appropriate moment to deallocate any resources 3067 * that were allocated to the request in the prep_rq_fn. The queue 3068 * lock is held when calling this. 3069 */ 3070 void blk_unprep_request(struct request *req) 3071 { 3072 struct request_queue *q = req->q; 3073 3074 req->rq_flags &= ~RQF_DONTPREP; 3075 if (q->unprep_rq_fn) 3076 q->unprep_rq_fn(q, req); 3077 } 3078 EXPORT_SYMBOL_GPL(blk_unprep_request); 3079 3080 void blk_finish_request(struct request *req, blk_status_t error) 3081 { 3082 struct request_queue *q = req->q; 3083 3084 lockdep_assert_held(req->q->queue_lock); 3085 WARN_ON_ONCE(q->mq_ops); 3086 3087 if (req->rq_flags & RQF_STATS) 3088 blk_stat_add(req); 3089 3090 if (req->rq_flags & RQF_QUEUED) 3091 blk_queue_end_tag(q, req); 3092 3093 BUG_ON(blk_queued_rq(req)); 3094 3095 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 3096 laptop_io_completion(req->q->backing_dev_info); 3097 3098 blk_delete_timer(req); 3099 3100 if (req->rq_flags & RQF_DONTPREP) 3101 blk_unprep_request(req); 3102 3103 blk_account_io_done(req); 3104 3105 if (req->end_io) { 3106 wbt_done(req->q->rq_wb, &req->issue_stat); 3107 req->end_io(req, error); 3108 } else { 3109 if (blk_bidi_rq(req)) 3110 __blk_put_request(req->next_rq->q, req->next_rq); 3111 3112 __blk_put_request(q, req); 3113 } 3114 } 3115 EXPORT_SYMBOL(blk_finish_request); 3116 3117 /** 3118 * blk_end_bidi_request - Complete a bidi request 3119 * @rq: the request to complete 3120 * @error: block status code 3121 * @nr_bytes: number of bytes to complete @rq 3122 * @bidi_bytes: number of bytes to complete @rq->next_rq 3123 * 3124 * Description: 3125 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 3126 * Drivers that supports bidi can safely call this member for any 3127 * type of request, bidi or uni. In the later case @bidi_bytes is 3128 * just ignored. 3129 * 3130 * Return: 3131 * %false - we are done with this request 3132 * %true - still buffers pending for this request 3133 **/ 3134 static bool blk_end_bidi_request(struct request *rq, blk_status_t error, 3135 unsigned int nr_bytes, unsigned int bidi_bytes) 3136 { 3137 struct request_queue *q = rq->q; 3138 unsigned long flags; 3139 3140 WARN_ON_ONCE(q->mq_ops); 3141 3142 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3143 return true; 3144 3145 spin_lock_irqsave(q->queue_lock, flags); 3146 blk_finish_request(rq, error); 3147 spin_unlock_irqrestore(q->queue_lock, flags); 3148 3149 return false; 3150 } 3151 3152 /** 3153 * __blk_end_bidi_request - Complete a bidi request with queue lock held 3154 * @rq: the request to complete 3155 * @error: block status code 3156 * @nr_bytes: number of bytes to complete @rq 3157 * @bidi_bytes: number of bytes to complete @rq->next_rq 3158 * 3159 * Description: 3160 * Identical to blk_end_bidi_request() except that queue lock is 3161 * assumed to be locked on entry and remains so on return. 3162 * 3163 * Return: 3164 * %false - we are done with this request 3165 * %true - still buffers pending for this request 3166 **/ 3167 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error, 3168 unsigned int nr_bytes, unsigned int bidi_bytes) 3169 { 3170 lockdep_assert_held(rq->q->queue_lock); 3171 WARN_ON_ONCE(rq->q->mq_ops); 3172 3173 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3174 return true; 3175 3176 blk_finish_request(rq, error); 3177 3178 return false; 3179 } 3180 3181 /** 3182 * blk_end_request - Helper function for drivers to complete the request. 3183 * @rq: the request being processed 3184 * @error: block status code 3185 * @nr_bytes: number of bytes to complete 3186 * 3187 * Description: 3188 * Ends I/O on a number of bytes attached to @rq. 3189 * If @rq has leftover, sets it up for the next range of segments. 3190 * 3191 * Return: 3192 * %false - we are done with this request 3193 * %true - still buffers pending for this request 3194 **/ 3195 bool blk_end_request(struct request *rq, blk_status_t error, 3196 unsigned int nr_bytes) 3197 { 3198 WARN_ON_ONCE(rq->q->mq_ops); 3199 return blk_end_bidi_request(rq, error, nr_bytes, 0); 3200 } 3201 EXPORT_SYMBOL(blk_end_request); 3202 3203 /** 3204 * blk_end_request_all - Helper function for drives to finish the request. 3205 * @rq: the request to finish 3206 * @error: block status code 3207 * 3208 * Description: 3209 * Completely finish @rq. 3210 */ 3211 void blk_end_request_all(struct request *rq, blk_status_t error) 3212 { 3213 bool pending; 3214 unsigned int bidi_bytes = 0; 3215 3216 if (unlikely(blk_bidi_rq(rq))) 3217 bidi_bytes = blk_rq_bytes(rq->next_rq); 3218 3219 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3220 BUG_ON(pending); 3221 } 3222 EXPORT_SYMBOL(blk_end_request_all); 3223 3224 /** 3225 * __blk_end_request - Helper function for drivers to complete the request. 3226 * @rq: the request being processed 3227 * @error: block status code 3228 * @nr_bytes: number of bytes to complete 3229 * 3230 * Description: 3231 * Must be called with queue lock held unlike blk_end_request(). 3232 * 3233 * Return: 3234 * %false - we are done with this request 3235 * %true - still buffers pending for this request 3236 **/ 3237 bool __blk_end_request(struct request *rq, blk_status_t error, 3238 unsigned int nr_bytes) 3239 { 3240 lockdep_assert_held(rq->q->queue_lock); 3241 WARN_ON_ONCE(rq->q->mq_ops); 3242 3243 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 3244 } 3245 EXPORT_SYMBOL(__blk_end_request); 3246 3247 /** 3248 * __blk_end_request_all - Helper function for drives to finish the request. 3249 * @rq: the request to finish 3250 * @error: block status code 3251 * 3252 * Description: 3253 * Completely finish @rq. Must be called with queue lock held. 3254 */ 3255 void __blk_end_request_all(struct request *rq, blk_status_t error) 3256 { 3257 bool pending; 3258 unsigned int bidi_bytes = 0; 3259 3260 lockdep_assert_held(rq->q->queue_lock); 3261 WARN_ON_ONCE(rq->q->mq_ops); 3262 3263 if (unlikely(blk_bidi_rq(rq))) 3264 bidi_bytes = blk_rq_bytes(rq->next_rq); 3265 3266 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3267 BUG_ON(pending); 3268 } 3269 EXPORT_SYMBOL(__blk_end_request_all); 3270 3271 /** 3272 * __blk_end_request_cur - Helper function to finish the current request chunk. 3273 * @rq: the request to finish the current chunk for 3274 * @error: block status code 3275 * 3276 * Description: 3277 * Complete the current consecutively mapped chunk from @rq. Must 3278 * be called with queue lock held. 3279 * 3280 * Return: 3281 * %false - we are done with this request 3282 * %true - still buffers pending for this request 3283 */ 3284 bool __blk_end_request_cur(struct request *rq, blk_status_t error) 3285 { 3286 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 3287 } 3288 EXPORT_SYMBOL(__blk_end_request_cur); 3289 3290 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 3291 struct bio *bio) 3292 { 3293 if (bio_has_data(bio)) 3294 rq->nr_phys_segments = bio_phys_segments(q, bio); 3295 else if (bio_op(bio) == REQ_OP_DISCARD) 3296 rq->nr_phys_segments = 1; 3297 3298 rq->__data_len = bio->bi_iter.bi_size; 3299 rq->bio = rq->biotail = bio; 3300 3301 if (bio->bi_disk) 3302 rq->rq_disk = bio->bi_disk; 3303 } 3304 3305 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 3306 /** 3307 * rq_flush_dcache_pages - Helper function to flush all pages in a request 3308 * @rq: the request to be flushed 3309 * 3310 * Description: 3311 * Flush all pages in @rq. 3312 */ 3313 void rq_flush_dcache_pages(struct request *rq) 3314 { 3315 struct req_iterator iter; 3316 struct bio_vec bvec; 3317 3318 rq_for_each_segment(bvec, rq, iter) 3319 flush_dcache_page(bvec.bv_page); 3320 } 3321 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 3322 #endif 3323 3324 /** 3325 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 3326 * @q : the queue of the device being checked 3327 * 3328 * Description: 3329 * Check if underlying low-level drivers of a device are busy. 3330 * If the drivers want to export their busy state, they must set own 3331 * exporting function using blk_queue_lld_busy() first. 3332 * 3333 * Basically, this function is used only by request stacking drivers 3334 * to stop dispatching requests to underlying devices when underlying 3335 * devices are busy. This behavior helps more I/O merging on the queue 3336 * of the request stacking driver and prevents I/O throughput regression 3337 * on burst I/O load. 3338 * 3339 * Return: 3340 * 0 - Not busy (The request stacking driver should dispatch request) 3341 * 1 - Busy (The request stacking driver should stop dispatching request) 3342 */ 3343 int blk_lld_busy(struct request_queue *q) 3344 { 3345 if (q->lld_busy_fn) 3346 return q->lld_busy_fn(q); 3347 3348 return 0; 3349 } 3350 EXPORT_SYMBOL_GPL(blk_lld_busy); 3351 3352 /** 3353 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3354 * @rq: the clone request to be cleaned up 3355 * 3356 * Description: 3357 * Free all bios in @rq for a cloned request. 3358 */ 3359 void blk_rq_unprep_clone(struct request *rq) 3360 { 3361 struct bio *bio; 3362 3363 while ((bio = rq->bio) != NULL) { 3364 rq->bio = bio->bi_next; 3365 3366 bio_put(bio); 3367 } 3368 } 3369 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3370 3371 /* 3372 * Copy attributes of the original request to the clone request. 3373 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3374 */ 3375 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3376 { 3377 dst->cpu = src->cpu; 3378 dst->__sector = blk_rq_pos(src); 3379 dst->__data_len = blk_rq_bytes(src); 3380 dst->nr_phys_segments = src->nr_phys_segments; 3381 dst->ioprio = src->ioprio; 3382 dst->extra_len = src->extra_len; 3383 } 3384 3385 /** 3386 * blk_rq_prep_clone - Helper function to setup clone request 3387 * @rq: the request to be setup 3388 * @rq_src: original request to be cloned 3389 * @bs: bio_set that bios for clone are allocated from 3390 * @gfp_mask: memory allocation mask for bio 3391 * @bio_ctr: setup function to be called for each clone bio. 3392 * Returns %0 for success, non %0 for failure. 3393 * @data: private data to be passed to @bio_ctr 3394 * 3395 * Description: 3396 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3397 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3398 * are not copied, and copying such parts is the caller's responsibility. 3399 * Also, pages which the original bios are pointing to are not copied 3400 * and the cloned bios just point same pages. 3401 * So cloned bios must be completed before original bios, which means 3402 * the caller must complete @rq before @rq_src. 3403 */ 3404 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3405 struct bio_set *bs, gfp_t gfp_mask, 3406 int (*bio_ctr)(struct bio *, struct bio *, void *), 3407 void *data) 3408 { 3409 struct bio *bio, *bio_src; 3410 3411 if (!bs) 3412 bs = fs_bio_set; 3413 3414 __rq_for_each_bio(bio_src, rq_src) { 3415 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3416 if (!bio) 3417 goto free_and_out; 3418 3419 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3420 goto free_and_out; 3421 3422 if (rq->bio) { 3423 rq->biotail->bi_next = bio; 3424 rq->biotail = bio; 3425 } else 3426 rq->bio = rq->biotail = bio; 3427 } 3428 3429 __blk_rq_prep_clone(rq, rq_src); 3430 3431 return 0; 3432 3433 free_and_out: 3434 if (bio) 3435 bio_put(bio); 3436 blk_rq_unprep_clone(rq); 3437 3438 return -ENOMEM; 3439 } 3440 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3441 3442 int kblockd_schedule_work(struct work_struct *work) 3443 { 3444 return queue_work(kblockd_workqueue, work); 3445 } 3446 EXPORT_SYMBOL(kblockd_schedule_work); 3447 3448 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3449 { 3450 return queue_work_on(cpu, kblockd_workqueue, work); 3451 } 3452 EXPORT_SYMBOL(kblockd_schedule_work_on); 3453 3454 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 3455 unsigned long delay) 3456 { 3457 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3458 } 3459 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 3460 3461 /** 3462 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3463 * @plug: The &struct blk_plug that needs to be initialized 3464 * 3465 * Description: 3466 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3467 * pending I/O should the task end up blocking between blk_start_plug() and 3468 * blk_finish_plug(). This is important from a performance perspective, but 3469 * also ensures that we don't deadlock. For instance, if the task is blocking 3470 * for a memory allocation, memory reclaim could end up wanting to free a 3471 * page belonging to that request that is currently residing in our private 3472 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3473 * this kind of deadlock. 3474 */ 3475 void blk_start_plug(struct blk_plug *plug) 3476 { 3477 struct task_struct *tsk = current; 3478 3479 /* 3480 * If this is a nested plug, don't actually assign it. 3481 */ 3482 if (tsk->plug) 3483 return; 3484 3485 INIT_LIST_HEAD(&plug->list); 3486 INIT_LIST_HEAD(&plug->mq_list); 3487 INIT_LIST_HEAD(&plug->cb_list); 3488 /* 3489 * Store ordering should not be needed here, since a potential 3490 * preempt will imply a full memory barrier 3491 */ 3492 tsk->plug = plug; 3493 } 3494 EXPORT_SYMBOL(blk_start_plug); 3495 3496 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3497 { 3498 struct request *rqa = container_of(a, struct request, queuelist); 3499 struct request *rqb = container_of(b, struct request, queuelist); 3500 3501 return !(rqa->q < rqb->q || 3502 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3503 } 3504 3505 /* 3506 * If 'from_schedule' is true, then postpone the dispatch of requests 3507 * until a safe kblockd context. We due this to avoid accidental big 3508 * additional stack usage in driver dispatch, in places where the originally 3509 * plugger did not intend it. 3510 */ 3511 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3512 bool from_schedule) 3513 __releases(q->queue_lock) 3514 { 3515 lockdep_assert_held(q->queue_lock); 3516 3517 trace_block_unplug(q, depth, !from_schedule); 3518 3519 if (from_schedule) 3520 blk_run_queue_async(q); 3521 else 3522 __blk_run_queue(q); 3523 spin_unlock(q->queue_lock); 3524 } 3525 3526 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3527 { 3528 LIST_HEAD(callbacks); 3529 3530 while (!list_empty(&plug->cb_list)) { 3531 list_splice_init(&plug->cb_list, &callbacks); 3532 3533 while (!list_empty(&callbacks)) { 3534 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3535 struct blk_plug_cb, 3536 list); 3537 list_del(&cb->list); 3538 cb->callback(cb, from_schedule); 3539 } 3540 } 3541 } 3542 3543 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3544 int size) 3545 { 3546 struct blk_plug *plug = current->plug; 3547 struct blk_plug_cb *cb; 3548 3549 if (!plug) 3550 return NULL; 3551 3552 list_for_each_entry(cb, &plug->cb_list, list) 3553 if (cb->callback == unplug && cb->data == data) 3554 return cb; 3555 3556 /* Not currently on the callback list */ 3557 BUG_ON(size < sizeof(*cb)); 3558 cb = kzalloc(size, GFP_ATOMIC); 3559 if (cb) { 3560 cb->data = data; 3561 cb->callback = unplug; 3562 list_add(&cb->list, &plug->cb_list); 3563 } 3564 return cb; 3565 } 3566 EXPORT_SYMBOL(blk_check_plugged); 3567 3568 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3569 { 3570 struct request_queue *q; 3571 unsigned long flags; 3572 struct request *rq; 3573 LIST_HEAD(list); 3574 unsigned int depth; 3575 3576 flush_plug_callbacks(plug, from_schedule); 3577 3578 if (!list_empty(&plug->mq_list)) 3579 blk_mq_flush_plug_list(plug, from_schedule); 3580 3581 if (list_empty(&plug->list)) 3582 return; 3583 3584 list_splice_init(&plug->list, &list); 3585 3586 list_sort(NULL, &list, plug_rq_cmp); 3587 3588 q = NULL; 3589 depth = 0; 3590 3591 /* 3592 * Save and disable interrupts here, to avoid doing it for every 3593 * queue lock we have to take. 3594 */ 3595 local_irq_save(flags); 3596 while (!list_empty(&list)) { 3597 rq = list_entry_rq(list.next); 3598 list_del_init(&rq->queuelist); 3599 BUG_ON(!rq->q); 3600 if (rq->q != q) { 3601 /* 3602 * This drops the queue lock 3603 */ 3604 if (q) 3605 queue_unplugged(q, depth, from_schedule); 3606 q = rq->q; 3607 depth = 0; 3608 spin_lock(q->queue_lock); 3609 } 3610 3611 /* 3612 * Short-circuit if @q is dead 3613 */ 3614 if (unlikely(blk_queue_dying(q))) { 3615 __blk_end_request_all(rq, BLK_STS_IOERR); 3616 continue; 3617 } 3618 3619 /* 3620 * rq is already accounted, so use raw insert 3621 */ 3622 if (op_is_flush(rq->cmd_flags)) 3623 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3624 else 3625 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3626 3627 depth++; 3628 } 3629 3630 /* 3631 * This drops the queue lock 3632 */ 3633 if (q) 3634 queue_unplugged(q, depth, from_schedule); 3635 3636 local_irq_restore(flags); 3637 } 3638 3639 void blk_finish_plug(struct blk_plug *plug) 3640 { 3641 if (plug != current->plug) 3642 return; 3643 blk_flush_plug_list(plug, false); 3644 3645 current->plug = NULL; 3646 } 3647 EXPORT_SYMBOL(blk_finish_plug); 3648 3649 #ifdef CONFIG_PM 3650 /** 3651 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3652 * @q: the queue of the device 3653 * @dev: the device the queue belongs to 3654 * 3655 * Description: 3656 * Initialize runtime-PM-related fields for @q and start auto suspend for 3657 * @dev. Drivers that want to take advantage of request-based runtime PM 3658 * should call this function after @dev has been initialized, and its 3659 * request queue @q has been allocated, and runtime PM for it can not happen 3660 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3661 * cases, driver should call this function before any I/O has taken place. 3662 * 3663 * This function takes care of setting up using auto suspend for the device, 3664 * the autosuspend delay is set to -1 to make runtime suspend impossible 3665 * until an updated value is either set by user or by driver. Drivers do 3666 * not need to touch other autosuspend settings. 3667 * 3668 * The block layer runtime PM is request based, so only works for drivers 3669 * that use request as their IO unit instead of those directly use bio's. 3670 */ 3671 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3672 { 3673 /* not support for RQF_PM and ->rpm_status in blk-mq yet */ 3674 if (q->mq_ops) 3675 return; 3676 3677 q->dev = dev; 3678 q->rpm_status = RPM_ACTIVE; 3679 pm_runtime_set_autosuspend_delay(q->dev, -1); 3680 pm_runtime_use_autosuspend(q->dev); 3681 } 3682 EXPORT_SYMBOL(blk_pm_runtime_init); 3683 3684 /** 3685 * blk_pre_runtime_suspend - Pre runtime suspend check 3686 * @q: the queue of the device 3687 * 3688 * Description: 3689 * This function will check if runtime suspend is allowed for the device 3690 * by examining if there are any requests pending in the queue. If there 3691 * are requests pending, the device can not be runtime suspended; otherwise, 3692 * the queue's status will be updated to SUSPENDING and the driver can 3693 * proceed to suspend the device. 3694 * 3695 * For the not allowed case, we mark last busy for the device so that 3696 * runtime PM core will try to autosuspend it some time later. 3697 * 3698 * This function should be called near the start of the device's 3699 * runtime_suspend callback. 3700 * 3701 * Return: 3702 * 0 - OK to runtime suspend the device 3703 * -EBUSY - Device should not be runtime suspended 3704 */ 3705 int blk_pre_runtime_suspend(struct request_queue *q) 3706 { 3707 int ret = 0; 3708 3709 if (!q->dev) 3710 return ret; 3711 3712 spin_lock_irq(q->queue_lock); 3713 if (q->nr_pending) { 3714 ret = -EBUSY; 3715 pm_runtime_mark_last_busy(q->dev); 3716 } else { 3717 q->rpm_status = RPM_SUSPENDING; 3718 } 3719 spin_unlock_irq(q->queue_lock); 3720 return ret; 3721 } 3722 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3723 3724 /** 3725 * blk_post_runtime_suspend - Post runtime suspend processing 3726 * @q: the queue of the device 3727 * @err: return value of the device's runtime_suspend function 3728 * 3729 * Description: 3730 * Update the queue's runtime status according to the return value of the 3731 * device's runtime suspend function and mark last busy for the device so 3732 * that PM core will try to auto suspend the device at a later time. 3733 * 3734 * This function should be called near the end of the device's 3735 * runtime_suspend callback. 3736 */ 3737 void blk_post_runtime_suspend(struct request_queue *q, int err) 3738 { 3739 if (!q->dev) 3740 return; 3741 3742 spin_lock_irq(q->queue_lock); 3743 if (!err) { 3744 q->rpm_status = RPM_SUSPENDED; 3745 } else { 3746 q->rpm_status = RPM_ACTIVE; 3747 pm_runtime_mark_last_busy(q->dev); 3748 } 3749 spin_unlock_irq(q->queue_lock); 3750 } 3751 EXPORT_SYMBOL(blk_post_runtime_suspend); 3752 3753 /** 3754 * blk_pre_runtime_resume - Pre runtime resume processing 3755 * @q: the queue of the device 3756 * 3757 * Description: 3758 * Update the queue's runtime status to RESUMING in preparation for the 3759 * runtime resume of the device. 3760 * 3761 * This function should be called near the start of the device's 3762 * runtime_resume callback. 3763 */ 3764 void blk_pre_runtime_resume(struct request_queue *q) 3765 { 3766 if (!q->dev) 3767 return; 3768 3769 spin_lock_irq(q->queue_lock); 3770 q->rpm_status = RPM_RESUMING; 3771 spin_unlock_irq(q->queue_lock); 3772 } 3773 EXPORT_SYMBOL(blk_pre_runtime_resume); 3774 3775 /** 3776 * blk_post_runtime_resume - Post runtime resume processing 3777 * @q: the queue of the device 3778 * @err: return value of the device's runtime_resume function 3779 * 3780 * Description: 3781 * Update the queue's runtime status according to the return value of the 3782 * device's runtime_resume function. If it is successfully resumed, process 3783 * the requests that are queued into the device's queue when it is resuming 3784 * and then mark last busy and initiate autosuspend for it. 3785 * 3786 * This function should be called near the end of the device's 3787 * runtime_resume callback. 3788 */ 3789 void blk_post_runtime_resume(struct request_queue *q, int err) 3790 { 3791 if (!q->dev) 3792 return; 3793 3794 spin_lock_irq(q->queue_lock); 3795 if (!err) { 3796 q->rpm_status = RPM_ACTIVE; 3797 __blk_run_queue(q); 3798 pm_runtime_mark_last_busy(q->dev); 3799 pm_request_autosuspend(q->dev); 3800 } else { 3801 q->rpm_status = RPM_SUSPENDED; 3802 } 3803 spin_unlock_irq(q->queue_lock); 3804 } 3805 EXPORT_SYMBOL(blk_post_runtime_resume); 3806 3807 /** 3808 * blk_set_runtime_active - Force runtime status of the queue to be active 3809 * @q: the queue of the device 3810 * 3811 * If the device is left runtime suspended during system suspend the resume 3812 * hook typically resumes the device and corrects runtime status 3813 * accordingly. However, that does not affect the queue runtime PM status 3814 * which is still "suspended". This prevents processing requests from the 3815 * queue. 3816 * 3817 * This function can be used in driver's resume hook to correct queue 3818 * runtime PM status and re-enable peeking requests from the queue. It 3819 * should be called before first request is added to the queue. 3820 */ 3821 void blk_set_runtime_active(struct request_queue *q) 3822 { 3823 spin_lock_irq(q->queue_lock); 3824 q->rpm_status = RPM_ACTIVE; 3825 pm_runtime_mark_last_busy(q->dev); 3826 pm_request_autosuspend(q->dev); 3827 spin_unlock_irq(q->queue_lock); 3828 } 3829 EXPORT_SYMBOL(blk_set_runtime_active); 3830 #endif 3831 3832 int __init blk_dev_init(void) 3833 { 3834 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3835 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3836 FIELD_SIZEOF(struct request, cmd_flags)); 3837 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3838 FIELD_SIZEOF(struct bio, bi_opf)); 3839 3840 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3841 kblockd_workqueue = alloc_workqueue("kblockd", 3842 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3843 if (!kblockd_workqueue) 3844 panic("Failed to create kblockd\n"); 3845 3846 request_cachep = kmem_cache_create("blkdev_requests", 3847 sizeof(struct request), 0, SLAB_PANIC, NULL); 3848 3849 blk_requestq_cachep = kmem_cache_create("request_queue", 3850 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3851 3852 #ifdef CONFIG_DEBUG_FS 3853 blk_debugfs_root = debugfs_create_dir("block", NULL); 3854 #endif 3855 3856 return 0; 3857 } 3858