1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/blktrace_api.h> 30 #include <linux/fault-inject.h> 31 #include <trace/block.h> 32 33 #include "blk.h" 34 35 DEFINE_TRACE(block_plug); 36 DEFINE_TRACE(block_unplug_io); 37 DEFINE_TRACE(block_unplug_timer); 38 DEFINE_TRACE(block_getrq); 39 DEFINE_TRACE(block_sleeprq); 40 DEFINE_TRACE(block_rq_requeue); 41 DEFINE_TRACE(block_bio_backmerge); 42 DEFINE_TRACE(block_bio_frontmerge); 43 DEFINE_TRACE(block_bio_queue); 44 DEFINE_TRACE(block_rq_complete); 45 DEFINE_TRACE(block_remap); /* Also used in drivers/md/dm.c */ 46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap); 47 48 static int __make_request(struct request_queue *q, struct bio *bio); 49 50 /* 51 * For the allocated request tables 52 */ 53 static struct kmem_cache *request_cachep; 54 55 /* 56 * For queue allocation 57 */ 58 struct kmem_cache *blk_requestq_cachep; 59 60 /* 61 * Controlling structure to kblockd 62 */ 63 static struct workqueue_struct *kblockd_workqueue; 64 65 static void drive_stat_acct(struct request *rq, int new_io) 66 { 67 struct hd_struct *part; 68 int rw = rq_data_dir(rq); 69 int cpu; 70 71 if (!blk_fs_request(rq) || !blk_do_io_stat(rq)) 72 return; 73 74 cpu = part_stat_lock(); 75 part = disk_map_sector_rcu(rq->rq_disk, rq->sector); 76 77 if (!new_io) 78 part_stat_inc(cpu, part, merges[rw]); 79 else { 80 part_round_stats(cpu, part); 81 part_inc_in_flight(part); 82 } 83 84 part_stat_unlock(); 85 } 86 87 void blk_queue_congestion_threshold(struct request_queue *q) 88 { 89 int nr; 90 91 nr = q->nr_requests - (q->nr_requests / 8) + 1; 92 if (nr > q->nr_requests) 93 nr = q->nr_requests; 94 q->nr_congestion_on = nr; 95 96 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 97 if (nr < 1) 98 nr = 1; 99 q->nr_congestion_off = nr; 100 } 101 102 /** 103 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 104 * @bdev: device 105 * 106 * Locates the passed device's request queue and returns the address of its 107 * backing_dev_info 108 * 109 * Will return NULL if the request queue cannot be located. 110 */ 111 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 112 { 113 struct backing_dev_info *ret = NULL; 114 struct request_queue *q = bdev_get_queue(bdev); 115 116 if (q) 117 ret = &q->backing_dev_info; 118 return ret; 119 } 120 EXPORT_SYMBOL(blk_get_backing_dev_info); 121 122 void blk_rq_init(struct request_queue *q, struct request *rq) 123 { 124 memset(rq, 0, sizeof(*rq)); 125 126 INIT_LIST_HEAD(&rq->queuelist); 127 INIT_LIST_HEAD(&rq->timeout_list); 128 rq->cpu = -1; 129 rq->q = q; 130 rq->sector = rq->hard_sector = (sector_t) -1; 131 INIT_HLIST_NODE(&rq->hash); 132 RB_CLEAR_NODE(&rq->rb_node); 133 rq->cmd = rq->__cmd; 134 rq->cmd_len = BLK_MAX_CDB; 135 rq->tag = -1; 136 rq->ref_count = 1; 137 } 138 EXPORT_SYMBOL(blk_rq_init); 139 140 static void req_bio_endio(struct request *rq, struct bio *bio, 141 unsigned int nbytes, int error) 142 { 143 struct request_queue *q = rq->q; 144 145 if (&q->bar_rq != rq) { 146 if (error) 147 clear_bit(BIO_UPTODATE, &bio->bi_flags); 148 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 149 error = -EIO; 150 151 if (unlikely(nbytes > bio->bi_size)) { 152 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 153 __func__, nbytes, bio->bi_size); 154 nbytes = bio->bi_size; 155 } 156 157 if (unlikely(rq->cmd_flags & REQ_QUIET)) 158 set_bit(BIO_QUIET, &bio->bi_flags); 159 160 bio->bi_size -= nbytes; 161 bio->bi_sector += (nbytes >> 9); 162 163 if (bio_integrity(bio)) 164 bio_integrity_advance(bio, nbytes); 165 166 if (bio->bi_size == 0) 167 bio_endio(bio, error); 168 } else { 169 170 /* 171 * Okay, this is the barrier request in progress, just 172 * record the error; 173 */ 174 if (error && !q->orderr) 175 q->orderr = error; 176 } 177 } 178 179 void blk_dump_rq_flags(struct request *rq, char *msg) 180 { 181 int bit; 182 183 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 184 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 185 rq->cmd_flags); 186 187 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n", 188 (unsigned long long)rq->sector, 189 rq->nr_sectors, 190 rq->current_nr_sectors); 191 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n", 192 rq->bio, rq->biotail, 193 rq->buffer, rq->data, 194 rq->data_len); 195 196 if (blk_pc_request(rq)) { 197 printk(KERN_INFO " cdb: "); 198 for (bit = 0; bit < BLK_MAX_CDB; bit++) 199 printk("%02x ", rq->cmd[bit]); 200 printk("\n"); 201 } 202 } 203 EXPORT_SYMBOL(blk_dump_rq_flags); 204 205 /* 206 * "plug" the device if there are no outstanding requests: this will 207 * force the transfer to start only after we have put all the requests 208 * on the list. 209 * 210 * This is called with interrupts off and no requests on the queue and 211 * with the queue lock held. 212 */ 213 void blk_plug_device(struct request_queue *q) 214 { 215 WARN_ON(!irqs_disabled()); 216 217 /* 218 * don't plug a stopped queue, it must be paired with blk_start_queue() 219 * which will restart the queueing 220 */ 221 if (blk_queue_stopped(q)) 222 return; 223 224 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) { 225 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 226 trace_block_plug(q); 227 } 228 } 229 EXPORT_SYMBOL(blk_plug_device); 230 231 /** 232 * blk_plug_device_unlocked - plug a device without queue lock held 233 * @q: The &struct request_queue to plug 234 * 235 * Description: 236 * Like @blk_plug_device(), but grabs the queue lock and disables 237 * interrupts. 238 **/ 239 void blk_plug_device_unlocked(struct request_queue *q) 240 { 241 unsigned long flags; 242 243 spin_lock_irqsave(q->queue_lock, flags); 244 blk_plug_device(q); 245 spin_unlock_irqrestore(q->queue_lock, flags); 246 } 247 EXPORT_SYMBOL(blk_plug_device_unlocked); 248 249 /* 250 * remove the queue from the plugged list, if present. called with 251 * queue lock held and interrupts disabled. 252 */ 253 int blk_remove_plug(struct request_queue *q) 254 { 255 WARN_ON(!irqs_disabled()); 256 257 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q)) 258 return 0; 259 260 del_timer(&q->unplug_timer); 261 return 1; 262 } 263 EXPORT_SYMBOL(blk_remove_plug); 264 265 /* 266 * remove the plug and let it rip.. 267 */ 268 void __generic_unplug_device(struct request_queue *q) 269 { 270 if (unlikely(blk_queue_stopped(q))) 271 return; 272 if (!blk_remove_plug(q) && !blk_queue_nonrot(q)) 273 return; 274 275 q->request_fn(q); 276 } 277 278 /** 279 * generic_unplug_device - fire a request queue 280 * @q: The &struct request_queue in question 281 * 282 * Description: 283 * Linux uses plugging to build bigger requests queues before letting 284 * the device have at them. If a queue is plugged, the I/O scheduler 285 * is still adding and merging requests on the queue. Once the queue 286 * gets unplugged, the request_fn defined for the queue is invoked and 287 * transfers started. 288 **/ 289 void generic_unplug_device(struct request_queue *q) 290 { 291 if (blk_queue_plugged(q)) { 292 spin_lock_irq(q->queue_lock); 293 __generic_unplug_device(q); 294 spin_unlock_irq(q->queue_lock); 295 } 296 } 297 EXPORT_SYMBOL(generic_unplug_device); 298 299 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 300 struct page *page) 301 { 302 struct request_queue *q = bdi->unplug_io_data; 303 304 blk_unplug(q); 305 } 306 307 void blk_unplug_work(struct work_struct *work) 308 { 309 struct request_queue *q = 310 container_of(work, struct request_queue, unplug_work); 311 312 trace_block_unplug_io(q); 313 q->unplug_fn(q); 314 } 315 316 void blk_unplug_timeout(unsigned long data) 317 { 318 struct request_queue *q = (struct request_queue *)data; 319 320 trace_block_unplug_timer(q); 321 kblockd_schedule_work(q, &q->unplug_work); 322 } 323 324 void blk_unplug(struct request_queue *q) 325 { 326 /* 327 * devices don't necessarily have an ->unplug_fn defined 328 */ 329 if (q->unplug_fn) { 330 trace_block_unplug_io(q); 331 q->unplug_fn(q); 332 } 333 } 334 EXPORT_SYMBOL(blk_unplug); 335 336 static void blk_invoke_request_fn(struct request_queue *q) 337 { 338 if (unlikely(blk_queue_stopped(q))) 339 return; 340 341 /* 342 * one level of recursion is ok and is much faster than kicking 343 * the unplug handling 344 */ 345 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 346 q->request_fn(q); 347 queue_flag_clear(QUEUE_FLAG_REENTER, q); 348 } else { 349 queue_flag_set(QUEUE_FLAG_PLUGGED, q); 350 kblockd_schedule_work(q, &q->unplug_work); 351 } 352 } 353 354 /** 355 * blk_start_queue - restart a previously stopped queue 356 * @q: The &struct request_queue in question 357 * 358 * Description: 359 * blk_start_queue() will clear the stop flag on the queue, and call 360 * the request_fn for the queue if it was in a stopped state when 361 * entered. Also see blk_stop_queue(). Queue lock must be held. 362 **/ 363 void blk_start_queue(struct request_queue *q) 364 { 365 WARN_ON(!irqs_disabled()); 366 367 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 368 blk_invoke_request_fn(q); 369 } 370 EXPORT_SYMBOL(blk_start_queue); 371 372 /** 373 * blk_stop_queue - stop a queue 374 * @q: The &struct request_queue in question 375 * 376 * Description: 377 * The Linux block layer assumes that a block driver will consume all 378 * entries on the request queue when the request_fn strategy is called. 379 * Often this will not happen, because of hardware limitations (queue 380 * depth settings). If a device driver gets a 'queue full' response, 381 * or if it simply chooses not to queue more I/O at one point, it can 382 * call this function to prevent the request_fn from being called until 383 * the driver has signalled it's ready to go again. This happens by calling 384 * blk_start_queue() to restart queue operations. Queue lock must be held. 385 **/ 386 void blk_stop_queue(struct request_queue *q) 387 { 388 blk_remove_plug(q); 389 queue_flag_set(QUEUE_FLAG_STOPPED, q); 390 } 391 EXPORT_SYMBOL(blk_stop_queue); 392 393 /** 394 * blk_sync_queue - cancel any pending callbacks on a queue 395 * @q: the queue 396 * 397 * Description: 398 * The block layer may perform asynchronous callback activity 399 * on a queue, such as calling the unplug function after a timeout. 400 * A block device may call blk_sync_queue to ensure that any 401 * such activity is cancelled, thus allowing it to release resources 402 * that the callbacks might use. The caller must already have made sure 403 * that its ->make_request_fn will not re-add plugging prior to calling 404 * this function. 405 * 406 */ 407 void blk_sync_queue(struct request_queue *q) 408 { 409 del_timer_sync(&q->unplug_timer); 410 del_timer_sync(&q->timeout); 411 cancel_work_sync(&q->unplug_work); 412 } 413 EXPORT_SYMBOL(blk_sync_queue); 414 415 /** 416 * __blk_run_queue - run a single device queue 417 * @q: The queue to run 418 * 419 * Description: 420 * See @blk_run_queue. This variant must be called with the queue lock 421 * held and interrupts disabled. 422 * 423 */ 424 void __blk_run_queue(struct request_queue *q) 425 { 426 blk_remove_plug(q); 427 428 /* 429 * Only recurse once to avoid overrunning the stack, let the unplug 430 * handling reinvoke the handler shortly if we already got there. 431 */ 432 if (!elv_queue_empty(q)) 433 blk_invoke_request_fn(q); 434 } 435 EXPORT_SYMBOL(__blk_run_queue); 436 437 /** 438 * blk_run_queue - run a single device queue 439 * @q: The queue to run 440 * 441 * Description: 442 * Invoke request handling on this queue, if it has pending work to do. 443 * May be used to restart queueing when a request has completed. Also 444 * See @blk_start_queueing. 445 * 446 */ 447 void blk_run_queue(struct request_queue *q) 448 { 449 unsigned long flags; 450 451 spin_lock_irqsave(q->queue_lock, flags); 452 __blk_run_queue(q); 453 spin_unlock_irqrestore(q->queue_lock, flags); 454 } 455 EXPORT_SYMBOL(blk_run_queue); 456 457 void blk_put_queue(struct request_queue *q) 458 { 459 kobject_put(&q->kobj); 460 } 461 462 void blk_cleanup_queue(struct request_queue *q) 463 { 464 /* 465 * We know we have process context here, so we can be a little 466 * cautious and ensure that pending block actions on this device 467 * are done before moving on. Going into this function, we should 468 * not have processes doing IO to this device. 469 */ 470 blk_sync_queue(q); 471 472 mutex_lock(&q->sysfs_lock); 473 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 474 mutex_unlock(&q->sysfs_lock); 475 476 if (q->elevator) 477 elevator_exit(q->elevator); 478 479 blk_put_queue(q); 480 } 481 EXPORT_SYMBOL(blk_cleanup_queue); 482 483 static int blk_init_free_list(struct request_queue *q) 484 { 485 struct request_list *rl = &q->rq; 486 487 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 488 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 489 rl->elvpriv = 0; 490 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 491 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 492 493 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 494 mempool_free_slab, request_cachep, q->node); 495 496 if (!rl->rq_pool) 497 return -ENOMEM; 498 499 return 0; 500 } 501 502 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 503 { 504 return blk_alloc_queue_node(gfp_mask, -1); 505 } 506 EXPORT_SYMBOL(blk_alloc_queue); 507 508 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 509 { 510 struct request_queue *q; 511 int err; 512 513 q = kmem_cache_alloc_node(blk_requestq_cachep, 514 gfp_mask | __GFP_ZERO, node_id); 515 if (!q) 516 return NULL; 517 518 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 519 q->backing_dev_info.unplug_io_data = q; 520 err = bdi_init(&q->backing_dev_info); 521 if (err) { 522 kmem_cache_free(blk_requestq_cachep, q); 523 return NULL; 524 } 525 526 init_timer(&q->unplug_timer); 527 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 528 INIT_LIST_HEAD(&q->timeout_list); 529 INIT_WORK(&q->unplug_work, blk_unplug_work); 530 531 kobject_init(&q->kobj, &blk_queue_ktype); 532 533 mutex_init(&q->sysfs_lock); 534 spin_lock_init(&q->__queue_lock); 535 536 return q; 537 } 538 EXPORT_SYMBOL(blk_alloc_queue_node); 539 540 /** 541 * blk_init_queue - prepare a request queue for use with a block device 542 * @rfn: The function to be called to process requests that have been 543 * placed on the queue. 544 * @lock: Request queue spin lock 545 * 546 * Description: 547 * If a block device wishes to use the standard request handling procedures, 548 * which sorts requests and coalesces adjacent requests, then it must 549 * call blk_init_queue(). The function @rfn will be called when there 550 * are requests on the queue that need to be processed. If the device 551 * supports plugging, then @rfn may not be called immediately when requests 552 * are available on the queue, but may be called at some time later instead. 553 * Plugged queues are generally unplugged when a buffer belonging to one 554 * of the requests on the queue is needed, or due to memory pressure. 555 * 556 * @rfn is not required, or even expected, to remove all requests off the 557 * queue, but only as many as it can handle at a time. If it does leave 558 * requests on the queue, it is responsible for arranging that the requests 559 * get dealt with eventually. 560 * 561 * The queue spin lock must be held while manipulating the requests on the 562 * request queue; this lock will be taken also from interrupt context, so irq 563 * disabling is needed for it. 564 * 565 * Function returns a pointer to the initialized request queue, or %NULL if 566 * it didn't succeed. 567 * 568 * Note: 569 * blk_init_queue() must be paired with a blk_cleanup_queue() call 570 * when the block device is deactivated (such as at module unload). 571 **/ 572 573 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 574 { 575 return blk_init_queue_node(rfn, lock, -1); 576 } 577 EXPORT_SYMBOL(blk_init_queue); 578 579 struct request_queue * 580 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 581 { 582 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id); 583 584 if (!q) 585 return NULL; 586 587 q->node = node_id; 588 if (blk_init_free_list(q)) { 589 kmem_cache_free(blk_requestq_cachep, q); 590 return NULL; 591 } 592 593 /* 594 * if caller didn't supply a lock, they get per-queue locking with 595 * our embedded lock 596 */ 597 if (!lock) 598 lock = &q->__queue_lock; 599 600 q->request_fn = rfn; 601 q->prep_rq_fn = NULL; 602 q->unplug_fn = generic_unplug_device; 603 q->queue_flags = QUEUE_FLAG_DEFAULT; 604 q->queue_lock = lock; 605 606 /* 607 * This also sets hw/phys segments, boundary and size 608 */ 609 blk_queue_make_request(q, __make_request); 610 611 q->sg_reserved_size = INT_MAX; 612 613 blk_set_cmd_filter_defaults(&q->cmd_filter); 614 615 /* 616 * all done 617 */ 618 if (!elevator_init(q, NULL)) { 619 blk_queue_congestion_threshold(q); 620 return q; 621 } 622 623 blk_put_queue(q); 624 return NULL; 625 } 626 EXPORT_SYMBOL(blk_init_queue_node); 627 628 int blk_get_queue(struct request_queue *q) 629 { 630 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 631 kobject_get(&q->kobj); 632 return 0; 633 } 634 635 return 1; 636 } 637 638 static inline void blk_free_request(struct request_queue *q, struct request *rq) 639 { 640 if (rq->cmd_flags & REQ_ELVPRIV) 641 elv_put_request(q, rq); 642 mempool_free(rq, q->rq.rq_pool); 643 } 644 645 static struct request * 646 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask) 647 { 648 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 649 650 if (!rq) 651 return NULL; 652 653 blk_rq_init(q, rq); 654 655 rq->cmd_flags = rw | REQ_ALLOCED; 656 657 if (priv) { 658 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 659 mempool_free(rq, q->rq.rq_pool); 660 return NULL; 661 } 662 rq->cmd_flags |= REQ_ELVPRIV; 663 } 664 665 return rq; 666 } 667 668 /* 669 * ioc_batching returns true if the ioc is a valid batching request and 670 * should be given priority access to a request. 671 */ 672 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 673 { 674 if (!ioc) 675 return 0; 676 677 /* 678 * Make sure the process is able to allocate at least 1 request 679 * even if the batch times out, otherwise we could theoretically 680 * lose wakeups. 681 */ 682 return ioc->nr_batch_requests == q->nr_batching || 683 (ioc->nr_batch_requests > 0 684 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 685 } 686 687 /* 688 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 689 * will cause the process to be a "batcher" on all queues in the system. This 690 * is the behaviour we want though - once it gets a wakeup it should be given 691 * a nice run. 692 */ 693 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 694 { 695 if (!ioc || ioc_batching(q, ioc)) 696 return; 697 698 ioc->nr_batch_requests = q->nr_batching; 699 ioc->last_waited = jiffies; 700 } 701 702 static void __freed_request(struct request_queue *q, int sync) 703 { 704 struct request_list *rl = &q->rq; 705 706 if (rl->count[sync] < queue_congestion_off_threshold(q)) 707 blk_clear_queue_congested(q, sync); 708 709 if (rl->count[sync] + 1 <= q->nr_requests) { 710 if (waitqueue_active(&rl->wait[sync])) 711 wake_up(&rl->wait[sync]); 712 713 blk_clear_queue_full(q, sync); 714 } 715 } 716 717 /* 718 * A request has just been released. Account for it, update the full and 719 * congestion status, wake up any waiters. Called under q->queue_lock. 720 */ 721 static void freed_request(struct request_queue *q, int sync, int priv) 722 { 723 struct request_list *rl = &q->rq; 724 725 rl->count[sync]--; 726 if (priv) 727 rl->elvpriv--; 728 729 __freed_request(q, sync); 730 731 if (unlikely(rl->starved[sync ^ 1])) 732 __freed_request(q, sync ^ 1); 733 } 734 735 /* 736 * Get a free request, queue_lock must be held. 737 * Returns NULL on failure, with queue_lock held. 738 * Returns !NULL on success, with queue_lock *not held*. 739 */ 740 static struct request *get_request(struct request_queue *q, int rw_flags, 741 struct bio *bio, gfp_t gfp_mask) 742 { 743 struct request *rq = NULL; 744 struct request_list *rl = &q->rq; 745 struct io_context *ioc = NULL; 746 const bool is_sync = rw_is_sync(rw_flags) != 0; 747 int may_queue, priv; 748 749 may_queue = elv_may_queue(q, rw_flags); 750 if (may_queue == ELV_MQUEUE_NO) 751 goto rq_starved; 752 753 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 754 if (rl->count[is_sync]+1 >= q->nr_requests) { 755 ioc = current_io_context(GFP_ATOMIC, q->node); 756 /* 757 * The queue will fill after this allocation, so set 758 * it as full, and mark this process as "batching". 759 * This process will be allowed to complete a batch of 760 * requests, others will be blocked. 761 */ 762 if (!blk_queue_full(q, is_sync)) { 763 ioc_set_batching(q, ioc); 764 blk_set_queue_full(q, is_sync); 765 } else { 766 if (may_queue != ELV_MQUEUE_MUST 767 && !ioc_batching(q, ioc)) { 768 /* 769 * The queue is full and the allocating 770 * process is not a "batcher", and not 771 * exempted by the IO scheduler 772 */ 773 goto out; 774 } 775 } 776 } 777 blk_set_queue_congested(q, is_sync); 778 } 779 780 /* 781 * Only allow batching queuers to allocate up to 50% over the defined 782 * limit of requests, otherwise we could have thousands of requests 783 * allocated with any setting of ->nr_requests 784 */ 785 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 786 goto out; 787 788 rl->count[is_sync]++; 789 rl->starved[is_sync] = 0; 790 791 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 792 if (priv) 793 rl->elvpriv++; 794 795 spin_unlock_irq(q->queue_lock); 796 797 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 798 if (unlikely(!rq)) { 799 /* 800 * Allocation failed presumably due to memory. Undo anything 801 * we might have messed up. 802 * 803 * Allocating task should really be put onto the front of the 804 * wait queue, but this is pretty rare. 805 */ 806 spin_lock_irq(q->queue_lock); 807 freed_request(q, is_sync, priv); 808 809 /* 810 * in the very unlikely event that allocation failed and no 811 * requests for this direction was pending, mark us starved 812 * so that freeing of a request in the other direction will 813 * notice us. another possible fix would be to split the 814 * rq mempool into READ and WRITE 815 */ 816 rq_starved: 817 if (unlikely(rl->count[is_sync] == 0)) 818 rl->starved[is_sync] = 1; 819 820 goto out; 821 } 822 823 /* 824 * ioc may be NULL here, and ioc_batching will be false. That's 825 * OK, if the queue is under the request limit then requests need 826 * not count toward the nr_batch_requests limit. There will always 827 * be some limit enforced by BLK_BATCH_TIME. 828 */ 829 if (ioc_batching(q, ioc)) 830 ioc->nr_batch_requests--; 831 832 trace_block_getrq(q, bio, rw_flags & 1); 833 out: 834 return rq; 835 } 836 837 /* 838 * No available requests for this queue, unplug the device and wait for some 839 * requests to become available. 840 * 841 * Called with q->queue_lock held, and returns with it unlocked. 842 */ 843 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 844 struct bio *bio) 845 { 846 const bool is_sync = rw_is_sync(rw_flags) != 0; 847 struct request *rq; 848 849 rq = get_request(q, rw_flags, bio, GFP_NOIO); 850 while (!rq) { 851 DEFINE_WAIT(wait); 852 struct io_context *ioc; 853 struct request_list *rl = &q->rq; 854 855 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 856 TASK_UNINTERRUPTIBLE); 857 858 trace_block_sleeprq(q, bio, rw_flags & 1); 859 860 __generic_unplug_device(q); 861 spin_unlock_irq(q->queue_lock); 862 io_schedule(); 863 864 /* 865 * After sleeping, we become a "batching" process and 866 * will be able to allocate at least one request, and 867 * up to a big batch of them for a small period time. 868 * See ioc_batching, ioc_set_batching 869 */ 870 ioc = current_io_context(GFP_NOIO, q->node); 871 ioc_set_batching(q, ioc); 872 873 spin_lock_irq(q->queue_lock); 874 finish_wait(&rl->wait[is_sync], &wait); 875 876 rq = get_request(q, rw_flags, bio, GFP_NOIO); 877 }; 878 879 return rq; 880 } 881 882 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 883 { 884 struct request *rq; 885 886 BUG_ON(rw != READ && rw != WRITE); 887 888 spin_lock_irq(q->queue_lock); 889 if (gfp_mask & __GFP_WAIT) { 890 rq = get_request_wait(q, rw, NULL); 891 } else { 892 rq = get_request(q, rw, NULL, gfp_mask); 893 if (!rq) 894 spin_unlock_irq(q->queue_lock); 895 } 896 /* q->queue_lock is unlocked at this point */ 897 898 return rq; 899 } 900 EXPORT_SYMBOL(blk_get_request); 901 902 /** 903 * blk_start_queueing - initiate dispatch of requests to device 904 * @q: request queue to kick into gear 905 * 906 * This is basically a helper to remove the need to know whether a queue 907 * is plugged or not if someone just wants to initiate dispatch of requests 908 * for this queue. Should be used to start queueing on a device outside 909 * of ->request_fn() context. Also see @blk_run_queue. 910 * 911 * The queue lock must be held with interrupts disabled. 912 */ 913 void blk_start_queueing(struct request_queue *q) 914 { 915 if (!blk_queue_plugged(q)) { 916 if (unlikely(blk_queue_stopped(q))) 917 return; 918 q->request_fn(q); 919 } else 920 __generic_unplug_device(q); 921 } 922 EXPORT_SYMBOL(blk_start_queueing); 923 924 /** 925 * blk_requeue_request - put a request back on queue 926 * @q: request queue where request should be inserted 927 * @rq: request to be inserted 928 * 929 * Description: 930 * Drivers often keep queueing requests until the hardware cannot accept 931 * more, when that condition happens we need to put the request back 932 * on the queue. Must be called with queue lock held. 933 */ 934 void blk_requeue_request(struct request_queue *q, struct request *rq) 935 { 936 blk_delete_timer(rq); 937 blk_clear_rq_complete(rq); 938 trace_block_rq_requeue(q, rq); 939 940 if (blk_rq_tagged(rq)) 941 blk_queue_end_tag(q, rq); 942 943 elv_requeue_request(q, rq); 944 } 945 EXPORT_SYMBOL(blk_requeue_request); 946 947 /** 948 * blk_insert_request - insert a special request into a request queue 949 * @q: request queue where request should be inserted 950 * @rq: request to be inserted 951 * @at_head: insert request at head or tail of queue 952 * @data: private data 953 * 954 * Description: 955 * Many block devices need to execute commands asynchronously, so they don't 956 * block the whole kernel from preemption during request execution. This is 957 * accomplished normally by inserting aritficial requests tagged as 958 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 959 * be scheduled for actual execution by the request queue. 960 * 961 * We have the option of inserting the head or the tail of the queue. 962 * Typically we use the tail for new ioctls and so forth. We use the head 963 * of the queue for things like a QUEUE_FULL message from a device, or a 964 * host that is unable to accept a particular command. 965 */ 966 void blk_insert_request(struct request_queue *q, struct request *rq, 967 int at_head, void *data) 968 { 969 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 970 unsigned long flags; 971 972 /* 973 * tell I/O scheduler that this isn't a regular read/write (ie it 974 * must not attempt merges on this) and that it acts as a soft 975 * barrier 976 */ 977 rq->cmd_type = REQ_TYPE_SPECIAL; 978 rq->cmd_flags |= REQ_SOFTBARRIER; 979 980 rq->special = data; 981 982 spin_lock_irqsave(q->queue_lock, flags); 983 984 /* 985 * If command is tagged, release the tag 986 */ 987 if (blk_rq_tagged(rq)) 988 blk_queue_end_tag(q, rq); 989 990 drive_stat_acct(rq, 1); 991 __elv_add_request(q, rq, where, 0); 992 blk_start_queueing(q); 993 spin_unlock_irqrestore(q->queue_lock, flags); 994 } 995 EXPORT_SYMBOL(blk_insert_request); 996 997 /* 998 * add-request adds a request to the linked list. 999 * queue lock is held and interrupts disabled, as we muck with the 1000 * request queue list. 1001 */ 1002 static inline void add_request(struct request_queue *q, struct request *req) 1003 { 1004 drive_stat_acct(req, 1); 1005 1006 /* 1007 * elevator indicated where it wants this request to be 1008 * inserted at elevator_merge time 1009 */ 1010 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); 1011 } 1012 1013 static void part_round_stats_single(int cpu, struct hd_struct *part, 1014 unsigned long now) 1015 { 1016 if (now == part->stamp) 1017 return; 1018 1019 if (part->in_flight) { 1020 __part_stat_add(cpu, part, time_in_queue, 1021 part->in_flight * (now - part->stamp)); 1022 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1023 } 1024 part->stamp = now; 1025 } 1026 1027 /** 1028 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1029 * @cpu: cpu number for stats access 1030 * @part: target partition 1031 * 1032 * The average IO queue length and utilisation statistics are maintained 1033 * by observing the current state of the queue length and the amount of 1034 * time it has been in this state for. 1035 * 1036 * Normally, that accounting is done on IO completion, but that can result 1037 * in more than a second's worth of IO being accounted for within any one 1038 * second, leading to >100% utilisation. To deal with that, we call this 1039 * function to do a round-off before returning the results when reading 1040 * /proc/diskstats. This accounts immediately for all queue usage up to 1041 * the current jiffies and restarts the counters again. 1042 */ 1043 void part_round_stats(int cpu, struct hd_struct *part) 1044 { 1045 unsigned long now = jiffies; 1046 1047 if (part->partno) 1048 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1049 part_round_stats_single(cpu, part, now); 1050 } 1051 EXPORT_SYMBOL_GPL(part_round_stats); 1052 1053 /* 1054 * queue lock must be held 1055 */ 1056 void __blk_put_request(struct request_queue *q, struct request *req) 1057 { 1058 if (unlikely(!q)) 1059 return; 1060 if (unlikely(--req->ref_count)) 1061 return; 1062 1063 elv_completed_request(q, req); 1064 1065 /* this is a bio leak */ 1066 WARN_ON(req->bio != NULL); 1067 1068 /* 1069 * Request may not have originated from ll_rw_blk. if not, 1070 * it didn't come out of our reserved rq pools 1071 */ 1072 if (req->cmd_flags & REQ_ALLOCED) { 1073 int is_sync = rq_is_sync(req) != 0; 1074 int priv = req->cmd_flags & REQ_ELVPRIV; 1075 1076 BUG_ON(!list_empty(&req->queuelist)); 1077 BUG_ON(!hlist_unhashed(&req->hash)); 1078 1079 blk_free_request(q, req); 1080 freed_request(q, is_sync, priv); 1081 } 1082 } 1083 EXPORT_SYMBOL_GPL(__blk_put_request); 1084 1085 void blk_put_request(struct request *req) 1086 { 1087 unsigned long flags; 1088 struct request_queue *q = req->q; 1089 1090 spin_lock_irqsave(q->queue_lock, flags); 1091 __blk_put_request(q, req); 1092 spin_unlock_irqrestore(q->queue_lock, flags); 1093 } 1094 EXPORT_SYMBOL(blk_put_request); 1095 1096 void init_request_from_bio(struct request *req, struct bio *bio) 1097 { 1098 req->cpu = bio->bi_comp_cpu; 1099 req->cmd_type = REQ_TYPE_FS; 1100 1101 /* 1102 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST) 1103 */ 1104 if (bio_rw_ahead(bio)) 1105 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | 1106 REQ_FAILFAST_DRIVER); 1107 if (bio_failfast_dev(bio)) 1108 req->cmd_flags |= REQ_FAILFAST_DEV; 1109 if (bio_failfast_transport(bio)) 1110 req->cmd_flags |= REQ_FAILFAST_TRANSPORT; 1111 if (bio_failfast_driver(bio)) 1112 req->cmd_flags |= REQ_FAILFAST_DRIVER; 1113 1114 /* 1115 * REQ_BARRIER implies no merging, but lets make it explicit 1116 */ 1117 if (unlikely(bio_discard(bio))) { 1118 req->cmd_flags |= REQ_DISCARD; 1119 if (bio_barrier(bio)) 1120 req->cmd_flags |= REQ_SOFTBARRIER; 1121 req->q->prepare_discard_fn(req->q, req); 1122 } else if (unlikely(bio_barrier(bio))) 1123 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE); 1124 1125 if (bio_sync(bio)) 1126 req->cmd_flags |= REQ_RW_SYNC; 1127 if (bio_rw_meta(bio)) 1128 req->cmd_flags |= REQ_RW_META; 1129 if (bio_noidle(bio)) 1130 req->cmd_flags |= REQ_NOIDLE; 1131 1132 req->errors = 0; 1133 req->hard_sector = req->sector = bio->bi_sector; 1134 req->ioprio = bio_prio(bio); 1135 req->start_time = jiffies; 1136 blk_rq_bio_prep(req->q, req, bio); 1137 } 1138 1139 /* 1140 * Only disabling plugging for non-rotational devices if it does tagging 1141 * as well, otherwise we do need the proper merging 1142 */ 1143 static inline bool queue_should_plug(struct request_queue *q) 1144 { 1145 return !(blk_queue_nonrot(q) && blk_queue_tagged(q)); 1146 } 1147 1148 static int __make_request(struct request_queue *q, struct bio *bio) 1149 { 1150 struct request *req; 1151 int el_ret, nr_sectors; 1152 const unsigned short prio = bio_prio(bio); 1153 const int sync = bio_sync(bio); 1154 const int unplug = bio_unplug(bio); 1155 int rw_flags; 1156 1157 nr_sectors = bio_sectors(bio); 1158 1159 /* 1160 * low level driver can indicate that it wants pages above a 1161 * certain limit bounced to low memory (ie for highmem, or even 1162 * ISA dma in theory) 1163 */ 1164 blk_queue_bounce(q, &bio); 1165 1166 spin_lock_irq(q->queue_lock); 1167 1168 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q)) 1169 goto get_rq; 1170 1171 el_ret = elv_merge(q, &req, bio); 1172 switch (el_ret) { 1173 case ELEVATOR_BACK_MERGE: 1174 BUG_ON(!rq_mergeable(req)); 1175 1176 if (!ll_back_merge_fn(q, req, bio)) 1177 break; 1178 1179 trace_block_bio_backmerge(q, bio); 1180 1181 req->biotail->bi_next = bio; 1182 req->biotail = bio; 1183 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1184 req->ioprio = ioprio_best(req->ioprio, prio); 1185 if (!blk_rq_cpu_valid(req)) 1186 req->cpu = bio->bi_comp_cpu; 1187 drive_stat_acct(req, 0); 1188 if (!attempt_back_merge(q, req)) 1189 elv_merged_request(q, req, el_ret); 1190 goto out; 1191 1192 case ELEVATOR_FRONT_MERGE: 1193 BUG_ON(!rq_mergeable(req)); 1194 1195 if (!ll_front_merge_fn(q, req, bio)) 1196 break; 1197 1198 trace_block_bio_frontmerge(q, bio); 1199 1200 bio->bi_next = req->bio; 1201 req->bio = bio; 1202 1203 /* 1204 * may not be valid. if the low level driver said 1205 * it didn't need a bounce buffer then it better 1206 * not touch req->buffer either... 1207 */ 1208 req->buffer = bio_data(bio); 1209 req->current_nr_sectors = bio_cur_sectors(bio); 1210 req->hard_cur_sectors = req->current_nr_sectors; 1211 req->sector = req->hard_sector = bio->bi_sector; 1212 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1213 req->ioprio = ioprio_best(req->ioprio, prio); 1214 if (!blk_rq_cpu_valid(req)) 1215 req->cpu = bio->bi_comp_cpu; 1216 drive_stat_acct(req, 0); 1217 if (!attempt_front_merge(q, req)) 1218 elv_merged_request(q, req, el_ret); 1219 goto out; 1220 1221 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1222 default: 1223 ; 1224 } 1225 1226 get_rq: 1227 /* 1228 * This sync check and mask will be re-done in init_request_from_bio(), 1229 * but we need to set it earlier to expose the sync flag to the 1230 * rq allocator and io schedulers. 1231 */ 1232 rw_flags = bio_data_dir(bio); 1233 if (sync) 1234 rw_flags |= REQ_RW_SYNC; 1235 1236 /* 1237 * Grab a free request. This is might sleep but can not fail. 1238 * Returns with the queue unlocked. 1239 */ 1240 req = get_request_wait(q, rw_flags, bio); 1241 1242 /* 1243 * After dropping the lock and possibly sleeping here, our request 1244 * may now be mergeable after it had proven unmergeable (above). 1245 * We don't worry about that case for efficiency. It won't happen 1246 * often, and the elevators are able to handle it. 1247 */ 1248 init_request_from_bio(req, bio); 1249 1250 spin_lock_irq(q->queue_lock); 1251 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1252 bio_flagged(bio, BIO_CPU_AFFINE)) 1253 req->cpu = blk_cpu_to_group(smp_processor_id()); 1254 if (queue_should_plug(q) && elv_queue_empty(q)) 1255 blk_plug_device(q); 1256 add_request(q, req); 1257 out: 1258 if (unplug || !queue_should_plug(q)) 1259 __generic_unplug_device(q); 1260 spin_unlock_irq(q->queue_lock); 1261 return 0; 1262 } 1263 1264 /* 1265 * If bio->bi_dev is a partition, remap the location 1266 */ 1267 static inline void blk_partition_remap(struct bio *bio) 1268 { 1269 struct block_device *bdev = bio->bi_bdev; 1270 1271 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1272 struct hd_struct *p = bdev->bd_part; 1273 1274 bio->bi_sector += p->start_sect; 1275 bio->bi_bdev = bdev->bd_contains; 1276 1277 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio, 1278 bdev->bd_dev, bio->bi_sector, 1279 bio->bi_sector - p->start_sect); 1280 } 1281 } 1282 1283 static void handle_bad_sector(struct bio *bio) 1284 { 1285 char b[BDEVNAME_SIZE]; 1286 1287 printk(KERN_INFO "attempt to access beyond end of device\n"); 1288 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1289 bdevname(bio->bi_bdev, b), 1290 bio->bi_rw, 1291 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1292 (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); 1293 1294 set_bit(BIO_EOF, &bio->bi_flags); 1295 } 1296 1297 #ifdef CONFIG_FAIL_MAKE_REQUEST 1298 1299 static DECLARE_FAULT_ATTR(fail_make_request); 1300 1301 static int __init setup_fail_make_request(char *str) 1302 { 1303 return setup_fault_attr(&fail_make_request, str); 1304 } 1305 __setup("fail_make_request=", setup_fail_make_request); 1306 1307 static int should_fail_request(struct bio *bio) 1308 { 1309 struct hd_struct *part = bio->bi_bdev->bd_part; 1310 1311 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail) 1312 return should_fail(&fail_make_request, bio->bi_size); 1313 1314 return 0; 1315 } 1316 1317 static int __init fail_make_request_debugfs(void) 1318 { 1319 return init_fault_attr_dentries(&fail_make_request, 1320 "fail_make_request"); 1321 } 1322 1323 late_initcall(fail_make_request_debugfs); 1324 1325 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1326 1327 static inline int should_fail_request(struct bio *bio) 1328 { 1329 return 0; 1330 } 1331 1332 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1333 1334 /* 1335 * Check whether this bio extends beyond the end of the device. 1336 */ 1337 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1338 { 1339 sector_t maxsector; 1340 1341 if (!nr_sectors) 1342 return 0; 1343 1344 /* Test device or partition size, when known. */ 1345 maxsector = bio->bi_bdev->bd_inode->i_size >> 9; 1346 if (maxsector) { 1347 sector_t sector = bio->bi_sector; 1348 1349 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1350 /* 1351 * This may well happen - the kernel calls bread() 1352 * without checking the size of the device, e.g., when 1353 * mounting a device. 1354 */ 1355 handle_bad_sector(bio); 1356 return 1; 1357 } 1358 } 1359 1360 return 0; 1361 } 1362 1363 /** 1364 * generic_make_request - hand a buffer to its device driver for I/O 1365 * @bio: The bio describing the location in memory and on the device. 1366 * 1367 * generic_make_request() is used to make I/O requests of block 1368 * devices. It is passed a &struct bio, which describes the I/O that needs 1369 * to be done. 1370 * 1371 * generic_make_request() does not return any status. The 1372 * success/failure status of the request, along with notification of 1373 * completion, is delivered asynchronously through the bio->bi_end_io 1374 * function described (one day) else where. 1375 * 1376 * The caller of generic_make_request must make sure that bi_io_vec 1377 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1378 * set to describe the device address, and the 1379 * bi_end_io and optionally bi_private are set to describe how 1380 * completion notification should be signaled. 1381 * 1382 * generic_make_request and the drivers it calls may use bi_next if this 1383 * bio happens to be merged with someone else, and may change bi_dev and 1384 * bi_sector for remaps as it sees fit. So the values of these fields 1385 * should NOT be depended on after the call to generic_make_request. 1386 */ 1387 static inline void __generic_make_request(struct bio *bio) 1388 { 1389 struct request_queue *q; 1390 sector_t old_sector; 1391 int ret, nr_sectors = bio_sectors(bio); 1392 dev_t old_dev; 1393 int err = -EIO; 1394 1395 might_sleep(); 1396 1397 if (bio_check_eod(bio, nr_sectors)) 1398 goto end_io; 1399 1400 /* 1401 * Resolve the mapping until finished. (drivers are 1402 * still free to implement/resolve their own stacking 1403 * by explicitly returning 0) 1404 * 1405 * NOTE: we don't repeat the blk_size check for each new device. 1406 * Stacking drivers are expected to know what they are doing. 1407 */ 1408 old_sector = -1; 1409 old_dev = 0; 1410 do { 1411 char b[BDEVNAME_SIZE]; 1412 1413 q = bdev_get_queue(bio->bi_bdev); 1414 if (unlikely(!q)) { 1415 printk(KERN_ERR 1416 "generic_make_request: Trying to access " 1417 "nonexistent block-device %s (%Lu)\n", 1418 bdevname(bio->bi_bdev, b), 1419 (long long) bio->bi_sector); 1420 goto end_io; 1421 } 1422 1423 if (unlikely(nr_sectors > q->max_hw_sectors)) { 1424 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1425 bdevname(bio->bi_bdev, b), 1426 bio_sectors(bio), 1427 q->max_hw_sectors); 1428 goto end_io; 1429 } 1430 1431 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1432 goto end_io; 1433 1434 if (should_fail_request(bio)) 1435 goto end_io; 1436 1437 /* 1438 * If this device has partitions, remap block n 1439 * of partition p to block n+start(p) of the disk. 1440 */ 1441 blk_partition_remap(bio); 1442 1443 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1444 goto end_io; 1445 1446 if (old_sector != -1) 1447 trace_block_remap(q, bio, old_dev, bio->bi_sector, 1448 old_sector); 1449 1450 trace_block_bio_queue(q, bio); 1451 1452 old_sector = bio->bi_sector; 1453 old_dev = bio->bi_bdev->bd_dev; 1454 1455 if (bio_check_eod(bio, nr_sectors)) 1456 goto end_io; 1457 1458 if (bio_discard(bio) && !q->prepare_discard_fn) { 1459 err = -EOPNOTSUPP; 1460 goto end_io; 1461 } 1462 if (bio_barrier(bio) && bio_has_data(bio) && 1463 (q->next_ordered == QUEUE_ORDERED_NONE)) { 1464 err = -EOPNOTSUPP; 1465 goto end_io; 1466 } 1467 1468 ret = q->make_request_fn(q, bio); 1469 } while (ret); 1470 1471 return; 1472 1473 end_io: 1474 bio_endio(bio, err); 1475 } 1476 1477 /* 1478 * We only want one ->make_request_fn to be active at a time, 1479 * else stack usage with stacked devices could be a problem. 1480 * So use current->bio_{list,tail} to keep a list of requests 1481 * submited by a make_request_fn function. 1482 * current->bio_tail is also used as a flag to say if 1483 * generic_make_request is currently active in this task or not. 1484 * If it is NULL, then no make_request is active. If it is non-NULL, 1485 * then a make_request is active, and new requests should be added 1486 * at the tail 1487 */ 1488 void generic_make_request(struct bio *bio) 1489 { 1490 if (current->bio_tail) { 1491 /* make_request is active */ 1492 *(current->bio_tail) = bio; 1493 bio->bi_next = NULL; 1494 current->bio_tail = &bio->bi_next; 1495 return; 1496 } 1497 /* following loop may be a bit non-obvious, and so deserves some 1498 * explanation. 1499 * Before entering the loop, bio->bi_next is NULL (as all callers 1500 * ensure that) so we have a list with a single bio. 1501 * We pretend that we have just taken it off a longer list, so 1502 * we assign bio_list to the next (which is NULL) and bio_tail 1503 * to &bio_list, thus initialising the bio_list of new bios to be 1504 * added. __generic_make_request may indeed add some more bios 1505 * through a recursive call to generic_make_request. If it 1506 * did, we find a non-NULL value in bio_list and re-enter the loop 1507 * from the top. In this case we really did just take the bio 1508 * of the top of the list (no pretending) and so fixup bio_list and 1509 * bio_tail or bi_next, and call into __generic_make_request again. 1510 * 1511 * The loop was structured like this to make only one call to 1512 * __generic_make_request (which is important as it is large and 1513 * inlined) and to keep the structure simple. 1514 */ 1515 BUG_ON(bio->bi_next); 1516 do { 1517 current->bio_list = bio->bi_next; 1518 if (bio->bi_next == NULL) 1519 current->bio_tail = ¤t->bio_list; 1520 else 1521 bio->bi_next = NULL; 1522 __generic_make_request(bio); 1523 bio = current->bio_list; 1524 } while (bio); 1525 current->bio_tail = NULL; /* deactivate */ 1526 } 1527 EXPORT_SYMBOL(generic_make_request); 1528 1529 /** 1530 * submit_bio - submit a bio to the block device layer for I/O 1531 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1532 * @bio: The &struct bio which describes the I/O 1533 * 1534 * submit_bio() is very similar in purpose to generic_make_request(), and 1535 * uses that function to do most of the work. Both are fairly rough 1536 * interfaces; @bio must be presetup and ready for I/O. 1537 * 1538 */ 1539 void submit_bio(int rw, struct bio *bio) 1540 { 1541 int count = bio_sectors(bio); 1542 1543 bio->bi_rw |= rw; 1544 1545 /* 1546 * If it's a regular read/write or a barrier with data attached, 1547 * go through the normal accounting stuff before submission. 1548 */ 1549 if (bio_has_data(bio)) { 1550 if (rw & WRITE) { 1551 count_vm_events(PGPGOUT, count); 1552 } else { 1553 task_io_account_read(bio->bi_size); 1554 count_vm_events(PGPGIN, count); 1555 } 1556 1557 if (unlikely(block_dump)) { 1558 char b[BDEVNAME_SIZE]; 1559 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", 1560 current->comm, task_pid_nr(current), 1561 (rw & WRITE) ? "WRITE" : "READ", 1562 (unsigned long long)bio->bi_sector, 1563 bdevname(bio->bi_bdev, b)); 1564 } 1565 } 1566 1567 generic_make_request(bio); 1568 } 1569 EXPORT_SYMBOL(submit_bio); 1570 1571 /** 1572 * blk_rq_check_limits - Helper function to check a request for the queue limit 1573 * @q: the queue 1574 * @rq: the request being checked 1575 * 1576 * Description: 1577 * @rq may have been made based on weaker limitations of upper-level queues 1578 * in request stacking drivers, and it may violate the limitation of @q. 1579 * Since the block layer and the underlying device driver trust @rq 1580 * after it is inserted to @q, it should be checked against @q before 1581 * the insertion using this generic function. 1582 * 1583 * This function should also be useful for request stacking drivers 1584 * in some cases below, so export this fuction. 1585 * Request stacking drivers like request-based dm may change the queue 1586 * limits while requests are in the queue (e.g. dm's table swapping). 1587 * Such request stacking drivers should check those requests agaist 1588 * the new queue limits again when they dispatch those requests, 1589 * although such checkings are also done against the old queue limits 1590 * when submitting requests. 1591 */ 1592 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1593 { 1594 if (rq->nr_sectors > q->max_sectors || 1595 rq->data_len > q->max_hw_sectors << 9) { 1596 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1597 return -EIO; 1598 } 1599 1600 /* 1601 * queue's settings related to segment counting like q->bounce_pfn 1602 * may differ from that of other stacking queues. 1603 * Recalculate it to check the request correctly on this queue's 1604 * limitation. 1605 */ 1606 blk_recalc_rq_segments(rq); 1607 if (rq->nr_phys_segments > q->max_phys_segments || 1608 rq->nr_phys_segments > q->max_hw_segments) { 1609 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1610 return -EIO; 1611 } 1612 1613 return 0; 1614 } 1615 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1616 1617 /** 1618 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1619 * @q: the queue to submit the request 1620 * @rq: the request being queued 1621 */ 1622 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1623 { 1624 unsigned long flags; 1625 1626 if (blk_rq_check_limits(q, rq)) 1627 return -EIO; 1628 1629 #ifdef CONFIG_FAIL_MAKE_REQUEST 1630 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail && 1631 should_fail(&fail_make_request, blk_rq_bytes(rq))) 1632 return -EIO; 1633 #endif 1634 1635 spin_lock_irqsave(q->queue_lock, flags); 1636 1637 /* 1638 * Submitting request must be dequeued before calling this function 1639 * because it will be linked to another request_queue 1640 */ 1641 BUG_ON(blk_queued_rq(rq)); 1642 1643 drive_stat_acct(rq, 1); 1644 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0); 1645 1646 spin_unlock_irqrestore(q->queue_lock, flags); 1647 1648 return 0; 1649 } 1650 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1651 1652 /** 1653 * blkdev_dequeue_request - dequeue request and start timeout timer 1654 * @req: request to dequeue 1655 * 1656 * Dequeue @req and start timeout timer on it. This hands off the 1657 * request to the driver. 1658 * 1659 * Block internal functions which don't want to start timer should 1660 * call elv_dequeue_request(). 1661 */ 1662 void blkdev_dequeue_request(struct request *req) 1663 { 1664 elv_dequeue_request(req->q, req); 1665 1666 /* 1667 * We are now handing the request to the hardware, add the 1668 * timeout handler. 1669 */ 1670 blk_add_timer(req); 1671 } 1672 EXPORT_SYMBOL(blkdev_dequeue_request); 1673 1674 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1675 { 1676 if (!blk_do_io_stat(req)) 1677 return; 1678 1679 if (blk_fs_request(req)) { 1680 const int rw = rq_data_dir(req); 1681 struct hd_struct *part; 1682 int cpu; 1683 1684 cpu = part_stat_lock(); 1685 part = disk_map_sector_rcu(req->rq_disk, req->sector); 1686 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1687 part_stat_unlock(); 1688 } 1689 } 1690 1691 static void blk_account_io_done(struct request *req) 1692 { 1693 if (!blk_do_io_stat(req)) 1694 return; 1695 1696 /* 1697 * Account IO completion. bar_rq isn't accounted as a normal 1698 * IO on queueing nor completion. Accounting the containing 1699 * request is enough. 1700 */ 1701 if (blk_fs_request(req) && req != &req->q->bar_rq) { 1702 unsigned long duration = jiffies - req->start_time; 1703 const int rw = rq_data_dir(req); 1704 struct hd_struct *part; 1705 int cpu; 1706 1707 cpu = part_stat_lock(); 1708 part = disk_map_sector_rcu(req->rq_disk, req->sector); 1709 1710 part_stat_inc(cpu, part, ios[rw]); 1711 part_stat_add(cpu, part, ticks[rw], duration); 1712 part_round_stats(cpu, part); 1713 part_dec_in_flight(part); 1714 1715 part_stat_unlock(); 1716 } 1717 } 1718 1719 /** 1720 * __end_that_request_first - end I/O on a request 1721 * @req: the request being processed 1722 * @error: %0 for success, < %0 for error 1723 * @nr_bytes: number of bytes to complete 1724 * 1725 * Description: 1726 * Ends I/O on a number of bytes attached to @req, and sets it up 1727 * for the next range of segments (if any) in the cluster. 1728 * 1729 * Return: 1730 * %0 - we are done with this request, call end_that_request_last() 1731 * %1 - still buffers pending for this request 1732 **/ 1733 static int __end_that_request_first(struct request *req, int error, 1734 int nr_bytes) 1735 { 1736 int total_bytes, bio_nbytes, next_idx = 0; 1737 struct bio *bio; 1738 1739 trace_block_rq_complete(req->q, req); 1740 1741 /* 1742 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual 1743 * sense key with us all the way through 1744 */ 1745 if (!blk_pc_request(req)) 1746 req->errors = 0; 1747 1748 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) { 1749 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 1750 req->rq_disk ? req->rq_disk->disk_name : "?", 1751 (unsigned long long)req->sector); 1752 } 1753 1754 blk_account_io_completion(req, nr_bytes); 1755 1756 total_bytes = bio_nbytes = 0; 1757 while ((bio = req->bio) != NULL) { 1758 int nbytes; 1759 1760 if (nr_bytes >= bio->bi_size) { 1761 req->bio = bio->bi_next; 1762 nbytes = bio->bi_size; 1763 req_bio_endio(req, bio, nbytes, error); 1764 next_idx = 0; 1765 bio_nbytes = 0; 1766 } else { 1767 int idx = bio->bi_idx + next_idx; 1768 1769 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) { 1770 blk_dump_rq_flags(req, "__end_that"); 1771 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 1772 __func__, bio->bi_idx, bio->bi_vcnt); 1773 break; 1774 } 1775 1776 nbytes = bio_iovec_idx(bio, idx)->bv_len; 1777 BIO_BUG_ON(nbytes > bio->bi_size); 1778 1779 /* 1780 * not a complete bvec done 1781 */ 1782 if (unlikely(nbytes > nr_bytes)) { 1783 bio_nbytes += nr_bytes; 1784 total_bytes += nr_bytes; 1785 break; 1786 } 1787 1788 /* 1789 * advance to the next vector 1790 */ 1791 next_idx++; 1792 bio_nbytes += nbytes; 1793 } 1794 1795 total_bytes += nbytes; 1796 nr_bytes -= nbytes; 1797 1798 bio = req->bio; 1799 if (bio) { 1800 /* 1801 * end more in this run, or just return 'not-done' 1802 */ 1803 if (unlikely(nr_bytes <= 0)) 1804 break; 1805 } 1806 } 1807 1808 /* 1809 * completely done 1810 */ 1811 if (!req->bio) 1812 return 0; 1813 1814 /* 1815 * if the request wasn't completed, update state 1816 */ 1817 if (bio_nbytes) { 1818 req_bio_endio(req, bio, bio_nbytes, error); 1819 bio->bi_idx += next_idx; 1820 bio_iovec(bio)->bv_offset += nr_bytes; 1821 bio_iovec(bio)->bv_len -= nr_bytes; 1822 } 1823 1824 blk_recalc_rq_sectors(req, total_bytes >> 9); 1825 blk_recalc_rq_segments(req); 1826 return 1; 1827 } 1828 1829 /* 1830 * queue lock must be held 1831 */ 1832 static void end_that_request_last(struct request *req, int error) 1833 { 1834 if (blk_rq_tagged(req)) 1835 blk_queue_end_tag(req->q, req); 1836 1837 if (blk_queued_rq(req)) 1838 elv_dequeue_request(req->q, req); 1839 1840 if (unlikely(laptop_mode) && blk_fs_request(req)) 1841 laptop_io_completion(); 1842 1843 blk_delete_timer(req); 1844 1845 blk_account_io_done(req); 1846 1847 if (req->end_io) 1848 req->end_io(req, error); 1849 else { 1850 if (blk_bidi_rq(req)) 1851 __blk_put_request(req->next_rq->q, req->next_rq); 1852 1853 __blk_put_request(req->q, req); 1854 } 1855 } 1856 1857 /** 1858 * blk_rq_bytes - Returns bytes left to complete in the entire request 1859 * @rq: the request being processed 1860 **/ 1861 unsigned int blk_rq_bytes(struct request *rq) 1862 { 1863 if (blk_fs_request(rq)) 1864 return rq->hard_nr_sectors << 9; 1865 1866 return rq->data_len; 1867 } 1868 EXPORT_SYMBOL_GPL(blk_rq_bytes); 1869 1870 /** 1871 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment 1872 * @rq: the request being processed 1873 **/ 1874 unsigned int blk_rq_cur_bytes(struct request *rq) 1875 { 1876 if (blk_fs_request(rq)) 1877 return rq->current_nr_sectors << 9; 1878 1879 if (rq->bio) 1880 return rq->bio->bi_size; 1881 1882 return rq->data_len; 1883 } 1884 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes); 1885 1886 /** 1887 * end_request - end I/O on the current segment of the request 1888 * @req: the request being processed 1889 * @uptodate: error value or %0/%1 uptodate flag 1890 * 1891 * Description: 1892 * Ends I/O on the current segment of a request. If that is the only 1893 * remaining segment, the request is also completed and freed. 1894 * 1895 * This is a remnant of how older block drivers handled I/O completions. 1896 * Modern drivers typically end I/O on the full request in one go, unless 1897 * they have a residual value to account for. For that case this function 1898 * isn't really useful, unless the residual just happens to be the 1899 * full current segment. In other words, don't use this function in new 1900 * code. Use blk_end_request() or __blk_end_request() to end a request. 1901 **/ 1902 void end_request(struct request *req, int uptodate) 1903 { 1904 int error = 0; 1905 1906 if (uptodate <= 0) 1907 error = uptodate ? uptodate : -EIO; 1908 1909 __blk_end_request(req, error, req->hard_cur_sectors << 9); 1910 } 1911 EXPORT_SYMBOL(end_request); 1912 1913 static int end_that_request_data(struct request *rq, int error, 1914 unsigned int nr_bytes, unsigned int bidi_bytes) 1915 { 1916 if (rq->bio) { 1917 if (__end_that_request_first(rq, error, nr_bytes)) 1918 return 1; 1919 1920 /* Bidi request must be completed as a whole */ 1921 if (blk_bidi_rq(rq) && 1922 __end_that_request_first(rq->next_rq, error, bidi_bytes)) 1923 return 1; 1924 } 1925 1926 return 0; 1927 } 1928 1929 /** 1930 * blk_end_io - Generic end_io function to complete a request. 1931 * @rq: the request being processed 1932 * @error: %0 for success, < %0 for error 1933 * @nr_bytes: number of bytes to complete @rq 1934 * @bidi_bytes: number of bytes to complete @rq->next_rq 1935 * @drv_callback: function called between completion of bios in the request 1936 * and completion of the request. 1937 * If the callback returns non %0, this helper returns without 1938 * completion of the request. 1939 * 1940 * Description: 1941 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 1942 * If @rq has leftover, sets it up for the next range of segments. 1943 * 1944 * Return: 1945 * %0 - we are done with this request 1946 * %1 - this request is not freed yet, it still has pending buffers. 1947 **/ 1948 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes, 1949 unsigned int bidi_bytes, 1950 int (drv_callback)(struct request *)) 1951 { 1952 struct request_queue *q = rq->q; 1953 unsigned long flags = 0UL; 1954 1955 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes)) 1956 return 1; 1957 1958 /* Special feature for tricky drivers */ 1959 if (drv_callback && drv_callback(rq)) 1960 return 1; 1961 1962 add_disk_randomness(rq->rq_disk); 1963 1964 spin_lock_irqsave(q->queue_lock, flags); 1965 end_that_request_last(rq, error); 1966 spin_unlock_irqrestore(q->queue_lock, flags); 1967 1968 return 0; 1969 } 1970 1971 /** 1972 * blk_end_request - Helper function for drivers to complete the request. 1973 * @rq: the request being processed 1974 * @error: %0 for success, < %0 for error 1975 * @nr_bytes: number of bytes to complete 1976 * 1977 * Description: 1978 * Ends I/O on a number of bytes attached to @rq. 1979 * If @rq has leftover, sets it up for the next range of segments. 1980 * 1981 * Return: 1982 * %0 - we are done with this request 1983 * %1 - still buffers pending for this request 1984 **/ 1985 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 1986 { 1987 return blk_end_io(rq, error, nr_bytes, 0, NULL); 1988 } 1989 EXPORT_SYMBOL_GPL(blk_end_request); 1990 1991 /** 1992 * __blk_end_request - Helper function for drivers to complete the request. 1993 * @rq: the request being processed 1994 * @error: %0 for success, < %0 for error 1995 * @nr_bytes: number of bytes to complete 1996 * 1997 * Description: 1998 * Must be called with queue lock held unlike blk_end_request(). 1999 * 2000 * Return: 2001 * %0 - we are done with this request 2002 * %1 - still buffers pending for this request 2003 **/ 2004 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2005 { 2006 if (rq->bio && __end_that_request_first(rq, error, nr_bytes)) 2007 return 1; 2008 2009 add_disk_randomness(rq->rq_disk); 2010 2011 end_that_request_last(rq, error); 2012 2013 return 0; 2014 } 2015 EXPORT_SYMBOL_GPL(__blk_end_request); 2016 2017 /** 2018 * blk_end_bidi_request - Helper function for drivers to complete bidi request. 2019 * @rq: the bidi request being processed 2020 * @error: %0 for success, < %0 for error 2021 * @nr_bytes: number of bytes to complete @rq 2022 * @bidi_bytes: number of bytes to complete @rq->next_rq 2023 * 2024 * Description: 2025 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2026 * 2027 * Return: 2028 * %0 - we are done with this request 2029 * %1 - still buffers pending for this request 2030 **/ 2031 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes, 2032 unsigned int bidi_bytes) 2033 { 2034 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL); 2035 } 2036 EXPORT_SYMBOL_GPL(blk_end_bidi_request); 2037 2038 /** 2039 * blk_update_request - Special helper function for request stacking drivers 2040 * @rq: the request being processed 2041 * @error: %0 for success, < %0 for error 2042 * @nr_bytes: number of bytes to complete @rq 2043 * 2044 * Description: 2045 * Ends I/O on a number of bytes attached to @rq, but doesn't complete 2046 * the request structure even if @rq doesn't have leftover. 2047 * If @rq has leftover, sets it up for the next range of segments. 2048 * 2049 * This special helper function is only for request stacking drivers 2050 * (e.g. request-based dm) so that they can handle partial completion. 2051 * Actual device drivers should use blk_end_request instead. 2052 */ 2053 void blk_update_request(struct request *rq, int error, unsigned int nr_bytes) 2054 { 2055 if (!end_that_request_data(rq, error, nr_bytes, 0)) { 2056 /* 2057 * These members are not updated in end_that_request_data() 2058 * when all bios are completed. 2059 * Update them so that the request stacking driver can find 2060 * how many bytes remain in the request later. 2061 */ 2062 rq->nr_sectors = rq->hard_nr_sectors = 0; 2063 rq->current_nr_sectors = rq->hard_cur_sectors = 0; 2064 } 2065 } 2066 EXPORT_SYMBOL_GPL(blk_update_request); 2067 2068 /** 2069 * blk_end_request_callback - Special helper function for tricky drivers 2070 * @rq: the request being processed 2071 * @error: %0 for success, < %0 for error 2072 * @nr_bytes: number of bytes to complete 2073 * @drv_callback: function called between completion of bios in the request 2074 * and completion of the request. 2075 * If the callback returns non %0, this helper returns without 2076 * completion of the request. 2077 * 2078 * Description: 2079 * Ends I/O on a number of bytes attached to @rq. 2080 * If @rq has leftover, sets it up for the next range of segments. 2081 * 2082 * This special helper function is used only for existing tricky drivers. 2083 * (e.g. cdrom_newpc_intr() of ide-cd) 2084 * This interface will be removed when such drivers are rewritten. 2085 * Don't use this interface in other places anymore. 2086 * 2087 * Return: 2088 * %0 - we are done with this request 2089 * %1 - this request is not freed yet. 2090 * this request still has pending buffers or 2091 * the driver doesn't want to finish this request yet. 2092 **/ 2093 int blk_end_request_callback(struct request *rq, int error, 2094 unsigned int nr_bytes, 2095 int (drv_callback)(struct request *)) 2096 { 2097 return blk_end_io(rq, error, nr_bytes, 0, drv_callback); 2098 } 2099 EXPORT_SYMBOL_GPL(blk_end_request_callback); 2100 2101 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2102 struct bio *bio) 2103 { 2104 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and 2105 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */ 2106 rq->cmd_flags |= (bio->bi_rw & 3); 2107 2108 if (bio_has_data(bio)) { 2109 rq->nr_phys_segments = bio_phys_segments(q, bio); 2110 rq->buffer = bio_data(bio); 2111 } 2112 rq->current_nr_sectors = bio_cur_sectors(bio); 2113 rq->hard_cur_sectors = rq->current_nr_sectors; 2114 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio); 2115 rq->data_len = bio->bi_size; 2116 2117 rq->bio = rq->biotail = bio; 2118 2119 if (bio->bi_bdev) 2120 rq->rq_disk = bio->bi_bdev->bd_disk; 2121 } 2122 2123 /** 2124 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2125 * @q : the queue of the device being checked 2126 * 2127 * Description: 2128 * Check if underlying low-level drivers of a device are busy. 2129 * If the drivers want to export their busy state, they must set own 2130 * exporting function using blk_queue_lld_busy() first. 2131 * 2132 * Basically, this function is used only by request stacking drivers 2133 * to stop dispatching requests to underlying devices when underlying 2134 * devices are busy. This behavior helps more I/O merging on the queue 2135 * of the request stacking driver and prevents I/O throughput regression 2136 * on burst I/O load. 2137 * 2138 * Return: 2139 * 0 - Not busy (The request stacking driver should dispatch request) 2140 * 1 - Busy (The request stacking driver should stop dispatching request) 2141 */ 2142 int blk_lld_busy(struct request_queue *q) 2143 { 2144 if (q->lld_busy_fn) 2145 return q->lld_busy_fn(q); 2146 2147 return 0; 2148 } 2149 EXPORT_SYMBOL_GPL(blk_lld_busy); 2150 2151 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2152 { 2153 return queue_work(kblockd_workqueue, work); 2154 } 2155 EXPORT_SYMBOL(kblockd_schedule_work); 2156 2157 int __init blk_dev_init(void) 2158 { 2159 kblockd_workqueue = create_workqueue("kblockd"); 2160 if (!kblockd_workqueue) 2161 panic("Failed to create kblockd\n"); 2162 2163 request_cachep = kmem_cache_create("blkdev_requests", 2164 sizeof(struct request), 0, SLAB_PANIC, NULL); 2165 2166 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2167 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2168 2169 return 0; 2170 } 2171 2172