xref: /openbmc/linux/block/blk-core.c (revision b78412b8)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40 
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45 
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49 
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55 
56 DEFINE_IDA(blk_queue_ida);
57 
58 /*
59  * For the allocated request tables
60  */
61 struct kmem_cache *request_cachep;
62 
63 /*
64  * For queue allocation
65  */
66 struct kmem_cache *blk_requestq_cachep;
67 
68 /*
69  * Controlling structure to kblockd
70  */
71 static struct workqueue_struct *kblockd_workqueue;
72 
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 	clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 	/*
79 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 	 * flip its congestion state for events on other blkcgs.
81 	 */
82 	if (rl == &rl->q->root_rl)
83 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86 
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 	set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 	/* see blk_clear_congested() */
93 	if (rl == &rl->q->root_rl)
94 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97 
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 	int nr;
101 
102 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 	if (nr > q->nr_requests)
104 		nr = q->nr_requests;
105 	q->nr_congestion_on = nr;
106 
107 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 	if (nr < 1)
109 		nr = 1;
110 	q->nr_congestion_off = nr;
111 }
112 
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 	memset(rq, 0, sizeof(*rq));
116 
117 	INIT_LIST_HEAD(&rq->queuelist);
118 	INIT_LIST_HEAD(&rq->timeout_list);
119 	rq->cpu = -1;
120 	rq->q = q;
121 	rq->__sector = (sector_t) -1;
122 	INIT_HLIST_NODE(&rq->hash);
123 	RB_CLEAR_NODE(&rq->rb_node);
124 	rq->tag = -1;
125 	rq->internal_tag = -1;
126 	rq->start_time = jiffies;
127 	set_start_time_ns(rq);
128 	rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131 
132 static const struct {
133 	int		errno;
134 	const char	*name;
135 } blk_errors[] = {
136 	[BLK_STS_OK]		= { 0,		"" },
137 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
138 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
139 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
140 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
141 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
142 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
143 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
144 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
145 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
146 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
147 
148 	/* device mapper special case, should not leak out: */
149 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
150 
151 	/* everything else not covered above: */
152 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
153 };
154 
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 	int i;
158 
159 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 		if (blk_errors[i].errno == errno)
161 			return (__force blk_status_t)i;
162 	}
163 
164 	return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167 
168 int blk_status_to_errno(blk_status_t status)
169 {
170 	int idx = (__force int)status;
171 
172 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 		return -EIO;
174 	return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177 
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 	int idx = (__force int)status;
181 
182 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 		return;
184 
185 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 			   __func__, blk_errors[idx].name, req->rq_disk ?
187 			   req->rq_disk->disk_name : "?",
188 			   (unsigned long long)blk_rq_pos(req));
189 }
190 
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 			  unsigned int nbytes, blk_status_t error)
193 {
194 	if (error)
195 		bio->bi_status = error;
196 
197 	if (unlikely(rq->rq_flags & RQF_QUIET))
198 		bio_set_flag(bio, BIO_QUIET);
199 
200 	bio_advance(bio, nbytes);
201 
202 	/* don't actually finish bio if it's part of flush sequence */
203 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 		bio_endio(bio);
205 }
206 
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 		(unsigned long long) rq->cmd_flags);
212 
213 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
214 	       (unsigned long long)blk_rq_pos(rq),
215 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
217 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220 
221 static void blk_delay_work(struct work_struct *work)
222 {
223 	struct request_queue *q;
224 
225 	q = container_of(work, struct request_queue, delay_work.work);
226 	spin_lock_irq(q->queue_lock);
227 	__blk_run_queue(q);
228 	spin_unlock_irq(q->queue_lock);
229 }
230 
231 /**
232  * blk_delay_queue - restart queueing after defined interval
233  * @q:		The &struct request_queue in question
234  * @msecs:	Delay in msecs
235  *
236  * Description:
237  *   Sometimes queueing needs to be postponed for a little while, to allow
238  *   resources to come back. This function will make sure that queueing is
239  *   restarted around the specified time.
240  */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 	lockdep_assert_held(q->queue_lock);
244 	WARN_ON_ONCE(q->mq_ops);
245 
246 	if (likely(!blk_queue_dead(q)))
247 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 				   msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251 
252 /**
253  * blk_start_queue_async - asynchronously restart a previously stopped queue
254  * @q:    The &struct request_queue in question
255  *
256  * Description:
257  *   blk_start_queue_async() will clear the stop flag on the queue, and
258  *   ensure that the request_fn for the queue is run from an async
259  *   context.
260  **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 	lockdep_assert_held(q->queue_lock);
264 	WARN_ON_ONCE(q->mq_ops);
265 
266 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 	blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270 
271 /**
272  * blk_start_queue - restart a previously stopped queue
273  * @q:    The &struct request_queue in question
274  *
275  * Description:
276  *   blk_start_queue() will clear the stop flag on the queue, and call
277  *   the request_fn for the queue if it was in a stopped state when
278  *   entered. Also see blk_stop_queue().
279  **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 	lockdep_assert_held(q->queue_lock);
283 	WARN_ON(!in_interrupt() && !irqs_disabled());
284 	WARN_ON_ONCE(q->mq_ops);
285 
286 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 	__blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290 
291 /**
292  * blk_stop_queue - stop a queue
293  * @q:    The &struct request_queue in question
294  *
295  * Description:
296  *   The Linux block layer assumes that a block driver will consume all
297  *   entries on the request queue when the request_fn strategy is called.
298  *   Often this will not happen, because of hardware limitations (queue
299  *   depth settings). If a device driver gets a 'queue full' response,
300  *   or if it simply chooses not to queue more I/O at one point, it can
301  *   call this function to prevent the request_fn from being called until
302  *   the driver has signalled it's ready to go again. This happens by calling
303  *   blk_start_queue() to restart queue operations.
304  **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 	lockdep_assert_held(q->queue_lock);
308 	WARN_ON_ONCE(q->mq_ops);
309 
310 	cancel_delayed_work(&q->delay_work);
311 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314 
315 /**
316  * blk_sync_queue - cancel any pending callbacks on a queue
317  * @q: the queue
318  *
319  * Description:
320  *     The block layer may perform asynchronous callback activity
321  *     on a queue, such as calling the unplug function after a timeout.
322  *     A block device may call blk_sync_queue to ensure that any
323  *     such activity is cancelled, thus allowing it to release resources
324  *     that the callbacks might use. The caller must already have made sure
325  *     that its ->make_request_fn will not re-add plugging prior to calling
326  *     this function.
327  *
328  *     This function does not cancel any asynchronous activity arising
329  *     out of elevator or throttling code. That would require elevator_exit()
330  *     and blkcg_exit_queue() to be called with queue lock initialized.
331  *
332  */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 	del_timer_sync(&q->timeout);
336 
337 	if (q->mq_ops) {
338 		struct blk_mq_hw_ctx *hctx;
339 		int i;
340 
341 		queue_for_each_hw_ctx(q, hctx, i)
342 			cancel_delayed_work_sync(&hctx->run_work);
343 	} else {
344 		cancel_delayed_work_sync(&q->delay_work);
345 	}
346 }
347 EXPORT_SYMBOL(blk_sync_queue);
348 
349 /**
350  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
351  * @q:	The queue to run
352  *
353  * Description:
354  *    Invoke request handling on a queue if there are any pending requests.
355  *    May be used to restart request handling after a request has completed.
356  *    This variant runs the queue whether or not the queue has been
357  *    stopped. Must be called with the queue lock held and interrupts
358  *    disabled. See also @blk_run_queue.
359  */
360 inline void __blk_run_queue_uncond(struct request_queue *q)
361 {
362 	lockdep_assert_held(q->queue_lock);
363 	WARN_ON_ONCE(q->mq_ops);
364 
365 	if (unlikely(blk_queue_dead(q)))
366 		return;
367 
368 	/*
369 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
370 	 * the queue lock internally. As a result multiple threads may be
371 	 * running such a request function concurrently. Keep track of the
372 	 * number of active request_fn invocations such that blk_drain_queue()
373 	 * can wait until all these request_fn calls have finished.
374 	 */
375 	q->request_fn_active++;
376 	q->request_fn(q);
377 	q->request_fn_active--;
378 }
379 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
380 
381 /**
382  * __blk_run_queue - run a single device queue
383  * @q:	The queue to run
384  *
385  * Description:
386  *    See @blk_run_queue.
387  */
388 void __blk_run_queue(struct request_queue *q)
389 {
390 	lockdep_assert_held(q->queue_lock);
391 	WARN_ON_ONCE(q->mq_ops);
392 
393 	if (unlikely(blk_queue_stopped(q)))
394 		return;
395 
396 	__blk_run_queue_uncond(q);
397 }
398 EXPORT_SYMBOL(__blk_run_queue);
399 
400 /**
401  * blk_run_queue_async - run a single device queue in workqueue context
402  * @q:	The queue to run
403  *
404  * Description:
405  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
406  *    of us.
407  *
408  * Note:
409  *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
410  *    has canceled q->delay_work, callers must hold the queue lock to avoid
411  *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
412  */
413 void blk_run_queue_async(struct request_queue *q)
414 {
415 	lockdep_assert_held(q->queue_lock);
416 	WARN_ON_ONCE(q->mq_ops);
417 
418 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
419 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
420 }
421 EXPORT_SYMBOL(blk_run_queue_async);
422 
423 /**
424  * blk_run_queue - run a single device queue
425  * @q: The queue to run
426  *
427  * Description:
428  *    Invoke request handling on this queue, if it has pending work to do.
429  *    May be used to restart queueing when a request has completed.
430  */
431 void blk_run_queue(struct request_queue *q)
432 {
433 	unsigned long flags;
434 
435 	WARN_ON_ONCE(q->mq_ops);
436 
437 	spin_lock_irqsave(q->queue_lock, flags);
438 	__blk_run_queue(q);
439 	spin_unlock_irqrestore(q->queue_lock, flags);
440 }
441 EXPORT_SYMBOL(blk_run_queue);
442 
443 void blk_put_queue(struct request_queue *q)
444 {
445 	kobject_put(&q->kobj);
446 }
447 EXPORT_SYMBOL(blk_put_queue);
448 
449 /**
450  * __blk_drain_queue - drain requests from request_queue
451  * @q: queue to drain
452  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
453  *
454  * Drain requests from @q.  If @drain_all is set, all requests are drained.
455  * If not, only ELVPRIV requests are drained.  The caller is responsible
456  * for ensuring that no new requests which need to be drained are queued.
457  */
458 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
459 	__releases(q->queue_lock)
460 	__acquires(q->queue_lock)
461 {
462 	int i;
463 
464 	lockdep_assert_held(q->queue_lock);
465 	WARN_ON_ONCE(q->mq_ops);
466 
467 	while (true) {
468 		bool drain = false;
469 
470 		/*
471 		 * The caller might be trying to drain @q before its
472 		 * elevator is initialized.
473 		 */
474 		if (q->elevator)
475 			elv_drain_elevator(q);
476 
477 		blkcg_drain_queue(q);
478 
479 		/*
480 		 * This function might be called on a queue which failed
481 		 * driver init after queue creation or is not yet fully
482 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
483 		 * in such cases.  Kick queue iff dispatch queue has
484 		 * something on it and @q has request_fn set.
485 		 */
486 		if (!list_empty(&q->queue_head) && q->request_fn)
487 			__blk_run_queue(q);
488 
489 		drain |= q->nr_rqs_elvpriv;
490 		drain |= q->request_fn_active;
491 
492 		/*
493 		 * Unfortunately, requests are queued at and tracked from
494 		 * multiple places and there's no single counter which can
495 		 * be drained.  Check all the queues and counters.
496 		 */
497 		if (drain_all) {
498 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
499 			drain |= !list_empty(&q->queue_head);
500 			for (i = 0; i < 2; i++) {
501 				drain |= q->nr_rqs[i];
502 				drain |= q->in_flight[i];
503 				if (fq)
504 				    drain |= !list_empty(&fq->flush_queue[i]);
505 			}
506 		}
507 
508 		if (!drain)
509 			break;
510 
511 		spin_unlock_irq(q->queue_lock);
512 
513 		msleep(10);
514 
515 		spin_lock_irq(q->queue_lock);
516 	}
517 
518 	/*
519 	 * With queue marked dead, any woken up waiter will fail the
520 	 * allocation path, so the wakeup chaining is lost and we're
521 	 * left with hung waiters. We need to wake up those waiters.
522 	 */
523 	if (q->request_fn) {
524 		struct request_list *rl;
525 
526 		blk_queue_for_each_rl(rl, q)
527 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
528 				wake_up_all(&rl->wait[i]);
529 	}
530 }
531 
532 /**
533  * blk_queue_bypass_start - enter queue bypass mode
534  * @q: queue of interest
535  *
536  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
537  * function makes @q enter bypass mode and drains all requests which were
538  * throttled or issued before.  On return, it's guaranteed that no request
539  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
540  * inside queue or RCU read lock.
541  */
542 void blk_queue_bypass_start(struct request_queue *q)
543 {
544 	WARN_ON_ONCE(q->mq_ops);
545 
546 	spin_lock_irq(q->queue_lock);
547 	q->bypass_depth++;
548 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
549 	spin_unlock_irq(q->queue_lock);
550 
551 	/*
552 	 * Queues start drained.  Skip actual draining till init is
553 	 * complete.  This avoids lenghty delays during queue init which
554 	 * can happen many times during boot.
555 	 */
556 	if (blk_queue_init_done(q)) {
557 		spin_lock_irq(q->queue_lock);
558 		__blk_drain_queue(q, false);
559 		spin_unlock_irq(q->queue_lock);
560 
561 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
562 		synchronize_rcu();
563 	}
564 }
565 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
566 
567 /**
568  * blk_queue_bypass_end - leave queue bypass mode
569  * @q: queue of interest
570  *
571  * Leave bypass mode and restore the normal queueing behavior.
572  *
573  * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
574  * this function is called for both blk-sq and blk-mq queues.
575  */
576 void blk_queue_bypass_end(struct request_queue *q)
577 {
578 	spin_lock_irq(q->queue_lock);
579 	if (!--q->bypass_depth)
580 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
581 	WARN_ON_ONCE(q->bypass_depth < 0);
582 	spin_unlock_irq(q->queue_lock);
583 }
584 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
585 
586 void blk_set_queue_dying(struct request_queue *q)
587 {
588 	spin_lock_irq(q->queue_lock);
589 	queue_flag_set(QUEUE_FLAG_DYING, q);
590 	spin_unlock_irq(q->queue_lock);
591 
592 	/*
593 	 * When queue DYING flag is set, we need to block new req
594 	 * entering queue, so we call blk_freeze_queue_start() to
595 	 * prevent I/O from crossing blk_queue_enter().
596 	 */
597 	blk_freeze_queue_start(q);
598 
599 	if (q->mq_ops)
600 		blk_mq_wake_waiters(q);
601 	else {
602 		struct request_list *rl;
603 
604 		spin_lock_irq(q->queue_lock);
605 		blk_queue_for_each_rl(rl, q) {
606 			if (rl->rq_pool) {
607 				wake_up(&rl->wait[BLK_RW_SYNC]);
608 				wake_up(&rl->wait[BLK_RW_ASYNC]);
609 			}
610 		}
611 		spin_unlock_irq(q->queue_lock);
612 	}
613 }
614 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
615 
616 /**
617  * blk_cleanup_queue - shutdown a request queue
618  * @q: request queue to shutdown
619  *
620  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
621  * put it.  All future requests will be failed immediately with -ENODEV.
622  */
623 void blk_cleanup_queue(struct request_queue *q)
624 {
625 	spinlock_t *lock = q->queue_lock;
626 
627 	/* mark @q DYING, no new request or merges will be allowed afterwards */
628 	mutex_lock(&q->sysfs_lock);
629 	blk_set_queue_dying(q);
630 	spin_lock_irq(lock);
631 
632 	/*
633 	 * A dying queue is permanently in bypass mode till released.  Note
634 	 * that, unlike blk_queue_bypass_start(), we aren't performing
635 	 * synchronize_rcu() after entering bypass mode to avoid the delay
636 	 * as some drivers create and destroy a lot of queues while
637 	 * probing.  This is still safe because blk_release_queue() will be
638 	 * called only after the queue refcnt drops to zero and nothing,
639 	 * RCU or not, would be traversing the queue by then.
640 	 */
641 	q->bypass_depth++;
642 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
643 
644 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
645 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
646 	queue_flag_set(QUEUE_FLAG_DYING, q);
647 	spin_unlock_irq(lock);
648 	mutex_unlock(&q->sysfs_lock);
649 
650 	/*
651 	 * Drain all requests queued before DYING marking. Set DEAD flag to
652 	 * prevent that q->request_fn() gets invoked after draining finished.
653 	 */
654 	blk_freeze_queue(q);
655 	spin_lock_irq(lock);
656 	if (!q->mq_ops)
657 		__blk_drain_queue(q, true);
658 	queue_flag_set(QUEUE_FLAG_DEAD, q);
659 	spin_unlock_irq(lock);
660 
661 	/* for synchronous bio-based driver finish in-flight integrity i/o */
662 	blk_flush_integrity();
663 
664 	/* @q won't process any more request, flush async actions */
665 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
666 	blk_sync_queue(q);
667 
668 	if (q->mq_ops)
669 		blk_mq_free_queue(q);
670 	percpu_ref_exit(&q->q_usage_counter);
671 
672 	spin_lock_irq(lock);
673 	if (q->queue_lock != &q->__queue_lock)
674 		q->queue_lock = &q->__queue_lock;
675 	spin_unlock_irq(lock);
676 
677 	/* @q is and will stay empty, shutdown and put */
678 	blk_put_queue(q);
679 }
680 EXPORT_SYMBOL(blk_cleanup_queue);
681 
682 /* Allocate memory local to the request queue */
683 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
684 {
685 	struct request_queue *q = data;
686 
687 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
688 }
689 
690 static void free_request_simple(void *element, void *data)
691 {
692 	kmem_cache_free(request_cachep, element);
693 }
694 
695 static void *alloc_request_size(gfp_t gfp_mask, void *data)
696 {
697 	struct request_queue *q = data;
698 	struct request *rq;
699 
700 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
701 			q->node);
702 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
703 		kfree(rq);
704 		rq = NULL;
705 	}
706 	return rq;
707 }
708 
709 static void free_request_size(void *element, void *data)
710 {
711 	struct request_queue *q = data;
712 
713 	if (q->exit_rq_fn)
714 		q->exit_rq_fn(q, element);
715 	kfree(element);
716 }
717 
718 int blk_init_rl(struct request_list *rl, struct request_queue *q,
719 		gfp_t gfp_mask)
720 {
721 	if (unlikely(rl->rq_pool))
722 		return 0;
723 
724 	rl->q = q;
725 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
726 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
727 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
728 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
729 
730 	if (q->cmd_size) {
731 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
732 				alloc_request_size, free_request_size,
733 				q, gfp_mask, q->node);
734 	} else {
735 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
736 				alloc_request_simple, free_request_simple,
737 				q, gfp_mask, q->node);
738 	}
739 	if (!rl->rq_pool)
740 		return -ENOMEM;
741 
742 	if (rl != &q->root_rl)
743 		WARN_ON_ONCE(!blk_get_queue(q));
744 
745 	return 0;
746 }
747 
748 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
749 {
750 	if (rl->rq_pool) {
751 		mempool_destroy(rl->rq_pool);
752 		if (rl != &q->root_rl)
753 			blk_put_queue(q);
754 	}
755 }
756 
757 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
758 {
759 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
760 }
761 EXPORT_SYMBOL(blk_alloc_queue);
762 
763 int blk_queue_enter(struct request_queue *q, bool nowait)
764 {
765 	while (true) {
766 		int ret;
767 
768 		if (percpu_ref_tryget_live(&q->q_usage_counter))
769 			return 0;
770 
771 		if (nowait)
772 			return -EBUSY;
773 
774 		/*
775 		 * read pair of barrier in blk_freeze_queue_start(),
776 		 * we need to order reading __PERCPU_REF_DEAD flag of
777 		 * .q_usage_counter and reading .mq_freeze_depth or
778 		 * queue dying flag, otherwise the following wait may
779 		 * never return if the two reads are reordered.
780 		 */
781 		smp_rmb();
782 
783 		ret = wait_event_interruptible(q->mq_freeze_wq,
784 				!atomic_read(&q->mq_freeze_depth) ||
785 				blk_queue_dying(q));
786 		if (blk_queue_dying(q))
787 			return -ENODEV;
788 		if (ret)
789 			return ret;
790 	}
791 }
792 
793 void blk_queue_exit(struct request_queue *q)
794 {
795 	percpu_ref_put(&q->q_usage_counter);
796 }
797 
798 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
799 {
800 	struct request_queue *q =
801 		container_of(ref, struct request_queue, q_usage_counter);
802 
803 	wake_up_all(&q->mq_freeze_wq);
804 }
805 
806 static void blk_rq_timed_out_timer(unsigned long data)
807 {
808 	struct request_queue *q = (struct request_queue *)data;
809 
810 	kblockd_schedule_work(&q->timeout_work);
811 }
812 
813 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
814 {
815 	struct request_queue *q;
816 
817 	q = kmem_cache_alloc_node(blk_requestq_cachep,
818 				gfp_mask | __GFP_ZERO, node_id);
819 	if (!q)
820 		return NULL;
821 
822 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
823 	if (q->id < 0)
824 		goto fail_q;
825 
826 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
827 	if (!q->bio_split)
828 		goto fail_id;
829 
830 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
831 	if (!q->backing_dev_info)
832 		goto fail_split;
833 
834 	q->stats = blk_alloc_queue_stats();
835 	if (!q->stats)
836 		goto fail_stats;
837 
838 	q->backing_dev_info->ra_pages =
839 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
840 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
841 	q->backing_dev_info->name = "block";
842 	q->node = node_id;
843 
844 	setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
845 		    laptop_mode_timer_fn, (unsigned long) q);
846 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
847 	INIT_LIST_HEAD(&q->queue_head);
848 	INIT_LIST_HEAD(&q->timeout_list);
849 	INIT_LIST_HEAD(&q->icq_list);
850 #ifdef CONFIG_BLK_CGROUP
851 	INIT_LIST_HEAD(&q->blkg_list);
852 #endif
853 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
854 
855 	kobject_init(&q->kobj, &blk_queue_ktype);
856 
857 #ifdef CONFIG_BLK_DEV_IO_TRACE
858 	mutex_init(&q->blk_trace_mutex);
859 #endif
860 	mutex_init(&q->sysfs_lock);
861 	spin_lock_init(&q->__queue_lock);
862 
863 	/*
864 	 * By default initialize queue_lock to internal lock and driver can
865 	 * override it later if need be.
866 	 */
867 	q->queue_lock = &q->__queue_lock;
868 
869 	/*
870 	 * A queue starts its life with bypass turned on to avoid
871 	 * unnecessary bypass on/off overhead and nasty surprises during
872 	 * init.  The initial bypass will be finished when the queue is
873 	 * registered by blk_register_queue().
874 	 */
875 	q->bypass_depth = 1;
876 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
877 
878 	init_waitqueue_head(&q->mq_freeze_wq);
879 
880 	/*
881 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
882 	 * See blk_register_queue() for details.
883 	 */
884 	if (percpu_ref_init(&q->q_usage_counter,
885 				blk_queue_usage_counter_release,
886 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
887 		goto fail_bdi;
888 
889 	if (blkcg_init_queue(q))
890 		goto fail_ref;
891 
892 	return q;
893 
894 fail_ref:
895 	percpu_ref_exit(&q->q_usage_counter);
896 fail_bdi:
897 	blk_free_queue_stats(q->stats);
898 fail_stats:
899 	bdi_put(q->backing_dev_info);
900 fail_split:
901 	bioset_free(q->bio_split);
902 fail_id:
903 	ida_simple_remove(&blk_queue_ida, q->id);
904 fail_q:
905 	kmem_cache_free(blk_requestq_cachep, q);
906 	return NULL;
907 }
908 EXPORT_SYMBOL(blk_alloc_queue_node);
909 
910 /**
911  * blk_init_queue  - prepare a request queue for use with a block device
912  * @rfn:  The function to be called to process requests that have been
913  *        placed on the queue.
914  * @lock: Request queue spin lock
915  *
916  * Description:
917  *    If a block device wishes to use the standard request handling procedures,
918  *    which sorts requests and coalesces adjacent requests, then it must
919  *    call blk_init_queue().  The function @rfn will be called when there
920  *    are requests on the queue that need to be processed.  If the device
921  *    supports plugging, then @rfn may not be called immediately when requests
922  *    are available on the queue, but may be called at some time later instead.
923  *    Plugged queues are generally unplugged when a buffer belonging to one
924  *    of the requests on the queue is needed, or due to memory pressure.
925  *
926  *    @rfn is not required, or even expected, to remove all requests off the
927  *    queue, but only as many as it can handle at a time.  If it does leave
928  *    requests on the queue, it is responsible for arranging that the requests
929  *    get dealt with eventually.
930  *
931  *    The queue spin lock must be held while manipulating the requests on the
932  *    request queue; this lock will be taken also from interrupt context, so irq
933  *    disabling is needed for it.
934  *
935  *    Function returns a pointer to the initialized request queue, or %NULL if
936  *    it didn't succeed.
937  *
938  * Note:
939  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
940  *    when the block device is deactivated (such as at module unload).
941  **/
942 
943 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
944 {
945 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
946 }
947 EXPORT_SYMBOL(blk_init_queue);
948 
949 struct request_queue *
950 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
951 {
952 	struct request_queue *q;
953 
954 	q = blk_alloc_queue_node(GFP_KERNEL, node_id);
955 	if (!q)
956 		return NULL;
957 
958 	q->request_fn = rfn;
959 	if (lock)
960 		q->queue_lock = lock;
961 	if (blk_init_allocated_queue(q) < 0) {
962 		blk_cleanup_queue(q);
963 		return NULL;
964 	}
965 
966 	return q;
967 }
968 EXPORT_SYMBOL(blk_init_queue_node);
969 
970 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
971 
972 
973 int blk_init_allocated_queue(struct request_queue *q)
974 {
975 	WARN_ON_ONCE(q->mq_ops);
976 
977 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
978 	if (!q->fq)
979 		return -ENOMEM;
980 
981 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
982 		goto out_free_flush_queue;
983 
984 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
985 		goto out_exit_flush_rq;
986 
987 	INIT_WORK(&q->timeout_work, blk_timeout_work);
988 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
989 
990 	/*
991 	 * This also sets hw/phys segments, boundary and size
992 	 */
993 	blk_queue_make_request(q, blk_queue_bio);
994 
995 	q->sg_reserved_size = INT_MAX;
996 
997 	/* Protect q->elevator from elevator_change */
998 	mutex_lock(&q->sysfs_lock);
999 
1000 	/* init elevator */
1001 	if (elevator_init(q, NULL)) {
1002 		mutex_unlock(&q->sysfs_lock);
1003 		goto out_exit_flush_rq;
1004 	}
1005 
1006 	mutex_unlock(&q->sysfs_lock);
1007 	return 0;
1008 
1009 out_exit_flush_rq:
1010 	if (q->exit_rq_fn)
1011 		q->exit_rq_fn(q, q->fq->flush_rq);
1012 out_free_flush_queue:
1013 	blk_free_flush_queue(q->fq);
1014 	return -ENOMEM;
1015 }
1016 EXPORT_SYMBOL(blk_init_allocated_queue);
1017 
1018 bool blk_get_queue(struct request_queue *q)
1019 {
1020 	if (likely(!blk_queue_dying(q))) {
1021 		__blk_get_queue(q);
1022 		return true;
1023 	}
1024 
1025 	return false;
1026 }
1027 EXPORT_SYMBOL(blk_get_queue);
1028 
1029 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1030 {
1031 	if (rq->rq_flags & RQF_ELVPRIV) {
1032 		elv_put_request(rl->q, rq);
1033 		if (rq->elv.icq)
1034 			put_io_context(rq->elv.icq->ioc);
1035 	}
1036 
1037 	mempool_free(rq, rl->rq_pool);
1038 }
1039 
1040 /*
1041  * ioc_batching returns true if the ioc is a valid batching request and
1042  * should be given priority access to a request.
1043  */
1044 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1045 {
1046 	if (!ioc)
1047 		return 0;
1048 
1049 	/*
1050 	 * Make sure the process is able to allocate at least 1 request
1051 	 * even if the batch times out, otherwise we could theoretically
1052 	 * lose wakeups.
1053 	 */
1054 	return ioc->nr_batch_requests == q->nr_batching ||
1055 		(ioc->nr_batch_requests > 0
1056 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1057 }
1058 
1059 /*
1060  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1061  * will cause the process to be a "batcher" on all queues in the system. This
1062  * is the behaviour we want though - once it gets a wakeup it should be given
1063  * a nice run.
1064  */
1065 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1066 {
1067 	if (!ioc || ioc_batching(q, ioc))
1068 		return;
1069 
1070 	ioc->nr_batch_requests = q->nr_batching;
1071 	ioc->last_waited = jiffies;
1072 }
1073 
1074 static void __freed_request(struct request_list *rl, int sync)
1075 {
1076 	struct request_queue *q = rl->q;
1077 
1078 	if (rl->count[sync] < queue_congestion_off_threshold(q))
1079 		blk_clear_congested(rl, sync);
1080 
1081 	if (rl->count[sync] + 1 <= q->nr_requests) {
1082 		if (waitqueue_active(&rl->wait[sync]))
1083 			wake_up(&rl->wait[sync]);
1084 
1085 		blk_clear_rl_full(rl, sync);
1086 	}
1087 }
1088 
1089 /*
1090  * A request has just been released.  Account for it, update the full and
1091  * congestion status, wake up any waiters.   Called under q->queue_lock.
1092  */
1093 static void freed_request(struct request_list *rl, bool sync,
1094 		req_flags_t rq_flags)
1095 {
1096 	struct request_queue *q = rl->q;
1097 
1098 	q->nr_rqs[sync]--;
1099 	rl->count[sync]--;
1100 	if (rq_flags & RQF_ELVPRIV)
1101 		q->nr_rqs_elvpriv--;
1102 
1103 	__freed_request(rl, sync);
1104 
1105 	if (unlikely(rl->starved[sync ^ 1]))
1106 		__freed_request(rl, sync ^ 1);
1107 }
1108 
1109 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1110 {
1111 	struct request_list *rl;
1112 	int on_thresh, off_thresh;
1113 
1114 	WARN_ON_ONCE(q->mq_ops);
1115 
1116 	spin_lock_irq(q->queue_lock);
1117 	q->nr_requests = nr;
1118 	blk_queue_congestion_threshold(q);
1119 	on_thresh = queue_congestion_on_threshold(q);
1120 	off_thresh = queue_congestion_off_threshold(q);
1121 
1122 	blk_queue_for_each_rl(rl, q) {
1123 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1124 			blk_set_congested(rl, BLK_RW_SYNC);
1125 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1126 			blk_clear_congested(rl, BLK_RW_SYNC);
1127 
1128 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1129 			blk_set_congested(rl, BLK_RW_ASYNC);
1130 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1131 			blk_clear_congested(rl, BLK_RW_ASYNC);
1132 
1133 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1134 			blk_set_rl_full(rl, BLK_RW_SYNC);
1135 		} else {
1136 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1137 			wake_up(&rl->wait[BLK_RW_SYNC]);
1138 		}
1139 
1140 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1141 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1142 		} else {
1143 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1144 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1145 		}
1146 	}
1147 
1148 	spin_unlock_irq(q->queue_lock);
1149 	return 0;
1150 }
1151 
1152 /**
1153  * __get_request - get a free request
1154  * @rl: request list to allocate from
1155  * @op: operation and flags
1156  * @bio: bio to allocate request for (can be %NULL)
1157  * @gfp_mask: allocation mask
1158  *
1159  * Get a free request from @q.  This function may fail under memory
1160  * pressure or if @q is dead.
1161  *
1162  * Must be called with @q->queue_lock held and,
1163  * Returns ERR_PTR on failure, with @q->queue_lock held.
1164  * Returns request pointer on success, with @q->queue_lock *not held*.
1165  */
1166 static struct request *__get_request(struct request_list *rl, unsigned int op,
1167 		struct bio *bio, gfp_t gfp_mask)
1168 {
1169 	struct request_queue *q = rl->q;
1170 	struct request *rq;
1171 	struct elevator_type *et = q->elevator->type;
1172 	struct io_context *ioc = rq_ioc(bio);
1173 	struct io_cq *icq = NULL;
1174 	const bool is_sync = op_is_sync(op);
1175 	int may_queue;
1176 	req_flags_t rq_flags = RQF_ALLOCED;
1177 
1178 	lockdep_assert_held(q->queue_lock);
1179 
1180 	if (unlikely(blk_queue_dying(q)))
1181 		return ERR_PTR(-ENODEV);
1182 
1183 	may_queue = elv_may_queue(q, op);
1184 	if (may_queue == ELV_MQUEUE_NO)
1185 		goto rq_starved;
1186 
1187 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1188 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1189 			/*
1190 			 * The queue will fill after this allocation, so set
1191 			 * it as full, and mark this process as "batching".
1192 			 * This process will be allowed to complete a batch of
1193 			 * requests, others will be blocked.
1194 			 */
1195 			if (!blk_rl_full(rl, is_sync)) {
1196 				ioc_set_batching(q, ioc);
1197 				blk_set_rl_full(rl, is_sync);
1198 			} else {
1199 				if (may_queue != ELV_MQUEUE_MUST
1200 						&& !ioc_batching(q, ioc)) {
1201 					/*
1202 					 * The queue is full and the allocating
1203 					 * process is not a "batcher", and not
1204 					 * exempted by the IO scheduler
1205 					 */
1206 					return ERR_PTR(-ENOMEM);
1207 				}
1208 			}
1209 		}
1210 		blk_set_congested(rl, is_sync);
1211 	}
1212 
1213 	/*
1214 	 * Only allow batching queuers to allocate up to 50% over the defined
1215 	 * limit of requests, otherwise we could have thousands of requests
1216 	 * allocated with any setting of ->nr_requests
1217 	 */
1218 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1219 		return ERR_PTR(-ENOMEM);
1220 
1221 	q->nr_rqs[is_sync]++;
1222 	rl->count[is_sync]++;
1223 	rl->starved[is_sync] = 0;
1224 
1225 	/*
1226 	 * Decide whether the new request will be managed by elevator.  If
1227 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1228 	 * prevent the current elevator from being destroyed until the new
1229 	 * request is freed.  This guarantees icq's won't be destroyed and
1230 	 * makes creating new ones safe.
1231 	 *
1232 	 * Flush requests do not use the elevator so skip initialization.
1233 	 * This allows a request to share the flush and elevator data.
1234 	 *
1235 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1236 	 * it will be created after releasing queue_lock.
1237 	 */
1238 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1239 		rq_flags |= RQF_ELVPRIV;
1240 		q->nr_rqs_elvpriv++;
1241 		if (et->icq_cache && ioc)
1242 			icq = ioc_lookup_icq(ioc, q);
1243 	}
1244 
1245 	if (blk_queue_io_stat(q))
1246 		rq_flags |= RQF_IO_STAT;
1247 	spin_unlock_irq(q->queue_lock);
1248 
1249 	/* allocate and init request */
1250 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1251 	if (!rq)
1252 		goto fail_alloc;
1253 
1254 	blk_rq_init(q, rq);
1255 	blk_rq_set_rl(rq, rl);
1256 	rq->cmd_flags = op;
1257 	rq->rq_flags = rq_flags;
1258 
1259 	/* init elvpriv */
1260 	if (rq_flags & RQF_ELVPRIV) {
1261 		if (unlikely(et->icq_cache && !icq)) {
1262 			if (ioc)
1263 				icq = ioc_create_icq(ioc, q, gfp_mask);
1264 			if (!icq)
1265 				goto fail_elvpriv;
1266 		}
1267 
1268 		rq->elv.icq = icq;
1269 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1270 			goto fail_elvpriv;
1271 
1272 		/* @rq->elv.icq holds io_context until @rq is freed */
1273 		if (icq)
1274 			get_io_context(icq->ioc);
1275 	}
1276 out:
1277 	/*
1278 	 * ioc may be NULL here, and ioc_batching will be false. That's
1279 	 * OK, if the queue is under the request limit then requests need
1280 	 * not count toward the nr_batch_requests limit. There will always
1281 	 * be some limit enforced by BLK_BATCH_TIME.
1282 	 */
1283 	if (ioc_batching(q, ioc))
1284 		ioc->nr_batch_requests--;
1285 
1286 	trace_block_getrq(q, bio, op);
1287 	return rq;
1288 
1289 fail_elvpriv:
1290 	/*
1291 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1292 	 * and may fail indefinitely under memory pressure and thus
1293 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1294 	 * disturb iosched and blkcg but weird is bettern than dead.
1295 	 */
1296 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1297 			   __func__, dev_name(q->backing_dev_info->dev));
1298 
1299 	rq->rq_flags &= ~RQF_ELVPRIV;
1300 	rq->elv.icq = NULL;
1301 
1302 	spin_lock_irq(q->queue_lock);
1303 	q->nr_rqs_elvpriv--;
1304 	spin_unlock_irq(q->queue_lock);
1305 	goto out;
1306 
1307 fail_alloc:
1308 	/*
1309 	 * Allocation failed presumably due to memory. Undo anything we
1310 	 * might have messed up.
1311 	 *
1312 	 * Allocating task should really be put onto the front of the wait
1313 	 * queue, but this is pretty rare.
1314 	 */
1315 	spin_lock_irq(q->queue_lock);
1316 	freed_request(rl, is_sync, rq_flags);
1317 
1318 	/*
1319 	 * in the very unlikely event that allocation failed and no
1320 	 * requests for this direction was pending, mark us starved so that
1321 	 * freeing of a request in the other direction will notice
1322 	 * us. another possible fix would be to split the rq mempool into
1323 	 * READ and WRITE
1324 	 */
1325 rq_starved:
1326 	if (unlikely(rl->count[is_sync] == 0))
1327 		rl->starved[is_sync] = 1;
1328 	return ERR_PTR(-ENOMEM);
1329 }
1330 
1331 /**
1332  * get_request - get a free request
1333  * @q: request_queue to allocate request from
1334  * @op: operation and flags
1335  * @bio: bio to allocate request for (can be %NULL)
1336  * @gfp_mask: allocation mask
1337  *
1338  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1339  * this function keeps retrying under memory pressure and fails iff @q is dead.
1340  *
1341  * Must be called with @q->queue_lock held and,
1342  * Returns ERR_PTR on failure, with @q->queue_lock held.
1343  * Returns request pointer on success, with @q->queue_lock *not held*.
1344  */
1345 static struct request *get_request(struct request_queue *q, unsigned int op,
1346 		struct bio *bio, gfp_t gfp_mask)
1347 {
1348 	const bool is_sync = op_is_sync(op);
1349 	DEFINE_WAIT(wait);
1350 	struct request_list *rl;
1351 	struct request *rq;
1352 
1353 	lockdep_assert_held(q->queue_lock);
1354 	WARN_ON_ONCE(q->mq_ops);
1355 
1356 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1357 retry:
1358 	rq = __get_request(rl, op, bio, gfp_mask);
1359 	if (!IS_ERR(rq))
1360 		return rq;
1361 
1362 	if (op & REQ_NOWAIT) {
1363 		blk_put_rl(rl);
1364 		return ERR_PTR(-EAGAIN);
1365 	}
1366 
1367 	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1368 		blk_put_rl(rl);
1369 		return rq;
1370 	}
1371 
1372 	/* wait on @rl and retry */
1373 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1374 				  TASK_UNINTERRUPTIBLE);
1375 
1376 	trace_block_sleeprq(q, bio, op);
1377 
1378 	spin_unlock_irq(q->queue_lock);
1379 	io_schedule();
1380 
1381 	/*
1382 	 * After sleeping, we become a "batching" process and will be able
1383 	 * to allocate at least one request, and up to a big batch of them
1384 	 * for a small period time.  See ioc_batching, ioc_set_batching
1385 	 */
1386 	ioc_set_batching(q, current->io_context);
1387 
1388 	spin_lock_irq(q->queue_lock);
1389 	finish_wait(&rl->wait[is_sync], &wait);
1390 
1391 	goto retry;
1392 }
1393 
1394 static struct request *blk_old_get_request(struct request_queue *q,
1395 					   unsigned int op, gfp_t gfp_mask)
1396 {
1397 	struct request *rq;
1398 
1399 	WARN_ON_ONCE(q->mq_ops);
1400 
1401 	/* create ioc upfront */
1402 	create_io_context(gfp_mask, q->node);
1403 
1404 	spin_lock_irq(q->queue_lock);
1405 	rq = get_request(q, op, NULL, gfp_mask);
1406 	if (IS_ERR(rq)) {
1407 		spin_unlock_irq(q->queue_lock);
1408 		return rq;
1409 	}
1410 
1411 	/* q->queue_lock is unlocked at this point */
1412 	rq->__data_len = 0;
1413 	rq->__sector = (sector_t) -1;
1414 	rq->bio = rq->biotail = NULL;
1415 	return rq;
1416 }
1417 
1418 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1419 				gfp_t gfp_mask)
1420 {
1421 	struct request *req;
1422 
1423 	if (q->mq_ops) {
1424 		req = blk_mq_alloc_request(q, op,
1425 			(gfp_mask & __GFP_DIRECT_RECLAIM) ?
1426 				0 : BLK_MQ_REQ_NOWAIT);
1427 		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1428 			q->mq_ops->initialize_rq_fn(req);
1429 	} else {
1430 		req = blk_old_get_request(q, op, gfp_mask);
1431 		if (!IS_ERR(req) && q->initialize_rq_fn)
1432 			q->initialize_rq_fn(req);
1433 	}
1434 
1435 	return req;
1436 }
1437 EXPORT_SYMBOL(blk_get_request);
1438 
1439 /**
1440  * blk_requeue_request - put a request back on queue
1441  * @q:		request queue where request should be inserted
1442  * @rq:		request to be inserted
1443  *
1444  * Description:
1445  *    Drivers often keep queueing requests until the hardware cannot accept
1446  *    more, when that condition happens we need to put the request back
1447  *    on the queue. Must be called with queue lock held.
1448  */
1449 void blk_requeue_request(struct request_queue *q, struct request *rq)
1450 {
1451 	lockdep_assert_held(q->queue_lock);
1452 	WARN_ON_ONCE(q->mq_ops);
1453 
1454 	blk_delete_timer(rq);
1455 	blk_clear_rq_complete(rq);
1456 	trace_block_rq_requeue(q, rq);
1457 	wbt_requeue(q->rq_wb, &rq->issue_stat);
1458 
1459 	if (rq->rq_flags & RQF_QUEUED)
1460 		blk_queue_end_tag(q, rq);
1461 
1462 	BUG_ON(blk_queued_rq(rq));
1463 
1464 	elv_requeue_request(q, rq);
1465 }
1466 EXPORT_SYMBOL(blk_requeue_request);
1467 
1468 static void add_acct_request(struct request_queue *q, struct request *rq,
1469 			     int where)
1470 {
1471 	blk_account_io_start(rq, true);
1472 	__elv_add_request(q, rq, where);
1473 }
1474 
1475 static void part_round_stats_single(struct request_queue *q, int cpu,
1476 				    struct hd_struct *part, unsigned long now,
1477 				    unsigned int inflight)
1478 {
1479 	if (inflight) {
1480 		__part_stat_add(cpu, part, time_in_queue,
1481 				inflight * (now - part->stamp));
1482 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1483 	}
1484 	part->stamp = now;
1485 }
1486 
1487 /**
1488  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1489  * @q: target block queue
1490  * @cpu: cpu number for stats access
1491  * @part: target partition
1492  *
1493  * The average IO queue length and utilisation statistics are maintained
1494  * by observing the current state of the queue length and the amount of
1495  * time it has been in this state for.
1496  *
1497  * Normally, that accounting is done on IO completion, but that can result
1498  * in more than a second's worth of IO being accounted for within any one
1499  * second, leading to >100% utilisation.  To deal with that, we call this
1500  * function to do a round-off before returning the results when reading
1501  * /proc/diskstats.  This accounts immediately for all queue usage up to
1502  * the current jiffies and restarts the counters again.
1503  */
1504 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1505 {
1506 	struct hd_struct *part2 = NULL;
1507 	unsigned long now = jiffies;
1508 	unsigned int inflight[2];
1509 	int stats = 0;
1510 
1511 	if (part->stamp != now)
1512 		stats |= 1;
1513 
1514 	if (part->partno) {
1515 		part2 = &part_to_disk(part)->part0;
1516 		if (part2->stamp != now)
1517 			stats |= 2;
1518 	}
1519 
1520 	if (!stats)
1521 		return;
1522 
1523 	part_in_flight(q, part, inflight);
1524 
1525 	if (stats & 2)
1526 		part_round_stats_single(q, cpu, part2, now, inflight[1]);
1527 	if (stats & 1)
1528 		part_round_stats_single(q, cpu, part, now, inflight[0]);
1529 }
1530 EXPORT_SYMBOL_GPL(part_round_stats);
1531 
1532 #ifdef CONFIG_PM
1533 static void blk_pm_put_request(struct request *rq)
1534 {
1535 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1536 		pm_runtime_mark_last_busy(rq->q->dev);
1537 }
1538 #else
1539 static inline void blk_pm_put_request(struct request *rq) {}
1540 #endif
1541 
1542 void __blk_put_request(struct request_queue *q, struct request *req)
1543 {
1544 	req_flags_t rq_flags = req->rq_flags;
1545 
1546 	if (unlikely(!q))
1547 		return;
1548 
1549 	if (q->mq_ops) {
1550 		blk_mq_free_request(req);
1551 		return;
1552 	}
1553 
1554 	lockdep_assert_held(q->queue_lock);
1555 
1556 	blk_pm_put_request(req);
1557 
1558 	elv_completed_request(q, req);
1559 
1560 	/* this is a bio leak */
1561 	WARN_ON(req->bio != NULL);
1562 
1563 	wbt_done(q->rq_wb, &req->issue_stat);
1564 
1565 	/*
1566 	 * Request may not have originated from ll_rw_blk. if not,
1567 	 * it didn't come out of our reserved rq pools
1568 	 */
1569 	if (rq_flags & RQF_ALLOCED) {
1570 		struct request_list *rl = blk_rq_rl(req);
1571 		bool sync = op_is_sync(req->cmd_flags);
1572 
1573 		BUG_ON(!list_empty(&req->queuelist));
1574 		BUG_ON(ELV_ON_HASH(req));
1575 
1576 		blk_free_request(rl, req);
1577 		freed_request(rl, sync, rq_flags);
1578 		blk_put_rl(rl);
1579 	}
1580 }
1581 EXPORT_SYMBOL_GPL(__blk_put_request);
1582 
1583 void blk_put_request(struct request *req)
1584 {
1585 	struct request_queue *q = req->q;
1586 
1587 	if (q->mq_ops)
1588 		blk_mq_free_request(req);
1589 	else {
1590 		unsigned long flags;
1591 
1592 		spin_lock_irqsave(q->queue_lock, flags);
1593 		__blk_put_request(q, req);
1594 		spin_unlock_irqrestore(q->queue_lock, flags);
1595 	}
1596 }
1597 EXPORT_SYMBOL(blk_put_request);
1598 
1599 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1600 			    struct bio *bio)
1601 {
1602 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1603 
1604 	if (!ll_back_merge_fn(q, req, bio))
1605 		return false;
1606 
1607 	trace_block_bio_backmerge(q, req, bio);
1608 
1609 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1610 		blk_rq_set_mixed_merge(req);
1611 
1612 	req->biotail->bi_next = bio;
1613 	req->biotail = bio;
1614 	req->__data_len += bio->bi_iter.bi_size;
1615 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1616 
1617 	blk_account_io_start(req, false);
1618 	return true;
1619 }
1620 
1621 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1622 			     struct bio *bio)
1623 {
1624 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1625 
1626 	if (!ll_front_merge_fn(q, req, bio))
1627 		return false;
1628 
1629 	trace_block_bio_frontmerge(q, req, bio);
1630 
1631 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1632 		blk_rq_set_mixed_merge(req);
1633 
1634 	bio->bi_next = req->bio;
1635 	req->bio = bio;
1636 
1637 	req->__sector = bio->bi_iter.bi_sector;
1638 	req->__data_len += bio->bi_iter.bi_size;
1639 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1640 
1641 	blk_account_io_start(req, false);
1642 	return true;
1643 }
1644 
1645 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1646 		struct bio *bio)
1647 {
1648 	unsigned short segments = blk_rq_nr_discard_segments(req);
1649 
1650 	if (segments >= queue_max_discard_segments(q))
1651 		goto no_merge;
1652 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1653 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1654 		goto no_merge;
1655 
1656 	req->biotail->bi_next = bio;
1657 	req->biotail = bio;
1658 	req->__data_len += bio->bi_iter.bi_size;
1659 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1660 	req->nr_phys_segments = segments + 1;
1661 
1662 	blk_account_io_start(req, false);
1663 	return true;
1664 no_merge:
1665 	req_set_nomerge(q, req);
1666 	return false;
1667 }
1668 
1669 /**
1670  * blk_attempt_plug_merge - try to merge with %current's plugged list
1671  * @q: request_queue new bio is being queued at
1672  * @bio: new bio being queued
1673  * @request_count: out parameter for number of traversed plugged requests
1674  * @same_queue_rq: pointer to &struct request that gets filled in when
1675  * another request associated with @q is found on the plug list
1676  * (optional, may be %NULL)
1677  *
1678  * Determine whether @bio being queued on @q can be merged with a request
1679  * on %current's plugged list.  Returns %true if merge was successful,
1680  * otherwise %false.
1681  *
1682  * Plugging coalesces IOs from the same issuer for the same purpose without
1683  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1684  * than scheduling, and the request, while may have elvpriv data, is not
1685  * added on the elevator at this point.  In addition, we don't have
1686  * reliable access to the elevator outside queue lock.  Only check basic
1687  * merging parameters without querying the elevator.
1688  *
1689  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1690  */
1691 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1692 			    unsigned int *request_count,
1693 			    struct request **same_queue_rq)
1694 {
1695 	struct blk_plug *plug;
1696 	struct request *rq;
1697 	struct list_head *plug_list;
1698 
1699 	plug = current->plug;
1700 	if (!plug)
1701 		return false;
1702 	*request_count = 0;
1703 
1704 	if (q->mq_ops)
1705 		plug_list = &plug->mq_list;
1706 	else
1707 		plug_list = &plug->list;
1708 
1709 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1710 		bool merged = false;
1711 
1712 		if (rq->q == q) {
1713 			(*request_count)++;
1714 			/*
1715 			 * Only blk-mq multiple hardware queues case checks the
1716 			 * rq in the same queue, there should be only one such
1717 			 * rq in a queue
1718 			 **/
1719 			if (same_queue_rq)
1720 				*same_queue_rq = rq;
1721 		}
1722 
1723 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1724 			continue;
1725 
1726 		switch (blk_try_merge(rq, bio)) {
1727 		case ELEVATOR_BACK_MERGE:
1728 			merged = bio_attempt_back_merge(q, rq, bio);
1729 			break;
1730 		case ELEVATOR_FRONT_MERGE:
1731 			merged = bio_attempt_front_merge(q, rq, bio);
1732 			break;
1733 		case ELEVATOR_DISCARD_MERGE:
1734 			merged = bio_attempt_discard_merge(q, rq, bio);
1735 			break;
1736 		default:
1737 			break;
1738 		}
1739 
1740 		if (merged)
1741 			return true;
1742 	}
1743 
1744 	return false;
1745 }
1746 
1747 unsigned int blk_plug_queued_count(struct request_queue *q)
1748 {
1749 	struct blk_plug *plug;
1750 	struct request *rq;
1751 	struct list_head *plug_list;
1752 	unsigned int ret = 0;
1753 
1754 	plug = current->plug;
1755 	if (!plug)
1756 		goto out;
1757 
1758 	if (q->mq_ops)
1759 		plug_list = &plug->mq_list;
1760 	else
1761 		plug_list = &plug->list;
1762 
1763 	list_for_each_entry(rq, plug_list, queuelist) {
1764 		if (rq->q == q)
1765 			ret++;
1766 	}
1767 out:
1768 	return ret;
1769 }
1770 
1771 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1772 {
1773 	struct io_context *ioc = rq_ioc(bio);
1774 
1775 	if (bio->bi_opf & REQ_RAHEAD)
1776 		req->cmd_flags |= REQ_FAILFAST_MASK;
1777 
1778 	req->__sector = bio->bi_iter.bi_sector;
1779 	if (ioprio_valid(bio_prio(bio)))
1780 		req->ioprio = bio_prio(bio);
1781 	else if (ioc)
1782 		req->ioprio = ioc->ioprio;
1783 	else
1784 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1785 	req->write_hint = bio->bi_write_hint;
1786 	blk_rq_bio_prep(req->q, req, bio);
1787 }
1788 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1789 
1790 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1791 {
1792 	struct blk_plug *plug;
1793 	int where = ELEVATOR_INSERT_SORT;
1794 	struct request *req, *free;
1795 	unsigned int request_count = 0;
1796 	unsigned int wb_acct;
1797 
1798 	/*
1799 	 * low level driver can indicate that it wants pages above a
1800 	 * certain limit bounced to low memory (ie for highmem, or even
1801 	 * ISA dma in theory)
1802 	 */
1803 	blk_queue_bounce(q, &bio);
1804 
1805 	blk_queue_split(q, &bio);
1806 
1807 	if (!bio_integrity_prep(bio))
1808 		return BLK_QC_T_NONE;
1809 
1810 	if (op_is_flush(bio->bi_opf)) {
1811 		spin_lock_irq(q->queue_lock);
1812 		where = ELEVATOR_INSERT_FLUSH;
1813 		goto get_rq;
1814 	}
1815 
1816 	/*
1817 	 * Check if we can merge with the plugged list before grabbing
1818 	 * any locks.
1819 	 */
1820 	if (!blk_queue_nomerges(q)) {
1821 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1822 			return BLK_QC_T_NONE;
1823 	} else
1824 		request_count = blk_plug_queued_count(q);
1825 
1826 	spin_lock_irq(q->queue_lock);
1827 
1828 	switch (elv_merge(q, &req, bio)) {
1829 	case ELEVATOR_BACK_MERGE:
1830 		if (!bio_attempt_back_merge(q, req, bio))
1831 			break;
1832 		elv_bio_merged(q, req, bio);
1833 		free = attempt_back_merge(q, req);
1834 		if (free)
1835 			__blk_put_request(q, free);
1836 		else
1837 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1838 		goto out_unlock;
1839 	case ELEVATOR_FRONT_MERGE:
1840 		if (!bio_attempt_front_merge(q, req, bio))
1841 			break;
1842 		elv_bio_merged(q, req, bio);
1843 		free = attempt_front_merge(q, req);
1844 		if (free)
1845 			__blk_put_request(q, free);
1846 		else
1847 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1848 		goto out_unlock;
1849 	default:
1850 		break;
1851 	}
1852 
1853 get_rq:
1854 	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1855 
1856 	/*
1857 	 * Grab a free request. This is might sleep but can not fail.
1858 	 * Returns with the queue unlocked.
1859 	 */
1860 	req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1861 	if (IS_ERR(req)) {
1862 		__wbt_done(q->rq_wb, wb_acct);
1863 		if (PTR_ERR(req) == -ENOMEM)
1864 			bio->bi_status = BLK_STS_RESOURCE;
1865 		else
1866 			bio->bi_status = BLK_STS_IOERR;
1867 		bio_endio(bio);
1868 		goto out_unlock;
1869 	}
1870 
1871 	wbt_track(&req->issue_stat, wb_acct);
1872 
1873 	/*
1874 	 * After dropping the lock and possibly sleeping here, our request
1875 	 * may now be mergeable after it had proven unmergeable (above).
1876 	 * We don't worry about that case for efficiency. It won't happen
1877 	 * often, and the elevators are able to handle it.
1878 	 */
1879 	blk_init_request_from_bio(req, bio);
1880 
1881 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1882 		req->cpu = raw_smp_processor_id();
1883 
1884 	plug = current->plug;
1885 	if (plug) {
1886 		/*
1887 		 * If this is the first request added after a plug, fire
1888 		 * of a plug trace.
1889 		 *
1890 		 * @request_count may become stale because of schedule
1891 		 * out, so check plug list again.
1892 		 */
1893 		if (!request_count || list_empty(&plug->list))
1894 			trace_block_plug(q);
1895 		else {
1896 			struct request *last = list_entry_rq(plug->list.prev);
1897 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
1898 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1899 				blk_flush_plug_list(plug, false);
1900 				trace_block_plug(q);
1901 			}
1902 		}
1903 		list_add_tail(&req->queuelist, &plug->list);
1904 		blk_account_io_start(req, true);
1905 	} else {
1906 		spin_lock_irq(q->queue_lock);
1907 		add_acct_request(q, req, where);
1908 		__blk_run_queue(q);
1909 out_unlock:
1910 		spin_unlock_irq(q->queue_lock);
1911 	}
1912 
1913 	return BLK_QC_T_NONE;
1914 }
1915 
1916 static void handle_bad_sector(struct bio *bio)
1917 {
1918 	char b[BDEVNAME_SIZE];
1919 
1920 	printk(KERN_INFO "attempt to access beyond end of device\n");
1921 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1922 			bio_devname(bio, b), bio->bi_opf,
1923 			(unsigned long long)bio_end_sector(bio),
1924 			(long long)get_capacity(bio->bi_disk));
1925 }
1926 
1927 #ifdef CONFIG_FAIL_MAKE_REQUEST
1928 
1929 static DECLARE_FAULT_ATTR(fail_make_request);
1930 
1931 static int __init setup_fail_make_request(char *str)
1932 {
1933 	return setup_fault_attr(&fail_make_request, str);
1934 }
1935 __setup("fail_make_request=", setup_fail_make_request);
1936 
1937 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1938 {
1939 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1940 }
1941 
1942 static int __init fail_make_request_debugfs(void)
1943 {
1944 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1945 						NULL, &fail_make_request);
1946 
1947 	return PTR_ERR_OR_ZERO(dir);
1948 }
1949 
1950 late_initcall(fail_make_request_debugfs);
1951 
1952 #else /* CONFIG_FAIL_MAKE_REQUEST */
1953 
1954 static inline bool should_fail_request(struct hd_struct *part,
1955 					unsigned int bytes)
1956 {
1957 	return false;
1958 }
1959 
1960 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1961 
1962 /*
1963  * Remap block n of partition p to block n+start(p) of the disk.
1964  */
1965 static inline int blk_partition_remap(struct bio *bio)
1966 {
1967 	struct hd_struct *p;
1968 	int ret = 0;
1969 
1970 	/*
1971 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
1972 	 * Include a test for the reset op code and perform the remap if needed.
1973 	 */
1974 	if (!bio->bi_partno ||
1975 	    (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
1976 		return 0;
1977 
1978 	rcu_read_lock();
1979 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
1980 	if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
1981 		bio->bi_iter.bi_sector += p->start_sect;
1982 		bio->bi_partno = 0;
1983 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
1984 				bio->bi_iter.bi_sector - p->start_sect);
1985 	} else {
1986 		printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
1987 		ret = -EIO;
1988 	}
1989 	rcu_read_unlock();
1990 
1991 	return ret;
1992 }
1993 
1994 /*
1995  * Check whether this bio extends beyond the end of the device.
1996  */
1997 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1998 {
1999 	sector_t maxsector;
2000 
2001 	if (!nr_sectors)
2002 		return 0;
2003 
2004 	/* Test device or partition size, when known. */
2005 	maxsector = get_capacity(bio->bi_disk);
2006 	if (maxsector) {
2007 		sector_t sector = bio->bi_iter.bi_sector;
2008 
2009 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2010 			/*
2011 			 * This may well happen - the kernel calls bread()
2012 			 * without checking the size of the device, e.g., when
2013 			 * mounting a device.
2014 			 */
2015 			handle_bad_sector(bio);
2016 			return 1;
2017 		}
2018 	}
2019 
2020 	return 0;
2021 }
2022 
2023 static noinline_for_stack bool
2024 generic_make_request_checks(struct bio *bio)
2025 {
2026 	struct request_queue *q;
2027 	int nr_sectors = bio_sectors(bio);
2028 	blk_status_t status = BLK_STS_IOERR;
2029 	char b[BDEVNAME_SIZE];
2030 
2031 	might_sleep();
2032 
2033 	if (bio_check_eod(bio, nr_sectors))
2034 		goto end_io;
2035 
2036 	q = bio->bi_disk->queue;
2037 	if (unlikely(!q)) {
2038 		printk(KERN_ERR
2039 		       "generic_make_request: Trying to access "
2040 			"nonexistent block-device %s (%Lu)\n",
2041 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2042 		goto end_io;
2043 	}
2044 
2045 	/*
2046 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2047 	 * if queue is not a request based queue.
2048 	 */
2049 
2050 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2051 		goto not_supported;
2052 
2053 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2054 		goto end_io;
2055 
2056 	if (blk_partition_remap(bio))
2057 		goto end_io;
2058 
2059 	if (bio_check_eod(bio, nr_sectors))
2060 		goto end_io;
2061 
2062 	/*
2063 	 * Filter flush bio's early so that make_request based
2064 	 * drivers without flush support don't have to worry
2065 	 * about them.
2066 	 */
2067 	if (op_is_flush(bio->bi_opf) &&
2068 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2069 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2070 		if (!nr_sectors) {
2071 			status = BLK_STS_OK;
2072 			goto end_io;
2073 		}
2074 	}
2075 
2076 	switch (bio_op(bio)) {
2077 	case REQ_OP_DISCARD:
2078 		if (!blk_queue_discard(q))
2079 			goto not_supported;
2080 		break;
2081 	case REQ_OP_SECURE_ERASE:
2082 		if (!blk_queue_secure_erase(q))
2083 			goto not_supported;
2084 		break;
2085 	case REQ_OP_WRITE_SAME:
2086 		if (!q->limits.max_write_same_sectors)
2087 			goto not_supported;
2088 		break;
2089 	case REQ_OP_ZONE_REPORT:
2090 	case REQ_OP_ZONE_RESET:
2091 		if (!blk_queue_is_zoned(q))
2092 			goto not_supported;
2093 		break;
2094 	case REQ_OP_WRITE_ZEROES:
2095 		if (!q->limits.max_write_zeroes_sectors)
2096 			goto not_supported;
2097 		break;
2098 	default:
2099 		break;
2100 	}
2101 
2102 	/*
2103 	 * Various block parts want %current->io_context and lazy ioc
2104 	 * allocation ends up trading a lot of pain for a small amount of
2105 	 * memory.  Just allocate it upfront.  This may fail and block
2106 	 * layer knows how to live with it.
2107 	 */
2108 	create_io_context(GFP_ATOMIC, q->node);
2109 
2110 	if (!blkcg_bio_issue_check(q, bio))
2111 		return false;
2112 
2113 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2114 		trace_block_bio_queue(q, bio);
2115 		/* Now that enqueuing has been traced, we need to trace
2116 		 * completion as well.
2117 		 */
2118 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2119 	}
2120 	return true;
2121 
2122 not_supported:
2123 	status = BLK_STS_NOTSUPP;
2124 end_io:
2125 	bio->bi_status = status;
2126 	bio_endio(bio);
2127 	return false;
2128 }
2129 
2130 /**
2131  * generic_make_request - hand a buffer to its device driver for I/O
2132  * @bio:  The bio describing the location in memory and on the device.
2133  *
2134  * generic_make_request() is used to make I/O requests of block
2135  * devices. It is passed a &struct bio, which describes the I/O that needs
2136  * to be done.
2137  *
2138  * generic_make_request() does not return any status.  The
2139  * success/failure status of the request, along with notification of
2140  * completion, is delivered asynchronously through the bio->bi_end_io
2141  * function described (one day) else where.
2142  *
2143  * The caller of generic_make_request must make sure that bi_io_vec
2144  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2145  * set to describe the device address, and the
2146  * bi_end_io and optionally bi_private are set to describe how
2147  * completion notification should be signaled.
2148  *
2149  * generic_make_request and the drivers it calls may use bi_next if this
2150  * bio happens to be merged with someone else, and may resubmit the bio to
2151  * a lower device by calling into generic_make_request recursively, which
2152  * means the bio should NOT be touched after the call to ->make_request_fn.
2153  */
2154 blk_qc_t generic_make_request(struct bio *bio)
2155 {
2156 	/*
2157 	 * bio_list_on_stack[0] contains bios submitted by the current
2158 	 * make_request_fn.
2159 	 * bio_list_on_stack[1] contains bios that were submitted before
2160 	 * the current make_request_fn, but that haven't been processed
2161 	 * yet.
2162 	 */
2163 	struct bio_list bio_list_on_stack[2];
2164 	blk_qc_t ret = BLK_QC_T_NONE;
2165 
2166 	if (!generic_make_request_checks(bio))
2167 		goto out;
2168 
2169 	/*
2170 	 * We only want one ->make_request_fn to be active at a time, else
2171 	 * stack usage with stacked devices could be a problem.  So use
2172 	 * current->bio_list to keep a list of requests submited by a
2173 	 * make_request_fn function.  current->bio_list is also used as a
2174 	 * flag to say if generic_make_request is currently active in this
2175 	 * task or not.  If it is NULL, then no make_request is active.  If
2176 	 * it is non-NULL, then a make_request is active, and new requests
2177 	 * should be added at the tail
2178 	 */
2179 	if (current->bio_list) {
2180 		bio_list_add(&current->bio_list[0], bio);
2181 		goto out;
2182 	}
2183 
2184 	/* following loop may be a bit non-obvious, and so deserves some
2185 	 * explanation.
2186 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2187 	 * ensure that) so we have a list with a single bio.
2188 	 * We pretend that we have just taken it off a longer list, so
2189 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2190 	 * thus initialising the bio_list of new bios to be
2191 	 * added.  ->make_request() may indeed add some more bios
2192 	 * through a recursive call to generic_make_request.  If it
2193 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2194 	 * from the top.  In this case we really did just take the bio
2195 	 * of the top of the list (no pretending) and so remove it from
2196 	 * bio_list, and call into ->make_request() again.
2197 	 */
2198 	BUG_ON(bio->bi_next);
2199 	bio_list_init(&bio_list_on_stack[0]);
2200 	current->bio_list = bio_list_on_stack;
2201 	do {
2202 		struct request_queue *q = bio->bi_disk->queue;
2203 
2204 		if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
2205 			struct bio_list lower, same;
2206 
2207 			/* Create a fresh bio_list for all subordinate requests */
2208 			bio_list_on_stack[1] = bio_list_on_stack[0];
2209 			bio_list_init(&bio_list_on_stack[0]);
2210 			ret = q->make_request_fn(q, bio);
2211 
2212 			blk_queue_exit(q);
2213 
2214 			/* sort new bios into those for a lower level
2215 			 * and those for the same level
2216 			 */
2217 			bio_list_init(&lower);
2218 			bio_list_init(&same);
2219 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2220 				if (q == bio->bi_disk->queue)
2221 					bio_list_add(&same, bio);
2222 				else
2223 					bio_list_add(&lower, bio);
2224 			/* now assemble so we handle the lowest level first */
2225 			bio_list_merge(&bio_list_on_stack[0], &lower);
2226 			bio_list_merge(&bio_list_on_stack[0], &same);
2227 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2228 		} else {
2229 			if (unlikely(!blk_queue_dying(q) &&
2230 					(bio->bi_opf & REQ_NOWAIT)))
2231 				bio_wouldblock_error(bio);
2232 			else
2233 				bio_io_error(bio);
2234 		}
2235 		bio = bio_list_pop(&bio_list_on_stack[0]);
2236 	} while (bio);
2237 	current->bio_list = NULL; /* deactivate */
2238 
2239 out:
2240 	return ret;
2241 }
2242 EXPORT_SYMBOL(generic_make_request);
2243 
2244 /**
2245  * submit_bio - submit a bio to the block device layer for I/O
2246  * @bio: The &struct bio which describes the I/O
2247  *
2248  * submit_bio() is very similar in purpose to generic_make_request(), and
2249  * uses that function to do most of the work. Both are fairly rough
2250  * interfaces; @bio must be presetup and ready for I/O.
2251  *
2252  */
2253 blk_qc_t submit_bio(struct bio *bio)
2254 {
2255 	/*
2256 	 * If it's a regular read/write or a barrier with data attached,
2257 	 * go through the normal accounting stuff before submission.
2258 	 */
2259 	if (bio_has_data(bio)) {
2260 		unsigned int count;
2261 
2262 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2263 			count = queue_logical_block_size(bio->bi_disk->queue);
2264 		else
2265 			count = bio_sectors(bio);
2266 
2267 		if (op_is_write(bio_op(bio))) {
2268 			count_vm_events(PGPGOUT, count);
2269 		} else {
2270 			task_io_account_read(bio->bi_iter.bi_size);
2271 			count_vm_events(PGPGIN, count);
2272 		}
2273 
2274 		if (unlikely(block_dump)) {
2275 			char b[BDEVNAME_SIZE];
2276 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2277 			current->comm, task_pid_nr(current),
2278 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2279 				(unsigned long long)bio->bi_iter.bi_sector,
2280 				bio_devname(bio, b), count);
2281 		}
2282 	}
2283 
2284 	return generic_make_request(bio);
2285 }
2286 EXPORT_SYMBOL(submit_bio);
2287 
2288 /**
2289  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2290  *                              for new the queue limits
2291  * @q:  the queue
2292  * @rq: the request being checked
2293  *
2294  * Description:
2295  *    @rq may have been made based on weaker limitations of upper-level queues
2296  *    in request stacking drivers, and it may violate the limitation of @q.
2297  *    Since the block layer and the underlying device driver trust @rq
2298  *    after it is inserted to @q, it should be checked against @q before
2299  *    the insertion using this generic function.
2300  *
2301  *    Request stacking drivers like request-based dm may change the queue
2302  *    limits when retrying requests on other queues. Those requests need
2303  *    to be checked against the new queue limits again during dispatch.
2304  */
2305 static int blk_cloned_rq_check_limits(struct request_queue *q,
2306 				      struct request *rq)
2307 {
2308 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2309 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2310 		return -EIO;
2311 	}
2312 
2313 	/*
2314 	 * queue's settings related to segment counting like q->bounce_pfn
2315 	 * may differ from that of other stacking queues.
2316 	 * Recalculate it to check the request correctly on this queue's
2317 	 * limitation.
2318 	 */
2319 	blk_recalc_rq_segments(rq);
2320 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2321 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2322 		return -EIO;
2323 	}
2324 
2325 	return 0;
2326 }
2327 
2328 /**
2329  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2330  * @q:  the queue to submit the request
2331  * @rq: the request being queued
2332  */
2333 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2334 {
2335 	unsigned long flags;
2336 	int where = ELEVATOR_INSERT_BACK;
2337 
2338 	if (blk_cloned_rq_check_limits(q, rq))
2339 		return BLK_STS_IOERR;
2340 
2341 	if (rq->rq_disk &&
2342 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2343 		return BLK_STS_IOERR;
2344 
2345 	if (q->mq_ops) {
2346 		if (blk_queue_io_stat(q))
2347 			blk_account_io_start(rq, true);
2348 		/*
2349 		 * Since we have a scheduler attached on the top device,
2350 		 * bypass a potential scheduler on the bottom device for
2351 		 * insert.
2352 		 */
2353 		blk_mq_request_bypass_insert(rq);
2354 		return BLK_STS_OK;
2355 	}
2356 
2357 	spin_lock_irqsave(q->queue_lock, flags);
2358 	if (unlikely(blk_queue_dying(q))) {
2359 		spin_unlock_irqrestore(q->queue_lock, flags);
2360 		return BLK_STS_IOERR;
2361 	}
2362 
2363 	/*
2364 	 * Submitting request must be dequeued before calling this function
2365 	 * because it will be linked to another request_queue
2366 	 */
2367 	BUG_ON(blk_queued_rq(rq));
2368 
2369 	if (op_is_flush(rq->cmd_flags))
2370 		where = ELEVATOR_INSERT_FLUSH;
2371 
2372 	add_acct_request(q, rq, where);
2373 	if (where == ELEVATOR_INSERT_FLUSH)
2374 		__blk_run_queue(q);
2375 	spin_unlock_irqrestore(q->queue_lock, flags);
2376 
2377 	return BLK_STS_OK;
2378 }
2379 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2380 
2381 /**
2382  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2383  * @rq: request to examine
2384  *
2385  * Description:
2386  *     A request could be merge of IOs which require different failure
2387  *     handling.  This function determines the number of bytes which
2388  *     can be failed from the beginning of the request without
2389  *     crossing into area which need to be retried further.
2390  *
2391  * Return:
2392  *     The number of bytes to fail.
2393  */
2394 unsigned int blk_rq_err_bytes(const struct request *rq)
2395 {
2396 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2397 	unsigned int bytes = 0;
2398 	struct bio *bio;
2399 
2400 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2401 		return blk_rq_bytes(rq);
2402 
2403 	/*
2404 	 * Currently the only 'mixing' which can happen is between
2405 	 * different fastfail types.  We can safely fail portions
2406 	 * which have all the failfast bits that the first one has -
2407 	 * the ones which are at least as eager to fail as the first
2408 	 * one.
2409 	 */
2410 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2411 		if ((bio->bi_opf & ff) != ff)
2412 			break;
2413 		bytes += bio->bi_iter.bi_size;
2414 	}
2415 
2416 	/* this could lead to infinite loop */
2417 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2418 	return bytes;
2419 }
2420 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2421 
2422 void blk_account_io_completion(struct request *req, unsigned int bytes)
2423 {
2424 	if (blk_do_io_stat(req)) {
2425 		const int rw = rq_data_dir(req);
2426 		struct hd_struct *part;
2427 		int cpu;
2428 
2429 		cpu = part_stat_lock();
2430 		part = req->part;
2431 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2432 		part_stat_unlock();
2433 	}
2434 }
2435 
2436 void blk_account_io_done(struct request *req)
2437 {
2438 	/*
2439 	 * Account IO completion.  flush_rq isn't accounted as a
2440 	 * normal IO on queueing nor completion.  Accounting the
2441 	 * containing request is enough.
2442 	 */
2443 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2444 		unsigned long duration = jiffies - req->start_time;
2445 		const int rw = rq_data_dir(req);
2446 		struct hd_struct *part;
2447 		int cpu;
2448 
2449 		cpu = part_stat_lock();
2450 		part = req->part;
2451 
2452 		part_stat_inc(cpu, part, ios[rw]);
2453 		part_stat_add(cpu, part, ticks[rw], duration);
2454 		part_round_stats(req->q, cpu, part);
2455 		part_dec_in_flight(req->q, part, rw);
2456 
2457 		hd_struct_put(part);
2458 		part_stat_unlock();
2459 	}
2460 }
2461 
2462 #ifdef CONFIG_PM
2463 /*
2464  * Don't process normal requests when queue is suspended
2465  * or in the process of suspending/resuming
2466  */
2467 static struct request *blk_pm_peek_request(struct request_queue *q,
2468 					   struct request *rq)
2469 {
2470 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2471 	    (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2472 		return NULL;
2473 	else
2474 		return rq;
2475 }
2476 #else
2477 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2478 						  struct request *rq)
2479 {
2480 	return rq;
2481 }
2482 #endif
2483 
2484 void blk_account_io_start(struct request *rq, bool new_io)
2485 {
2486 	struct hd_struct *part;
2487 	int rw = rq_data_dir(rq);
2488 	int cpu;
2489 
2490 	if (!blk_do_io_stat(rq))
2491 		return;
2492 
2493 	cpu = part_stat_lock();
2494 
2495 	if (!new_io) {
2496 		part = rq->part;
2497 		part_stat_inc(cpu, part, merges[rw]);
2498 	} else {
2499 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2500 		if (!hd_struct_try_get(part)) {
2501 			/*
2502 			 * The partition is already being removed,
2503 			 * the request will be accounted on the disk only
2504 			 *
2505 			 * We take a reference on disk->part0 although that
2506 			 * partition will never be deleted, so we can treat
2507 			 * it as any other partition.
2508 			 */
2509 			part = &rq->rq_disk->part0;
2510 			hd_struct_get(part);
2511 		}
2512 		part_round_stats(rq->q, cpu, part);
2513 		part_inc_in_flight(rq->q, part, rw);
2514 		rq->part = part;
2515 	}
2516 
2517 	part_stat_unlock();
2518 }
2519 
2520 /**
2521  * blk_peek_request - peek at the top of a request queue
2522  * @q: request queue to peek at
2523  *
2524  * Description:
2525  *     Return the request at the top of @q.  The returned request
2526  *     should be started using blk_start_request() before LLD starts
2527  *     processing it.
2528  *
2529  * Return:
2530  *     Pointer to the request at the top of @q if available.  Null
2531  *     otherwise.
2532  */
2533 struct request *blk_peek_request(struct request_queue *q)
2534 {
2535 	struct request *rq;
2536 	int ret;
2537 
2538 	lockdep_assert_held(q->queue_lock);
2539 	WARN_ON_ONCE(q->mq_ops);
2540 
2541 	while ((rq = __elv_next_request(q)) != NULL) {
2542 
2543 		rq = blk_pm_peek_request(q, rq);
2544 		if (!rq)
2545 			break;
2546 
2547 		if (!(rq->rq_flags & RQF_STARTED)) {
2548 			/*
2549 			 * This is the first time the device driver
2550 			 * sees this request (possibly after
2551 			 * requeueing).  Notify IO scheduler.
2552 			 */
2553 			if (rq->rq_flags & RQF_SORTED)
2554 				elv_activate_rq(q, rq);
2555 
2556 			/*
2557 			 * just mark as started even if we don't start
2558 			 * it, a request that has been delayed should
2559 			 * not be passed by new incoming requests
2560 			 */
2561 			rq->rq_flags |= RQF_STARTED;
2562 			trace_block_rq_issue(q, rq);
2563 		}
2564 
2565 		if (!q->boundary_rq || q->boundary_rq == rq) {
2566 			q->end_sector = rq_end_sector(rq);
2567 			q->boundary_rq = NULL;
2568 		}
2569 
2570 		if (rq->rq_flags & RQF_DONTPREP)
2571 			break;
2572 
2573 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2574 			/*
2575 			 * make sure space for the drain appears we
2576 			 * know we can do this because max_hw_segments
2577 			 * has been adjusted to be one fewer than the
2578 			 * device can handle
2579 			 */
2580 			rq->nr_phys_segments++;
2581 		}
2582 
2583 		if (!q->prep_rq_fn)
2584 			break;
2585 
2586 		ret = q->prep_rq_fn(q, rq);
2587 		if (ret == BLKPREP_OK) {
2588 			break;
2589 		} else if (ret == BLKPREP_DEFER) {
2590 			/*
2591 			 * the request may have been (partially) prepped.
2592 			 * we need to keep this request in the front to
2593 			 * avoid resource deadlock.  RQF_STARTED will
2594 			 * prevent other fs requests from passing this one.
2595 			 */
2596 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2597 			    !(rq->rq_flags & RQF_DONTPREP)) {
2598 				/*
2599 				 * remove the space for the drain we added
2600 				 * so that we don't add it again
2601 				 */
2602 				--rq->nr_phys_segments;
2603 			}
2604 
2605 			rq = NULL;
2606 			break;
2607 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2608 			rq->rq_flags |= RQF_QUIET;
2609 			/*
2610 			 * Mark this request as started so we don't trigger
2611 			 * any debug logic in the end I/O path.
2612 			 */
2613 			blk_start_request(rq);
2614 			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2615 					BLK_STS_TARGET : BLK_STS_IOERR);
2616 		} else {
2617 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2618 			break;
2619 		}
2620 	}
2621 
2622 	return rq;
2623 }
2624 EXPORT_SYMBOL(blk_peek_request);
2625 
2626 static void blk_dequeue_request(struct request *rq)
2627 {
2628 	struct request_queue *q = rq->q;
2629 
2630 	BUG_ON(list_empty(&rq->queuelist));
2631 	BUG_ON(ELV_ON_HASH(rq));
2632 
2633 	list_del_init(&rq->queuelist);
2634 
2635 	/*
2636 	 * the time frame between a request being removed from the lists
2637 	 * and to it is freed is accounted as io that is in progress at
2638 	 * the driver side.
2639 	 */
2640 	if (blk_account_rq(rq)) {
2641 		q->in_flight[rq_is_sync(rq)]++;
2642 		set_io_start_time_ns(rq);
2643 	}
2644 }
2645 
2646 /**
2647  * blk_start_request - start request processing on the driver
2648  * @req: request to dequeue
2649  *
2650  * Description:
2651  *     Dequeue @req and start timeout timer on it.  This hands off the
2652  *     request to the driver.
2653  */
2654 void blk_start_request(struct request *req)
2655 {
2656 	lockdep_assert_held(req->q->queue_lock);
2657 	WARN_ON_ONCE(req->q->mq_ops);
2658 
2659 	blk_dequeue_request(req);
2660 
2661 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2662 		blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2663 		req->rq_flags |= RQF_STATS;
2664 		wbt_issue(req->q->rq_wb, &req->issue_stat);
2665 	}
2666 
2667 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2668 	blk_add_timer(req);
2669 }
2670 EXPORT_SYMBOL(blk_start_request);
2671 
2672 /**
2673  * blk_fetch_request - fetch a request from a request queue
2674  * @q: request queue to fetch a request from
2675  *
2676  * Description:
2677  *     Return the request at the top of @q.  The request is started on
2678  *     return and LLD can start processing it immediately.
2679  *
2680  * Return:
2681  *     Pointer to the request at the top of @q if available.  Null
2682  *     otherwise.
2683  */
2684 struct request *blk_fetch_request(struct request_queue *q)
2685 {
2686 	struct request *rq;
2687 
2688 	lockdep_assert_held(q->queue_lock);
2689 	WARN_ON_ONCE(q->mq_ops);
2690 
2691 	rq = blk_peek_request(q);
2692 	if (rq)
2693 		blk_start_request(rq);
2694 	return rq;
2695 }
2696 EXPORT_SYMBOL(blk_fetch_request);
2697 
2698 /**
2699  * blk_update_request - Special helper function for request stacking drivers
2700  * @req:      the request being processed
2701  * @error:    block status code
2702  * @nr_bytes: number of bytes to complete @req
2703  *
2704  * Description:
2705  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2706  *     the request structure even if @req doesn't have leftover.
2707  *     If @req has leftover, sets it up for the next range of segments.
2708  *
2709  *     This special helper function is only for request stacking drivers
2710  *     (e.g. request-based dm) so that they can handle partial completion.
2711  *     Actual device drivers should use blk_end_request instead.
2712  *
2713  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2714  *     %false return from this function.
2715  *
2716  * Return:
2717  *     %false - this request doesn't have any more data
2718  *     %true  - this request has more data
2719  **/
2720 bool blk_update_request(struct request *req, blk_status_t error,
2721 		unsigned int nr_bytes)
2722 {
2723 	int total_bytes;
2724 
2725 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2726 
2727 	if (!req->bio)
2728 		return false;
2729 
2730 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
2731 		     !(req->rq_flags & RQF_QUIET)))
2732 		print_req_error(req, error);
2733 
2734 	blk_account_io_completion(req, nr_bytes);
2735 
2736 	total_bytes = 0;
2737 	while (req->bio) {
2738 		struct bio *bio = req->bio;
2739 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2740 
2741 		if (bio_bytes == bio->bi_iter.bi_size)
2742 			req->bio = bio->bi_next;
2743 
2744 		/* Completion has already been traced */
2745 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2746 		req_bio_endio(req, bio, bio_bytes, error);
2747 
2748 		total_bytes += bio_bytes;
2749 		nr_bytes -= bio_bytes;
2750 
2751 		if (!nr_bytes)
2752 			break;
2753 	}
2754 
2755 	/*
2756 	 * completely done
2757 	 */
2758 	if (!req->bio) {
2759 		/*
2760 		 * Reset counters so that the request stacking driver
2761 		 * can find how many bytes remain in the request
2762 		 * later.
2763 		 */
2764 		req->__data_len = 0;
2765 		return false;
2766 	}
2767 
2768 	req->__data_len -= total_bytes;
2769 
2770 	/* update sector only for requests with clear definition of sector */
2771 	if (!blk_rq_is_passthrough(req))
2772 		req->__sector += total_bytes >> 9;
2773 
2774 	/* mixed attributes always follow the first bio */
2775 	if (req->rq_flags & RQF_MIXED_MERGE) {
2776 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2777 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2778 	}
2779 
2780 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2781 		/*
2782 		 * If total number of sectors is less than the first segment
2783 		 * size, something has gone terribly wrong.
2784 		 */
2785 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2786 			blk_dump_rq_flags(req, "request botched");
2787 			req->__data_len = blk_rq_cur_bytes(req);
2788 		}
2789 
2790 		/* recalculate the number of segments */
2791 		blk_recalc_rq_segments(req);
2792 	}
2793 
2794 	return true;
2795 }
2796 EXPORT_SYMBOL_GPL(blk_update_request);
2797 
2798 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2799 				    unsigned int nr_bytes,
2800 				    unsigned int bidi_bytes)
2801 {
2802 	if (blk_update_request(rq, error, nr_bytes))
2803 		return true;
2804 
2805 	/* Bidi request must be completed as a whole */
2806 	if (unlikely(blk_bidi_rq(rq)) &&
2807 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2808 		return true;
2809 
2810 	if (blk_queue_add_random(rq->q))
2811 		add_disk_randomness(rq->rq_disk);
2812 
2813 	return false;
2814 }
2815 
2816 /**
2817  * blk_unprep_request - unprepare a request
2818  * @req:	the request
2819  *
2820  * This function makes a request ready for complete resubmission (or
2821  * completion).  It happens only after all error handling is complete,
2822  * so represents the appropriate moment to deallocate any resources
2823  * that were allocated to the request in the prep_rq_fn.  The queue
2824  * lock is held when calling this.
2825  */
2826 void blk_unprep_request(struct request *req)
2827 {
2828 	struct request_queue *q = req->q;
2829 
2830 	req->rq_flags &= ~RQF_DONTPREP;
2831 	if (q->unprep_rq_fn)
2832 		q->unprep_rq_fn(q, req);
2833 }
2834 EXPORT_SYMBOL_GPL(blk_unprep_request);
2835 
2836 void blk_finish_request(struct request *req, blk_status_t error)
2837 {
2838 	struct request_queue *q = req->q;
2839 
2840 	lockdep_assert_held(req->q->queue_lock);
2841 	WARN_ON_ONCE(q->mq_ops);
2842 
2843 	if (req->rq_flags & RQF_STATS)
2844 		blk_stat_add(req);
2845 
2846 	if (req->rq_flags & RQF_QUEUED)
2847 		blk_queue_end_tag(q, req);
2848 
2849 	BUG_ON(blk_queued_rq(req));
2850 
2851 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2852 		laptop_io_completion(req->q->backing_dev_info);
2853 
2854 	blk_delete_timer(req);
2855 
2856 	if (req->rq_flags & RQF_DONTPREP)
2857 		blk_unprep_request(req);
2858 
2859 	blk_account_io_done(req);
2860 
2861 	if (req->end_io) {
2862 		wbt_done(req->q->rq_wb, &req->issue_stat);
2863 		req->end_io(req, error);
2864 	} else {
2865 		if (blk_bidi_rq(req))
2866 			__blk_put_request(req->next_rq->q, req->next_rq);
2867 
2868 		__blk_put_request(q, req);
2869 	}
2870 }
2871 EXPORT_SYMBOL(blk_finish_request);
2872 
2873 /**
2874  * blk_end_bidi_request - Complete a bidi request
2875  * @rq:         the request to complete
2876  * @error:      block status code
2877  * @nr_bytes:   number of bytes to complete @rq
2878  * @bidi_bytes: number of bytes to complete @rq->next_rq
2879  *
2880  * Description:
2881  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2882  *     Drivers that supports bidi can safely call this member for any
2883  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2884  *     just ignored.
2885  *
2886  * Return:
2887  *     %false - we are done with this request
2888  *     %true  - still buffers pending for this request
2889  **/
2890 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
2891 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2892 {
2893 	struct request_queue *q = rq->q;
2894 	unsigned long flags;
2895 
2896 	WARN_ON_ONCE(q->mq_ops);
2897 
2898 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2899 		return true;
2900 
2901 	spin_lock_irqsave(q->queue_lock, flags);
2902 	blk_finish_request(rq, error);
2903 	spin_unlock_irqrestore(q->queue_lock, flags);
2904 
2905 	return false;
2906 }
2907 
2908 /**
2909  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2910  * @rq:         the request to complete
2911  * @error:      block status code
2912  * @nr_bytes:   number of bytes to complete @rq
2913  * @bidi_bytes: number of bytes to complete @rq->next_rq
2914  *
2915  * Description:
2916  *     Identical to blk_end_bidi_request() except that queue lock is
2917  *     assumed to be locked on entry and remains so on return.
2918  *
2919  * Return:
2920  *     %false - we are done with this request
2921  *     %true  - still buffers pending for this request
2922  **/
2923 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
2924 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2925 {
2926 	lockdep_assert_held(rq->q->queue_lock);
2927 	WARN_ON_ONCE(rq->q->mq_ops);
2928 
2929 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2930 		return true;
2931 
2932 	blk_finish_request(rq, error);
2933 
2934 	return false;
2935 }
2936 
2937 /**
2938  * blk_end_request - Helper function for drivers to complete the request.
2939  * @rq:       the request being processed
2940  * @error:    block status code
2941  * @nr_bytes: number of bytes to complete
2942  *
2943  * Description:
2944  *     Ends I/O on a number of bytes attached to @rq.
2945  *     If @rq has leftover, sets it up for the next range of segments.
2946  *
2947  * Return:
2948  *     %false - we are done with this request
2949  *     %true  - still buffers pending for this request
2950  **/
2951 bool blk_end_request(struct request *rq, blk_status_t error,
2952 		unsigned int nr_bytes)
2953 {
2954 	WARN_ON_ONCE(rq->q->mq_ops);
2955 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2956 }
2957 EXPORT_SYMBOL(blk_end_request);
2958 
2959 /**
2960  * blk_end_request_all - Helper function for drives to finish the request.
2961  * @rq: the request to finish
2962  * @error: block status code
2963  *
2964  * Description:
2965  *     Completely finish @rq.
2966  */
2967 void blk_end_request_all(struct request *rq, blk_status_t error)
2968 {
2969 	bool pending;
2970 	unsigned int bidi_bytes = 0;
2971 
2972 	if (unlikely(blk_bidi_rq(rq)))
2973 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2974 
2975 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2976 	BUG_ON(pending);
2977 }
2978 EXPORT_SYMBOL(blk_end_request_all);
2979 
2980 /**
2981  * __blk_end_request - Helper function for drivers to complete the request.
2982  * @rq:       the request being processed
2983  * @error:    block status code
2984  * @nr_bytes: number of bytes to complete
2985  *
2986  * Description:
2987  *     Must be called with queue lock held unlike blk_end_request().
2988  *
2989  * Return:
2990  *     %false - we are done with this request
2991  *     %true  - still buffers pending for this request
2992  **/
2993 bool __blk_end_request(struct request *rq, blk_status_t error,
2994 		unsigned int nr_bytes)
2995 {
2996 	lockdep_assert_held(rq->q->queue_lock);
2997 	WARN_ON_ONCE(rq->q->mq_ops);
2998 
2999 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3000 }
3001 EXPORT_SYMBOL(__blk_end_request);
3002 
3003 /**
3004  * __blk_end_request_all - Helper function for drives to finish the request.
3005  * @rq: the request to finish
3006  * @error:    block status code
3007  *
3008  * Description:
3009  *     Completely finish @rq.  Must be called with queue lock held.
3010  */
3011 void __blk_end_request_all(struct request *rq, blk_status_t error)
3012 {
3013 	bool pending;
3014 	unsigned int bidi_bytes = 0;
3015 
3016 	lockdep_assert_held(rq->q->queue_lock);
3017 	WARN_ON_ONCE(rq->q->mq_ops);
3018 
3019 	if (unlikely(blk_bidi_rq(rq)))
3020 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3021 
3022 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3023 	BUG_ON(pending);
3024 }
3025 EXPORT_SYMBOL(__blk_end_request_all);
3026 
3027 /**
3028  * __blk_end_request_cur - Helper function to finish the current request chunk.
3029  * @rq: the request to finish the current chunk for
3030  * @error:    block status code
3031  *
3032  * Description:
3033  *     Complete the current consecutively mapped chunk from @rq.  Must
3034  *     be called with queue lock held.
3035  *
3036  * Return:
3037  *     %false - we are done with this request
3038  *     %true  - still buffers pending for this request
3039  */
3040 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3041 {
3042 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3043 }
3044 EXPORT_SYMBOL(__blk_end_request_cur);
3045 
3046 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3047 		     struct bio *bio)
3048 {
3049 	if (bio_has_data(bio))
3050 		rq->nr_phys_segments = bio_phys_segments(q, bio);
3051 
3052 	rq->__data_len = bio->bi_iter.bi_size;
3053 	rq->bio = rq->biotail = bio;
3054 
3055 	if (bio->bi_disk)
3056 		rq->rq_disk = bio->bi_disk;
3057 }
3058 
3059 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3060 /**
3061  * rq_flush_dcache_pages - Helper function to flush all pages in a request
3062  * @rq: the request to be flushed
3063  *
3064  * Description:
3065  *     Flush all pages in @rq.
3066  */
3067 void rq_flush_dcache_pages(struct request *rq)
3068 {
3069 	struct req_iterator iter;
3070 	struct bio_vec bvec;
3071 
3072 	rq_for_each_segment(bvec, rq, iter)
3073 		flush_dcache_page(bvec.bv_page);
3074 }
3075 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3076 #endif
3077 
3078 /**
3079  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3080  * @q : the queue of the device being checked
3081  *
3082  * Description:
3083  *    Check if underlying low-level drivers of a device are busy.
3084  *    If the drivers want to export their busy state, they must set own
3085  *    exporting function using blk_queue_lld_busy() first.
3086  *
3087  *    Basically, this function is used only by request stacking drivers
3088  *    to stop dispatching requests to underlying devices when underlying
3089  *    devices are busy.  This behavior helps more I/O merging on the queue
3090  *    of the request stacking driver and prevents I/O throughput regression
3091  *    on burst I/O load.
3092  *
3093  * Return:
3094  *    0 - Not busy (The request stacking driver should dispatch request)
3095  *    1 - Busy (The request stacking driver should stop dispatching request)
3096  */
3097 int blk_lld_busy(struct request_queue *q)
3098 {
3099 	if (q->lld_busy_fn)
3100 		return q->lld_busy_fn(q);
3101 
3102 	return 0;
3103 }
3104 EXPORT_SYMBOL_GPL(blk_lld_busy);
3105 
3106 /**
3107  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3108  * @rq: the clone request to be cleaned up
3109  *
3110  * Description:
3111  *     Free all bios in @rq for a cloned request.
3112  */
3113 void blk_rq_unprep_clone(struct request *rq)
3114 {
3115 	struct bio *bio;
3116 
3117 	while ((bio = rq->bio) != NULL) {
3118 		rq->bio = bio->bi_next;
3119 
3120 		bio_put(bio);
3121 	}
3122 }
3123 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3124 
3125 /*
3126  * Copy attributes of the original request to the clone request.
3127  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3128  */
3129 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3130 {
3131 	dst->cpu = src->cpu;
3132 	dst->__sector = blk_rq_pos(src);
3133 	dst->__data_len = blk_rq_bytes(src);
3134 	dst->nr_phys_segments = src->nr_phys_segments;
3135 	dst->ioprio = src->ioprio;
3136 	dst->extra_len = src->extra_len;
3137 }
3138 
3139 /**
3140  * blk_rq_prep_clone - Helper function to setup clone request
3141  * @rq: the request to be setup
3142  * @rq_src: original request to be cloned
3143  * @bs: bio_set that bios for clone are allocated from
3144  * @gfp_mask: memory allocation mask for bio
3145  * @bio_ctr: setup function to be called for each clone bio.
3146  *           Returns %0 for success, non %0 for failure.
3147  * @data: private data to be passed to @bio_ctr
3148  *
3149  * Description:
3150  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3151  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3152  *     are not copied, and copying such parts is the caller's responsibility.
3153  *     Also, pages which the original bios are pointing to are not copied
3154  *     and the cloned bios just point same pages.
3155  *     So cloned bios must be completed before original bios, which means
3156  *     the caller must complete @rq before @rq_src.
3157  */
3158 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3159 		      struct bio_set *bs, gfp_t gfp_mask,
3160 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3161 		      void *data)
3162 {
3163 	struct bio *bio, *bio_src;
3164 
3165 	if (!bs)
3166 		bs = fs_bio_set;
3167 
3168 	__rq_for_each_bio(bio_src, rq_src) {
3169 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3170 		if (!bio)
3171 			goto free_and_out;
3172 
3173 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3174 			goto free_and_out;
3175 
3176 		if (rq->bio) {
3177 			rq->biotail->bi_next = bio;
3178 			rq->biotail = bio;
3179 		} else
3180 			rq->bio = rq->biotail = bio;
3181 	}
3182 
3183 	__blk_rq_prep_clone(rq, rq_src);
3184 
3185 	return 0;
3186 
3187 free_and_out:
3188 	if (bio)
3189 		bio_put(bio);
3190 	blk_rq_unprep_clone(rq);
3191 
3192 	return -ENOMEM;
3193 }
3194 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3195 
3196 int kblockd_schedule_work(struct work_struct *work)
3197 {
3198 	return queue_work(kblockd_workqueue, work);
3199 }
3200 EXPORT_SYMBOL(kblockd_schedule_work);
3201 
3202 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3203 {
3204 	return queue_work_on(cpu, kblockd_workqueue, work);
3205 }
3206 EXPORT_SYMBOL(kblockd_schedule_work_on);
3207 
3208 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3209 				unsigned long delay)
3210 {
3211 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3212 }
3213 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3214 
3215 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3216 				  unsigned long delay)
3217 {
3218 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3219 }
3220 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3221 
3222 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3223 				     unsigned long delay)
3224 {
3225 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3226 }
3227 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3228 
3229 /**
3230  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3231  * @plug:	The &struct blk_plug that needs to be initialized
3232  *
3233  * Description:
3234  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3235  *   pending I/O should the task end up blocking between blk_start_plug() and
3236  *   blk_finish_plug(). This is important from a performance perspective, but
3237  *   also ensures that we don't deadlock. For instance, if the task is blocking
3238  *   for a memory allocation, memory reclaim could end up wanting to free a
3239  *   page belonging to that request that is currently residing in our private
3240  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3241  *   this kind of deadlock.
3242  */
3243 void blk_start_plug(struct blk_plug *plug)
3244 {
3245 	struct task_struct *tsk = current;
3246 
3247 	/*
3248 	 * If this is a nested plug, don't actually assign it.
3249 	 */
3250 	if (tsk->plug)
3251 		return;
3252 
3253 	INIT_LIST_HEAD(&plug->list);
3254 	INIT_LIST_HEAD(&plug->mq_list);
3255 	INIT_LIST_HEAD(&plug->cb_list);
3256 	/*
3257 	 * Store ordering should not be needed here, since a potential
3258 	 * preempt will imply a full memory barrier
3259 	 */
3260 	tsk->plug = plug;
3261 }
3262 EXPORT_SYMBOL(blk_start_plug);
3263 
3264 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3265 {
3266 	struct request *rqa = container_of(a, struct request, queuelist);
3267 	struct request *rqb = container_of(b, struct request, queuelist);
3268 
3269 	return !(rqa->q < rqb->q ||
3270 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3271 }
3272 
3273 /*
3274  * If 'from_schedule' is true, then postpone the dispatch of requests
3275  * until a safe kblockd context. We due this to avoid accidental big
3276  * additional stack usage in driver dispatch, in places where the originally
3277  * plugger did not intend it.
3278  */
3279 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3280 			    bool from_schedule)
3281 	__releases(q->queue_lock)
3282 {
3283 	lockdep_assert_held(q->queue_lock);
3284 
3285 	trace_block_unplug(q, depth, !from_schedule);
3286 
3287 	if (from_schedule)
3288 		blk_run_queue_async(q);
3289 	else
3290 		__blk_run_queue(q);
3291 	spin_unlock(q->queue_lock);
3292 }
3293 
3294 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3295 {
3296 	LIST_HEAD(callbacks);
3297 
3298 	while (!list_empty(&plug->cb_list)) {
3299 		list_splice_init(&plug->cb_list, &callbacks);
3300 
3301 		while (!list_empty(&callbacks)) {
3302 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3303 							  struct blk_plug_cb,
3304 							  list);
3305 			list_del(&cb->list);
3306 			cb->callback(cb, from_schedule);
3307 		}
3308 	}
3309 }
3310 
3311 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3312 				      int size)
3313 {
3314 	struct blk_plug *plug = current->plug;
3315 	struct blk_plug_cb *cb;
3316 
3317 	if (!plug)
3318 		return NULL;
3319 
3320 	list_for_each_entry(cb, &plug->cb_list, list)
3321 		if (cb->callback == unplug && cb->data == data)
3322 			return cb;
3323 
3324 	/* Not currently on the callback list */
3325 	BUG_ON(size < sizeof(*cb));
3326 	cb = kzalloc(size, GFP_ATOMIC);
3327 	if (cb) {
3328 		cb->data = data;
3329 		cb->callback = unplug;
3330 		list_add(&cb->list, &plug->cb_list);
3331 	}
3332 	return cb;
3333 }
3334 EXPORT_SYMBOL(blk_check_plugged);
3335 
3336 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3337 {
3338 	struct request_queue *q;
3339 	unsigned long flags;
3340 	struct request *rq;
3341 	LIST_HEAD(list);
3342 	unsigned int depth;
3343 
3344 	flush_plug_callbacks(plug, from_schedule);
3345 
3346 	if (!list_empty(&plug->mq_list))
3347 		blk_mq_flush_plug_list(plug, from_schedule);
3348 
3349 	if (list_empty(&plug->list))
3350 		return;
3351 
3352 	list_splice_init(&plug->list, &list);
3353 
3354 	list_sort(NULL, &list, plug_rq_cmp);
3355 
3356 	q = NULL;
3357 	depth = 0;
3358 
3359 	/*
3360 	 * Save and disable interrupts here, to avoid doing it for every
3361 	 * queue lock we have to take.
3362 	 */
3363 	local_irq_save(flags);
3364 	while (!list_empty(&list)) {
3365 		rq = list_entry_rq(list.next);
3366 		list_del_init(&rq->queuelist);
3367 		BUG_ON(!rq->q);
3368 		if (rq->q != q) {
3369 			/*
3370 			 * This drops the queue lock
3371 			 */
3372 			if (q)
3373 				queue_unplugged(q, depth, from_schedule);
3374 			q = rq->q;
3375 			depth = 0;
3376 			spin_lock(q->queue_lock);
3377 		}
3378 
3379 		/*
3380 		 * Short-circuit if @q is dead
3381 		 */
3382 		if (unlikely(blk_queue_dying(q))) {
3383 			__blk_end_request_all(rq, BLK_STS_IOERR);
3384 			continue;
3385 		}
3386 
3387 		/*
3388 		 * rq is already accounted, so use raw insert
3389 		 */
3390 		if (op_is_flush(rq->cmd_flags))
3391 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3392 		else
3393 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3394 
3395 		depth++;
3396 	}
3397 
3398 	/*
3399 	 * This drops the queue lock
3400 	 */
3401 	if (q)
3402 		queue_unplugged(q, depth, from_schedule);
3403 
3404 	local_irq_restore(flags);
3405 }
3406 
3407 void blk_finish_plug(struct blk_plug *plug)
3408 {
3409 	if (plug != current->plug)
3410 		return;
3411 	blk_flush_plug_list(plug, false);
3412 
3413 	current->plug = NULL;
3414 }
3415 EXPORT_SYMBOL(blk_finish_plug);
3416 
3417 #ifdef CONFIG_PM
3418 /**
3419  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3420  * @q: the queue of the device
3421  * @dev: the device the queue belongs to
3422  *
3423  * Description:
3424  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3425  *    @dev. Drivers that want to take advantage of request-based runtime PM
3426  *    should call this function after @dev has been initialized, and its
3427  *    request queue @q has been allocated, and runtime PM for it can not happen
3428  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3429  *    cases, driver should call this function before any I/O has taken place.
3430  *
3431  *    This function takes care of setting up using auto suspend for the device,
3432  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3433  *    until an updated value is either set by user or by driver. Drivers do
3434  *    not need to touch other autosuspend settings.
3435  *
3436  *    The block layer runtime PM is request based, so only works for drivers
3437  *    that use request as their IO unit instead of those directly use bio's.
3438  */
3439 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3440 {
3441 	/* not support for RQF_PM and ->rpm_status in blk-mq yet */
3442 	if (q->mq_ops)
3443 		return;
3444 
3445 	q->dev = dev;
3446 	q->rpm_status = RPM_ACTIVE;
3447 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3448 	pm_runtime_use_autosuspend(q->dev);
3449 }
3450 EXPORT_SYMBOL(blk_pm_runtime_init);
3451 
3452 /**
3453  * blk_pre_runtime_suspend - Pre runtime suspend check
3454  * @q: the queue of the device
3455  *
3456  * Description:
3457  *    This function will check if runtime suspend is allowed for the device
3458  *    by examining if there are any requests pending in the queue. If there
3459  *    are requests pending, the device can not be runtime suspended; otherwise,
3460  *    the queue's status will be updated to SUSPENDING and the driver can
3461  *    proceed to suspend the device.
3462  *
3463  *    For the not allowed case, we mark last busy for the device so that
3464  *    runtime PM core will try to autosuspend it some time later.
3465  *
3466  *    This function should be called near the start of the device's
3467  *    runtime_suspend callback.
3468  *
3469  * Return:
3470  *    0		- OK to runtime suspend the device
3471  *    -EBUSY	- Device should not be runtime suspended
3472  */
3473 int blk_pre_runtime_suspend(struct request_queue *q)
3474 {
3475 	int ret = 0;
3476 
3477 	if (!q->dev)
3478 		return ret;
3479 
3480 	spin_lock_irq(q->queue_lock);
3481 	if (q->nr_pending) {
3482 		ret = -EBUSY;
3483 		pm_runtime_mark_last_busy(q->dev);
3484 	} else {
3485 		q->rpm_status = RPM_SUSPENDING;
3486 	}
3487 	spin_unlock_irq(q->queue_lock);
3488 	return ret;
3489 }
3490 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3491 
3492 /**
3493  * blk_post_runtime_suspend - Post runtime suspend processing
3494  * @q: the queue of the device
3495  * @err: return value of the device's runtime_suspend function
3496  *
3497  * Description:
3498  *    Update the queue's runtime status according to the return value of the
3499  *    device's runtime suspend function and mark last busy for the device so
3500  *    that PM core will try to auto suspend the device at a later time.
3501  *
3502  *    This function should be called near the end of the device's
3503  *    runtime_suspend callback.
3504  */
3505 void blk_post_runtime_suspend(struct request_queue *q, int err)
3506 {
3507 	if (!q->dev)
3508 		return;
3509 
3510 	spin_lock_irq(q->queue_lock);
3511 	if (!err) {
3512 		q->rpm_status = RPM_SUSPENDED;
3513 	} else {
3514 		q->rpm_status = RPM_ACTIVE;
3515 		pm_runtime_mark_last_busy(q->dev);
3516 	}
3517 	spin_unlock_irq(q->queue_lock);
3518 }
3519 EXPORT_SYMBOL(blk_post_runtime_suspend);
3520 
3521 /**
3522  * blk_pre_runtime_resume - Pre runtime resume processing
3523  * @q: the queue of the device
3524  *
3525  * Description:
3526  *    Update the queue's runtime status to RESUMING in preparation for the
3527  *    runtime resume of the device.
3528  *
3529  *    This function should be called near the start of the device's
3530  *    runtime_resume callback.
3531  */
3532 void blk_pre_runtime_resume(struct request_queue *q)
3533 {
3534 	if (!q->dev)
3535 		return;
3536 
3537 	spin_lock_irq(q->queue_lock);
3538 	q->rpm_status = RPM_RESUMING;
3539 	spin_unlock_irq(q->queue_lock);
3540 }
3541 EXPORT_SYMBOL(blk_pre_runtime_resume);
3542 
3543 /**
3544  * blk_post_runtime_resume - Post runtime resume processing
3545  * @q: the queue of the device
3546  * @err: return value of the device's runtime_resume function
3547  *
3548  * Description:
3549  *    Update the queue's runtime status according to the return value of the
3550  *    device's runtime_resume function. If it is successfully resumed, process
3551  *    the requests that are queued into the device's queue when it is resuming
3552  *    and then mark last busy and initiate autosuspend for it.
3553  *
3554  *    This function should be called near the end of the device's
3555  *    runtime_resume callback.
3556  */
3557 void blk_post_runtime_resume(struct request_queue *q, int err)
3558 {
3559 	if (!q->dev)
3560 		return;
3561 
3562 	spin_lock_irq(q->queue_lock);
3563 	if (!err) {
3564 		q->rpm_status = RPM_ACTIVE;
3565 		__blk_run_queue(q);
3566 		pm_runtime_mark_last_busy(q->dev);
3567 		pm_request_autosuspend(q->dev);
3568 	} else {
3569 		q->rpm_status = RPM_SUSPENDED;
3570 	}
3571 	spin_unlock_irq(q->queue_lock);
3572 }
3573 EXPORT_SYMBOL(blk_post_runtime_resume);
3574 
3575 /**
3576  * blk_set_runtime_active - Force runtime status of the queue to be active
3577  * @q: the queue of the device
3578  *
3579  * If the device is left runtime suspended during system suspend the resume
3580  * hook typically resumes the device and corrects runtime status
3581  * accordingly. However, that does not affect the queue runtime PM status
3582  * which is still "suspended". This prevents processing requests from the
3583  * queue.
3584  *
3585  * This function can be used in driver's resume hook to correct queue
3586  * runtime PM status and re-enable peeking requests from the queue. It
3587  * should be called before first request is added to the queue.
3588  */
3589 void blk_set_runtime_active(struct request_queue *q)
3590 {
3591 	spin_lock_irq(q->queue_lock);
3592 	q->rpm_status = RPM_ACTIVE;
3593 	pm_runtime_mark_last_busy(q->dev);
3594 	pm_request_autosuspend(q->dev);
3595 	spin_unlock_irq(q->queue_lock);
3596 }
3597 EXPORT_SYMBOL(blk_set_runtime_active);
3598 #endif
3599 
3600 int __init blk_dev_init(void)
3601 {
3602 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3603 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3604 			FIELD_SIZEOF(struct request, cmd_flags));
3605 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3606 			FIELD_SIZEOF(struct bio, bi_opf));
3607 
3608 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3609 	kblockd_workqueue = alloc_workqueue("kblockd",
3610 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3611 	if (!kblockd_workqueue)
3612 		panic("Failed to create kblockd\n");
3613 
3614 	request_cachep = kmem_cache_create("blkdev_requests",
3615 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3616 
3617 	blk_requestq_cachep = kmem_cache_create("request_queue",
3618 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3619 
3620 #ifdef CONFIG_DEBUG_FS
3621 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3622 #endif
3623 
3624 	return 0;
3625 }
3626