1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/bio.h> 19 #include <linux/blkdev.h> 20 #include <linux/blk-mq.h> 21 #include <linux/highmem.h> 22 #include <linux/mm.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/string.h> 25 #include <linux/init.h> 26 #include <linux/completion.h> 27 #include <linux/slab.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/fault-inject.h> 32 #include <linux/list_sort.h> 33 #include <linux/delay.h> 34 #include <linux/ratelimit.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/blk-cgroup.h> 37 #include <linux/debugfs.h> 38 #include <linux/bpf.h> 39 #include <linux/psi.h> 40 41 #define CREATE_TRACE_POINTS 42 #include <trace/events/block.h> 43 44 #include "blk.h" 45 #include "blk-mq.h" 46 #include "blk-mq-sched.h" 47 #include "blk-pm.h" 48 #include "blk-rq-qos.h" 49 50 #ifdef CONFIG_DEBUG_FS 51 struct dentry *blk_debugfs_root; 52 #endif 53 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 59 60 DEFINE_IDA(blk_queue_ida); 61 62 /* 63 * For queue allocation 64 */ 65 struct kmem_cache *blk_requestq_cachep; 66 67 /* 68 * Controlling structure to kblockd 69 */ 70 static struct workqueue_struct *kblockd_workqueue; 71 72 /** 73 * blk_queue_flag_set - atomically set a queue flag 74 * @flag: flag to be set 75 * @q: request queue 76 */ 77 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 78 { 79 set_bit(flag, &q->queue_flags); 80 } 81 EXPORT_SYMBOL(blk_queue_flag_set); 82 83 /** 84 * blk_queue_flag_clear - atomically clear a queue flag 85 * @flag: flag to be cleared 86 * @q: request queue 87 */ 88 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 89 { 90 clear_bit(flag, &q->queue_flags); 91 } 92 EXPORT_SYMBOL(blk_queue_flag_clear); 93 94 /** 95 * blk_queue_flag_test_and_set - atomically test and set a queue flag 96 * @flag: flag to be set 97 * @q: request queue 98 * 99 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 100 * the flag was already set. 101 */ 102 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 103 { 104 return test_and_set_bit(flag, &q->queue_flags); 105 } 106 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 107 108 void blk_rq_init(struct request_queue *q, struct request *rq) 109 { 110 memset(rq, 0, sizeof(*rq)); 111 112 INIT_LIST_HEAD(&rq->queuelist); 113 rq->q = q; 114 rq->__sector = (sector_t) -1; 115 INIT_HLIST_NODE(&rq->hash); 116 RB_CLEAR_NODE(&rq->rb_node); 117 rq->tag = -1; 118 rq->internal_tag = -1; 119 rq->start_time_ns = ktime_get_ns(); 120 rq->part = NULL; 121 refcount_set(&rq->ref, 1); 122 } 123 EXPORT_SYMBOL(blk_rq_init); 124 125 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 126 static const char *const blk_op_name[] = { 127 REQ_OP_NAME(READ), 128 REQ_OP_NAME(WRITE), 129 REQ_OP_NAME(FLUSH), 130 REQ_OP_NAME(DISCARD), 131 REQ_OP_NAME(SECURE_ERASE), 132 REQ_OP_NAME(ZONE_RESET), 133 REQ_OP_NAME(ZONE_RESET_ALL), 134 REQ_OP_NAME(WRITE_SAME), 135 REQ_OP_NAME(WRITE_ZEROES), 136 REQ_OP_NAME(SCSI_IN), 137 REQ_OP_NAME(SCSI_OUT), 138 REQ_OP_NAME(DRV_IN), 139 REQ_OP_NAME(DRV_OUT), 140 }; 141 #undef REQ_OP_NAME 142 143 /** 144 * blk_op_str - Return string XXX in the REQ_OP_XXX. 145 * @op: REQ_OP_XXX. 146 * 147 * Description: Centralize block layer function to convert REQ_OP_XXX into 148 * string format. Useful in the debugging and tracing bio or request. For 149 * invalid REQ_OP_XXX it returns string "UNKNOWN". 150 */ 151 inline const char *blk_op_str(unsigned int op) 152 { 153 const char *op_str = "UNKNOWN"; 154 155 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 156 op_str = blk_op_name[op]; 157 158 return op_str; 159 } 160 EXPORT_SYMBOL_GPL(blk_op_str); 161 162 static const struct { 163 int errno; 164 const char *name; 165 } blk_errors[] = { 166 [BLK_STS_OK] = { 0, "" }, 167 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 168 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 169 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 170 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 171 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 172 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 173 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 174 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 175 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 176 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 177 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 178 179 /* device mapper special case, should not leak out: */ 180 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 181 182 /* everything else not covered above: */ 183 [BLK_STS_IOERR] = { -EIO, "I/O" }, 184 }; 185 186 blk_status_t errno_to_blk_status(int errno) 187 { 188 int i; 189 190 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 191 if (blk_errors[i].errno == errno) 192 return (__force blk_status_t)i; 193 } 194 195 return BLK_STS_IOERR; 196 } 197 EXPORT_SYMBOL_GPL(errno_to_blk_status); 198 199 int blk_status_to_errno(blk_status_t status) 200 { 201 int idx = (__force int)status; 202 203 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 204 return -EIO; 205 return blk_errors[idx].errno; 206 } 207 EXPORT_SYMBOL_GPL(blk_status_to_errno); 208 209 static void print_req_error(struct request *req, blk_status_t status, 210 const char *caller) 211 { 212 int idx = (__force int)status; 213 214 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 215 return; 216 217 printk_ratelimited(KERN_ERR 218 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 219 "phys_seg %u prio class %u\n", 220 caller, blk_errors[idx].name, 221 req->rq_disk ? req->rq_disk->disk_name : "?", 222 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 223 req->cmd_flags & ~REQ_OP_MASK, 224 req->nr_phys_segments, 225 IOPRIO_PRIO_CLASS(req->ioprio)); 226 } 227 228 static void req_bio_endio(struct request *rq, struct bio *bio, 229 unsigned int nbytes, blk_status_t error) 230 { 231 if (error) 232 bio->bi_status = error; 233 234 if (unlikely(rq->rq_flags & RQF_QUIET)) 235 bio_set_flag(bio, BIO_QUIET); 236 237 bio_advance(bio, nbytes); 238 239 /* don't actually finish bio if it's part of flush sequence */ 240 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 241 bio_endio(bio); 242 } 243 244 void blk_dump_rq_flags(struct request *rq, char *msg) 245 { 246 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 247 rq->rq_disk ? rq->rq_disk->disk_name : "?", 248 (unsigned long long) rq->cmd_flags); 249 250 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 251 (unsigned long long)blk_rq_pos(rq), 252 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 253 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 254 rq->bio, rq->biotail, blk_rq_bytes(rq)); 255 } 256 EXPORT_SYMBOL(blk_dump_rq_flags); 257 258 /** 259 * blk_sync_queue - cancel any pending callbacks on a queue 260 * @q: the queue 261 * 262 * Description: 263 * The block layer may perform asynchronous callback activity 264 * on a queue, such as calling the unplug function after a timeout. 265 * A block device may call blk_sync_queue to ensure that any 266 * such activity is cancelled, thus allowing it to release resources 267 * that the callbacks might use. The caller must already have made sure 268 * that its ->make_request_fn will not re-add plugging prior to calling 269 * this function. 270 * 271 * This function does not cancel any asynchronous activity arising 272 * out of elevator or throttling code. That would require elevator_exit() 273 * and blkcg_exit_queue() to be called with queue lock initialized. 274 * 275 */ 276 void blk_sync_queue(struct request_queue *q) 277 { 278 del_timer_sync(&q->timeout); 279 cancel_work_sync(&q->timeout_work); 280 } 281 EXPORT_SYMBOL(blk_sync_queue); 282 283 /** 284 * blk_set_pm_only - increment pm_only counter 285 * @q: request queue pointer 286 */ 287 void blk_set_pm_only(struct request_queue *q) 288 { 289 atomic_inc(&q->pm_only); 290 } 291 EXPORT_SYMBOL_GPL(blk_set_pm_only); 292 293 void blk_clear_pm_only(struct request_queue *q) 294 { 295 int pm_only; 296 297 pm_only = atomic_dec_return(&q->pm_only); 298 WARN_ON_ONCE(pm_only < 0); 299 if (pm_only == 0) 300 wake_up_all(&q->mq_freeze_wq); 301 } 302 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 303 304 void blk_put_queue(struct request_queue *q) 305 { 306 kobject_put(&q->kobj); 307 } 308 EXPORT_SYMBOL(blk_put_queue); 309 310 void blk_set_queue_dying(struct request_queue *q) 311 { 312 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 313 314 /* 315 * When queue DYING flag is set, we need to block new req 316 * entering queue, so we call blk_freeze_queue_start() to 317 * prevent I/O from crossing blk_queue_enter(). 318 */ 319 blk_freeze_queue_start(q); 320 321 if (queue_is_mq(q)) 322 blk_mq_wake_waiters(q); 323 324 /* Make blk_queue_enter() reexamine the DYING flag. */ 325 wake_up_all(&q->mq_freeze_wq); 326 } 327 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 328 329 /** 330 * blk_cleanup_queue - shutdown a request queue 331 * @q: request queue to shutdown 332 * 333 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 334 * put it. All future requests will be failed immediately with -ENODEV. 335 */ 336 void blk_cleanup_queue(struct request_queue *q) 337 { 338 /* mark @q DYING, no new request or merges will be allowed afterwards */ 339 mutex_lock(&q->sysfs_lock); 340 blk_set_queue_dying(q); 341 342 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 343 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 344 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 345 mutex_unlock(&q->sysfs_lock); 346 347 /* 348 * Drain all requests queued before DYING marking. Set DEAD flag to 349 * prevent that blk_mq_run_hw_queues() accesses the hardware queues 350 * after draining finished. 351 */ 352 blk_freeze_queue(q); 353 354 rq_qos_exit(q); 355 356 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 357 358 /* for synchronous bio-based driver finish in-flight integrity i/o */ 359 blk_flush_integrity(); 360 361 /* @q won't process any more request, flush async actions */ 362 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 363 blk_sync_queue(q); 364 365 if (queue_is_mq(q)) 366 blk_mq_exit_queue(q); 367 368 /* 369 * In theory, request pool of sched_tags belongs to request queue. 370 * However, the current implementation requires tag_set for freeing 371 * requests, so free the pool now. 372 * 373 * Queue has become frozen, there can't be any in-queue requests, so 374 * it is safe to free requests now. 375 */ 376 mutex_lock(&q->sysfs_lock); 377 if (q->elevator) 378 blk_mq_sched_free_requests(q); 379 mutex_unlock(&q->sysfs_lock); 380 381 percpu_ref_exit(&q->q_usage_counter); 382 383 /* @q is and will stay empty, shutdown and put */ 384 blk_put_queue(q); 385 } 386 EXPORT_SYMBOL(blk_cleanup_queue); 387 388 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 389 { 390 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 391 } 392 EXPORT_SYMBOL(blk_alloc_queue); 393 394 /** 395 * blk_queue_enter() - try to increase q->q_usage_counter 396 * @q: request queue pointer 397 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 398 */ 399 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 400 { 401 const bool pm = flags & BLK_MQ_REQ_PREEMPT; 402 403 while (true) { 404 bool success = false; 405 406 rcu_read_lock(); 407 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 408 /* 409 * The code that increments the pm_only counter is 410 * responsible for ensuring that that counter is 411 * globally visible before the queue is unfrozen. 412 */ 413 if (pm || !blk_queue_pm_only(q)) { 414 success = true; 415 } else { 416 percpu_ref_put(&q->q_usage_counter); 417 } 418 } 419 rcu_read_unlock(); 420 421 if (success) 422 return 0; 423 424 if (flags & BLK_MQ_REQ_NOWAIT) 425 return -EBUSY; 426 427 /* 428 * read pair of barrier in blk_freeze_queue_start(), 429 * we need to order reading __PERCPU_REF_DEAD flag of 430 * .q_usage_counter and reading .mq_freeze_depth or 431 * queue dying flag, otherwise the following wait may 432 * never return if the two reads are reordered. 433 */ 434 smp_rmb(); 435 436 wait_event(q->mq_freeze_wq, 437 (!q->mq_freeze_depth && 438 (pm || (blk_pm_request_resume(q), 439 !blk_queue_pm_only(q)))) || 440 blk_queue_dying(q)); 441 if (blk_queue_dying(q)) 442 return -ENODEV; 443 } 444 } 445 446 void blk_queue_exit(struct request_queue *q) 447 { 448 percpu_ref_put(&q->q_usage_counter); 449 } 450 451 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 452 { 453 struct request_queue *q = 454 container_of(ref, struct request_queue, q_usage_counter); 455 456 wake_up_all(&q->mq_freeze_wq); 457 } 458 459 static void blk_rq_timed_out_timer(struct timer_list *t) 460 { 461 struct request_queue *q = from_timer(q, t, timeout); 462 463 kblockd_schedule_work(&q->timeout_work); 464 } 465 466 static void blk_timeout_work(struct work_struct *work) 467 { 468 } 469 470 /** 471 * blk_alloc_queue_node - allocate a request queue 472 * @gfp_mask: memory allocation flags 473 * @node_id: NUMA node to allocate memory from 474 */ 475 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 476 { 477 struct request_queue *q; 478 int ret; 479 480 q = kmem_cache_alloc_node(blk_requestq_cachep, 481 gfp_mask | __GFP_ZERO, node_id); 482 if (!q) 483 return NULL; 484 485 q->last_merge = NULL; 486 487 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 488 if (q->id < 0) 489 goto fail_q; 490 491 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 492 if (ret) 493 goto fail_id; 494 495 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 496 if (!q->backing_dev_info) 497 goto fail_split; 498 499 q->stats = blk_alloc_queue_stats(); 500 if (!q->stats) 501 goto fail_stats; 502 503 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES; 504 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 505 q->backing_dev_info->name = "block"; 506 q->node = node_id; 507 508 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 509 laptop_mode_timer_fn, 0); 510 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 511 INIT_WORK(&q->timeout_work, blk_timeout_work); 512 INIT_LIST_HEAD(&q->icq_list); 513 #ifdef CONFIG_BLK_CGROUP 514 INIT_LIST_HEAD(&q->blkg_list); 515 #endif 516 517 kobject_init(&q->kobj, &blk_queue_ktype); 518 519 #ifdef CONFIG_BLK_DEV_IO_TRACE 520 mutex_init(&q->blk_trace_mutex); 521 #endif 522 mutex_init(&q->sysfs_lock); 523 mutex_init(&q->sysfs_dir_lock); 524 spin_lock_init(&q->queue_lock); 525 526 init_waitqueue_head(&q->mq_freeze_wq); 527 mutex_init(&q->mq_freeze_lock); 528 529 /* 530 * Init percpu_ref in atomic mode so that it's faster to shutdown. 531 * See blk_register_queue() for details. 532 */ 533 if (percpu_ref_init(&q->q_usage_counter, 534 blk_queue_usage_counter_release, 535 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 536 goto fail_bdi; 537 538 if (blkcg_init_queue(q)) 539 goto fail_ref; 540 541 return q; 542 543 fail_ref: 544 percpu_ref_exit(&q->q_usage_counter); 545 fail_bdi: 546 blk_free_queue_stats(q->stats); 547 fail_stats: 548 bdi_put(q->backing_dev_info); 549 fail_split: 550 bioset_exit(&q->bio_split); 551 fail_id: 552 ida_simple_remove(&blk_queue_ida, q->id); 553 fail_q: 554 kmem_cache_free(blk_requestq_cachep, q); 555 return NULL; 556 } 557 EXPORT_SYMBOL(blk_alloc_queue_node); 558 559 bool blk_get_queue(struct request_queue *q) 560 { 561 if (likely(!blk_queue_dying(q))) { 562 __blk_get_queue(q); 563 return true; 564 } 565 566 return false; 567 } 568 EXPORT_SYMBOL(blk_get_queue); 569 570 /** 571 * blk_get_request - allocate a request 572 * @q: request queue to allocate a request for 573 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 574 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 575 */ 576 struct request *blk_get_request(struct request_queue *q, unsigned int op, 577 blk_mq_req_flags_t flags) 578 { 579 struct request *req; 580 581 WARN_ON_ONCE(op & REQ_NOWAIT); 582 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 583 584 req = blk_mq_alloc_request(q, op, flags); 585 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 586 q->mq_ops->initialize_rq_fn(req); 587 588 return req; 589 } 590 EXPORT_SYMBOL(blk_get_request); 591 592 void blk_put_request(struct request *req) 593 { 594 blk_mq_free_request(req); 595 } 596 EXPORT_SYMBOL(blk_put_request); 597 598 bool bio_attempt_back_merge(struct request *req, struct bio *bio, 599 unsigned int nr_segs) 600 { 601 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 602 603 if (!ll_back_merge_fn(req, bio, nr_segs)) 604 return false; 605 606 trace_block_bio_backmerge(req->q, req, bio); 607 rq_qos_merge(req->q, req, bio); 608 609 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 610 blk_rq_set_mixed_merge(req); 611 612 req->biotail->bi_next = bio; 613 req->biotail = bio; 614 req->__data_len += bio->bi_iter.bi_size; 615 616 blk_account_io_start(req, false); 617 return true; 618 } 619 620 bool bio_attempt_front_merge(struct request *req, struct bio *bio, 621 unsigned int nr_segs) 622 { 623 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 624 625 if (!ll_front_merge_fn(req, bio, nr_segs)) 626 return false; 627 628 trace_block_bio_frontmerge(req->q, req, bio); 629 rq_qos_merge(req->q, req, bio); 630 631 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 632 blk_rq_set_mixed_merge(req); 633 634 bio->bi_next = req->bio; 635 req->bio = bio; 636 637 req->__sector = bio->bi_iter.bi_sector; 638 req->__data_len += bio->bi_iter.bi_size; 639 640 blk_account_io_start(req, false); 641 return true; 642 } 643 644 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 645 struct bio *bio) 646 { 647 unsigned short segments = blk_rq_nr_discard_segments(req); 648 649 if (segments >= queue_max_discard_segments(q)) 650 goto no_merge; 651 if (blk_rq_sectors(req) + bio_sectors(bio) > 652 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 653 goto no_merge; 654 655 rq_qos_merge(q, req, bio); 656 657 req->biotail->bi_next = bio; 658 req->biotail = bio; 659 req->__data_len += bio->bi_iter.bi_size; 660 req->nr_phys_segments = segments + 1; 661 662 blk_account_io_start(req, false); 663 return true; 664 no_merge: 665 req_set_nomerge(q, req); 666 return false; 667 } 668 669 /** 670 * blk_attempt_plug_merge - try to merge with %current's plugged list 671 * @q: request_queue new bio is being queued at 672 * @bio: new bio being queued 673 * @nr_segs: number of segments in @bio 674 * @same_queue_rq: pointer to &struct request that gets filled in when 675 * another request associated with @q is found on the plug list 676 * (optional, may be %NULL) 677 * 678 * Determine whether @bio being queued on @q can be merged with a request 679 * on %current's plugged list. Returns %true if merge was successful, 680 * otherwise %false. 681 * 682 * Plugging coalesces IOs from the same issuer for the same purpose without 683 * going through @q->queue_lock. As such it's more of an issuing mechanism 684 * than scheduling, and the request, while may have elvpriv data, is not 685 * added on the elevator at this point. In addition, we don't have 686 * reliable access to the elevator outside queue lock. Only check basic 687 * merging parameters without querying the elevator. 688 * 689 * Caller must ensure !blk_queue_nomerges(q) beforehand. 690 */ 691 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 692 unsigned int nr_segs, struct request **same_queue_rq) 693 { 694 struct blk_plug *plug; 695 struct request *rq; 696 struct list_head *plug_list; 697 698 plug = blk_mq_plug(q, bio); 699 if (!plug) 700 return false; 701 702 plug_list = &plug->mq_list; 703 704 list_for_each_entry_reverse(rq, plug_list, queuelist) { 705 bool merged = false; 706 707 if (rq->q == q && same_queue_rq) { 708 /* 709 * Only blk-mq multiple hardware queues case checks the 710 * rq in the same queue, there should be only one such 711 * rq in a queue 712 **/ 713 *same_queue_rq = rq; 714 } 715 716 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 717 continue; 718 719 switch (blk_try_merge(rq, bio)) { 720 case ELEVATOR_BACK_MERGE: 721 merged = bio_attempt_back_merge(rq, bio, nr_segs); 722 break; 723 case ELEVATOR_FRONT_MERGE: 724 merged = bio_attempt_front_merge(rq, bio, nr_segs); 725 break; 726 case ELEVATOR_DISCARD_MERGE: 727 merged = bio_attempt_discard_merge(q, rq, bio); 728 break; 729 default: 730 break; 731 } 732 733 if (merged) 734 return true; 735 } 736 737 return false; 738 } 739 740 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 741 { 742 char b[BDEVNAME_SIZE]; 743 744 printk(KERN_INFO "attempt to access beyond end of device\n"); 745 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 746 bio_devname(bio, b), bio->bi_opf, 747 (unsigned long long)bio_end_sector(bio), 748 (long long)maxsector); 749 } 750 751 #ifdef CONFIG_FAIL_MAKE_REQUEST 752 753 static DECLARE_FAULT_ATTR(fail_make_request); 754 755 static int __init setup_fail_make_request(char *str) 756 { 757 return setup_fault_attr(&fail_make_request, str); 758 } 759 __setup("fail_make_request=", setup_fail_make_request); 760 761 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 762 { 763 return part->make_it_fail && should_fail(&fail_make_request, bytes); 764 } 765 766 static int __init fail_make_request_debugfs(void) 767 { 768 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 769 NULL, &fail_make_request); 770 771 return PTR_ERR_OR_ZERO(dir); 772 } 773 774 late_initcall(fail_make_request_debugfs); 775 776 #else /* CONFIG_FAIL_MAKE_REQUEST */ 777 778 static inline bool should_fail_request(struct hd_struct *part, 779 unsigned int bytes) 780 { 781 return false; 782 } 783 784 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 785 786 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 787 { 788 const int op = bio_op(bio); 789 790 if (part->policy && op_is_write(op)) { 791 char b[BDEVNAME_SIZE]; 792 793 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 794 return false; 795 796 WARN_ONCE(1, 797 "generic_make_request: Trying to write " 798 "to read-only block-device %s (partno %d)\n", 799 bio_devname(bio, b), part->partno); 800 /* Older lvm-tools actually trigger this */ 801 return false; 802 } 803 804 return false; 805 } 806 807 static noinline int should_fail_bio(struct bio *bio) 808 { 809 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 810 return -EIO; 811 return 0; 812 } 813 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 814 815 /* 816 * Check whether this bio extends beyond the end of the device or partition. 817 * This may well happen - the kernel calls bread() without checking the size of 818 * the device, e.g., when mounting a file system. 819 */ 820 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 821 { 822 unsigned int nr_sectors = bio_sectors(bio); 823 824 if (nr_sectors && maxsector && 825 (nr_sectors > maxsector || 826 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 827 handle_bad_sector(bio, maxsector); 828 return -EIO; 829 } 830 return 0; 831 } 832 833 /* 834 * Remap block n of partition p to block n+start(p) of the disk. 835 */ 836 static inline int blk_partition_remap(struct bio *bio) 837 { 838 struct hd_struct *p; 839 int ret = -EIO; 840 841 rcu_read_lock(); 842 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 843 if (unlikely(!p)) 844 goto out; 845 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 846 goto out; 847 if (unlikely(bio_check_ro(bio, p))) 848 goto out; 849 850 /* 851 * Zone reset does not include bi_size so bio_sectors() is always 0. 852 * Include a test for the reset op code and perform the remap if needed. 853 */ 854 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) { 855 if (bio_check_eod(bio, part_nr_sects_read(p))) 856 goto out; 857 bio->bi_iter.bi_sector += p->start_sect; 858 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 859 bio->bi_iter.bi_sector - p->start_sect); 860 } 861 bio->bi_partno = 0; 862 ret = 0; 863 out: 864 rcu_read_unlock(); 865 return ret; 866 } 867 868 static noinline_for_stack bool 869 generic_make_request_checks(struct bio *bio) 870 { 871 struct request_queue *q; 872 int nr_sectors = bio_sectors(bio); 873 blk_status_t status = BLK_STS_IOERR; 874 char b[BDEVNAME_SIZE]; 875 876 might_sleep(); 877 878 q = bio->bi_disk->queue; 879 if (unlikely(!q)) { 880 printk(KERN_ERR 881 "generic_make_request: Trying to access " 882 "nonexistent block-device %s (%Lu)\n", 883 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 884 goto end_io; 885 } 886 887 /* 888 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 889 * if queue is not a request based queue. 890 */ 891 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q)) 892 goto not_supported; 893 894 if (should_fail_bio(bio)) 895 goto end_io; 896 897 if (bio->bi_partno) { 898 if (unlikely(blk_partition_remap(bio))) 899 goto end_io; 900 } else { 901 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 902 goto end_io; 903 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 904 goto end_io; 905 } 906 907 /* 908 * Filter flush bio's early so that make_request based 909 * drivers without flush support don't have to worry 910 * about them. 911 */ 912 if (op_is_flush(bio->bi_opf) && 913 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 914 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 915 if (!nr_sectors) { 916 status = BLK_STS_OK; 917 goto end_io; 918 } 919 } 920 921 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 922 bio->bi_opf &= ~REQ_HIPRI; 923 924 switch (bio_op(bio)) { 925 case REQ_OP_DISCARD: 926 if (!blk_queue_discard(q)) 927 goto not_supported; 928 break; 929 case REQ_OP_SECURE_ERASE: 930 if (!blk_queue_secure_erase(q)) 931 goto not_supported; 932 break; 933 case REQ_OP_WRITE_SAME: 934 if (!q->limits.max_write_same_sectors) 935 goto not_supported; 936 break; 937 case REQ_OP_ZONE_RESET: 938 if (!blk_queue_is_zoned(q)) 939 goto not_supported; 940 break; 941 case REQ_OP_ZONE_RESET_ALL: 942 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q)) 943 goto not_supported; 944 break; 945 case REQ_OP_WRITE_ZEROES: 946 if (!q->limits.max_write_zeroes_sectors) 947 goto not_supported; 948 break; 949 default: 950 break; 951 } 952 953 /* 954 * Various block parts want %current->io_context and lazy ioc 955 * allocation ends up trading a lot of pain for a small amount of 956 * memory. Just allocate it upfront. This may fail and block 957 * layer knows how to live with it. 958 */ 959 create_io_context(GFP_ATOMIC, q->node); 960 961 if (!blkcg_bio_issue_check(q, bio)) 962 return false; 963 964 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 965 trace_block_bio_queue(q, bio); 966 /* Now that enqueuing has been traced, we need to trace 967 * completion as well. 968 */ 969 bio_set_flag(bio, BIO_TRACE_COMPLETION); 970 } 971 return true; 972 973 not_supported: 974 status = BLK_STS_NOTSUPP; 975 end_io: 976 bio->bi_status = status; 977 bio_endio(bio); 978 return false; 979 } 980 981 /** 982 * generic_make_request - hand a buffer to its device driver for I/O 983 * @bio: The bio describing the location in memory and on the device. 984 * 985 * generic_make_request() is used to make I/O requests of block 986 * devices. It is passed a &struct bio, which describes the I/O that needs 987 * to be done. 988 * 989 * generic_make_request() does not return any status. The 990 * success/failure status of the request, along with notification of 991 * completion, is delivered asynchronously through the bio->bi_end_io 992 * function described (one day) else where. 993 * 994 * The caller of generic_make_request must make sure that bi_io_vec 995 * are set to describe the memory buffer, and that bi_dev and bi_sector are 996 * set to describe the device address, and the 997 * bi_end_io and optionally bi_private are set to describe how 998 * completion notification should be signaled. 999 * 1000 * generic_make_request and the drivers it calls may use bi_next if this 1001 * bio happens to be merged with someone else, and may resubmit the bio to 1002 * a lower device by calling into generic_make_request recursively, which 1003 * means the bio should NOT be touched after the call to ->make_request_fn. 1004 */ 1005 blk_qc_t generic_make_request(struct bio *bio) 1006 { 1007 /* 1008 * bio_list_on_stack[0] contains bios submitted by the current 1009 * make_request_fn. 1010 * bio_list_on_stack[1] contains bios that were submitted before 1011 * the current make_request_fn, but that haven't been processed 1012 * yet. 1013 */ 1014 struct bio_list bio_list_on_stack[2]; 1015 blk_qc_t ret = BLK_QC_T_NONE; 1016 1017 if (!generic_make_request_checks(bio)) 1018 goto out; 1019 1020 /* 1021 * We only want one ->make_request_fn to be active at a time, else 1022 * stack usage with stacked devices could be a problem. So use 1023 * current->bio_list to keep a list of requests submited by a 1024 * make_request_fn function. current->bio_list is also used as a 1025 * flag to say if generic_make_request is currently active in this 1026 * task or not. If it is NULL, then no make_request is active. If 1027 * it is non-NULL, then a make_request is active, and new requests 1028 * should be added at the tail 1029 */ 1030 if (current->bio_list) { 1031 bio_list_add(¤t->bio_list[0], bio); 1032 goto out; 1033 } 1034 1035 /* following loop may be a bit non-obvious, and so deserves some 1036 * explanation. 1037 * Before entering the loop, bio->bi_next is NULL (as all callers 1038 * ensure that) so we have a list with a single bio. 1039 * We pretend that we have just taken it off a longer list, so 1040 * we assign bio_list to a pointer to the bio_list_on_stack, 1041 * thus initialising the bio_list of new bios to be 1042 * added. ->make_request() may indeed add some more bios 1043 * through a recursive call to generic_make_request. If it 1044 * did, we find a non-NULL value in bio_list and re-enter the loop 1045 * from the top. In this case we really did just take the bio 1046 * of the top of the list (no pretending) and so remove it from 1047 * bio_list, and call into ->make_request() again. 1048 */ 1049 BUG_ON(bio->bi_next); 1050 bio_list_init(&bio_list_on_stack[0]); 1051 current->bio_list = bio_list_on_stack; 1052 do { 1053 struct request_queue *q = bio->bi_disk->queue; 1054 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ? 1055 BLK_MQ_REQ_NOWAIT : 0; 1056 1057 if (likely(blk_queue_enter(q, flags) == 0)) { 1058 struct bio_list lower, same; 1059 1060 /* Create a fresh bio_list for all subordinate requests */ 1061 bio_list_on_stack[1] = bio_list_on_stack[0]; 1062 bio_list_init(&bio_list_on_stack[0]); 1063 ret = q->make_request_fn(q, bio); 1064 1065 blk_queue_exit(q); 1066 1067 /* sort new bios into those for a lower level 1068 * and those for the same level 1069 */ 1070 bio_list_init(&lower); 1071 bio_list_init(&same); 1072 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 1073 if (q == bio->bi_disk->queue) 1074 bio_list_add(&same, bio); 1075 else 1076 bio_list_add(&lower, bio); 1077 /* now assemble so we handle the lowest level first */ 1078 bio_list_merge(&bio_list_on_stack[0], &lower); 1079 bio_list_merge(&bio_list_on_stack[0], &same); 1080 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 1081 } else { 1082 if (unlikely(!blk_queue_dying(q) && 1083 (bio->bi_opf & REQ_NOWAIT))) 1084 bio_wouldblock_error(bio); 1085 else 1086 bio_io_error(bio); 1087 } 1088 bio = bio_list_pop(&bio_list_on_stack[0]); 1089 } while (bio); 1090 current->bio_list = NULL; /* deactivate */ 1091 1092 out: 1093 return ret; 1094 } 1095 EXPORT_SYMBOL(generic_make_request); 1096 1097 /** 1098 * direct_make_request - hand a buffer directly to its device driver for I/O 1099 * @bio: The bio describing the location in memory and on the device. 1100 * 1101 * This function behaves like generic_make_request(), but does not protect 1102 * against recursion. Must only be used if the called driver is known 1103 * to not call generic_make_request (or direct_make_request) again from 1104 * its make_request function. (Calling direct_make_request again from 1105 * a workqueue is perfectly fine as that doesn't recurse). 1106 */ 1107 blk_qc_t direct_make_request(struct bio *bio) 1108 { 1109 struct request_queue *q = bio->bi_disk->queue; 1110 bool nowait = bio->bi_opf & REQ_NOWAIT; 1111 blk_qc_t ret; 1112 1113 if (!generic_make_request_checks(bio)) 1114 return BLK_QC_T_NONE; 1115 1116 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 1117 if (nowait && !blk_queue_dying(q)) 1118 bio->bi_status = BLK_STS_AGAIN; 1119 else 1120 bio->bi_status = BLK_STS_IOERR; 1121 bio_endio(bio); 1122 return BLK_QC_T_NONE; 1123 } 1124 1125 ret = q->make_request_fn(q, bio); 1126 blk_queue_exit(q); 1127 return ret; 1128 } 1129 EXPORT_SYMBOL_GPL(direct_make_request); 1130 1131 /** 1132 * submit_bio - submit a bio to the block device layer for I/O 1133 * @bio: The &struct bio which describes the I/O 1134 * 1135 * submit_bio() is very similar in purpose to generic_make_request(), and 1136 * uses that function to do most of the work. Both are fairly rough 1137 * interfaces; @bio must be presetup and ready for I/O. 1138 * 1139 */ 1140 blk_qc_t submit_bio(struct bio *bio) 1141 { 1142 bool workingset_read = false; 1143 unsigned long pflags; 1144 blk_qc_t ret; 1145 1146 if (blkcg_punt_bio_submit(bio)) 1147 return BLK_QC_T_NONE; 1148 1149 /* 1150 * If it's a regular read/write or a barrier with data attached, 1151 * go through the normal accounting stuff before submission. 1152 */ 1153 if (bio_has_data(bio)) { 1154 unsigned int count; 1155 1156 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1157 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 1158 else 1159 count = bio_sectors(bio); 1160 1161 if (op_is_write(bio_op(bio))) { 1162 count_vm_events(PGPGOUT, count); 1163 } else { 1164 if (bio_flagged(bio, BIO_WORKINGSET)) 1165 workingset_read = true; 1166 task_io_account_read(bio->bi_iter.bi_size); 1167 count_vm_events(PGPGIN, count); 1168 } 1169 1170 if (unlikely(block_dump)) { 1171 char b[BDEVNAME_SIZE]; 1172 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1173 current->comm, task_pid_nr(current), 1174 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 1175 (unsigned long long)bio->bi_iter.bi_sector, 1176 bio_devname(bio, b), count); 1177 } 1178 } 1179 1180 /* 1181 * If we're reading data that is part of the userspace 1182 * workingset, count submission time as memory stall. When the 1183 * device is congested, or the submitting cgroup IO-throttled, 1184 * submission can be a significant part of overall IO time. 1185 */ 1186 if (workingset_read) 1187 psi_memstall_enter(&pflags); 1188 1189 ret = generic_make_request(bio); 1190 1191 if (workingset_read) 1192 psi_memstall_leave(&pflags); 1193 1194 return ret; 1195 } 1196 EXPORT_SYMBOL(submit_bio); 1197 1198 /** 1199 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1200 * for new the queue limits 1201 * @q: the queue 1202 * @rq: the request being checked 1203 * 1204 * Description: 1205 * @rq may have been made based on weaker limitations of upper-level queues 1206 * in request stacking drivers, and it may violate the limitation of @q. 1207 * Since the block layer and the underlying device driver trust @rq 1208 * after it is inserted to @q, it should be checked against @q before 1209 * the insertion using this generic function. 1210 * 1211 * Request stacking drivers like request-based dm may change the queue 1212 * limits when retrying requests on other queues. Those requests need 1213 * to be checked against the new queue limits again during dispatch. 1214 */ 1215 static int blk_cloned_rq_check_limits(struct request_queue *q, 1216 struct request *rq) 1217 { 1218 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 1219 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 1220 __func__, blk_rq_sectors(rq), 1221 blk_queue_get_max_sectors(q, req_op(rq))); 1222 return -EIO; 1223 } 1224 1225 /* 1226 * queue's settings related to segment counting like q->bounce_pfn 1227 * may differ from that of other stacking queues. 1228 * Recalculate it to check the request correctly on this queue's 1229 * limitation. 1230 */ 1231 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 1232 if (rq->nr_phys_segments > queue_max_segments(q)) { 1233 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 1234 __func__, rq->nr_phys_segments, queue_max_segments(q)); 1235 return -EIO; 1236 } 1237 1238 return 0; 1239 } 1240 1241 /** 1242 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1243 * @q: the queue to submit the request 1244 * @rq: the request being queued 1245 */ 1246 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1247 { 1248 if (blk_cloned_rq_check_limits(q, rq)) 1249 return BLK_STS_IOERR; 1250 1251 if (rq->rq_disk && 1252 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1253 return BLK_STS_IOERR; 1254 1255 if (blk_queue_io_stat(q)) 1256 blk_account_io_start(rq, true); 1257 1258 /* 1259 * Since we have a scheduler attached on the top device, 1260 * bypass a potential scheduler on the bottom device for 1261 * insert. 1262 */ 1263 return blk_mq_request_issue_directly(rq, true); 1264 } 1265 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1266 1267 /** 1268 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1269 * @rq: request to examine 1270 * 1271 * Description: 1272 * A request could be merge of IOs which require different failure 1273 * handling. This function determines the number of bytes which 1274 * can be failed from the beginning of the request without 1275 * crossing into area which need to be retried further. 1276 * 1277 * Return: 1278 * The number of bytes to fail. 1279 */ 1280 unsigned int blk_rq_err_bytes(const struct request *rq) 1281 { 1282 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1283 unsigned int bytes = 0; 1284 struct bio *bio; 1285 1286 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1287 return blk_rq_bytes(rq); 1288 1289 /* 1290 * Currently the only 'mixing' which can happen is between 1291 * different fastfail types. We can safely fail portions 1292 * which have all the failfast bits that the first one has - 1293 * the ones which are at least as eager to fail as the first 1294 * one. 1295 */ 1296 for (bio = rq->bio; bio; bio = bio->bi_next) { 1297 if ((bio->bi_opf & ff) != ff) 1298 break; 1299 bytes += bio->bi_iter.bi_size; 1300 } 1301 1302 /* this could lead to infinite loop */ 1303 BUG_ON(blk_rq_bytes(rq) && !bytes); 1304 return bytes; 1305 } 1306 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1307 1308 void blk_account_io_completion(struct request *req, unsigned int bytes) 1309 { 1310 if (blk_do_io_stat(req)) { 1311 const int sgrp = op_stat_group(req_op(req)); 1312 struct hd_struct *part; 1313 1314 part_stat_lock(); 1315 part = req->part; 1316 part_stat_add(part, sectors[sgrp], bytes >> 9); 1317 part_stat_unlock(); 1318 } 1319 } 1320 1321 void blk_account_io_done(struct request *req, u64 now) 1322 { 1323 /* 1324 * Account IO completion. flush_rq isn't accounted as a 1325 * normal IO on queueing nor completion. Accounting the 1326 * containing request is enough. 1327 */ 1328 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 1329 const int sgrp = op_stat_group(req_op(req)); 1330 struct hd_struct *part; 1331 1332 part_stat_lock(); 1333 part = req->part; 1334 1335 update_io_ticks(part, jiffies); 1336 part_stat_inc(part, ios[sgrp]); 1337 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns); 1338 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns)); 1339 part_dec_in_flight(req->q, part, rq_data_dir(req)); 1340 1341 hd_struct_put(part); 1342 part_stat_unlock(); 1343 } 1344 } 1345 1346 void blk_account_io_start(struct request *rq, bool new_io) 1347 { 1348 struct hd_struct *part; 1349 int rw = rq_data_dir(rq); 1350 1351 if (!blk_do_io_stat(rq)) 1352 return; 1353 1354 part_stat_lock(); 1355 1356 if (!new_io) { 1357 part = rq->part; 1358 part_stat_inc(part, merges[rw]); 1359 } else { 1360 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 1361 if (!hd_struct_try_get(part)) { 1362 /* 1363 * The partition is already being removed, 1364 * the request will be accounted on the disk only 1365 * 1366 * We take a reference on disk->part0 although that 1367 * partition will never be deleted, so we can treat 1368 * it as any other partition. 1369 */ 1370 part = &rq->rq_disk->part0; 1371 hd_struct_get(part); 1372 } 1373 part_inc_in_flight(rq->q, part, rw); 1374 rq->part = part; 1375 } 1376 1377 update_io_ticks(part, jiffies); 1378 1379 part_stat_unlock(); 1380 } 1381 1382 /* 1383 * Steal bios from a request and add them to a bio list. 1384 * The request must not have been partially completed before. 1385 */ 1386 void blk_steal_bios(struct bio_list *list, struct request *rq) 1387 { 1388 if (rq->bio) { 1389 if (list->tail) 1390 list->tail->bi_next = rq->bio; 1391 else 1392 list->head = rq->bio; 1393 list->tail = rq->biotail; 1394 1395 rq->bio = NULL; 1396 rq->biotail = NULL; 1397 } 1398 1399 rq->__data_len = 0; 1400 } 1401 EXPORT_SYMBOL_GPL(blk_steal_bios); 1402 1403 /** 1404 * blk_update_request - Special helper function for request stacking drivers 1405 * @req: the request being processed 1406 * @error: block status code 1407 * @nr_bytes: number of bytes to complete @req 1408 * 1409 * Description: 1410 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1411 * the request structure even if @req doesn't have leftover. 1412 * If @req has leftover, sets it up for the next range of segments. 1413 * 1414 * This special helper function is only for request stacking drivers 1415 * (e.g. request-based dm) so that they can handle partial completion. 1416 * Actual device drivers should use blk_mq_end_request instead. 1417 * 1418 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1419 * %false return from this function. 1420 * 1421 * Note: 1422 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both 1423 * blk_rq_bytes() and in blk_update_request(). 1424 * 1425 * Return: 1426 * %false - this request doesn't have any more data 1427 * %true - this request has more data 1428 **/ 1429 bool blk_update_request(struct request *req, blk_status_t error, 1430 unsigned int nr_bytes) 1431 { 1432 int total_bytes; 1433 1434 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 1435 1436 if (!req->bio) 1437 return false; 1438 1439 if (unlikely(error && !blk_rq_is_passthrough(req) && 1440 !(req->rq_flags & RQF_QUIET))) 1441 print_req_error(req, error, __func__); 1442 1443 blk_account_io_completion(req, nr_bytes); 1444 1445 total_bytes = 0; 1446 while (req->bio) { 1447 struct bio *bio = req->bio; 1448 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 1449 1450 if (bio_bytes == bio->bi_iter.bi_size) 1451 req->bio = bio->bi_next; 1452 1453 /* Completion has already been traced */ 1454 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1455 req_bio_endio(req, bio, bio_bytes, error); 1456 1457 total_bytes += bio_bytes; 1458 nr_bytes -= bio_bytes; 1459 1460 if (!nr_bytes) 1461 break; 1462 } 1463 1464 /* 1465 * completely done 1466 */ 1467 if (!req->bio) { 1468 /* 1469 * Reset counters so that the request stacking driver 1470 * can find how many bytes remain in the request 1471 * later. 1472 */ 1473 req->__data_len = 0; 1474 return false; 1475 } 1476 1477 req->__data_len -= total_bytes; 1478 1479 /* update sector only for requests with clear definition of sector */ 1480 if (!blk_rq_is_passthrough(req)) 1481 req->__sector += total_bytes >> 9; 1482 1483 /* mixed attributes always follow the first bio */ 1484 if (req->rq_flags & RQF_MIXED_MERGE) { 1485 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1486 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1487 } 1488 1489 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1490 /* 1491 * If total number of sectors is less than the first segment 1492 * size, something has gone terribly wrong. 1493 */ 1494 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1495 blk_dump_rq_flags(req, "request botched"); 1496 req->__data_len = blk_rq_cur_bytes(req); 1497 } 1498 1499 /* recalculate the number of segments */ 1500 req->nr_phys_segments = blk_recalc_rq_segments(req); 1501 } 1502 1503 return true; 1504 } 1505 EXPORT_SYMBOL_GPL(blk_update_request); 1506 1507 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1508 /** 1509 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1510 * @rq: the request to be flushed 1511 * 1512 * Description: 1513 * Flush all pages in @rq. 1514 */ 1515 void rq_flush_dcache_pages(struct request *rq) 1516 { 1517 struct req_iterator iter; 1518 struct bio_vec bvec; 1519 1520 rq_for_each_segment(bvec, rq, iter) 1521 flush_dcache_page(bvec.bv_page); 1522 } 1523 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1524 #endif 1525 1526 /** 1527 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1528 * @q : the queue of the device being checked 1529 * 1530 * Description: 1531 * Check if underlying low-level drivers of a device are busy. 1532 * If the drivers want to export their busy state, they must set own 1533 * exporting function using blk_queue_lld_busy() first. 1534 * 1535 * Basically, this function is used only by request stacking drivers 1536 * to stop dispatching requests to underlying devices when underlying 1537 * devices are busy. This behavior helps more I/O merging on the queue 1538 * of the request stacking driver and prevents I/O throughput regression 1539 * on burst I/O load. 1540 * 1541 * Return: 1542 * 0 - Not busy (The request stacking driver should dispatch request) 1543 * 1 - Busy (The request stacking driver should stop dispatching request) 1544 */ 1545 int blk_lld_busy(struct request_queue *q) 1546 { 1547 if (queue_is_mq(q) && q->mq_ops->busy) 1548 return q->mq_ops->busy(q); 1549 1550 return 0; 1551 } 1552 EXPORT_SYMBOL_GPL(blk_lld_busy); 1553 1554 /** 1555 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1556 * @rq: the clone request to be cleaned up 1557 * 1558 * Description: 1559 * Free all bios in @rq for a cloned request. 1560 */ 1561 void blk_rq_unprep_clone(struct request *rq) 1562 { 1563 struct bio *bio; 1564 1565 while ((bio = rq->bio) != NULL) { 1566 rq->bio = bio->bi_next; 1567 1568 bio_put(bio); 1569 } 1570 } 1571 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1572 1573 /* 1574 * Copy attributes of the original request to the clone request. 1575 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 1576 */ 1577 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 1578 { 1579 dst->__sector = blk_rq_pos(src); 1580 dst->__data_len = blk_rq_bytes(src); 1581 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1582 dst->rq_flags |= RQF_SPECIAL_PAYLOAD; 1583 dst->special_vec = src->special_vec; 1584 } 1585 dst->nr_phys_segments = src->nr_phys_segments; 1586 dst->ioprio = src->ioprio; 1587 dst->extra_len = src->extra_len; 1588 } 1589 1590 /** 1591 * blk_rq_prep_clone - Helper function to setup clone request 1592 * @rq: the request to be setup 1593 * @rq_src: original request to be cloned 1594 * @bs: bio_set that bios for clone are allocated from 1595 * @gfp_mask: memory allocation mask for bio 1596 * @bio_ctr: setup function to be called for each clone bio. 1597 * Returns %0 for success, non %0 for failure. 1598 * @data: private data to be passed to @bio_ctr 1599 * 1600 * Description: 1601 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1602 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 1603 * are not copied, and copying such parts is the caller's responsibility. 1604 * Also, pages which the original bios are pointing to are not copied 1605 * and the cloned bios just point same pages. 1606 * So cloned bios must be completed before original bios, which means 1607 * the caller must complete @rq before @rq_src. 1608 */ 1609 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1610 struct bio_set *bs, gfp_t gfp_mask, 1611 int (*bio_ctr)(struct bio *, struct bio *, void *), 1612 void *data) 1613 { 1614 struct bio *bio, *bio_src; 1615 1616 if (!bs) 1617 bs = &fs_bio_set; 1618 1619 __rq_for_each_bio(bio_src, rq_src) { 1620 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1621 if (!bio) 1622 goto free_and_out; 1623 1624 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1625 goto free_and_out; 1626 1627 if (rq->bio) { 1628 rq->biotail->bi_next = bio; 1629 rq->biotail = bio; 1630 } else 1631 rq->bio = rq->biotail = bio; 1632 } 1633 1634 __blk_rq_prep_clone(rq, rq_src); 1635 1636 return 0; 1637 1638 free_and_out: 1639 if (bio) 1640 bio_put(bio); 1641 blk_rq_unprep_clone(rq); 1642 1643 return -ENOMEM; 1644 } 1645 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1646 1647 int kblockd_schedule_work(struct work_struct *work) 1648 { 1649 return queue_work(kblockd_workqueue, work); 1650 } 1651 EXPORT_SYMBOL(kblockd_schedule_work); 1652 1653 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 1654 { 1655 return queue_work_on(cpu, kblockd_workqueue, work); 1656 } 1657 EXPORT_SYMBOL(kblockd_schedule_work_on); 1658 1659 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1660 unsigned long delay) 1661 { 1662 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1663 } 1664 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1665 1666 /** 1667 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1668 * @plug: The &struct blk_plug that needs to be initialized 1669 * 1670 * Description: 1671 * blk_start_plug() indicates to the block layer an intent by the caller 1672 * to submit multiple I/O requests in a batch. The block layer may use 1673 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1674 * is called. However, the block layer may choose to submit requests 1675 * before a call to blk_finish_plug() if the number of queued I/Os 1676 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1677 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1678 * the task schedules (see below). 1679 * 1680 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1681 * pending I/O should the task end up blocking between blk_start_plug() and 1682 * blk_finish_plug(). This is important from a performance perspective, but 1683 * also ensures that we don't deadlock. For instance, if the task is blocking 1684 * for a memory allocation, memory reclaim could end up wanting to free a 1685 * page belonging to that request that is currently residing in our private 1686 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1687 * this kind of deadlock. 1688 */ 1689 void blk_start_plug(struct blk_plug *plug) 1690 { 1691 struct task_struct *tsk = current; 1692 1693 /* 1694 * If this is a nested plug, don't actually assign it. 1695 */ 1696 if (tsk->plug) 1697 return; 1698 1699 INIT_LIST_HEAD(&plug->mq_list); 1700 INIT_LIST_HEAD(&plug->cb_list); 1701 plug->rq_count = 0; 1702 plug->multiple_queues = false; 1703 1704 /* 1705 * Store ordering should not be needed here, since a potential 1706 * preempt will imply a full memory barrier 1707 */ 1708 tsk->plug = plug; 1709 } 1710 EXPORT_SYMBOL(blk_start_plug); 1711 1712 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1713 { 1714 LIST_HEAD(callbacks); 1715 1716 while (!list_empty(&plug->cb_list)) { 1717 list_splice_init(&plug->cb_list, &callbacks); 1718 1719 while (!list_empty(&callbacks)) { 1720 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1721 struct blk_plug_cb, 1722 list); 1723 list_del(&cb->list); 1724 cb->callback(cb, from_schedule); 1725 } 1726 } 1727 } 1728 1729 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1730 int size) 1731 { 1732 struct blk_plug *plug = current->plug; 1733 struct blk_plug_cb *cb; 1734 1735 if (!plug) 1736 return NULL; 1737 1738 list_for_each_entry(cb, &plug->cb_list, list) 1739 if (cb->callback == unplug && cb->data == data) 1740 return cb; 1741 1742 /* Not currently on the callback list */ 1743 BUG_ON(size < sizeof(*cb)); 1744 cb = kzalloc(size, GFP_ATOMIC); 1745 if (cb) { 1746 cb->data = data; 1747 cb->callback = unplug; 1748 list_add(&cb->list, &plug->cb_list); 1749 } 1750 return cb; 1751 } 1752 EXPORT_SYMBOL(blk_check_plugged); 1753 1754 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1755 { 1756 flush_plug_callbacks(plug, from_schedule); 1757 1758 if (!list_empty(&plug->mq_list)) 1759 blk_mq_flush_plug_list(plug, from_schedule); 1760 } 1761 1762 /** 1763 * blk_finish_plug - mark the end of a batch of submitted I/O 1764 * @plug: The &struct blk_plug passed to blk_start_plug() 1765 * 1766 * Description: 1767 * Indicate that a batch of I/O submissions is complete. This function 1768 * must be paired with an initial call to blk_start_plug(). The intent 1769 * is to allow the block layer to optimize I/O submission. See the 1770 * documentation for blk_start_plug() for more information. 1771 */ 1772 void blk_finish_plug(struct blk_plug *plug) 1773 { 1774 if (plug != current->plug) 1775 return; 1776 blk_flush_plug_list(plug, false); 1777 1778 current->plug = NULL; 1779 } 1780 EXPORT_SYMBOL(blk_finish_plug); 1781 1782 int __init blk_dev_init(void) 1783 { 1784 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1785 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1786 FIELD_SIZEOF(struct request, cmd_flags)); 1787 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1788 FIELD_SIZEOF(struct bio, bi_opf)); 1789 1790 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1791 kblockd_workqueue = alloc_workqueue("kblockd", 1792 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1793 if (!kblockd_workqueue) 1794 panic("Failed to create kblockd\n"); 1795 1796 blk_requestq_cachep = kmem_cache_create("request_queue", 1797 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1798 1799 #ifdef CONFIG_DEBUG_FS 1800 blk_debugfs_root = debugfs_create_dir("block", NULL); 1801 #endif 1802 1803 return 0; 1804 } 1805