1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/bio.h> 19 #include <linux/blkdev.h> 20 #include <linux/blk-mq.h> 21 #include <linux/blk-pm.h> 22 #include <linux/highmem.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/string.h> 27 #include <linux/init.h> 28 #include <linux/completion.h> 29 #include <linux/slab.h> 30 #include <linux/swap.h> 31 #include <linux/writeback.h> 32 #include <linux/task_io_accounting_ops.h> 33 #include <linux/fault-inject.h> 34 #include <linux/list_sort.h> 35 #include <linux/delay.h> 36 #include <linux/ratelimit.h> 37 #include <linux/pm_runtime.h> 38 #include <linux/blk-cgroup.h> 39 #include <linux/t10-pi.h> 40 #include <linux/debugfs.h> 41 #include <linux/bpf.h> 42 #include <linux/psi.h> 43 #include <linux/sched/sysctl.h> 44 #include <linux/blk-crypto.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/block.h> 48 49 #include "blk.h" 50 #include "blk-mq.h" 51 #include "blk-mq-sched.h" 52 #include "blk-pm.h" 53 #include "blk-rq-qos.h" 54 55 struct dentry *blk_debugfs_root; 56 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert); 63 64 DEFINE_IDA(blk_queue_ida); 65 66 /* 67 * For queue allocation 68 */ 69 struct kmem_cache *blk_requestq_cachep; 70 71 /* 72 * Controlling structure to kblockd 73 */ 74 static struct workqueue_struct *kblockd_workqueue; 75 76 /** 77 * blk_queue_flag_set - atomically set a queue flag 78 * @flag: flag to be set 79 * @q: request queue 80 */ 81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 82 { 83 set_bit(flag, &q->queue_flags); 84 } 85 EXPORT_SYMBOL(blk_queue_flag_set); 86 87 /** 88 * blk_queue_flag_clear - atomically clear a queue flag 89 * @flag: flag to be cleared 90 * @q: request queue 91 */ 92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 93 { 94 clear_bit(flag, &q->queue_flags); 95 } 96 EXPORT_SYMBOL(blk_queue_flag_clear); 97 98 /** 99 * blk_queue_flag_test_and_set - atomically test and set a queue flag 100 * @flag: flag to be set 101 * @q: request queue 102 * 103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 104 * the flag was already set. 105 */ 106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 107 { 108 return test_and_set_bit(flag, &q->queue_flags); 109 } 110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 111 112 void blk_rq_init(struct request_queue *q, struct request *rq) 113 { 114 memset(rq, 0, sizeof(*rq)); 115 116 INIT_LIST_HEAD(&rq->queuelist); 117 rq->q = q; 118 rq->__sector = (sector_t) -1; 119 INIT_HLIST_NODE(&rq->hash); 120 RB_CLEAR_NODE(&rq->rb_node); 121 rq->tag = BLK_MQ_NO_TAG; 122 rq->internal_tag = BLK_MQ_NO_TAG; 123 rq->start_time_ns = ktime_get_ns(); 124 rq->part = NULL; 125 refcount_set(&rq->ref, 1); 126 blk_crypto_rq_set_defaults(rq); 127 } 128 EXPORT_SYMBOL(blk_rq_init); 129 130 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 131 static const char *const blk_op_name[] = { 132 REQ_OP_NAME(READ), 133 REQ_OP_NAME(WRITE), 134 REQ_OP_NAME(FLUSH), 135 REQ_OP_NAME(DISCARD), 136 REQ_OP_NAME(SECURE_ERASE), 137 REQ_OP_NAME(ZONE_RESET), 138 REQ_OP_NAME(ZONE_RESET_ALL), 139 REQ_OP_NAME(ZONE_OPEN), 140 REQ_OP_NAME(ZONE_CLOSE), 141 REQ_OP_NAME(ZONE_FINISH), 142 REQ_OP_NAME(ZONE_APPEND), 143 REQ_OP_NAME(WRITE_SAME), 144 REQ_OP_NAME(WRITE_ZEROES), 145 REQ_OP_NAME(SCSI_IN), 146 REQ_OP_NAME(SCSI_OUT), 147 REQ_OP_NAME(DRV_IN), 148 REQ_OP_NAME(DRV_OUT), 149 }; 150 #undef REQ_OP_NAME 151 152 /** 153 * blk_op_str - Return string XXX in the REQ_OP_XXX. 154 * @op: REQ_OP_XXX. 155 * 156 * Description: Centralize block layer function to convert REQ_OP_XXX into 157 * string format. Useful in the debugging and tracing bio or request. For 158 * invalid REQ_OP_XXX it returns string "UNKNOWN". 159 */ 160 inline const char *blk_op_str(unsigned int op) 161 { 162 const char *op_str = "UNKNOWN"; 163 164 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 165 op_str = blk_op_name[op]; 166 167 return op_str; 168 } 169 EXPORT_SYMBOL_GPL(blk_op_str); 170 171 static const struct { 172 int errno; 173 const char *name; 174 } blk_errors[] = { 175 [BLK_STS_OK] = { 0, "" }, 176 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 177 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 178 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 179 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 180 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 181 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 182 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 183 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 184 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 185 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 186 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 187 188 /* device mapper special case, should not leak out: */ 189 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 190 191 /* zone device specific errors */ 192 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" }, 193 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" }, 194 195 /* everything else not covered above: */ 196 [BLK_STS_IOERR] = { -EIO, "I/O" }, 197 }; 198 199 blk_status_t errno_to_blk_status(int errno) 200 { 201 int i; 202 203 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 204 if (blk_errors[i].errno == errno) 205 return (__force blk_status_t)i; 206 } 207 208 return BLK_STS_IOERR; 209 } 210 EXPORT_SYMBOL_GPL(errno_to_blk_status); 211 212 int blk_status_to_errno(blk_status_t status) 213 { 214 int idx = (__force int)status; 215 216 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 217 return -EIO; 218 return blk_errors[idx].errno; 219 } 220 EXPORT_SYMBOL_GPL(blk_status_to_errno); 221 222 static void print_req_error(struct request *req, blk_status_t status, 223 const char *caller) 224 { 225 int idx = (__force int)status; 226 227 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 228 return; 229 230 printk_ratelimited(KERN_ERR 231 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 232 "phys_seg %u prio class %u\n", 233 caller, blk_errors[idx].name, 234 req->rq_disk ? req->rq_disk->disk_name : "?", 235 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 236 req->cmd_flags & ~REQ_OP_MASK, 237 req->nr_phys_segments, 238 IOPRIO_PRIO_CLASS(req->ioprio)); 239 } 240 241 static void req_bio_endio(struct request *rq, struct bio *bio, 242 unsigned int nbytes, blk_status_t error) 243 { 244 if (error) 245 bio->bi_status = error; 246 247 if (unlikely(rq->rq_flags & RQF_QUIET)) 248 bio_set_flag(bio, BIO_QUIET); 249 250 bio_advance(bio, nbytes); 251 252 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) { 253 /* 254 * Partial zone append completions cannot be supported as the 255 * BIO fragments may end up not being written sequentially. 256 */ 257 if (bio->bi_iter.bi_size) 258 bio->bi_status = BLK_STS_IOERR; 259 else 260 bio->bi_iter.bi_sector = rq->__sector; 261 } 262 263 /* don't actually finish bio if it's part of flush sequence */ 264 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 265 bio_endio(bio); 266 } 267 268 void blk_dump_rq_flags(struct request *rq, char *msg) 269 { 270 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 271 rq->rq_disk ? rq->rq_disk->disk_name : "?", 272 (unsigned long long) rq->cmd_flags); 273 274 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 275 (unsigned long long)blk_rq_pos(rq), 276 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 277 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 278 rq->bio, rq->biotail, blk_rq_bytes(rq)); 279 } 280 EXPORT_SYMBOL(blk_dump_rq_flags); 281 282 /** 283 * blk_sync_queue - cancel any pending callbacks on a queue 284 * @q: the queue 285 * 286 * Description: 287 * The block layer may perform asynchronous callback activity 288 * on a queue, such as calling the unplug function after a timeout. 289 * A block device may call blk_sync_queue to ensure that any 290 * such activity is cancelled, thus allowing it to release resources 291 * that the callbacks might use. The caller must already have made sure 292 * that its ->submit_bio will not re-add plugging prior to calling 293 * this function. 294 * 295 * This function does not cancel any asynchronous activity arising 296 * out of elevator or throttling code. That would require elevator_exit() 297 * and blkcg_exit_queue() to be called with queue lock initialized. 298 * 299 */ 300 void blk_sync_queue(struct request_queue *q) 301 { 302 del_timer_sync(&q->timeout); 303 cancel_work_sync(&q->timeout_work); 304 } 305 EXPORT_SYMBOL(blk_sync_queue); 306 307 /** 308 * blk_set_pm_only - increment pm_only counter 309 * @q: request queue pointer 310 */ 311 void blk_set_pm_only(struct request_queue *q) 312 { 313 atomic_inc(&q->pm_only); 314 } 315 EXPORT_SYMBOL_GPL(blk_set_pm_only); 316 317 void blk_clear_pm_only(struct request_queue *q) 318 { 319 int pm_only; 320 321 pm_only = atomic_dec_return(&q->pm_only); 322 WARN_ON_ONCE(pm_only < 0); 323 if (pm_only == 0) 324 wake_up_all(&q->mq_freeze_wq); 325 } 326 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 327 328 /** 329 * blk_put_queue - decrement the request_queue refcount 330 * @q: the request_queue structure to decrement the refcount for 331 * 332 * Decrements the refcount of the request_queue kobject. When this reaches 0 333 * we'll have blk_release_queue() called. 334 * 335 * Context: Any context, but the last reference must not be dropped from 336 * atomic context. 337 */ 338 void blk_put_queue(struct request_queue *q) 339 { 340 kobject_put(&q->kobj); 341 } 342 EXPORT_SYMBOL(blk_put_queue); 343 344 void blk_set_queue_dying(struct request_queue *q) 345 { 346 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 347 348 /* 349 * When queue DYING flag is set, we need to block new req 350 * entering queue, so we call blk_freeze_queue_start() to 351 * prevent I/O from crossing blk_queue_enter(). 352 */ 353 blk_freeze_queue_start(q); 354 355 if (queue_is_mq(q)) 356 blk_mq_wake_waiters(q); 357 358 /* Make blk_queue_enter() reexamine the DYING flag. */ 359 wake_up_all(&q->mq_freeze_wq); 360 } 361 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 362 363 /** 364 * blk_cleanup_queue - shutdown a request queue 365 * @q: request queue to shutdown 366 * 367 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 368 * put it. All future requests will be failed immediately with -ENODEV. 369 * 370 * Context: can sleep 371 */ 372 void blk_cleanup_queue(struct request_queue *q) 373 { 374 /* cannot be called from atomic context */ 375 might_sleep(); 376 377 WARN_ON_ONCE(blk_queue_registered(q)); 378 379 /* mark @q DYING, no new request or merges will be allowed afterwards */ 380 blk_set_queue_dying(q); 381 382 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 383 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 384 385 /* 386 * Drain all requests queued before DYING marking. Set DEAD flag to 387 * prevent that blk_mq_run_hw_queues() accesses the hardware queues 388 * after draining finished. 389 */ 390 blk_freeze_queue(q); 391 392 rq_qos_exit(q); 393 394 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 395 396 /* for synchronous bio-based driver finish in-flight integrity i/o */ 397 blk_flush_integrity(); 398 399 /* @q won't process any more request, flush async actions */ 400 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 401 blk_sync_queue(q); 402 403 if (queue_is_mq(q)) 404 blk_mq_exit_queue(q); 405 406 /* 407 * In theory, request pool of sched_tags belongs to request queue. 408 * However, the current implementation requires tag_set for freeing 409 * requests, so free the pool now. 410 * 411 * Queue has become frozen, there can't be any in-queue requests, so 412 * it is safe to free requests now. 413 */ 414 mutex_lock(&q->sysfs_lock); 415 if (q->elevator) 416 blk_mq_sched_free_requests(q); 417 mutex_unlock(&q->sysfs_lock); 418 419 percpu_ref_exit(&q->q_usage_counter); 420 421 /* @q is and will stay empty, shutdown and put */ 422 blk_put_queue(q); 423 } 424 EXPORT_SYMBOL(blk_cleanup_queue); 425 426 /** 427 * blk_queue_enter() - try to increase q->q_usage_counter 428 * @q: request queue pointer 429 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM 430 */ 431 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 432 { 433 const bool pm = flags & BLK_MQ_REQ_PM; 434 435 while (true) { 436 bool success = false; 437 438 rcu_read_lock(); 439 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 440 /* 441 * The code that increments the pm_only counter is 442 * responsible for ensuring that that counter is 443 * globally visible before the queue is unfrozen. 444 */ 445 if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) || 446 !blk_queue_pm_only(q)) { 447 success = true; 448 } else { 449 percpu_ref_put(&q->q_usage_counter); 450 } 451 } 452 rcu_read_unlock(); 453 454 if (success) 455 return 0; 456 457 if (flags & BLK_MQ_REQ_NOWAIT) 458 return -EBUSY; 459 460 /* 461 * read pair of barrier in blk_freeze_queue_start(), 462 * we need to order reading __PERCPU_REF_DEAD flag of 463 * .q_usage_counter and reading .mq_freeze_depth or 464 * queue dying flag, otherwise the following wait may 465 * never return if the two reads are reordered. 466 */ 467 smp_rmb(); 468 469 wait_event(q->mq_freeze_wq, 470 (!q->mq_freeze_depth && 471 blk_pm_resume_queue(pm, q)) || 472 blk_queue_dying(q)); 473 if (blk_queue_dying(q)) 474 return -ENODEV; 475 } 476 } 477 478 static inline int bio_queue_enter(struct bio *bio) 479 { 480 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 481 bool nowait = bio->bi_opf & REQ_NOWAIT; 482 int ret; 483 484 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0); 485 if (unlikely(ret)) { 486 if (nowait && !blk_queue_dying(q)) 487 bio_wouldblock_error(bio); 488 else 489 bio_io_error(bio); 490 } 491 492 return ret; 493 } 494 495 void blk_queue_exit(struct request_queue *q) 496 { 497 percpu_ref_put(&q->q_usage_counter); 498 } 499 500 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 501 { 502 struct request_queue *q = 503 container_of(ref, struct request_queue, q_usage_counter); 504 505 wake_up_all(&q->mq_freeze_wq); 506 } 507 508 static void blk_rq_timed_out_timer(struct timer_list *t) 509 { 510 struct request_queue *q = from_timer(q, t, timeout); 511 512 kblockd_schedule_work(&q->timeout_work); 513 } 514 515 static void blk_timeout_work(struct work_struct *work) 516 { 517 } 518 519 struct request_queue *blk_alloc_queue(int node_id) 520 { 521 struct request_queue *q; 522 int ret; 523 524 q = kmem_cache_alloc_node(blk_requestq_cachep, 525 GFP_KERNEL | __GFP_ZERO, node_id); 526 if (!q) 527 return NULL; 528 529 q->last_merge = NULL; 530 531 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL); 532 if (q->id < 0) 533 goto fail_q; 534 535 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0); 536 if (ret) 537 goto fail_id; 538 539 q->backing_dev_info = bdi_alloc(node_id); 540 if (!q->backing_dev_info) 541 goto fail_split; 542 543 q->stats = blk_alloc_queue_stats(); 544 if (!q->stats) 545 goto fail_stats; 546 547 q->node = node_id; 548 549 atomic_set(&q->nr_active_requests_shared_sbitmap, 0); 550 551 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 552 laptop_mode_timer_fn, 0); 553 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 554 INIT_WORK(&q->timeout_work, blk_timeout_work); 555 INIT_LIST_HEAD(&q->icq_list); 556 #ifdef CONFIG_BLK_CGROUP 557 INIT_LIST_HEAD(&q->blkg_list); 558 #endif 559 560 kobject_init(&q->kobj, &blk_queue_ktype); 561 562 mutex_init(&q->debugfs_mutex); 563 mutex_init(&q->sysfs_lock); 564 mutex_init(&q->sysfs_dir_lock); 565 spin_lock_init(&q->queue_lock); 566 567 init_waitqueue_head(&q->mq_freeze_wq); 568 mutex_init(&q->mq_freeze_lock); 569 570 /* 571 * Init percpu_ref in atomic mode so that it's faster to shutdown. 572 * See blk_register_queue() for details. 573 */ 574 if (percpu_ref_init(&q->q_usage_counter, 575 blk_queue_usage_counter_release, 576 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 577 goto fail_bdi; 578 579 if (blkcg_init_queue(q)) 580 goto fail_ref; 581 582 blk_queue_dma_alignment(q, 511); 583 blk_set_default_limits(&q->limits); 584 q->nr_requests = BLKDEV_MAX_RQ; 585 586 return q; 587 588 fail_ref: 589 percpu_ref_exit(&q->q_usage_counter); 590 fail_bdi: 591 blk_free_queue_stats(q->stats); 592 fail_stats: 593 bdi_put(q->backing_dev_info); 594 fail_split: 595 bioset_exit(&q->bio_split); 596 fail_id: 597 ida_simple_remove(&blk_queue_ida, q->id); 598 fail_q: 599 kmem_cache_free(blk_requestq_cachep, q); 600 return NULL; 601 } 602 EXPORT_SYMBOL(blk_alloc_queue); 603 604 /** 605 * blk_get_queue - increment the request_queue refcount 606 * @q: the request_queue structure to increment the refcount for 607 * 608 * Increment the refcount of the request_queue kobject. 609 * 610 * Context: Any context. 611 */ 612 bool blk_get_queue(struct request_queue *q) 613 { 614 if (likely(!blk_queue_dying(q))) { 615 __blk_get_queue(q); 616 return true; 617 } 618 619 return false; 620 } 621 EXPORT_SYMBOL(blk_get_queue); 622 623 /** 624 * blk_get_request - allocate a request 625 * @q: request queue to allocate a request for 626 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 627 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 628 */ 629 struct request *blk_get_request(struct request_queue *q, unsigned int op, 630 blk_mq_req_flags_t flags) 631 { 632 struct request *req; 633 634 WARN_ON_ONCE(op & REQ_NOWAIT); 635 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM)); 636 637 req = blk_mq_alloc_request(q, op, flags); 638 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 639 q->mq_ops->initialize_rq_fn(req); 640 641 return req; 642 } 643 EXPORT_SYMBOL(blk_get_request); 644 645 void blk_put_request(struct request *req) 646 { 647 blk_mq_free_request(req); 648 } 649 EXPORT_SYMBOL(blk_put_request); 650 651 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 652 { 653 char b[BDEVNAME_SIZE]; 654 655 pr_info_ratelimited("attempt to access beyond end of device\n" 656 "%s: rw=%d, want=%llu, limit=%llu\n", 657 bio_devname(bio, b), bio->bi_opf, 658 bio_end_sector(bio), maxsector); 659 } 660 661 #ifdef CONFIG_FAIL_MAKE_REQUEST 662 663 static DECLARE_FAULT_ATTR(fail_make_request); 664 665 static int __init setup_fail_make_request(char *str) 666 { 667 return setup_fault_attr(&fail_make_request, str); 668 } 669 __setup("fail_make_request=", setup_fail_make_request); 670 671 static bool should_fail_request(struct block_device *part, unsigned int bytes) 672 { 673 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes); 674 } 675 676 static int __init fail_make_request_debugfs(void) 677 { 678 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 679 NULL, &fail_make_request); 680 681 return PTR_ERR_OR_ZERO(dir); 682 } 683 684 late_initcall(fail_make_request_debugfs); 685 686 #else /* CONFIG_FAIL_MAKE_REQUEST */ 687 688 static inline bool should_fail_request(struct block_device *part, 689 unsigned int bytes) 690 { 691 return false; 692 } 693 694 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 695 696 static inline bool bio_check_ro(struct bio *bio) 697 { 698 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) { 699 char b[BDEVNAME_SIZE]; 700 701 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 702 return false; 703 704 WARN_ONCE(1, 705 "Trying to write to read-only block-device %s (partno %d)\n", 706 bio_devname(bio, b), bio->bi_bdev->bd_partno); 707 /* Older lvm-tools actually trigger this */ 708 return false; 709 } 710 711 return false; 712 } 713 714 static noinline int should_fail_bio(struct bio *bio) 715 { 716 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size)) 717 return -EIO; 718 return 0; 719 } 720 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 721 722 /* 723 * Check whether this bio extends beyond the end of the device or partition. 724 * This may well happen - the kernel calls bread() without checking the size of 725 * the device, e.g., when mounting a file system. 726 */ 727 static inline int bio_check_eod(struct bio *bio) 728 { 729 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 730 unsigned int nr_sectors = bio_sectors(bio); 731 732 if (nr_sectors && maxsector && 733 (nr_sectors > maxsector || 734 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 735 handle_bad_sector(bio, maxsector); 736 return -EIO; 737 } 738 return 0; 739 } 740 741 /* 742 * Remap block n of partition p to block n+start(p) of the disk. 743 */ 744 static int blk_partition_remap(struct bio *bio) 745 { 746 struct block_device *p = bio->bi_bdev; 747 748 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 749 return -EIO; 750 if (bio_sectors(bio)) { 751 bio->bi_iter.bi_sector += p->bd_start_sect; 752 trace_block_bio_remap(bio, p->bd_dev, 753 bio->bi_iter.bi_sector - 754 p->bd_start_sect); 755 } 756 bio_set_flag(bio, BIO_REMAPPED); 757 return 0; 758 } 759 760 /* 761 * Check write append to a zoned block device. 762 */ 763 static inline blk_status_t blk_check_zone_append(struct request_queue *q, 764 struct bio *bio) 765 { 766 sector_t pos = bio->bi_iter.bi_sector; 767 int nr_sectors = bio_sectors(bio); 768 769 /* Only applicable to zoned block devices */ 770 if (!blk_queue_is_zoned(q)) 771 return BLK_STS_NOTSUPP; 772 773 /* The bio sector must point to the start of a sequential zone */ 774 if (pos & (blk_queue_zone_sectors(q) - 1) || 775 !blk_queue_zone_is_seq(q, pos)) 776 return BLK_STS_IOERR; 777 778 /* 779 * Not allowed to cross zone boundaries. Otherwise, the BIO will be 780 * split and could result in non-contiguous sectors being written in 781 * different zones. 782 */ 783 if (nr_sectors > q->limits.chunk_sectors) 784 return BLK_STS_IOERR; 785 786 /* Make sure the BIO is small enough and will not get split */ 787 if (nr_sectors > q->limits.max_zone_append_sectors) 788 return BLK_STS_IOERR; 789 790 bio->bi_opf |= REQ_NOMERGE; 791 792 return BLK_STS_OK; 793 } 794 795 static noinline_for_stack bool submit_bio_checks(struct bio *bio) 796 { 797 struct block_device *bdev = bio->bi_bdev; 798 struct request_queue *q = bdev->bd_disk->queue; 799 blk_status_t status = BLK_STS_IOERR; 800 struct blk_plug *plug; 801 802 might_sleep(); 803 804 plug = blk_mq_plug(q, bio); 805 if (plug && plug->nowait) 806 bio->bi_opf |= REQ_NOWAIT; 807 808 /* 809 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 810 * if queue does not support NOWAIT. 811 */ 812 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q)) 813 goto not_supported; 814 815 if (should_fail_bio(bio)) 816 goto end_io; 817 if (unlikely(bio_check_ro(bio))) 818 goto end_io; 819 if (!bio_flagged(bio, BIO_REMAPPED)) { 820 if (unlikely(bio_check_eod(bio))) 821 goto end_io; 822 if (bdev->bd_partno && unlikely(blk_partition_remap(bio))) 823 goto end_io; 824 } 825 826 /* 827 * Filter flush bio's early so that bio based drivers without flush 828 * support don't have to worry about them. 829 */ 830 if (op_is_flush(bio->bi_opf) && 831 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 832 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 833 if (!bio_sectors(bio)) { 834 status = BLK_STS_OK; 835 goto end_io; 836 } 837 } 838 839 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 840 bio->bi_opf &= ~REQ_HIPRI; 841 842 switch (bio_op(bio)) { 843 case REQ_OP_DISCARD: 844 if (!blk_queue_discard(q)) 845 goto not_supported; 846 break; 847 case REQ_OP_SECURE_ERASE: 848 if (!blk_queue_secure_erase(q)) 849 goto not_supported; 850 break; 851 case REQ_OP_WRITE_SAME: 852 if (!q->limits.max_write_same_sectors) 853 goto not_supported; 854 break; 855 case REQ_OP_ZONE_APPEND: 856 status = blk_check_zone_append(q, bio); 857 if (status != BLK_STS_OK) 858 goto end_io; 859 break; 860 case REQ_OP_ZONE_RESET: 861 case REQ_OP_ZONE_OPEN: 862 case REQ_OP_ZONE_CLOSE: 863 case REQ_OP_ZONE_FINISH: 864 if (!blk_queue_is_zoned(q)) 865 goto not_supported; 866 break; 867 case REQ_OP_ZONE_RESET_ALL: 868 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q)) 869 goto not_supported; 870 break; 871 case REQ_OP_WRITE_ZEROES: 872 if (!q->limits.max_write_zeroes_sectors) 873 goto not_supported; 874 break; 875 default: 876 break; 877 } 878 879 /* 880 * Various block parts want %current->io_context, so allocate it up 881 * front rather than dealing with lots of pain to allocate it only 882 * where needed. This may fail and the block layer knows how to live 883 * with it. 884 */ 885 if (unlikely(!current->io_context)) 886 create_task_io_context(current, GFP_ATOMIC, q->node); 887 888 if (blk_throtl_bio(bio)) { 889 blkcg_bio_issue_init(bio); 890 return false; 891 } 892 893 blk_cgroup_bio_start(bio); 894 blkcg_bio_issue_init(bio); 895 896 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 897 trace_block_bio_queue(bio); 898 /* Now that enqueuing has been traced, we need to trace 899 * completion as well. 900 */ 901 bio_set_flag(bio, BIO_TRACE_COMPLETION); 902 } 903 return true; 904 905 not_supported: 906 status = BLK_STS_NOTSUPP; 907 end_io: 908 bio->bi_status = status; 909 bio_endio(bio); 910 return false; 911 } 912 913 static blk_qc_t __submit_bio(struct bio *bio) 914 { 915 struct gendisk *disk = bio->bi_bdev->bd_disk; 916 blk_qc_t ret = BLK_QC_T_NONE; 917 918 if (blk_crypto_bio_prep(&bio)) { 919 if (!disk->fops->submit_bio) 920 return blk_mq_submit_bio(bio); 921 ret = disk->fops->submit_bio(bio); 922 } 923 blk_queue_exit(disk->queue); 924 return ret; 925 } 926 927 /* 928 * The loop in this function may be a bit non-obvious, and so deserves some 929 * explanation: 930 * 931 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure 932 * that), so we have a list with a single bio. 933 * - We pretend that we have just taken it off a longer list, so we assign 934 * bio_list to a pointer to the bio_list_on_stack, thus initialising the 935 * bio_list of new bios to be added. ->submit_bio() may indeed add some more 936 * bios through a recursive call to submit_bio_noacct. If it did, we find a 937 * non-NULL value in bio_list and re-enter the loop from the top. 938 * - In this case we really did just take the bio of the top of the list (no 939 * pretending) and so remove it from bio_list, and call into ->submit_bio() 940 * again. 941 * 942 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio. 943 * bio_list_on_stack[1] contains bios that were submitted before the current 944 * ->submit_bio_bio, but that haven't been processed yet. 945 */ 946 static blk_qc_t __submit_bio_noacct(struct bio *bio) 947 { 948 struct bio_list bio_list_on_stack[2]; 949 blk_qc_t ret = BLK_QC_T_NONE; 950 951 BUG_ON(bio->bi_next); 952 953 bio_list_init(&bio_list_on_stack[0]); 954 current->bio_list = bio_list_on_stack; 955 956 do { 957 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 958 struct bio_list lower, same; 959 960 if (unlikely(bio_queue_enter(bio) != 0)) 961 continue; 962 963 /* 964 * Create a fresh bio_list for all subordinate requests. 965 */ 966 bio_list_on_stack[1] = bio_list_on_stack[0]; 967 bio_list_init(&bio_list_on_stack[0]); 968 969 ret = __submit_bio(bio); 970 971 /* 972 * Sort new bios into those for a lower level and those for the 973 * same level. 974 */ 975 bio_list_init(&lower); 976 bio_list_init(&same); 977 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 978 if (q == bio->bi_bdev->bd_disk->queue) 979 bio_list_add(&same, bio); 980 else 981 bio_list_add(&lower, bio); 982 983 /* 984 * Now assemble so we handle the lowest level first. 985 */ 986 bio_list_merge(&bio_list_on_stack[0], &lower); 987 bio_list_merge(&bio_list_on_stack[0], &same); 988 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 989 } while ((bio = bio_list_pop(&bio_list_on_stack[0]))); 990 991 current->bio_list = NULL; 992 return ret; 993 } 994 995 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio) 996 { 997 struct bio_list bio_list[2] = { }; 998 blk_qc_t ret = BLK_QC_T_NONE; 999 1000 current->bio_list = bio_list; 1001 1002 do { 1003 struct gendisk *disk = bio->bi_bdev->bd_disk; 1004 1005 if (unlikely(bio_queue_enter(bio) != 0)) 1006 continue; 1007 1008 if (!blk_crypto_bio_prep(&bio)) { 1009 blk_queue_exit(disk->queue); 1010 ret = BLK_QC_T_NONE; 1011 continue; 1012 } 1013 1014 ret = blk_mq_submit_bio(bio); 1015 } while ((bio = bio_list_pop(&bio_list[0]))); 1016 1017 current->bio_list = NULL; 1018 return ret; 1019 } 1020 1021 /** 1022 * submit_bio_noacct - re-submit a bio to the block device layer for I/O 1023 * @bio: The bio describing the location in memory and on the device. 1024 * 1025 * This is a version of submit_bio() that shall only be used for I/O that is 1026 * resubmitted to lower level drivers by stacking block drivers. All file 1027 * systems and other upper level users of the block layer should use 1028 * submit_bio() instead. 1029 */ 1030 blk_qc_t submit_bio_noacct(struct bio *bio) 1031 { 1032 if (!submit_bio_checks(bio)) 1033 return BLK_QC_T_NONE; 1034 1035 /* 1036 * We only want one ->submit_bio to be active at a time, else stack 1037 * usage with stacked devices could be a problem. Use current->bio_list 1038 * to collect a list of requests submited by a ->submit_bio method while 1039 * it is active, and then process them after it returned. 1040 */ 1041 if (current->bio_list) { 1042 bio_list_add(¤t->bio_list[0], bio); 1043 return BLK_QC_T_NONE; 1044 } 1045 1046 if (!bio->bi_bdev->bd_disk->fops->submit_bio) 1047 return __submit_bio_noacct_mq(bio); 1048 return __submit_bio_noacct(bio); 1049 } 1050 EXPORT_SYMBOL(submit_bio_noacct); 1051 1052 /** 1053 * submit_bio - submit a bio to the block device layer for I/O 1054 * @bio: The &struct bio which describes the I/O 1055 * 1056 * submit_bio() is used to submit I/O requests to block devices. It is passed a 1057 * fully set up &struct bio that describes the I/O that needs to be done. The 1058 * bio will be send to the device described by the bi_bdev field. 1059 * 1060 * The success/failure status of the request, along with notification of 1061 * completion, is delivered asynchronously through the ->bi_end_io() callback 1062 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has 1063 * been called. 1064 */ 1065 blk_qc_t submit_bio(struct bio *bio) 1066 { 1067 if (blkcg_punt_bio_submit(bio)) 1068 return BLK_QC_T_NONE; 1069 1070 /* 1071 * If it's a regular read/write or a barrier with data attached, 1072 * go through the normal accounting stuff before submission. 1073 */ 1074 if (bio_has_data(bio)) { 1075 unsigned int count; 1076 1077 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1078 count = queue_logical_block_size( 1079 bio->bi_bdev->bd_disk->queue) >> 9; 1080 else 1081 count = bio_sectors(bio); 1082 1083 if (op_is_write(bio_op(bio))) { 1084 count_vm_events(PGPGOUT, count); 1085 } else { 1086 task_io_account_read(bio->bi_iter.bi_size); 1087 count_vm_events(PGPGIN, count); 1088 } 1089 1090 if (unlikely(block_dump)) { 1091 char b[BDEVNAME_SIZE]; 1092 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1093 current->comm, task_pid_nr(current), 1094 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 1095 (unsigned long long)bio->bi_iter.bi_sector, 1096 bio_devname(bio, b), count); 1097 } 1098 } 1099 1100 /* 1101 * If we're reading data that is part of the userspace workingset, count 1102 * submission time as memory stall. When the device is congested, or 1103 * the submitting cgroup IO-throttled, submission can be a significant 1104 * part of overall IO time. 1105 */ 1106 if (unlikely(bio_op(bio) == REQ_OP_READ && 1107 bio_flagged(bio, BIO_WORKINGSET))) { 1108 unsigned long pflags; 1109 blk_qc_t ret; 1110 1111 psi_memstall_enter(&pflags); 1112 ret = submit_bio_noacct(bio); 1113 psi_memstall_leave(&pflags); 1114 1115 return ret; 1116 } 1117 1118 return submit_bio_noacct(bio); 1119 } 1120 EXPORT_SYMBOL(submit_bio); 1121 1122 /** 1123 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1124 * for the new queue limits 1125 * @q: the queue 1126 * @rq: the request being checked 1127 * 1128 * Description: 1129 * @rq may have been made based on weaker limitations of upper-level queues 1130 * in request stacking drivers, and it may violate the limitation of @q. 1131 * Since the block layer and the underlying device driver trust @rq 1132 * after it is inserted to @q, it should be checked against @q before 1133 * the insertion using this generic function. 1134 * 1135 * Request stacking drivers like request-based dm may change the queue 1136 * limits when retrying requests on other queues. Those requests need 1137 * to be checked against the new queue limits again during dispatch. 1138 */ 1139 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q, 1140 struct request *rq) 1141 { 1142 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 1143 1144 if (blk_rq_sectors(rq) > max_sectors) { 1145 /* 1146 * SCSI device does not have a good way to return if 1147 * Write Same/Zero is actually supported. If a device rejects 1148 * a non-read/write command (discard, write same,etc.) the 1149 * low-level device driver will set the relevant queue limit to 1150 * 0 to prevent blk-lib from issuing more of the offending 1151 * operations. Commands queued prior to the queue limit being 1152 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 1153 * errors being propagated to upper layers. 1154 */ 1155 if (max_sectors == 0) 1156 return BLK_STS_NOTSUPP; 1157 1158 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 1159 __func__, blk_rq_sectors(rq), max_sectors); 1160 return BLK_STS_IOERR; 1161 } 1162 1163 /* 1164 * queue's settings related to segment counting like q->bounce_pfn 1165 * may differ from that of other stacking queues. 1166 * Recalculate it to check the request correctly on this queue's 1167 * limitation. 1168 */ 1169 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 1170 if (rq->nr_phys_segments > queue_max_segments(q)) { 1171 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 1172 __func__, rq->nr_phys_segments, queue_max_segments(q)); 1173 return BLK_STS_IOERR; 1174 } 1175 1176 return BLK_STS_OK; 1177 } 1178 1179 /** 1180 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1181 * @q: the queue to submit the request 1182 * @rq: the request being queued 1183 */ 1184 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1185 { 1186 blk_status_t ret; 1187 1188 ret = blk_cloned_rq_check_limits(q, rq); 1189 if (ret != BLK_STS_OK) 1190 return ret; 1191 1192 if (rq->rq_disk && 1193 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq))) 1194 return BLK_STS_IOERR; 1195 1196 if (blk_crypto_insert_cloned_request(rq)) 1197 return BLK_STS_IOERR; 1198 1199 if (blk_queue_io_stat(q)) 1200 blk_account_io_start(rq); 1201 1202 /* 1203 * Since we have a scheduler attached on the top device, 1204 * bypass a potential scheduler on the bottom device for 1205 * insert. 1206 */ 1207 return blk_mq_request_issue_directly(rq, true); 1208 } 1209 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1210 1211 /** 1212 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1213 * @rq: request to examine 1214 * 1215 * Description: 1216 * A request could be merge of IOs which require different failure 1217 * handling. This function determines the number of bytes which 1218 * can be failed from the beginning of the request without 1219 * crossing into area which need to be retried further. 1220 * 1221 * Return: 1222 * The number of bytes to fail. 1223 */ 1224 unsigned int blk_rq_err_bytes(const struct request *rq) 1225 { 1226 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1227 unsigned int bytes = 0; 1228 struct bio *bio; 1229 1230 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1231 return blk_rq_bytes(rq); 1232 1233 /* 1234 * Currently the only 'mixing' which can happen is between 1235 * different fastfail types. We can safely fail portions 1236 * which have all the failfast bits that the first one has - 1237 * the ones which are at least as eager to fail as the first 1238 * one. 1239 */ 1240 for (bio = rq->bio; bio; bio = bio->bi_next) { 1241 if ((bio->bi_opf & ff) != ff) 1242 break; 1243 bytes += bio->bi_iter.bi_size; 1244 } 1245 1246 /* this could lead to infinite loop */ 1247 BUG_ON(blk_rq_bytes(rq) && !bytes); 1248 return bytes; 1249 } 1250 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1251 1252 static void update_io_ticks(struct block_device *part, unsigned long now, 1253 bool end) 1254 { 1255 unsigned long stamp; 1256 again: 1257 stamp = READ_ONCE(part->bd_stamp); 1258 if (unlikely(stamp != now)) { 1259 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp)) 1260 __part_stat_add(part, io_ticks, end ? now - stamp : 1); 1261 } 1262 if (part->bd_partno) { 1263 part = bdev_whole(part); 1264 goto again; 1265 } 1266 } 1267 1268 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1269 { 1270 if (req->part && blk_do_io_stat(req)) { 1271 const int sgrp = op_stat_group(req_op(req)); 1272 1273 part_stat_lock(); 1274 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 1275 part_stat_unlock(); 1276 } 1277 } 1278 1279 void blk_account_io_done(struct request *req, u64 now) 1280 { 1281 /* 1282 * Account IO completion. flush_rq isn't accounted as a 1283 * normal IO on queueing nor completion. Accounting the 1284 * containing request is enough. 1285 */ 1286 if (req->part && blk_do_io_stat(req) && 1287 !(req->rq_flags & RQF_FLUSH_SEQ)) { 1288 const int sgrp = op_stat_group(req_op(req)); 1289 1290 part_stat_lock(); 1291 update_io_ticks(req->part, jiffies, true); 1292 part_stat_inc(req->part, ios[sgrp]); 1293 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1294 part_stat_unlock(); 1295 } 1296 } 1297 1298 void blk_account_io_start(struct request *rq) 1299 { 1300 if (!blk_do_io_stat(rq)) 1301 return; 1302 1303 /* passthrough requests can hold bios that do not have ->bi_bdev set */ 1304 if (rq->bio && rq->bio->bi_bdev) 1305 rq->part = rq->bio->bi_bdev; 1306 else 1307 rq->part = rq->rq_disk->part0; 1308 1309 part_stat_lock(); 1310 update_io_ticks(rq->part, jiffies, false); 1311 part_stat_unlock(); 1312 } 1313 1314 static unsigned long __part_start_io_acct(struct block_device *part, 1315 unsigned int sectors, unsigned int op) 1316 { 1317 const int sgrp = op_stat_group(op); 1318 unsigned long now = READ_ONCE(jiffies); 1319 1320 part_stat_lock(); 1321 update_io_ticks(part, now, false); 1322 part_stat_inc(part, ios[sgrp]); 1323 part_stat_add(part, sectors[sgrp], sectors); 1324 part_stat_local_inc(part, in_flight[op_is_write(op)]); 1325 part_stat_unlock(); 1326 1327 return now; 1328 } 1329 1330 /** 1331 * bio_start_io_acct - start I/O accounting for bio based drivers 1332 * @bio: bio to start account for 1333 * 1334 * Returns the start time that should be passed back to bio_end_io_acct(). 1335 */ 1336 unsigned long bio_start_io_acct(struct bio *bio) 1337 { 1338 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio)); 1339 } 1340 EXPORT_SYMBOL_GPL(bio_start_io_acct); 1341 1342 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1343 unsigned int op) 1344 { 1345 return __part_start_io_acct(disk->part0, sectors, op); 1346 } 1347 EXPORT_SYMBOL(disk_start_io_acct); 1348 1349 static void __part_end_io_acct(struct block_device *part, unsigned int op, 1350 unsigned long start_time) 1351 { 1352 const int sgrp = op_stat_group(op); 1353 unsigned long now = READ_ONCE(jiffies); 1354 unsigned long duration = now - start_time; 1355 1356 part_stat_lock(); 1357 update_io_ticks(part, now, true); 1358 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1359 part_stat_local_dec(part, in_flight[op_is_write(op)]); 1360 part_stat_unlock(); 1361 } 1362 1363 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1364 struct block_device *orig_bdev) 1365 { 1366 __part_end_io_acct(orig_bdev, bio_op(bio), start_time); 1367 } 1368 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped); 1369 1370 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1371 unsigned long start_time) 1372 { 1373 __part_end_io_acct(disk->part0, op, start_time); 1374 } 1375 EXPORT_SYMBOL(disk_end_io_acct); 1376 1377 /* 1378 * Steal bios from a request and add them to a bio list. 1379 * The request must not have been partially completed before. 1380 */ 1381 void blk_steal_bios(struct bio_list *list, struct request *rq) 1382 { 1383 if (rq->bio) { 1384 if (list->tail) 1385 list->tail->bi_next = rq->bio; 1386 else 1387 list->head = rq->bio; 1388 list->tail = rq->biotail; 1389 1390 rq->bio = NULL; 1391 rq->biotail = NULL; 1392 } 1393 1394 rq->__data_len = 0; 1395 } 1396 EXPORT_SYMBOL_GPL(blk_steal_bios); 1397 1398 /** 1399 * blk_update_request - Special helper function for request stacking drivers 1400 * @req: the request being processed 1401 * @error: block status code 1402 * @nr_bytes: number of bytes to complete @req 1403 * 1404 * Description: 1405 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1406 * the request structure even if @req doesn't have leftover. 1407 * If @req has leftover, sets it up for the next range of segments. 1408 * 1409 * This special helper function is only for request stacking drivers 1410 * (e.g. request-based dm) so that they can handle partial completion. 1411 * Actual device drivers should use blk_mq_end_request instead. 1412 * 1413 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1414 * %false return from this function. 1415 * 1416 * Note: 1417 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both 1418 * blk_rq_bytes() and in blk_update_request(). 1419 * 1420 * Return: 1421 * %false - this request doesn't have any more data 1422 * %true - this request has more data 1423 **/ 1424 bool blk_update_request(struct request *req, blk_status_t error, 1425 unsigned int nr_bytes) 1426 { 1427 int total_bytes; 1428 1429 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 1430 1431 if (!req->bio) 1432 return false; 1433 1434 #ifdef CONFIG_BLK_DEV_INTEGRITY 1435 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 1436 error == BLK_STS_OK) 1437 req->q->integrity.profile->complete_fn(req, nr_bytes); 1438 #endif 1439 1440 if (unlikely(error && !blk_rq_is_passthrough(req) && 1441 !(req->rq_flags & RQF_QUIET))) 1442 print_req_error(req, error, __func__); 1443 1444 blk_account_io_completion(req, nr_bytes); 1445 1446 total_bytes = 0; 1447 while (req->bio) { 1448 struct bio *bio = req->bio; 1449 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 1450 1451 if (bio_bytes == bio->bi_iter.bi_size) 1452 req->bio = bio->bi_next; 1453 1454 /* Completion has already been traced */ 1455 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1456 req_bio_endio(req, bio, bio_bytes, error); 1457 1458 total_bytes += bio_bytes; 1459 nr_bytes -= bio_bytes; 1460 1461 if (!nr_bytes) 1462 break; 1463 } 1464 1465 /* 1466 * completely done 1467 */ 1468 if (!req->bio) { 1469 /* 1470 * Reset counters so that the request stacking driver 1471 * can find how many bytes remain in the request 1472 * later. 1473 */ 1474 req->__data_len = 0; 1475 return false; 1476 } 1477 1478 req->__data_len -= total_bytes; 1479 1480 /* update sector only for requests with clear definition of sector */ 1481 if (!blk_rq_is_passthrough(req)) 1482 req->__sector += total_bytes >> 9; 1483 1484 /* mixed attributes always follow the first bio */ 1485 if (req->rq_flags & RQF_MIXED_MERGE) { 1486 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1487 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1488 } 1489 1490 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1491 /* 1492 * If total number of sectors is less than the first segment 1493 * size, something has gone terribly wrong. 1494 */ 1495 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1496 blk_dump_rq_flags(req, "request botched"); 1497 req->__data_len = blk_rq_cur_bytes(req); 1498 } 1499 1500 /* recalculate the number of segments */ 1501 req->nr_phys_segments = blk_recalc_rq_segments(req); 1502 } 1503 1504 return true; 1505 } 1506 EXPORT_SYMBOL_GPL(blk_update_request); 1507 1508 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1509 /** 1510 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1511 * @rq: the request to be flushed 1512 * 1513 * Description: 1514 * Flush all pages in @rq. 1515 */ 1516 void rq_flush_dcache_pages(struct request *rq) 1517 { 1518 struct req_iterator iter; 1519 struct bio_vec bvec; 1520 1521 rq_for_each_segment(bvec, rq, iter) 1522 flush_dcache_page(bvec.bv_page); 1523 } 1524 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1525 #endif 1526 1527 /** 1528 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1529 * @q : the queue of the device being checked 1530 * 1531 * Description: 1532 * Check if underlying low-level drivers of a device are busy. 1533 * If the drivers want to export their busy state, they must set own 1534 * exporting function using blk_queue_lld_busy() first. 1535 * 1536 * Basically, this function is used only by request stacking drivers 1537 * to stop dispatching requests to underlying devices when underlying 1538 * devices are busy. This behavior helps more I/O merging on the queue 1539 * of the request stacking driver and prevents I/O throughput regression 1540 * on burst I/O load. 1541 * 1542 * Return: 1543 * 0 - Not busy (The request stacking driver should dispatch request) 1544 * 1 - Busy (The request stacking driver should stop dispatching request) 1545 */ 1546 int blk_lld_busy(struct request_queue *q) 1547 { 1548 if (queue_is_mq(q) && q->mq_ops->busy) 1549 return q->mq_ops->busy(q); 1550 1551 return 0; 1552 } 1553 EXPORT_SYMBOL_GPL(blk_lld_busy); 1554 1555 /** 1556 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1557 * @rq: the clone request to be cleaned up 1558 * 1559 * Description: 1560 * Free all bios in @rq for a cloned request. 1561 */ 1562 void blk_rq_unprep_clone(struct request *rq) 1563 { 1564 struct bio *bio; 1565 1566 while ((bio = rq->bio) != NULL) { 1567 rq->bio = bio->bi_next; 1568 1569 bio_put(bio); 1570 } 1571 } 1572 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1573 1574 /** 1575 * blk_rq_prep_clone - Helper function to setup clone request 1576 * @rq: the request to be setup 1577 * @rq_src: original request to be cloned 1578 * @bs: bio_set that bios for clone are allocated from 1579 * @gfp_mask: memory allocation mask for bio 1580 * @bio_ctr: setup function to be called for each clone bio. 1581 * Returns %0 for success, non %0 for failure. 1582 * @data: private data to be passed to @bio_ctr 1583 * 1584 * Description: 1585 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1586 * Also, pages which the original bios are pointing to are not copied 1587 * and the cloned bios just point same pages. 1588 * So cloned bios must be completed before original bios, which means 1589 * the caller must complete @rq before @rq_src. 1590 */ 1591 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1592 struct bio_set *bs, gfp_t gfp_mask, 1593 int (*bio_ctr)(struct bio *, struct bio *, void *), 1594 void *data) 1595 { 1596 struct bio *bio, *bio_src; 1597 1598 if (!bs) 1599 bs = &fs_bio_set; 1600 1601 __rq_for_each_bio(bio_src, rq_src) { 1602 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1603 if (!bio) 1604 goto free_and_out; 1605 1606 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1607 goto free_and_out; 1608 1609 if (rq->bio) { 1610 rq->biotail->bi_next = bio; 1611 rq->biotail = bio; 1612 } else { 1613 rq->bio = rq->biotail = bio; 1614 } 1615 bio = NULL; 1616 } 1617 1618 /* Copy attributes of the original request to the clone request. */ 1619 rq->__sector = blk_rq_pos(rq_src); 1620 rq->__data_len = blk_rq_bytes(rq_src); 1621 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1622 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 1623 rq->special_vec = rq_src->special_vec; 1624 } 1625 rq->nr_phys_segments = rq_src->nr_phys_segments; 1626 rq->ioprio = rq_src->ioprio; 1627 1628 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 1629 goto free_and_out; 1630 1631 return 0; 1632 1633 free_and_out: 1634 if (bio) 1635 bio_put(bio); 1636 blk_rq_unprep_clone(rq); 1637 1638 return -ENOMEM; 1639 } 1640 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1641 1642 int kblockd_schedule_work(struct work_struct *work) 1643 { 1644 return queue_work(kblockd_workqueue, work); 1645 } 1646 EXPORT_SYMBOL(kblockd_schedule_work); 1647 1648 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1649 unsigned long delay) 1650 { 1651 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1652 } 1653 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1654 1655 /** 1656 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1657 * @plug: The &struct blk_plug that needs to be initialized 1658 * 1659 * Description: 1660 * blk_start_plug() indicates to the block layer an intent by the caller 1661 * to submit multiple I/O requests in a batch. The block layer may use 1662 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1663 * is called. However, the block layer may choose to submit requests 1664 * before a call to blk_finish_plug() if the number of queued I/Os 1665 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1666 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1667 * the task schedules (see below). 1668 * 1669 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1670 * pending I/O should the task end up blocking between blk_start_plug() and 1671 * blk_finish_plug(). This is important from a performance perspective, but 1672 * also ensures that we don't deadlock. For instance, if the task is blocking 1673 * for a memory allocation, memory reclaim could end up wanting to free a 1674 * page belonging to that request that is currently residing in our private 1675 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1676 * this kind of deadlock. 1677 */ 1678 void blk_start_plug(struct blk_plug *plug) 1679 { 1680 struct task_struct *tsk = current; 1681 1682 /* 1683 * If this is a nested plug, don't actually assign it. 1684 */ 1685 if (tsk->plug) 1686 return; 1687 1688 INIT_LIST_HEAD(&plug->mq_list); 1689 INIT_LIST_HEAD(&plug->cb_list); 1690 plug->rq_count = 0; 1691 plug->multiple_queues = false; 1692 plug->nowait = false; 1693 1694 /* 1695 * Store ordering should not be needed here, since a potential 1696 * preempt will imply a full memory barrier 1697 */ 1698 tsk->plug = plug; 1699 } 1700 EXPORT_SYMBOL(blk_start_plug); 1701 1702 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1703 { 1704 LIST_HEAD(callbacks); 1705 1706 while (!list_empty(&plug->cb_list)) { 1707 list_splice_init(&plug->cb_list, &callbacks); 1708 1709 while (!list_empty(&callbacks)) { 1710 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1711 struct blk_plug_cb, 1712 list); 1713 list_del(&cb->list); 1714 cb->callback(cb, from_schedule); 1715 } 1716 } 1717 } 1718 1719 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1720 int size) 1721 { 1722 struct blk_plug *plug = current->plug; 1723 struct blk_plug_cb *cb; 1724 1725 if (!plug) 1726 return NULL; 1727 1728 list_for_each_entry(cb, &plug->cb_list, list) 1729 if (cb->callback == unplug && cb->data == data) 1730 return cb; 1731 1732 /* Not currently on the callback list */ 1733 BUG_ON(size < sizeof(*cb)); 1734 cb = kzalloc(size, GFP_ATOMIC); 1735 if (cb) { 1736 cb->data = data; 1737 cb->callback = unplug; 1738 list_add(&cb->list, &plug->cb_list); 1739 } 1740 return cb; 1741 } 1742 EXPORT_SYMBOL(blk_check_plugged); 1743 1744 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1745 { 1746 flush_plug_callbacks(plug, from_schedule); 1747 1748 if (!list_empty(&plug->mq_list)) 1749 blk_mq_flush_plug_list(plug, from_schedule); 1750 } 1751 1752 /** 1753 * blk_finish_plug - mark the end of a batch of submitted I/O 1754 * @plug: The &struct blk_plug passed to blk_start_plug() 1755 * 1756 * Description: 1757 * Indicate that a batch of I/O submissions is complete. This function 1758 * must be paired with an initial call to blk_start_plug(). The intent 1759 * is to allow the block layer to optimize I/O submission. See the 1760 * documentation for blk_start_plug() for more information. 1761 */ 1762 void blk_finish_plug(struct blk_plug *plug) 1763 { 1764 if (plug != current->plug) 1765 return; 1766 blk_flush_plug_list(plug, false); 1767 1768 current->plug = NULL; 1769 } 1770 EXPORT_SYMBOL(blk_finish_plug); 1771 1772 void blk_io_schedule(void) 1773 { 1774 /* Prevent hang_check timer from firing at us during very long I/O */ 1775 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 1776 1777 if (timeout) 1778 io_schedule_timeout(timeout); 1779 else 1780 io_schedule(); 1781 } 1782 EXPORT_SYMBOL_GPL(blk_io_schedule); 1783 1784 int __init blk_dev_init(void) 1785 { 1786 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1787 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1788 sizeof_field(struct request, cmd_flags)); 1789 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1790 sizeof_field(struct bio, bi_opf)); 1791 1792 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1793 kblockd_workqueue = alloc_workqueue("kblockd", 1794 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1795 if (!kblockd_workqueue) 1796 panic("Failed to create kblockd\n"); 1797 1798 blk_requestq_cachep = kmem_cache_create("request_queue", 1799 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1800 1801 blk_debugfs_root = debugfs_create_dir("block", NULL); 1802 1803 return 0; 1804 } 1805