1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/fault-inject.h> 30 #include <linux/list_sort.h> 31 #include <linux/delay.h> 32 #include <linux/ratelimit.h> 33 #include <linux/pm_runtime.h> 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/block.h> 37 38 #include "blk.h" 39 #include "blk-cgroup.h" 40 41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 45 46 DEFINE_IDA(blk_queue_ida); 47 48 /* 49 * For the allocated request tables 50 */ 51 static struct kmem_cache *request_cachep; 52 53 /* 54 * For queue allocation 55 */ 56 struct kmem_cache *blk_requestq_cachep; 57 58 /* 59 * Controlling structure to kblockd 60 */ 61 static struct workqueue_struct *kblockd_workqueue; 62 63 static void drive_stat_acct(struct request *rq, int new_io) 64 { 65 struct hd_struct *part; 66 int rw = rq_data_dir(rq); 67 int cpu; 68 69 if (!blk_do_io_stat(rq)) 70 return; 71 72 cpu = part_stat_lock(); 73 74 if (!new_io) { 75 part = rq->part; 76 part_stat_inc(cpu, part, merges[rw]); 77 } else { 78 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 79 if (!hd_struct_try_get(part)) { 80 /* 81 * The partition is already being removed, 82 * the request will be accounted on the disk only 83 * 84 * We take a reference on disk->part0 although that 85 * partition will never be deleted, so we can treat 86 * it as any other partition. 87 */ 88 part = &rq->rq_disk->part0; 89 hd_struct_get(part); 90 } 91 part_round_stats(cpu, part); 92 part_inc_in_flight(part, rw); 93 rq->part = part; 94 } 95 96 part_stat_unlock(); 97 } 98 99 void blk_queue_congestion_threshold(struct request_queue *q) 100 { 101 int nr; 102 103 nr = q->nr_requests - (q->nr_requests / 8) + 1; 104 if (nr > q->nr_requests) 105 nr = q->nr_requests; 106 q->nr_congestion_on = nr; 107 108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 109 if (nr < 1) 110 nr = 1; 111 q->nr_congestion_off = nr; 112 } 113 114 /** 115 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 116 * @bdev: device 117 * 118 * Locates the passed device's request queue and returns the address of its 119 * backing_dev_info 120 * 121 * Will return NULL if the request queue cannot be located. 122 */ 123 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 124 { 125 struct backing_dev_info *ret = NULL; 126 struct request_queue *q = bdev_get_queue(bdev); 127 128 if (q) 129 ret = &q->backing_dev_info; 130 return ret; 131 } 132 EXPORT_SYMBOL(blk_get_backing_dev_info); 133 134 void blk_rq_init(struct request_queue *q, struct request *rq) 135 { 136 memset(rq, 0, sizeof(*rq)); 137 138 INIT_LIST_HEAD(&rq->queuelist); 139 INIT_LIST_HEAD(&rq->timeout_list); 140 rq->cpu = -1; 141 rq->q = q; 142 rq->__sector = (sector_t) -1; 143 INIT_HLIST_NODE(&rq->hash); 144 RB_CLEAR_NODE(&rq->rb_node); 145 rq->cmd = rq->__cmd; 146 rq->cmd_len = BLK_MAX_CDB; 147 rq->tag = -1; 148 rq->ref_count = 1; 149 rq->start_time = jiffies; 150 set_start_time_ns(rq); 151 rq->part = NULL; 152 } 153 EXPORT_SYMBOL(blk_rq_init); 154 155 static void req_bio_endio(struct request *rq, struct bio *bio, 156 unsigned int nbytes, int error) 157 { 158 if (error) 159 clear_bit(BIO_UPTODATE, &bio->bi_flags); 160 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 161 error = -EIO; 162 163 if (unlikely(rq->cmd_flags & REQ_QUIET)) 164 set_bit(BIO_QUIET, &bio->bi_flags); 165 166 bio_advance(bio, nbytes); 167 168 /* don't actually finish bio if it's part of flush sequence */ 169 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 170 bio_endio(bio, error); 171 } 172 173 void blk_dump_rq_flags(struct request *rq, char *msg) 174 { 175 int bit; 176 177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 179 rq->cmd_flags); 180 181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 182 (unsigned long long)blk_rq_pos(rq), 183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 186 187 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 188 printk(KERN_INFO " cdb: "); 189 for (bit = 0; bit < BLK_MAX_CDB; bit++) 190 printk("%02x ", rq->cmd[bit]); 191 printk("\n"); 192 } 193 } 194 EXPORT_SYMBOL(blk_dump_rq_flags); 195 196 static void blk_delay_work(struct work_struct *work) 197 { 198 struct request_queue *q; 199 200 q = container_of(work, struct request_queue, delay_work.work); 201 spin_lock_irq(q->queue_lock); 202 __blk_run_queue(q); 203 spin_unlock_irq(q->queue_lock); 204 } 205 206 /** 207 * blk_delay_queue - restart queueing after defined interval 208 * @q: The &struct request_queue in question 209 * @msecs: Delay in msecs 210 * 211 * Description: 212 * Sometimes queueing needs to be postponed for a little while, to allow 213 * resources to come back. This function will make sure that queueing is 214 * restarted around the specified time. Queue lock must be held. 215 */ 216 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 217 { 218 if (likely(!blk_queue_dead(q))) 219 queue_delayed_work(kblockd_workqueue, &q->delay_work, 220 msecs_to_jiffies(msecs)); 221 } 222 EXPORT_SYMBOL(blk_delay_queue); 223 224 /** 225 * blk_start_queue - restart a previously stopped queue 226 * @q: The &struct request_queue in question 227 * 228 * Description: 229 * blk_start_queue() will clear the stop flag on the queue, and call 230 * the request_fn for the queue if it was in a stopped state when 231 * entered. Also see blk_stop_queue(). Queue lock must be held. 232 **/ 233 void blk_start_queue(struct request_queue *q) 234 { 235 WARN_ON(!irqs_disabled()); 236 237 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 238 __blk_run_queue(q); 239 } 240 EXPORT_SYMBOL(blk_start_queue); 241 242 /** 243 * blk_stop_queue - stop a queue 244 * @q: The &struct request_queue in question 245 * 246 * Description: 247 * The Linux block layer assumes that a block driver will consume all 248 * entries on the request queue when the request_fn strategy is called. 249 * Often this will not happen, because of hardware limitations (queue 250 * depth settings). If a device driver gets a 'queue full' response, 251 * or if it simply chooses not to queue more I/O at one point, it can 252 * call this function to prevent the request_fn from being called until 253 * the driver has signalled it's ready to go again. This happens by calling 254 * blk_start_queue() to restart queue operations. Queue lock must be held. 255 **/ 256 void blk_stop_queue(struct request_queue *q) 257 { 258 cancel_delayed_work(&q->delay_work); 259 queue_flag_set(QUEUE_FLAG_STOPPED, q); 260 } 261 EXPORT_SYMBOL(blk_stop_queue); 262 263 /** 264 * blk_sync_queue - cancel any pending callbacks on a queue 265 * @q: the queue 266 * 267 * Description: 268 * The block layer may perform asynchronous callback activity 269 * on a queue, such as calling the unplug function after a timeout. 270 * A block device may call blk_sync_queue to ensure that any 271 * such activity is cancelled, thus allowing it to release resources 272 * that the callbacks might use. The caller must already have made sure 273 * that its ->make_request_fn will not re-add plugging prior to calling 274 * this function. 275 * 276 * This function does not cancel any asynchronous activity arising 277 * out of elevator or throttling code. That would require elevaotor_exit() 278 * and blkcg_exit_queue() to be called with queue lock initialized. 279 * 280 */ 281 void blk_sync_queue(struct request_queue *q) 282 { 283 del_timer_sync(&q->timeout); 284 cancel_delayed_work_sync(&q->delay_work); 285 } 286 EXPORT_SYMBOL(blk_sync_queue); 287 288 /** 289 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 290 * @q: The queue to run 291 * 292 * Description: 293 * Invoke request handling on a queue if there are any pending requests. 294 * May be used to restart request handling after a request has completed. 295 * This variant runs the queue whether or not the queue has been 296 * stopped. Must be called with the queue lock held and interrupts 297 * disabled. See also @blk_run_queue. 298 */ 299 inline void __blk_run_queue_uncond(struct request_queue *q) 300 { 301 if (unlikely(blk_queue_dead(q))) 302 return; 303 304 /* 305 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 306 * the queue lock internally. As a result multiple threads may be 307 * running such a request function concurrently. Keep track of the 308 * number of active request_fn invocations such that blk_drain_queue() 309 * can wait until all these request_fn calls have finished. 310 */ 311 q->request_fn_active++; 312 q->request_fn(q); 313 q->request_fn_active--; 314 } 315 316 /** 317 * __blk_run_queue - run a single device queue 318 * @q: The queue to run 319 * 320 * Description: 321 * See @blk_run_queue. This variant must be called with the queue lock 322 * held and interrupts disabled. 323 */ 324 void __blk_run_queue(struct request_queue *q) 325 { 326 if (unlikely(blk_queue_stopped(q))) 327 return; 328 329 __blk_run_queue_uncond(q); 330 } 331 EXPORT_SYMBOL(__blk_run_queue); 332 333 /** 334 * blk_run_queue_async - run a single device queue in workqueue context 335 * @q: The queue to run 336 * 337 * Description: 338 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 339 * of us. The caller must hold the queue lock. 340 */ 341 void blk_run_queue_async(struct request_queue *q) 342 { 343 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 344 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 345 } 346 EXPORT_SYMBOL(blk_run_queue_async); 347 348 /** 349 * blk_run_queue - run a single device queue 350 * @q: The queue to run 351 * 352 * Description: 353 * Invoke request handling on this queue, if it has pending work to do. 354 * May be used to restart queueing when a request has completed. 355 */ 356 void blk_run_queue(struct request_queue *q) 357 { 358 unsigned long flags; 359 360 spin_lock_irqsave(q->queue_lock, flags); 361 __blk_run_queue(q); 362 spin_unlock_irqrestore(q->queue_lock, flags); 363 } 364 EXPORT_SYMBOL(blk_run_queue); 365 366 void blk_put_queue(struct request_queue *q) 367 { 368 kobject_put(&q->kobj); 369 } 370 EXPORT_SYMBOL(blk_put_queue); 371 372 /** 373 * __blk_drain_queue - drain requests from request_queue 374 * @q: queue to drain 375 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 376 * 377 * Drain requests from @q. If @drain_all is set, all requests are drained. 378 * If not, only ELVPRIV requests are drained. The caller is responsible 379 * for ensuring that no new requests which need to be drained are queued. 380 */ 381 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 382 __releases(q->queue_lock) 383 __acquires(q->queue_lock) 384 { 385 int i; 386 387 lockdep_assert_held(q->queue_lock); 388 389 while (true) { 390 bool drain = false; 391 392 /* 393 * The caller might be trying to drain @q before its 394 * elevator is initialized. 395 */ 396 if (q->elevator) 397 elv_drain_elevator(q); 398 399 blkcg_drain_queue(q); 400 401 /* 402 * This function might be called on a queue which failed 403 * driver init after queue creation or is not yet fully 404 * active yet. Some drivers (e.g. fd and loop) get unhappy 405 * in such cases. Kick queue iff dispatch queue has 406 * something on it and @q has request_fn set. 407 */ 408 if (!list_empty(&q->queue_head) && q->request_fn) 409 __blk_run_queue(q); 410 411 drain |= q->nr_rqs_elvpriv; 412 drain |= q->request_fn_active; 413 414 /* 415 * Unfortunately, requests are queued at and tracked from 416 * multiple places and there's no single counter which can 417 * be drained. Check all the queues and counters. 418 */ 419 if (drain_all) { 420 drain |= !list_empty(&q->queue_head); 421 for (i = 0; i < 2; i++) { 422 drain |= q->nr_rqs[i]; 423 drain |= q->in_flight[i]; 424 drain |= !list_empty(&q->flush_queue[i]); 425 } 426 } 427 428 if (!drain) 429 break; 430 431 spin_unlock_irq(q->queue_lock); 432 433 msleep(10); 434 435 spin_lock_irq(q->queue_lock); 436 } 437 438 /* 439 * With queue marked dead, any woken up waiter will fail the 440 * allocation path, so the wakeup chaining is lost and we're 441 * left with hung waiters. We need to wake up those waiters. 442 */ 443 if (q->request_fn) { 444 struct request_list *rl; 445 446 blk_queue_for_each_rl(rl, q) 447 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 448 wake_up_all(&rl->wait[i]); 449 } 450 } 451 452 /** 453 * blk_queue_bypass_start - enter queue bypass mode 454 * @q: queue of interest 455 * 456 * In bypass mode, only the dispatch FIFO queue of @q is used. This 457 * function makes @q enter bypass mode and drains all requests which were 458 * throttled or issued before. On return, it's guaranteed that no request 459 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 460 * inside queue or RCU read lock. 461 */ 462 void blk_queue_bypass_start(struct request_queue *q) 463 { 464 bool drain; 465 466 spin_lock_irq(q->queue_lock); 467 drain = !q->bypass_depth++; 468 queue_flag_set(QUEUE_FLAG_BYPASS, q); 469 spin_unlock_irq(q->queue_lock); 470 471 if (drain) { 472 spin_lock_irq(q->queue_lock); 473 __blk_drain_queue(q, false); 474 spin_unlock_irq(q->queue_lock); 475 476 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 477 synchronize_rcu(); 478 } 479 } 480 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 481 482 /** 483 * blk_queue_bypass_end - leave queue bypass mode 484 * @q: queue of interest 485 * 486 * Leave bypass mode and restore the normal queueing behavior. 487 */ 488 void blk_queue_bypass_end(struct request_queue *q) 489 { 490 spin_lock_irq(q->queue_lock); 491 if (!--q->bypass_depth) 492 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 493 WARN_ON_ONCE(q->bypass_depth < 0); 494 spin_unlock_irq(q->queue_lock); 495 } 496 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 497 498 /** 499 * blk_cleanup_queue - shutdown a request queue 500 * @q: request queue to shutdown 501 * 502 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 503 * put it. All future requests will be failed immediately with -ENODEV. 504 */ 505 void blk_cleanup_queue(struct request_queue *q) 506 { 507 spinlock_t *lock = q->queue_lock; 508 509 /* mark @q DYING, no new request or merges will be allowed afterwards */ 510 mutex_lock(&q->sysfs_lock); 511 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q); 512 spin_lock_irq(lock); 513 514 /* 515 * A dying queue is permanently in bypass mode till released. Note 516 * that, unlike blk_queue_bypass_start(), we aren't performing 517 * synchronize_rcu() after entering bypass mode to avoid the delay 518 * as some drivers create and destroy a lot of queues while 519 * probing. This is still safe because blk_release_queue() will be 520 * called only after the queue refcnt drops to zero and nothing, 521 * RCU or not, would be traversing the queue by then. 522 */ 523 q->bypass_depth++; 524 queue_flag_set(QUEUE_FLAG_BYPASS, q); 525 526 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 527 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 528 queue_flag_set(QUEUE_FLAG_DYING, q); 529 spin_unlock_irq(lock); 530 mutex_unlock(&q->sysfs_lock); 531 532 /* 533 * Drain all requests queued before DYING marking. Set DEAD flag to 534 * prevent that q->request_fn() gets invoked after draining finished. 535 */ 536 spin_lock_irq(lock); 537 __blk_drain_queue(q, true); 538 queue_flag_set(QUEUE_FLAG_DEAD, q); 539 spin_unlock_irq(lock); 540 541 /* @q won't process any more request, flush async actions */ 542 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 543 blk_sync_queue(q); 544 545 spin_lock_irq(lock); 546 if (q->queue_lock != &q->__queue_lock) 547 q->queue_lock = &q->__queue_lock; 548 spin_unlock_irq(lock); 549 550 /* @q is and will stay empty, shutdown and put */ 551 blk_put_queue(q); 552 } 553 EXPORT_SYMBOL(blk_cleanup_queue); 554 555 int blk_init_rl(struct request_list *rl, struct request_queue *q, 556 gfp_t gfp_mask) 557 { 558 if (unlikely(rl->rq_pool)) 559 return 0; 560 561 rl->q = q; 562 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 563 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 564 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 565 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 566 567 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 568 mempool_free_slab, request_cachep, 569 gfp_mask, q->node); 570 if (!rl->rq_pool) 571 return -ENOMEM; 572 573 return 0; 574 } 575 576 void blk_exit_rl(struct request_list *rl) 577 { 578 if (rl->rq_pool) 579 mempool_destroy(rl->rq_pool); 580 } 581 582 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 583 { 584 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 585 } 586 EXPORT_SYMBOL(blk_alloc_queue); 587 588 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 589 { 590 struct request_queue *q; 591 int err; 592 593 q = kmem_cache_alloc_node(blk_requestq_cachep, 594 gfp_mask | __GFP_ZERO, node_id); 595 if (!q) 596 return NULL; 597 598 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 599 if (q->id < 0) 600 goto fail_q; 601 602 q->backing_dev_info.ra_pages = 603 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 604 q->backing_dev_info.state = 0; 605 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 606 q->backing_dev_info.name = "block"; 607 q->node = node_id; 608 609 err = bdi_init(&q->backing_dev_info); 610 if (err) 611 goto fail_id; 612 613 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 614 laptop_mode_timer_fn, (unsigned long) q); 615 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 616 INIT_LIST_HEAD(&q->queue_head); 617 INIT_LIST_HEAD(&q->timeout_list); 618 INIT_LIST_HEAD(&q->icq_list); 619 #ifdef CONFIG_BLK_CGROUP 620 INIT_LIST_HEAD(&q->blkg_list); 621 #endif 622 INIT_LIST_HEAD(&q->flush_queue[0]); 623 INIT_LIST_HEAD(&q->flush_queue[1]); 624 INIT_LIST_HEAD(&q->flush_data_in_flight); 625 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 626 627 kobject_init(&q->kobj, &blk_queue_ktype); 628 629 mutex_init(&q->sysfs_lock); 630 spin_lock_init(&q->__queue_lock); 631 632 /* 633 * By default initialize queue_lock to internal lock and driver can 634 * override it later if need be. 635 */ 636 q->queue_lock = &q->__queue_lock; 637 638 /* 639 * A queue starts its life with bypass turned on to avoid 640 * unnecessary bypass on/off overhead and nasty surprises during 641 * init. The initial bypass will be finished when the queue is 642 * registered by blk_register_queue(). 643 */ 644 q->bypass_depth = 1; 645 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 646 647 if (blkcg_init_queue(q)) 648 goto fail_id; 649 650 return q; 651 652 fail_id: 653 ida_simple_remove(&blk_queue_ida, q->id); 654 fail_q: 655 kmem_cache_free(blk_requestq_cachep, q); 656 return NULL; 657 } 658 EXPORT_SYMBOL(blk_alloc_queue_node); 659 660 /** 661 * blk_init_queue - prepare a request queue for use with a block device 662 * @rfn: The function to be called to process requests that have been 663 * placed on the queue. 664 * @lock: Request queue spin lock 665 * 666 * Description: 667 * If a block device wishes to use the standard request handling procedures, 668 * which sorts requests and coalesces adjacent requests, then it must 669 * call blk_init_queue(). The function @rfn will be called when there 670 * are requests on the queue that need to be processed. If the device 671 * supports plugging, then @rfn may not be called immediately when requests 672 * are available on the queue, but may be called at some time later instead. 673 * Plugged queues are generally unplugged when a buffer belonging to one 674 * of the requests on the queue is needed, or due to memory pressure. 675 * 676 * @rfn is not required, or even expected, to remove all requests off the 677 * queue, but only as many as it can handle at a time. If it does leave 678 * requests on the queue, it is responsible for arranging that the requests 679 * get dealt with eventually. 680 * 681 * The queue spin lock must be held while manipulating the requests on the 682 * request queue; this lock will be taken also from interrupt context, so irq 683 * disabling is needed for it. 684 * 685 * Function returns a pointer to the initialized request queue, or %NULL if 686 * it didn't succeed. 687 * 688 * Note: 689 * blk_init_queue() must be paired with a blk_cleanup_queue() call 690 * when the block device is deactivated (such as at module unload). 691 **/ 692 693 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 694 { 695 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 696 } 697 EXPORT_SYMBOL(blk_init_queue); 698 699 struct request_queue * 700 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 701 { 702 struct request_queue *uninit_q, *q; 703 704 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 705 if (!uninit_q) 706 return NULL; 707 708 q = blk_init_allocated_queue(uninit_q, rfn, lock); 709 if (!q) 710 blk_cleanup_queue(uninit_q); 711 712 return q; 713 } 714 EXPORT_SYMBOL(blk_init_queue_node); 715 716 struct request_queue * 717 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 718 spinlock_t *lock) 719 { 720 if (!q) 721 return NULL; 722 723 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 724 return NULL; 725 726 q->request_fn = rfn; 727 q->prep_rq_fn = NULL; 728 q->unprep_rq_fn = NULL; 729 q->queue_flags |= QUEUE_FLAG_DEFAULT; 730 731 /* Override internal queue lock with supplied lock pointer */ 732 if (lock) 733 q->queue_lock = lock; 734 735 /* 736 * This also sets hw/phys segments, boundary and size 737 */ 738 blk_queue_make_request(q, blk_queue_bio); 739 740 q->sg_reserved_size = INT_MAX; 741 742 /* init elevator */ 743 if (elevator_init(q, NULL)) 744 return NULL; 745 return q; 746 } 747 EXPORT_SYMBOL(blk_init_allocated_queue); 748 749 bool blk_get_queue(struct request_queue *q) 750 { 751 if (likely(!blk_queue_dying(q))) { 752 __blk_get_queue(q); 753 return true; 754 } 755 756 return false; 757 } 758 EXPORT_SYMBOL(blk_get_queue); 759 760 static inline void blk_free_request(struct request_list *rl, struct request *rq) 761 { 762 if (rq->cmd_flags & REQ_ELVPRIV) { 763 elv_put_request(rl->q, rq); 764 if (rq->elv.icq) 765 put_io_context(rq->elv.icq->ioc); 766 } 767 768 mempool_free(rq, rl->rq_pool); 769 } 770 771 /* 772 * ioc_batching returns true if the ioc is a valid batching request and 773 * should be given priority access to a request. 774 */ 775 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 776 { 777 if (!ioc) 778 return 0; 779 780 /* 781 * Make sure the process is able to allocate at least 1 request 782 * even if the batch times out, otherwise we could theoretically 783 * lose wakeups. 784 */ 785 return ioc->nr_batch_requests == q->nr_batching || 786 (ioc->nr_batch_requests > 0 787 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 788 } 789 790 /* 791 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 792 * will cause the process to be a "batcher" on all queues in the system. This 793 * is the behaviour we want though - once it gets a wakeup it should be given 794 * a nice run. 795 */ 796 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 797 { 798 if (!ioc || ioc_batching(q, ioc)) 799 return; 800 801 ioc->nr_batch_requests = q->nr_batching; 802 ioc->last_waited = jiffies; 803 } 804 805 static void __freed_request(struct request_list *rl, int sync) 806 { 807 struct request_queue *q = rl->q; 808 809 /* 810 * bdi isn't aware of blkcg yet. As all async IOs end up root 811 * blkcg anyway, just use root blkcg state. 812 */ 813 if (rl == &q->root_rl && 814 rl->count[sync] < queue_congestion_off_threshold(q)) 815 blk_clear_queue_congested(q, sync); 816 817 if (rl->count[sync] + 1 <= q->nr_requests) { 818 if (waitqueue_active(&rl->wait[sync])) 819 wake_up(&rl->wait[sync]); 820 821 blk_clear_rl_full(rl, sync); 822 } 823 } 824 825 /* 826 * A request has just been released. Account for it, update the full and 827 * congestion status, wake up any waiters. Called under q->queue_lock. 828 */ 829 static void freed_request(struct request_list *rl, unsigned int flags) 830 { 831 struct request_queue *q = rl->q; 832 int sync = rw_is_sync(flags); 833 834 q->nr_rqs[sync]--; 835 rl->count[sync]--; 836 if (flags & REQ_ELVPRIV) 837 q->nr_rqs_elvpriv--; 838 839 __freed_request(rl, sync); 840 841 if (unlikely(rl->starved[sync ^ 1])) 842 __freed_request(rl, sync ^ 1); 843 } 844 845 /* 846 * Determine if elevator data should be initialized when allocating the 847 * request associated with @bio. 848 */ 849 static bool blk_rq_should_init_elevator(struct bio *bio) 850 { 851 if (!bio) 852 return true; 853 854 /* 855 * Flush requests do not use the elevator so skip initialization. 856 * This allows a request to share the flush and elevator data. 857 */ 858 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 859 return false; 860 861 return true; 862 } 863 864 /** 865 * rq_ioc - determine io_context for request allocation 866 * @bio: request being allocated is for this bio (can be %NULL) 867 * 868 * Determine io_context to use for request allocation for @bio. May return 869 * %NULL if %current->io_context doesn't exist. 870 */ 871 static struct io_context *rq_ioc(struct bio *bio) 872 { 873 #ifdef CONFIG_BLK_CGROUP 874 if (bio && bio->bi_ioc) 875 return bio->bi_ioc; 876 #endif 877 return current->io_context; 878 } 879 880 /** 881 * __get_request - get a free request 882 * @rl: request list to allocate from 883 * @rw_flags: RW and SYNC flags 884 * @bio: bio to allocate request for (can be %NULL) 885 * @gfp_mask: allocation mask 886 * 887 * Get a free request from @q. This function may fail under memory 888 * pressure or if @q is dead. 889 * 890 * Must be callled with @q->queue_lock held and, 891 * Returns %NULL on failure, with @q->queue_lock held. 892 * Returns !%NULL on success, with @q->queue_lock *not held*. 893 */ 894 static struct request *__get_request(struct request_list *rl, int rw_flags, 895 struct bio *bio, gfp_t gfp_mask) 896 { 897 struct request_queue *q = rl->q; 898 struct request *rq; 899 struct elevator_type *et = q->elevator->type; 900 struct io_context *ioc = rq_ioc(bio); 901 struct io_cq *icq = NULL; 902 const bool is_sync = rw_is_sync(rw_flags) != 0; 903 int may_queue; 904 905 if (unlikely(blk_queue_dying(q))) 906 return NULL; 907 908 may_queue = elv_may_queue(q, rw_flags); 909 if (may_queue == ELV_MQUEUE_NO) 910 goto rq_starved; 911 912 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 913 if (rl->count[is_sync]+1 >= q->nr_requests) { 914 /* 915 * The queue will fill after this allocation, so set 916 * it as full, and mark this process as "batching". 917 * This process will be allowed to complete a batch of 918 * requests, others will be blocked. 919 */ 920 if (!blk_rl_full(rl, is_sync)) { 921 ioc_set_batching(q, ioc); 922 blk_set_rl_full(rl, is_sync); 923 } else { 924 if (may_queue != ELV_MQUEUE_MUST 925 && !ioc_batching(q, ioc)) { 926 /* 927 * The queue is full and the allocating 928 * process is not a "batcher", and not 929 * exempted by the IO scheduler 930 */ 931 return NULL; 932 } 933 } 934 } 935 /* 936 * bdi isn't aware of blkcg yet. As all async IOs end up 937 * root blkcg anyway, just use root blkcg state. 938 */ 939 if (rl == &q->root_rl) 940 blk_set_queue_congested(q, is_sync); 941 } 942 943 /* 944 * Only allow batching queuers to allocate up to 50% over the defined 945 * limit of requests, otherwise we could have thousands of requests 946 * allocated with any setting of ->nr_requests 947 */ 948 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 949 return NULL; 950 951 q->nr_rqs[is_sync]++; 952 rl->count[is_sync]++; 953 rl->starved[is_sync] = 0; 954 955 /* 956 * Decide whether the new request will be managed by elevator. If 957 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will 958 * prevent the current elevator from being destroyed until the new 959 * request is freed. This guarantees icq's won't be destroyed and 960 * makes creating new ones safe. 961 * 962 * Also, lookup icq while holding queue_lock. If it doesn't exist, 963 * it will be created after releasing queue_lock. 964 */ 965 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 966 rw_flags |= REQ_ELVPRIV; 967 q->nr_rqs_elvpriv++; 968 if (et->icq_cache && ioc) 969 icq = ioc_lookup_icq(ioc, q); 970 } 971 972 if (blk_queue_io_stat(q)) 973 rw_flags |= REQ_IO_STAT; 974 spin_unlock_irq(q->queue_lock); 975 976 /* allocate and init request */ 977 rq = mempool_alloc(rl->rq_pool, gfp_mask); 978 if (!rq) 979 goto fail_alloc; 980 981 blk_rq_init(q, rq); 982 blk_rq_set_rl(rq, rl); 983 rq->cmd_flags = rw_flags | REQ_ALLOCED; 984 985 /* init elvpriv */ 986 if (rw_flags & REQ_ELVPRIV) { 987 if (unlikely(et->icq_cache && !icq)) { 988 if (ioc) 989 icq = ioc_create_icq(ioc, q, gfp_mask); 990 if (!icq) 991 goto fail_elvpriv; 992 } 993 994 rq->elv.icq = icq; 995 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 996 goto fail_elvpriv; 997 998 /* @rq->elv.icq holds io_context until @rq is freed */ 999 if (icq) 1000 get_io_context(icq->ioc); 1001 } 1002 out: 1003 /* 1004 * ioc may be NULL here, and ioc_batching will be false. That's 1005 * OK, if the queue is under the request limit then requests need 1006 * not count toward the nr_batch_requests limit. There will always 1007 * be some limit enforced by BLK_BATCH_TIME. 1008 */ 1009 if (ioc_batching(q, ioc)) 1010 ioc->nr_batch_requests--; 1011 1012 trace_block_getrq(q, bio, rw_flags & 1); 1013 return rq; 1014 1015 fail_elvpriv: 1016 /* 1017 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1018 * and may fail indefinitely under memory pressure and thus 1019 * shouldn't stall IO. Treat this request as !elvpriv. This will 1020 * disturb iosched and blkcg but weird is bettern than dead. 1021 */ 1022 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n", 1023 dev_name(q->backing_dev_info.dev)); 1024 1025 rq->cmd_flags &= ~REQ_ELVPRIV; 1026 rq->elv.icq = NULL; 1027 1028 spin_lock_irq(q->queue_lock); 1029 q->nr_rqs_elvpriv--; 1030 spin_unlock_irq(q->queue_lock); 1031 goto out; 1032 1033 fail_alloc: 1034 /* 1035 * Allocation failed presumably due to memory. Undo anything we 1036 * might have messed up. 1037 * 1038 * Allocating task should really be put onto the front of the wait 1039 * queue, but this is pretty rare. 1040 */ 1041 spin_lock_irq(q->queue_lock); 1042 freed_request(rl, rw_flags); 1043 1044 /* 1045 * in the very unlikely event that allocation failed and no 1046 * requests for this direction was pending, mark us starved so that 1047 * freeing of a request in the other direction will notice 1048 * us. another possible fix would be to split the rq mempool into 1049 * READ and WRITE 1050 */ 1051 rq_starved: 1052 if (unlikely(rl->count[is_sync] == 0)) 1053 rl->starved[is_sync] = 1; 1054 return NULL; 1055 } 1056 1057 /** 1058 * get_request - get a free request 1059 * @q: request_queue to allocate request from 1060 * @rw_flags: RW and SYNC flags 1061 * @bio: bio to allocate request for (can be %NULL) 1062 * @gfp_mask: allocation mask 1063 * 1064 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this 1065 * function keeps retrying under memory pressure and fails iff @q is dead. 1066 * 1067 * Must be callled with @q->queue_lock held and, 1068 * Returns %NULL on failure, with @q->queue_lock held. 1069 * Returns !%NULL on success, with @q->queue_lock *not held*. 1070 */ 1071 static struct request *get_request(struct request_queue *q, int rw_flags, 1072 struct bio *bio, gfp_t gfp_mask) 1073 { 1074 const bool is_sync = rw_is_sync(rw_flags) != 0; 1075 DEFINE_WAIT(wait); 1076 struct request_list *rl; 1077 struct request *rq; 1078 1079 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1080 retry: 1081 rq = __get_request(rl, rw_flags, bio, gfp_mask); 1082 if (rq) 1083 return rq; 1084 1085 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) { 1086 blk_put_rl(rl); 1087 return NULL; 1088 } 1089 1090 /* wait on @rl and retry */ 1091 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1092 TASK_UNINTERRUPTIBLE); 1093 1094 trace_block_sleeprq(q, bio, rw_flags & 1); 1095 1096 spin_unlock_irq(q->queue_lock); 1097 io_schedule(); 1098 1099 /* 1100 * After sleeping, we become a "batching" process and will be able 1101 * to allocate at least one request, and up to a big batch of them 1102 * for a small period time. See ioc_batching, ioc_set_batching 1103 */ 1104 ioc_set_batching(q, current->io_context); 1105 1106 spin_lock_irq(q->queue_lock); 1107 finish_wait(&rl->wait[is_sync], &wait); 1108 1109 goto retry; 1110 } 1111 1112 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1113 { 1114 struct request *rq; 1115 1116 BUG_ON(rw != READ && rw != WRITE); 1117 1118 /* create ioc upfront */ 1119 create_io_context(gfp_mask, q->node); 1120 1121 spin_lock_irq(q->queue_lock); 1122 rq = get_request(q, rw, NULL, gfp_mask); 1123 if (!rq) 1124 spin_unlock_irq(q->queue_lock); 1125 /* q->queue_lock is unlocked at this point */ 1126 1127 return rq; 1128 } 1129 EXPORT_SYMBOL(blk_get_request); 1130 1131 /** 1132 * blk_make_request - given a bio, allocate a corresponding struct request. 1133 * @q: target request queue 1134 * @bio: The bio describing the memory mappings that will be submitted for IO. 1135 * It may be a chained-bio properly constructed by block/bio layer. 1136 * @gfp_mask: gfp flags to be used for memory allocation 1137 * 1138 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 1139 * type commands. Where the struct request needs to be farther initialized by 1140 * the caller. It is passed a &struct bio, which describes the memory info of 1141 * the I/O transfer. 1142 * 1143 * The caller of blk_make_request must make sure that bi_io_vec 1144 * are set to describe the memory buffers. That bio_data_dir() will return 1145 * the needed direction of the request. (And all bio's in the passed bio-chain 1146 * are properly set accordingly) 1147 * 1148 * If called under none-sleepable conditions, mapped bio buffers must not 1149 * need bouncing, by calling the appropriate masked or flagged allocator, 1150 * suitable for the target device. Otherwise the call to blk_queue_bounce will 1151 * BUG. 1152 * 1153 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 1154 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 1155 * anything but the first bio in the chain. Otherwise you risk waiting for IO 1156 * completion of a bio that hasn't been submitted yet, thus resulting in a 1157 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 1158 * of bio_alloc(), as that avoids the mempool deadlock. 1159 * If possible a big IO should be split into smaller parts when allocation 1160 * fails. Partial allocation should not be an error, or you risk a live-lock. 1161 */ 1162 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 1163 gfp_t gfp_mask) 1164 { 1165 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 1166 1167 if (unlikely(!rq)) 1168 return ERR_PTR(-ENOMEM); 1169 1170 for_each_bio(bio) { 1171 struct bio *bounce_bio = bio; 1172 int ret; 1173 1174 blk_queue_bounce(q, &bounce_bio); 1175 ret = blk_rq_append_bio(q, rq, bounce_bio); 1176 if (unlikely(ret)) { 1177 blk_put_request(rq); 1178 return ERR_PTR(ret); 1179 } 1180 } 1181 1182 return rq; 1183 } 1184 EXPORT_SYMBOL(blk_make_request); 1185 1186 /** 1187 * blk_requeue_request - put a request back on queue 1188 * @q: request queue where request should be inserted 1189 * @rq: request to be inserted 1190 * 1191 * Description: 1192 * Drivers often keep queueing requests until the hardware cannot accept 1193 * more, when that condition happens we need to put the request back 1194 * on the queue. Must be called with queue lock held. 1195 */ 1196 void blk_requeue_request(struct request_queue *q, struct request *rq) 1197 { 1198 blk_delete_timer(rq); 1199 blk_clear_rq_complete(rq); 1200 trace_block_rq_requeue(q, rq); 1201 1202 if (blk_rq_tagged(rq)) 1203 blk_queue_end_tag(q, rq); 1204 1205 BUG_ON(blk_queued_rq(rq)); 1206 1207 elv_requeue_request(q, rq); 1208 } 1209 EXPORT_SYMBOL(blk_requeue_request); 1210 1211 static void add_acct_request(struct request_queue *q, struct request *rq, 1212 int where) 1213 { 1214 drive_stat_acct(rq, 1); 1215 __elv_add_request(q, rq, where); 1216 } 1217 1218 static void part_round_stats_single(int cpu, struct hd_struct *part, 1219 unsigned long now) 1220 { 1221 if (now == part->stamp) 1222 return; 1223 1224 if (part_in_flight(part)) { 1225 __part_stat_add(cpu, part, time_in_queue, 1226 part_in_flight(part) * (now - part->stamp)); 1227 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1228 } 1229 part->stamp = now; 1230 } 1231 1232 /** 1233 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1234 * @cpu: cpu number for stats access 1235 * @part: target partition 1236 * 1237 * The average IO queue length and utilisation statistics are maintained 1238 * by observing the current state of the queue length and the amount of 1239 * time it has been in this state for. 1240 * 1241 * Normally, that accounting is done on IO completion, but that can result 1242 * in more than a second's worth of IO being accounted for within any one 1243 * second, leading to >100% utilisation. To deal with that, we call this 1244 * function to do a round-off before returning the results when reading 1245 * /proc/diskstats. This accounts immediately for all queue usage up to 1246 * the current jiffies and restarts the counters again. 1247 */ 1248 void part_round_stats(int cpu, struct hd_struct *part) 1249 { 1250 unsigned long now = jiffies; 1251 1252 if (part->partno) 1253 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1254 part_round_stats_single(cpu, part, now); 1255 } 1256 EXPORT_SYMBOL_GPL(part_round_stats); 1257 1258 #ifdef CONFIG_PM_RUNTIME 1259 static void blk_pm_put_request(struct request *rq) 1260 { 1261 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending) 1262 pm_runtime_mark_last_busy(rq->q->dev); 1263 } 1264 #else 1265 static inline void blk_pm_put_request(struct request *rq) {} 1266 #endif 1267 1268 /* 1269 * queue lock must be held 1270 */ 1271 void __blk_put_request(struct request_queue *q, struct request *req) 1272 { 1273 if (unlikely(!q)) 1274 return; 1275 if (unlikely(--req->ref_count)) 1276 return; 1277 1278 blk_pm_put_request(req); 1279 1280 elv_completed_request(q, req); 1281 1282 /* this is a bio leak */ 1283 WARN_ON(req->bio != NULL); 1284 1285 /* 1286 * Request may not have originated from ll_rw_blk. if not, 1287 * it didn't come out of our reserved rq pools 1288 */ 1289 if (req->cmd_flags & REQ_ALLOCED) { 1290 unsigned int flags = req->cmd_flags; 1291 struct request_list *rl = blk_rq_rl(req); 1292 1293 BUG_ON(!list_empty(&req->queuelist)); 1294 BUG_ON(!hlist_unhashed(&req->hash)); 1295 1296 blk_free_request(rl, req); 1297 freed_request(rl, flags); 1298 blk_put_rl(rl); 1299 } 1300 } 1301 EXPORT_SYMBOL_GPL(__blk_put_request); 1302 1303 void blk_put_request(struct request *req) 1304 { 1305 unsigned long flags; 1306 struct request_queue *q = req->q; 1307 1308 spin_lock_irqsave(q->queue_lock, flags); 1309 __blk_put_request(q, req); 1310 spin_unlock_irqrestore(q->queue_lock, flags); 1311 } 1312 EXPORT_SYMBOL(blk_put_request); 1313 1314 /** 1315 * blk_add_request_payload - add a payload to a request 1316 * @rq: request to update 1317 * @page: page backing the payload 1318 * @len: length of the payload. 1319 * 1320 * This allows to later add a payload to an already submitted request by 1321 * a block driver. The driver needs to take care of freeing the payload 1322 * itself. 1323 * 1324 * Note that this is a quite horrible hack and nothing but handling of 1325 * discard requests should ever use it. 1326 */ 1327 void blk_add_request_payload(struct request *rq, struct page *page, 1328 unsigned int len) 1329 { 1330 struct bio *bio = rq->bio; 1331 1332 bio->bi_io_vec->bv_page = page; 1333 bio->bi_io_vec->bv_offset = 0; 1334 bio->bi_io_vec->bv_len = len; 1335 1336 bio->bi_size = len; 1337 bio->bi_vcnt = 1; 1338 bio->bi_phys_segments = 1; 1339 1340 rq->__data_len = rq->resid_len = len; 1341 rq->nr_phys_segments = 1; 1342 rq->buffer = bio_data(bio); 1343 } 1344 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1345 1346 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1347 struct bio *bio) 1348 { 1349 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1350 1351 if (!ll_back_merge_fn(q, req, bio)) 1352 return false; 1353 1354 trace_block_bio_backmerge(q, req, bio); 1355 1356 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1357 blk_rq_set_mixed_merge(req); 1358 1359 req->biotail->bi_next = bio; 1360 req->biotail = bio; 1361 req->__data_len += bio->bi_size; 1362 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1363 1364 drive_stat_acct(req, 0); 1365 return true; 1366 } 1367 1368 static bool bio_attempt_front_merge(struct request_queue *q, 1369 struct request *req, struct bio *bio) 1370 { 1371 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1372 1373 if (!ll_front_merge_fn(q, req, bio)) 1374 return false; 1375 1376 trace_block_bio_frontmerge(q, req, bio); 1377 1378 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1379 blk_rq_set_mixed_merge(req); 1380 1381 bio->bi_next = req->bio; 1382 req->bio = bio; 1383 1384 /* 1385 * may not be valid. if the low level driver said 1386 * it didn't need a bounce buffer then it better 1387 * not touch req->buffer either... 1388 */ 1389 req->buffer = bio_data(bio); 1390 req->__sector = bio->bi_sector; 1391 req->__data_len += bio->bi_size; 1392 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1393 1394 drive_stat_acct(req, 0); 1395 return true; 1396 } 1397 1398 /** 1399 * attempt_plug_merge - try to merge with %current's plugged list 1400 * @q: request_queue new bio is being queued at 1401 * @bio: new bio being queued 1402 * @request_count: out parameter for number of traversed plugged requests 1403 * 1404 * Determine whether @bio being queued on @q can be merged with a request 1405 * on %current's plugged list. Returns %true if merge was successful, 1406 * otherwise %false. 1407 * 1408 * Plugging coalesces IOs from the same issuer for the same purpose without 1409 * going through @q->queue_lock. As such it's more of an issuing mechanism 1410 * than scheduling, and the request, while may have elvpriv data, is not 1411 * added on the elevator at this point. In addition, we don't have 1412 * reliable access to the elevator outside queue lock. Only check basic 1413 * merging parameters without querying the elevator. 1414 */ 1415 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio, 1416 unsigned int *request_count) 1417 { 1418 struct blk_plug *plug; 1419 struct request *rq; 1420 bool ret = false; 1421 1422 plug = current->plug; 1423 if (!plug) 1424 goto out; 1425 *request_count = 0; 1426 1427 list_for_each_entry_reverse(rq, &plug->list, queuelist) { 1428 int el_ret; 1429 1430 if (rq->q == q) 1431 (*request_count)++; 1432 1433 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1434 continue; 1435 1436 el_ret = blk_try_merge(rq, bio); 1437 if (el_ret == ELEVATOR_BACK_MERGE) { 1438 ret = bio_attempt_back_merge(q, rq, bio); 1439 if (ret) 1440 break; 1441 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1442 ret = bio_attempt_front_merge(q, rq, bio); 1443 if (ret) 1444 break; 1445 } 1446 } 1447 out: 1448 return ret; 1449 } 1450 1451 void init_request_from_bio(struct request *req, struct bio *bio) 1452 { 1453 req->cmd_type = REQ_TYPE_FS; 1454 1455 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1456 if (bio->bi_rw & REQ_RAHEAD) 1457 req->cmd_flags |= REQ_FAILFAST_MASK; 1458 1459 req->errors = 0; 1460 req->__sector = bio->bi_sector; 1461 req->ioprio = bio_prio(bio); 1462 blk_rq_bio_prep(req->q, req, bio); 1463 } 1464 1465 void blk_queue_bio(struct request_queue *q, struct bio *bio) 1466 { 1467 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1468 struct blk_plug *plug; 1469 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1470 struct request *req; 1471 unsigned int request_count = 0; 1472 1473 /* 1474 * low level driver can indicate that it wants pages above a 1475 * certain limit bounced to low memory (ie for highmem, or even 1476 * ISA dma in theory) 1477 */ 1478 blk_queue_bounce(q, &bio); 1479 1480 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1481 bio_endio(bio, -EIO); 1482 return; 1483 } 1484 1485 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1486 spin_lock_irq(q->queue_lock); 1487 where = ELEVATOR_INSERT_FLUSH; 1488 goto get_rq; 1489 } 1490 1491 /* 1492 * Check if we can merge with the plugged list before grabbing 1493 * any locks. 1494 */ 1495 if (attempt_plug_merge(q, bio, &request_count)) 1496 return; 1497 1498 spin_lock_irq(q->queue_lock); 1499 1500 el_ret = elv_merge(q, &req, bio); 1501 if (el_ret == ELEVATOR_BACK_MERGE) { 1502 if (bio_attempt_back_merge(q, req, bio)) { 1503 elv_bio_merged(q, req, bio); 1504 if (!attempt_back_merge(q, req)) 1505 elv_merged_request(q, req, el_ret); 1506 goto out_unlock; 1507 } 1508 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1509 if (bio_attempt_front_merge(q, req, bio)) { 1510 elv_bio_merged(q, req, bio); 1511 if (!attempt_front_merge(q, req)) 1512 elv_merged_request(q, req, el_ret); 1513 goto out_unlock; 1514 } 1515 } 1516 1517 get_rq: 1518 /* 1519 * This sync check and mask will be re-done in init_request_from_bio(), 1520 * but we need to set it earlier to expose the sync flag to the 1521 * rq allocator and io schedulers. 1522 */ 1523 rw_flags = bio_data_dir(bio); 1524 if (sync) 1525 rw_flags |= REQ_SYNC; 1526 1527 /* 1528 * Grab a free request. This is might sleep but can not fail. 1529 * Returns with the queue unlocked. 1530 */ 1531 req = get_request(q, rw_flags, bio, GFP_NOIO); 1532 if (unlikely(!req)) { 1533 bio_endio(bio, -ENODEV); /* @q is dead */ 1534 goto out_unlock; 1535 } 1536 1537 /* 1538 * After dropping the lock and possibly sleeping here, our request 1539 * may now be mergeable after it had proven unmergeable (above). 1540 * We don't worry about that case for efficiency. It won't happen 1541 * often, and the elevators are able to handle it. 1542 */ 1543 init_request_from_bio(req, bio); 1544 1545 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1546 req->cpu = raw_smp_processor_id(); 1547 1548 plug = current->plug; 1549 if (plug) { 1550 /* 1551 * If this is the first request added after a plug, fire 1552 * of a plug trace. If others have been added before, check 1553 * if we have multiple devices in this plug. If so, make a 1554 * note to sort the list before dispatch. 1555 */ 1556 if (list_empty(&plug->list)) 1557 trace_block_plug(q); 1558 else { 1559 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1560 blk_flush_plug_list(plug, false); 1561 trace_block_plug(q); 1562 } 1563 } 1564 list_add_tail(&req->queuelist, &plug->list); 1565 drive_stat_acct(req, 1); 1566 } else { 1567 spin_lock_irq(q->queue_lock); 1568 add_acct_request(q, req, where); 1569 __blk_run_queue(q); 1570 out_unlock: 1571 spin_unlock_irq(q->queue_lock); 1572 } 1573 } 1574 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */ 1575 1576 /* 1577 * If bio->bi_dev is a partition, remap the location 1578 */ 1579 static inline void blk_partition_remap(struct bio *bio) 1580 { 1581 struct block_device *bdev = bio->bi_bdev; 1582 1583 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1584 struct hd_struct *p = bdev->bd_part; 1585 1586 bio->bi_sector += p->start_sect; 1587 bio->bi_bdev = bdev->bd_contains; 1588 1589 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1590 bdev->bd_dev, 1591 bio->bi_sector - p->start_sect); 1592 } 1593 } 1594 1595 static void handle_bad_sector(struct bio *bio) 1596 { 1597 char b[BDEVNAME_SIZE]; 1598 1599 printk(KERN_INFO "attempt to access beyond end of device\n"); 1600 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1601 bdevname(bio->bi_bdev, b), 1602 bio->bi_rw, 1603 (unsigned long long)bio_end_sector(bio), 1604 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1605 1606 set_bit(BIO_EOF, &bio->bi_flags); 1607 } 1608 1609 #ifdef CONFIG_FAIL_MAKE_REQUEST 1610 1611 static DECLARE_FAULT_ATTR(fail_make_request); 1612 1613 static int __init setup_fail_make_request(char *str) 1614 { 1615 return setup_fault_attr(&fail_make_request, str); 1616 } 1617 __setup("fail_make_request=", setup_fail_make_request); 1618 1619 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1620 { 1621 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1622 } 1623 1624 static int __init fail_make_request_debugfs(void) 1625 { 1626 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1627 NULL, &fail_make_request); 1628 1629 return IS_ERR(dir) ? PTR_ERR(dir) : 0; 1630 } 1631 1632 late_initcall(fail_make_request_debugfs); 1633 1634 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1635 1636 static inline bool should_fail_request(struct hd_struct *part, 1637 unsigned int bytes) 1638 { 1639 return false; 1640 } 1641 1642 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1643 1644 /* 1645 * Check whether this bio extends beyond the end of the device. 1646 */ 1647 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1648 { 1649 sector_t maxsector; 1650 1651 if (!nr_sectors) 1652 return 0; 1653 1654 /* Test device or partition size, when known. */ 1655 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1656 if (maxsector) { 1657 sector_t sector = bio->bi_sector; 1658 1659 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1660 /* 1661 * This may well happen - the kernel calls bread() 1662 * without checking the size of the device, e.g., when 1663 * mounting a device. 1664 */ 1665 handle_bad_sector(bio); 1666 return 1; 1667 } 1668 } 1669 1670 return 0; 1671 } 1672 1673 static noinline_for_stack bool 1674 generic_make_request_checks(struct bio *bio) 1675 { 1676 struct request_queue *q; 1677 int nr_sectors = bio_sectors(bio); 1678 int err = -EIO; 1679 char b[BDEVNAME_SIZE]; 1680 struct hd_struct *part; 1681 1682 might_sleep(); 1683 1684 if (bio_check_eod(bio, nr_sectors)) 1685 goto end_io; 1686 1687 q = bdev_get_queue(bio->bi_bdev); 1688 if (unlikely(!q)) { 1689 printk(KERN_ERR 1690 "generic_make_request: Trying to access " 1691 "nonexistent block-device %s (%Lu)\n", 1692 bdevname(bio->bi_bdev, b), 1693 (long long) bio->bi_sector); 1694 goto end_io; 1695 } 1696 1697 if (likely(bio_is_rw(bio) && 1698 nr_sectors > queue_max_hw_sectors(q))) { 1699 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1700 bdevname(bio->bi_bdev, b), 1701 bio_sectors(bio), 1702 queue_max_hw_sectors(q)); 1703 goto end_io; 1704 } 1705 1706 part = bio->bi_bdev->bd_part; 1707 if (should_fail_request(part, bio->bi_size) || 1708 should_fail_request(&part_to_disk(part)->part0, 1709 bio->bi_size)) 1710 goto end_io; 1711 1712 /* 1713 * If this device has partitions, remap block n 1714 * of partition p to block n+start(p) of the disk. 1715 */ 1716 blk_partition_remap(bio); 1717 1718 if (bio_check_eod(bio, nr_sectors)) 1719 goto end_io; 1720 1721 /* 1722 * Filter flush bio's early so that make_request based 1723 * drivers without flush support don't have to worry 1724 * about them. 1725 */ 1726 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1727 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1728 if (!nr_sectors) { 1729 err = 0; 1730 goto end_io; 1731 } 1732 } 1733 1734 if ((bio->bi_rw & REQ_DISCARD) && 1735 (!blk_queue_discard(q) || 1736 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) { 1737 err = -EOPNOTSUPP; 1738 goto end_io; 1739 } 1740 1741 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) { 1742 err = -EOPNOTSUPP; 1743 goto end_io; 1744 } 1745 1746 /* 1747 * Various block parts want %current->io_context and lazy ioc 1748 * allocation ends up trading a lot of pain for a small amount of 1749 * memory. Just allocate it upfront. This may fail and block 1750 * layer knows how to live with it. 1751 */ 1752 create_io_context(GFP_ATOMIC, q->node); 1753 1754 if (blk_throtl_bio(q, bio)) 1755 return false; /* throttled, will be resubmitted later */ 1756 1757 trace_block_bio_queue(q, bio); 1758 return true; 1759 1760 end_io: 1761 bio_endio(bio, err); 1762 return false; 1763 } 1764 1765 /** 1766 * generic_make_request - hand a buffer to its device driver for I/O 1767 * @bio: The bio describing the location in memory and on the device. 1768 * 1769 * generic_make_request() is used to make I/O requests of block 1770 * devices. It is passed a &struct bio, which describes the I/O that needs 1771 * to be done. 1772 * 1773 * generic_make_request() does not return any status. The 1774 * success/failure status of the request, along with notification of 1775 * completion, is delivered asynchronously through the bio->bi_end_io 1776 * function described (one day) else where. 1777 * 1778 * The caller of generic_make_request must make sure that bi_io_vec 1779 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1780 * set to describe the device address, and the 1781 * bi_end_io and optionally bi_private are set to describe how 1782 * completion notification should be signaled. 1783 * 1784 * generic_make_request and the drivers it calls may use bi_next if this 1785 * bio happens to be merged with someone else, and may resubmit the bio to 1786 * a lower device by calling into generic_make_request recursively, which 1787 * means the bio should NOT be touched after the call to ->make_request_fn. 1788 */ 1789 void generic_make_request(struct bio *bio) 1790 { 1791 struct bio_list bio_list_on_stack; 1792 1793 if (!generic_make_request_checks(bio)) 1794 return; 1795 1796 /* 1797 * We only want one ->make_request_fn to be active at a time, else 1798 * stack usage with stacked devices could be a problem. So use 1799 * current->bio_list to keep a list of requests submited by a 1800 * make_request_fn function. current->bio_list is also used as a 1801 * flag to say if generic_make_request is currently active in this 1802 * task or not. If it is NULL, then no make_request is active. If 1803 * it is non-NULL, then a make_request is active, and new requests 1804 * should be added at the tail 1805 */ 1806 if (current->bio_list) { 1807 bio_list_add(current->bio_list, bio); 1808 return; 1809 } 1810 1811 /* following loop may be a bit non-obvious, and so deserves some 1812 * explanation. 1813 * Before entering the loop, bio->bi_next is NULL (as all callers 1814 * ensure that) so we have a list with a single bio. 1815 * We pretend that we have just taken it off a longer list, so 1816 * we assign bio_list to a pointer to the bio_list_on_stack, 1817 * thus initialising the bio_list of new bios to be 1818 * added. ->make_request() may indeed add some more bios 1819 * through a recursive call to generic_make_request. If it 1820 * did, we find a non-NULL value in bio_list and re-enter the loop 1821 * from the top. In this case we really did just take the bio 1822 * of the top of the list (no pretending) and so remove it from 1823 * bio_list, and call into ->make_request() again. 1824 */ 1825 BUG_ON(bio->bi_next); 1826 bio_list_init(&bio_list_on_stack); 1827 current->bio_list = &bio_list_on_stack; 1828 do { 1829 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1830 1831 q->make_request_fn(q, bio); 1832 1833 bio = bio_list_pop(current->bio_list); 1834 } while (bio); 1835 current->bio_list = NULL; /* deactivate */ 1836 } 1837 EXPORT_SYMBOL(generic_make_request); 1838 1839 /** 1840 * submit_bio - submit a bio to the block device layer for I/O 1841 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1842 * @bio: The &struct bio which describes the I/O 1843 * 1844 * submit_bio() is very similar in purpose to generic_make_request(), and 1845 * uses that function to do most of the work. Both are fairly rough 1846 * interfaces; @bio must be presetup and ready for I/O. 1847 * 1848 */ 1849 void submit_bio(int rw, struct bio *bio) 1850 { 1851 bio->bi_rw |= rw; 1852 1853 /* 1854 * If it's a regular read/write or a barrier with data attached, 1855 * go through the normal accounting stuff before submission. 1856 */ 1857 if (bio_has_data(bio)) { 1858 unsigned int count; 1859 1860 if (unlikely(rw & REQ_WRITE_SAME)) 1861 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 1862 else 1863 count = bio_sectors(bio); 1864 1865 if (rw & WRITE) { 1866 count_vm_events(PGPGOUT, count); 1867 } else { 1868 task_io_account_read(bio->bi_size); 1869 count_vm_events(PGPGIN, count); 1870 } 1871 1872 if (unlikely(block_dump)) { 1873 char b[BDEVNAME_SIZE]; 1874 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1875 current->comm, task_pid_nr(current), 1876 (rw & WRITE) ? "WRITE" : "READ", 1877 (unsigned long long)bio->bi_sector, 1878 bdevname(bio->bi_bdev, b), 1879 count); 1880 } 1881 } 1882 1883 generic_make_request(bio); 1884 } 1885 EXPORT_SYMBOL(submit_bio); 1886 1887 /** 1888 * blk_rq_check_limits - Helper function to check a request for the queue limit 1889 * @q: the queue 1890 * @rq: the request being checked 1891 * 1892 * Description: 1893 * @rq may have been made based on weaker limitations of upper-level queues 1894 * in request stacking drivers, and it may violate the limitation of @q. 1895 * Since the block layer and the underlying device driver trust @rq 1896 * after it is inserted to @q, it should be checked against @q before 1897 * the insertion using this generic function. 1898 * 1899 * This function should also be useful for request stacking drivers 1900 * in some cases below, so export this function. 1901 * Request stacking drivers like request-based dm may change the queue 1902 * limits while requests are in the queue (e.g. dm's table swapping). 1903 * Such request stacking drivers should check those requests agaist 1904 * the new queue limits again when they dispatch those requests, 1905 * although such checkings are also done against the old queue limits 1906 * when submitting requests. 1907 */ 1908 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1909 { 1910 if (!rq_mergeable(rq)) 1911 return 0; 1912 1913 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) { 1914 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1915 return -EIO; 1916 } 1917 1918 /* 1919 * queue's settings related to segment counting like q->bounce_pfn 1920 * may differ from that of other stacking queues. 1921 * Recalculate it to check the request correctly on this queue's 1922 * limitation. 1923 */ 1924 blk_recalc_rq_segments(rq); 1925 if (rq->nr_phys_segments > queue_max_segments(q)) { 1926 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1927 return -EIO; 1928 } 1929 1930 return 0; 1931 } 1932 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1933 1934 /** 1935 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1936 * @q: the queue to submit the request 1937 * @rq: the request being queued 1938 */ 1939 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1940 { 1941 unsigned long flags; 1942 int where = ELEVATOR_INSERT_BACK; 1943 1944 if (blk_rq_check_limits(q, rq)) 1945 return -EIO; 1946 1947 if (rq->rq_disk && 1948 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1949 return -EIO; 1950 1951 spin_lock_irqsave(q->queue_lock, flags); 1952 if (unlikely(blk_queue_dying(q))) { 1953 spin_unlock_irqrestore(q->queue_lock, flags); 1954 return -ENODEV; 1955 } 1956 1957 /* 1958 * Submitting request must be dequeued before calling this function 1959 * because it will be linked to another request_queue 1960 */ 1961 BUG_ON(blk_queued_rq(rq)); 1962 1963 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 1964 where = ELEVATOR_INSERT_FLUSH; 1965 1966 add_acct_request(q, rq, where); 1967 if (where == ELEVATOR_INSERT_FLUSH) 1968 __blk_run_queue(q); 1969 spin_unlock_irqrestore(q->queue_lock, flags); 1970 1971 return 0; 1972 } 1973 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1974 1975 /** 1976 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1977 * @rq: request to examine 1978 * 1979 * Description: 1980 * A request could be merge of IOs which require different failure 1981 * handling. This function determines the number of bytes which 1982 * can be failed from the beginning of the request without 1983 * crossing into area which need to be retried further. 1984 * 1985 * Return: 1986 * The number of bytes to fail. 1987 * 1988 * Context: 1989 * queue_lock must be held. 1990 */ 1991 unsigned int blk_rq_err_bytes(const struct request *rq) 1992 { 1993 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1994 unsigned int bytes = 0; 1995 struct bio *bio; 1996 1997 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1998 return blk_rq_bytes(rq); 1999 2000 /* 2001 * Currently the only 'mixing' which can happen is between 2002 * different fastfail types. We can safely fail portions 2003 * which have all the failfast bits that the first one has - 2004 * the ones which are at least as eager to fail as the first 2005 * one. 2006 */ 2007 for (bio = rq->bio; bio; bio = bio->bi_next) { 2008 if ((bio->bi_rw & ff) != ff) 2009 break; 2010 bytes += bio->bi_size; 2011 } 2012 2013 /* this could lead to infinite loop */ 2014 BUG_ON(blk_rq_bytes(rq) && !bytes); 2015 return bytes; 2016 } 2017 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2018 2019 static void blk_account_io_completion(struct request *req, unsigned int bytes) 2020 { 2021 if (blk_do_io_stat(req)) { 2022 const int rw = rq_data_dir(req); 2023 struct hd_struct *part; 2024 int cpu; 2025 2026 cpu = part_stat_lock(); 2027 part = req->part; 2028 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2029 part_stat_unlock(); 2030 } 2031 } 2032 2033 static void blk_account_io_done(struct request *req) 2034 { 2035 /* 2036 * Account IO completion. flush_rq isn't accounted as a 2037 * normal IO on queueing nor completion. Accounting the 2038 * containing request is enough. 2039 */ 2040 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2041 unsigned long duration = jiffies - req->start_time; 2042 const int rw = rq_data_dir(req); 2043 struct hd_struct *part; 2044 int cpu; 2045 2046 cpu = part_stat_lock(); 2047 part = req->part; 2048 2049 part_stat_inc(cpu, part, ios[rw]); 2050 part_stat_add(cpu, part, ticks[rw], duration); 2051 part_round_stats(cpu, part); 2052 part_dec_in_flight(part, rw); 2053 2054 hd_struct_put(part); 2055 part_stat_unlock(); 2056 } 2057 } 2058 2059 #ifdef CONFIG_PM_RUNTIME 2060 /* 2061 * Don't process normal requests when queue is suspended 2062 * or in the process of suspending/resuming 2063 */ 2064 static struct request *blk_pm_peek_request(struct request_queue *q, 2065 struct request *rq) 2066 { 2067 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2068 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM)))) 2069 return NULL; 2070 else 2071 return rq; 2072 } 2073 #else 2074 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2075 struct request *rq) 2076 { 2077 return rq; 2078 } 2079 #endif 2080 2081 /** 2082 * blk_peek_request - peek at the top of a request queue 2083 * @q: request queue to peek at 2084 * 2085 * Description: 2086 * Return the request at the top of @q. The returned request 2087 * should be started using blk_start_request() before LLD starts 2088 * processing it. 2089 * 2090 * Return: 2091 * Pointer to the request at the top of @q if available. Null 2092 * otherwise. 2093 * 2094 * Context: 2095 * queue_lock must be held. 2096 */ 2097 struct request *blk_peek_request(struct request_queue *q) 2098 { 2099 struct request *rq; 2100 int ret; 2101 2102 while ((rq = __elv_next_request(q)) != NULL) { 2103 2104 rq = blk_pm_peek_request(q, rq); 2105 if (!rq) 2106 break; 2107 2108 if (!(rq->cmd_flags & REQ_STARTED)) { 2109 /* 2110 * This is the first time the device driver 2111 * sees this request (possibly after 2112 * requeueing). Notify IO scheduler. 2113 */ 2114 if (rq->cmd_flags & REQ_SORTED) 2115 elv_activate_rq(q, rq); 2116 2117 /* 2118 * just mark as started even if we don't start 2119 * it, a request that has been delayed should 2120 * not be passed by new incoming requests 2121 */ 2122 rq->cmd_flags |= REQ_STARTED; 2123 trace_block_rq_issue(q, rq); 2124 } 2125 2126 if (!q->boundary_rq || q->boundary_rq == rq) { 2127 q->end_sector = rq_end_sector(rq); 2128 q->boundary_rq = NULL; 2129 } 2130 2131 if (rq->cmd_flags & REQ_DONTPREP) 2132 break; 2133 2134 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2135 /* 2136 * make sure space for the drain appears we 2137 * know we can do this because max_hw_segments 2138 * has been adjusted to be one fewer than the 2139 * device can handle 2140 */ 2141 rq->nr_phys_segments++; 2142 } 2143 2144 if (!q->prep_rq_fn) 2145 break; 2146 2147 ret = q->prep_rq_fn(q, rq); 2148 if (ret == BLKPREP_OK) { 2149 break; 2150 } else if (ret == BLKPREP_DEFER) { 2151 /* 2152 * the request may have been (partially) prepped. 2153 * we need to keep this request in the front to 2154 * avoid resource deadlock. REQ_STARTED will 2155 * prevent other fs requests from passing this one. 2156 */ 2157 if (q->dma_drain_size && blk_rq_bytes(rq) && 2158 !(rq->cmd_flags & REQ_DONTPREP)) { 2159 /* 2160 * remove the space for the drain we added 2161 * so that we don't add it again 2162 */ 2163 --rq->nr_phys_segments; 2164 } 2165 2166 rq = NULL; 2167 break; 2168 } else if (ret == BLKPREP_KILL) { 2169 rq->cmd_flags |= REQ_QUIET; 2170 /* 2171 * Mark this request as started so we don't trigger 2172 * any debug logic in the end I/O path. 2173 */ 2174 blk_start_request(rq); 2175 __blk_end_request_all(rq, -EIO); 2176 } else { 2177 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2178 break; 2179 } 2180 } 2181 2182 return rq; 2183 } 2184 EXPORT_SYMBOL(blk_peek_request); 2185 2186 void blk_dequeue_request(struct request *rq) 2187 { 2188 struct request_queue *q = rq->q; 2189 2190 BUG_ON(list_empty(&rq->queuelist)); 2191 BUG_ON(ELV_ON_HASH(rq)); 2192 2193 list_del_init(&rq->queuelist); 2194 2195 /* 2196 * the time frame between a request being removed from the lists 2197 * and to it is freed is accounted as io that is in progress at 2198 * the driver side. 2199 */ 2200 if (blk_account_rq(rq)) { 2201 q->in_flight[rq_is_sync(rq)]++; 2202 set_io_start_time_ns(rq); 2203 } 2204 } 2205 2206 /** 2207 * blk_start_request - start request processing on the driver 2208 * @req: request to dequeue 2209 * 2210 * Description: 2211 * Dequeue @req and start timeout timer on it. This hands off the 2212 * request to the driver. 2213 * 2214 * Block internal functions which don't want to start timer should 2215 * call blk_dequeue_request(). 2216 * 2217 * Context: 2218 * queue_lock must be held. 2219 */ 2220 void blk_start_request(struct request *req) 2221 { 2222 blk_dequeue_request(req); 2223 2224 /* 2225 * We are now handing the request to the hardware, initialize 2226 * resid_len to full count and add the timeout handler. 2227 */ 2228 req->resid_len = blk_rq_bytes(req); 2229 if (unlikely(blk_bidi_rq(req))) 2230 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2231 2232 blk_add_timer(req); 2233 } 2234 EXPORT_SYMBOL(blk_start_request); 2235 2236 /** 2237 * blk_fetch_request - fetch a request from a request queue 2238 * @q: request queue to fetch a request from 2239 * 2240 * Description: 2241 * Return the request at the top of @q. The request is started on 2242 * return and LLD can start processing it immediately. 2243 * 2244 * Return: 2245 * Pointer to the request at the top of @q if available. Null 2246 * otherwise. 2247 * 2248 * Context: 2249 * queue_lock must be held. 2250 */ 2251 struct request *blk_fetch_request(struct request_queue *q) 2252 { 2253 struct request *rq; 2254 2255 rq = blk_peek_request(q); 2256 if (rq) 2257 blk_start_request(rq); 2258 return rq; 2259 } 2260 EXPORT_SYMBOL(blk_fetch_request); 2261 2262 /** 2263 * blk_update_request - Special helper function for request stacking drivers 2264 * @req: the request being processed 2265 * @error: %0 for success, < %0 for error 2266 * @nr_bytes: number of bytes to complete @req 2267 * 2268 * Description: 2269 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2270 * the request structure even if @req doesn't have leftover. 2271 * If @req has leftover, sets it up for the next range of segments. 2272 * 2273 * This special helper function is only for request stacking drivers 2274 * (e.g. request-based dm) so that they can handle partial completion. 2275 * Actual device drivers should use blk_end_request instead. 2276 * 2277 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2278 * %false return from this function. 2279 * 2280 * Return: 2281 * %false - this request doesn't have any more data 2282 * %true - this request has more data 2283 **/ 2284 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2285 { 2286 int total_bytes; 2287 2288 if (!req->bio) 2289 return false; 2290 2291 trace_block_rq_complete(req->q, req); 2292 2293 /* 2294 * For fs requests, rq is just carrier of independent bio's 2295 * and each partial completion should be handled separately. 2296 * Reset per-request error on each partial completion. 2297 * 2298 * TODO: tj: This is too subtle. It would be better to let 2299 * low level drivers do what they see fit. 2300 */ 2301 if (req->cmd_type == REQ_TYPE_FS) 2302 req->errors = 0; 2303 2304 if (error && req->cmd_type == REQ_TYPE_FS && 2305 !(req->cmd_flags & REQ_QUIET)) { 2306 char *error_type; 2307 2308 switch (error) { 2309 case -ENOLINK: 2310 error_type = "recoverable transport"; 2311 break; 2312 case -EREMOTEIO: 2313 error_type = "critical target"; 2314 break; 2315 case -EBADE: 2316 error_type = "critical nexus"; 2317 break; 2318 case -ETIMEDOUT: 2319 error_type = "timeout"; 2320 break; 2321 case -ENOSPC: 2322 error_type = "critical space allocation"; 2323 break; 2324 case -ENODATA: 2325 error_type = "critical medium"; 2326 break; 2327 case -EIO: 2328 default: 2329 error_type = "I/O"; 2330 break; 2331 } 2332 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2333 error_type, req->rq_disk ? 2334 req->rq_disk->disk_name : "?", 2335 (unsigned long long)blk_rq_pos(req)); 2336 2337 } 2338 2339 blk_account_io_completion(req, nr_bytes); 2340 2341 total_bytes = 0; 2342 while (req->bio) { 2343 struct bio *bio = req->bio; 2344 unsigned bio_bytes = min(bio->bi_size, nr_bytes); 2345 2346 if (bio_bytes == bio->bi_size) 2347 req->bio = bio->bi_next; 2348 2349 req_bio_endio(req, bio, bio_bytes, error); 2350 2351 total_bytes += bio_bytes; 2352 nr_bytes -= bio_bytes; 2353 2354 if (!nr_bytes) 2355 break; 2356 } 2357 2358 /* 2359 * completely done 2360 */ 2361 if (!req->bio) { 2362 /* 2363 * Reset counters so that the request stacking driver 2364 * can find how many bytes remain in the request 2365 * later. 2366 */ 2367 req->__data_len = 0; 2368 return false; 2369 } 2370 2371 req->__data_len -= total_bytes; 2372 req->buffer = bio_data(req->bio); 2373 2374 /* update sector only for requests with clear definition of sector */ 2375 if (req->cmd_type == REQ_TYPE_FS) 2376 req->__sector += total_bytes >> 9; 2377 2378 /* mixed attributes always follow the first bio */ 2379 if (req->cmd_flags & REQ_MIXED_MERGE) { 2380 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2381 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2382 } 2383 2384 /* 2385 * If total number of sectors is less than the first segment 2386 * size, something has gone terribly wrong. 2387 */ 2388 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2389 blk_dump_rq_flags(req, "request botched"); 2390 req->__data_len = blk_rq_cur_bytes(req); 2391 } 2392 2393 /* recalculate the number of segments */ 2394 blk_recalc_rq_segments(req); 2395 2396 return true; 2397 } 2398 EXPORT_SYMBOL_GPL(blk_update_request); 2399 2400 static bool blk_update_bidi_request(struct request *rq, int error, 2401 unsigned int nr_bytes, 2402 unsigned int bidi_bytes) 2403 { 2404 if (blk_update_request(rq, error, nr_bytes)) 2405 return true; 2406 2407 /* Bidi request must be completed as a whole */ 2408 if (unlikely(blk_bidi_rq(rq)) && 2409 blk_update_request(rq->next_rq, error, bidi_bytes)) 2410 return true; 2411 2412 if (blk_queue_add_random(rq->q)) 2413 add_disk_randomness(rq->rq_disk); 2414 2415 return false; 2416 } 2417 2418 /** 2419 * blk_unprep_request - unprepare a request 2420 * @req: the request 2421 * 2422 * This function makes a request ready for complete resubmission (or 2423 * completion). It happens only after all error handling is complete, 2424 * so represents the appropriate moment to deallocate any resources 2425 * that were allocated to the request in the prep_rq_fn. The queue 2426 * lock is held when calling this. 2427 */ 2428 void blk_unprep_request(struct request *req) 2429 { 2430 struct request_queue *q = req->q; 2431 2432 req->cmd_flags &= ~REQ_DONTPREP; 2433 if (q->unprep_rq_fn) 2434 q->unprep_rq_fn(q, req); 2435 } 2436 EXPORT_SYMBOL_GPL(blk_unprep_request); 2437 2438 /* 2439 * queue lock must be held 2440 */ 2441 static void blk_finish_request(struct request *req, int error) 2442 { 2443 if (blk_rq_tagged(req)) 2444 blk_queue_end_tag(req->q, req); 2445 2446 BUG_ON(blk_queued_rq(req)); 2447 2448 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2449 laptop_io_completion(&req->q->backing_dev_info); 2450 2451 blk_delete_timer(req); 2452 2453 if (req->cmd_flags & REQ_DONTPREP) 2454 blk_unprep_request(req); 2455 2456 2457 blk_account_io_done(req); 2458 2459 if (req->end_io) 2460 req->end_io(req, error); 2461 else { 2462 if (blk_bidi_rq(req)) 2463 __blk_put_request(req->next_rq->q, req->next_rq); 2464 2465 __blk_put_request(req->q, req); 2466 } 2467 } 2468 2469 /** 2470 * blk_end_bidi_request - Complete a bidi request 2471 * @rq: the request to complete 2472 * @error: %0 for success, < %0 for error 2473 * @nr_bytes: number of bytes to complete @rq 2474 * @bidi_bytes: number of bytes to complete @rq->next_rq 2475 * 2476 * Description: 2477 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2478 * Drivers that supports bidi can safely call this member for any 2479 * type of request, bidi or uni. In the later case @bidi_bytes is 2480 * just ignored. 2481 * 2482 * Return: 2483 * %false - we are done with this request 2484 * %true - still buffers pending for this request 2485 **/ 2486 static bool blk_end_bidi_request(struct request *rq, int error, 2487 unsigned int nr_bytes, unsigned int bidi_bytes) 2488 { 2489 struct request_queue *q = rq->q; 2490 unsigned long flags; 2491 2492 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2493 return true; 2494 2495 spin_lock_irqsave(q->queue_lock, flags); 2496 blk_finish_request(rq, error); 2497 spin_unlock_irqrestore(q->queue_lock, flags); 2498 2499 return false; 2500 } 2501 2502 /** 2503 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2504 * @rq: the request to complete 2505 * @error: %0 for success, < %0 for error 2506 * @nr_bytes: number of bytes to complete @rq 2507 * @bidi_bytes: number of bytes to complete @rq->next_rq 2508 * 2509 * Description: 2510 * Identical to blk_end_bidi_request() except that queue lock is 2511 * assumed to be locked on entry and remains so on return. 2512 * 2513 * Return: 2514 * %false - we are done with this request 2515 * %true - still buffers pending for this request 2516 **/ 2517 bool __blk_end_bidi_request(struct request *rq, int error, 2518 unsigned int nr_bytes, unsigned int bidi_bytes) 2519 { 2520 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2521 return true; 2522 2523 blk_finish_request(rq, error); 2524 2525 return false; 2526 } 2527 2528 /** 2529 * blk_end_request - Helper function for drivers to complete the request. 2530 * @rq: the request being processed 2531 * @error: %0 for success, < %0 for error 2532 * @nr_bytes: number of bytes to complete 2533 * 2534 * Description: 2535 * Ends I/O on a number of bytes attached to @rq. 2536 * If @rq has leftover, sets it up for the next range of segments. 2537 * 2538 * Return: 2539 * %false - we are done with this request 2540 * %true - still buffers pending for this request 2541 **/ 2542 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2543 { 2544 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2545 } 2546 EXPORT_SYMBOL(blk_end_request); 2547 2548 /** 2549 * blk_end_request_all - Helper function for drives to finish the request. 2550 * @rq: the request to finish 2551 * @error: %0 for success, < %0 for error 2552 * 2553 * Description: 2554 * Completely finish @rq. 2555 */ 2556 void blk_end_request_all(struct request *rq, int error) 2557 { 2558 bool pending; 2559 unsigned int bidi_bytes = 0; 2560 2561 if (unlikely(blk_bidi_rq(rq))) 2562 bidi_bytes = blk_rq_bytes(rq->next_rq); 2563 2564 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2565 BUG_ON(pending); 2566 } 2567 EXPORT_SYMBOL(blk_end_request_all); 2568 2569 /** 2570 * blk_end_request_cur - Helper function to finish the current request chunk. 2571 * @rq: the request to finish the current chunk for 2572 * @error: %0 for success, < %0 for error 2573 * 2574 * Description: 2575 * Complete the current consecutively mapped chunk from @rq. 2576 * 2577 * Return: 2578 * %false - we are done with this request 2579 * %true - still buffers pending for this request 2580 */ 2581 bool blk_end_request_cur(struct request *rq, int error) 2582 { 2583 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2584 } 2585 EXPORT_SYMBOL(blk_end_request_cur); 2586 2587 /** 2588 * blk_end_request_err - Finish a request till the next failure boundary. 2589 * @rq: the request to finish till the next failure boundary for 2590 * @error: must be negative errno 2591 * 2592 * Description: 2593 * Complete @rq till the next failure boundary. 2594 * 2595 * Return: 2596 * %false - we are done with this request 2597 * %true - still buffers pending for this request 2598 */ 2599 bool blk_end_request_err(struct request *rq, int error) 2600 { 2601 WARN_ON(error >= 0); 2602 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2603 } 2604 EXPORT_SYMBOL_GPL(blk_end_request_err); 2605 2606 /** 2607 * __blk_end_request - Helper function for drivers to complete the request. 2608 * @rq: the request being processed 2609 * @error: %0 for success, < %0 for error 2610 * @nr_bytes: number of bytes to complete 2611 * 2612 * Description: 2613 * Must be called with queue lock held unlike blk_end_request(). 2614 * 2615 * Return: 2616 * %false - we are done with this request 2617 * %true - still buffers pending for this request 2618 **/ 2619 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2620 { 2621 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2622 } 2623 EXPORT_SYMBOL(__blk_end_request); 2624 2625 /** 2626 * __blk_end_request_all - Helper function for drives to finish the request. 2627 * @rq: the request to finish 2628 * @error: %0 for success, < %0 for error 2629 * 2630 * Description: 2631 * Completely finish @rq. Must be called with queue lock held. 2632 */ 2633 void __blk_end_request_all(struct request *rq, int error) 2634 { 2635 bool pending; 2636 unsigned int bidi_bytes = 0; 2637 2638 if (unlikely(blk_bidi_rq(rq))) 2639 bidi_bytes = blk_rq_bytes(rq->next_rq); 2640 2641 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2642 BUG_ON(pending); 2643 } 2644 EXPORT_SYMBOL(__blk_end_request_all); 2645 2646 /** 2647 * __blk_end_request_cur - Helper function to finish the current request chunk. 2648 * @rq: the request to finish the current chunk for 2649 * @error: %0 for success, < %0 for error 2650 * 2651 * Description: 2652 * Complete the current consecutively mapped chunk from @rq. Must 2653 * be called with queue lock held. 2654 * 2655 * Return: 2656 * %false - we are done with this request 2657 * %true - still buffers pending for this request 2658 */ 2659 bool __blk_end_request_cur(struct request *rq, int error) 2660 { 2661 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2662 } 2663 EXPORT_SYMBOL(__blk_end_request_cur); 2664 2665 /** 2666 * __blk_end_request_err - Finish a request till the next failure boundary. 2667 * @rq: the request to finish till the next failure boundary for 2668 * @error: must be negative errno 2669 * 2670 * Description: 2671 * Complete @rq till the next failure boundary. Must be called 2672 * with queue lock held. 2673 * 2674 * Return: 2675 * %false - we are done with this request 2676 * %true - still buffers pending for this request 2677 */ 2678 bool __blk_end_request_err(struct request *rq, int error) 2679 { 2680 WARN_ON(error >= 0); 2681 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2682 } 2683 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2684 2685 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2686 struct bio *bio) 2687 { 2688 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2689 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2690 2691 if (bio_has_data(bio)) { 2692 rq->nr_phys_segments = bio_phys_segments(q, bio); 2693 rq->buffer = bio_data(bio); 2694 } 2695 rq->__data_len = bio->bi_size; 2696 rq->bio = rq->biotail = bio; 2697 2698 if (bio->bi_bdev) 2699 rq->rq_disk = bio->bi_bdev->bd_disk; 2700 } 2701 2702 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2703 /** 2704 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2705 * @rq: the request to be flushed 2706 * 2707 * Description: 2708 * Flush all pages in @rq. 2709 */ 2710 void rq_flush_dcache_pages(struct request *rq) 2711 { 2712 struct req_iterator iter; 2713 struct bio_vec *bvec; 2714 2715 rq_for_each_segment(bvec, rq, iter) 2716 flush_dcache_page(bvec->bv_page); 2717 } 2718 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2719 #endif 2720 2721 /** 2722 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2723 * @q : the queue of the device being checked 2724 * 2725 * Description: 2726 * Check if underlying low-level drivers of a device are busy. 2727 * If the drivers want to export their busy state, they must set own 2728 * exporting function using blk_queue_lld_busy() first. 2729 * 2730 * Basically, this function is used only by request stacking drivers 2731 * to stop dispatching requests to underlying devices when underlying 2732 * devices are busy. This behavior helps more I/O merging on the queue 2733 * of the request stacking driver and prevents I/O throughput regression 2734 * on burst I/O load. 2735 * 2736 * Return: 2737 * 0 - Not busy (The request stacking driver should dispatch request) 2738 * 1 - Busy (The request stacking driver should stop dispatching request) 2739 */ 2740 int blk_lld_busy(struct request_queue *q) 2741 { 2742 if (q->lld_busy_fn) 2743 return q->lld_busy_fn(q); 2744 2745 return 0; 2746 } 2747 EXPORT_SYMBOL_GPL(blk_lld_busy); 2748 2749 /** 2750 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2751 * @rq: the clone request to be cleaned up 2752 * 2753 * Description: 2754 * Free all bios in @rq for a cloned request. 2755 */ 2756 void blk_rq_unprep_clone(struct request *rq) 2757 { 2758 struct bio *bio; 2759 2760 while ((bio = rq->bio) != NULL) { 2761 rq->bio = bio->bi_next; 2762 2763 bio_put(bio); 2764 } 2765 } 2766 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2767 2768 /* 2769 * Copy attributes of the original request to the clone request. 2770 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2771 */ 2772 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2773 { 2774 dst->cpu = src->cpu; 2775 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2776 dst->cmd_type = src->cmd_type; 2777 dst->__sector = blk_rq_pos(src); 2778 dst->__data_len = blk_rq_bytes(src); 2779 dst->nr_phys_segments = src->nr_phys_segments; 2780 dst->ioprio = src->ioprio; 2781 dst->extra_len = src->extra_len; 2782 } 2783 2784 /** 2785 * blk_rq_prep_clone - Helper function to setup clone request 2786 * @rq: the request to be setup 2787 * @rq_src: original request to be cloned 2788 * @bs: bio_set that bios for clone are allocated from 2789 * @gfp_mask: memory allocation mask for bio 2790 * @bio_ctr: setup function to be called for each clone bio. 2791 * Returns %0 for success, non %0 for failure. 2792 * @data: private data to be passed to @bio_ctr 2793 * 2794 * Description: 2795 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2796 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2797 * are not copied, and copying such parts is the caller's responsibility. 2798 * Also, pages which the original bios are pointing to are not copied 2799 * and the cloned bios just point same pages. 2800 * So cloned bios must be completed before original bios, which means 2801 * the caller must complete @rq before @rq_src. 2802 */ 2803 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2804 struct bio_set *bs, gfp_t gfp_mask, 2805 int (*bio_ctr)(struct bio *, struct bio *, void *), 2806 void *data) 2807 { 2808 struct bio *bio, *bio_src; 2809 2810 if (!bs) 2811 bs = fs_bio_set; 2812 2813 blk_rq_init(NULL, rq); 2814 2815 __rq_for_each_bio(bio_src, rq_src) { 2816 bio = bio_clone_bioset(bio_src, gfp_mask, bs); 2817 if (!bio) 2818 goto free_and_out; 2819 2820 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2821 goto free_and_out; 2822 2823 if (rq->bio) { 2824 rq->biotail->bi_next = bio; 2825 rq->biotail = bio; 2826 } else 2827 rq->bio = rq->biotail = bio; 2828 } 2829 2830 __blk_rq_prep_clone(rq, rq_src); 2831 2832 return 0; 2833 2834 free_and_out: 2835 if (bio) 2836 bio_put(bio); 2837 blk_rq_unprep_clone(rq); 2838 2839 return -ENOMEM; 2840 } 2841 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2842 2843 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2844 { 2845 return queue_work(kblockd_workqueue, work); 2846 } 2847 EXPORT_SYMBOL(kblockd_schedule_work); 2848 2849 int kblockd_schedule_delayed_work(struct request_queue *q, 2850 struct delayed_work *dwork, unsigned long delay) 2851 { 2852 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2853 } 2854 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2855 2856 #define PLUG_MAGIC 0x91827364 2857 2858 /** 2859 * blk_start_plug - initialize blk_plug and track it inside the task_struct 2860 * @plug: The &struct blk_plug that needs to be initialized 2861 * 2862 * Description: 2863 * Tracking blk_plug inside the task_struct will help with auto-flushing the 2864 * pending I/O should the task end up blocking between blk_start_plug() and 2865 * blk_finish_plug(). This is important from a performance perspective, but 2866 * also ensures that we don't deadlock. For instance, if the task is blocking 2867 * for a memory allocation, memory reclaim could end up wanting to free a 2868 * page belonging to that request that is currently residing in our private 2869 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 2870 * this kind of deadlock. 2871 */ 2872 void blk_start_plug(struct blk_plug *plug) 2873 { 2874 struct task_struct *tsk = current; 2875 2876 plug->magic = PLUG_MAGIC; 2877 INIT_LIST_HEAD(&plug->list); 2878 INIT_LIST_HEAD(&plug->cb_list); 2879 2880 /* 2881 * If this is a nested plug, don't actually assign it. It will be 2882 * flushed on its own. 2883 */ 2884 if (!tsk->plug) { 2885 /* 2886 * Store ordering should not be needed here, since a potential 2887 * preempt will imply a full memory barrier 2888 */ 2889 tsk->plug = plug; 2890 } 2891 } 2892 EXPORT_SYMBOL(blk_start_plug); 2893 2894 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 2895 { 2896 struct request *rqa = container_of(a, struct request, queuelist); 2897 struct request *rqb = container_of(b, struct request, queuelist); 2898 2899 return !(rqa->q < rqb->q || 2900 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 2901 } 2902 2903 /* 2904 * If 'from_schedule' is true, then postpone the dispatch of requests 2905 * until a safe kblockd context. We due this to avoid accidental big 2906 * additional stack usage in driver dispatch, in places where the originally 2907 * plugger did not intend it. 2908 */ 2909 static void queue_unplugged(struct request_queue *q, unsigned int depth, 2910 bool from_schedule) 2911 __releases(q->queue_lock) 2912 { 2913 trace_block_unplug(q, depth, !from_schedule); 2914 2915 if (from_schedule) 2916 blk_run_queue_async(q); 2917 else 2918 __blk_run_queue(q); 2919 spin_unlock(q->queue_lock); 2920 } 2921 2922 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 2923 { 2924 LIST_HEAD(callbacks); 2925 2926 while (!list_empty(&plug->cb_list)) { 2927 list_splice_init(&plug->cb_list, &callbacks); 2928 2929 while (!list_empty(&callbacks)) { 2930 struct blk_plug_cb *cb = list_first_entry(&callbacks, 2931 struct blk_plug_cb, 2932 list); 2933 list_del(&cb->list); 2934 cb->callback(cb, from_schedule); 2935 } 2936 } 2937 } 2938 2939 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 2940 int size) 2941 { 2942 struct blk_plug *plug = current->plug; 2943 struct blk_plug_cb *cb; 2944 2945 if (!plug) 2946 return NULL; 2947 2948 list_for_each_entry(cb, &plug->cb_list, list) 2949 if (cb->callback == unplug && cb->data == data) 2950 return cb; 2951 2952 /* Not currently on the callback list */ 2953 BUG_ON(size < sizeof(*cb)); 2954 cb = kzalloc(size, GFP_ATOMIC); 2955 if (cb) { 2956 cb->data = data; 2957 cb->callback = unplug; 2958 list_add(&cb->list, &plug->cb_list); 2959 } 2960 return cb; 2961 } 2962 EXPORT_SYMBOL(blk_check_plugged); 2963 2964 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2965 { 2966 struct request_queue *q; 2967 unsigned long flags; 2968 struct request *rq; 2969 LIST_HEAD(list); 2970 unsigned int depth; 2971 2972 BUG_ON(plug->magic != PLUG_MAGIC); 2973 2974 flush_plug_callbacks(plug, from_schedule); 2975 if (list_empty(&plug->list)) 2976 return; 2977 2978 list_splice_init(&plug->list, &list); 2979 2980 list_sort(NULL, &list, plug_rq_cmp); 2981 2982 q = NULL; 2983 depth = 0; 2984 2985 /* 2986 * Save and disable interrupts here, to avoid doing it for every 2987 * queue lock we have to take. 2988 */ 2989 local_irq_save(flags); 2990 while (!list_empty(&list)) { 2991 rq = list_entry_rq(list.next); 2992 list_del_init(&rq->queuelist); 2993 BUG_ON(!rq->q); 2994 if (rq->q != q) { 2995 /* 2996 * This drops the queue lock 2997 */ 2998 if (q) 2999 queue_unplugged(q, depth, from_schedule); 3000 q = rq->q; 3001 depth = 0; 3002 spin_lock(q->queue_lock); 3003 } 3004 3005 /* 3006 * Short-circuit if @q is dead 3007 */ 3008 if (unlikely(blk_queue_dying(q))) { 3009 __blk_end_request_all(rq, -ENODEV); 3010 continue; 3011 } 3012 3013 /* 3014 * rq is already accounted, so use raw insert 3015 */ 3016 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 3017 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3018 else 3019 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3020 3021 depth++; 3022 } 3023 3024 /* 3025 * This drops the queue lock 3026 */ 3027 if (q) 3028 queue_unplugged(q, depth, from_schedule); 3029 3030 local_irq_restore(flags); 3031 } 3032 3033 void blk_finish_plug(struct blk_plug *plug) 3034 { 3035 blk_flush_plug_list(plug, false); 3036 3037 if (plug == current->plug) 3038 current->plug = NULL; 3039 } 3040 EXPORT_SYMBOL(blk_finish_plug); 3041 3042 #ifdef CONFIG_PM_RUNTIME 3043 /** 3044 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3045 * @q: the queue of the device 3046 * @dev: the device the queue belongs to 3047 * 3048 * Description: 3049 * Initialize runtime-PM-related fields for @q and start auto suspend for 3050 * @dev. Drivers that want to take advantage of request-based runtime PM 3051 * should call this function after @dev has been initialized, and its 3052 * request queue @q has been allocated, and runtime PM for it can not happen 3053 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3054 * cases, driver should call this function before any I/O has taken place. 3055 * 3056 * This function takes care of setting up using auto suspend for the device, 3057 * the autosuspend delay is set to -1 to make runtime suspend impossible 3058 * until an updated value is either set by user or by driver. Drivers do 3059 * not need to touch other autosuspend settings. 3060 * 3061 * The block layer runtime PM is request based, so only works for drivers 3062 * that use request as their IO unit instead of those directly use bio's. 3063 */ 3064 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3065 { 3066 q->dev = dev; 3067 q->rpm_status = RPM_ACTIVE; 3068 pm_runtime_set_autosuspend_delay(q->dev, -1); 3069 pm_runtime_use_autosuspend(q->dev); 3070 } 3071 EXPORT_SYMBOL(blk_pm_runtime_init); 3072 3073 /** 3074 * blk_pre_runtime_suspend - Pre runtime suspend check 3075 * @q: the queue of the device 3076 * 3077 * Description: 3078 * This function will check if runtime suspend is allowed for the device 3079 * by examining if there are any requests pending in the queue. If there 3080 * are requests pending, the device can not be runtime suspended; otherwise, 3081 * the queue's status will be updated to SUSPENDING and the driver can 3082 * proceed to suspend the device. 3083 * 3084 * For the not allowed case, we mark last busy for the device so that 3085 * runtime PM core will try to autosuspend it some time later. 3086 * 3087 * This function should be called near the start of the device's 3088 * runtime_suspend callback. 3089 * 3090 * Return: 3091 * 0 - OK to runtime suspend the device 3092 * -EBUSY - Device should not be runtime suspended 3093 */ 3094 int blk_pre_runtime_suspend(struct request_queue *q) 3095 { 3096 int ret = 0; 3097 3098 spin_lock_irq(q->queue_lock); 3099 if (q->nr_pending) { 3100 ret = -EBUSY; 3101 pm_runtime_mark_last_busy(q->dev); 3102 } else { 3103 q->rpm_status = RPM_SUSPENDING; 3104 } 3105 spin_unlock_irq(q->queue_lock); 3106 return ret; 3107 } 3108 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3109 3110 /** 3111 * blk_post_runtime_suspend - Post runtime suspend processing 3112 * @q: the queue of the device 3113 * @err: return value of the device's runtime_suspend function 3114 * 3115 * Description: 3116 * Update the queue's runtime status according to the return value of the 3117 * device's runtime suspend function and mark last busy for the device so 3118 * that PM core will try to auto suspend the device at a later time. 3119 * 3120 * This function should be called near the end of the device's 3121 * runtime_suspend callback. 3122 */ 3123 void blk_post_runtime_suspend(struct request_queue *q, int err) 3124 { 3125 spin_lock_irq(q->queue_lock); 3126 if (!err) { 3127 q->rpm_status = RPM_SUSPENDED; 3128 } else { 3129 q->rpm_status = RPM_ACTIVE; 3130 pm_runtime_mark_last_busy(q->dev); 3131 } 3132 spin_unlock_irq(q->queue_lock); 3133 } 3134 EXPORT_SYMBOL(blk_post_runtime_suspend); 3135 3136 /** 3137 * blk_pre_runtime_resume - Pre runtime resume processing 3138 * @q: the queue of the device 3139 * 3140 * Description: 3141 * Update the queue's runtime status to RESUMING in preparation for the 3142 * runtime resume of the device. 3143 * 3144 * This function should be called near the start of the device's 3145 * runtime_resume callback. 3146 */ 3147 void blk_pre_runtime_resume(struct request_queue *q) 3148 { 3149 spin_lock_irq(q->queue_lock); 3150 q->rpm_status = RPM_RESUMING; 3151 spin_unlock_irq(q->queue_lock); 3152 } 3153 EXPORT_SYMBOL(blk_pre_runtime_resume); 3154 3155 /** 3156 * blk_post_runtime_resume - Post runtime resume processing 3157 * @q: the queue of the device 3158 * @err: return value of the device's runtime_resume function 3159 * 3160 * Description: 3161 * Update the queue's runtime status according to the return value of the 3162 * device's runtime_resume function. If it is successfully resumed, process 3163 * the requests that are queued into the device's queue when it is resuming 3164 * and then mark last busy and initiate autosuspend for it. 3165 * 3166 * This function should be called near the end of the device's 3167 * runtime_resume callback. 3168 */ 3169 void blk_post_runtime_resume(struct request_queue *q, int err) 3170 { 3171 spin_lock_irq(q->queue_lock); 3172 if (!err) { 3173 q->rpm_status = RPM_ACTIVE; 3174 __blk_run_queue(q); 3175 pm_runtime_mark_last_busy(q->dev); 3176 pm_request_autosuspend(q->dev); 3177 } else { 3178 q->rpm_status = RPM_SUSPENDED; 3179 } 3180 spin_unlock_irq(q->queue_lock); 3181 } 3182 EXPORT_SYMBOL(blk_post_runtime_resume); 3183 #endif 3184 3185 int __init blk_dev_init(void) 3186 { 3187 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3188 sizeof(((struct request *)0)->cmd_flags)); 3189 3190 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3191 kblockd_workqueue = alloc_workqueue("kblockd", 3192 WQ_MEM_RECLAIM | WQ_HIGHPRI | 3193 WQ_POWER_EFFICIENT, 0); 3194 if (!kblockd_workqueue) 3195 panic("Failed to create kblockd\n"); 3196 3197 request_cachep = kmem_cache_create("blkdev_requests", 3198 sizeof(struct request), 0, SLAB_PANIC, NULL); 3199 3200 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 3201 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3202 3203 return 0; 3204 } 3205