1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/block.h> 38 39 #include "blk.h" 40 #include "blk-cgroup.h" 41 #include "blk-mq.h" 42 43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 47 48 DEFINE_IDA(blk_queue_ida); 49 50 /* 51 * For the allocated request tables 52 */ 53 struct kmem_cache *request_cachep = NULL; 54 55 /* 56 * For queue allocation 57 */ 58 struct kmem_cache *blk_requestq_cachep; 59 60 /* 61 * Controlling structure to kblockd 62 */ 63 static struct workqueue_struct *kblockd_workqueue; 64 65 void blk_queue_congestion_threshold(struct request_queue *q) 66 { 67 int nr; 68 69 nr = q->nr_requests - (q->nr_requests / 8) + 1; 70 if (nr > q->nr_requests) 71 nr = q->nr_requests; 72 q->nr_congestion_on = nr; 73 74 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 75 if (nr < 1) 76 nr = 1; 77 q->nr_congestion_off = nr; 78 } 79 80 /** 81 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 82 * @bdev: device 83 * 84 * Locates the passed device's request queue and returns the address of its 85 * backing_dev_info 86 * 87 * Will return NULL if the request queue cannot be located. 88 */ 89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 90 { 91 struct backing_dev_info *ret = NULL; 92 struct request_queue *q = bdev_get_queue(bdev); 93 94 if (q) 95 ret = &q->backing_dev_info; 96 return ret; 97 } 98 EXPORT_SYMBOL(blk_get_backing_dev_info); 99 100 void blk_rq_init(struct request_queue *q, struct request *rq) 101 { 102 memset(rq, 0, sizeof(*rq)); 103 104 INIT_LIST_HEAD(&rq->queuelist); 105 INIT_LIST_HEAD(&rq->timeout_list); 106 rq->cpu = -1; 107 rq->q = q; 108 rq->__sector = (sector_t) -1; 109 INIT_HLIST_NODE(&rq->hash); 110 RB_CLEAR_NODE(&rq->rb_node); 111 rq->cmd = rq->__cmd; 112 rq->cmd_len = BLK_MAX_CDB; 113 rq->tag = -1; 114 rq->start_time = jiffies; 115 set_start_time_ns(rq); 116 rq->part = NULL; 117 } 118 EXPORT_SYMBOL(blk_rq_init); 119 120 static void req_bio_endio(struct request *rq, struct bio *bio, 121 unsigned int nbytes, int error) 122 { 123 if (error) 124 clear_bit(BIO_UPTODATE, &bio->bi_flags); 125 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 126 error = -EIO; 127 128 if (unlikely(rq->cmd_flags & REQ_QUIET)) 129 set_bit(BIO_QUIET, &bio->bi_flags); 130 131 bio_advance(bio, nbytes); 132 133 /* don't actually finish bio if it's part of flush sequence */ 134 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 135 bio_endio(bio, error); 136 } 137 138 void blk_dump_rq_flags(struct request *rq, char *msg) 139 { 140 int bit; 141 142 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg, 143 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 144 (unsigned long long) rq->cmd_flags); 145 146 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 147 (unsigned long long)blk_rq_pos(rq), 148 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 149 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 150 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 151 152 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 153 printk(KERN_INFO " cdb: "); 154 for (bit = 0; bit < BLK_MAX_CDB; bit++) 155 printk("%02x ", rq->cmd[bit]); 156 printk("\n"); 157 } 158 } 159 EXPORT_SYMBOL(blk_dump_rq_flags); 160 161 static void blk_delay_work(struct work_struct *work) 162 { 163 struct request_queue *q; 164 165 q = container_of(work, struct request_queue, delay_work.work); 166 spin_lock_irq(q->queue_lock); 167 __blk_run_queue(q); 168 spin_unlock_irq(q->queue_lock); 169 } 170 171 /** 172 * blk_delay_queue - restart queueing after defined interval 173 * @q: The &struct request_queue in question 174 * @msecs: Delay in msecs 175 * 176 * Description: 177 * Sometimes queueing needs to be postponed for a little while, to allow 178 * resources to come back. This function will make sure that queueing is 179 * restarted around the specified time. Queue lock must be held. 180 */ 181 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 182 { 183 if (likely(!blk_queue_dead(q))) 184 queue_delayed_work(kblockd_workqueue, &q->delay_work, 185 msecs_to_jiffies(msecs)); 186 } 187 EXPORT_SYMBOL(blk_delay_queue); 188 189 /** 190 * blk_start_queue - restart a previously stopped queue 191 * @q: The &struct request_queue in question 192 * 193 * Description: 194 * blk_start_queue() will clear the stop flag on the queue, and call 195 * the request_fn for the queue if it was in a stopped state when 196 * entered. Also see blk_stop_queue(). Queue lock must be held. 197 **/ 198 void blk_start_queue(struct request_queue *q) 199 { 200 WARN_ON(!irqs_disabled()); 201 202 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 203 __blk_run_queue(q); 204 } 205 EXPORT_SYMBOL(blk_start_queue); 206 207 /** 208 * blk_stop_queue - stop a queue 209 * @q: The &struct request_queue in question 210 * 211 * Description: 212 * The Linux block layer assumes that a block driver will consume all 213 * entries on the request queue when the request_fn strategy is called. 214 * Often this will not happen, because of hardware limitations (queue 215 * depth settings). If a device driver gets a 'queue full' response, 216 * or if it simply chooses not to queue more I/O at one point, it can 217 * call this function to prevent the request_fn from being called until 218 * the driver has signalled it's ready to go again. This happens by calling 219 * blk_start_queue() to restart queue operations. Queue lock must be held. 220 **/ 221 void blk_stop_queue(struct request_queue *q) 222 { 223 cancel_delayed_work(&q->delay_work); 224 queue_flag_set(QUEUE_FLAG_STOPPED, q); 225 } 226 EXPORT_SYMBOL(blk_stop_queue); 227 228 /** 229 * blk_sync_queue - cancel any pending callbacks on a queue 230 * @q: the queue 231 * 232 * Description: 233 * The block layer may perform asynchronous callback activity 234 * on a queue, such as calling the unplug function after a timeout. 235 * A block device may call blk_sync_queue to ensure that any 236 * such activity is cancelled, thus allowing it to release resources 237 * that the callbacks might use. The caller must already have made sure 238 * that its ->make_request_fn will not re-add plugging prior to calling 239 * this function. 240 * 241 * This function does not cancel any asynchronous activity arising 242 * out of elevator or throttling code. That would require elevaotor_exit() 243 * and blkcg_exit_queue() to be called with queue lock initialized. 244 * 245 */ 246 void blk_sync_queue(struct request_queue *q) 247 { 248 del_timer_sync(&q->timeout); 249 250 if (q->mq_ops) { 251 struct blk_mq_hw_ctx *hctx; 252 int i; 253 254 queue_for_each_hw_ctx(q, hctx, i) 255 cancel_delayed_work_sync(&hctx->delayed_work); 256 } else { 257 cancel_delayed_work_sync(&q->delay_work); 258 } 259 } 260 EXPORT_SYMBOL(blk_sync_queue); 261 262 /** 263 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 264 * @q: The queue to run 265 * 266 * Description: 267 * Invoke request handling on a queue if there are any pending requests. 268 * May be used to restart request handling after a request has completed. 269 * This variant runs the queue whether or not the queue has been 270 * stopped. Must be called with the queue lock held and interrupts 271 * disabled. See also @blk_run_queue. 272 */ 273 inline void __blk_run_queue_uncond(struct request_queue *q) 274 { 275 if (unlikely(blk_queue_dead(q))) 276 return; 277 278 /* 279 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 280 * the queue lock internally. As a result multiple threads may be 281 * running such a request function concurrently. Keep track of the 282 * number of active request_fn invocations such that blk_drain_queue() 283 * can wait until all these request_fn calls have finished. 284 */ 285 q->request_fn_active++; 286 q->request_fn(q); 287 q->request_fn_active--; 288 } 289 290 /** 291 * __blk_run_queue - run a single device queue 292 * @q: The queue to run 293 * 294 * Description: 295 * See @blk_run_queue. This variant must be called with the queue lock 296 * held and interrupts disabled. 297 */ 298 void __blk_run_queue(struct request_queue *q) 299 { 300 if (unlikely(blk_queue_stopped(q))) 301 return; 302 303 __blk_run_queue_uncond(q); 304 } 305 EXPORT_SYMBOL(__blk_run_queue); 306 307 /** 308 * blk_run_queue_async - run a single device queue in workqueue context 309 * @q: The queue to run 310 * 311 * Description: 312 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 313 * of us. The caller must hold the queue lock. 314 */ 315 void blk_run_queue_async(struct request_queue *q) 316 { 317 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 318 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 319 } 320 EXPORT_SYMBOL(blk_run_queue_async); 321 322 /** 323 * blk_run_queue - run a single device queue 324 * @q: The queue to run 325 * 326 * Description: 327 * Invoke request handling on this queue, if it has pending work to do. 328 * May be used to restart queueing when a request has completed. 329 */ 330 void blk_run_queue(struct request_queue *q) 331 { 332 unsigned long flags; 333 334 spin_lock_irqsave(q->queue_lock, flags); 335 __blk_run_queue(q); 336 spin_unlock_irqrestore(q->queue_lock, flags); 337 } 338 EXPORT_SYMBOL(blk_run_queue); 339 340 void blk_put_queue(struct request_queue *q) 341 { 342 kobject_put(&q->kobj); 343 } 344 EXPORT_SYMBOL(blk_put_queue); 345 346 /** 347 * __blk_drain_queue - drain requests from request_queue 348 * @q: queue to drain 349 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 350 * 351 * Drain requests from @q. If @drain_all is set, all requests are drained. 352 * If not, only ELVPRIV requests are drained. The caller is responsible 353 * for ensuring that no new requests which need to be drained are queued. 354 */ 355 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 356 __releases(q->queue_lock) 357 __acquires(q->queue_lock) 358 { 359 int i; 360 361 lockdep_assert_held(q->queue_lock); 362 363 while (true) { 364 bool drain = false; 365 366 /* 367 * The caller might be trying to drain @q before its 368 * elevator is initialized. 369 */ 370 if (q->elevator) 371 elv_drain_elevator(q); 372 373 blkcg_drain_queue(q); 374 375 /* 376 * This function might be called on a queue which failed 377 * driver init after queue creation or is not yet fully 378 * active yet. Some drivers (e.g. fd and loop) get unhappy 379 * in such cases. Kick queue iff dispatch queue has 380 * something on it and @q has request_fn set. 381 */ 382 if (!list_empty(&q->queue_head) && q->request_fn) 383 __blk_run_queue(q); 384 385 drain |= q->nr_rqs_elvpriv; 386 drain |= q->request_fn_active; 387 388 /* 389 * Unfortunately, requests are queued at and tracked from 390 * multiple places and there's no single counter which can 391 * be drained. Check all the queues and counters. 392 */ 393 if (drain_all) { 394 drain |= !list_empty(&q->queue_head); 395 for (i = 0; i < 2; i++) { 396 drain |= q->nr_rqs[i]; 397 drain |= q->in_flight[i]; 398 drain |= !list_empty(&q->flush_queue[i]); 399 } 400 } 401 402 if (!drain) 403 break; 404 405 spin_unlock_irq(q->queue_lock); 406 407 msleep(10); 408 409 spin_lock_irq(q->queue_lock); 410 } 411 412 /* 413 * With queue marked dead, any woken up waiter will fail the 414 * allocation path, so the wakeup chaining is lost and we're 415 * left with hung waiters. We need to wake up those waiters. 416 */ 417 if (q->request_fn) { 418 struct request_list *rl; 419 420 blk_queue_for_each_rl(rl, q) 421 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 422 wake_up_all(&rl->wait[i]); 423 } 424 } 425 426 /** 427 * blk_queue_bypass_start - enter queue bypass mode 428 * @q: queue of interest 429 * 430 * In bypass mode, only the dispatch FIFO queue of @q is used. This 431 * function makes @q enter bypass mode and drains all requests which were 432 * throttled or issued before. On return, it's guaranteed that no request 433 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 434 * inside queue or RCU read lock. 435 */ 436 void blk_queue_bypass_start(struct request_queue *q) 437 { 438 bool drain; 439 440 spin_lock_irq(q->queue_lock); 441 drain = !q->bypass_depth++; 442 queue_flag_set(QUEUE_FLAG_BYPASS, q); 443 spin_unlock_irq(q->queue_lock); 444 445 if (drain) { 446 spin_lock_irq(q->queue_lock); 447 __blk_drain_queue(q, false); 448 spin_unlock_irq(q->queue_lock); 449 450 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 451 synchronize_rcu(); 452 } 453 } 454 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 455 456 /** 457 * blk_queue_bypass_end - leave queue bypass mode 458 * @q: queue of interest 459 * 460 * Leave bypass mode and restore the normal queueing behavior. 461 */ 462 void blk_queue_bypass_end(struct request_queue *q) 463 { 464 spin_lock_irq(q->queue_lock); 465 if (!--q->bypass_depth) 466 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 467 WARN_ON_ONCE(q->bypass_depth < 0); 468 spin_unlock_irq(q->queue_lock); 469 } 470 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 471 472 /** 473 * blk_cleanup_queue - shutdown a request queue 474 * @q: request queue to shutdown 475 * 476 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 477 * put it. All future requests will be failed immediately with -ENODEV. 478 */ 479 void blk_cleanup_queue(struct request_queue *q) 480 { 481 spinlock_t *lock = q->queue_lock; 482 483 /* mark @q DYING, no new request or merges will be allowed afterwards */ 484 mutex_lock(&q->sysfs_lock); 485 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q); 486 spin_lock_irq(lock); 487 488 /* 489 * A dying queue is permanently in bypass mode till released. Note 490 * that, unlike blk_queue_bypass_start(), we aren't performing 491 * synchronize_rcu() after entering bypass mode to avoid the delay 492 * as some drivers create and destroy a lot of queues while 493 * probing. This is still safe because blk_release_queue() will be 494 * called only after the queue refcnt drops to zero and nothing, 495 * RCU or not, would be traversing the queue by then. 496 */ 497 q->bypass_depth++; 498 queue_flag_set(QUEUE_FLAG_BYPASS, q); 499 500 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 501 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 502 queue_flag_set(QUEUE_FLAG_DYING, q); 503 spin_unlock_irq(lock); 504 mutex_unlock(&q->sysfs_lock); 505 506 /* 507 * Drain all requests queued before DYING marking. Set DEAD flag to 508 * prevent that q->request_fn() gets invoked after draining finished. 509 */ 510 if (q->mq_ops) { 511 blk_mq_drain_queue(q); 512 spin_lock_irq(lock); 513 } else { 514 spin_lock_irq(lock); 515 __blk_drain_queue(q, true); 516 } 517 queue_flag_set(QUEUE_FLAG_DEAD, q); 518 spin_unlock_irq(lock); 519 520 /* @q won't process any more request, flush async actions */ 521 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 522 blk_sync_queue(q); 523 524 spin_lock_irq(lock); 525 if (q->queue_lock != &q->__queue_lock) 526 q->queue_lock = &q->__queue_lock; 527 spin_unlock_irq(lock); 528 529 /* @q is and will stay empty, shutdown and put */ 530 blk_put_queue(q); 531 } 532 EXPORT_SYMBOL(blk_cleanup_queue); 533 534 int blk_init_rl(struct request_list *rl, struct request_queue *q, 535 gfp_t gfp_mask) 536 { 537 if (unlikely(rl->rq_pool)) 538 return 0; 539 540 rl->q = q; 541 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 542 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 543 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 544 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 545 546 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 547 mempool_free_slab, request_cachep, 548 gfp_mask, q->node); 549 if (!rl->rq_pool) 550 return -ENOMEM; 551 552 return 0; 553 } 554 555 void blk_exit_rl(struct request_list *rl) 556 { 557 if (rl->rq_pool) 558 mempool_destroy(rl->rq_pool); 559 } 560 561 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 562 { 563 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 564 } 565 EXPORT_SYMBOL(blk_alloc_queue); 566 567 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 568 { 569 struct request_queue *q; 570 int err; 571 572 q = kmem_cache_alloc_node(blk_requestq_cachep, 573 gfp_mask | __GFP_ZERO, node_id); 574 if (!q) 575 return NULL; 576 577 if (percpu_counter_init(&q->mq_usage_counter, 0)) 578 goto fail_q; 579 580 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 581 if (q->id < 0) 582 goto fail_c; 583 584 q->backing_dev_info.ra_pages = 585 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 586 q->backing_dev_info.state = 0; 587 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 588 q->backing_dev_info.name = "block"; 589 q->node = node_id; 590 591 err = bdi_init(&q->backing_dev_info); 592 if (err) 593 goto fail_id; 594 595 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 596 laptop_mode_timer_fn, (unsigned long) q); 597 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 598 INIT_LIST_HEAD(&q->queue_head); 599 INIT_LIST_HEAD(&q->timeout_list); 600 INIT_LIST_HEAD(&q->icq_list); 601 #ifdef CONFIG_BLK_CGROUP 602 INIT_LIST_HEAD(&q->blkg_list); 603 #endif 604 INIT_LIST_HEAD(&q->flush_queue[0]); 605 INIT_LIST_HEAD(&q->flush_queue[1]); 606 INIT_LIST_HEAD(&q->flush_data_in_flight); 607 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 608 609 kobject_init(&q->kobj, &blk_queue_ktype); 610 611 mutex_init(&q->sysfs_lock); 612 spin_lock_init(&q->__queue_lock); 613 614 /* 615 * By default initialize queue_lock to internal lock and driver can 616 * override it later if need be. 617 */ 618 q->queue_lock = &q->__queue_lock; 619 620 /* 621 * A queue starts its life with bypass turned on to avoid 622 * unnecessary bypass on/off overhead and nasty surprises during 623 * init. The initial bypass will be finished when the queue is 624 * registered by blk_register_queue(). 625 */ 626 q->bypass_depth = 1; 627 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 628 629 init_waitqueue_head(&q->mq_freeze_wq); 630 631 if (blkcg_init_queue(q)) 632 goto fail_bdi; 633 634 return q; 635 636 fail_bdi: 637 bdi_destroy(&q->backing_dev_info); 638 fail_id: 639 ida_simple_remove(&blk_queue_ida, q->id); 640 fail_c: 641 percpu_counter_destroy(&q->mq_usage_counter); 642 fail_q: 643 kmem_cache_free(blk_requestq_cachep, q); 644 return NULL; 645 } 646 EXPORT_SYMBOL(blk_alloc_queue_node); 647 648 /** 649 * blk_init_queue - prepare a request queue for use with a block device 650 * @rfn: The function to be called to process requests that have been 651 * placed on the queue. 652 * @lock: Request queue spin lock 653 * 654 * Description: 655 * If a block device wishes to use the standard request handling procedures, 656 * which sorts requests and coalesces adjacent requests, then it must 657 * call blk_init_queue(). The function @rfn will be called when there 658 * are requests on the queue that need to be processed. If the device 659 * supports plugging, then @rfn may not be called immediately when requests 660 * are available on the queue, but may be called at some time later instead. 661 * Plugged queues are generally unplugged when a buffer belonging to one 662 * of the requests on the queue is needed, or due to memory pressure. 663 * 664 * @rfn is not required, or even expected, to remove all requests off the 665 * queue, but only as many as it can handle at a time. If it does leave 666 * requests on the queue, it is responsible for arranging that the requests 667 * get dealt with eventually. 668 * 669 * The queue spin lock must be held while manipulating the requests on the 670 * request queue; this lock will be taken also from interrupt context, so irq 671 * disabling is needed for it. 672 * 673 * Function returns a pointer to the initialized request queue, or %NULL if 674 * it didn't succeed. 675 * 676 * Note: 677 * blk_init_queue() must be paired with a blk_cleanup_queue() call 678 * when the block device is deactivated (such as at module unload). 679 **/ 680 681 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 682 { 683 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 684 } 685 EXPORT_SYMBOL(blk_init_queue); 686 687 struct request_queue * 688 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 689 { 690 struct request_queue *uninit_q, *q; 691 692 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 693 if (!uninit_q) 694 return NULL; 695 696 q = blk_init_allocated_queue(uninit_q, rfn, lock); 697 if (!q) 698 blk_cleanup_queue(uninit_q); 699 700 return q; 701 } 702 EXPORT_SYMBOL(blk_init_queue_node); 703 704 struct request_queue * 705 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 706 spinlock_t *lock) 707 { 708 if (!q) 709 return NULL; 710 711 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL); 712 if (!q->flush_rq) 713 return NULL; 714 715 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 716 goto fail; 717 718 q->request_fn = rfn; 719 q->prep_rq_fn = NULL; 720 q->unprep_rq_fn = NULL; 721 q->queue_flags |= QUEUE_FLAG_DEFAULT; 722 723 /* Override internal queue lock with supplied lock pointer */ 724 if (lock) 725 q->queue_lock = lock; 726 727 /* 728 * This also sets hw/phys segments, boundary and size 729 */ 730 blk_queue_make_request(q, blk_queue_bio); 731 732 q->sg_reserved_size = INT_MAX; 733 734 /* Protect q->elevator from elevator_change */ 735 mutex_lock(&q->sysfs_lock); 736 737 /* init elevator */ 738 if (elevator_init(q, NULL)) { 739 mutex_unlock(&q->sysfs_lock); 740 goto fail; 741 } 742 743 mutex_unlock(&q->sysfs_lock); 744 745 return q; 746 747 fail: 748 kfree(q->flush_rq); 749 return NULL; 750 } 751 EXPORT_SYMBOL(blk_init_allocated_queue); 752 753 bool blk_get_queue(struct request_queue *q) 754 { 755 if (likely(!blk_queue_dying(q))) { 756 __blk_get_queue(q); 757 return true; 758 } 759 760 return false; 761 } 762 EXPORT_SYMBOL(blk_get_queue); 763 764 static inline void blk_free_request(struct request_list *rl, struct request *rq) 765 { 766 if (rq->cmd_flags & REQ_ELVPRIV) { 767 elv_put_request(rl->q, rq); 768 if (rq->elv.icq) 769 put_io_context(rq->elv.icq->ioc); 770 } 771 772 mempool_free(rq, rl->rq_pool); 773 } 774 775 /* 776 * ioc_batching returns true if the ioc is a valid batching request and 777 * should be given priority access to a request. 778 */ 779 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 780 { 781 if (!ioc) 782 return 0; 783 784 /* 785 * Make sure the process is able to allocate at least 1 request 786 * even if the batch times out, otherwise we could theoretically 787 * lose wakeups. 788 */ 789 return ioc->nr_batch_requests == q->nr_batching || 790 (ioc->nr_batch_requests > 0 791 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 792 } 793 794 /* 795 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 796 * will cause the process to be a "batcher" on all queues in the system. This 797 * is the behaviour we want though - once it gets a wakeup it should be given 798 * a nice run. 799 */ 800 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 801 { 802 if (!ioc || ioc_batching(q, ioc)) 803 return; 804 805 ioc->nr_batch_requests = q->nr_batching; 806 ioc->last_waited = jiffies; 807 } 808 809 static void __freed_request(struct request_list *rl, int sync) 810 { 811 struct request_queue *q = rl->q; 812 813 /* 814 * bdi isn't aware of blkcg yet. As all async IOs end up root 815 * blkcg anyway, just use root blkcg state. 816 */ 817 if (rl == &q->root_rl && 818 rl->count[sync] < queue_congestion_off_threshold(q)) 819 blk_clear_queue_congested(q, sync); 820 821 if (rl->count[sync] + 1 <= q->nr_requests) { 822 if (waitqueue_active(&rl->wait[sync])) 823 wake_up(&rl->wait[sync]); 824 825 blk_clear_rl_full(rl, sync); 826 } 827 } 828 829 /* 830 * A request has just been released. Account for it, update the full and 831 * congestion status, wake up any waiters. Called under q->queue_lock. 832 */ 833 static void freed_request(struct request_list *rl, unsigned int flags) 834 { 835 struct request_queue *q = rl->q; 836 int sync = rw_is_sync(flags); 837 838 q->nr_rqs[sync]--; 839 rl->count[sync]--; 840 if (flags & REQ_ELVPRIV) 841 q->nr_rqs_elvpriv--; 842 843 __freed_request(rl, sync); 844 845 if (unlikely(rl->starved[sync ^ 1])) 846 __freed_request(rl, sync ^ 1); 847 } 848 849 /* 850 * Determine if elevator data should be initialized when allocating the 851 * request associated with @bio. 852 */ 853 static bool blk_rq_should_init_elevator(struct bio *bio) 854 { 855 if (!bio) 856 return true; 857 858 /* 859 * Flush requests do not use the elevator so skip initialization. 860 * This allows a request to share the flush and elevator data. 861 */ 862 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 863 return false; 864 865 return true; 866 } 867 868 /** 869 * rq_ioc - determine io_context for request allocation 870 * @bio: request being allocated is for this bio (can be %NULL) 871 * 872 * Determine io_context to use for request allocation for @bio. May return 873 * %NULL if %current->io_context doesn't exist. 874 */ 875 static struct io_context *rq_ioc(struct bio *bio) 876 { 877 #ifdef CONFIG_BLK_CGROUP 878 if (bio && bio->bi_ioc) 879 return bio->bi_ioc; 880 #endif 881 return current->io_context; 882 } 883 884 /** 885 * __get_request - get a free request 886 * @rl: request list to allocate from 887 * @rw_flags: RW and SYNC flags 888 * @bio: bio to allocate request for (can be %NULL) 889 * @gfp_mask: allocation mask 890 * 891 * Get a free request from @q. This function may fail under memory 892 * pressure or if @q is dead. 893 * 894 * Must be callled with @q->queue_lock held and, 895 * Returns %NULL on failure, with @q->queue_lock held. 896 * Returns !%NULL on success, with @q->queue_lock *not held*. 897 */ 898 static struct request *__get_request(struct request_list *rl, int rw_flags, 899 struct bio *bio, gfp_t gfp_mask) 900 { 901 struct request_queue *q = rl->q; 902 struct request *rq; 903 struct elevator_type *et = q->elevator->type; 904 struct io_context *ioc = rq_ioc(bio); 905 struct io_cq *icq = NULL; 906 const bool is_sync = rw_is_sync(rw_flags) != 0; 907 int may_queue; 908 909 if (unlikely(blk_queue_dying(q))) 910 return NULL; 911 912 may_queue = elv_may_queue(q, rw_flags); 913 if (may_queue == ELV_MQUEUE_NO) 914 goto rq_starved; 915 916 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 917 if (rl->count[is_sync]+1 >= q->nr_requests) { 918 /* 919 * The queue will fill after this allocation, so set 920 * it as full, and mark this process as "batching". 921 * This process will be allowed to complete a batch of 922 * requests, others will be blocked. 923 */ 924 if (!blk_rl_full(rl, is_sync)) { 925 ioc_set_batching(q, ioc); 926 blk_set_rl_full(rl, is_sync); 927 } else { 928 if (may_queue != ELV_MQUEUE_MUST 929 && !ioc_batching(q, ioc)) { 930 /* 931 * The queue is full and the allocating 932 * process is not a "batcher", and not 933 * exempted by the IO scheduler 934 */ 935 return NULL; 936 } 937 } 938 } 939 /* 940 * bdi isn't aware of blkcg yet. As all async IOs end up 941 * root blkcg anyway, just use root blkcg state. 942 */ 943 if (rl == &q->root_rl) 944 blk_set_queue_congested(q, is_sync); 945 } 946 947 /* 948 * Only allow batching queuers to allocate up to 50% over the defined 949 * limit of requests, otherwise we could have thousands of requests 950 * allocated with any setting of ->nr_requests 951 */ 952 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 953 return NULL; 954 955 q->nr_rqs[is_sync]++; 956 rl->count[is_sync]++; 957 rl->starved[is_sync] = 0; 958 959 /* 960 * Decide whether the new request will be managed by elevator. If 961 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will 962 * prevent the current elevator from being destroyed until the new 963 * request is freed. This guarantees icq's won't be destroyed and 964 * makes creating new ones safe. 965 * 966 * Also, lookup icq while holding queue_lock. If it doesn't exist, 967 * it will be created after releasing queue_lock. 968 */ 969 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 970 rw_flags |= REQ_ELVPRIV; 971 q->nr_rqs_elvpriv++; 972 if (et->icq_cache && ioc) 973 icq = ioc_lookup_icq(ioc, q); 974 } 975 976 if (blk_queue_io_stat(q)) 977 rw_flags |= REQ_IO_STAT; 978 spin_unlock_irq(q->queue_lock); 979 980 /* allocate and init request */ 981 rq = mempool_alloc(rl->rq_pool, gfp_mask); 982 if (!rq) 983 goto fail_alloc; 984 985 blk_rq_init(q, rq); 986 blk_rq_set_rl(rq, rl); 987 rq->cmd_flags = rw_flags | REQ_ALLOCED; 988 989 /* init elvpriv */ 990 if (rw_flags & REQ_ELVPRIV) { 991 if (unlikely(et->icq_cache && !icq)) { 992 if (ioc) 993 icq = ioc_create_icq(ioc, q, gfp_mask); 994 if (!icq) 995 goto fail_elvpriv; 996 } 997 998 rq->elv.icq = icq; 999 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1000 goto fail_elvpriv; 1001 1002 /* @rq->elv.icq holds io_context until @rq is freed */ 1003 if (icq) 1004 get_io_context(icq->ioc); 1005 } 1006 out: 1007 /* 1008 * ioc may be NULL here, and ioc_batching will be false. That's 1009 * OK, if the queue is under the request limit then requests need 1010 * not count toward the nr_batch_requests limit. There will always 1011 * be some limit enforced by BLK_BATCH_TIME. 1012 */ 1013 if (ioc_batching(q, ioc)) 1014 ioc->nr_batch_requests--; 1015 1016 trace_block_getrq(q, bio, rw_flags & 1); 1017 return rq; 1018 1019 fail_elvpriv: 1020 /* 1021 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1022 * and may fail indefinitely under memory pressure and thus 1023 * shouldn't stall IO. Treat this request as !elvpriv. This will 1024 * disturb iosched and blkcg but weird is bettern than dead. 1025 */ 1026 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n", 1027 dev_name(q->backing_dev_info.dev)); 1028 1029 rq->cmd_flags &= ~REQ_ELVPRIV; 1030 rq->elv.icq = NULL; 1031 1032 spin_lock_irq(q->queue_lock); 1033 q->nr_rqs_elvpriv--; 1034 spin_unlock_irq(q->queue_lock); 1035 goto out; 1036 1037 fail_alloc: 1038 /* 1039 * Allocation failed presumably due to memory. Undo anything we 1040 * might have messed up. 1041 * 1042 * Allocating task should really be put onto the front of the wait 1043 * queue, but this is pretty rare. 1044 */ 1045 spin_lock_irq(q->queue_lock); 1046 freed_request(rl, rw_flags); 1047 1048 /* 1049 * in the very unlikely event that allocation failed and no 1050 * requests for this direction was pending, mark us starved so that 1051 * freeing of a request in the other direction will notice 1052 * us. another possible fix would be to split the rq mempool into 1053 * READ and WRITE 1054 */ 1055 rq_starved: 1056 if (unlikely(rl->count[is_sync] == 0)) 1057 rl->starved[is_sync] = 1; 1058 return NULL; 1059 } 1060 1061 /** 1062 * get_request - get a free request 1063 * @q: request_queue to allocate request from 1064 * @rw_flags: RW and SYNC flags 1065 * @bio: bio to allocate request for (can be %NULL) 1066 * @gfp_mask: allocation mask 1067 * 1068 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this 1069 * function keeps retrying under memory pressure and fails iff @q is dead. 1070 * 1071 * Must be callled with @q->queue_lock held and, 1072 * Returns %NULL on failure, with @q->queue_lock held. 1073 * Returns !%NULL on success, with @q->queue_lock *not held*. 1074 */ 1075 static struct request *get_request(struct request_queue *q, int rw_flags, 1076 struct bio *bio, gfp_t gfp_mask) 1077 { 1078 const bool is_sync = rw_is_sync(rw_flags) != 0; 1079 DEFINE_WAIT(wait); 1080 struct request_list *rl; 1081 struct request *rq; 1082 1083 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1084 retry: 1085 rq = __get_request(rl, rw_flags, bio, gfp_mask); 1086 if (rq) 1087 return rq; 1088 1089 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) { 1090 blk_put_rl(rl); 1091 return NULL; 1092 } 1093 1094 /* wait on @rl and retry */ 1095 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1096 TASK_UNINTERRUPTIBLE); 1097 1098 trace_block_sleeprq(q, bio, rw_flags & 1); 1099 1100 spin_unlock_irq(q->queue_lock); 1101 io_schedule(); 1102 1103 /* 1104 * After sleeping, we become a "batching" process and will be able 1105 * to allocate at least one request, and up to a big batch of them 1106 * for a small period time. See ioc_batching, ioc_set_batching 1107 */ 1108 ioc_set_batching(q, current->io_context); 1109 1110 spin_lock_irq(q->queue_lock); 1111 finish_wait(&rl->wait[is_sync], &wait); 1112 1113 goto retry; 1114 } 1115 1116 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1117 gfp_t gfp_mask) 1118 { 1119 struct request *rq; 1120 1121 BUG_ON(rw != READ && rw != WRITE); 1122 1123 /* create ioc upfront */ 1124 create_io_context(gfp_mask, q->node); 1125 1126 spin_lock_irq(q->queue_lock); 1127 rq = get_request(q, rw, NULL, gfp_mask); 1128 if (!rq) 1129 spin_unlock_irq(q->queue_lock); 1130 /* q->queue_lock is unlocked at this point */ 1131 1132 return rq; 1133 } 1134 1135 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1136 { 1137 if (q->mq_ops) 1138 return blk_mq_alloc_request(q, rw, gfp_mask); 1139 else 1140 return blk_old_get_request(q, rw, gfp_mask); 1141 } 1142 EXPORT_SYMBOL(blk_get_request); 1143 1144 /** 1145 * blk_make_request - given a bio, allocate a corresponding struct request. 1146 * @q: target request queue 1147 * @bio: The bio describing the memory mappings that will be submitted for IO. 1148 * It may be a chained-bio properly constructed by block/bio layer. 1149 * @gfp_mask: gfp flags to be used for memory allocation 1150 * 1151 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 1152 * type commands. Where the struct request needs to be farther initialized by 1153 * the caller. It is passed a &struct bio, which describes the memory info of 1154 * the I/O transfer. 1155 * 1156 * The caller of blk_make_request must make sure that bi_io_vec 1157 * are set to describe the memory buffers. That bio_data_dir() will return 1158 * the needed direction of the request. (And all bio's in the passed bio-chain 1159 * are properly set accordingly) 1160 * 1161 * If called under none-sleepable conditions, mapped bio buffers must not 1162 * need bouncing, by calling the appropriate masked or flagged allocator, 1163 * suitable for the target device. Otherwise the call to blk_queue_bounce will 1164 * BUG. 1165 * 1166 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 1167 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 1168 * anything but the first bio in the chain. Otherwise you risk waiting for IO 1169 * completion of a bio that hasn't been submitted yet, thus resulting in a 1170 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 1171 * of bio_alloc(), as that avoids the mempool deadlock. 1172 * If possible a big IO should be split into smaller parts when allocation 1173 * fails. Partial allocation should not be an error, or you risk a live-lock. 1174 */ 1175 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 1176 gfp_t gfp_mask) 1177 { 1178 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 1179 1180 if (unlikely(!rq)) 1181 return ERR_PTR(-ENOMEM); 1182 1183 for_each_bio(bio) { 1184 struct bio *bounce_bio = bio; 1185 int ret; 1186 1187 blk_queue_bounce(q, &bounce_bio); 1188 ret = blk_rq_append_bio(q, rq, bounce_bio); 1189 if (unlikely(ret)) { 1190 blk_put_request(rq); 1191 return ERR_PTR(ret); 1192 } 1193 } 1194 1195 return rq; 1196 } 1197 EXPORT_SYMBOL(blk_make_request); 1198 1199 /** 1200 * blk_requeue_request - put a request back on queue 1201 * @q: request queue where request should be inserted 1202 * @rq: request to be inserted 1203 * 1204 * Description: 1205 * Drivers often keep queueing requests until the hardware cannot accept 1206 * more, when that condition happens we need to put the request back 1207 * on the queue. Must be called with queue lock held. 1208 */ 1209 void blk_requeue_request(struct request_queue *q, struct request *rq) 1210 { 1211 blk_delete_timer(rq); 1212 blk_clear_rq_complete(rq); 1213 trace_block_rq_requeue(q, rq); 1214 1215 if (blk_rq_tagged(rq)) 1216 blk_queue_end_tag(q, rq); 1217 1218 BUG_ON(blk_queued_rq(rq)); 1219 1220 elv_requeue_request(q, rq); 1221 } 1222 EXPORT_SYMBOL(blk_requeue_request); 1223 1224 static void add_acct_request(struct request_queue *q, struct request *rq, 1225 int where) 1226 { 1227 blk_account_io_start(rq, true); 1228 __elv_add_request(q, rq, where); 1229 } 1230 1231 static void part_round_stats_single(int cpu, struct hd_struct *part, 1232 unsigned long now) 1233 { 1234 if (now == part->stamp) 1235 return; 1236 1237 if (part_in_flight(part)) { 1238 __part_stat_add(cpu, part, time_in_queue, 1239 part_in_flight(part) * (now - part->stamp)); 1240 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1241 } 1242 part->stamp = now; 1243 } 1244 1245 /** 1246 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1247 * @cpu: cpu number for stats access 1248 * @part: target partition 1249 * 1250 * The average IO queue length and utilisation statistics are maintained 1251 * by observing the current state of the queue length and the amount of 1252 * time it has been in this state for. 1253 * 1254 * Normally, that accounting is done on IO completion, but that can result 1255 * in more than a second's worth of IO being accounted for within any one 1256 * second, leading to >100% utilisation. To deal with that, we call this 1257 * function to do a round-off before returning the results when reading 1258 * /proc/diskstats. This accounts immediately for all queue usage up to 1259 * the current jiffies and restarts the counters again. 1260 */ 1261 void part_round_stats(int cpu, struct hd_struct *part) 1262 { 1263 unsigned long now = jiffies; 1264 1265 if (part->partno) 1266 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1267 part_round_stats_single(cpu, part, now); 1268 } 1269 EXPORT_SYMBOL_GPL(part_round_stats); 1270 1271 #ifdef CONFIG_PM_RUNTIME 1272 static void blk_pm_put_request(struct request *rq) 1273 { 1274 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending) 1275 pm_runtime_mark_last_busy(rq->q->dev); 1276 } 1277 #else 1278 static inline void blk_pm_put_request(struct request *rq) {} 1279 #endif 1280 1281 /* 1282 * queue lock must be held 1283 */ 1284 void __blk_put_request(struct request_queue *q, struct request *req) 1285 { 1286 if (unlikely(!q)) 1287 return; 1288 1289 if (q->mq_ops) { 1290 blk_mq_free_request(req); 1291 return; 1292 } 1293 1294 blk_pm_put_request(req); 1295 1296 elv_completed_request(q, req); 1297 1298 /* this is a bio leak */ 1299 WARN_ON(req->bio != NULL); 1300 1301 /* 1302 * Request may not have originated from ll_rw_blk. if not, 1303 * it didn't come out of our reserved rq pools 1304 */ 1305 if (req->cmd_flags & REQ_ALLOCED) { 1306 unsigned int flags = req->cmd_flags; 1307 struct request_list *rl = blk_rq_rl(req); 1308 1309 BUG_ON(!list_empty(&req->queuelist)); 1310 BUG_ON(ELV_ON_HASH(req)); 1311 1312 blk_free_request(rl, req); 1313 freed_request(rl, flags); 1314 blk_put_rl(rl); 1315 } 1316 } 1317 EXPORT_SYMBOL_GPL(__blk_put_request); 1318 1319 void blk_put_request(struct request *req) 1320 { 1321 struct request_queue *q = req->q; 1322 1323 if (q->mq_ops) 1324 blk_mq_free_request(req); 1325 else { 1326 unsigned long flags; 1327 1328 spin_lock_irqsave(q->queue_lock, flags); 1329 __blk_put_request(q, req); 1330 spin_unlock_irqrestore(q->queue_lock, flags); 1331 } 1332 } 1333 EXPORT_SYMBOL(blk_put_request); 1334 1335 /** 1336 * blk_add_request_payload - add a payload to a request 1337 * @rq: request to update 1338 * @page: page backing the payload 1339 * @len: length of the payload. 1340 * 1341 * This allows to later add a payload to an already submitted request by 1342 * a block driver. The driver needs to take care of freeing the payload 1343 * itself. 1344 * 1345 * Note that this is a quite horrible hack and nothing but handling of 1346 * discard requests should ever use it. 1347 */ 1348 void blk_add_request_payload(struct request *rq, struct page *page, 1349 unsigned int len) 1350 { 1351 struct bio *bio = rq->bio; 1352 1353 bio->bi_io_vec->bv_page = page; 1354 bio->bi_io_vec->bv_offset = 0; 1355 bio->bi_io_vec->bv_len = len; 1356 1357 bio->bi_iter.bi_size = len; 1358 bio->bi_vcnt = 1; 1359 bio->bi_phys_segments = 1; 1360 1361 rq->__data_len = rq->resid_len = len; 1362 rq->nr_phys_segments = 1; 1363 rq->buffer = bio_data(bio); 1364 } 1365 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1366 1367 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1368 struct bio *bio) 1369 { 1370 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1371 1372 if (!ll_back_merge_fn(q, req, bio)) 1373 return false; 1374 1375 trace_block_bio_backmerge(q, req, bio); 1376 1377 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1378 blk_rq_set_mixed_merge(req); 1379 1380 req->biotail->bi_next = bio; 1381 req->biotail = bio; 1382 req->__data_len += bio->bi_iter.bi_size; 1383 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1384 1385 blk_account_io_start(req, false); 1386 return true; 1387 } 1388 1389 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1390 struct bio *bio) 1391 { 1392 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1393 1394 if (!ll_front_merge_fn(q, req, bio)) 1395 return false; 1396 1397 trace_block_bio_frontmerge(q, req, bio); 1398 1399 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1400 blk_rq_set_mixed_merge(req); 1401 1402 bio->bi_next = req->bio; 1403 req->bio = bio; 1404 1405 /* 1406 * may not be valid. if the low level driver said 1407 * it didn't need a bounce buffer then it better 1408 * not touch req->buffer either... 1409 */ 1410 req->buffer = bio_data(bio); 1411 req->__sector = bio->bi_iter.bi_sector; 1412 req->__data_len += bio->bi_iter.bi_size; 1413 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1414 1415 blk_account_io_start(req, false); 1416 return true; 1417 } 1418 1419 /** 1420 * blk_attempt_plug_merge - try to merge with %current's plugged list 1421 * @q: request_queue new bio is being queued at 1422 * @bio: new bio being queued 1423 * @request_count: out parameter for number of traversed plugged requests 1424 * 1425 * Determine whether @bio being queued on @q can be merged with a request 1426 * on %current's plugged list. Returns %true if merge was successful, 1427 * otherwise %false. 1428 * 1429 * Plugging coalesces IOs from the same issuer for the same purpose without 1430 * going through @q->queue_lock. As such it's more of an issuing mechanism 1431 * than scheduling, and the request, while may have elvpriv data, is not 1432 * added on the elevator at this point. In addition, we don't have 1433 * reliable access to the elevator outside queue lock. Only check basic 1434 * merging parameters without querying the elevator. 1435 */ 1436 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1437 unsigned int *request_count) 1438 { 1439 struct blk_plug *plug; 1440 struct request *rq; 1441 bool ret = false; 1442 struct list_head *plug_list; 1443 1444 if (blk_queue_nomerges(q)) 1445 goto out; 1446 1447 plug = current->plug; 1448 if (!plug) 1449 goto out; 1450 *request_count = 0; 1451 1452 if (q->mq_ops) 1453 plug_list = &plug->mq_list; 1454 else 1455 plug_list = &plug->list; 1456 1457 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1458 int el_ret; 1459 1460 if (rq->q == q) 1461 (*request_count)++; 1462 1463 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1464 continue; 1465 1466 el_ret = blk_try_merge(rq, bio); 1467 if (el_ret == ELEVATOR_BACK_MERGE) { 1468 ret = bio_attempt_back_merge(q, rq, bio); 1469 if (ret) 1470 break; 1471 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1472 ret = bio_attempt_front_merge(q, rq, bio); 1473 if (ret) 1474 break; 1475 } 1476 } 1477 out: 1478 return ret; 1479 } 1480 1481 void init_request_from_bio(struct request *req, struct bio *bio) 1482 { 1483 req->cmd_type = REQ_TYPE_FS; 1484 1485 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1486 if (bio->bi_rw & REQ_RAHEAD) 1487 req->cmd_flags |= REQ_FAILFAST_MASK; 1488 1489 req->errors = 0; 1490 req->__sector = bio->bi_iter.bi_sector; 1491 req->ioprio = bio_prio(bio); 1492 blk_rq_bio_prep(req->q, req, bio); 1493 } 1494 1495 void blk_queue_bio(struct request_queue *q, struct bio *bio) 1496 { 1497 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1498 struct blk_plug *plug; 1499 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1500 struct request *req; 1501 unsigned int request_count = 0; 1502 1503 /* 1504 * low level driver can indicate that it wants pages above a 1505 * certain limit bounced to low memory (ie for highmem, or even 1506 * ISA dma in theory) 1507 */ 1508 blk_queue_bounce(q, &bio); 1509 1510 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1511 bio_endio(bio, -EIO); 1512 return; 1513 } 1514 1515 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1516 spin_lock_irq(q->queue_lock); 1517 where = ELEVATOR_INSERT_FLUSH; 1518 goto get_rq; 1519 } 1520 1521 /* 1522 * Check if we can merge with the plugged list before grabbing 1523 * any locks. 1524 */ 1525 if (blk_attempt_plug_merge(q, bio, &request_count)) 1526 return; 1527 1528 spin_lock_irq(q->queue_lock); 1529 1530 el_ret = elv_merge(q, &req, bio); 1531 if (el_ret == ELEVATOR_BACK_MERGE) { 1532 if (bio_attempt_back_merge(q, req, bio)) { 1533 elv_bio_merged(q, req, bio); 1534 if (!attempt_back_merge(q, req)) 1535 elv_merged_request(q, req, el_ret); 1536 goto out_unlock; 1537 } 1538 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1539 if (bio_attempt_front_merge(q, req, bio)) { 1540 elv_bio_merged(q, req, bio); 1541 if (!attempt_front_merge(q, req)) 1542 elv_merged_request(q, req, el_ret); 1543 goto out_unlock; 1544 } 1545 } 1546 1547 get_rq: 1548 /* 1549 * This sync check and mask will be re-done in init_request_from_bio(), 1550 * but we need to set it earlier to expose the sync flag to the 1551 * rq allocator and io schedulers. 1552 */ 1553 rw_flags = bio_data_dir(bio); 1554 if (sync) 1555 rw_flags |= REQ_SYNC; 1556 1557 /* 1558 * Grab a free request. This is might sleep but can not fail. 1559 * Returns with the queue unlocked. 1560 */ 1561 req = get_request(q, rw_flags, bio, GFP_NOIO); 1562 if (unlikely(!req)) { 1563 bio_endio(bio, -ENODEV); /* @q is dead */ 1564 goto out_unlock; 1565 } 1566 1567 /* 1568 * After dropping the lock and possibly sleeping here, our request 1569 * may now be mergeable after it had proven unmergeable (above). 1570 * We don't worry about that case for efficiency. It won't happen 1571 * often, and the elevators are able to handle it. 1572 */ 1573 init_request_from_bio(req, bio); 1574 1575 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1576 req->cpu = raw_smp_processor_id(); 1577 1578 plug = current->plug; 1579 if (plug) { 1580 /* 1581 * If this is the first request added after a plug, fire 1582 * of a plug trace. 1583 */ 1584 if (!request_count) 1585 trace_block_plug(q); 1586 else { 1587 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1588 blk_flush_plug_list(plug, false); 1589 trace_block_plug(q); 1590 } 1591 } 1592 list_add_tail(&req->queuelist, &plug->list); 1593 blk_account_io_start(req, true); 1594 } else { 1595 spin_lock_irq(q->queue_lock); 1596 add_acct_request(q, req, where); 1597 __blk_run_queue(q); 1598 out_unlock: 1599 spin_unlock_irq(q->queue_lock); 1600 } 1601 } 1602 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */ 1603 1604 /* 1605 * If bio->bi_dev is a partition, remap the location 1606 */ 1607 static inline void blk_partition_remap(struct bio *bio) 1608 { 1609 struct block_device *bdev = bio->bi_bdev; 1610 1611 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1612 struct hd_struct *p = bdev->bd_part; 1613 1614 bio->bi_iter.bi_sector += p->start_sect; 1615 bio->bi_bdev = bdev->bd_contains; 1616 1617 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1618 bdev->bd_dev, 1619 bio->bi_iter.bi_sector - p->start_sect); 1620 } 1621 } 1622 1623 static void handle_bad_sector(struct bio *bio) 1624 { 1625 char b[BDEVNAME_SIZE]; 1626 1627 printk(KERN_INFO "attempt to access beyond end of device\n"); 1628 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1629 bdevname(bio->bi_bdev, b), 1630 bio->bi_rw, 1631 (unsigned long long)bio_end_sector(bio), 1632 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1633 1634 set_bit(BIO_EOF, &bio->bi_flags); 1635 } 1636 1637 #ifdef CONFIG_FAIL_MAKE_REQUEST 1638 1639 static DECLARE_FAULT_ATTR(fail_make_request); 1640 1641 static int __init setup_fail_make_request(char *str) 1642 { 1643 return setup_fault_attr(&fail_make_request, str); 1644 } 1645 __setup("fail_make_request=", setup_fail_make_request); 1646 1647 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1648 { 1649 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1650 } 1651 1652 static int __init fail_make_request_debugfs(void) 1653 { 1654 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1655 NULL, &fail_make_request); 1656 1657 return IS_ERR(dir) ? PTR_ERR(dir) : 0; 1658 } 1659 1660 late_initcall(fail_make_request_debugfs); 1661 1662 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1663 1664 static inline bool should_fail_request(struct hd_struct *part, 1665 unsigned int bytes) 1666 { 1667 return false; 1668 } 1669 1670 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1671 1672 /* 1673 * Check whether this bio extends beyond the end of the device. 1674 */ 1675 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1676 { 1677 sector_t maxsector; 1678 1679 if (!nr_sectors) 1680 return 0; 1681 1682 /* Test device or partition size, when known. */ 1683 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1684 if (maxsector) { 1685 sector_t sector = bio->bi_iter.bi_sector; 1686 1687 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1688 /* 1689 * This may well happen - the kernel calls bread() 1690 * without checking the size of the device, e.g., when 1691 * mounting a device. 1692 */ 1693 handle_bad_sector(bio); 1694 return 1; 1695 } 1696 } 1697 1698 return 0; 1699 } 1700 1701 static noinline_for_stack bool 1702 generic_make_request_checks(struct bio *bio) 1703 { 1704 struct request_queue *q; 1705 int nr_sectors = bio_sectors(bio); 1706 int err = -EIO; 1707 char b[BDEVNAME_SIZE]; 1708 struct hd_struct *part; 1709 1710 might_sleep(); 1711 1712 if (bio_check_eod(bio, nr_sectors)) 1713 goto end_io; 1714 1715 q = bdev_get_queue(bio->bi_bdev); 1716 if (unlikely(!q)) { 1717 printk(KERN_ERR 1718 "generic_make_request: Trying to access " 1719 "nonexistent block-device %s (%Lu)\n", 1720 bdevname(bio->bi_bdev, b), 1721 (long long) bio->bi_iter.bi_sector); 1722 goto end_io; 1723 } 1724 1725 if (likely(bio_is_rw(bio) && 1726 nr_sectors > queue_max_hw_sectors(q))) { 1727 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1728 bdevname(bio->bi_bdev, b), 1729 bio_sectors(bio), 1730 queue_max_hw_sectors(q)); 1731 goto end_io; 1732 } 1733 1734 part = bio->bi_bdev->bd_part; 1735 if (should_fail_request(part, bio->bi_iter.bi_size) || 1736 should_fail_request(&part_to_disk(part)->part0, 1737 bio->bi_iter.bi_size)) 1738 goto end_io; 1739 1740 /* 1741 * If this device has partitions, remap block n 1742 * of partition p to block n+start(p) of the disk. 1743 */ 1744 blk_partition_remap(bio); 1745 1746 if (bio_check_eod(bio, nr_sectors)) 1747 goto end_io; 1748 1749 /* 1750 * Filter flush bio's early so that make_request based 1751 * drivers without flush support don't have to worry 1752 * about them. 1753 */ 1754 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1755 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1756 if (!nr_sectors) { 1757 err = 0; 1758 goto end_io; 1759 } 1760 } 1761 1762 if ((bio->bi_rw & REQ_DISCARD) && 1763 (!blk_queue_discard(q) || 1764 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) { 1765 err = -EOPNOTSUPP; 1766 goto end_io; 1767 } 1768 1769 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) { 1770 err = -EOPNOTSUPP; 1771 goto end_io; 1772 } 1773 1774 /* 1775 * Various block parts want %current->io_context and lazy ioc 1776 * allocation ends up trading a lot of pain for a small amount of 1777 * memory. Just allocate it upfront. This may fail and block 1778 * layer knows how to live with it. 1779 */ 1780 create_io_context(GFP_ATOMIC, q->node); 1781 1782 if (blk_throtl_bio(q, bio)) 1783 return false; /* throttled, will be resubmitted later */ 1784 1785 trace_block_bio_queue(q, bio); 1786 return true; 1787 1788 end_io: 1789 bio_endio(bio, err); 1790 return false; 1791 } 1792 1793 /** 1794 * generic_make_request - hand a buffer to its device driver for I/O 1795 * @bio: The bio describing the location in memory and on the device. 1796 * 1797 * generic_make_request() is used to make I/O requests of block 1798 * devices. It is passed a &struct bio, which describes the I/O that needs 1799 * to be done. 1800 * 1801 * generic_make_request() does not return any status. The 1802 * success/failure status of the request, along with notification of 1803 * completion, is delivered asynchronously through the bio->bi_end_io 1804 * function described (one day) else where. 1805 * 1806 * The caller of generic_make_request must make sure that bi_io_vec 1807 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1808 * set to describe the device address, and the 1809 * bi_end_io and optionally bi_private are set to describe how 1810 * completion notification should be signaled. 1811 * 1812 * generic_make_request and the drivers it calls may use bi_next if this 1813 * bio happens to be merged with someone else, and may resubmit the bio to 1814 * a lower device by calling into generic_make_request recursively, which 1815 * means the bio should NOT be touched after the call to ->make_request_fn. 1816 */ 1817 void generic_make_request(struct bio *bio) 1818 { 1819 struct bio_list bio_list_on_stack; 1820 1821 if (!generic_make_request_checks(bio)) 1822 return; 1823 1824 /* 1825 * We only want one ->make_request_fn to be active at a time, else 1826 * stack usage with stacked devices could be a problem. So use 1827 * current->bio_list to keep a list of requests submited by a 1828 * make_request_fn function. current->bio_list is also used as a 1829 * flag to say if generic_make_request is currently active in this 1830 * task or not. If it is NULL, then no make_request is active. If 1831 * it is non-NULL, then a make_request is active, and new requests 1832 * should be added at the tail 1833 */ 1834 if (current->bio_list) { 1835 bio_list_add(current->bio_list, bio); 1836 return; 1837 } 1838 1839 /* following loop may be a bit non-obvious, and so deserves some 1840 * explanation. 1841 * Before entering the loop, bio->bi_next is NULL (as all callers 1842 * ensure that) so we have a list with a single bio. 1843 * We pretend that we have just taken it off a longer list, so 1844 * we assign bio_list to a pointer to the bio_list_on_stack, 1845 * thus initialising the bio_list of new bios to be 1846 * added. ->make_request() may indeed add some more bios 1847 * through a recursive call to generic_make_request. If it 1848 * did, we find a non-NULL value in bio_list and re-enter the loop 1849 * from the top. In this case we really did just take the bio 1850 * of the top of the list (no pretending) and so remove it from 1851 * bio_list, and call into ->make_request() again. 1852 */ 1853 BUG_ON(bio->bi_next); 1854 bio_list_init(&bio_list_on_stack); 1855 current->bio_list = &bio_list_on_stack; 1856 do { 1857 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1858 1859 q->make_request_fn(q, bio); 1860 1861 bio = bio_list_pop(current->bio_list); 1862 } while (bio); 1863 current->bio_list = NULL; /* deactivate */ 1864 } 1865 EXPORT_SYMBOL(generic_make_request); 1866 1867 /** 1868 * submit_bio - submit a bio to the block device layer for I/O 1869 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1870 * @bio: The &struct bio which describes the I/O 1871 * 1872 * submit_bio() is very similar in purpose to generic_make_request(), and 1873 * uses that function to do most of the work. Both are fairly rough 1874 * interfaces; @bio must be presetup and ready for I/O. 1875 * 1876 */ 1877 void submit_bio(int rw, struct bio *bio) 1878 { 1879 bio->bi_rw |= rw; 1880 1881 /* 1882 * If it's a regular read/write or a barrier with data attached, 1883 * go through the normal accounting stuff before submission. 1884 */ 1885 if (bio_has_data(bio)) { 1886 unsigned int count; 1887 1888 if (unlikely(rw & REQ_WRITE_SAME)) 1889 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 1890 else 1891 count = bio_sectors(bio); 1892 1893 if (rw & WRITE) { 1894 count_vm_events(PGPGOUT, count); 1895 } else { 1896 task_io_account_read(bio->bi_iter.bi_size); 1897 count_vm_events(PGPGIN, count); 1898 } 1899 1900 if (unlikely(block_dump)) { 1901 char b[BDEVNAME_SIZE]; 1902 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1903 current->comm, task_pid_nr(current), 1904 (rw & WRITE) ? "WRITE" : "READ", 1905 (unsigned long long)bio->bi_iter.bi_sector, 1906 bdevname(bio->bi_bdev, b), 1907 count); 1908 } 1909 } 1910 1911 generic_make_request(bio); 1912 } 1913 EXPORT_SYMBOL(submit_bio); 1914 1915 /** 1916 * blk_rq_check_limits - Helper function to check a request for the queue limit 1917 * @q: the queue 1918 * @rq: the request being checked 1919 * 1920 * Description: 1921 * @rq may have been made based on weaker limitations of upper-level queues 1922 * in request stacking drivers, and it may violate the limitation of @q. 1923 * Since the block layer and the underlying device driver trust @rq 1924 * after it is inserted to @q, it should be checked against @q before 1925 * the insertion using this generic function. 1926 * 1927 * This function should also be useful for request stacking drivers 1928 * in some cases below, so export this function. 1929 * Request stacking drivers like request-based dm may change the queue 1930 * limits while requests are in the queue (e.g. dm's table swapping). 1931 * Such request stacking drivers should check those requests against 1932 * the new queue limits again when they dispatch those requests, 1933 * although such checkings are also done against the old queue limits 1934 * when submitting requests. 1935 */ 1936 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1937 { 1938 if (!rq_mergeable(rq)) 1939 return 0; 1940 1941 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) { 1942 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1943 return -EIO; 1944 } 1945 1946 /* 1947 * queue's settings related to segment counting like q->bounce_pfn 1948 * may differ from that of other stacking queues. 1949 * Recalculate it to check the request correctly on this queue's 1950 * limitation. 1951 */ 1952 blk_recalc_rq_segments(rq); 1953 if (rq->nr_phys_segments > queue_max_segments(q)) { 1954 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1955 return -EIO; 1956 } 1957 1958 return 0; 1959 } 1960 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1961 1962 /** 1963 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1964 * @q: the queue to submit the request 1965 * @rq: the request being queued 1966 */ 1967 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1968 { 1969 unsigned long flags; 1970 int where = ELEVATOR_INSERT_BACK; 1971 1972 if (blk_rq_check_limits(q, rq)) 1973 return -EIO; 1974 1975 if (rq->rq_disk && 1976 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1977 return -EIO; 1978 1979 spin_lock_irqsave(q->queue_lock, flags); 1980 if (unlikely(blk_queue_dying(q))) { 1981 spin_unlock_irqrestore(q->queue_lock, flags); 1982 return -ENODEV; 1983 } 1984 1985 /* 1986 * Submitting request must be dequeued before calling this function 1987 * because it will be linked to another request_queue 1988 */ 1989 BUG_ON(blk_queued_rq(rq)); 1990 1991 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 1992 where = ELEVATOR_INSERT_FLUSH; 1993 1994 add_acct_request(q, rq, where); 1995 if (where == ELEVATOR_INSERT_FLUSH) 1996 __blk_run_queue(q); 1997 spin_unlock_irqrestore(q->queue_lock, flags); 1998 1999 return 0; 2000 } 2001 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2002 2003 /** 2004 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2005 * @rq: request to examine 2006 * 2007 * Description: 2008 * A request could be merge of IOs which require different failure 2009 * handling. This function determines the number of bytes which 2010 * can be failed from the beginning of the request without 2011 * crossing into area which need to be retried further. 2012 * 2013 * Return: 2014 * The number of bytes to fail. 2015 * 2016 * Context: 2017 * queue_lock must be held. 2018 */ 2019 unsigned int blk_rq_err_bytes(const struct request *rq) 2020 { 2021 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2022 unsigned int bytes = 0; 2023 struct bio *bio; 2024 2025 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 2026 return blk_rq_bytes(rq); 2027 2028 /* 2029 * Currently the only 'mixing' which can happen is between 2030 * different fastfail types. We can safely fail portions 2031 * which have all the failfast bits that the first one has - 2032 * the ones which are at least as eager to fail as the first 2033 * one. 2034 */ 2035 for (bio = rq->bio; bio; bio = bio->bi_next) { 2036 if ((bio->bi_rw & ff) != ff) 2037 break; 2038 bytes += bio->bi_iter.bi_size; 2039 } 2040 2041 /* this could lead to infinite loop */ 2042 BUG_ON(blk_rq_bytes(rq) && !bytes); 2043 return bytes; 2044 } 2045 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2046 2047 void blk_account_io_completion(struct request *req, unsigned int bytes) 2048 { 2049 if (blk_do_io_stat(req)) { 2050 const int rw = rq_data_dir(req); 2051 struct hd_struct *part; 2052 int cpu; 2053 2054 cpu = part_stat_lock(); 2055 part = req->part; 2056 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2057 part_stat_unlock(); 2058 } 2059 } 2060 2061 void blk_account_io_done(struct request *req) 2062 { 2063 /* 2064 * Account IO completion. flush_rq isn't accounted as a 2065 * normal IO on queueing nor completion. Accounting the 2066 * containing request is enough. 2067 */ 2068 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2069 unsigned long duration = jiffies - req->start_time; 2070 const int rw = rq_data_dir(req); 2071 struct hd_struct *part; 2072 int cpu; 2073 2074 cpu = part_stat_lock(); 2075 part = req->part; 2076 2077 part_stat_inc(cpu, part, ios[rw]); 2078 part_stat_add(cpu, part, ticks[rw], duration); 2079 part_round_stats(cpu, part); 2080 part_dec_in_flight(part, rw); 2081 2082 hd_struct_put(part); 2083 part_stat_unlock(); 2084 } 2085 } 2086 2087 #ifdef CONFIG_PM_RUNTIME 2088 /* 2089 * Don't process normal requests when queue is suspended 2090 * or in the process of suspending/resuming 2091 */ 2092 static struct request *blk_pm_peek_request(struct request_queue *q, 2093 struct request *rq) 2094 { 2095 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2096 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM)))) 2097 return NULL; 2098 else 2099 return rq; 2100 } 2101 #else 2102 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2103 struct request *rq) 2104 { 2105 return rq; 2106 } 2107 #endif 2108 2109 void blk_account_io_start(struct request *rq, bool new_io) 2110 { 2111 struct hd_struct *part; 2112 int rw = rq_data_dir(rq); 2113 int cpu; 2114 2115 if (!blk_do_io_stat(rq)) 2116 return; 2117 2118 cpu = part_stat_lock(); 2119 2120 if (!new_io) { 2121 part = rq->part; 2122 part_stat_inc(cpu, part, merges[rw]); 2123 } else { 2124 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2125 if (!hd_struct_try_get(part)) { 2126 /* 2127 * The partition is already being removed, 2128 * the request will be accounted on the disk only 2129 * 2130 * We take a reference on disk->part0 although that 2131 * partition will never be deleted, so we can treat 2132 * it as any other partition. 2133 */ 2134 part = &rq->rq_disk->part0; 2135 hd_struct_get(part); 2136 } 2137 part_round_stats(cpu, part); 2138 part_inc_in_flight(part, rw); 2139 rq->part = part; 2140 } 2141 2142 part_stat_unlock(); 2143 } 2144 2145 /** 2146 * blk_peek_request - peek at the top of a request queue 2147 * @q: request queue to peek at 2148 * 2149 * Description: 2150 * Return the request at the top of @q. The returned request 2151 * should be started using blk_start_request() before LLD starts 2152 * processing it. 2153 * 2154 * Return: 2155 * Pointer to the request at the top of @q if available. Null 2156 * otherwise. 2157 * 2158 * Context: 2159 * queue_lock must be held. 2160 */ 2161 struct request *blk_peek_request(struct request_queue *q) 2162 { 2163 struct request *rq; 2164 int ret; 2165 2166 while ((rq = __elv_next_request(q)) != NULL) { 2167 2168 rq = blk_pm_peek_request(q, rq); 2169 if (!rq) 2170 break; 2171 2172 if (!(rq->cmd_flags & REQ_STARTED)) { 2173 /* 2174 * This is the first time the device driver 2175 * sees this request (possibly after 2176 * requeueing). Notify IO scheduler. 2177 */ 2178 if (rq->cmd_flags & REQ_SORTED) 2179 elv_activate_rq(q, rq); 2180 2181 /* 2182 * just mark as started even if we don't start 2183 * it, a request that has been delayed should 2184 * not be passed by new incoming requests 2185 */ 2186 rq->cmd_flags |= REQ_STARTED; 2187 trace_block_rq_issue(q, rq); 2188 } 2189 2190 if (!q->boundary_rq || q->boundary_rq == rq) { 2191 q->end_sector = rq_end_sector(rq); 2192 q->boundary_rq = NULL; 2193 } 2194 2195 if (rq->cmd_flags & REQ_DONTPREP) 2196 break; 2197 2198 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2199 /* 2200 * make sure space for the drain appears we 2201 * know we can do this because max_hw_segments 2202 * has been adjusted to be one fewer than the 2203 * device can handle 2204 */ 2205 rq->nr_phys_segments++; 2206 } 2207 2208 if (!q->prep_rq_fn) 2209 break; 2210 2211 ret = q->prep_rq_fn(q, rq); 2212 if (ret == BLKPREP_OK) { 2213 break; 2214 } else if (ret == BLKPREP_DEFER) { 2215 /* 2216 * the request may have been (partially) prepped. 2217 * we need to keep this request in the front to 2218 * avoid resource deadlock. REQ_STARTED will 2219 * prevent other fs requests from passing this one. 2220 */ 2221 if (q->dma_drain_size && blk_rq_bytes(rq) && 2222 !(rq->cmd_flags & REQ_DONTPREP)) { 2223 /* 2224 * remove the space for the drain we added 2225 * so that we don't add it again 2226 */ 2227 --rq->nr_phys_segments; 2228 } 2229 2230 rq = NULL; 2231 break; 2232 } else if (ret == BLKPREP_KILL) { 2233 rq->cmd_flags |= REQ_QUIET; 2234 /* 2235 * Mark this request as started so we don't trigger 2236 * any debug logic in the end I/O path. 2237 */ 2238 blk_start_request(rq); 2239 __blk_end_request_all(rq, -EIO); 2240 } else { 2241 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2242 break; 2243 } 2244 } 2245 2246 return rq; 2247 } 2248 EXPORT_SYMBOL(blk_peek_request); 2249 2250 void blk_dequeue_request(struct request *rq) 2251 { 2252 struct request_queue *q = rq->q; 2253 2254 BUG_ON(list_empty(&rq->queuelist)); 2255 BUG_ON(ELV_ON_HASH(rq)); 2256 2257 list_del_init(&rq->queuelist); 2258 2259 /* 2260 * the time frame between a request being removed from the lists 2261 * and to it is freed is accounted as io that is in progress at 2262 * the driver side. 2263 */ 2264 if (blk_account_rq(rq)) { 2265 q->in_flight[rq_is_sync(rq)]++; 2266 set_io_start_time_ns(rq); 2267 } 2268 } 2269 2270 /** 2271 * blk_start_request - start request processing on the driver 2272 * @req: request to dequeue 2273 * 2274 * Description: 2275 * Dequeue @req and start timeout timer on it. This hands off the 2276 * request to the driver. 2277 * 2278 * Block internal functions which don't want to start timer should 2279 * call blk_dequeue_request(). 2280 * 2281 * Context: 2282 * queue_lock must be held. 2283 */ 2284 void blk_start_request(struct request *req) 2285 { 2286 blk_dequeue_request(req); 2287 2288 /* 2289 * We are now handing the request to the hardware, initialize 2290 * resid_len to full count and add the timeout handler. 2291 */ 2292 req->resid_len = blk_rq_bytes(req); 2293 if (unlikely(blk_bidi_rq(req))) 2294 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2295 2296 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2297 blk_add_timer(req); 2298 } 2299 EXPORT_SYMBOL(blk_start_request); 2300 2301 /** 2302 * blk_fetch_request - fetch a request from a request queue 2303 * @q: request queue to fetch a request from 2304 * 2305 * Description: 2306 * Return the request at the top of @q. The request is started on 2307 * return and LLD can start processing it immediately. 2308 * 2309 * Return: 2310 * Pointer to the request at the top of @q if available. Null 2311 * otherwise. 2312 * 2313 * Context: 2314 * queue_lock must be held. 2315 */ 2316 struct request *blk_fetch_request(struct request_queue *q) 2317 { 2318 struct request *rq; 2319 2320 rq = blk_peek_request(q); 2321 if (rq) 2322 blk_start_request(rq); 2323 return rq; 2324 } 2325 EXPORT_SYMBOL(blk_fetch_request); 2326 2327 /** 2328 * blk_update_request - Special helper function for request stacking drivers 2329 * @req: the request being processed 2330 * @error: %0 for success, < %0 for error 2331 * @nr_bytes: number of bytes to complete @req 2332 * 2333 * Description: 2334 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2335 * the request structure even if @req doesn't have leftover. 2336 * If @req has leftover, sets it up for the next range of segments. 2337 * 2338 * This special helper function is only for request stacking drivers 2339 * (e.g. request-based dm) so that they can handle partial completion. 2340 * Actual device drivers should use blk_end_request instead. 2341 * 2342 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2343 * %false return from this function. 2344 * 2345 * Return: 2346 * %false - this request doesn't have any more data 2347 * %true - this request has more data 2348 **/ 2349 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2350 { 2351 int total_bytes; 2352 2353 if (!req->bio) 2354 return false; 2355 2356 trace_block_rq_complete(req->q, req, nr_bytes); 2357 2358 /* 2359 * For fs requests, rq is just carrier of independent bio's 2360 * and each partial completion should be handled separately. 2361 * Reset per-request error on each partial completion. 2362 * 2363 * TODO: tj: This is too subtle. It would be better to let 2364 * low level drivers do what they see fit. 2365 */ 2366 if (req->cmd_type == REQ_TYPE_FS) 2367 req->errors = 0; 2368 2369 if (error && req->cmd_type == REQ_TYPE_FS && 2370 !(req->cmd_flags & REQ_QUIET)) { 2371 char *error_type; 2372 2373 switch (error) { 2374 case -ENOLINK: 2375 error_type = "recoverable transport"; 2376 break; 2377 case -EREMOTEIO: 2378 error_type = "critical target"; 2379 break; 2380 case -EBADE: 2381 error_type = "critical nexus"; 2382 break; 2383 case -ETIMEDOUT: 2384 error_type = "timeout"; 2385 break; 2386 case -ENOSPC: 2387 error_type = "critical space allocation"; 2388 break; 2389 case -ENODATA: 2390 error_type = "critical medium"; 2391 break; 2392 case -EIO: 2393 default: 2394 error_type = "I/O"; 2395 break; 2396 } 2397 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2398 error_type, req->rq_disk ? 2399 req->rq_disk->disk_name : "?", 2400 (unsigned long long)blk_rq_pos(req)); 2401 2402 } 2403 2404 blk_account_io_completion(req, nr_bytes); 2405 2406 total_bytes = 0; 2407 while (req->bio) { 2408 struct bio *bio = req->bio; 2409 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2410 2411 if (bio_bytes == bio->bi_iter.bi_size) 2412 req->bio = bio->bi_next; 2413 2414 req_bio_endio(req, bio, bio_bytes, error); 2415 2416 total_bytes += bio_bytes; 2417 nr_bytes -= bio_bytes; 2418 2419 if (!nr_bytes) 2420 break; 2421 } 2422 2423 /* 2424 * completely done 2425 */ 2426 if (!req->bio) { 2427 /* 2428 * Reset counters so that the request stacking driver 2429 * can find how many bytes remain in the request 2430 * later. 2431 */ 2432 req->__data_len = 0; 2433 return false; 2434 } 2435 2436 req->__data_len -= total_bytes; 2437 req->buffer = bio_data(req->bio); 2438 2439 /* update sector only for requests with clear definition of sector */ 2440 if (req->cmd_type == REQ_TYPE_FS) 2441 req->__sector += total_bytes >> 9; 2442 2443 /* mixed attributes always follow the first bio */ 2444 if (req->cmd_flags & REQ_MIXED_MERGE) { 2445 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2446 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2447 } 2448 2449 /* 2450 * If total number of sectors is less than the first segment 2451 * size, something has gone terribly wrong. 2452 */ 2453 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2454 blk_dump_rq_flags(req, "request botched"); 2455 req->__data_len = blk_rq_cur_bytes(req); 2456 } 2457 2458 /* recalculate the number of segments */ 2459 blk_recalc_rq_segments(req); 2460 2461 return true; 2462 } 2463 EXPORT_SYMBOL_GPL(blk_update_request); 2464 2465 static bool blk_update_bidi_request(struct request *rq, int error, 2466 unsigned int nr_bytes, 2467 unsigned int bidi_bytes) 2468 { 2469 if (blk_update_request(rq, error, nr_bytes)) 2470 return true; 2471 2472 /* Bidi request must be completed as a whole */ 2473 if (unlikely(blk_bidi_rq(rq)) && 2474 blk_update_request(rq->next_rq, error, bidi_bytes)) 2475 return true; 2476 2477 if (blk_queue_add_random(rq->q)) 2478 add_disk_randomness(rq->rq_disk); 2479 2480 return false; 2481 } 2482 2483 /** 2484 * blk_unprep_request - unprepare a request 2485 * @req: the request 2486 * 2487 * This function makes a request ready for complete resubmission (or 2488 * completion). It happens only after all error handling is complete, 2489 * so represents the appropriate moment to deallocate any resources 2490 * that were allocated to the request in the prep_rq_fn. The queue 2491 * lock is held when calling this. 2492 */ 2493 void blk_unprep_request(struct request *req) 2494 { 2495 struct request_queue *q = req->q; 2496 2497 req->cmd_flags &= ~REQ_DONTPREP; 2498 if (q->unprep_rq_fn) 2499 q->unprep_rq_fn(q, req); 2500 } 2501 EXPORT_SYMBOL_GPL(blk_unprep_request); 2502 2503 /* 2504 * queue lock must be held 2505 */ 2506 static void blk_finish_request(struct request *req, int error) 2507 { 2508 if (blk_rq_tagged(req)) 2509 blk_queue_end_tag(req->q, req); 2510 2511 BUG_ON(blk_queued_rq(req)); 2512 2513 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2514 laptop_io_completion(&req->q->backing_dev_info); 2515 2516 blk_delete_timer(req); 2517 2518 if (req->cmd_flags & REQ_DONTPREP) 2519 blk_unprep_request(req); 2520 2521 blk_account_io_done(req); 2522 2523 if (req->end_io) 2524 req->end_io(req, error); 2525 else { 2526 if (blk_bidi_rq(req)) 2527 __blk_put_request(req->next_rq->q, req->next_rq); 2528 2529 __blk_put_request(req->q, req); 2530 } 2531 } 2532 2533 /** 2534 * blk_end_bidi_request - Complete a bidi request 2535 * @rq: the request to complete 2536 * @error: %0 for success, < %0 for error 2537 * @nr_bytes: number of bytes to complete @rq 2538 * @bidi_bytes: number of bytes to complete @rq->next_rq 2539 * 2540 * Description: 2541 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2542 * Drivers that supports bidi can safely call this member for any 2543 * type of request, bidi or uni. In the later case @bidi_bytes is 2544 * just ignored. 2545 * 2546 * Return: 2547 * %false - we are done with this request 2548 * %true - still buffers pending for this request 2549 **/ 2550 static bool blk_end_bidi_request(struct request *rq, int error, 2551 unsigned int nr_bytes, unsigned int bidi_bytes) 2552 { 2553 struct request_queue *q = rq->q; 2554 unsigned long flags; 2555 2556 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2557 return true; 2558 2559 spin_lock_irqsave(q->queue_lock, flags); 2560 blk_finish_request(rq, error); 2561 spin_unlock_irqrestore(q->queue_lock, flags); 2562 2563 return false; 2564 } 2565 2566 /** 2567 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2568 * @rq: the request to complete 2569 * @error: %0 for success, < %0 for error 2570 * @nr_bytes: number of bytes to complete @rq 2571 * @bidi_bytes: number of bytes to complete @rq->next_rq 2572 * 2573 * Description: 2574 * Identical to blk_end_bidi_request() except that queue lock is 2575 * assumed to be locked on entry and remains so on return. 2576 * 2577 * Return: 2578 * %false - we are done with this request 2579 * %true - still buffers pending for this request 2580 **/ 2581 bool __blk_end_bidi_request(struct request *rq, int error, 2582 unsigned int nr_bytes, unsigned int bidi_bytes) 2583 { 2584 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2585 return true; 2586 2587 blk_finish_request(rq, error); 2588 2589 return false; 2590 } 2591 2592 /** 2593 * blk_end_request - Helper function for drivers to complete the request. 2594 * @rq: the request being processed 2595 * @error: %0 for success, < %0 for error 2596 * @nr_bytes: number of bytes to complete 2597 * 2598 * Description: 2599 * Ends I/O on a number of bytes attached to @rq. 2600 * If @rq has leftover, sets it up for the next range of segments. 2601 * 2602 * Return: 2603 * %false - we are done with this request 2604 * %true - still buffers pending for this request 2605 **/ 2606 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2607 { 2608 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2609 } 2610 EXPORT_SYMBOL(blk_end_request); 2611 2612 /** 2613 * blk_end_request_all - Helper function for drives to finish the request. 2614 * @rq: the request to finish 2615 * @error: %0 for success, < %0 for error 2616 * 2617 * Description: 2618 * Completely finish @rq. 2619 */ 2620 void blk_end_request_all(struct request *rq, int error) 2621 { 2622 bool pending; 2623 unsigned int bidi_bytes = 0; 2624 2625 if (unlikely(blk_bidi_rq(rq))) 2626 bidi_bytes = blk_rq_bytes(rq->next_rq); 2627 2628 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2629 BUG_ON(pending); 2630 } 2631 EXPORT_SYMBOL(blk_end_request_all); 2632 2633 /** 2634 * blk_end_request_cur - Helper function to finish the current request chunk. 2635 * @rq: the request to finish the current chunk for 2636 * @error: %0 for success, < %0 for error 2637 * 2638 * Description: 2639 * Complete the current consecutively mapped chunk from @rq. 2640 * 2641 * Return: 2642 * %false - we are done with this request 2643 * %true - still buffers pending for this request 2644 */ 2645 bool blk_end_request_cur(struct request *rq, int error) 2646 { 2647 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2648 } 2649 EXPORT_SYMBOL(blk_end_request_cur); 2650 2651 /** 2652 * blk_end_request_err - Finish a request till the next failure boundary. 2653 * @rq: the request to finish till the next failure boundary for 2654 * @error: must be negative errno 2655 * 2656 * Description: 2657 * Complete @rq till the next failure boundary. 2658 * 2659 * Return: 2660 * %false - we are done with this request 2661 * %true - still buffers pending for this request 2662 */ 2663 bool blk_end_request_err(struct request *rq, int error) 2664 { 2665 WARN_ON(error >= 0); 2666 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2667 } 2668 EXPORT_SYMBOL_GPL(blk_end_request_err); 2669 2670 /** 2671 * __blk_end_request - Helper function for drivers to complete the request. 2672 * @rq: the request being processed 2673 * @error: %0 for success, < %0 for error 2674 * @nr_bytes: number of bytes to complete 2675 * 2676 * Description: 2677 * Must be called with queue lock held unlike blk_end_request(). 2678 * 2679 * Return: 2680 * %false - we are done with this request 2681 * %true - still buffers pending for this request 2682 **/ 2683 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2684 { 2685 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2686 } 2687 EXPORT_SYMBOL(__blk_end_request); 2688 2689 /** 2690 * __blk_end_request_all - Helper function for drives to finish the request. 2691 * @rq: the request to finish 2692 * @error: %0 for success, < %0 for error 2693 * 2694 * Description: 2695 * Completely finish @rq. Must be called with queue lock held. 2696 */ 2697 void __blk_end_request_all(struct request *rq, int error) 2698 { 2699 bool pending; 2700 unsigned int bidi_bytes = 0; 2701 2702 if (unlikely(blk_bidi_rq(rq))) 2703 bidi_bytes = blk_rq_bytes(rq->next_rq); 2704 2705 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2706 BUG_ON(pending); 2707 } 2708 EXPORT_SYMBOL(__blk_end_request_all); 2709 2710 /** 2711 * __blk_end_request_cur - Helper function to finish the current request chunk. 2712 * @rq: the request to finish the current chunk for 2713 * @error: %0 for success, < %0 for error 2714 * 2715 * Description: 2716 * Complete the current consecutively mapped chunk from @rq. Must 2717 * be called with queue lock held. 2718 * 2719 * Return: 2720 * %false - we are done with this request 2721 * %true - still buffers pending for this request 2722 */ 2723 bool __blk_end_request_cur(struct request *rq, int error) 2724 { 2725 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2726 } 2727 EXPORT_SYMBOL(__blk_end_request_cur); 2728 2729 /** 2730 * __blk_end_request_err - Finish a request till the next failure boundary. 2731 * @rq: the request to finish till the next failure boundary for 2732 * @error: must be negative errno 2733 * 2734 * Description: 2735 * Complete @rq till the next failure boundary. Must be called 2736 * with queue lock held. 2737 * 2738 * Return: 2739 * %false - we are done with this request 2740 * %true - still buffers pending for this request 2741 */ 2742 bool __blk_end_request_err(struct request *rq, int error) 2743 { 2744 WARN_ON(error >= 0); 2745 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2746 } 2747 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2748 2749 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2750 struct bio *bio) 2751 { 2752 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2753 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2754 2755 if (bio_has_data(bio)) { 2756 rq->nr_phys_segments = bio_phys_segments(q, bio); 2757 rq->buffer = bio_data(bio); 2758 } 2759 rq->__data_len = bio->bi_iter.bi_size; 2760 rq->bio = rq->biotail = bio; 2761 2762 if (bio->bi_bdev) 2763 rq->rq_disk = bio->bi_bdev->bd_disk; 2764 } 2765 2766 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2767 /** 2768 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2769 * @rq: the request to be flushed 2770 * 2771 * Description: 2772 * Flush all pages in @rq. 2773 */ 2774 void rq_flush_dcache_pages(struct request *rq) 2775 { 2776 struct req_iterator iter; 2777 struct bio_vec bvec; 2778 2779 rq_for_each_segment(bvec, rq, iter) 2780 flush_dcache_page(bvec.bv_page); 2781 } 2782 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2783 #endif 2784 2785 /** 2786 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2787 * @q : the queue of the device being checked 2788 * 2789 * Description: 2790 * Check if underlying low-level drivers of a device are busy. 2791 * If the drivers want to export their busy state, they must set own 2792 * exporting function using blk_queue_lld_busy() first. 2793 * 2794 * Basically, this function is used only by request stacking drivers 2795 * to stop dispatching requests to underlying devices when underlying 2796 * devices are busy. This behavior helps more I/O merging on the queue 2797 * of the request stacking driver and prevents I/O throughput regression 2798 * on burst I/O load. 2799 * 2800 * Return: 2801 * 0 - Not busy (The request stacking driver should dispatch request) 2802 * 1 - Busy (The request stacking driver should stop dispatching request) 2803 */ 2804 int blk_lld_busy(struct request_queue *q) 2805 { 2806 if (q->lld_busy_fn) 2807 return q->lld_busy_fn(q); 2808 2809 return 0; 2810 } 2811 EXPORT_SYMBOL_GPL(blk_lld_busy); 2812 2813 /** 2814 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2815 * @rq: the clone request to be cleaned up 2816 * 2817 * Description: 2818 * Free all bios in @rq for a cloned request. 2819 */ 2820 void blk_rq_unprep_clone(struct request *rq) 2821 { 2822 struct bio *bio; 2823 2824 while ((bio = rq->bio) != NULL) { 2825 rq->bio = bio->bi_next; 2826 2827 bio_put(bio); 2828 } 2829 } 2830 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2831 2832 /* 2833 * Copy attributes of the original request to the clone request. 2834 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2835 */ 2836 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2837 { 2838 dst->cpu = src->cpu; 2839 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2840 dst->cmd_type = src->cmd_type; 2841 dst->__sector = blk_rq_pos(src); 2842 dst->__data_len = blk_rq_bytes(src); 2843 dst->nr_phys_segments = src->nr_phys_segments; 2844 dst->ioprio = src->ioprio; 2845 dst->extra_len = src->extra_len; 2846 } 2847 2848 /** 2849 * blk_rq_prep_clone - Helper function to setup clone request 2850 * @rq: the request to be setup 2851 * @rq_src: original request to be cloned 2852 * @bs: bio_set that bios for clone are allocated from 2853 * @gfp_mask: memory allocation mask for bio 2854 * @bio_ctr: setup function to be called for each clone bio. 2855 * Returns %0 for success, non %0 for failure. 2856 * @data: private data to be passed to @bio_ctr 2857 * 2858 * Description: 2859 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2860 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2861 * are not copied, and copying such parts is the caller's responsibility. 2862 * Also, pages which the original bios are pointing to are not copied 2863 * and the cloned bios just point same pages. 2864 * So cloned bios must be completed before original bios, which means 2865 * the caller must complete @rq before @rq_src. 2866 */ 2867 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2868 struct bio_set *bs, gfp_t gfp_mask, 2869 int (*bio_ctr)(struct bio *, struct bio *, void *), 2870 void *data) 2871 { 2872 struct bio *bio, *bio_src; 2873 2874 if (!bs) 2875 bs = fs_bio_set; 2876 2877 blk_rq_init(NULL, rq); 2878 2879 __rq_for_each_bio(bio_src, rq_src) { 2880 bio = bio_clone_bioset(bio_src, gfp_mask, bs); 2881 if (!bio) 2882 goto free_and_out; 2883 2884 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2885 goto free_and_out; 2886 2887 if (rq->bio) { 2888 rq->biotail->bi_next = bio; 2889 rq->biotail = bio; 2890 } else 2891 rq->bio = rq->biotail = bio; 2892 } 2893 2894 __blk_rq_prep_clone(rq, rq_src); 2895 2896 return 0; 2897 2898 free_and_out: 2899 if (bio) 2900 bio_put(bio); 2901 blk_rq_unprep_clone(rq); 2902 2903 return -ENOMEM; 2904 } 2905 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2906 2907 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2908 { 2909 return queue_work(kblockd_workqueue, work); 2910 } 2911 EXPORT_SYMBOL(kblockd_schedule_work); 2912 2913 int kblockd_schedule_delayed_work(struct request_queue *q, 2914 struct delayed_work *dwork, unsigned long delay) 2915 { 2916 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2917 } 2918 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2919 2920 #define PLUG_MAGIC 0x91827364 2921 2922 /** 2923 * blk_start_plug - initialize blk_plug and track it inside the task_struct 2924 * @plug: The &struct blk_plug that needs to be initialized 2925 * 2926 * Description: 2927 * Tracking blk_plug inside the task_struct will help with auto-flushing the 2928 * pending I/O should the task end up blocking between blk_start_plug() and 2929 * blk_finish_plug(). This is important from a performance perspective, but 2930 * also ensures that we don't deadlock. For instance, if the task is blocking 2931 * for a memory allocation, memory reclaim could end up wanting to free a 2932 * page belonging to that request that is currently residing in our private 2933 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 2934 * this kind of deadlock. 2935 */ 2936 void blk_start_plug(struct blk_plug *plug) 2937 { 2938 struct task_struct *tsk = current; 2939 2940 plug->magic = PLUG_MAGIC; 2941 INIT_LIST_HEAD(&plug->list); 2942 INIT_LIST_HEAD(&plug->mq_list); 2943 INIT_LIST_HEAD(&plug->cb_list); 2944 2945 /* 2946 * If this is a nested plug, don't actually assign it. It will be 2947 * flushed on its own. 2948 */ 2949 if (!tsk->plug) { 2950 /* 2951 * Store ordering should not be needed here, since a potential 2952 * preempt will imply a full memory barrier 2953 */ 2954 tsk->plug = plug; 2955 } 2956 } 2957 EXPORT_SYMBOL(blk_start_plug); 2958 2959 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 2960 { 2961 struct request *rqa = container_of(a, struct request, queuelist); 2962 struct request *rqb = container_of(b, struct request, queuelist); 2963 2964 return !(rqa->q < rqb->q || 2965 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 2966 } 2967 2968 /* 2969 * If 'from_schedule' is true, then postpone the dispatch of requests 2970 * until a safe kblockd context. We due this to avoid accidental big 2971 * additional stack usage in driver dispatch, in places where the originally 2972 * plugger did not intend it. 2973 */ 2974 static void queue_unplugged(struct request_queue *q, unsigned int depth, 2975 bool from_schedule) 2976 __releases(q->queue_lock) 2977 { 2978 trace_block_unplug(q, depth, !from_schedule); 2979 2980 if (from_schedule) 2981 blk_run_queue_async(q); 2982 else 2983 __blk_run_queue(q); 2984 spin_unlock(q->queue_lock); 2985 } 2986 2987 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 2988 { 2989 LIST_HEAD(callbacks); 2990 2991 while (!list_empty(&plug->cb_list)) { 2992 list_splice_init(&plug->cb_list, &callbacks); 2993 2994 while (!list_empty(&callbacks)) { 2995 struct blk_plug_cb *cb = list_first_entry(&callbacks, 2996 struct blk_plug_cb, 2997 list); 2998 list_del(&cb->list); 2999 cb->callback(cb, from_schedule); 3000 } 3001 } 3002 } 3003 3004 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3005 int size) 3006 { 3007 struct blk_plug *plug = current->plug; 3008 struct blk_plug_cb *cb; 3009 3010 if (!plug) 3011 return NULL; 3012 3013 list_for_each_entry(cb, &plug->cb_list, list) 3014 if (cb->callback == unplug && cb->data == data) 3015 return cb; 3016 3017 /* Not currently on the callback list */ 3018 BUG_ON(size < sizeof(*cb)); 3019 cb = kzalloc(size, GFP_ATOMIC); 3020 if (cb) { 3021 cb->data = data; 3022 cb->callback = unplug; 3023 list_add(&cb->list, &plug->cb_list); 3024 } 3025 return cb; 3026 } 3027 EXPORT_SYMBOL(blk_check_plugged); 3028 3029 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3030 { 3031 struct request_queue *q; 3032 unsigned long flags; 3033 struct request *rq; 3034 LIST_HEAD(list); 3035 unsigned int depth; 3036 3037 BUG_ON(plug->magic != PLUG_MAGIC); 3038 3039 flush_plug_callbacks(plug, from_schedule); 3040 3041 if (!list_empty(&plug->mq_list)) 3042 blk_mq_flush_plug_list(plug, from_schedule); 3043 3044 if (list_empty(&plug->list)) 3045 return; 3046 3047 list_splice_init(&plug->list, &list); 3048 3049 list_sort(NULL, &list, plug_rq_cmp); 3050 3051 q = NULL; 3052 depth = 0; 3053 3054 /* 3055 * Save and disable interrupts here, to avoid doing it for every 3056 * queue lock we have to take. 3057 */ 3058 local_irq_save(flags); 3059 while (!list_empty(&list)) { 3060 rq = list_entry_rq(list.next); 3061 list_del_init(&rq->queuelist); 3062 BUG_ON(!rq->q); 3063 if (rq->q != q) { 3064 /* 3065 * This drops the queue lock 3066 */ 3067 if (q) 3068 queue_unplugged(q, depth, from_schedule); 3069 q = rq->q; 3070 depth = 0; 3071 spin_lock(q->queue_lock); 3072 } 3073 3074 /* 3075 * Short-circuit if @q is dead 3076 */ 3077 if (unlikely(blk_queue_dying(q))) { 3078 __blk_end_request_all(rq, -ENODEV); 3079 continue; 3080 } 3081 3082 /* 3083 * rq is already accounted, so use raw insert 3084 */ 3085 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 3086 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3087 else 3088 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3089 3090 depth++; 3091 } 3092 3093 /* 3094 * This drops the queue lock 3095 */ 3096 if (q) 3097 queue_unplugged(q, depth, from_schedule); 3098 3099 local_irq_restore(flags); 3100 } 3101 3102 void blk_finish_plug(struct blk_plug *plug) 3103 { 3104 blk_flush_plug_list(plug, false); 3105 3106 if (plug == current->plug) 3107 current->plug = NULL; 3108 } 3109 EXPORT_SYMBOL(blk_finish_plug); 3110 3111 #ifdef CONFIG_PM_RUNTIME 3112 /** 3113 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3114 * @q: the queue of the device 3115 * @dev: the device the queue belongs to 3116 * 3117 * Description: 3118 * Initialize runtime-PM-related fields for @q and start auto suspend for 3119 * @dev. Drivers that want to take advantage of request-based runtime PM 3120 * should call this function after @dev has been initialized, and its 3121 * request queue @q has been allocated, and runtime PM for it can not happen 3122 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3123 * cases, driver should call this function before any I/O has taken place. 3124 * 3125 * This function takes care of setting up using auto suspend for the device, 3126 * the autosuspend delay is set to -1 to make runtime suspend impossible 3127 * until an updated value is either set by user or by driver. Drivers do 3128 * not need to touch other autosuspend settings. 3129 * 3130 * The block layer runtime PM is request based, so only works for drivers 3131 * that use request as their IO unit instead of those directly use bio's. 3132 */ 3133 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3134 { 3135 q->dev = dev; 3136 q->rpm_status = RPM_ACTIVE; 3137 pm_runtime_set_autosuspend_delay(q->dev, -1); 3138 pm_runtime_use_autosuspend(q->dev); 3139 } 3140 EXPORT_SYMBOL(blk_pm_runtime_init); 3141 3142 /** 3143 * blk_pre_runtime_suspend - Pre runtime suspend check 3144 * @q: the queue of the device 3145 * 3146 * Description: 3147 * This function will check if runtime suspend is allowed for the device 3148 * by examining if there are any requests pending in the queue. If there 3149 * are requests pending, the device can not be runtime suspended; otherwise, 3150 * the queue's status will be updated to SUSPENDING and the driver can 3151 * proceed to suspend the device. 3152 * 3153 * For the not allowed case, we mark last busy for the device so that 3154 * runtime PM core will try to autosuspend it some time later. 3155 * 3156 * This function should be called near the start of the device's 3157 * runtime_suspend callback. 3158 * 3159 * Return: 3160 * 0 - OK to runtime suspend the device 3161 * -EBUSY - Device should not be runtime suspended 3162 */ 3163 int blk_pre_runtime_suspend(struct request_queue *q) 3164 { 3165 int ret = 0; 3166 3167 spin_lock_irq(q->queue_lock); 3168 if (q->nr_pending) { 3169 ret = -EBUSY; 3170 pm_runtime_mark_last_busy(q->dev); 3171 } else { 3172 q->rpm_status = RPM_SUSPENDING; 3173 } 3174 spin_unlock_irq(q->queue_lock); 3175 return ret; 3176 } 3177 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3178 3179 /** 3180 * blk_post_runtime_suspend - Post runtime suspend processing 3181 * @q: the queue of the device 3182 * @err: return value of the device's runtime_suspend function 3183 * 3184 * Description: 3185 * Update the queue's runtime status according to the return value of the 3186 * device's runtime suspend function and mark last busy for the device so 3187 * that PM core will try to auto suspend the device at a later time. 3188 * 3189 * This function should be called near the end of the device's 3190 * runtime_suspend callback. 3191 */ 3192 void blk_post_runtime_suspend(struct request_queue *q, int err) 3193 { 3194 spin_lock_irq(q->queue_lock); 3195 if (!err) { 3196 q->rpm_status = RPM_SUSPENDED; 3197 } else { 3198 q->rpm_status = RPM_ACTIVE; 3199 pm_runtime_mark_last_busy(q->dev); 3200 } 3201 spin_unlock_irq(q->queue_lock); 3202 } 3203 EXPORT_SYMBOL(blk_post_runtime_suspend); 3204 3205 /** 3206 * blk_pre_runtime_resume - Pre runtime resume processing 3207 * @q: the queue of the device 3208 * 3209 * Description: 3210 * Update the queue's runtime status to RESUMING in preparation for the 3211 * runtime resume of the device. 3212 * 3213 * This function should be called near the start of the device's 3214 * runtime_resume callback. 3215 */ 3216 void blk_pre_runtime_resume(struct request_queue *q) 3217 { 3218 spin_lock_irq(q->queue_lock); 3219 q->rpm_status = RPM_RESUMING; 3220 spin_unlock_irq(q->queue_lock); 3221 } 3222 EXPORT_SYMBOL(blk_pre_runtime_resume); 3223 3224 /** 3225 * blk_post_runtime_resume - Post runtime resume processing 3226 * @q: the queue of the device 3227 * @err: return value of the device's runtime_resume function 3228 * 3229 * Description: 3230 * Update the queue's runtime status according to the return value of the 3231 * device's runtime_resume function. If it is successfully resumed, process 3232 * the requests that are queued into the device's queue when it is resuming 3233 * and then mark last busy and initiate autosuspend for it. 3234 * 3235 * This function should be called near the end of the device's 3236 * runtime_resume callback. 3237 */ 3238 void blk_post_runtime_resume(struct request_queue *q, int err) 3239 { 3240 spin_lock_irq(q->queue_lock); 3241 if (!err) { 3242 q->rpm_status = RPM_ACTIVE; 3243 __blk_run_queue(q); 3244 pm_runtime_mark_last_busy(q->dev); 3245 pm_request_autosuspend(q->dev); 3246 } else { 3247 q->rpm_status = RPM_SUSPENDED; 3248 } 3249 spin_unlock_irq(q->queue_lock); 3250 } 3251 EXPORT_SYMBOL(blk_post_runtime_resume); 3252 #endif 3253 3254 int __init blk_dev_init(void) 3255 { 3256 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3257 sizeof(((struct request *)0)->cmd_flags)); 3258 3259 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3260 kblockd_workqueue = alloc_workqueue("kblockd", 3261 WQ_MEM_RECLAIM | WQ_HIGHPRI | 3262 WQ_POWER_EFFICIENT, 0); 3263 if (!kblockd_workqueue) 3264 panic("Failed to create kblockd\n"); 3265 3266 request_cachep = kmem_cache_create("blkdev_requests", 3267 sizeof(struct request), 0, SLAB_PANIC, NULL); 3268 3269 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 3270 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3271 3272 return 0; 3273 } 3274