xref: /openbmc/linux/block/blk-core.c (revision b5f184fb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/blk-pm.h>
22 #include <linux/highmem.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/writeback.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/fault-inject.h>
34 #include <linux/list_sort.h>
35 #include <linux/delay.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/blk-cgroup.h>
39 #include <linux/t10-pi.h>
40 #include <linux/debugfs.h>
41 #include <linux/bpf.h>
42 #include <linux/psi.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
48 
49 #include "blk.h"
50 #include "blk-mq.h"
51 #include "blk-mq-sched.h"
52 #include "blk-pm.h"
53 #include "blk-rq-qos.h"
54 
55 struct dentry *blk_debugfs_root;
56 
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62 
63 DEFINE_IDA(blk_queue_ida);
64 
65 /*
66  * For queue allocation
67  */
68 struct kmem_cache *blk_requestq_cachep;
69 
70 /*
71  * Controlling structure to kblockd
72  */
73 static struct workqueue_struct *kblockd_workqueue;
74 
75 /**
76  * blk_queue_flag_set - atomically set a queue flag
77  * @flag: flag to be set
78  * @q: request queue
79  */
80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 {
82 	set_bit(flag, &q->queue_flags);
83 }
84 EXPORT_SYMBOL(blk_queue_flag_set);
85 
86 /**
87  * blk_queue_flag_clear - atomically clear a queue flag
88  * @flag: flag to be cleared
89  * @q: request queue
90  */
91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92 {
93 	clear_bit(flag, &q->queue_flags);
94 }
95 EXPORT_SYMBOL(blk_queue_flag_clear);
96 
97 /**
98  * blk_queue_flag_test_and_set - atomically test and set a queue flag
99  * @flag: flag to be set
100  * @q: request queue
101  *
102  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103  * the flag was already set.
104  */
105 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
106 {
107 	return test_and_set_bit(flag, &q->queue_flags);
108 }
109 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
110 
111 void blk_rq_init(struct request_queue *q, struct request *rq)
112 {
113 	memset(rq, 0, sizeof(*rq));
114 
115 	INIT_LIST_HEAD(&rq->queuelist);
116 	rq->q = q;
117 	rq->__sector = (sector_t) -1;
118 	INIT_HLIST_NODE(&rq->hash);
119 	RB_CLEAR_NODE(&rq->rb_node);
120 	rq->tag = BLK_MQ_NO_TAG;
121 	rq->internal_tag = BLK_MQ_NO_TAG;
122 	rq->start_time_ns = ktime_get_ns();
123 	rq->part = NULL;
124 	refcount_set(&rq->ref, 1);
125 	blk_crypto_rq_set_defaults(rq);
126 }
127 EXPORT_SYMBOL(blk_rq_init);
128 
129 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
130 static const char *const blk_op_name[] = {
131 	REQ_OP_NAME(READ),
132 	REQ_OP_NAME(WRITE),
133 	REQ_OP_NAME(FLUSH),
134 	REQ_OP_NAME(DISCARD),
135 	REQ_OP_NAME(SECURE_ERASE),
136 	REQ_OP_NAME(ZONE_RESET),
137 	REQ_OP_NAME(ZONE_RESET_ALL),
138 	REQ_OP_NAME(ZONE_OPEN),
139 	REQ_OP_NAME(ZONE_CLOSE),
140 	REQ_OP_NAME(ZONE_FINISH),
141 	REQ_OP_NAME(ZONE_APPEND),
142 	REQ_OP_NAME(WRITE_SAME),
143 	REQ_OP_NAME(WRITE_ZEROES),
144 	REQ_OP_NAME(SCSI_IN),
145 	REQ_OP_NAME(SCSI_OUT),
146 	REQ_OP_NAME(DRV_IN),
147 	REQ_OP_NAME(DRV_OUT),
148 };
149 #undef REQ_OP_NAME
150 
151 /**
152  * blk_op_str - Return string XXX in the REQ_OP_XXX.
153  * @op: REQ_OP_XXX.
154  *
155  * Description: Centralize block layer function to convert REQ_OP_XXX into
156  * string format. Useful in the debugging and tracing bio or request. For
157  * invalid REQ_OP_XXX it returns string "UNKNOWN".
158  */
159 inline const char *blk_op_str(unsigned int op)
160 {
161 	const char *op_str = "UNKNOWN";
162 
163 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
164 		op_str = blk_op_name[op];
165 
166 	return op_str;
167 }
168 EXPORT_SYMBOL_GPL(blk_op_str);
169 
170 static const struct {
171 	int		errno;
172 	const char	*name;
173 } blk_errors[] = {
174 	[BLK_STS_OK]		= { 0,		"" },
175 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
176 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
177 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
178 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
179 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
180 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
181 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
182 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
183 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
184 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
185 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
186 
187 	/* device mapper special case, should not leak out: */
188 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
189 
190 	/* zone device specific errors */
191 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
192 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
193 
194 	/* everything else not covered above: */
195 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
196 };
197 
198 blk_status_t errno_to_blk_status(int errno)
199 {
200 	int i;
201 
202 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
203 		if (blk_errors[i].errno == errno)
204 			return (__force blk_status_t)i;
205 	}
206 
207 	return BLK_STS_IOERR;
208 }
209 EXPORT_SYMBOL_GPL(errno_to_blk_status);
210 
211 int blk_status_to_errno(blk_status_t status)
212 {
213 	int idx = (__force int)status;
214 
215 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
216 		return -EIO;
217 	return blk_errors[idx].errno;
218 }
219 EXPORT_SYMBOL_GPL(blk_status_to_errno);
220 
221 static void print_req_error(struct request *req, blk_status_t status,
222 		const char *caller)
223 {
224 	int idx = (__force int)status;
225 
226 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
227 		return;
228 
229 	printk_ratelimited(KERN_ERR
230 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
231 		"phys_seg %u prio class %u\n",
232 		caller, blk_errors[idx].name,
233 		req->rq_disk ? req->rq_disk->disk_name : "?",
234 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
235 		req->cmd_flags & ~REQ_OP_MASK,
236 		req->nr_phys_segments,
237 		IOPRIO_PRIO_CLASS(req->ioprio));
238 }
239 
240 static void req_bio_endio(struct request *rq, struct bio *bio,
241 			  unsigned int nbytes, blk_status_t error)
242 {
243 	if (error)
244 		bio->bi_status = error;
245 
246 	if (unlikely(rq->rq_flags & RQF_QUIET))
247 		bio_set_flag(bio, BIO_QUIET);
248 
249 	bio_advance(bio, nbytes);
250 
251 	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
252 		/*
253 		 * Partial zone append completions cannot be supported as the
254 		 * BIO fragments may end up not being written sequentially.
255 		 */
256 		if (bio->bi_iter.bi_size)
257 			bio->bi_status = BLK_STS_IOERR;
258 		else
259 			bio->bi_iter.bi_sector = rq->__sector;
260 	}
261 
262 	/* don't actually finish bio if it's part of flush sequence */
263 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
264 		bio_endio(bio);
265 }
266 
267 void blk_dump_rq_flags(struct request *rq, char *msg)
268 {
269 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
270 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
271 		(unsigned long long) rq->cmd_flags);
272 
273 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
274 	       (unsigned long long)blk_rq_pos(rq),
275 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
276 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
277 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
278 }
279 EXPORT_SYMBOL(blk_dump_rq_flags);
280 
281 /**
282  * blk_sync_queue - cancel any pending callbacks on a queue
283  * @q: the queue
284  *
285  * Description:
286  *     The block layer may perform asynchronous callback activity
287  *     on a queue, such as calling the unplug function after a timeout.
288  *     A block device may call blk_sync_queue to ensure that any
289  *     such activity is cancelled, thus allowing it to release resources
290  *     that the callbacks might use. The caller must already have made sure
291  *     that its ->submit_bio will not re-add plugging prior to calling
292  *     this function.
293  *
294  *     This function does not cancel any asynchronous activity arising
295  *     out of elevator or throttling code. That would require elevator_exit()
296  *     and blkcg_exit_queue() to be called with queue lock initialized.
297  *
298  */
299 void blk_sync_queue(struct request_queue *q)
300 {
301 	del_timer_sync(&q->timeout);
302 	cancel_work_sync(&q->timeout_work);
303 }
304 EXPORT_SYMBOL(blk_sync_queue);
305 
306 /**
307  * blk_set_pm_only - increment pm_only counter
308  * @q: request queue pointer
309  */
310 void blk_set_pm_only(struct request_queue *q)
311 {
312 	atomic_inc(&q->pm_only);
313 }
314 EXPORT_SYMBOL_GPL(blk_set_pm_only);
315 
316 void blk_clear_pm_only(struct request_queue *q)
317 {
318 	int pm_only;
319 
320 	pm_only = atomic_dec_return(&q->pm_only);
321 	WARN_ON_ONCE(pm_only < 0);
322 	if (pm_only == 0)
323 		wake_up_all(&q->mq_freeze_wq);
324 }
325 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
326 
327 /**
328  * blk_put_queue - decrement the request_queue refcount
329  * @q: the request_queue structure to decrement the refcount for
330  *
331  * Decrements the refcount of the request_queue kobject. When this reaches 0
332  * we'll have blk_release_queue() called.
333  *
334  * Context: Any context, but the last reference must not be dropped from
335  *          atomic context.
336  */
337 void blk_put_queue(struct request_queue *q)
338 {
339 	kobject_put(&q->kobj);
340 }
341 EXPORT_SYMBOL(blk_put_queue);
342 
343 void blk_set_queue_dying(struct request_queue *q)
344 {
345 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
346 
347 	/*
348 	 * When queue DYING flag is set, we need to block new req
349 	 * entering queue, so we call blk_freeze_queue_start() to
350 	 * prevent I/O from crossing blk_queue_enter().
351 	 */
352 	blk_freeze_queue_start(q);
353 
354 	if (queue_is_mq(q))
355 		blk_mq_wake_waiters(q);
356 
357 	/* Make blk_queue_enter() reexamine the DYING flag. */
358 	wake_up_all(&q->mq_freeze_wq);
359 }
360 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
361 
362 /**
363  * blk_cleanup_queue - shutdown a request queue
364  * @q: request queue to shutdown
365  *
366  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
367  * put it.  All future requests will be failed immediately with -ENODEV.
368  *
369  * Context: can sleep
370  */
371 void blk_cleanup_queue(struct request_queue *q)
372 {
373 	/* cannot be called from atomic context */
374 	might_sleep();
375 
376 	WARN_ON_ONCE(blk_queue_registered(q));
377 
378 	/* mark @q DYING, no new request or merges will be allowed afterwards */
379 	blk_set_queue_dying(q);
380 
381 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
382 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
383 
384 	/*
385 	 * Drain all requests queued before DYING marking. Set DEAD flag to
386 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
387 	 * after draining finished.
388 	 */
389 	blk_freeze_queue(q);
390 
391 	rq_qos_exit(q);
392 
393 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
394 
395 	/* for synchronous bio-based driver finish in-flight integrity i/o */
396 	blk_flush_integrity();
397 
398 	/* @q won't process any more request, flush async actions */
399 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
400 	blk_sync_queue(q);
401 
402 	if (queue_is_mq(q))
403 		blk_mq_exit_queue(q);
404 
405 	/*
406 	 * In theory, request pool of sched_tags belongs to request queue.
407 	 * However, the current implementation requires tag_set for freeing
408 	 * requests, so free the pool now.
409 	 *
410 	 * Queue has become frozen, there can't be any in-queue requests, so
411 	 * it is safe to free requests now.
412 	 */
413 	mutex_lock(&q->sysfs_lock);
414 	if (q->elevator)
415 		blk_mq_sched_free_requests(q);
416 	mutex_unlock(&q->sysfs_lock);
417 
418 	percpu_ref_exit(&q->q_usage_counter);
419 
420 	/* @q is and will stay empty, shutdown and put */
421 	blk_put_queue(q);
422 }
423 EXPORT_SYMBOL(blk_cleanup_queue);
424 
425 /**
426  * blk_queue_enter() - try to increase q->q_usage_counter
427  * @q: request queue pointer
428  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
429  */
430 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
431 {
432 	const bool pm = flags & BLK_MQ_REQ_PM;
433 
434 	while (true) {
435 		bool success = false;
436 
437 		rcu_read_lock();
438 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
439 			/*
440 			 * The code that increments the pm_only counter is
441 			 * responsible for ensuring that that counter is
442 			 * globally visible before the queue is unfrozen.
443 			 */
444 			if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
445 			    !blk_queue_pm_only(q)) {
446 				success = true;
447 			} else {
448 				percpu_ref_put(&q->q_usage_counter);
449 			}
450 		}
451 		rcu_read_unlock();
452 
453 		if (success)
454 			return 0;
455 
456 		if (flags & BLK_MQ_REQ_NOWAIT)
457 			return -EBUSY;
458 
459 		/*
460 		 * read pair of barrier in blk_freeze_queue_start(),
461 		 * we need to order reading __PERCPU_REF_DEAD flag of
462 		 * .q_usage_counter and reading .mq_freeze_depth or
463 		 * queue dying flag, otherwise the following wait may
464 		 * never return if the two reads are reordered.
465 		 */
466 		smp_rmb();
467 
468 		wait_event(q->mq_freeze_wq,
469 			   (!q->mq_freeze_depth &&
470 			    blk_pm_resume_queue(pm, q)) ||
471 			   blk_queue_dying(q));
472 		if (blk_queue_dying(q))
473 			return -ENODEV;
474 	}
475 }
476 
477 static inline int bio_queue_enter(struct bio *bio)
478 {
479 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
480 	bool nowait = bio->bi_opf & REQ_NOWAIT;
481 	int ret;
482 
483 	ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
484 	if (unlikely(ret)) {
485 		if (nowait && !blk_queue_dying(q))
486 			bio_wouldblock_error(bio);
487 		else
488 			bio_io_error(bio);
489 	}
490 
491 	return ret;
492 }
493 
494 void blk_queue_exit(struct request_queue *q)
495 {
496 	percpu_ref_put(&q->q_usage_counter);
497 }
498 
499 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
500 {
501 	struct request_queue *q =
502 		container_of(ref, struct request_queue, q_usage_counter);
503 
504 	wake_up_all(&q->mq_freeze_wq);
505 }
506 
507 static void blk_rq_timed_out_timer(struct timer_list *t)
508 {
509 	struct request_queue *q = from_timer(q, t, timeout);
510 
511 	kblockd_schedule_work(&q->timeout_work);
512 }
513 
514 static void blk_timeout_work(struct work_struct *work)
515 {
516 }
517 
518 struct request_queue *blk_alloc_queue(int node_id)
519 {
520 	struct request_queue *q;
521 	int ret;
522 
523 	q = kmem_cache_alloc_node(blk_requestq_cachep,
524 				GFP_KERNEL | __GFP_ZERO, node_id);
525 	if (!q)
526 		return NULL;
527 
528 	q->last_merge = NULL;
529 
530 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
531 	if (q->id < 0)
532 		goto fail_q;
533 
534 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
535 	if (ret)
536 		goto fail_id;
537 
538 	q->backing_dev_info = bdi_alloc(node_id);
539 	if (!q->backing_dev_info)
540 		goto fail_split;
541 
542 	q->stats = blk_alloc_queue_stats();
543 	if (!q->stats)
544 		goto fail_stats;
545 
546 	q->node = node_id;
547 
548 	atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
549 
550 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
551 		    laptop_mode_timer_fn, 0);
552 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
553 	INIT_WORK(&q->timeout_work, blk_timeout_work);
554 	INIT_LIST_HEAD(&q->icq_list);
555 #ifdef CONFIG_BLK_CGROUP
556 	INIT_LIST_HEAD(&q->blkg_list);
557 #endif
558 
559 	kobject_init(&q->kobj, &blk_queue_ktype);
560 
561 	mutex_init(&q->debugfs_mutex);
562 	mutex_init(&q->sysfs_lock);
563 	mutex_init(&q->sysfs_dir_lock);
564 	spin_lock_init(&q->queue_lock);
565 
566 	init_waitqueue_head(&q->mq_freeze_wq);
567 	mutex_init(&q->mq_freeze_lock);
568 
569 	/*
570 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
571 	 * See blk_register_queue() for details.
572 	 */
573 	if (percpu_ref_init(&q->q_usage_counter,
574 				blk_queue_usage_counter_release,
575 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
576 		goto fail_bdi;
577 
578 	if (blkcg_init_queue(q))
579 		goto fail_ref;
580 
581 	blk_queue_dma_alignment(q, 511);
582 	blk_set_default_limits(&q->limits);
583 	q->nr_requests = BLKDEV_MAX_RQ;
584 
585 	return q;
586 
587 fail_ref:
588 	percpu_ref_exit(&q->q_usage_counter);
589 fail_bdi:
590 	blk_free_queue_stats(q->stats);
591 fail_stats:
592 	bdi_put(q->backing_dev_info);
593 fail_split:
594 	bioset_exit(&q->bio_split);
595 fail_id:
596 	ida_simple_remove(&blk_queue_ida, q->id);
597 fail_q:
598 	kmem_cache_free(blk_requestq_cachep, q);
599 	return NULL;
600 }
601 EXPORT_SYMBOL(blk_alloc_queue);
602 
603 /**
604  * blk_get_queue - increment the request_queue refcount
605  * @q: the request_queue structure to increment the refcount for
606  *
607  * Increment the refcount of the request_queue kobject.
608  *
609  * Context: Any context.
610  */
611 bool blk_get_queue(struct request_queue *q)
612 {
613 	if (likely(!blk_queue_dying(q))) {
614 		__blk_get_queue(q);
615 		return true;
616 	}
617 
618 	return false;
619 }
620 EXPORT_SYMBOL(blk_get_queue);
621 
622 /**
623  * blk_get_request - allocate a request
624  * @q: request queue to allocate a request for
625  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
626  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
627  */
628 struct request *blk_get_request(struct request_queue *q, unsigned int op,
629 				blk_mq_req_flags_t flags)
630 {
631 	struct request *req;
632 
633 	WARN_ON_ONCE(op & REQ_NOWAIT);
634 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
635 
636 	req = blk_mq_alloc_request(q, op, flags);
637 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
638 		q->mq_ops->initialize_rq_fn(req);
639 
640 	return req;
641 }
642 EXPORT_SYMBOL(blk_get_request);
643 
644 void blk_put_request(struct request *req)
645 {
646 	blk_mq_free_request(req);
647 }
648 EXPORT_SYMBOL(blk_put_request);
649 
650 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
651 {
652 	char b[BDEVNAME_SIZE];
653 
654 	pr_info_ratelimited("attempt to access beyond end of device\n"
655 			    "%s: rw=%d, want=%llu, limit=%llu\n",
656 			    bio_devname(bio, b), bio->bi_opf,
657 			    bio_end_sector(bio), maxsector);
658 }
659 
660 #ifdef CONFIG_FAIL_MAKE_REQUEST
661 
662 static DECLARE_FAULT_ATTR(fail_make_request);
663 
664 static int __init setup_fail_make_request(char *str)
665 {
666 	return setup_fault_attr(&fail_make_request, str);
667 }
668 __setup("fail_make_request=", setup_fail_make_request);
669 
670 static bool should_fail_request(struct block_device *part, unsigned int bytes)
671 {
672 	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
673 }
674 
675 static int __init fail_make_request_debugfs(void)
676 {
677 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
678 						NULL, &fail_make_request);
679 
680 	return PTR_ERR_OR_ZERO(dir);
681 }
682 
683 late_initcall(fail_make_request_debugfs);
684 
685 #else /* CONFIG_FAIL_MAKE_REQUEST */
686 
687 static inline bool should_fail_request(struct block_device *part,
688 					unsigned int bytes)
689 {
690 	return false;
691 }
692 
693 #endif /* CONFIG_FAIL_MAKE_REQUEST */
694 
695 static inline bool bio_check_ro(struct bio *bio)
696 {
697 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
698 		char b[BDEVNAME_SIZE];
699 
700 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
701 			return false;
702 
703 		WARN_ONCE(1,
704 		       "Trying to write to read-only block-device %s (partno %d)\n",
705 			bio_devname(bio, b), bio->bi_bdev->bd_partno);
706 		/* Older lvm-tools actually trigger this */
707 		return false;
708 	}
709 
710 	return false;
711 }
712 
713 static noinline int should_fail_bio(struct bio *bio)
714 {
715 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
716 		return -EIO;
717 	return 0;
718 }
719 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
720 
721 /*
722  * Check whether this bio extends beyond the end of the device or partition.
723  * This may well happen - the kernel calls bread() without checking the size of
724  * the device, e.g., when mounting a file system.
725  */
726 static inline int bio_check_eod(struct bio *bio)
727 {
728 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
729 	unsigned int nr_sectors = bio_sectors(bio);
730 
731 	if (nr_sectors && maxsector &&
732 	    (nr_sectors > maxsector ||
733 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
734 		handle_bad_sector(bio, maxsector);
735 		return -EIO;
736 	}
737 	return 0;
738 }
739 
740 /*
741  * Remap block n of partition p to block n+start(p) of the disk.
742  */
743 static int blk_partition_remap(struct bio *bio)
744 {
745 	struct block_device *p = bio->bi_bdev;
746 
747 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
748 		return -EIO;
749 	if (bio_sectors(bio)) {
750 		bio->bi_iter.bi_sector += p->bd_start_sect;
751 		trace_block_bio_remap(bio, p->bd_dev,
752 				      bio->bi_iter.bi_sector -
753 				      p->bd_start_sect);
754 	}
755 	bio_set_flag(bio, BIO_REMAPPED);
756 	return 0;
757 }
758 
759 /*
760  * Check write append to a zoned block device.
761  */
762 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
763 						 struct bio *bio)
764 {
765 	sector_t pos = bio->bi_iter.bi_sector;
766 	int nr_sectors = bio_sectors(bio);
767 
768 	/* Only applicable to zoned block devices */
769 	if (!blk_queue_is_zoned(q))
770 		return BLK_STS_NOTSUPP;
771 
772 	/* The bio sector must point to the start of a sequential zone */
773 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
774 	    !blk_queue_zone_is_seq(q, pos))
775 		return BLK_STS_IOERR;
776 
777 	/*
778 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
779 	 * split and could result in non-contiguous sectors being written in
780 	 * different zones.
781 	 */
782 	if (nr_sectors > q->limits.chunk_sectors)
783 		return BLK_STS_IOERR;
784 
785 	/* Make sure the BIO is small enough and will not get split */
786 	if (nr_sectors > q->limits.max_zone_append_sectors)
787 		return BLK_STS_IOERR;
788 
789 	bio->bi_opf |= REQ_NOMERGE;
790 
791 	return BLK_STS_OK;
792 }
793 
794 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
795 {
796 	struct block_device *bdev = bio->bi_bdev;
797 	struct request_queue *q = bdev->bd_disk->queue;
798 	blk_status_t status = BLK_STS_IOERR;
799 	struct blk_plug *plug;
800 
801 	might_sleep();
802 
803 	plug = blk_mq_plug(q, bio);
804 	if (plug && plug->nowait)
805 		bio->bi_opf |= REQ_NOWAIT;
806 
807 	/*
808 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
809 	 * if queue does not support NOWAIT.
810 	 */
811 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
812 		goto not_supported;
813 
814 	if (should_fail_bio(bio))
815 		goto end_io;
816 	if (unlikely(bio_check_ro(bio)))
817 		goto end_io;
818 	if (!bio_flagged(bio, BIO_REMAPPED)) {
819 		if (unlikely(bio_check_eod(bio)))
820 			goto end_io;
821 		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
822 			goto end_io;
823 	}
824 
825 	/*
826 	 * Filter flush bio's early so that bio based drivers without flush
827 	 * support don't have to worry about them.
828 	 */
829 	if (op_is_flush(bio->bi_opf) &&
830 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
831 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
832 		if (!bio_sectors(bio)) {
833 			status = BLK_STS_OK;
834 			goto end_io;
835 		}
836 	}
837 
838 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
839 		bio->bi_opf &= ~REQ_HIPRI;
840 
841 	switch (bio_op(bio)) {
842 	case REQ_OP_DISCARD:
843 		if (!blk_queue_discard(q))
844 			goto not_supported;
845 		break;
846 	case REQ_OP_SECURE_ERASE:
847 		if (!blk_queue_secure_erase(q))
848 			goto not_supported;
849 		break;
850 	case REQ_OP_WRITE_SAME:
851 		if (!q->limits.max_write_same_sectors)
852 			goto not_supported;
853 		break;
854 	case REQ_OP_ZONE_APPEND:
855 		status = blk_check_zone_append(q, bio);
856 		if (status != BLK_STS_OK)
857 			goto end_io;
858 		break;
859 	case REQ_OP_ZONE_RESET:
860 	case REQ_OP_ZONE_OPEN:
861 	case REQ_OP_ZONE_CLOSE:
862 	case REQ_OP_ZONE_FINISH:
863 		if (!blk_queue_is_zoned(q))
864 			goto not_supported;
865 		break;
866 	case REQ_OP_ZONE_RESET_ALL:
867 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
868 			goto not_supported;
869 		break;
870 	case REQ_OP_WRITE_ZEROES:
871 		if (!q->limits.max_write_zeroes_sectors)
872 			goto not_supported;
873 		break;
874 	default:
875 		break;
876 	}
877 
878 	/*
879 	 * Various block parts want %current->io_context, so allocate it up
880 	 * front rather than dealing with lots of pain to allocate it only
881 	 * where needed. This may fail and the block layer knows how to live
882 	 * with it.
883 	 */
884 	if (unlikely(!current->io_context))
885 		create_task_io_context(current, GFP_ATOMIC, q->node);
886 
887 	if (blk_throtl_bio(bio)) {
888 		blkcg_bio_issue_init(bio);
889 		return false;
890 	}
891 
892 	blk_cgroup_bio_start(bio);
893 	blkcg_bio_issue_init(bio);
894 
895 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
896 		trace_block_bio_queue(bio);
897 		/* Now that enqueuing has been traced, we need to trace
898 		 * completion as well.
899 		 */
900 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
901 	}
902 	return true;
903 
904 not_supported:
905 	status = BLK_STS_NOTSUPP;
906 end_io:
907 	bio->bi_status = status;
908 	bio_endio(bio);
909 	return false;
910 }
911 
912 static blk_qc_t __submit_bio(struct bio *bio)
913 {
914 	struct gendisk *disk = bio->bi_bdev->bd_disk;
915 	blk_qc_t ret = BLK_QC_T_NONE;
916 
917 	if (blk_crypto_bio_prep(&bio)) {
918 		if (!disk->fops->submit_bio)
919 			return blk_mq_submit_bio(bio);
920 		ret = disk->fops->submit_bio(bio);
921 	}
922 	blk_queue_exit(disk->queue);
923 	return ret;
924 }
925 
926 /*
927  * The loop in this function may be a bit non-obvious, and so deserves some
928  * explanation:
929  *
930  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
931  *    that), so we have a list with a single bio.
932  *  - We pretend that we have just taken it off a longer list, so we assign
933  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
934  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
935  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
936  *    non-NULL value in bio_list and re-enter the loop from the top.
937  *  - In this case we really did just take the bio of the top of the list (no
938  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
939  *    again.
940  *
941  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
942  * bio_list_on_stack[1] contains bios that were submitted before the current
943  *	->submit_bio_bio, but that haven't been processed yet.
944  */
945 static blk_qc_t __submit_bio_noacct(struct bio *bio)
946 {
947 	struct bio_list bio_list_on_stack[2];
948 	blk_qc_t ret = BLK_QC_T_NONE;
949 
950 	BUG_ON(bio->bi_next);
951 
952 	bio_list_init(&bio_list_on_stack[0]);
953 	current->bio_list = bio_list_on_stack;
954 
955 	do {
956 		struct request_queue *q = bio->bi_bdev->bd_disk->queue;
957 		struct bio_list lower, same;
958 
959 		if (unlikely(bio_queue_enter(bio) != 0))
960 			continue;
961 
962 		/*
963 		 * Create a fresh bio_list for all subordinate requests.
964 		 */
965 		bio_list_on_stack[1] = bio_list_on_stack[0];
966 		bio_list_init(&bio_list_on_stack[0]);
967 
968 		ret = __submit_bio(bio);
969 
970 		/*
971 		 * Sort new bios into those for a lower level and those for the
972 		 * same level.
973 		 */
974 		bio_list_init(&lower);
975 		bio_list_init(&same);
976 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
977 			if (q == bio->bi_bdev->bd_disk->queue)
978 				bio_list_add(&same, bio);
979 			else
980 				bio_list_add(&lower, bio);
981 
982 		/*
983 		 * Now assemble so we handle the lowest level first.
984 		 */
985 		bio_list_merge(&bio_list_on_stack[0], &lower);
986 		bio_list_merge(&bio_list_on_stack[0], &same);
987 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
988 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
989 
990 	current->bio_list = NULL;
991 	return ret;
992 }
993 
994 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
995 {
996 	struct bio_list bio_list[2] = { };
997 	blk_qc_t ret = BLK_QC_T_NONE;
998 
999 	current->bio_list = bio_list;
1000 
1001 	do {
1002 		struct gendisk *disk = bio->bi_bdev->bd_disk;
1003 
1004 		if (unlikely(bio_queue_enter(bio) != 0))
1005 			continue;
1006 
1007 		if (!blk_crypto_bio_prep(&bio)) {
1008 			blk_queue_exit(disk->queue);
1009 			ret = BLK_QC_T_NONE;
1010 			continue;
1011 		}
1012 
1013 		ret = blk_mq_submit_bio(bio);
1014 	} while ((bio = bio_list_pop(&bio_list[0])));
1015 
1016 	current->bio_list = NULL;
1017 	return ret;
1018 }
1019 
1020 /**
1021  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1022  * @bio:  The bio describing the location in memory and on the device.
1023  *
1024  * This is a version of submit_bio() that shall only be used for I/O that is
1025  * resubmitted to lower level drivers by stacking block drivers.  All file
1026  * systems and other upper level users of the block layer should use
1027  * submit_bio() instead.
1028  */
1029 blk_qc_t submit_bio_noacct(struct bio *bio)
1030 {
1031 	if (!submit_bio_checks(bio))
1032 		return BLK_QC_T_NONE;
1033 
1034 	/*
1035 	 * We only want one ->submit_bio to be active at a time, else stack
1036 	 * usage with stacked devices could be a problem.  Use current->bio_list
1037 	 * to collect a list of requests submited by a ->submit_bio method while
1038 	 * it is active, and then process them after it returned.
1039 	 */
1040 	if (current->bio_list) {
1041 		bio_list_add(&current->bio_list[0], bio);
1042 		return BLK_QC_T_NONE;
1043 	}
1044 
1045 	if (!bio->bi_bdev->bd_disk->fops->submit_bio)
1046 		return __submit_bio_noacct_mq(bio);
1047 	return __submit_bio_noacct(bio);
1048 }
1049 EXPORT_SYMBOL(submit_bio_noacct);
1050 
1051 /**
1052  * submit_bio - submit a bio to the block device layer for I/O
1053  * @bio: The &struct bio which describes the I/O
1054  *
1055  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1056  * fully set up &struct bio that describes the I/O that needs to be done.  The
1057  * bio will be send to the device described by the bi_bdev field.
1058  *
1059  * The success/failure status of the request, along with notification of
1060  * completion, is delivered asynchronously through the ->bi_end_io() callback
1061  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1062  * been called.
1063  */
1064 blk_qc_t submit_bio(struct bio *bio)
1065 {
1066 	if (blkcg_punt_bio_submit(bio))
1067 		return BLK_QC_T_NONE;
1068 
1069 	/*
1070 	 * If it's a regular read/write or a barrier with data attached,
1071 	 * go through the normal accounting stuff before submission.
1072 	 */
1073 	if (bio_has_data(bio)) {
1074 		unsigned int count;
1075 
1076 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1077 			count = queue_logical_block_size(
1078 					bio->bi_bdev->bd_disk->queue) >> 9;
1079 		else
1080 			count = bio_sectors(bio);
1081 
1082 		if (op_is_write(bio_op(bio))) {
1083 			count_vm_events(PGPGOUT, count);
1084 		} else {
1085 			task_io_account_read(bio->bi_iter.bi_size);
1086 			count_vm_events(PGPGIN, count);
1087 		}
1088 
1089 		if (unlikely(block_dump)) {
1090 			char b[BDEVNAME_SIZE];
1091 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1092 			current->comm, task_pid_nr(current),
1093 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1094 				(unsigned long long)bio->bi_iter.bi_sector,
1095 				bio_devname(bio, b), count);
1096 		}
1097 	}
1098 
1099 	/*
1100 	 * If we're reading data that is part of the userspace workingset, count
1101 	 * submission time as memory stall.  When the device is congested, or
1102 	 * the submitting cgroup IO-throttled, submission can be a significant
1103 	 * part of overall IO time.
1104 	 */
1105 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1106 	    bio_flagged(bio, BIO_WORKINGSET))) {
1107 		unsigned long pflags;
1108 		blk_qc_t ret;
1109 
1110 		psi_memstall_enter(&pflags);
1111 		ret = submit_bio_noacct(bio);
1112 		psi_memstall_leave(&pflags);
1113 
1114 		return ret;
1115 	}
1116 
1117 	return submit_bio_noacct(bio);
1118 }
1119 EXPORT_SYMBOL(submit_bio);
1120 
1121 /**
1122  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1123  *                              for the new queue limits
1124  * @q:  the queue
1125  * @rq: the request being checked
1126  *
1127  * Description:
1128  *    @rq may have been made based on weaker limitations of upper-level queues
1129  *    in request stacking drivers, and it may violate the limitation of @q.
1130  *    Since the block layer and the underlying device driver trust @rq
1131  *    after it is inserted to @q, it should be checked against @q before
1132  *    the insertion using this generic function.
1133  *
1134  *    Request stacking drivers like request-based dm may change the queue
1135  *    limits when retrying requests on other queues. Those requests need
1136  *    to be checked against the new queue limits again during dispatch.
1137  */
1138 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1139 				      struct request *rq)
1140 {
1141 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1142 
1143 	if (blk_rq_sectors(rq) > max_sectors) {
1144 		/*
1145 		 * SCSI device does not have a good way to return if
1146 		 * Write Same/Zero is actually supported. If a device rejects
1147 		 * a non-read/write command (discard, write same,etc.) the
1148 		 * low-level device driver will set the relevant queue limit to
1149 		 * 0 to prevent blk-lib from issuing more of the offending
1150 		 * operations. Commands queued prior to the queue limit being
1151 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1152 		 * errors being propagated to upper layers.
1153 		 */
1154 		if (max_sectors == 0)
1155 			return BLK_STS_NOTSUPP;
1156 
1157 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1158 			__func__, blk_rq_sectors(rq), max_sectors);
1159 		return BLK_STS_IOERR;
1160 	}
1161 
1162 	/*
1163 	 * queue's settings related to segment counting like q->bounce_pfn
1164 	 * may differ from that of other stacking queues.
1165 	 * Recalculate it to check the request correctly on this queue's
1166 	 * limitation.
1167 	 */
1168 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1169 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1170 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1171 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1172 		return BLK_STS_IOERR;
1173 	}
1174 
1175 	return BLK_STS_OK;
1176 }
1177 
1178 /**
1179  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1180  * @q:  the queue to submit the request
1181  * @rq: the request being queued
1182  */
1183 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1184 {
1185 	blk_status_t ret;
1186 
1187 	ret = blk_cloned_rq_check_limits(q, rq);
1188 	if (ret != BLK_STS_OK)
1189 		return ret;
1190 
1191 	if (rq->rq_disk &&
1192 	    should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1193 		return BLK_STS_IOERR;
1194 
1195 	if (blk_crypto_insert_cloned_request(rq))
1196 		return BLK_STS_IOERR;
1197 
1198 	if (blk_queue_io_stat(q))
1199 		blk_account_io_start(rq);
1200 
1201 	/*
1202 	 * Since we have a scheduler attached on the top device,
1203 	 * bypass a potential scheduler on the bottom device for
1204 	 * insert.
1205 	 */
1206 	return blk_mq_request_issue_directly(rq, true);
1207 }
1208 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1209 
1210 /**
1211  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1212  * @rq: request to examine
1213  *
1214  * Description:
1215  *     A request could be merge of IOs which require different failure
1216  *     handling.  This function determines the number of bytes which
1217  *     can be failed from the beginning of the request without
1218  *     crossing into area which need to be retried further.
1219  *
1220  * Return:
1221  *     The number of bytes to fail.
1222  */
1223 unsigned int blk_rq_err_bytes(const struct request *rq)
1224 {
1225 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1226 	unsigned int bytes = 0;
1227 	struct bio *bio;
1228 
1229 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1230 		return blk_rq_bytes(rq);
1231 
1232 	/*
1233 	 * Currently the only 'mixing' which can happen is between
1234 	 * different fastfail types.  We can safely fail portions
1235 	 * which have all the failfast bits that the first one has -
1236 	 * the ones which are at least as eager to fail as the first
1237 	 * one.
1238 	 */
1239 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1240 		if ((bio->bi_opf & ff) != ff)
1241 			break;
1242 		bytes += bio->bi_iter.bi_size;
1243 	}
1244 
1245 	/* this could lead to infinite loop */
1246 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1247 	return bytes;
1248 }
1249 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1250 
1251 static void update_io_ticks(struct block_device *part, unsigned long now,
1252 		bool end)
1253 {
1254 	unsigned long stamp;
1255 again:
1256 	stamp = READ_ONCE(part->bd_stamp);
1257 	if (unlikely(stamp != now)) {
1258 		if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1259 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1260 	}
1261 	if (part->bd_partno) {
1262 		part = bdev_whole(part);
1263 		goto again;
1264 	}
1265 }
1266 
1267 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1268 {
1269 	if (req->part && blk_do_io_stat(req)) {
1270 		const int sgrp = op_stat_group(req_op(req));
1271 
1272 		part_stat_lock();
1273 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1274 		part_stat_unlock();
1275 	}
1276 }
1277 
1278 void blk_account_io_done(struct request *req, u64 now)
1279 {
1280 	/*
1281 	 * Account IO completion.  flush_rq isn't accounted as a
1282 	 * normal IO on queueing nor completion.  Accounting the
1283 	 * containing request is enough.
1284 	 */
1285 	if (req->part && blk_do_io_stat(req) &&
1286 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1287 		const int sgrp = op_stat_group(req_op(req));
1288 
1289 		part_stat_lock();
1290 		update_io_ticks(req->part, jiffies, true);
1291 		part_stat_inc(req->part, ios[sgrp]);
1292 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1293 		part_stat_unlock();
1294 	}
1295 }
1296 
1297 void blk_account_io_start(struct request *rq)
1298 {
1299 	if (!blk_do_io_stat(rq))
1300 		return;
1301 
1302 	/* passthrough requests can hold bios that do not have ->bi_bdev set */
1303 	if (rq->bio && rq->bio->bi_bdev)
1304 		rq->part = rq->bio->bi_bdev;
1305 	else
1306 		rq->part = rq->rq_disk->part0;
1307 
1308 	part_stat_lock();
1309 	update_io_ticks(rq->part, jiffies, false);
1310 	part_stat_unlock();
1311 }
1312 
1313 static unsigned long __part_start_io_acct(struct block_device *part,
1314 					  unsigned int sectors, unsigned int op)
1315 {
1316 	const int sgrp = op_stat_group(op);
1317 	unsigned long now = READ_ONCE(jiffies);
1318 
1319 	part_stat_lock();
1320 	update_io_ticks(part, now, false);
1321 	part_stat_inc(part, ios[sgrp]);
1322 	part_stat_add(part, sectors[sgrp], sectors);
1323 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1324 	part_stat_unlock();
1325 
1326 	return now;
1327 }
1328 
1329 /**
1330  * bio_start_io_acct - start I/O accounting for bio based drivers
1331  * @bio:	bio to start account for
1332  *
1333  * Returns the start time that should be passed back to bio_end_io_acct().
1334  */
1335 unsigned long bio_start_io_acct(struct bio *bio)
1336 {
1337 	return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
1338 }
1339 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1340 
1341 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1342 				 unsigned int op)
1343 {
1344 	return __part_start_io_acct(disk->part0, sectors, op);
1345 }
1346 EXPORT_SYMBOL(disk_start_io_acct);
1347 
1348 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1349 			       unsigned long start_time)
1350 {
1351 	const int sgrp = op_stat_group(op);
1352 	unsigned long now = READ_ONCE(jiffies);
1353 	unsigned long duration = now - start_time;
1354 
1355 	part_stat_lock();
1356 	update_io_ticks(part, now, true);
1357 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1358 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1359 	part_stat_unlock();
1360 }
1361 
1362 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1363 		struct block_device *orig_bdev)
1364 {
1365 	__part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1366 }
1367 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1368 
1369 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1370 		      unsigned long start_time)
1371 {
1372 	__part_end_io_acct(disk->part0, op, start_time);
1373 }
1374 EXPORT_SYMBOL(disk_end_io_acct);
1375 
1376 /*
1377  * Steal bios from a request and add them to a bio list.
1378  * The request must not have been partially completed before.
1379  */
1380 void blk_steal_bios(struct bio_list *list, struct request *rq)
1381 {
1382 	if (rq->bio) {
1383 		if (list->tail)
1384 			list->tail->bi_next = rq->bio;
1385 		else
1386 			list->head = rq->bio;
1387 		list->tail = rq->biotail;
1388 
1389 		rq->bio = NULL;
1390 		rq->biotail = NULL;
1391 	}
1392 
1393 	rq->__data_len = 0;
1394 }
1395 EXPORT_SYMBOL_GPL(blk_steal_bios);
1396 
1397 /**
1398  * blk_update_request - Special helper function for request stacking drivers
1399  * @req:      the request being processed
1400  * @error:    block status code
1401  * @nr_bytes: number of bytes to complete @req
1402  *
1403  * Description:
1404  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1405  *     the request structure even if @req doesn't have leftover.
1406  *     If @req has leftover, sets it up for the next range of segments.
1407  *
1408  *     This special helper function is only for request stacking drivers
1409  *     (e.g. request-based dm) so that they can handle partial completion.
1410  *     Actual device drivers should use blk_mq_end_request instead.
1411  *
1412  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1413  *     %false return from this function.
1414  *
1415  * Note:
1416  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1417  *	blk_rq_bytes() and in blk_update_request().
1418  *
1419  * Return:
1420  *     %false - this request doesn't have any more data
1421  *     %true  - this request has more data
1422  **/
1423 bool blk_update_request(struct request *req, blk_status_t error,
1424 		unsigned int nr_bytes)
1425 {
1426 	int total_bytes;
1427 
1428 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1429 
1430 	if (!req->bio)
1431 		return false;
1432 
1433 #ifdef CONFIG_BLK_DEV_INTEGRITY
1434 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1435 	    error == BLK_STS_OK)
1436 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1437 #endif
1438 
1439 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1440 		     !(req->rq_flags & RQF_QUIET)))
1441 		print_req_error(req, error, __func__);
1442 
1443 	blk_account_io_completion(req, nr_bytes);
1444 
1445 	total_bytes = 0;
1446 	while (req->bio) {
1447 		struct bio *bio = req->bio;
1448 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1449 
1450 		if (bio_bytes == bio->bi_iter.bi_size)
1451 			req->bio = bio->bi_next;
1452 
1453 		/* Completion has already been traced */
1454 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1455 		req_bio_endio(req, bio, bio_bytes, error);
1456 
1457 		total_bytes += bio_bytes;
1458 		nr_bytes -= bio_bytes;
1459 
1460 		if (!nr_bytes)
1461 			break;
1462 	}
1463 
1464 	/*
1465 	 * completely done
1466 	 */
1467 	if (!req->bio) {
1468 		/*
1469 		 * Reset counters so that the request stacking driver
1470 		 * can find how many bytes remain in the request
1471 		 * later.
1472 		 */
1473 		req->__data_len = 0;
1474 		return false;
1475 	}
1476 
1477 	req->__data_len -= total_bytes;
1478 
1479 	/* update sector only for requests with clear definition of sector */
1480 	if (!blk_rq_is_passthrough(req))
1481 		req->__sector += total_bytes >> 9;
1482 
1483 	/* mixed attributes always follow the first bio */
1484 	if (req->rq_flags & RQF_MIXED_MERGE) {
1485 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1486 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1487 	}
1488 
1489 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1490 		/*
1491 		 * If total number of sectors is less than the first segment
1492 		 * size, something has gone terribly wrong.
1493 		 */
1494 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1495 			blk_dump_rq_flags(req, "request botched");
1496 			req->__data_len = blk_rq_cur_bytes(req);
1497 		}
1498 
1499 		/* recalculate the number of segments */
1500 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1501 	}
1502 
1503 	return true;
1504 }
1505 EXPORT_SYMBOL_GPL(blk_update_request);
1506 
1507 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1508 /**
1509  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1510  * @rq: the request to be flushed
1511  *
1512  * Description:
1513  *     Flush all pages in @rq.
1514  */
1515 void rq_flush_dcache_pages(struct request *rq)
1516 {
1517 	struct req_iterator iter;
1518 	struct bio_vec bvec;
1519 
1520 	rq_for_each_segment(bvec, rq, iter)
1521 		flush_dcache_page(bvec.bv_page);
1522 }
1523 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1524 #endif
1525 
1526 /**
1527  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1528  * @q : the queue of the device being checked
1529  *
1530  * Description:
1531  *    Check if underlying low-level drivers of a device are busy.
1532  *    If the drivers want to export their busy state, they must set own
1533  *    exporting function using blk_queue_lld_busy() first.
1534  *
1535  *    Basically, this function is used only by request stacking drivers
1536  *    to stop dispatching requests to underlying devices when underlying
1537  *    devices are busy.  This behavior helps more I/O merging on the queue
1538  *    of the request stacking driver and prevents I/O throughput regression
1539  *    on burst I/O load.
1540  *
1541  * Return:
1542  *    0 - Not busy (The request stacking driver should dispatch request)
1543  *    1 - Busy (The request stacking driver should stop dispatching request)
1544  */
1545 int blk_lld_busy(struct request_queue *q)
1546 {
1547 	if (queue_is_mq(q) && q->mq_ops->busy)
1548 		return q->mq_ops->busy(q);
1549 
1550 	return 0;
1551 }
1552 EXPORT_SYMBOL_GPL(blk_lld_busy);
1553 
1554 /**
1555  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1556  * @rq: the clone request to be cleaned up
1557  *
1558  * Description:
1559  *     Free all bios in @rq for a cloned request.
1560  */
1561 void blk_rq_unprep_clone(struct request *rq)
1562 {
1563 	struct bio *bio;
1564 
1565 	while ((bio = rq->bio) != NULL) {
1566 		rq->bio = bio->bi_next;
1567 
1568 		bio_put(bio);
1569 	}
1570 }
1571 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1572 
1573 /**
1574  * blk_rq_prep_clone - Helper function to setup clone request
1575  * @rq: the request to be setup
1576  * @rq_src: original request to be cloned
1577  * @bs: bio_set that bios for clone are allocated from
1578  * @gfp_mask: memory allocation mask for bio
1579  * @bio_ctr: setup function to be called for each clone bio.
1580  *           Returns %0 for success, non %0 for failure.
1581  * @data: private data to be passed to @bio_ctr
1582  *
1583  * Description:
1584  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1585  *     Also, pages which the original bios are pointing to are not copied
1586  *     and the cloned bios just point same pages.
1587  *     So cloned bios must be completed before original bios, which means
1588  *     the caller must complete @rq before @rq_src.
1589  */
1590 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1591 		      struct bio_set *bs, gfp_t gfp_mask,
1592 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1593 		      void *data)
1594 {
1595 	struct bio *bio, *bio_src;
1596 
1597 	if (!bs)
1598 		bs = &fs_bio_set;
1599 
1600 	__rq_for_each_bio(bio_src, rq_src) {
1601 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1602 		if (!bio)
1603 			goto free_and_out;
1604 
1605 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1606 			goto free_and_out;
1607 
1608 		if (rq->bio) {
1609 			rq->biotail->bi_next = bio;
1610 			rq->biotail = bio;
1611 		} else {
1612 			rq->bio = rq->biotail = bio;
1613 		}
1614 		bio = NULL;
1615 	}
1616 
1617 	/* Copy attributes of the original request to the clone request. */
1618 	rq->__sector = blk_rq_pos(rq_src);
1619 	rq->__data_len = blk_rq_bytes(rq_src);
1620 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1621 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1622 		rq->special_vec = rq_src->special_vec;
1623 	}
1624 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1625 	rq->ioprio = rq_src->ioprio;
1626 
1627 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1628 		goto free_and_out;
1629 
1630 	return 0;
1631 
1632 free_and_out:
1633 	if (bio)
1634 		bio_put(bio);
1635 	blk_rq_unprep_clone(rq);
1636 
1637 	return -ENOMEM;
1638 }
1639 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1640 
1641 int kblockd_schedule_work(struct work_struct *work)
1642 {
1643 	return queue_work(kblockd_workqueue, work);
1644 }
1645 EXPORT_SYMBOL(kblockd_schedule_work);
1646 
1647 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1648 				unsigned long delay)
1649 {
1650 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1651 }
1652 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1653 
1654 /**
1655  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1656  * @plug:	The &struct blk_plug that needs to be initialized
1657  *
1658  * Description:
1659  *   blk_start_plug() indicates to the block layer an intent by the caller
1660  *   to submit multiple I/O requests in a batch.  The block layer may use
1661  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1662  *   is called.  However, the block layer may choose to submit requests
1663  *   before a call to blk_finish_plug() if the number of queued I/Os
1664  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1665  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1666  *   the task schedules (see below).
1667  *
1668  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1669  *   pending I/O should the task end up blocking between blk_start_plug() and
1670  *   blk_finish_plug(). This is important from a performance perspective, but
1671  *   also ensures that we don't deadlock. For instance, if the task is blocking
1672  *   for a memory allocation, memory reclaim could end up wanting to free a
1673  *   page belonging to that request that is currently residing in our private
1674  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1675  *   this kind of deadlock.
1676  */
1677 void blk_start_plug(struct blk_plug *plug)
1678 {
1679 	struct task_struct *tsk = current;
1680 
1681 	/*
1682 	 * If this is a nested plug, don't actually assign it.
1683 	 */
1684 	if (tsk->plug)
1685 		return;
1686 
1687 	INIT_LIST_HEAD(&plug->mq_list);
1688 	INIT_LIST_HEAD(&plug->cb_list);
1689 	plug->rq_count = 0;
1690 	plug->multiple_queues = false;
1691 	plug->nowait = false;
1692 
1693 	/*
1694 	 * Store ordering should not be needed here, since a potential
1695 	 * preempt will imply a full memory barrier
1696 	 */
1697 	tsk->plug = plug;
1698 }
1699 EXPORT_SYMBOL(blk_start_plug);
1700 
1701 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1702 {
1703 	LIST_HEAD(callbacks);
1704 
1705 	while (!list_empty(&plug->cb_list)) {
1706 		list_splice_init(&plug->cb_list, &callbacks);
1707 
1708 		while (!list_empty(&callbacks)) {
1709 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1710 							  struct blk_plug_cb,
1711 							  list);
1712 			list_del(&cb->list);
1713 			cb->callback(cb, from_schedule);
1714 		}
1715 	}
1716 }
1717 
1718 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1719 				      int size)
1720 {
1721 	struct blk_plug *plug = current->plug;
1722 	struct blk_plug_cb *cb;
1723 
1724 	if (!plug)
1725 		return NULL;
1726 
1727 	list_for_each_entry(cb, &plug->cb_list, list)
1728 		if (cb->callback == unplug && cb->data == data)
1729 			return cb;
1730 
1731 	/* Not currently on the callback list */
1732 	BUG_ON(size < sizeof(*cb));
1733 	cb = kzalloc(size, GFP_ATOMIC);
1734 	if (cb) {
1735 		cb->data = data;
1736 		cb->callback = unplug;
1737 		list_add(&cb->list, &plug->cb_list);
1738 	}
1739 	return cb;
1740 }
1741 EXPORT_SYMBOL(blk_check_plugged);
1742 
1743 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1744 {
1745 	flush_plug_callbacks(plug, from_schedule);
1746 
1747 	if (!list_empty(&plug->mq_list))
1748 		blk_mq_flush_plug_list(plug, from_schedule);
1749 }
1750 
1751 /**
1752  * blk_finish_plug - mark the end of a batch of submitted I/O
1753  * @plug:	The &struct blk_plug passed to blk_start_plug()
1754  *
1755  * Description:
1756  * Indicate that a batch of I/O submissions is complete.  This function
1757  * must be paired with an initial call to blk_start_plug().  The intent
1758  * is to allow the block layer to optimize I/O submission.  See the
1759  * documentation for blk_start_plug() for more information.
1760  */
1761 void blk_finish_plug(struct blk_plug *plug)
1762 {
1763 	if (plug != current->plug)
1764 		return;
1765 	blk_flush_plug_list(plug, false);
1766 
1767 	current->plug = NULL;
1768 }
1769 EXPORT_SYMBOL(blk_finish_plug);
1770 
1771 void blk_io_schedule(void)
1772 {
1773 	/* Prevent hang_check timer from firing at us during very long I/O */
1774 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1775 
1776 	if (timeout)
1777 		io_schedule_timeout(timeout);
1778 	else
1779 		io_schedule();
1780 }
1781 EXPORT_SYMBOL_GPL(blk_io_schedule);
1782 
1783 int __init blk_dev_init(void)
1784 {
1785 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1786 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1787 			sizeof_field(struct request, cmd_flags));
1788 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1789 			sizeof_field(struct bio, bi_opf));
1790 
1791 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1792 	kblockd_workqueue = alloc_workqueue("kblockd",
1793 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1794 	if (!kblockd_workqueue)
1795 		panic("Failed to create kblockd\n");
1796 
1797 	blk_requestq_cachep = kmem_cache_create("request_queue",
1798 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1799 
1800 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1801 
1802 	return 0;
1803 }
1804