1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/block.h> 40 41 #include "blk.h" 42 #include "blk-mq.h" 43 #include "blk-mq-sched.h" 44 #include "blk-wbt.h" 45 46 #ifdef CONFIG_DEBUG_FS 47 struct dentry *blk_debugfs_root; 48 #endif 49 50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 55 56 DEFINE_IDA(blk_queue_ida); 57 58 /* 59 * For the allocated request tables 60 */ 61 struct kmem_cache *request_cachep; 62 63 /* 64 * For queue allocation 65 */ 66 struct kmem_cache *blk_requestq_cachep; 67 68 /* 69 * Controlling structure to kblockd 70 */ 71 static struct workqueue_struct *kblockd_workqueue; 72 73 static void blk_clear_congested(struct request_list *rl, int sync) 74 { 75 #ifdef CONFIG_CGROUP_WRITEBACK 76 clear_wb_congested(rl->blkg->wb_congested, sync); 77 #else 78 /* 79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 80 * flip its congestion state for events on other blkcgs. 81 */ 82 if (rl == &rl->q->root_rl) 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 84 #endif 85 } 86 87 static void blk_set_congested(struct request_list *rl, int sync) 88 { 89 #ifdef CONFIG_CGROUP_WRITEBACK 90 set_wb_congested(rl->blkg->wb_congested, sync); 91 #else 92 /* see blk_clear_congested() */ 93 if (rl == &rl->q->root_rl) 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 95 #endif 96 } 97 98 void blk_queue_congestion_threshold(struct request_queue *q) 99 { 100 int nr; 101 102 nr = q->nr_requests - (q->nr_requests / 8) + 1; 103 if (nr > q->nr_requests) 104 nr = q->nr_requests; 105 q->nr_congestion_on = nr; 106 107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 108 if (nr < 1) 109 nr = 1; 110 q->nr_congestion_off = nr; 111 } 112 113 void blk_rq_init(struct request_queue *q, struct request *rq) 114 { 115 memset(rq, 0, sizeof(*rq)); 116 117 INIT_LIST_HEAD(&rq->queuelist); 118 INIT_LIST_HEAD(&rq->timeout_list); 119 rq->cpu = -1; 120 rq->q = q; 121 rq->__sector = (sector_t) -1; 122 INIT_HLIST_NODE(&rq->hash); 123 RB_CLEAR_NODE(&rq->rb_node); 124 rq->tag = -1; 125 rq->internal_tag = -1; 126 rq->start_time = jiffies; 127 set_start_time_ns(rq); 128 rq->part = NULL; 129 } 130 EXPORT_SYMBOL(blk_rq_init); 131 132 static const struct { 133 int errno; 134 const char *name; 135 } blk_errors[] = { 136 [BLK_STS_OK] = { 0, "" }, 137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 147 148 /* device mapper special case, should not leak out: */ 149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 150 151 /* everything else not covered above: */ 152 [BLK_STS_IOERR] = { -EIO, "I/O" }, 153 }; 154 155 blk_status_t errno_to_blk_status(int errno) 156 { 157 int i; 158 159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 160 if (blk_errors[i].errno == errno) 161 return (__force blk_status_t)i; 162 } 163 164 return BLK_STS_IOERR; 165 } 166 EXPORT_SYMBOL_GPL(errno_to_blk_status); 167 168 int blk_status_to_errno(blk_status_t status) 169 { 170 int idx = (__force int)status; 171 172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 173 return -EIO; 174 return blk_errors[idx].errno; 175 } 176 EXPORT_SYMBOL_GPL(blk_status_to_errno); 177 178 static void print_req_error(struct request *req, blk_status_t status) 179 { 180 int idx = (__force int)status; 181 182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 183 return; 184 185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 186 __func__, blk_errors[idx].name, req->rq_disk ? 187 req->rq_disk->disk_name : "?", 188 (unsigned long long)blk_rq_pos(req)); 189 } 190 191 static void req_bio_endio(struct request *rq, struct bio *bio, 192 unsigned int nbytes, blk_status_t error) 193 { 194 if (error) 195 bio->bi_status = error; 196 197 if (unlikely(rq->rq_flags & RQF_QUIET)) 198 bio_set_flag(bio, BIO_QUIET); 199 200 bio_advance(bio, nbytes); 201 202 /* don't actually finish bio if it's part of flush sequence */ 203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 204 bio_endio(bio); 205 } 206 207 void blk_dump_rq_flags(struct request *rq, char *msg) 208 { 209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 210 rq->rq_disk ? rq->rq_disk->disk_name : "?", 211 (unsigned long long) rq->cmd_flags); 212 213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 214 (unsigned long long)blk_rq_pos(rq), 215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 216 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 217 rq->bio, rq->biotail, blk_rq_bytes(rq)); 218 } 219 EXPORT_SYMBOL(blk_dump_rq_flags); 220 221 static void blk_delay_work(struct work_struct *work) 222 { 223 struct request_queue *q; 224 225 q = container_of(work, struct request_queue, delay_work.work); 226 spin_lock_irq(q->queue_lock); 227 __blk_run_queue(q); 228 spin_unlock_irq(q->queue_lock); 229 } 230 231 /** 232 * blk_delay_queue - restart queueing after defined interval 233 * @q: The &struct request_queue in question 234 * @msecs: Delay in msecs 235 * 236 * Description: 237 * Sometimes queueing needs to be postponed for a little while, to allow 238 * resources to come back. This function will make sure that queueing is 239 * restarted around the specified time. 240 */ 241 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 242 { 243 lockdep_assert_held(q->queue_lock); 244 WARN_ON_ONCE(q->mq_ops); 245 246 if (likely(!blk_queue_dead(q))) 247 queue_delayed_work(kblockd_workqueue, &q->delay_work, 248 msecs_to_jiffies(msecs)); 249 } 250 EXPORT_SYMBOL(blk_delay_queue); 251 252 /** 253 * blk_start_queue_async - asynchronously restart a previously stopped queue 254 * @q: The &struct request_queue in question 255 * 256 * Description: 257 * blk_start_queue_async() will clear the stop flag on the queue, and 258 * ensure that the request_fn for the queue is run from an async 259 * context. 260 **/ 261 void blk_start_queue_async(struct request_queue *q) 262 { 263 lockdep_assert_held(q->queue_lock); 264 WARN_ON_ONCE(q->mq_ops); 265 266 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 267 blk_run_queue_async(q); 268 } 269 EXPORT_SYMBOL(blk_start_queue_async); 270 271 /** 272 * blk_start_queue - restart a previously stopped queue 273 * @q: The &struct request_queue in question 274 * 275 * Description: 276 * blk_start_queue() will clear the stop flag on the queue, and call 277 * the request_fn for the queue if it was in a stopped state when 278 * entered. Also see blk_stop_queue(). 279 **/ 280 void blk_start_queue(struct request_queue *q) 281 { 282 lockdep_assert_held(q->queue_lock); 283 WARN_ON(!in_interrupt() && !irqs_disabled()); 284 WARN_ON_ONCE(q->mq_ops); 285 286 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 287 __blk_run_queue(q); 288 } 289 EXPORT_SYMBOL(blk_start_queue); 290 291 /** 292 * blk_stop_queue - stop a queue 293 * @q: The &struct request_queue in question 294 * 295 * Description: 296 * The Linux block layer assumes that a block driver will consume all 297 * entries on the request queue when the request_fn strategy is called. 298 * Often this will not happen, because of hardware limitations (queue 299 * depth settings). If a device driver gets a 'queue full' response, 300 * or if it simply chooses not to queue more I/O at one point, it can 301 * call this function to prevent the request_fn from being called until 302 * the driver has signalled it's ready to go again. This happens by calling 303 * blk_start_queue() to restart queue operations. 304 **/ 305 void blk_stop_queue(struct request_queue *q) 306 { 307 lockdep_assert_held(q->queue_lock); 308 WARN_ON_ONCE(q->mq_ops); 309 310 cancel_delayed_work(&q->delay_work); 311 queue_flag_set(QUEUE_FLAG_STOPPED, q); 312 } 313 EXPORT_SYMBOL(blk_stop_queue); 314 315 /** 316 * blk_sync_queue - cancel any pending callbacks on a queue 317 * @q: the queue 318 * 319 * Description: 320 * The block layer may perform asynchronous callback activity 321 * on a queue, such as calling the unplug function after a timeout. 322 * A block device may call blk_sync_queue to ensure that any 323 * such activity is cancelled, thus allowing it to release resources 324 * that the callbacks might use. The caller must already have made sure 325 * that its ->make_request_fn will not re-add plugging prior to calling 326 * this function. 327 * 328 * This function does not cancel any asynchronous activity arising 329 * out of elevator or throttling code. That would require elevator_exit() 330 * and blkcg_exit_queue() to be called with queue lock initialized. 331 * 332 */ 333 void blk_sync_queue(struct request_queue *q) 334 { 335 del_timer_sync(&q->timeout); 336 337 if (q->mq_ops) { 338 struct blk_mq_hw_ctx *hctx; 339 int i; 340 341 queue_for_each_hw_ctx(q, hctx, i) 342 cancel_delayed_work_sync(&hctx->run_work); 343 } else { 344 cancel_delayed_work_sync(&q->delay_work); 345 } 346 } 347 EXPORT_SYMBOL(blk_sync_queue); 348 349 /** 350 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 351 * @q: The queue to run 352 * 353 * Description: 354 * Invoke request handling on a queue if there are any pending requests. 355 * May be used to restart request handling after a request has completed. 356 * This variant runs the queue whether or not the queue has been 357 * stopped. Must be called with the queue lock held and interrupts 358 * disabled. See also @blk_run_queue. 359 */ 360 inline void __blk_run_queue_uncond(struct request_queue *q) 361 { 362 lockdep_assert_held(q->queue_lock); 363 WARN_ON_ONCE(q->mq_ops); 364 365 if (unlikely(blk_queue_dead(q))) 366 return; 367 368 /* 369 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 370 * the queue lock internally. As a result multiple threads may be 371 * running such a request function concurrently. Keep track of the 372 * number of active request_fn invocations such that blk_drain_queue() 373 * can wait until all these request_fn calls have finished. 374 */ 375 q->request_fn_active++; 376 q->request_fn(q); 377 q->request_fn_active--; 378 } 379 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 380 381 /** 382 * __blk_run_queue - run a single device queue 383 * @q: The queue to run 384 * 385 * Description: 386 * See @blk_run_queue. 387 */ 388 void __blk_run_queue(struct request_queue *q) 389 { 390 lockdep_assert_held(q->queue_lock); 391 WARN_ON_ONCE(q->mq_ops); 392 393 if (unlikely(blk_queue_stopped(q))) 394 return; 395 396 __blk_run_queue_uncond(q); 397 } 398 EXPORT_SYMBOL(__blk_run_queue); 399 400 /** 401 * blk_run_queue_async - run a single device queue in workqueue context 402 * @q: The queue to run 403 * 404 * Description: 405 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 406 * of us. 407 * 408 * Note: 409 * Since it is not allowed to run q->delay_work after blk_cleanup_queue() 410 * has canceled q->delay_work, callers must hold the queue lock to avoid 411 * race conditions between blk_cleanup_queue() and blk_run_queue_async(). 412 */ 413 void blk_run_queue_async(struct request_queue *q) 414 { 415 lockdep_assert_held(q->queue_lock); 416 WARN_ON_ONCE(q->mq_ops); 417 418 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 419 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 420 } 421 EXPORT_SYMBOL(blk_run_queue_async); 422 423 /** 424 * blk_run_queue - run a single device queue 425 * @q: The queue to run 426 * 427 * Description: 428 * Invoke request handling on this queue, if it has pending work to do. 429 * May be used to restart queueing when a request has completed. 430 */ 431 void blk_run_queue(struct request_queue *q) 432 { 433 unsigned long flags; 434 435 WARN_ON_ONCE(q->mq_ops); 436 437 spin_lock_irqsave(q->queue_lock, flags); 438 __blk_run_queue(q); 439 spin_unlock_irqrestore(q->queue_lock, flags); 440 } 441 EXPORT_SYMBOL(blk_run_queue); 442 443 void blk_put_queue(struct request_queue *q) 444 { 445 kobject_put(&q->kobj); 446 } 447 EXPORT_SYMBOL(blk_put_queue); 448 449 /** 450 * __blk_drain_queue - drain requests from request_queue 451 * @q: queue to drain 452 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 453 * 454 * Drain requests from @q. If @drain_all is set, all requests are drained. 455 * If not, only ELVPRIV requests are drained. The caller is responsible 456 * for ensuring that no new requests which need to be drained are queued. 457 */ 458 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 459 __releases(q->queue_lock) 460 __acquires(q->queue_lock) 461 { 462 int i; 463 464 lockdep_assert_held(q->queue_lock); 465 WARN_ON_ONCE(q->mq_ops); 466 467 while (true) { 468 bool drain = false; 469 470 /* 471 * The caller might be trying to drain @q before its 472 * elevator is initialized. 473 */ 474 if (q->elevator) 475 elv_drain_elevator(q); 476 477 blkcg_drain_queue(q); 478 479 /* 480 * This function might be called on a queue which failed 481 * driver init after queue creation or is not yet fully 482 * active yet. Some drivers (e.g. fd and loop) get unhappy 483 * in such cases. Kick queue iff dispatch queue has 484 * something on it and @q has request_fn set. 485 */ 486 if (!list_empty(&q->queue_head) && q->request_fn) 487 __blk_run_queue(q); 488 489 drain |= q->nr_rqs_elvpriv; 490 drain |= q->request_fn_active; 491 492 /* 493 * Unfortunately, requests are queued at and tracked from 494 * multiple places and there's no single counter which can 495 * be drained. Check all the queues and counters. 496 */ 497 if (drain_all) { 498 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 499 drain |= !list_empty(&q->queue_head); 500 for (i = 0; i < 2; i++) { 501 drain |= q->nr_rqs[i]; 502 drain |= q->in_flight[i]; 503 if (fq) 504 drain |= !list_empty(&fq->flush_queue[i]); 505 } 506 } 507 508 if (!drain) 509 break; 510 511 spin_unlock_irq(q->queue_lock); 512 513 msleep(10); 514 515 spin_lock_irq(q->queue_lock); 516 } 517 518 /* 519 * With queue marked dead, any woken up waiter will fail the 520 * allocation path, so the wakeup chaining is lost and we're 521 * left with hung waiters. We need to wake up those waiters. 522 */ 523 if (q->request_fn) { 524 struct request_list *rl; 525 526 blk_queue_for_each_rl(rl, q) 527 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 528 wake_up_all(&rl->wait[i]); 529 } 530 } 531 532 /** 533 * blk_queue_bypass_start - enter queue bypass mode 534 * @q: queue of interest 535 * 536 * In bypass mode, only the dispatch FIFO queue of @q is used. This 537 * function makes @q enter bypass mode and drains all requests which were 538 * throttled or issued before. On return, it's guaranteed that no request 539 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 540 * inside queue or RCU read lock. 541 */ 542 void blk_queue_bypass_start(struct request_queue *q) 543 { 544 WARN_ON_ONCE(q->mq_ops); 545 546 spin_lock_irq(q->queue_lock); 547 q->bypass_depth++; 548 queue_flag_set(QUEUE_FLAG_BYPASS, q); 549 spin_unlock_irq(q->queue_lock); 550 551 /* 552 * Queues start drained. Skip actual draining till init is 553 * complete. This avoids lenghty delays during queue init which 554 * can happen many times during boot. 555 */ 556 if (blk_queue_init_done(q)) { 557 spin_lock_irq(q->queue_lock); 558 __blk_drain_queue(q, false); 559 spin_unlock_irq(q->queue_lock); 560 561 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 562 synchronize_rcu(); 563 } 564 } 565 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 566 567 /** 568 * blk_queue_bypass_end - leave queue bypass mode 569 * @q: queue of interest 570 * 571 * Leave bypass mode and restore the normal queueing behavior. 572 * 573 * Note: although blk_queue_bypass_start() is only called for blk-sq queues, 574 * this function is called for both blk-sq and blk-mq queues. 575 */ 576 void blk_queue_bypass_end(struct request_queue *q) 577 { 578 spin_lock_irq(q->queue_lock); 579 if (!--q->bypass_depth) 580 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 581 WARN_ON_ONCE(q->bypass_depth < 0); 582 spin_unlock_irq(q->queue_lock); 583 } 584 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 585 586 void blk_set_queue_dying(struct request_queue *q) 587 { 588 spin_lock_irq(q->queue_lock); 589 queue_flag_set(QUEUE_FLAG_DYING, q); 590 spin_unlock_irq(q->queue_lock); 591 592 /* 593 * When queue DYING flag is set, we need to block new req 594 * entering queue, so we call blk_freeze_queue_start() to 595 * prevent I/O from crossing blk_queue_enter(). 596 */ 597 blk_freeze_queue_start(q); 598 599 if (q->mq_ops) 600 blk_mq_wake_waiters(q); 601 else { 602 struct request_list *rl; 603 604 spin_lock_irq(q->queue_lock); 605 blk_queue_for_each_rl(rl, q) { 606 if (rl->rq_pool) { 607 wake_up(&rl->wait[BLK_RW_SYNC]); 608 wake_up(&rl->wait[BLK_RW_ASYNC]); 609 } 610 } 611 spin_unlock_irq(q->queue_lock); 612 } 613 } 614 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 615 616 /** 617 * blk_cleanup_queue - shutdown a request queue 618 * @q: request queue to shutdown 619 * 620 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 621 * put it. All future requests will be failed immediately with -ENODEV. 622 */ 623 void blk_cleanup_queue(struct request_queue *q) 624 { 625 spinlock_t *lock = q->queue_lock; 626 627 /* mark @q DYING, no new request or merges will be allowed afterwards */ 628 mutex_lock(&q->sysfs_lock); 629 blk_set_queue_dying(q); 630 spin_lock_irq(lock); 631 632 /* 633 * A dying queue is permanently in bypass mode till released. Note 634 * that, unlike blk_queue_bypass_start(), we aren't performing 635 * synchronize_rcu() after entering bypass mode to avoid the delay 636 * as some drivers create and destroy a lot of queues while 637 * probing. This is still safe because blk_release_queue() will be 638 * called only after the queue refcnt drops to zero and nothing, 639 * RCU or not, would be traversing the queue by then. 640 */ 641 q->bypass_depth++; 642 queue_flag_set(QUEUE_FLAG_BYPASS, q); 643 644 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 645 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 646 queue_flag_set(QUEUE_FLAG_DYING, q); 647 spin_unlock_irq(lock); 648 mutex_unlock(&q->sysfs_lock); 649 650 /* 651 * Drain all requests queued before DYING marking. Set DEAD flag to 652 * prevent that q->request_fn() gets invoked after draining finished. 653 */ 654 blk_freeze_queue(q); 655 spin_lock_irq(lock); 656 if (!q->mq_ops) 657 __blk_drain_queue(q, true); 658 queue_flag_set(QUEUE_FLAG_DEAD, q); 659 spin_unlock_irq(lock); 660 661 /* for synchronous bio-based driver finish in-flight integrity i/o */ 662 blk_flush_integrity(); 663 664 /* @q won't process any more request, flush async actions */ 665 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 666 blk_sync_queue(q); 667 668 if (q->mq_ops) 669 blk_mq_free_queue(q); 670 percpu_ref_exit(&q->q_usage_counter); 671 672 spin_lock_irq(lock); 673 if (q->queue_lock != &q->__queue_lock) 674 q->queue_lock = &q->__queue_lock; 675 spin_unlock_irq(lock); 676 677 /* @q is and will stay empty, shutdown and put */ 678 blk_put_queue(q); 679 } 680 EXPORT_SYMBOL(blk_cleanup_queue); 681 682 /* Allocate memory local to the request queue */ 683 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 684 { 685 struct request_queue *q = data; 686 687 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 688 } 689 690 static void free_request_simple(void *element, void *data) 691 { 692 kmem_cache_free(request_cachep, element); 693 } 694 695 static void *alloc_request_size(gfp_t gfp_mask, void *data) 696 { 697 struct request_queue *q = data; 698 struct request *rq; 699 700 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 701 q->node); 702 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 703 kfree(rq); 704 rq = NULL; 705 } 706 return rq; 707 } 708 709 static void free_request_size(void *element, void *data) 710 { 711 struct request_queue *q = data; 712 713 if (q->exit_rq_fn) 714 q->exit_rq_fn(q, element); 715 kfree(element); 716 } 717 718 int blk_init_rl(struct request_list *rl, struct request_queue *q, 719 gfp_t gfp_mask) 720 { 721 if (unlikely(rl->rq_pool)) 722 return 0; 723 724 rl->q = q; 725 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 726 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 727 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 728 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 729 730 if (q->cmd_size) { 731 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 732 alloc_request_size, free_request_size, 733 q, gfp_mask, q->node); 734 } else { 735 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 736 alloc_request_simple, free_request_simple, 737 q, gfp_mask, q->node); 738 } 739 if (!rl->rq_pool) 740 return -ENOMEM; 741 742 if (rl != &q->root_rl) 743 WARN_ON_ONCE(!blk_get_queue(q)); 744 745 return 0; 746 } 747 748 void blk_exit_rl(struct request_queue *q, struct request_list *rl) 749 { 750 if (rl->rq_pool) { 751 mempool_destroy(rl->rq_pool); 752 if (rl != &q->root_rl) 753 blk_put_queue(q); 754 } 755 } 756 757 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 758 { 759 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 760 } 761 EXPORT_SYMBOL(blk_alloc_queue); 762 763 int blk_queue_enter(struct request_queue *q, bool nowait) 764 { 765 while (true) { 766 int ret; 767 768 if (percpu_ref_tryget_live(&q->q_usage_counter)) 769 return 0; 770 771 if (nowait) 772 return -EBUSY; 773 774 /* 775 * read pair of barrier in blk_freeze_queue_start(), 776 * we need to order reading __PERCPU_REF_DEAD flag of 777 * .q_usage_counter and reading .mq_freeze_depth or 778 * queue dying flag, otherwise the following wait may 779 * never return if the two reads are reordered. 780 */ 781 smp_rmb(); 782 783 ret = wait_event_interruptible(q->mq_freeze_wq, 784 !atomic_read(&q->mq_freeze_depth) || 785 blk_queue_dying(q)); 786 if (blk_queue_dying(q)) 787 return -ENODEV; 788 if (ret) 789 return ret; 790 } 791 } 792 793 void blk_queue_exit(struct request_queue *q) 794 { 795 percpu_ref_put(&q->q_usage_counter); 796 } 797 798 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 799 { 800 struct request_queue *q = 801 container_of(ref, struct request_queue, q_usage_counter); 802 803 wake_up_all(&q->mq_freeze_wq); 804 } 805 806 static void blk_rq_timed_out_timer(unsigned long data) 807 { 808 struct request_queue *q = (struct request_queue *)data; 809 810 kblockd_schedule_work(&q->timeout_work); 811 } 812 813 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 814 { 815 struct request_queue *q; 816 817 q = kmem_cache_alloc_node(blk_requestq_cachep, 818 gfp_mask | __GFP_ZERO, node_id); 819 if (!q) 820 return NULL; 821 822 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 823 if (q->id < 0) 824 goto fail_q; 825 826 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 827 if (!q->bio_split) 828 goto fail_id; 829 830 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 831 if (!q->backing_dev_info) 832 goto fail_split; 833 834 q->stats = blk_alloc_queue_stats(); 835 if (!q->stats) 836 goto fail_stats; 837 838 q->backing_dev_info->ra_pages = 839 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 840 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 841 q->backing_dev_info->name = "block"; 842 q->node = node_id; 843 844 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer, 845 laptop_mode_timer_fn, (unsigned long) q); 846 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 847 INIT_LIST_HEAD(&q->queue_head); 848 INIT_LIST_HEAD(&q->timeout_list); 849 INIT_LIST_HEAD(&q->icq_list); 850 #ifdef CONFIG_BLK_CGROUP 851 INIT_LIST_HEAD(&q->blkg_list); 852 #endif 853 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 854 855 kobject_init(&q->kobj, &blk_queue_ktype); 856 857 #ifdef CONFIG_BLK_DEV_IO_TRACE 858 mutex_init(&q->blk_trace_mutex); 859 #endif 860 mutex_init(&q->sysfs_lock); 861 spin_lock_init(&q->__queue_lock); 862 863 /* 864 * By default initialize queue_lock to internal lock and driver can 865 * override it later if need be. 866 */ 867 q->queue_lock = &q->__queue_lock; 868 869 /* 870 * A queue starts its life with bypass turned on to avoid 871 * unnecessary bypass on/off overhead and nasty surprises during 872 * init. The initial bypass will be finished when the queue is 873 * registered by blk_register_queue(). 874 */ 875 q->bypass_depth = 1; 876 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 877 878 init_waitqueue_head(&q->mq_freeze_wq); 879 880 /* 881 * Init percpu_ref in atomic mode so that it's faster to shutdown. 882 * See blk_register_queue() for details. 883 */ 884 if (percpu_ref_init(&q->q_usage_counter, 885 blk_queue_usage_counter_release, 886 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 887 goto fail_bdi; 888 889 if (blkcg_init_queue(q)) 890 goto fail_ref; 891 892 return q; 893 894 fail_ref: 895 percpu_ref_exit(&q->q_usage_counter); 896 fail_bdi: 897 blk_free_queue_stats(q->stats); 898 fail_stats: 899 bdi_put(q->backing_dev_info); 900 fail_split: 901 bioset_free(q->bio_split); 902 fail_id: 903 ida_simple_remove(&blk_queue_ida, q->id); 904 fail_q: 905 kmem_cache_free(blk_requestq_cachep, q); 906 return NULL; 907 } 908 EXPORT_SYMBOL(blk_alloc_queue_node); 909 910 /** 911 * blk_init_queue - prepare a request queue for use with a block device 912 * @rfn: The function to be called to process requests that have been 913 * placed on the queue. 914 * @lock: Request queue spin lock 915 * 916 * Description: 917 * If a block device wishes to use the standard request handling procedures, 918 * which sorts requests and coalesces adjacent requests, then it must 919 * call blk_init_queue(). The function @rfn will be called when there 920 * are requests on the queue that need to be processed. If the device 921 * supports plugging, then @rfn may not be called immediately when requests 922 * are available on the queue, but may be called at some time later instead. 923 * Plugged queues are generally unplugged when a buffer belonging to one 924 * of the requests on the queue is needed, or due to memory pressure. 925 * 926 * @rfn is not required, or even expected, to remove all requests off the 927 * queue, but only as many as it can handle at a time. If it does leave 928 * requests on the queue, it is responsible for arranging that the requests 929 * get dealt with eventually. 930 * 931 * The queue spin lock must be held while manipulating the requests on the 932 * request queue; this lock will be taken also from interrupt context, so irq 933 * disabling is needed for it. 934 * 935 * Function returns a pointer to the initialized request queue, or %NULL if 936 * it didn't succeed. 937 * 938 * Note: 939 * blk_init_queue() must be paired with a blk_cleanup_queue() call 940 * when the block device is deactivated (such as at module unload). 941 **/ 942 943 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 944 { 945 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 946 } 947 EXPORT_SYMBOL(blk_init_queue); 948 949 struct request_queue * 950 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 951 { 952 struct request_queue *q; 953 954 q = blk_alloc_queue_node(GFP_KERNEL, node_id); 955 if (!q) 956 return NULL; 957 958 q->request_fn = rfn; 959 if (lock) 960 q->queue_lock = lock; 961 if (blk_init_allocated_queue(q) < 0) { 962 blk_cleanup_queue(q); 963 return NULL; 964 } 965 966 return q; 967 } 968 EXPORT_SYMBOL(blk_init_queue_node); 969 970 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 971 972 973 int blk_init_allocated_queue(struct request_queue *q) 974 { 975 WARN_ON_ONCE(q->mq_ops); 976 977 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); 978 if (!q->fq) 979 return -ENOMEM; 980 981 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 982 goto out_free_flush_queue; 983 984 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 985 goto out_exit_flush_rq; 986 987 INIT_WORK(&q->timeout_work, blk_timeout_work); 988 q->queue_flags |= QUEUE_FLAG_DEFAULT; 989 990 /* 991 * This also sets hw/phys segments, boundary and size 992 */ 993 blk_queue_make_request(q, blk_queue_bio); 994 995 q->sg_reserved_size = INT_MAX; 996 997 /* Protect q->elevator from elevator_change */ 998 mutex_lock(&q->sysfs_lock); 999 1000 /* init elevator */ 1001 if (elevator_init(q, NULL)) { 1002 mutex_unlock(&q->sysfs_lock); 1003 goto out_exit_flush_rq; 1004 } 1005 1006 mutex_unlock(&q->sysfs_lock); 1007 return 0; 1008 1009 out_exit_flush_rq: 1010 if (q->exit_rq_fn) 1011 q->exit_rq_fn(q, q->fq->flush_rq); 1012 out_free_flush_queue: 1013 blk_free_flush_queue(q->fq); 1014 return -ENOMEM; 1015 } 1016 EXPORT_SYMBOL(blk_init_allocated_queue); 1017 1018 bool blk_get_queue(struct request_queue *q) 1019 { 1020 if (likely(!blk_queue_dying(q))) { 1021 __blk_get_queue(q); 1022 return true; 1023 } 1024 1025 return false; 1026 } 1027 EXPORT_SYMBOL(blk_get_queue); 1028 1029 static inline void blk_free_request(struct request_list *rl, struct request *rq) 1030 { 1031 if (rq->rq_flags & RQF_ELVPRIV) { 1032 elv_put_request(rl->q, rq); 1033 if (rq->elv.icq) 1034 put_io_context(rq->elv.icq->ioc); 1035 } 1036 1037 mempool_free(rq, rl->rq_pool); 1038 } 1039 1040 /* 1041 * ioc_batching returns true if the ioc is a valid batching request and 1042 * should be given priority access to a request. 1043 */ 1044 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 1045 { 1046 if (!ioc) 1047 return 0; 1048 1049 /* 1050 * Make sure the process is able to allocate at least 1 request 1051 * even if the batch times out, otherwise we could theoretically 1052 * lose wakeups. 1053 */ 1054 return ioc->nr_batch_requests == q->nr_batching || 1055 (ioc->nr_batch_requests > 0 1056 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 1057 } 1058 1059 /* 1060 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 1061 * will cause the process to be a "batcher" on all queues in the system. This 1062 * is the behaviour we want though - once it gets a wakeup it should be given 1063 * a nice run. 1064 */ 1065 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 1066 { 1067 if (!ioc || ioc_batching(q, ioc)) 1068 return; 1069 1070 ioc->nr_batch_requests = q->nr_batching; 1071 ioc->last_waited = jiffies; 1072 } 1073 1074 static void __freed_request(struct request_list *rl, int sync) 1075 { 1076 struct request_queue *q = rl->q; 1077 1078 if (rl->count[sync] < queue_congestion_off_threshold(q)) 1079 blk_clear_congested(rl, sync); 1080 1081 if (rl->count[sync] + 1 <= q->nr_requests) { 1082 if (waitqueue_active(&rl->wait[sync])) 1083 wake_up(&rl->wait[sync]); 1084 1085 blk_clear_rl_full(rl, sync); 1086 } 1087 } 1088 1089 /* 1090 * A request has just been released. Account for it, update the full and 1091 * congestion status, wake up any waiters. Called under q->queue_lock. 1092 */ 1093 static void freed_request(struct request_list *rl, bool sync, 1094 req_flags_t rq_flags) 1095 { 1096 struct request_queue *q = rl->q; 1097 1098 q->nr_rqs[sync]--; 1099 rl->count[sync]--; 1100 if (rq_flags & RQF_ELVPRIV) 1101 q->nr_rqs_elvpriv--; 1102 1103 __freed_request(rl, sync); 1104 1105 if (unlikely(rl->starved[sync ^ 1])) 1106 __freed_request(rl, sync ^ 1); 1107 } 1108 1109 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 1110 { 1111 struct request_list *rl; 1112 int on_thresh, off_thresh; 1113 1114 WARN_ON_ONCE(q->mq_ops); 1115 1116 spin_lock_irq(q->queue_lock); 1117 q->nr_requests = nr; 1118 blk_queue_congestion_threshold(q); 1119 on_thresh = queue_congestion_on_threshold(q); 1120 off_thresh = queue_congestion_off_threshold(q); 1121 1122 blk_queue_for_each_rl(rl, q) { 1123 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1124 blk_set_congested(rl, BLK_RW_SYNC); 1125 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1126 blk_clear_congested(rl, BLK_RW_SYNC); 1127 1128 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1129 blk_set_congested(rl, BLK_RW_ASYNC); 1130 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1131 blk_clear_congested(rl, BLK_RW_ASYNC); 1132 1133 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1134 blk_set_rl_full(rl, BLK_RW_SYNC); 1135 } else { 1136 blk_clear_rl_full(rl, BLK_RW_SYNC); 1137 wake_up(&rl->wait[BLK_RW_SYNC]); 1138 } 1139 1140 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1141 blk_set_rl_full(rl, BLK_RW_ASYNC); 1142 } else { 1143 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1144 wake_up(&rl->wait[BLK_RW_ASYNC]); 1145 } 1146 } 1147 1148 spin_unlock_irq(q->queue_lock); 1149 return 0; 1150 } 1151 1152 /** 1153 * __get_request - get a free request 1154 * @rl: request list to allocate from 1155 * @op: operation and flags 1156 * @bio: bio to allocate request for (can be %NULL) 1157 * @gfp_mask: allocation mask 1158 * 1159 * Get a free request from @q. This function may fail under memory 1160 * pressure or if @q is dead. 1161 * 1162 * Must be called with @q->queue_lock held and, 1163 * Returns ERR_PTR on failure, with @q->queue_lock held. 1164 * Returns request pointer on success, with @q->queue_lock *not held*. 1165 */ 1166 static struct request *__get_request(struct request_list *rl, unsigned int op, 1167 struct bio *bio, gfp_t gfp_mask) 1168 { 1169 struct request_queue *q = rl->q; 1170 struct request *rq; 1171 struct elevator_type *et = q->elevator->type; 1172 struct io_context *ioc = rq_ioc(bio); 1173 struct io_cq *icq = NULL; 1174 const bool is_sync = op_is_sync(op); 1175 int may_queue; 1176 req_flags_t rq_flags = RQF_ALLOCED; 1177 1178 lockdep_assert_held(q->queue_lock); 1179 1180 if (unlikely(blk_queue_dying(q))) 1181 return ERR_PTR(-ENODEV); 1182 1183 may_queue = elv_may_queue(q, op); 1184 if (may_queue == ELV_MQUEUE_NO) 1185 goto rq_starved; 1186 1187 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1188 if (rl->count[is_sync]+1 >= q->nr_requests) { 1189 /* 1190 * The queue will fill after this allocation, so set 1191 * it as full, and mark this process as "batching". 1192 * This process will be allowed to complete a batch of 1193 * requests, others will be blocked. 1194 */ 1195 if (!blk_rl_full(rl, is_sync)) { 1196 ioc_set_batching(q, ioc); 1197 blk_set_rl_full(rl, is_sync); 1198 } else { 1199 if (may_queue != ELV_MQUEUE_MUST 1200 && !ioc_batching(q, ioc)) { 1201 /* 1202 * The queue is full and the allocating 1203 * process is not a "batcher", and not 1204 * exempted by the IO scheduler 1205 */ 1206 return ERR_PTR(-ENOMEM); 1207 } 1208 } 1209 } 1210 blk_set_congested(rl, is_sync); 1211 } 1212 1213 /* 1214 * Only allow batching queuers to allocate up to 50% over the defined 1215 * limit of requests, otherwise we could have thousands of requests 1216 * allocated with any setting of ->nr_requests 1217 */ 1218 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1219 return ERR_PTR(-ENOMEM); 1220 1221 q->nr_rqs[is_sync]++; 1222 rl->count[is_sync]++; 1223 rl->starved[is_sync] = 0; 1224 1225 /* 1226 * Decide whether the new request will be managed by elevator. If 1227 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1228 * prevent the current elevator from being destroyed until the new 1229 * request is freed. This guarantees icq's won't be destroyed and 1230 * makes creating new ones safe. 1231 * 1232 * Flush requests do not use the elevator so skip initialization. 1233 * This allows a request to share the flush and elevator data. 1234 * 1235 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1236 * it will be created after releasing queue_lock. 1237 */ 1238 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1239 rq_flags |= RQF_ELVPRIV; 1240 q->nr_rqs_elvpriv++; 1241 if (et->icq_cache && ioc) 1242 icq = ioc_lookup_icq(ioc, q); 1243 } 1244 1245 if (blk_queue_io_stat(q)) 1246 rq_flags |= RQF_IO_STAT; 1247 spin_unlock_irq(q->queue_lock); 1248 1249 /* allocate and init request */ 1250 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1251 if (!rq) 1252 goto fail_alloc; 1253 1254 blk_rq_init(q, rq); 1255 blk_rq_set_rl(rq, rl); 1256 rq->cmd_flags = op; 1257 rq->rq_flags = rq_flags; 1258 1259 /* init elvpriv */ 1260 if (rq_flags & RQF_ELVPRIV) { 1261 if (unlikely(et->icq_cache && !icq)) { 1262 if (ioc) 1263 icq = ioc_create_icq(ioc, q, gfp_mask); 1264 if (!icq) 1265 goto fail_elvpriv; 1266 } 1267 1268 rq->elv.icq = icq; 1269 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1270 goto fail_elvpriv; 1271 1272 /* @rq->elv.icq holds io_context until @rq is freed */ 1273 if (icq) 1274 get_io_context(icq->ioc); 1275 } 1276 out: 1277 /* 1278 * ioc may be NULL here, and ioc_batching will be false. That's 1279 * OK, if the queue is under the request limit then requests need 1280 * not count toward the nr_batch_requests limit. There will always 1281 * be some limit enforced by BLK_BATCH_TIME. 1282 */ 1283 if (ioc_batching(q, ioc)) 1284 ioc->nr_batch_requests--; 1285 1286 trace_block_getrq(q, bio, op); 1287 return rq; 1288 1289 fail_elvpriv: 1290 /* 1291 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1292 * and may fail indefinitely under memory pressure and thus 1293 * shouldn't stall IO. Treat this request as !elvpriv. This will 1294 * disturb iosched and blkcg but weird is bettern than dead. 1295 */ 1296 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1297 __func__, dev_name(q->backing_dev_info->dev)); 1298 1299 rq->rq_flags &= ~RQF_ELVPRIV; 1300 rq->elv.icq = NULL; 1301 1302 spin_lock_irq(q->queue_lock); 1303 q->nr_rqs_elvpriv--; 1304 spin_unlock_irq(q->queue_lock); 1305 goto out; 1306 1307 fail_alloc: 1308 /* 1309 * Allocation failed presumably due to memory. Undo anything we 1310 * might have messed up. 1311 * 1312 * Allocating task should really be put onto the front of the wait 1313 * queue, but this is pretty rare. 1314 */ 1315 spin_lock_irq(q->queue_lock); 1316 freed_request(rl, is_sync, rq_flags); 1317 1318 /* 1319 * in the very unlikely event that allocation failed and no 1320 * requests for this direction was pending, mark us starved so that 1321 * freeing of a request in the other direction will notice 1322 * us. another possible fix would be to split the rq mempool into 1323 * READ and WRITE 1324 */ 1325 rq_starved: 1326 if (unlikely(rl->count[is_sync] == 0)) 1327 rl->starved[is_sync] = 1; 1328 return ERR_PTR(-ENOMEM); 1329 } 1330 1331 /** 1332 * get_request - get a free request 1333 * @q: request_queue to allocate request from 1334 * @op: operation and flags 1335 * @bio: bio to allocate request for (can be %NULL) 1336 * @gfp_mask: allocation mask 1337 * 1338 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1339 * this function keeps retrying under memory pressure and fails iff @q is dead. 1340 * 1341 * Must be called with @q->queue_lock held and, 1342 * Returns ERR_PTR on failure, with @q->queue_lock held. 1343 * Returns request pointer on success, with @q->queue_lock *not held*. 1344 */ 1345 static struct request *get_request(struct request_queue *q, unsigned int op, 1346 struct bio *bio, gfp_t gfp_mask) 1347 { 1348 const bool is_sync = op_is_sync(op); 1349 DEFINE_WAIT(wait); 1350 struct request_list *rl; 1351 struct request *rq; 1352 1353 lockdep_assert_held(q->queue_lock); 1354 WARN_ON_ONCE(q->mq_ops); 1355 1356 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1357 retry: 1358 rq = __get_request(rl, op, bio, gfp_mask); 1359 if (!IS_ERR(rq)) 1360 return rq; 1361 1362 if (op & REQ_NOWAIT) { 1363 blk_put_rl(rl); 1364 return ERR_PTR(-EAGAIN); 1365 } 1366 1367 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) { 1368 blk_put_rl(rl); 1369 return rq; 1370 } 1371 1372 /* wait on @rl and retry */ 1373 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1374 TASK_UNINTERRUPTIBLE); 1375 1376 trace_block_sleeprq(q, bio, op); 1377 1378 spin_unlock_irq(q->queue_lock); 1379 io_schedule(); 1380 1381 /* 1382 * After sleeping, we become a "batching" process and will be able 1383 * to allocate at least one request, and up to a big batch of them 1384 * for a small period time. See ioc_batching, ioc_set_batching 1385 */ 1386 ioc_set_batching(q, current->io_context); 1387 1388 spin_lock_irq(q->queue_lock); 1389 finish_wait(&rl->wait[is_sync], &wait); 1390 1391 goto retry; 1392 } 1393 1394 static struct request *blk_old_get_request(struct request_queue *q, 1395 unsigned int op, gfp_t gfp_mask) 1396 { 1397 struct request *rq; 1398 1399 WARN_ON_ONCE(q->mq_ops); 1400 1401 /* create ioc upfront */ 1402 create_io_context(gfp_mask, q->node); 1403 1404 spin_lock_irq(q->queue_lock); 1405 rq = get_request(q, op, NULL, gfp_mask); 1406 if (IS_ERR(rq)) { 1407 spin_unlock_irq(q->queue_lock); 1408 return rq; 1409 } 1410 1411 /* q->queue_lock is unlocked at this point */ 1412 rq->__data_len = 0; 1413 rq->__sector = (sector_t) -1; 1414 rq->bio = rq->biotail = NULL; 1415 return rq; 1416 } 1417 1418 struct request *blk_get_request(struct request_queue *q, unsigned int op, 1419 gfp_t gfp_mask) 1420 { 1421 struct request *req; 1422 1423 if (q->mq_ops) { 1424 req = blk_mq_alloc_request(q, op, 1425 (gfp_mask & __GFP_DIRECT_RECLAIM) ? 1426 0 : BLK_MQ_REQ_NOWAIT); 1427 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 1428 q->mq_ops->initialize_rq_fn(req); 1429 } else { 1430 req = blk_old_get_request(q, op, gfp_mask); 1431 if (!IS_ERR(req) && q->initialize_rq_fn) 1432 q->initialize_rq_fn(req); 1433 } 1434 1435 return req; 1436 } 1437 EXPORT_SYMBOL(blk_get_request); 1438 1439 /** 1440 * blk_requeue_request - put a request back on queue 1441 * @q: request queue where request should be inserted 1442 * @rq: request to be inserted 1443 * 1444 * Description: 1445 * Drivers often keep queueing requests until the hardware cannot accept 1446 * more, when that condition happens we need to put the request back 1447 * on the queue. Must be called with queue lock held. 1448 */ 1449 void blk_requeue_request(struct request_queue *q, struct request *rq) 1450 { 1451 lockdep_assert_held(q->queue_lock); 1452 WARN_ON_ONCE(q->mq_ops); 1453 1454 blk_delete_timer(rq); 1455 blk_clear_rq_complete(rq); 1456 trace_block_rq_requeue(q, rq); 1457 wbt_requeue(q->rq_wb, &rq->issue_stat); 1458 1459 if (rq->rq_flags & RQF_QUEUED) 1460 blk_queue_end_tag(q, rq); 1461 1462 BUG_ON(blk_queued_rq(rq)); 1463 1464 elv_requeue_request(q, rq); 1465 } 1466 EXPORT_SYMBOL(blk_requeue_request); 1467 1468 static void add_acct_request(struct request_queue *q, struct request *rq, 1469 int where) 1470 { 1471 blk_account_io_start(rq, true); 1472 __elv_add_request(q, rq, where); 1473 } 1474 1475 static void part_round_stats_single(struct request_queue *q, int cpu, 1476 struct hd_struct *part, unsigned long now, 1477 unsigned int inflight) 1478 { 1479 if (inflight) { 1480 __part_stat_add(cpu, part, time_in_queue, 1481 inflight * (now - part->stamp)); 1482 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1483 } 1484 part->stamp = now; 1485 } 1486 1487 /** 1488 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1489 * @q: target block queue 1490 * @cpu: cpu number for stats access 1491 * @part: target partition 1492 * 1493 * The average IO queue length and utilisation statistics are maintained 1494 * by observing the current state of the queue length and the amount of 1495 * time it has been in this state for. 1496 * 1497 * Normally, that accounting is done on IO completion, but that can result 1498 * in more than a second's worth of IO being accounted for within any one 1499 * second, leading to >100% utilisation. To deal with that, we call this 1500 * function to do a round-off before returning the results when reading 1501 * /proc/diskstats. This accounts immediately for all queue usage up to 1502 * the current jiffies and restarts the counters again. 1503 */ 1504 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part) 1505 { 1506 struct hd_struct *part2 = NULL; 1507 unsigned long now = jiffies; 1508 unsigned int inflight[2]; 1509 int stats = 0; 1510 1511 if (part->stamp != now) 1512 stats |= 1; 1513 1514 if (part->partno) { 1515 part2 = &part_to_disk(part)->part0; 1516 if (part2->stamp != now) 1517 stats |= 2; 1518 } 1519 1520 if (!stats) 1521 return; 1522 1523 part_in_flight(q, part, inflight); 1524 1525 if (stats & 2) 1526 part_round_stats_single(q, cpu, part2, now, inflight[1]); 1527 if (stats & 1) 1528 part_round_stats_single(q, cpu, part, now, inflight[0]); 1529 } 1530 EXPORT_SYMBOL_GPL(part_round_stats); 1531 1532 #ifdef CONFIG_PM 1533 static void blk_pm_put_request(struct request *rq) 1534 { 1535 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1536 pm_runtime_mark_last_busy(rq->q->dev); 1537 } 1538 #else 1539 static inline void blk_pm_put_request(struct request *rq) {} 1540 #endif 1541 1542 void __blk_put_request(struct request_queue *q, struct request *req) 1543 { 1544 req_flags_t rq_flags = req->rq_flags; 1545 1546 if (unlikely(!q)) 1547 return; 1548 1549 if (q->mq_ops) { 1550 blk_mq_free_request(req); 1551 return; 1552 } 1553 1554 lockdep_assert_held(q->queue_lock); 1555 1556 blk_pm_put_request(req); 1557 1558 elv_completed_request(q, req); 1559 1560 /* this is a bio leak */ 1561 WARN_ON(req->bio != NULL); 1562 1563 wbt_done(q->rq_wb, &req->issue_stat); 1564 1565 /* 1566 * Request may not have originated from ll_rw_blk. if not, 1567 * it didn't come out of our reserved rq pools 1568 */ 1569 if (rq_flags & RQF_ALLOCED) { 1570 struct request_list *rl = blk_rq_rl(req); 1571 bool sync = op_is_sync(req->cmd_flags); 1572 1573 BUG_ON(!list_empty(&req->queuelist)); 1574 BUG_ON(ELV_ON_HASH(req)); 1575 1576 blk_free_request(rl, req); 1577 freed_request(rl, sync, rq_flags); 1578 blk_put_rl(rl); 1579 } 1580 } 1581 EXPORT_SYMBOL_GPL(__blk_put_request); 1582 1583 void blk_put_request(struct request *req) 1584 { 1585 struct request_queue *q = req->q; 1586 1587 if (q->mq_ops) 1588 blk_mq_free_request(req); 1589 else { 1590 unsigned long flags; 1591 1592 spin_lock_irqsave(q->queue_lock, flags); 1593 __blk_put_request(q, req); 1594 spin_unlock_irqrestore(q->queue_lock, flags); 1595 } 1596 } 1597 EXPORT_SYMBOL(blk_put_request); 1598 1599 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1600 struct bio *bio) 1601 { 1602 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1603 1604 if (!ll_back_merge_fn(q, req, bio)) 1605 return false; 1606 1607 trace_block_bio_backmerge(q, req, bio); 1608 1609 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1610 blk_rq_set_mixed_merge(req); 1611 1612 req->biotail->bi_next = bio; 1613 req->biotail = bio; 1614 req->__data_len += bio->bi_iter.bi_size; 1615 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1616 1617 blk_account_io_start(req, false); 1618 return true; 1619 } 1620 1621 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1622 struct bio *bio) 1623 { 1624 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1625 1626 if (!ll_front_merge_fn(q, req, bio)) 1627 return false; 1628 1629 trace_block_bio_frontmerge(q, req, bio); 1630 1631 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1632 blk_rq_set_mixed_merge(req); 1633 1634 bio->bi_next = req->bio; 1635 req->bio = bio; 1636 1637 req->__sector = bio->bi_iter.bi_sector; 1638 req->__data_len += bio->bi_iter.bi_size; 1639 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1640 1641 blk_account_io_start(req, false); 1642 return true; 1643 } 1644 1645 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1646 struct bio *bio) 1647 { 1648 unsigned short segments = blk_rq_nr_discard_segments(req); 1649 1650 if (segments >= queue_max_discard_segments(q)) 1651 goto no_merge; 1652 if (blk_rq_sectors(req) + bio_sectors(bio) > 1653 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1654 goto no_merge; 1655 1656 req->biotail->bi_next = bio; 1657 req->biotail = bio; 1658 req->__data_len += bio->bi_iter.bi_size; 1659 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1660 req->nr_phys_segments = segments + 1; 1661 1662 blk_account_io_start(req, false); 1663 return true; 1664 no_merge: 1665 req_set_nomerge(q, req); 1666 return false; 1667 } 1668 1669 /** 1670 * blk_attempt_plug_merge - try to merge with %current's plugged list 1671 * @q: request_queue new bio is being queued at 1672 * @bio: new bio being queued 1673 * @request_count: out parameter for number of traversed plugged requests 1674 * @same_queue_rq: pointer to &struct request that gets filled in when 1675 * another request associated with @q is found on the plug list 1676 * (optional, may be %NULL) 1677 * 1678 * Determine whether @bio being queued on @q can be merged with a request 1679 * on %current's plugged list. Returns %true if merge was successful, 1680 * otherwise %false. 1681 * 1682 * Plugging coalesces IOs from the same issuer for the same purpose without 1683 * going through @q->queue_lock. As such it's more of an issuing mechanism 1684 * than scheduling, and the request, while may have elvpriv data, is not 1685 * added on the elevator at this point. In addition, we don't have 1686 * reliable access to the elevator outside queue lock. Only check basic 1687 * merging parameters without querying the elevator. 1688 * 1689 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1690 */ 1691 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1692 unsigned int *request_count, 1693 struct request **same_queue_rq) 1694 { 1695 struct blk_plug *plug; 1696 struct request *rq; 1697 struct list_head *plug_list; 1698 1699 plug = current->plug; 1700 if (!plug) 1701 return false; 1702 *request_count = 0; 1703 1704 if (q->mq_ops) 1705 plug_list = &plug->mq_list; 1706 else 1707 plug_list = &plug->list; 1708 1709 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1710 bool merged = false; 1711 1712 if (rq->q == q) { 1713 (*request_count)++; 1714 /* 1715 * Only blk-mq multiple hardware queues case checks the 1716 * rq in the same queue, there should be only one such 1717 * rq in a queue 1718 **/ 1719 if (same_queue_rq) 1720 *same_queue_rq = rq; 1721 } 1722 1723 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1724 continue; 1725 1726 switch (blk_try_merge(rq, bio)) { 1727 case ELEVATOR_BACK_MERGE: 1728 merged = bio_attempt_back_merge(q, rq, bio); 1729 break; 1730 case ELEVATOR_FRONT_MERGE: 1731 merged = bio_attempt_front_merge(q, rq, bio); 1732 break; 1733 case ELEVATOR_DISCARD_MERGE: 1734 merged = bio_attempt_discard_merge(q, rq, bio); 1735 break; 1736 default: 1737 break; 1738 } 1739 1740 if (merged) 1741 return true; 1742 } 1743 1744 return false; 1745 } 1746 1747 unsigned int blk_plug_queued_count(struct request_queue *q) 1748 { 1749 struct blk_plug *plug; 1750 struct request *rq; 1751 struct list_head *plug_list; 1752 unsigned int ret = 0; 1753 1754 plug = current->plug; 1755 if (!plug) 1756 goto out; 1757 1758 if (q->mq_ops) 1759 plug_list = &plug->mq_list; 1760 else 1761 plug_list = &plug->list; 1762 1763 list_for_each_entry(rq, plug_list, queuelist) { 1764 if (rq->q == q) 1765 ret++; 1766 } 1767 out: 1768 return ret; 1769 } 1770 1771 void blk_init_request_from_bio(struct request *req, struct bio *bio) 1772 { 1773 struct io_context *ioc = rq_ioc(bio); 1774 1775 if (bio->bi_opf & REQ_RAHEAD) 1776 req->cmd_flags |= REQ_FAILFAST_MASK; 1777 1778 req->__sector = bio->bi_iter.bi_sector; 1779 if (ioprio_valid(bio_prio(bio))) 1780 req->ioprio = bio_prio(bio); 1781 else if (ioc) 1782 req->ioprio = ioc->ioprio; 1783 else 1784 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1785 req->write_hint = bio->bi_write_hint; 1786 blk_rq_bio_prep(req->q, req, bio); 1787 } 1788 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 1789 1790 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1791 { 1792 struct blk_plug *plug; 1793 int where = ELEVATOR_INSERT_SORT; 1794 struct request *req, *free; 1795 unsigned int request_count = 0; 1796 unsigned int wb_acct; 1797 1798 /* 1799 * low level driver can indicate that it wants pages above a 1800 * certain limit bounced to low memory (ie for highmem, or even 1801 * ISA dma in theory) 1802 */ 1803 blk_queue_bounce(q, &bio); 1804 1805 blk_queue_split(q, &bio); 1806 1807 if (!bio_integrity_prep(bio)) 1808 return BLK_QC_T_NONE; 1809 1810 if (op_is_flush(bio->bi_opf)) { 1811 spin_lock_irq(q->queue_lock); 1812 where = ELEVATOR_INSERT_FLUSH; 1813 goto get_rq; 1814 } 1815 1816 /* 1817 * Check if we can merge with the plugged list before grabbing 1818 * any locks. 1819 */ 1820 if (!blk_queue_nomerges(q)) { 1821 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1822 return BLK_QC_T_NONE; 1823 } else 1824 request_count = blk_plug_queued_count(q); 1825 1826 spin_lock_irq(q->queue_lock); 1827 1828 switch (elv_merge(q, &req, bio)) { 1829 case ELEVATOR_BACK_MERGE: 1830 if (!bio_attempt_back_merge(q, req, bio)) 1831 break; 1832 elv_bio_merged(q, req, bio); 1833 free = attempt_back_merge(q, req); 1834 if (free) 1835 __blk_put_request(q, free); 1836 else 1837 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 1838 goto out_unlock; 1839 case ELEVATOR_FRONT_MERGE: 1840 if (!bio_attempt_front_merge(q, req, bio)) 1841 break; 1842 elv_bio_merged(q, req, bio); 1843 free = attempt_front_merge(q, req); 1844 if (free) 1845 __blk_put_request(q, free); 1846 else 1847 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 1848 goto out_unlock; 1849 default: 1850 break; 1851 } 1852 1853 get_rq: 1854 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock); 1855 1856 /* 1857 * Grab a free request. This is might sleep but can not fail. 1858 * Returns with the queue unlocked. 1859 */ 1860 req = get_request(q, bio->bi_opf, bio, GFP_NOIO); 1861 if (IS_ERR(req)) { 1862 __wbt_done(q->rq_wb, wb_acct); 1863 if (PTR_ERR(req) == -ENOMEM) 1864 bio->bi_status = BLK_STS_RESOURCE; 1865 else 1866 bio->bi_status = BLK_STS_IOERR; 1867 bio_endio(bio); 1868 goto out_unlock; 1869 } 1870 1871 wbt_track(&req->issue_stat, wb_acct); 1872 1873 /* 1874 * After dropping the lock and possibly sleeping here, our request 1875 * may now be mergeable after it had proven unmergeable (above). 1876 * We don't worry about that case for efficiency. It won't happen 1877 * often, and the elevators are able to handle it. 1878 */ 1879 blk_init_request_from_bio(req, bio); 1880 1881 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1882 req->cpu = raw_smp_processor_id(); 1883 1884 plug = current->plug; 1885 if (plug) { 1886 /* 1887 * If this is the first request added after a plug, fire 1888 * of a plug trace. 1889 * 1890 * @request_count may become stale because of schedule 1891 * out, so check plug list again. 1892 */ 1893 if (!request_count || list_empty(&plug->list)) 1894 trace_block_plug(q); 1895 else { 1896 struct request *last = list_entry_rq(plug->list.prev); 1897 if (request_count >= BLK_MAX_REQUEST_COUNT || 1898 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 1899 blk_flush_plug_list(plug, false); 1900 trace_block_plug(q); 1901 } 1902 } 1903 list_add_tail(&req->queuelist, &plug->list); 1904 blk_account_io_start(req, true); 1905 } else { 1906 spin_lock_irq(q->queue_lock); 1907 add_acct_request(q, req, where); 1908 __blk_run_queue(q); 1909 out_unlock: 1910 spin_unlock_irq(q->queue_lock); 1911 } 1912 1913 return BLK_QC_T_NONE; 1914 } 1915 1916 static void handle_bad_sector(struct bio *bio) 1917 { 1918 char b[BDEVNAME_SIZE]; 1919 1920 printk(KERN_INFO "attempt to access beyond end of device\n"); 1921 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 1922 bio_devname(bio, b), bio->bi_opf, 1923 (unsigned long long)bio_end_sector(bio), 1924 (long long)get_capacity(bio->bi_disk)); 1925 } 1926 1927 #ifdef CONFIG_FAIL_MAKE_REQUEST 1928 1929 static DECLARE_FAULT_ATTR(fail_make_request); 1930 1931 static int __init setup_fail_make_request(char *str) 1932 { 1933 return setup_fault_attr(&fail_make_request, str); 1934 } 1935 __setup("fail_make_request=", setup_fail_make_request); 1936 1937 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1938 { 1939 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1940 } 1941 1942 static int __init fail_make_request_debugfs(void) 1943 { 1944 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1945 NULL, &fail_make_request); 1946 1947 return PTR_ERR_OR_ZERO(dir); 1948 } 1949 1950 late_initcall(fail_make_request_debugfs); 1951 1952 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1953 1954 static inline bool should_fail_request(struct hd_struct *part, 1955 unsigned int bytes) 1956 { 1957 return false; 1958 } 1959 1960 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1961 1962 /* 1963 * Remap block n of partition p to block n+start(p) of the disk. 1964 */ 1965 static inline int blk_partition_remap(struct bio *bio) 1966 { 1967 struct hd_struct *p; 1968 int ret = 0; 1969 1970 /* 1971 * Zone reset does not include bi_size so bio_sectors() is always 0. 1972 * Include a test for the reset op code and perform the remap if needed. 1973 */ 1974 if (!bio->bi_partno || 1975 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET)) 1976 return 0; 1977 1978 rcu_read_lock(); 1979 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 1980 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) { 1981 bio->bi_iter.bi_sector += p->start_sect; 1982 bio->bi_partno = 0; 1983 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 1984 bio->bi_iter.bi_sector - p->start_sect); 1985 } else { 1986 printk("%s: fail for partition %d\n", __func__, bio->bi_partno); 1987 ret = -EIO; 1988 } 1989 rcu_read_unlock(); 1990 1991 return ret; 1992 } 1993 1994 /* 1995 * Check whether this bio extends beyond the end of the device. 1996 */ 1997 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1998 { 1999 sector_t maxsector; 2000 2001 if (!nr_sectors) 2002 return 0; 2003 2004 /* Test device or partition size, when known. */ 2005 maxsector = get_capacity(bio->bi_disk); 2006 if (maxsector) { 2007 sector_t sector = bio->bi_iter.bi_sector; 2008 2009 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 2010 /* 2011 * This may well happen - the kernel calls bread() 2012 * without checking the size of the device, e.g., when 2013 * mounting a device. 2014 */ 2015 handle_bad_sector(bio); 2016 return 1; 2017 } 2018 } 2019 2020 return 0; 2021 } 2022 2023 static noinline_for_stack bool 2024 generic_make_request_checks(struct bio *bio) 2025 { 2026 struct request_queue *q; 2027 int nr_sectors = bio_sectors(bio); 2028 blk_status_t status = BLK_STS_IOERR; 2029 char b[BDEVNAME_SIZE]; 2030 2031 might_sleep(); 2032 2033 if (bio_check_eod(bio, nr_sectors)) 2034 goto end_io; 2035 2036 q = bio->bi_disk->queue; 2037 if (unlikely(!q)) { 2038 printk(KERN_ERR 2039 "generic_make_request: Trying to access " 2040 "nonexistent block-device %s (%Lu)\n", 2041 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 2042 goto end_io; 2043 } 2044 2045 /* 2046 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 2047 * if queue is not a request based queue. 2048 */ 2049 2050 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q)) 2051 goto not_supported; 2052 2053 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 2054 goto end_io; 2055 2056 if (blk_partition_remap(bio)) 2057 goto end_io; 2058 2059 if (bio_check_eod(bio, nr_sectors)) 2060 goto end_io; 2061 2062 /* 2063 * Filter flush bio's early so that make_request based 2064 * drivers without flush support don't have to worry 2065 * about them. 2066 */ 2067 if (op_is_flush(bio->bi_opf) && 2068 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 2069 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 2070 if (!nr_sectors) { 2071 status = BLK_STS_OK; 2072 goto end_io; 2073 } 2074 } 2075 2076 switch (bio_op(bio)) { 2077 case REQ_OP_DISCARD: 2078 if (!blk_queue_discard(q)) 2079 goto not_supported; 2080 break; 2081 case REQ_OP_SECURE_ERASE: 2082 if (!blk_queue_secure_erase(q)) 2083 goto not_supported; 2084 break; 2085 case REQ_OP_WRITE_SAME: 2086 if (!q->limits.max_write_same_sectors) 2087 goto not_supported; 2088 break; 2089 case REQ_OP_ZONE_REPORT: 2090 case REQ_OP_ZONE_RESET: 2091 if (!blk_queue_is_zoned(q)) 2092 goto not_supported; 2093 break; 2094 case REQ_OP_WRITE_ZEROES: 2095 if (!q->limits.max_write_zeroes_sectors) 2096 goto not_supported; 2097 break; 2098 default: 2099 break; 2100 } 2101 2102 /* 2103 * Various block parts want %current->io_context and lazy ioc 2104 * allocation ends up trading a lot of pain for a small amount of 2105 * memory. Just allocate it upfront. This may fail and block 2106 * layer knows how to live with it. 2107 */ 2108 create_io_context(GFP_ATOMIC, q->node); 2109 2110 if (!blkcg_bio_issue_check(q, bio)) 2111 return false; 2112 2113 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 2114 trace_block_bio_queue(q, bio); 2115 /* Now that enqueuing has been traced, we need to trace 2116 * completion as well. 2117 */ 2118 bio_set_flag(bio, BIO_TRACE_COMPLETION); 2119 } 2120 return true; 2121 2122 not_supported: 2123 status = BLK_STS_NOTSUPP; 2124 end_io: 2125 bio->bi_status = status; 2126 bio_endio(bio); 2127 return false; 2128 } 2129 2130 /** 2131 * generic_make_request - hand a buffer to its device driver for I/O 2132 * @bio: The bio describing the location in memory and on the device. 2133 * 2134 * generic_make_request() is used to make I/O requests of block 2135 * devices. It is passed a &struct bio, which describes the I/O that needs 2136 * to be done. 2137 * 2138 * generic_make_request() does not return any status. The 2139 * success/failure status of the request, along with notification of 2140 * completion, is delivered asynchronously through the bio->bi_end_io 2141 * function described (one day) else where. 2142 * 2143 * The caller of generic_make_request must make sure that bi_io_vec 2144 * are set to describe the memory buffer, and that bi_dev and bi_sector are 2145 * set to describe the device address, and the 2146 * bi_end_io and optionally bi_private are set to describe how 2147 * completion notification should be signaled. 2148 * 2149 * generic_make_request and the drivers it calls may use bi_next if this 2150 * bio happens to be merged with someone else, and may resubmit the bio to 2151 * a lower device by calling into generic_make_request recursively, which 2152 * means the bio should NOT be touched after the call to ->make_request_fn. 2153 */ 2154 blk_qc_t generic_make_request(struct bio *bio) 2155 { 2156 /* 2157 * bio_list_on_stack[0] contains bios submitted by the current 2158 * make_request_fn. 2159 * bio_list_on_stack[1] contains bios that were submitted before 2160 * the current make_request_fn, but that haven't been processed 2161 * yet. 2162 */ 2163 struct bio_list bio_list_on_stack[2]; 2164 blk_qc_t ret = BLK_QC_T_NONE; 2165 2166 if (!generic_make_request_checks(bio)) 2167 goto out; 2168 2169 /* 2170 * We only want one ->make_request_fn to be active at a time, else 2171 * stack usage with stacked devices could be a problem. So use 2172 * current->bio_list to keep a list of requests submited by a 2173 * make_request_fn function. current->bio_list is also used as a 2174 * flag to say if generic_make_request is currently active in this 2175 * task or not. If it is NULL, then no make_request is active. If 2176 * it is non-NULL, then a make_request is active, and new requests 2177 * should be added at the tail 2178 */ 2179 if (current->bio_list) { 2180 bio_list_add(¤t->bio_list[0], bio); 2181 goto out; 2182 } 2183 2184 /* following loop may be a bit non-obvious, and so deserves some 2185 * explanation. 2186 * Before entering the loop, bio->bi_next is NULL (as all callers 2187 * ensure that) so we have a list with a single bio. 2188 * We pretend that we have just taken it off a longer list, so 2189 * we assign bio_list to a pointer to the bio_list_on_stack, 2190 * thus initialising the bio_list of new bios to be 2191 * added. ->make_request() may indeed add some more bios 2192 * through a recursive call to generic_make_request. If it 2193 * did, we find a non-NULL value in bio_list and re-enter the loop 2194 * from the top. In this case we really did just take the bio 2195 * of the top of the list (no pretending) and so remove it from 2196 * bio_list, and call into ->make_request() again. 2197 */ 2198 BUG_ON(bio->bi_next); 2199 bio_list_init(&bio_list_on_stack[0]); 2200 current->bio_list = bio_list_on_stack; 2201 do { 2202 struct request_queue *q = bio->bi_disk->queue; 2203 2204 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) { 2205 struct bio_list lower, same; 2206 2207 /* Create a fresh bio_list for all subordinate requests */ 2208 bio_list_on_stack[1] = bio_list_on_stack[0]; 2209 bio_list_init(&bio_list_on_stack[0]); 2210 ret = q->make_request_fn(q, bio); 2211 2212 blk_queue_exit(q); 2213 2214 /* sort new bios into those for a lower level 2215 * and those for the same level 2216 */ 2217 bio_list_init(&lower); 2218 bio_list_init(&same); 2219 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 2220 if (q == bio->bi_disk->queue) 2221 bio_list_add(&same, bio); 2222 else 2223 bio_list_add(&lower, bio); 2224 /* now assemble so we handle the lowest level first */ 2225 bio_list_merge(&bio_list_on_stack[0], &lower); 2226 bio_list_merge(&bio_list_on_stack[0], &same); 2227 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 2228 } else { 2229 if (unlikely(!blk_queue_dying(q) && 2230 (bio->bi_opf & REQ_NOWAIT))) 2231 bio_wouldblock_error(bio); 2232 else 2233 bio_io_error(bio); 2234 } 2235 bio = bio_list_pop(&bio_list_on_stack[0]); 2236 } while (bio); 2237 current->bio_list = NULL; /* deactivate */ 2238 2239 out: 2240 return ret; 2241 } 2242 EXPORT_SYMBOL(generic_make_request); 2243 2244 /** 2245 * submit_bio - submit a bio to the block device layer for I/O 2246 * @bio: The &struct bio which describes the I/O 2247 * 2248 * submit_bio() is very similar in purpose to generic_make_request(), and 2249 * uses that function to do most of the work. Both are fairly rough 2250 * interfaces; @bio must be presetup and ready for I/O. 2251 * 2252 */ 2253 blk_qc_t submit_bio(struct bio *bio) 2254 { 2255 /* 2256 * If it's a regular read/write or a barrier with data attached, 2257 * go through the normal accounting stuff before submission. 2258 */ 2259 if (bio_has_data(bio)) { 2260 unsigned int count; 2261 2262 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2263 count = queue_logical_block_size(bio->bi_disk->queue); 2264 else 2265 count = bio_sectors(bio); 2266 2267 if (op_is_write(bio_op(bio))) { 2268 count_vm_events(PGPGOUT, count); 2269 } else { 2270 task_io_account_read(bio->bi_iter.bi_size); 2271 count_vm_events(PGPGIN, count); 2272 } 2273 2274 if (unlikely(block_dump)) { 2275 char b[BDEVNAME_SIZE]; 2276 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2277 current->comm, task_pid_nr(current), 2278 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2279 (unsigned long long)bio->bi_iter.bi_sector, 2280 bio_devname(bio, b), count); 2281 } 2282 } 2283 2284 return generic_make_request(bio); 2285 } 2286 EXPORT_SYMBOL(submit_bio); 2287 2288 /** 2289 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2290 * for new the queue limits 2291 * @q: the queue 2292 * @rq: the request being checked 2293 * 2294 * Description: 2295 * @rq may have been made based on weaker limitations of upper-level queues 2296 * in request stacking drivers, and it may violate the limitation of @q. 2297 * Since the block layer and the underlying device driver trust @rq 2298 * after it is inserted to @q, it should be checked against @q before 2299 * the insertion using this generic function. 2300 * 2301 * Request stacking drivers like request-based dm may change the queue 2302 * limits when retrying requests on other queues. Those requests need 2303 * to be checked against the new queue limits again during dispatch. 2304 */ 2305 static int blk_cloned_rq_check_limits(struct request_queue *q, 2306 struct request *rq) 2307 { 2308 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2309 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2310 return -EIO; 2311 } 2312 2313 /* 2314 * queue's settings related to segment counting like q->bounce_pfn 2315 * may differ from that of other stacking queues. 2316 * Recalculate it to check the request correctly on this queue's 2317 * limitation. 2318 */ 2319 blk_recalc_rq_segments(rq); 2320 if (rq->nr_phys_segments > queue_max_segments(q)) { 2321 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2322 return -EIO; 2323 } 2324 2325 return 0; 2326 } 2327 2328 /** 2329 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2330 * @q: the queue to submit the request 2331 * @rq: the request being queued 2332 */ 2333 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2334 { 2335 unsigned long flags; 2336 int where = ELEVATOR_INSERT_BACK; 2337 2338 if (blk_cloned_rq_check_limits(q, rq)) 2339 return BLK_STS_IOERR; 2340 2341 if (rq->rq_disk && 2342 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2343 return BLK_STS_IOERR; 2344 2345 if (q->mq_ops) { 2346 if (blk_queue_io_stat(q)) 2347 blk_account_io_start(rq, true); 2348 /* 2349 * Since we have a scheduler attached on the top device, 2350 * bypass a potential scheduler on the bottom device for 2351 * insert. 2352 */ 2353 blk_mq_request_bypass_insert(rq); 2354 return BLK_STS_OK; 2355 } 2356 2357 spin_lock_irqsave(q->queue_lock, flags); 2358 if (unlikely(blk_queue_dying(q))) { 2359 spin_unlock_irqrestore(q->queue_lock, flags); 2360 return BLK_STS_IOERR; 2361 } 2362 2363 /* 2364 * Submitting request must be dequeued before calling this function 2365 * because it will be linked to another request_queue 2366 */ 2367 BUG_ON(blk_queued_rq(rq)); 2368 2369 if (op_is_flush(rq->cmd_flags)) 2370 where = ELEVATOR_INSERT_FLUSH; 2371 2372 add_acct_request(q, rq, where); 2373 if (where == ELEVATOR_INSERT_FLUSH) 2374 __blk_run_queue(q); 2375 spin_unlock_irqrestore(q->queue_lock, flags); 2376 2377 return BLK_STS_OK; 2378 } 2379 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2380 2381 /** 2382 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2383 * @rq: request to examine 2384 * 2385 * Description: 2386 * A request could be merge of IOs which require different failure 2387 * handling. This function determines the number of bytes which 2388 * can be failed from the beginning of the request without 2389 * crossing into area which need to be retried further. 2390 * 2391 * Return: 2392 * The number of bytes to fail. 2393 */ 2394 unsigned int blk_rq_err_bytes(const struct request *rq) 2395 { 2396 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2397 unsigned int bytes = 0; 2398 struct bio *bio; 2399 2400 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2401 return blk_rq_bytes(rq); 2402 2403 /* 2404 * Currently the only 'mixing' which can happen is between 2405 * different fastfail types. We can safely fail portions 2406 * which have all the failfast bits that the first one has - 2407 * the ones which are at least as eager to fail as the first 2408 * one. 2409 */ 2410 for (bio = rq->bio; bio; bio = bio->bi_next) { 2411 if ((bio->bi_opf & ff) != ff) 2412 break; 2413 bytes += bio->bi_iter.bi_size; 2414 } 2415 2416 /* this could lead to infinite loop */ 2417 BUG_ON(blk_rq_bytes(rq) && !bytes); 2418 return bytes; 2419 } 2420 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2421 2422 void blk_account_io_completion(struct request *req, unsigned int bytes) 2423 { 2424 if (blk_do_io_stat(req)) { 2425 const int rw = rq_data_dir(req); 2426 struct hd_struct *part; 2427 int cpu; 2428 2429 cpu = part_stat_lock(); 2430 part = req->part; 2431 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2432 part_stat_unlock(); 2433 } 2434 } 2435 2436 void blk_account_io_done(struct request *req) 2437 { 2438 /* 2439 * Account IO completion. flush_rq isn't accounted as a 2440 * normal IO on queueing nor completion. Accounting the 2441 * containing request is enough. 2442 */ 2443 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2444 unsigned long duration = jiffies - req->start_time; 2445 const int rw = rq_data_dir(req); 2446 struct hd_struct *part; 2447 int cpu; 2448 2449 cpu = part_stat_lock(); 2450 part = req->part; 2451 2452 part_stat_inc(cpu, part, ios[rw]); 2453 part_stat_add(cpu, part, ticks[rw], duration); 2454 part_round_stats(req->q, cpu, part); 2455 part_dec_in_flight(req->q, part, rw); 2456 2457 hd_struct_put(part); 2458 part_stat_unlock(); 2459 } 2460 } 2461 2462 #ifdef CONFIG_PM 2463 /* 2464 * Don't process normal requests when queue is suspended 2465 * or in the process of suspending/resuming 2466 */ 2467 static struct request *blk_pm_peek_request(struct request_queue *q, 2468 struct request *rq) 2469 { 2470 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2471 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM)))) 2472 return NULL; 2473 else 2474 return rq; 2475 } 2476 #else 2477 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2478 struct request *rq) 2479 { 2480 return rq; 2481 } 2482 #endif 2483 2484 void blk_account_io_start(struct request *rq, bool new_io) 2485 { 2486 struct hd_struct *part; 2487 int rw = rq_data_dir(rq); 2488 int cpu; 2489 2490 if (!blk_do_io_stat(rq)) 2491 return; 2492 2493 cpu = part_stat_lock(); 2494 2495 if (!new_io) { 2496 part = rq->part; 2497 part_stat_inc(cpu, part, merges[rw]); 2498 } else { 2499 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2500 if (!hd_struct_try_get(part)) { 2501 /* 2502 * The partition is already being removed, 2503 * the request will be accounted on the disk only 2504 * 2505 * We take a reference on disk->part0 although that 2506 * partition will never be deleted, so we can treat 2507 * it as any other partition. 2508 */ 2509 part = &rq->rq_disk->part0; 2510 hd_struct_get(part); 2511 } 2512 part_round_stats(rq->q, cpu, part); 2513 part_inc_in_flight(rq->q, part, rw); 2514 rq->part = part; 2515 } 2516 2517 part_stat_unlock(); 2518 } 2519 2520 /** 2521 * blk_peek_request - peek at the top of a request queue 2522 * @q: request queue to peek at 2523 * 2524 * Description: 2525 * Return the request at the top of @q. The returned request 2526 * should be started using blk_start_request() before LLD starts 2527 * processing it. 2528 * 2529 * Return: 2530 * Pointer to the request at the top of @q if available. Null 2531 * otherwise. 2532 */ 2533 struct request *blk_peek_request(struct request_queue *q) 2534 { 2535 struct request *rq; 2536 int ret; 2537 2538 lockdep_assert_held(q->queue_lock); 2539 WARN_ON_ONCE(q->mq_ops); 2540 2541 while ((rq = __elv_next_request(q)) != NULL) { 2542 2543 rq = blk_pm_peek_request(q, rq); 2544 if (!rq) 2545 break; 2546 2547 if (!(rq->rq_flags & RQF_STARTED)) { 2548 /* 2549 * This is the first time the device driver 2550 * sees this request (possibly after 2551 * requeueing). Notify IO scheduler. 2552 */ 2553 if (rq->rq_flags & RQF_SORTED) 2554 elv_activate_rq(q, rq); 2555 2556 /* 2557 * just mark as started even if we don't start 2558 * it, a request that has been delayed should 2559 * not be passed by new incoming requests 2560 */ 2561 rq->rq_flags |= RQF_STARTED; 2562 trace_block_rq_issue(q, rq); 2563 } 2564 2565 if (!q->boundary_rq || q->boundary_rq == rq) { 2566 q->end_sector = rq_end_sector(rq); 2567 q->boundary_rq = NULL; 2568 } 2569 2570 if (rq->rq_flags & RQF_DONTPREP) 2571 break; 2572 2573 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2574 /* 2575 * make sure space for the drain appears we 2576 * know we can do this because max_hw_segments 2577 * has been adjusted to be one fewer than the 2578 * device can handle 2579 */ 2580 rq->nr_phys_segments++; 2581 } 2582 2583 if (!q->prep_rq_fn) 2584 break; 2585 2586 ret = q->prep_rq_fn(q, rq); 2587 if (ret == BLKPREP_OK) { 2588 break; 2589 } else if (ret == BLKPREP_DEFER) { 2590 /* 2591 * the request may have been (partially) prepped. 2592 * we need to keep this request in the front to 2593 * avoid resource deadlock. RQF_STARTED will 2594 * prevent other fs requests from passing this one. 2595 */ 2596 if (q->dma_drain_size && blk_rq_bytes(rq) && 2597 !(rq->rq_flags & RQF_DONTPREP)) { 2598 /* 2599 * remove the space for the drain we added 2600 * so that we don't add it again 2601 */ 2602 --rq->nr_phys_segments; 2603 } 2604 2605 rq = NULL; 2606 break; 2607 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2608 rq->rq_flags |= RQF_QUIET; 2609 /* 2610 * Mark this request as started so we don't trigger 2611 * any debug logic in the end I/O path. 2612 */ 2613 blk_start_request(rq); 2614 __blk_end_request_all(rq, ret == BLKPREP_INVALID ? 2615 BLK_STS_TARGET : BLK_STS_IOERR); 2616 } else { 2617 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2618 break; 2619 } 2620 } 2621 2622 return rq; 2623 } 2624 EXPORT_SYMBOL(blk_peek_request); 2625 2626 static void blk_dequeue_request(struct request *rq) 2627 { 2628 struct request_queue *q = rq->q; 2629 2630 BUG_ON(list_empty(&rq->queuelist)); 2631 BUG_ON(ELV_ON_HASH(rq)); 2632 2633 list_del_init(&rq->queuelist); 2634 2635 /* 2636 * the time frame between a request being removed from the lists 2637 * and to it is freed is accounted as io that is in progress at 2638 * the driver side. 2639 */ 2640 if (blk_account_rq(rq)) { 2641 q->in_flight[rq_is_sync(rq)]++; 2642 set_io_start_time_ns(rq); 2643 } 2644 } 2645 2646 /** 2647 * blk_start_request - start request processing on the driver 2648 * @req: request to dequeue 2649 * 2650 * Description: 2651 * Dequeue @req and start timeout timer on it. This hands off the 2652 * request to the driver. 2653 */ 2654 void blk_start_request(struct request *req) 2655 { 2656 lockdep_assert_held(req->q->queue_lock); 2657 WARN_ON_ONCE(req->q->mq_ops); 2658 2659 blk_dequeue_request(req); 2660 2661 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2662 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req)); 2663 req->rq_flags |= RQF_STATS; 2664 wbt_issue(req->q->rq_wb, &req->issue_stat); 2665 } 2666 2667 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2668 blk_add_timer(req); 2669 } 2670 EXPORT_SYMBOL(blk_start_request); 2671 2672 /** 2673 * blk_fetch_request - fetch a request from a request queue 2674 * @q: request queue to fetch a request from 2675 * 2676 * Description: 2677 * Return the request at the top of @q. The request is started on 2678 * return and LLD can start processing it immediately. 2679 * 2680 * Return: 2681 * Pointer to the request at the top of @q if available. Null 2682 * otherwise. 2683 */ 2684 struct request *blk_fetch_request(struct request_queue *q) 2685 { 2686 struct request *rq; 2687 2688 lockdep_assert_held(q->queue_lock); 2689 WARN_ON_ONCE(q->mq_ops); 2690 2691 rq = blk_peek_request(q); 2692 if (rq) 2693 blk_start_request(rq); 2694 return rq; 2695 } 2696 EXPORT_SYMBOL(blk_fetch_request); 2697 2698 /** 2699 * blk_update_request - Special helper function for request stacking drivers 2700 * @req: the request being processed 2701 * @error: block status code 2702 * @nr_bytes: number of bytes to complete @req 2703 * 2704 * Description: 2705 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2706 * the request structure even if @req doesn't have leftover. 2707 * If @req has leftover, sets it up for the next range of segments. 2708 * 2709 * This special helper function is only for request stacking drivers 2710 * (e.g. request-based dm) so that they can handle partial completion. 2711 * Actual device drivers should use blk_end_request instead. 2712 * 2713 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2714 * %false return from this function. 2715 * 2716 * Return: 2717 * %false - this request doesn't have any more data 2718 * %true - this request has more data 2719 **/ 2720 bool blk_update_request(struct request *req, blk_status_t error, 2721 unsigned int nr_bytes) 2722 { 2723 int total_bytes; 2724 2725 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 2726 2727 if (!req->bio) 2728 return false; 2729 2730 if (unlikely(error && !blk_rq_is_passthrough(req) && 2731 !(req->rq_flags & RQF_QUIET))) 2732 print_req_error(req, error); 2733 2734 blk_account_io_completion(req, nr_bytes); 2735 2736 total_bytes = 0; 2737 while (req->bio) { 2738 struct bio *bio = req->bio; 2739 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2740 2741 if (bio_bytes == bio->bi_iter.bi_size) 2742 req->bio = bio->bi_next; 2743 2744 /* Completion has already been traced */ 2745 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 2746 req_bio_endio(req, bio, bio_bytes, error); 2747 2748 total_bytes += bio_bytes; 2749 nr_bytes -= bio_bytes; 2750 2751 if (!nr_bytes) 2752 break; 2753 } 2754 2755 /* 2756 * completely done 2757 */ 2758 if (!req->bio) { 2759 /* 2760 * Reset counters so that the request stacking driver 2761 * can find how many bytes remain in the request 2762 * later. 2763 */ 2764 req->__data_len = 0; 2765 return false; 2766 } 2767 2768 req->__data_len -= total_bytes; 2769 2770 /* update sector only for requests with clear definition of sector */ 2771 if (!blk_rq_is_passthrough(req)) 2772 req->__sector += total_bytes >> 9; 2773 2774 /* mixed attributes always follow the first bio */ 2775 if (req->rq_flags & RQF_MIXED_MERGE) { 2776 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2777 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 2778 } 2779 2780 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 2781 /* 2782 * If total number of sectors is less than the first segment 2783 * size, something has gone terribly wrong. 2784 */ 2785 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2786 blk_dump_rq_flags(req, "request botched"); 2787 req->__data_len = blk_rq_cur_bytes(req); 2788 } 2789 2790 /* recalculate the number of segments */ 2791 blk_recalc_rq_segments(req); 2792 } 2793 2794 return true; 2795 } 2796 EXPORT_SYMBOL_GPL(blk_update_request); 2797 2798 static bool blk_update_bidi_request(struct request *rq, blk_status_t error, 2799 unsigned int nr_bytes, 2800 unsigned int bidi_bytes) 2801 { 2802 if (blk_update_request(rq, error, nr_bytes)) 2803 return true; 2804 2805 /* Bidi request must be completed as a whole */ 2806 if (unlikely(blk_bidi_rq(rq)) && 2807 blk_update_request(rq->next_rq, error, bidi_bytes)) 2808 return true; 2809 2810 if (blk_queue_add_random(rq->q)) 2811 add_disk_randomness(rq->rq_disk); 2812 2813 return false; 2814 } 2815 2816 /** 2817 * blk_unprep_request - unprepare a request 2818 * @req: the request 2819 * 2820 * This function makes a request ready for complete resubmission (or 2821 * completion). It happens only after all error handling is complete, 2822 * so represents the appropriate moment to deallocate any resources 2823 * that were allocated to the request in the prep_rq_fn. The queue 2824 * lock is held when calling this. 2825 */ 2826 void blk_unprep_request(struct request *req) 2827 { 2828 struct request_queue *q = req->q; 2829 2830 req->rq_flags &= ~RQF_DONTPREP; 2831 if (q->unprep_rq_fn) 2832 q->unprep_rq_fn(q, req); 2833 } 2834 EXPORT_SYMBOL_GPL(blk_unprep_request); 2835 2836 void blk_finish_request(struct request *req, blk_status_t error) 2837 { 2838 struct request_queue *q = req->q; 2839 2840 lockdep_assert_held(req->q->queue_lock); 2841 WARN_ON_ONCE(q->mq_ops); 2842 2843 if (req->rq_flags & RQF_STATS) 2844 blk_stat_add(req); 2845 2846 if (req->rq_flags & RQF_QUEUED) 2847 blk_queue_end_tag(q, req); 2848 2849 BUG_ON(blk_queued_rq(req)); 2850 2851 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 2852 laptop_io_completion(req->q->backing_dev_info); 2853 2854 blk_delete_timer(req); 2855 2856 if (req->rq_flags & RQF_DONTPREP) 2857 blk_unprep_request(req); 2858 2859 blk_account_io_done(req); 2860 2861 if (req->end_io) { 2862 wbt_done(req->q->rq_wb, &req->issue_stat); 2863 req->end_io(req, error); 2864 } else { 2865 if (blk_bidi_rq(req)) 2866 __blk_put_request(req->next_rq->q, req->next_rq); 2867 2868 __blk_put_request(q, req); 2869 } 2870 } 2871 EXPORT_SYMBOL(blk_finish_request); 2872 2873 /** 2874 * blk_end_bidi_request - Complete a bidi request 2875 * @rq: the request to complete 2876 * @error: block status code 2877 * @nr_bytes: number of bytes to complete @rq 2878 * @bidi_bytes: number of bytes to complete @rq->next_rq 2879 * 2880 * Description: 2881 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2882 * Drivers that supports bidi can safely call this member for any 2883 * type of request, bidi or uni. In the later case @bidi_bytes is 2884 * just ignored. 2885 * 2886 * Return: 2887 * %false - we are done with this request 2888 * %true - still buffers pending for this request 2889 **/ 2890 static bool blk_end_bidi_request(struct request *rq, blk_status_t error, 2891 unsigned int nr_bytes, unsigned int bidi_bytes) 2892 { 2893 struct request_queue *q = rq->q; 2894 unsigned long flags; 2895 2896 WARN_ON_ONCE(q->mq_ops); 2897 2898 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2899 return true; 2900 2901 spin_lock_irqsave(q->queue_lock, flags); 2902 blk_finish_request(rq, error); 2903 spin_unlock_irqrestore(q->queue_lock, flags); 2904 2905 return false; 2906 } 2907 2908 /** 2909 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2910 * @rq: the request to complete 2911 * @error: block status code 2912 * @nr_bytes: number of bytes to complete @rq 2913 * @bidi_bytes: number of bytes to complete @rq->next_rq 2914 * 2915 * Description: 2916 * Identical to blk_end_bidi_request() except that queue lock is 2917 * assumed to be locked on entry and remains so on return. 2918 * 2919 * Return: 2920 * %false - we are done with this request 2921 * %true - still buffers pending for this request 2922 **/ 2923 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error, 2924 unsigned int nr_bytes, unsigned int bidi_bytes) 2925 { 2926 lockdep_assert_held(rq->q->queue_lock); 2927 WARN_ON_ONCE(rq->q->mq_ops); 2928 2929 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2930 return true; 2931 2932 blk_finish_request(rq, error); 2933 2934 return false; 2935 } 2936 2937 /** 2938 * blk_end_request - Helper function for drivers to complete the request. 2939 * @rq: the request being processed 2940 * @error: block status code 2941 * @nr_bytes: number of bytes to complete 2942 * 2943 * Description: 2944 * Ends I/O on a number of bytes attached to @rq. 2945 * If @rq has leftover, sets it up for the next range of segments. 2946 * 2947 * Return: 2948 * %false - we are done with this request 2949 * %true - still buffers pending for this request 2950 **/ 2951 bool blk_end_request(struct request *rq, blk_status_t error, 2952 unsigned int nr_bytes) 2953 { 2954 WARN_ON_ONCE(rq->q->mq_ops); 2955 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2956 } 2957 EXPORT_SYMBOL(blk_end_request); 2958 2959 /** 2960 * blk_end_request_all - Helper function for drives to finish the request. 2961 * @rq: the request to finish 2962 * @error: block status code 2963 * 2964 * Description: 2965 * Completely finish @rq. 2966 */ 2967 void blk_end_request_all(struct request *rq, blk_status_t error) 2968 { 2969 bool pending; 2970 unsigned int bidi_bytes = 0; 2971 2972 if (unlikely(blk_bidi_rq(rq))) 2973 bidi_bytes = blk_rq_bytes(rq->next_rq); 2974 2975 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2976 BUG_ON(pending); 2977 } 2978 EXPORT_SYMBOL(blk_end_request_all); 2979 2980 /** 2981 * __blk_end_request - Helper function for drivers to complete the request. 2982 * @rq: the request being processed 2983 * @error: block status code 2984 * @nr_bytes: number of bytes to complete 2985 * 2986 * Description: 2987 * Must be called with queue lock held unlike blk_end_request(). 2988 * 2989 * Return: 2990 * %false - we are done with this request 2991 * %true - still buffers pending for this request 2992 **/ 2993 bool __blk_end_request(struct request *rq, blk_status_t error, 2994 unsigned int nr_bytes) 2995 { 2996 lockdep_assert_held(rq->q->queue_lock); 2997 WARN_ON_ONCE(rq->q->mq_ops); 2998 2999 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 3000 } 3001 EXPORT_SYMBOL(__blk_end_request); 3002 3003 /** 3004 * __blk_end_request_all - Helper function for drives to finish the request. 3005 * @rq: the request to finish 3006 * @error: block status code 3007 * 3008 * Description: 3009 * Completely finish @rq. Must be called with queue lock held. 3010 */ 3011 void __blk_end_request_all(struct request *rq, blk_status_t error) 3012 { 3013 bool pending; 3014 unsigned int bidi_bytes = 0; 3015 3016 lockdep_assert_held(rq->q->queue_lock); 3017 WARN_ON_ONCE(rq->q->mq_ops); 3018 3019 if (unlikely(blk_bidi_rq(rq))) 3020 bidi_bytes = blk_rq_bytes(rq->next_rq); 3021 3022 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3023 BUG_ON(pending); 3024 } 3025 EXPORT_SYMBOL(__blk_end_request_all); 3026 3027 /** 3028 * __blk_end_request_cur - Helper function to finish the current request chunk. 3029 * @rq: the request to finish the current chunk for 3030 * @error: block status code 3031 * 3032 * Description: 3033 * Complete the current consecutively mapped chunk from @rq. Must 3034 * be called with queue lock held. 3035 * 3036 * Return: 3037 * %false - we are done with this request 3038 * %true - still buffers pending for this request 3039 */ 3040 bool __blk_end_request_cur(struct request *rq, blk_status_t error) 3041 { 3042 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 3043 } 3044 EXPORT_SYMBOL(__blk_end_request_cur); 3045 3046 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 3047 struct bio *bio) 3048 { 3049 if (bio_has_data(bio)) 3050 rq->nr_phys_segments = bio_phys_segments(q, bio); 3051 3052 rq->__data_len = bio->bi_iter.bi_size; 3053 rq->bio = rq->biotail = bio; 3054 3055 if (bio->bi_disk) 3056 rq->rq_disk = bio->bi_disk; 3057 } 3058 3059 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 3060 /** 3061 * rq_flush_dcache_pages - Helper function to flush all pages in a request 3062 * @rq: the request to be flushed 3063 * 3064 * Description: 3065 * Flush all pages in @rq. 3066 */ 3067 void rq_flush_dcache_pages(struct request *rq) 3068 { 3069 struct req_iterator iter; 3070 struct bio_vec bvec; 3071 3072 rq_for_each_segment(bvec, rq, iter) 3073 flush_dcache_page(bvec.bv_page); 3074 } 3075 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 3076 #endif 3077 3078 /** 3079 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 3080 * @q : the queue of the device being checked 3081 * 3082 * Description: 3083 * Check if underlying low-level drivers of a device are busy. 3084 * If the drivers want to export their busy state, they must set own 3085 * exporting function using blk_queue_lld_busy() first. 3086 * 3087 * Basically, this function is used only by request stacking drivers 3088 * to stop dispatching requests to underlying devices when underlying 3089 * devices are busy. This behavior helps more I/O merging on the queue 3090 * of the request stacking driver and prevents I/O throughput regression 3091 * on burst I/O load. 3092 * 3093 * Return: 3094 * 0 - Not busy (The request stacking driver should dispatch request) 3095 * 1 - Busy (The request stacking driver should stop dispatching request) 3096 */ 3097 int blk_lld_busy(struct request_queue *q) 3098 { 3099 if (q->lld_busy_fn) 3100 return q->lld_busy_fn(q); 3101 3102 return 0; 3103 } 3104 EXPORT_SYMBOL_GPL(blk_lld_busy); 3105 3106 /** 3107 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3108 * @rq: the clone request to be cleaned up 3109 * 3110 * Description: 3111 * Free all bios in @rq for a cloned request. 3112 */ 3113 void blk_rq_unprep_clone(struct request *rq) 3114 { 3115 struct bio *bio; 3116 3117 while ((bio = rq->bio) != NULL) { 3118 rq->bio = bio->bi_next; 3119 3120 bio_put(bio); 3121 } 3122 } 3123 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3124 3125 /* 3126 * Copy attributes of the original request to the clone request. 3127 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3128 */ 3129 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3130 { 3131 dst->cpu = src->cpu; 3132 dst->__sector = blk_rq_pos(src); 3133 dst->__data_len = blk_rq_bytes(src); 3134 dst->nr_phys_segments = src->nr_phys_segments; 3135 dst->ioprio = src->ioprio; 3136 dst->extra_len = src->extra_len; 3137 } 3138 3139 /** 3140 * blk_rq_prep_clone - Helper function to setup clone request 3141 * @rq: the request to be setup 3142 * @rq_src: original request to be cloned 3143 * @bs: bio_set that bios for clone are allocated from 3144 * @gfp_mask: memory allocation mask for bio 3145 * @bio_ctr: setup function to be called for each clone bio. 3146 * Returns %0 for success, non %0 for failure. 3147 * @data: private data to be passed to @bio_ctr 3148 * 3149 * Description: 3150 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3151 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3152 * are not copied, and copying such parts is the caller's responsibility. 3153 * Also, pages which the original bios are pointing to are not copied 3154 * and the cloned bios just point same pages. 3155 * So cloned bios must be completed before original bios, which means 3156 * the caller must complete @rq before @rq_src. 3157 */ 3158 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3159 struct bio_set *bs, gfp_t gfp_mask, 3160 int (*bio_ctr)(struct bio *, struct bio *, void *), 3161 void *data) 3162 { 3163 struct bio *bio, *bio_src; 3164 3165 if (!bs) 3166 bs = fs_bio_set; 3167 3168 __rq_for_each_bio(bio_src, rq_src) { 3169 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3170 if (!bio) 3171 goto free_and_out; 3172 3173 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3174 goto free_and_out; 3175 3176 if (rq->bio) { 3177 rq->biotail->bi_next = bio; 3178 rq->biotail = bio; 3179 } else 3180 rq->bio = rq->biotail = bio; 3181 } 3182 3183 __blk_rq_prep_clone(rq, rq_src); 3184 3185 return 0; 3186 3187 free_and_out: 3188 if (bio) 3189 bio_put(bio); 3190 blk_rq_unprep_clone(rq); 3191 3192 return -ENOMEM; 3193 } 3194 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3195 3196 int kblockd_schedule_work(struct work_struct *work) 3197 { 3198 return queue_work(kblockd_workqueue, work); 3199 } 3200 EXPORT_SYMBOL(kblockd_schedule_work); 3201 3202 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3203 { 3204 return queue_work_on(cpu, kblockd_workqueue, work); 3205 } 3206 EXPORT_SYMBOL(kblockd_schedule_work_on); 3207 3208 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 3209 unsigned long delay) 3210 { 3211 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3212 } 3213 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 3214 3215 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 3216 unsigned long delay) 3217 { 3218 return queue_delayed_work(kblockd_workqueue, dwork, delay); 3219 } 3220 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 3221 3222 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3223 unsigned long delay) 3224 { 3225 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3226 } 3227 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 3228 3229 /** 3230 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3231 * @plug: The &struct blk_plug that needs to be initialized 3232 * 3233 * Description: 3234 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3235 * pending I/O should the task end up blocking between blk_start_plug() and 3236 * blk_finish_plug(). This is important from a performance perspective, but 3237 * also ensures that we don't deadlock. For instance, if the task is blocking 3238 * for a memory allocation, memory reclaim could end up wanting to free a 3239 * page belonging to that request that is currently residing in our private 3240 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3241 * this kind of deadlock. 3242 */ 3243 void blk_start_plug(struct blk_plug *plug) 3244 { 3245 struct task_struct *tsk = current; 3246 3247 /* 3248 * If this is a nested plug, don't actually assign it. 3249 */ 3250 if (tsk->plug) 3251 return; 3252 3253 INIT_LIST_HEAD(&plug->list); 3254 INIT_LIST_HEAD(&plug->mq_list); 3255 INIT_LIST_HEAD(&plug->cb_list); 3256 /* 3257 * Store ordering should not be needed here, since a potential 3258 * preempt will imply a full memory barrier 3259 */ 3260 tsk->plug = plug; 3261 } 3262 EXPORT_SYMBOL(blk_start_plug); 3263 3264 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3265 { 3266 struct request *rqa = container_of(a, struct request, queuelist); 3267 struct request *rqb = container_of(b, struct request, queuelist); 3268 3269 return !(rqa->q < rqb->q || 3270 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3271 } 3272 3273 /* 3274 * If 'from_schedule' is true, then postpone the dispatch of requests 3275 * until a safe kblockd context. We due this to avoid accidental big 3276 * additional stack usage in driver dispatch, in places where the originally 3277 * plugger did not intend it. 3278 */ 3279 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3280 bool from_schedule) 3281 __releases(q->queue_lock) 3282 { 3283 lockdep_assert_held(q->queue_lock); 3284 3285 trace_block_unplug(q, depth, !from_schedule); 3286 3287 if (from_schedule) 3288 blk_run_queue_async(q); 3289 else 3290 __blk_run_queue(q); 3291 spin_unlock(q->queue_lock); 3292 } 3293 3294 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3295 { 3296 LIST_HEAD(callbacks); 3297 3298 while (!list_empty(&plug->cb_list)) { 3299 list_splice_init(&plug->cb_list, &callbacks); 3300 3301 while (!list_empty(&callbacks)) { 3302 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3303 struct blk_plug_cb, 3304 list); 3305 list_del(&cb->list); 3306 cb->callback(cb, from_schedule); 3307 } 3308 } 3309 } 3310 3311 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3312 int size) 3313 { 3314 struct blk_plug *plug = current->plug; 3315 struct blk_plug_cb *cb; 3316 3317 if (!plug) 3318 return NULL; 3319 3320 list_for_each_entry(cb, &plug->cb_list, list) 3321 if (cb->callback == unplug && cb->data == data) 3322 return cb; 3323 3324 /* Not currently on the callback list */ 3325 BUG_ON(size < sizeof(*cb)); 3326 cb = kzalloc(size, GFP_ATOMIC); 3327 if (cb) { 3328 cb->data = data; 3329 cb->callback = unplug; 3330 list_add(&cb->list, &plug->cb_list); 3331 } 3332 return cb; 3333 } 3334 EXPORT_SYMBOL(blk_check_plugged); 3335 3336 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3337 { 3338 struct request_queue *q; 3339 unsigned long flags; 3340 struct request *rq; 3341 LIST_HEAD(list); 3342 unsigned int depth; 3343 3344 flush_plug_callbacks(plug, from_schedule); 3345 3346 if (!list_empty(&plug->mq_list)) 3347 blk_mq_flush_plug_list(plug, from_schedule); 3348 3349 if (list_empty(&plug->list)) 3350 return; 3351 3352 list_splice_init(&plug->list, &list); 3353 3354 list_sort(NULL, &list, plug_rq_cmp); 3355 3356 q = NULL; 3357 depth = 0; 3358 3359 /* 3360 * Save and disable interrupts here, to avoid doing it for every 3361 * queue lock we have to take. 3362 */ 3363 local_irq_save(flags); 3364 while (!list_empty(&list)) { 3365 rq = list_entry_rq(list.next); 3366 list_del_init(&rq->queuelist); 3367 BUG_ON(!rq->q); 3368 if (rq->q != q) { 3369 /* 3370 * This drops the queue lock 3371 */ 3372 if (q) 3373 queue_unplugged(q, depth, from_schedule); 3374 q = rq->q; 3375 depth = 0; 3376 spin_lock(q->queue_lock); 3377 } 3378 3379 /* 3380 * Short-circuit if @q is dead 3381 */ 3382 if (unlikely(blk_queue_dying(q))) { 3383 __blk_end_request_all(rq, BLK_STS_IOERR); 3384 continue; 3385 } 3386 3387 /* 3388 * rq is already accounted, so use raw insert 3389 */ 3390 if (op_is_flush(rq->cmd_flags)) 3391 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3392 else 3393 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3394 3395 depth++; 3396 } 3397 3398 /* 3399 * This drops the queue lock 3400 */ 3401 if (q) 3402 queue_unplugged(q, depth, from_schedule); 3403 3404 local_irq_restore(flags); 3405 } 3406 3407 void blk_finish_plug(struct blk_plug *plug) 3408 { 3409 if (plug != current->plug) 3410 return; 3411 blk_flush_plug_list(plug, false); 3412 3413 current->plug = NULL; 3414 } 3415 EXPORT_SYMBOL(blk_finish_plug); 3416 3417 #ifdef CONFIG_PM 3418 /** 3419 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3420 * @q: the queue of the device 3421 * @dev: the device the queue belongs to 3422 * 3423 * Description: 3424 * Initialize runtime-PM-related fields for @q and start auto suspend for 3425 * @dev. Drivers that want to take advantage of request-based runtime PM 3426 * should call this function after @dev has been initialized, and its 3427 * request queue @q has been allocated, and runtime PM for it can not happen 3428 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3429 * cases, driver should call this function before any I/O has taken place. 3430 * 3431 * This function takes care of setting up using auto suspend for the device, 3432 * the autosuspend delay is set to -1 to make runtime suspend impossible 3433 * until an updated value is either set by user or by driver. Drivers do 3434 * not need to touch other autosuspend settings. 3435 * 3436 * The block layer runtime PM is request based, so only works for drivers 3437 * that use request as their IO unit instead of those directly use bio's. 3438 */ 3439 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3440 { 3441 /* not support for RQF_PM and ->rpm_status in blk-mq yet */ 3442 if (q->mq_ops) 3443 return; 3444 3445 q->dev = dev; 3446 q->rpm_status = RPM_ACTIVE; 3447 pm_runtime_set_autosuspend_delay(q->dev, -1); 3448 pm_runtime_use_autosuspend(q->dev); 3449 } 3450 EXPORT_SYMBOL(blk_pm_runtime_init); 3451 3452 /** 3453 * blk_pre_runtime_suspend - Pre runtime suspend check 3454 * @q: the queue of the device 3455 * 3456 * Description: 3457 * This function will check if runtime suspend is allowed for the device 3458 * by examining if there are any requests pending in the queue. If there 3459 * are requests pending, the device can not be runtime suspended; otherwise, 3460 * the queue's status will be updated to SUSPENDING and the driver can 3461 * proceed to suspend the device. 3462 * 3463 * For the not allowed case, we mark last busy for the device so that 3464 * runtime PM core will try to autosuspend it some time later. 3465 * 3466 * This function should be called near the start of the device's 3467 * runtime_suspend callback. 3468 * 3469 * Return: 3470 * 0 - OK to runtime suspend the device 3471 * -EBUSY - Device should not be runtime suspended 3472 */ 3473 int blk_pre_runtime_suspend(struct request_queue *q) 3474 { 3475 int ret = 0; 3476 3477 if (!q->dev) 3478 return ret; 3479 3480 spin_lock_irq(q->queue_lock); 3481 if (q->nr_pending) { 3482 ret = -EBUSY; 3483 pm_runtime_mark_last_busy(q->dev); 3484 } else { 3485 q->rpm_status = RPM_SUSPENDING; 3486 } 3487 spin_unlock_irq(q->queue_lock); 3488 return ret; 3489 } 3490 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3491 3492 /** 3493 * blk_post_runtime_suspend - Post runtime suspend processing 3494 * @q: the queue of the device 3495 * @err: return value of the device's runtime_suspend function 3496 * 3497 * Description: 3498 * Update the queue's runtime status according to the return value of the 3499 * device's runtime suspend function and mark last busy for the device so 3500 * that PM core will try to auto suspend the device at a later time. 3501 * 3502 * This function should be called near the end of the device's 3503 * runtime_suspend callback. 3504 */ 3505 void blk_post_runtime_suspend(struct request_queue *q, int err) 3506 { 3507 if (!q->dev) 3508 return; 3509 3510 spin_lock_irq(q->queue_lock); 3511 if (!err) { 3512 q->rpm_status = RPM_SUSPENDED; 3513 } else { 3514 q->rpm_status = RPM_ACTIVE; 3515 pm_runtime_mark_last_busy(q->dev); 3516 } 3517 spin_unlock_irq(q->queue_lock); 3518 } 3519 EXPORT_SYMBOL(blk_post_runtime_suspend); 3520 3521 /** 3522 * blk_pre_runtime_resume - Pre runtime resume processing 3523 * @q: the queue of the device 3524 * 3525 * Description: 3526 * Update the queue's runtime status to RESUMING in preparation for the 3527 * runtime resume of the device. 3528 * 3529 * This function should be called near the start of the device's 3530 * runtime_resume callback. 3531 */ 3532 void blk_pre_runtime_resume(struct request_queue *q) 3533 { 3534 if (!q->dev) 3535 return; 3536 3537 spin_lock_irq(q->queue_lock); 3538 q->rpm_status = RPM_RESUMING; 3539 spin_unlock_irq(q->queue_lock); 3540 } 3541 EXPORT_SYMBOL(blk_pre_runtime_resume); 3542 3543 /** 3544 * blk_post_runtime_resume - Post runtime resume processing 3545 * @q: the queue of the device 3546 * @err: return value of the device's runtime_resume function 3547 * 3548 * Description: 3549 * Update the queue's runtime status according to the return value of the 3550 * device's runtime_resume function. If it is successfully resumed, process 3551 * the requests that are queued into the device's queue when it is resuming 3552 * and then mark last busy and initiate autosuspend for it. 3553 * 3554 * This function should be called near the end of the device's 3555 * runtime_resume callback. 3556 */ 3557 void blk_post_runtime_resume(struct request_queue *q, int err) 3558 { 3559 if (!q->dev) 3560 return; 3561 3562 spin_lock_irq(q->queue_lock); 3563 if (!err) { 3564 q->rpm_status = RPM_ACTIVE; 3565 __blk_run_queue(q); 3566 pm_runtime_mark_last_busy(q->dev); 3567 pm_request_autosuspend(q->dev); 3568 } else { 3569 q->rpm_status = RPM_SUSPENDED; 3570 } 3571 spin_unlock_irq(q->queue_lock); 3572 } 3573 EXPORT_SYMBOL(blk_post_runtime_resume); 3574 3575 /** 3576 * blk_set_runtime_active - Force runtime status of the queue to be active 3577 * @q: the queue of the device 3578 * 3579 * If the device is left runtime suspended during system suspend the resume 3580 * hook typically resumes the device and corrects runtime status 3581 * accordingly. However, that does not affect the queue runtime PM status 3582 * which is still "suspended". This prevents processing requests from the 3583 * queue. 3584 * 3585 * This function can be used in driver's resume hook to correct queue 3586 * runtime PM status and re-enable peeking requests from the queue. It 3587 * should be called before first request is added to the queue. 3588 */ 3589 void blk_set_runtime_active(struct request_queue *q) 3590 { 3591 spin_lock_irq(q->queue_lock); 3592 q->rpm_status = RPM_ACTIVE; 3593 pm_runtime_mark_last_busy(q->dev); 3594 pm_request_autosuspend(q->dev); 3595 spin_unlock_irq(q->queue_lock); 3596 } 3597 EXPORT_SYMBOL(blk_set_runtime_active); 3598 #endif 3599 3600 int __init blk_dev_init(void) 3601 { 3602 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3603 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3604 FIELD_SIZEOF(struct request, cmd_flags)); 3605 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3606 FIELD_SIZEOF(struct bio, bi_opf)); 3607 3608 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3609 kblockd_workqueue = alloc_workqueue("kblockd", 3610 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3611 if (!kblockd_workqueue) 3612 panic("Failed to create kblockd\n"); 3613 3614 request_cachep = kmem_cache_create("blkdev_requests", 3615 sizeof(struct request), 0, SLAB_PANIC, NULL); 3616 3617 blk_requestq_cachep = kmem_cache_create("request_queue", 3618 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3619 3620 #ifdef CONFIG_DEBUG_FS 3621 blk_debugfs_root = debugfs_create_dir("block", NULL); 3622 #endif 3623 3624 return 0; 3625 } 3626