1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/bio.h> 19 #include <linux/blkdev.h> 20 #include <linux/blk-mq.h> 21 #include <linux/highmem.h> 22 #include <linux/mm.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/string.h> 25 #include <linux/init.h> 26 #include <linux/completion.h> 27 #include <linux/slab.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/fault-inject.h> 32 #include <linux/list_sort.h> 33 #include <linux/delay.h> 34 #include <linux/ratelimit.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/blk-cgroup.h> 37 #include <linux/debugfs.h> 38 #include <linux/bpf.h> 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/block.h> 42 43 #include "blk.h" 44 #include "blk-mq.h" 45 #include "blk-mq-sched.h" 46 #include "blk-pm.h" 47 #include "blk-rq-qos.h" 48 49 #ifdef CONFIG_DEBUG_FS 50 struct dentry *blk_debugfs_root; 51 #endif 52 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 58 59 DEFINE_IDA(blk_queue_ida); 60 61 /* 62 * For queue allocation 63 */ 64 struct kmem_cache *blk_requestq_cachep; 65 66 /* 67 * Controlling structure to kblockd 68 */ 69 static struct workqueue_struct *kblockd_workqueue; 70 71 /** 72 * blk_queue_flag_set - atomically set a queue flag 73 * @flag: flag to be set 74 * @q: request queue 75 */ 76 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 77 { 78 set_bit(flag, &q->queue_flags); 79 } 80 EXPORT_SYMBOL(blk_queue_flag_set); 81 82 /** 83 * blk_queue_flag_clear - atomically clear a queue flag 84 * @flag: flag to be cleared 85 * @q: request queue 86 */ 87 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 88 { 89 clear_bit(flag, &q->queue_flags); 90 } 91 EXPORT_SYMBOL(blk_queue_flag_clear); 92 93 /** 94 * blk_queue_flag_test_and_set - atomically test and set a queue flag 95 * @flag: flag to be set 96 * @q: request queue 97 * 98 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 99 * the flag was already set. 100 */ 101 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 102 { 103 return test_and_set_bit(flag, &q->queue_flags); 104 } 105 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 106 107 void blk_rq_init(struct request_queue *q, struct request *rq) 108 { 109 memset(rq, 0, sizeof(*rq)); 110 111 INIT_LIST_HEAD(&rq->queuelist); 112 rq->q = q; 113 rq->__sector = (sector_t) -1; 114 INIT_HLIST_NODE(&rq->hash); 115 RB_CLEAR_NODE(&rq->rb_node); 116 rq->tag = -1; 117 rq->internal_tag = -1; 118 rq->start_time_ns = ktime_get_ns(); 119 rq->part = NULL; 120 } 121 EXPORT_SYMBOL(blk_rq_init); 122 123 static const struct { 124 int errno; 125 const char *name; 126 } blk_errors[] = { 127 [BLK_STS_OK] = { 0, "" }, 128 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 129 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 130 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 131 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 132 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 133 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 134 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 135 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 136 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 137 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 138 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 139 140 /* device mapper special case, should not leak out: */ 141 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 142 143 /* everything else not covered above: */ 144 [BLK_STS_IOERR] = { -EIO, "I/O" }, 145 }; 146 147 blk_status_t errno_to_blk_status(int errno) 148 { 149 int i; 150 151 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 152 if (blk_errors[i].errno == errno) 153 return (__force blk_status_t)i; 154 } 155 156 return BLK_STS_IOERR; 157 } 158 EXPORT_SYMBOL_GPL(errno_to_blk_status); 159 160 int blk_status_to_errno(blk_status_t status) 161 { 162 int idx = (__force int)status; 163 164 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 165 return -EIO; 166 return blk_errors[idx].errno; 167 } 168 EXPORT_SYMBOL_GPL(blk_status_to_errno); 169 170 static void print_req_error(struct request *req, blk_status_t status) 171 { 172 int idx = (__force int)status; 173 174 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 175 return; 176 177 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n", 178 __func__, blk_errors[idx].name, 179 req->rq_disk ? req->rq_disk->disk_name : "?", 180 (unsigned long long)blk_rq_pos(req), 181 req->cmd_flags); 182 } 183 184 static void req_bio_endio(struct request *rq, struct bio *bio, 185 unsigned int nbytes, blk_status_t error) 186 { 187 if (error) 188 bio->bi_status = error; 189 190 if (unlikely(rq->rq_flags & RQF_QUIET)) 191 bio_set_flag(bio, BIO_QUIET); 192 193 bio_advance(bio, nbytes); 194 195 /* don't actually finish bio if it's part of flush sequence */ 196 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 197 bio_endio(bio); 198 } 199 200 void blk_dump_rq_flags(struct request *rq, char *msg) 201 { 202 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 203 rq->rq_disk ? rq->rq_disk->disk_name : "?", 204 (unsigned long long) rq->cmd_flags); 205 206 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 207 (unsigned long long)blk_rq_pos(rq), 208 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 209 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 210 rq->bio, rq->biotail, blk_rq_bytes(rq)); 211 } 212 EXPORT_SYMBOL(blk_dump_rq_flags); 213 214 /** 215 * blk_sync_queue - cancel any pending callbacks on a queue 216 * @q: the queue 217 * 218 * Description: 219 * The block layer may perform asynchronous callback activity 220 * on a queue, such as calling the unplug function after a timeout. 221 * A block device may call blk_sync_queue to ensure that any 222 * such activity is cancelled, thus allowing it to release resources 223 * that the callbacks might use. The caller must already have made sure 224 * that its ->make_request_fn will not re-add plugging prior to calling 225 * this function. 226 * 227 * This function does not cancel any asynchronous activity arising 228 * out of elevator or throttling code. That would require elevator_exit() 229 * and blkcg_exit_queue() to be called with queue lock initialized. 230 * 231 */ 232 void blk_sync_queue(struct request_queue *q) 233 { 234 del_timer_sync(&q->timeout); 235 cancel_work_sync(&q->timeout_work); 236 } 237 EXPORT_SYMBOL(blk_sync_queue); 238 239 /** 240 * blk_set_pm_only - increment pm_only counter 241 * @q: request queue pointer 242 */ 243 void blk_set_pm_only(struct request_queue *q) 244 { 245 atomic_inc(&q->pm_only); 246 } 247 EXPORT_SYMBOL_GPL(blk_set_pm_only); 248 249 void blk_clear_pm_only(struct request_queue *q) 250 { 251 int pm_only; 252 253 pm_only = atomic_dec_return(&q->pm_only); 254 WARN_ON_ONCE(pm_only < 0); 255 if (pm_only == 0) 256 wake_up_all(&q->mq_freeze_wq); 257 } 258 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 259 260 void blk_put_queue(struct request_queue *q) 261 { 262 kobject_put(&q->kobj); 263 } 264 EXPORT_SYMBOL(blk_put_queue); 265 266 void blk_set_queue_dying(struct request_queue *q) 267 { 268 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 269 270 /* 271 * When queue DYING flag is set, we need to block new req 272 * entering queue, so we call blk_freeze_queue_start() to 273 * prevent I/O from crossing blk_queue_enter(). 274 */ 275 blk_freeze_queue_start(q); 276 277 if (queue_is_mq(q)) 278 blk_mq_wake_waiters(q); 279 280 /* Make blk_queue_enter() reexamine the DYING flag. */ 281 wake_up_all(&q->mq_freeze_wq); 282 } 283 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 284 285 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */ 286 void blk_exit_queue(struct request_queue *q) 287 { 288 /* 289 * Since the I/O scheduler exit code may access cgroup information, 290 * perform I/O scheduler exit before disassociating from the block 291 * cgroup controller. 292 */ 293 if (q->elevator) { 294 ioc_clear_queue(q); 295 elevator_exit(q, q->elevator); 296 q->elevator = NULL; 297 } 298 299 /* 300 * Remove all references to @q from the block cgroup controller before 301 * restoring @q->queue_lock to avoid that restoring this pointer causes 302 * e.g. blkcg_print_blkgs() to crash. 303 */ 304 blkcg_exit_queue(q); 305 306 /* 307 * Since the cgroup code may dereference the @q->backing_dev_info 308 * pointer, only decrease its reference count after having removed the 309 * association with the block cgroup controller. 310 */ 311 bdi_put(q->backing_dev_info); 312 } 313 314 /** 315 * blk_cleanup_queue - shutdown a request queue 316 * @q: request queue to shutdown 317 * 318 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 319 * put it. All future requests will be failed immediately with -ENODEV. 320 */ 321 void blk_cleanup_queue(struct request_queue *q) 322 { 323 /* mark @q DYING, no new request or merges will be allowed afterwards */ 324 mutex_lock(&q->sysfs_lock); 325 blk_set_queue_dying(q); 326 327 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 328 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 329 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 330 mutex_unlock(&q->sysfs_lock); 331 332 /* 333 * Drain all requests queued before DYING marking. Set DEAD flag to 334 * prevent that q->request_fn() gets invoked after draining finished. 335 */ 336 blk_freeze_queue(q); 337 338 rq_qos_exit(q); 339 340 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 341 342 /* for synchronous bio-based driver finish in-flight integrity i/o */ 343 blk_flush_integrity(); 344 345 /* @q won't process any more request, flush async actions */ 346 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 347 blk_sync_queue(q); 348 349 /* 350 * I/O scheduler exit is only safe after the sysfs scheduler attribute 351 * has been removed. 352 */ 353 WARN_ON_ONCE(q->kobj.state_in_sysfs); 354 355 blk_exit_queue(q); 356 357 if (queue_is_mq(q)) 358 blk_mq_exit_queue(q); 359 360 percpu_ref_exit(&q->q_usage_counter); 361 362 /* @q is and will stay empty, shutdown and put */ 363 blk_put_queue(q); 364 } 365 EXPORT_SYMBOL(blk_cleanup_queue); 366 367 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 368 { 369 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 370 } 371 EXPORT_SYMBOL(blk_alloc_queue); 372 373 /** 374 * blk_queue_enter() - try to increase q->q_usage_counter 375 * @q: request queue pointer 376 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 377 */ 378 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 379 { 380 const bool pm = flags & BLK_MQ_REQ_PREEMPT; 381 382 while (true) { 383 bool success = false; 384 385 rcu_read_lock(); 386 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 387 /* 388 * The code that increments the pm_only counter is 389 * responsible for ensuring that that counter is 390 * globally visible before the queue is unfrozen. 391 */ 392 if (pm || !blk_queue_pm_only(q)) { 393 success = true; 394 } else { 395 percpu_ref_put(&q->q_usage_counter); 396 } 397 } 398 rcu_read_unlock(); 399 400 if (success) 401 return 0; 402 403 if (flags & BLK_MQ_REQ_NOWAIT) 404 return -EBUSY; 405 406 /* 407 * read pair of barrier in blk_freeze_queue_start(), 408 * we need to order reading __PERCPU_REF_DEAD flag of 409 * .q_usage_counter and reading .mq_freeze_depth or 410 * queue dying flag, otherwise the following wait may 411 * never return if the two reads are reordered. 412 */ 413 smp_rmb(); 414 415 wait_event(q->mq_freeze_wq, 416 (!q->mq_freeze_depth && 417 (pm || (blk_pm_request_resume(q), 418 !blk_queue_pm_only(q)))) || 419 blk_queue_dying(q)); 420 if (blk_queue_dying(q)) 421 return -ENODEV; 422 } 423 } 424 425 void blk_queue_exit(struct request_queue *q) 426 { 427 percpu_ref_put(&q->q_usage_counter); 428 } 429 430 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 431 { 432 struct request_queue *q = 433 container_of(ref, struct request_queue, q_usage_counter); 434 435 wake_up_all(&q->mq_freeze_wq); 436 } 437 438 static void blk_rq_timed_out_timer(struct timer_list *t) 439 { 440 struct request_queue *q = from_timer(q, t, timeout); 441 442 kblockd_schedule_work(&q->timeout_work); 443 } 444 445 static void blk_timeout_work(struct work_struct *work) 446 { 447 } 448 449 /** 450 * blk_alloc_queue_node - allocate a request queue 451 * @gfp_mask: memory allocation flags 452 * @node_id: NUMA node to allocate memory from 453 */ 454 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 455 { 456 struct request_queue *q; 457 int ret; 458 459 q = kmem_cache_alloc_node(blk_requestq_cachep, 460 gfp_mask | __GFP_ZERO, node_id); 461 if (!q) 462 return NULL; 463 464 INIT_LIST_HEAD(&q->queue_head); 465 q->last_merge = NULL; 466 467 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 468 if (q->id < 0) 469 goto fail_q; 470 471 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 472 if (ret) 473 goto fail_id; 474 475 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 476 if (!q->backing_dev_info) 477 goto fail_split; 478 479 q->stats = blk_alloc_queue_stats(); 480 if (!q->stats) 481 goto fail_stats; 482 483 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES; 484 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 485 q->backing_dev_info->name = "block"; 486 q->node = node_id; 487 488 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 489 laptop_mode_timer_fn, 0); 490 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 491 INIT_WORK(&q->timeout_work, blk_timeout_work); 492 INIT_LIST_HEAD(&q->icq_list); 493 #ifdef CONFIG_BLK_CGROUP 494 INIT_LIST_HEAD(&q->blkg_list); 495 #endif 496 497 kobject_init(&q->kobj, &blk_queue_ktype); 498 499 #ifdef CONFIG_BLK_DEV_IO_TRACE 500 mutex_init(&q->blk_trace_mutex); 501 #endif 502 mutex_init(&q->sysfs_lock); 503 spin_lock_init(&q->queue_lock); 504 505 init_waitqueue_head(&q->mq_freeze_wq); 506 mutex_init(&q->mq_freeze_lock); 507 508 /* 509 * Init percpu_ref in atomic mode so that it's faster to shutdown. 510 * See blk_register_queue() for details. 511 */ 512 if (percpu_ref_init(&q->q_usage_counter, 513 blk_queue_usage_counter_release, 514 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 515 goto fail_bdi; 516 517 if (blkcg_init_queue(q)) 518 goto fail_ref; 519 520 return q; 521 522 fail_ref: 523 percpu_ref_exit(&q->q_usage_counter); 524 fail_bdi: 525 blk_free_queue_stats(q->stats); 526 fail_stats: 527 bdi_put(q->backing_dev_info); 528 fail_split: 529 bioset_exit(&q->bio_split); 530 fail_id: 531 ida_simple_remove(&blk_queue_ida, q->id); 532 fail_q: 533 kmem_cache_free(blk_requestq_cachep, q); 534 return NULL; 535 } 536 EXPORT_SYMBOL(blk_alloc_queue_node); 537 538 bool blk_get_queue(struct request_queue *q) 539 { 540 if (likely(!blk_queue_dying(q))) { 541 __blk_get_queue(q); 542 return true; 543 } 544 545 return false; 546 } 547 EXPORT_SYMBOL(blk_get_queue); 548 549 /** 550 * blk_get_request - allocate a request 551 * @q: request queue to allocate a request for 552 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 553 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 554 */ 555 struct request *blk_get_request(struct request_queue *q, unsigned int op, 556 blk_mq_req_flags_t flags) 557 { 558 struct request *req; 559 560 WARN_ON_ONCE(op & REQ_NOWAIT); 561 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 562 563 req = blk_mq_alloc_request(q, op, flags); 564 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 565 q->mq_ops->initialize_rq_fn(req); 566 567 return req; 568 } 569 EXPORT_SYMBOL(blk_get_request); 570 571 void blk_put_request(struct request *req) 572 { 573 blk_mq_free_request(req); 574 } 575 EXPORT_SYMBOL(blk_put_request); 576 577 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 578 struct bio *bio) 579 { 580 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 581 582 if (!ll_back_merge_fn(q, req, bio)) 583 return false; 584 585 trace_block_bio_backmerge(q, req, bio); 586 587 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 588 blk_rq_set_mixed_merge(req); 589 590 req->biotail->bi_next = bio; 591 req->biotail = bio; 592 req->__data_len += bio->bi_iter.bi_size; 593 594 blk_account_io_start(req, false); 595 return true; 596 } 597 598 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 599 struct bio *bio) 600 { 601 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 602 603 if (!ll_front_merge_fn(q, req, bio)) 604 return false; 605 606 trace_block_bio_frontmerge(q, req, bio); 607 608 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 609 blk_rq_set_mixed_merge(req); 610 611 bio->bi_next = req->bio; 612 req->bio = bio; 613 614 req->__sector = bio->bi_iter.bi_sector; 615 req->__data_len += bio->bi_iter.bi_size; 616 617 blk_account_io_start(req, false); 618 return true; 619 } 620 621 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 622 struct bio *bio) 623 { 624 unsigned short segments = blk_rq_nr_discard_segments(req); 625 626 if (segments >= queue_max_discard_segments(q)) 627 goto no_merge; 628 if (blk_rq_sectors(req) + bio_sectors(bio) > 629 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 630 goto no_merge; 631 632 req->biotail->bi_next = bio; 633 req->biotail = bio; 634 req->__data_len += bio->bi_iter.bi_size; 635 req->nr_phys_segments = segments + 1; 636 637 blk_account_io_start(req, false); 638 return true; 639 no_merge: 640 req_set_nomerge(q, req); 641 return false; 642 } 643 644 /** 645 * blk_attempt_plug_merge - try to merge with %current's plugged list 646 * @q: request_queue new bio is being queued at 647 * @bio: new bio being queued 648 * @same_queue_rq: pointer to &struct request that gets filled in when 649 * another request associated with @q is found on the plug list 650 * (optional, may be %NULL) 651 * 652 * Determine whether @bio being queued on @q can be merged with a request 653 * on %current's plugged list. Returns %true if merge was successful, 654 * otherwise %false. 655 * 656 * Plugging coalesces IOs from the same issuer for the same purpose without 657 * going through @q->queue_lock. As such it's more of an issuing mechanism 658 * than scheduling, and the request, while may have elvpriv data, is not 659 * added on the elevator at this point. In addition, we don't have 660 * reliable access to the elevator outside queue lock. Only check basic 661 * merging parameters without querying the elevator. 662 * 663 * Caller must ensure !blk_queue_nomerges(q) beforehand. 664 */ 665 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 666 struct request **same_queue_rq) 667 { 668 struct blk_plug *plug; 669 struct request *rq; 670 struct list_head *plug_list; 671 672 plug = current->plug; 673 if (!plug) 674 return false; 675 676 plug_list = &plug->mq_list; 677 678 list_for_each_entry_reverse(rq, plug_list, queuelist) { 679 bool merged = false; 680 681 if (rq->q == q && same_queue_rq) { 682 /* 683 * Only blk-mq multiple hardware queues case checks the 684 * rq in the same queue, there should be only one such 685 * rq in a queue 686 **/ 687 *same_queue_rq = rq; 688 } 689 690 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 691 continue; 692 693 switch (blk_try_merge(rq, bio)) { 694 case ELEVATOR_BACK_MERGE: 695 merged = bio_attempt_back_merge(q, rq, bio); 696 break; 697 case ELEVATOR_FRONT_MERGE: 698 merged = bio_attempt_front_merge(q, rq, bio); 699 break; 700 case ELEVATOR_DISCARD_MERGE: 701 merged = bio_attempt_discard_merge(q, rq, bio); 702 break; 703 default: 704 break; 705 } 706 707 if (merged) 708 return true; 709 } 710 711 return false; 712 } 713 714 void blk_init_request_from_bio(struct request *req, struct bio *bio) 715 { 716 if (bio->bi_opf & REQ_RAHEAD) 717 req->cmd_flags |= REQ_FAILFAST_MASK; 718 719 req->__sector = bio->bi_iter.bi_sector; 720 req->ioprio = bio_prio(bio); 721 req->write_hint = bio->bi_write_hint; 722 blk_rq_bio_prep(req->q, req, bio); 723 } 724 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 725 726 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 727 { 728 char b[BDEVNAME_SIZE]; 729 730 printk(KERN_INFO "attempt to access beyond end of device\n"); 731 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 732 bio_devname(bio, b), bio->bi_opf, 733 (unsigned long long)bio_end_sector(bio), 734 (long long)maxsector); 735 } 736 737 #ifdef CONFIG_FAIL_MAKE_REQUEST 738 739 static DECLARE_FAULT_ATTR(fail_make_request); 740 741 static int __init setup_fail_make_request(char *str) 742 { 743 return setup_fault_attr(&fail_make_request, str); 744 } 745 __setup("fail_make_request=", setup_fail_make_request); 746 747 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 748 { 749 return part->make_it_fail && should_fail(&fail_make_request, bytes); 750 } 751 752 static int __init fail_make_request_debugfs(void) 753 { 754 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 755 NULL, &fail_make_request); 756 757 return PTR_ERR_OR_ZERO(dir); 758 } 759 760 late_initcall(fail_make_request_debugfs); 761 762 #else /* CONFIG_FAIL_MAKE_REQUEST */ 763 764 static inline bool should_fail_request(struct hd_struct *part, 765 unsigned int bytes) 766 { 767 return false; 768 } 769 770 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 771 772 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 773 { 774 const int op = bio_op(bio); 775 776 if (part->policy && op_is_write(op)) { 777 char b[BDEVNAME_SIZE]; 778 779 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 780 return false; 781 782 WARN_ONCE(1, 783 "generic_make_request: Trying to write " 784 "to read-only block-device %s (partno %d)\n", 785 bio_devname(bio, b), part->partno); 786 /* Older lvm-tools actually trigger this */ 787 return false; 788 } 789 790 return false; 791 } 792 793 static noinline int should_fail_bio(struct bio *bio) 794 { 795 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 796 return -EIO; 797 return 0; 798 } 799 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 800 801 /* 802 * Check whether this bio extends beyond the end of the device or partition. 803 * This may well happen - the kernel calls bread() without checking the size of 804 * the device, e.g., when mounting a file system. 805 */ 806 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 807 { 808 unsigned int nr_sectors = bio_sectors(bio); 809 810 if (nr_sectors && maxsector && 811 (nr_sectors > maxsector || 812 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 813 handle_bad_sector(bio, maxsector); 814 return -EIO; 815 } 816 return 0; 817 } 818 819 /* 820 * Remap block n of partition p to block n+start(p) of the disk. 821 */ 822 static inline int blk_partition_remap(struct bio *bio) 823 { 824 struct hd_struct *p; 825 int ret = -EIO; 826 827 rcu_read_lock(); 828 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 829 if (unlikely(!p)) 830 goto out; 831 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 832 goto out; 833 if (unlikely(bio_check_ro(bio, p))) 834 goto out; 835 836 /* 837 * Zone reset does not include bi_size so bio_sectors() is always 0. 838 * Include a test for the reset op code and perform the remap if needed. 839 */ 840 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) { 841 if (bio_check_eod(bio, part_nr_sects_read(p))) 842 goto out; 843 bio->bi_iter.bi_sector += p->start_sect; 844 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 845 bio->bi_iter.bi_sector - p->start_sect); 846 } 847 bio->bi_partno = 0; 848 ret = 0; 849 out: 850 rcu_read_unlock(); 851 return ret; 852 } 853 854 static noinline_for_stack bool 855 generic_make_request_checks(struct bio *bio) 856 { 857 struct request_queue *q; 858 int nr_sectors = bio_sectors(bio); 859 blk_status_t status = BLK_STS_IOERR; 860 char b[BDEVNAME_SIZE]; 861 862 might_sleep(); 863 864 q = bio->bi_disk->queue; 865 if (unlikely(!q)) { 866 printk(KERN_ERR 867 "generic_make_request: Trying to access " 868 "nonexistent block-device %s (%Lu)\n", 869 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 870 goto end_io; 871 } 872 873 /* 874 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 875 * if queue is not a request based queue. 876 */ 877 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q)) 878 goto not_supported; 879 880 if (should_fail_bio(bio)) 881 goto end_io; 882 883 if (bio->bi_partno) { 884 if (unlikely(blk_partition_remap(bio))) 885 goto end_io; 886 } else { 887 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 888 goto end_io; 889 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 890 goto end_io; 891 } 892 893 /* 894 * Filter flush bio's early so that make_request based 895 * drivers without flush support don't have to worry 896 * about them. 897 */ 898 if (op_is_flush(bio->bi_opf) && 899 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 900 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 901 if (!nr_sectors) { 902 status = BLK_STS_OK; 903 goto end_io; 904 } 905 } 906 907 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 908 bio->bi_opf &= ~REQ_HIPRI; 909 910 switch (bio_op(bio)) { 911 case REQ_OP_DISCARD: 912 if (!blk_queue_discard(q)) 913 goto not_supported; 914 break; 915 case REQ_OP_SECURE_ERASE: 916 if (!blk_queue_secure_erase(q)) 917 goto not_supported; 918 break; 919 case REQ_OP_WRITE_SAME: 920 if (!q->limits.max_write_same_sectors) 921 goto not_supported; 922 break; 923 case REQ_OP_ZONE_RESET: 924 if (!blk_queue_is_zoned(q)) 925 goto not_supported; 926 break; 927 case REQ_OP_WRITE_ZEROES: 928 if (!q->limits.max_write_zeroes_sectors) 929 goto not_supported; 930 break; 931 default: 932 break; 933 } 934 935 /* 936 * Various block parts want %current->io_context and lazy ioc 937 * allocation ends up trading a lot of pain for a small amount of 938 * memory. Just allocate it upfront. This may fail and block 939 * layer knows how to live with it. 940 */ 941 create_io_context(GFP_ATOMIC, q->node); 942 943 if (!blkcg_bio_issue_check(q, bio)) 944 return false; 945 946 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 947 trace_block_bio_queue(q, bio); 948 /* Now that enqueuing has been traced, we need to trace 949 * completion as well. 950 */ 951 bio_set_flag(bio, BIO_TRACE_COMPLETION); 952 } 953 return true; 954 955 not_supported: 956 status = BLK_STS_NOTSUPP; 957 end_io: 958 bio->bi_status = status; 959 bio_endio(bio); 960 return false; 961 } 962 963 /** 964 * generic_make_request - hand a buffer to its device driver for I/O 965 * @bio: The bio describing the location in memory and on the device. 966 * 967 * generic_make_request() is used to make I/O requests of block 968 * devices. It is passed a &struct bio, which describes the I/O that needs 969 * to be done. 970 * 971 * generic_make_request() does not return any status. The 972 * success/failure status of the request, along with notification of 973 * completion, is delivered asynchronously through the bio->bi_end_io 974 * function described (one day) else where. 975 * 976 * The caller of generic_make_request must make sure that bi_io_vec 977 * are set to describe the memory buffer, and that bi_dev and bi_sector are 978 * set to describe the device address, and the 979 * bi_end_io and optionally bi_private are set to describe how 980 * completion notification should be signaled. 981 * 982 * generic_make_request and the drivers it calls may use bi_next if this 983 * bio happens to be merged with someone else, and may resubmit the bio to 984 * a lower device by calling into generic_make_request recursively, which 985 * means the bio should NOT be touched after the call to ->make_request_fn. 986 */ 987 blk_qc_t generic_make_request(struct bio *bio) 988 { 989 /* 990 * bio_list_on_stack[0] contains bios submitted by the current 991 * make_request_fn. 992 * bio_list_on_stack[1] contains bios that were submitted before 993 * the current make_request_fn, but that haven't been processed 994 * yet. 995 */ 996 struct bio_list bio_list_on_stack[2]; 997 blk_mq_req_flags_t flags = 0; 998 struct request_queue *q = bio->bi_disk->queue; 999 blk_qc_t ret = BLK_QC_T_NONE; 1000 1001 if (bio->bi_opf & REQ_NOWAIT) 1002 flags = BLK_MQ_REQ_NOWAIT; 1003 if (bio_flagged(bio, BIO_QUEUE_ENTERED)) 1004 blk_queue_enter_live(q); 1005 else if (blk_queue_enter(q, flags) < 0) { 1006 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT)) 1007 bio_wouldblock_error(bio); 1008 else 1009 bio_io_error(bio); 1010 return ret; 1011 } 1012 1013 if (!generic_make_request_checks(bio)) 1014 goto out; 1015 1016 /* 1017 * We only want one ->make_request_fn to be active at a time, else 1018 * stack usage with stacked devices could be a problem. So use 1019 * current->bio_list to keep a list of requests submited by a 1020 * make_request_fn function. current->bio_list is also used as a 1021 * flag to say if generic_make_request is currently active in this 1022 * task or not. If it is NULL, then no make_request is active. If 1023 * it is non-NULL, then a make_request is active, and new requests 1024 * should be added at the tail 1025 */ 1026 if (current->bio_list) { 1027 bio_list_add(¤t->bio_list[0], bio); 1028 goto out; 1029 } 1030 1031 /* following loop may be a bit non-obvious, and so deserves some 1032 * explanation. 1033 * Before entering the loop, bio->bi_next is NULL (as all callers 1034 * ensure that) so we have a list with a single bio. 1035 * We pretend that we have just taken it off a longer list, so 1036 * we assign bio_list to a pointer to the bio_list_on_stack, 1037 * thus initialising the bio_list of new bios to be 1038 * added. ->make_request() may indeed add some more bios 1039 * through a recursive call to generic_make_request. If it 1040 * did, we find a non-NULL value in bio_list and re-enter the loop 1041 * from the top. In this case we really did just take the bio 1042 * of the top of the list (no pretending) and so remove it from 1043 * bio_list, and call into ->make_request() again. 1044 */ 1045 BUG_ON(bio->bi_next); 1046 bio_list_init(&bio_list_on_stack[0]); 1047 current->bio_list = bio_list_on_stack; 1048 do { 1049 bool enter_succeeded = true; 1050 1051 if (unlikely(q != bio->bi_disk->queue)) { 1052 if (q) 1053 blk_queue_exit(q); 1054 q = bio->bi_disk->queue; 1055 flags = 0; 1056 if (bio->bi_opf & REQ_NOWAIT) 1057 flags = BLK_MQ_REQ_NOWAIT; 1058 if (blk_queue_enter(q, flags) < 0) { 1059 enter_succeeded = false; 1060 q = NULL; 1061 } 1062 } 1063 1064 if (enter_succeeded) { 1065 struct bio_list lower, same; 1066 1067 /* Create a fresh bio_list for all subordinate requests */ 1068 bio_list_on_stack[1] = bio_list_on_stack[0]; 1069 bio_list_init(&bio_list_on_stack[0]); 1070 ret = q->make_request_fn(q, bio); 1071 1072 /* sort new bios into those for a lower level 1073 * and those for the same level 1074 */ 1075 bio_list_init(&lower); 1076 bio_list_init(&same); 1077 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 1078 if (q == bio->bi_disk->queue) 1079 bio_list_add(&same, bio); 1080 else 1081 bio_list_add(&lower, bio); 1082 /* now assemble so we handle the lowest level first */ 1083 bio_list_merge(&bio_list_on_stack[0], &lower); 1084 bio_list_merge(&bio_list_on_stack[0], &same); 1085 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 1086 } else { 1087 if (unlikely(!blk_queue_dying(q) && 1088 (bio->bi_opf & REQ_NOWAIT))) 1089 bio_wouldblock_error(bio); 1090 else 1091 bio_io_error(bio); 1092 } 1093 bio = bio_list_pop(&bio_list_on_stack[0]); 1094 } while (bio); 1095 current->bio_list = NULL; /* deactivate */ 1096 1097 out: 1098 if (q) 1099 blk_queue_exit(q); 1100 return ret; 1101 } 1102 EXPORT_SYMBOL(generic_make_request); 1103 1104 /** 1105 * direct_make_request - hand a buffer directly to its device driver for I/O 1106 * @bio: The bio describing the location in memory and on the device. 1107 * 1108 * This function behaves like generic_make_request(), but does not protect 1109 * against recursion. Must only be used if the called driver is known 1110 * to not call generic_make_request (or direct_make_request) again from 1111 * its make_request function. (Calling direct_make_request again from 1112 * a workqueue is perfectly fine as that doesn't recurse). 1113 */ 1114 blk_qc_t direct_make_request(struct bio *bio) 1115 { 1116 struct request_queue *q = bio->bi_disk->queue; 1117 bool nowait = bio->bi_opf & REQ_NOWAIT; 1118 blk_qc_t ret; 1119 1120 if (!generic_make_request_checks(bio)) 1121 return BLK_QC_T_NONE; 1122 1123 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 1124 if (nowait && !blk_queue_dying(q)) 1125 bio->bi_status = BLK_STS_AGAIN; 1126 else 1127 bio->bi_status = BLK_STS_IOERR; 1128 bio_endio(bio); 1129 return BLK_QC_T_NONE; 1130 } 1131 1132 ret = q->make_request_fn(q, bio); 1133 blk_queue_exit(q); 1134 return ret; 1135 } 1136 EXPORT_SYMBOL_GPL(direct_make_request); 1137 1138 /** 1139 * submit_bio - submit a bio to the block device layer for I/O 1140 * @bio: The &struct bio which describes the I/O 1141 * 1142 * submit_bio() is very similar in purpose to generic_make_request(), and 1143 * uses that function to do most of the work. Both are fairly rough 1144 * interfaces; @bio must be presetup and ready for I/O. 1145 * 1146 */ 1147 blk_qc_t submit_bio(struct bio *bio) 1148 { 1149 /* 1150 * If it's a regular read/write or a barrier with data attached, 1151 * go through the normal accounting stuff before submission. 1152 */ 1153 if (bio_has_data(bio)) { 1154 unsigned int count; 1155 1156 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1157 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 1158 else 1159 count = bio_sectors(bio); 1160 1161 if (op_is_write(bio_op(bio))) { 1162 count_vm_events(PGPGOUT, count); 1163 } else { 1164 task_io_account_read(bio->bi_iter.bi_size); 1165 count_vm_events(PGPGIN, count); 1166 } 1167 1168 if (unlikely(block_dump)) { 1169 char b[BDEVNAME_SIZE]; 1170 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1171 current->comm, task_pid_nr(current), 1172 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 1173 (unsigned long long)bio->bi_iter.bi_sector, 1174 bio_devname(bio, b), count); 1175 } 1176 } 1177 1178 return generic_make_request(bio); 1179 } 1180 EXPORT_SYMBOL(submit_bio); 1181 1182 /** 1183 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1184 * for new the queue limits 1185 * @q: the queue 1186 * @rq: the request being checked 1187 * 1188 * Description: 1189 * @rq may have been made based on weaker limitations of upper-level queues 1190 * in request stacking drivers, and it may violate the limitation of @q. 1191 * Since the block layer and the underlying device driver trust @rq 1192 * after it is inserted to @q, it should be checked against @q before 1193 * the insertion using this generic function. 1194 * 1195 * Request stacking drivers like request-based dm may change the queue 1196 * limits when retrying requests on other queues. Those requests need 1197 * to be checked against the new queue limits again during dispatch. 1198 */ 1199 static int blk_cloned_rq_check_limits(struct request_queue *q, 1200 struct request *rq) 1201 { 1202 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 1203 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1204 return -EIO; 1205 } 1206 1207 /* 1208 * queue's settings related to segment counting like q->bounce_pfn 1209 * may differ from that of other stacking queues. 1210 * Recalculate it to check the request correctly on this queue's 1211 * limitation. 1212 */ 1213 blk_recalc_rq_segments(rq); 1214 if (rq->nr_phys_segments > queue_max_segments(q)) { 1215 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1216 return -EIO; 1217 } 1218 1219 return 0; 1220 } 1221 1222 /** 1223 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1224 * @q: the queue to submit the request 1225 * @rq: the request being queued 1226 */ 1227 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1228 { 1229 if (blk_cloned_rq_check_limits(q, rq)) 1230 return BLK_STS_IOERR; 1231 1232 if (rq->rq_disk && 1233 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1234 return BLK_STS_IOERR; 1235 1236 if (blk_queue_io_stat(q)) 1237 blk_account_io_start(rq, true); 1238 1239 /* 1240 * Since we have a scheduler attached on the top device, 1241 * bypass a potential scheduler on the bottom device for 1242 * insert. 1243 */ 1244 return blk_mq_request_issue_directly(rq, true); 1245 } 1246 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1247 1248 /** 1249 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1250 * @rq: request to examine 1251 * 1252 * Description: 1253 * A request could be merge of IOs which require different failure 1254 * handling. This function determines the number of bytes which 1255 * can be failed from the beginning of the request without 1256 * crossing into area which need to be retried further. 1257 * 1258 * Return: 1259 * The number of bytes to fail. 1260 */ 1261 unsigned int blk_rq_err_bytes(const struct request *rq) 1262 { 1263 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1264 unsigned int bytes = 0; 1265 struct bio *bio; 1266 1267 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1268 return blk_rq_bytes(rq); 1269 1270 /* 1271 * Currently the only 'mixing' which can happen is between 1272 * different fastfail types. We can safely fail portions 1273 * which have all the failfast bits that the first one has - 1274 * the ones which are at least as eager to fail as the first 1275 * one. 1276 */ 1277 for (bio = rq->bio; bio; bio = bio->bi_next) { 1278 if ((bio->bi_opf & ff) != ff) 1279 break; 1280 bytes += bio->bi_iter.bi_size; 1281 } 1282 1283 /* this could lead to infinite loop */ 1284 BUG_ON(blk_rq_bytes(rq) && !bytes); 1285 return bytes; 1286 } 1287 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1288 1289 void blk_account_io_completion(struct request *req, unsigned int bytes) 1290 { 1291 if (blk_do_io_stat(req)) { 1292 const int sgrp = op_stat_group(req_op(req)); 1293 struct hd_struct *part; 1294 1295 part_stat_lock(); 1296 part = req->part; 1297 part_stat_add(part, sectors[sgrp], bytes >> 9); 1298 part_stat_unlock(); 1299 } 1300 } 1301 1302 void blk_account_io_done(struct request *req, u64 now) 1303 { 1304 /* 1305 * Account IO completion. flush_rq isn't accounted as a 1306 * normal IO on queueing nor completion. Accounting the 1307 * containing request is enough. 1308 */ 1309 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 1310 const int sgrp = op_stat_group(req_op(req)); 1311 struct hd_struct *part; 1312 1313 part_stat_lock(); 1314 part = req->part; 1315 1316 update_io_ticks(part, jiffies); 1317 part_stat_inc(part, ios[sgrp]); 1318 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns); 1319 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns)); 1320 part_dec_in_flight(req->q, part, rq_data_dir(req)); 1321 1322 hd_struct_put(part); 1323 part_stat_unlock(); 1324 } 1325 } 1326 1327 void blk_account_io_start(struct request *rq, bool new_io) 1328 { 1329 struct hd_struct *part; 1330 int rw = rq_data_dir(rq); 1331 1332 if (!blk_do_io_stat(rq)) 1333 return; 1334 1335 part_stat_lock(); 1336 1337 if (!new_io) { 1338 part = rq->part; 1339 part_stat_inc(part, merges[rw]); 1340 } else { 1341 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 1342 if (!hd_struct_try_get(part)) { 1343 /* 1344 * The partition is already being removed, 1345 * the request will be accounted on the disk only 1346 * 1347 * We take a reference on disk->part0 although that 1348 * partition will never be deleted, so we can treat 1349 * it as any other partition. 1350 */ 1351 part = &rq->rq_disk->part0; 1352 hd_struct_get(part); 1353 } 1354 part_inc_in_flight(rq->q, part, rw); 1355 rq->part = part; 1356 } 1357 1358 update_io_ticks(part, jiffies); 1359 1360 part_stat_unlock(); 1361 } 1362 1363 /* 1364 * Steal bios from a request and add them to a bio list. 1365 * The request must not have been partially completed before. 1366 */ 1367 void blk_steal_bios(struct bio_list *list, struct request *rq) 1368 { 1369 if (rq->bio) { 1370 if (list->tail) 1371 list->tail->bi_next = rq->bio; 1372 else 1373 list->head = rq->bio; 1374 list->tail = rq->biotail; 1375 1376 rq->bio = NULL; 1377 rq->biotail = NULL; 1378 } 1379 1380 rq->__data_len = 0; 1381 } 1382 EXPORT_SYMBOL_GPL(blk_steal_bios); 1383 1384 /** 1385 * blk_update_request - Special helper function for request stacking drivers 1386 * @req: the request being processed 1387 * @error: block status code 1388 * @nr_bytes: number of bytes to complete @req 1389 * 1390 * Description: 1391 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1392 * the request structure even if @req doesn't have leftover. 1393 * If @req has leftover, sets it up for the next range of segments. 1394 * 1395 * This special helper function is only for request stacking drivers 1396 * (e.g. request-based dm) so that they can handle partial completion. 1397 * Actual device drivers should use blk_end_request instead. 1398 * 1399 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1400 * %false return from this function. 1401 * 1402 * Note: 1403 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both 1404 * blk_rq_bytes() and in blk_update_request(). 1405 * 1406 * Return: 1407 * %false - this request doesn't have any more data 1408 * %true - this request has more data 1409 **/ 1410 bool blk_update_request(struct request *req, blk_status_t error, 1411 unsigned int nr_bytes) 1412 { 1413 int total_bytes; 1414 1415 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 1416 1417 if (!req->bio) 1418 return false; 1419 1420 if (unlikely(error && !blk_rq_is_passthrough(req) && 1421 !(req->rq_flags & RQF_QUIET))) 1422 print_req_error(req, error); 1423 1424 blk_account_io_completion(req, nr_bytes); 1425 1426 total_bytes = 0; 1427 while (req->bio) { 1428 struct bio *bio = req->bio; 1429 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 1430 1431 if (bio_bytes == bio->bi_iter.bi_size) 1432 req->bio = bio->bi_next; 1433 1434 /* Completion has already been traced */ 1435 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1436 req_bio_endio(req, bio, bio_bytes, error); 1437 1438 total_bytes += bio_bytes; 1439 nr_bytes -= bio_bytes; 1440 1441 if (!nr_bytes) 1442 break; 1443 } 1444 1445 /* 1446 * completely done 1447 */ 1448 if (!req->bio) { 1449 /* 1450 * Reset counters so that the request stacking driver 1451 * can find how many bytes remain in the request 1452 * later. 1453 */ 1454 req->__data_len = 0; 1455 return false; 1456 } 1457 1458 req->__data_len -= total_bytes; 1459 1460 /* update sector only for requests with clear definition of sector */ 1461 if (!blk_rq_is_passthrough(req)) 1462 req->__sector += total_bytes >> 9; 1463 1464 /* mixed attributes always follow the first bio */ 1465 if (req->rq_flags & RQF_MIXED_MERGE) { 1466 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1467 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1468 } 1469 1470 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1471 /* 1472 * If total number of sectors is less than the first segment 1473 * size, something has gone terribly wrong. 1474 */ 1475 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1476 blk_dump_rq_flags(req, "request botched"); 1477 req->__data_len = blk_rq_cur_bytes(req); 1478 } 1479 1480 /* recalculate the number of segments */ 1481 blk_recalc_rq_segments(req); 1482 } 1483 1484 return true; 1485 } 1486 EXPORT_SYMBOL_GPL(blk_update_request); 1487 1488 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 1489 struct bio *bio) 1490 { 1491 if (bio_has_data(bio)) 1492 rq->nr_phys_segments = bio_phys_segments(q, bio); 1493 else if (bio_op(bio) == REQ_OP_DISCARD) 1494 rq->nr_phys_segments = 1; 1495 1496 rq->__data_len = bio->bi_iter.bi_size; 1497 rq->bio = rq->biotail = bio; 1498 1499 if (bio->bi_disk) 1500 rq->rq_disk = bio->bi_disk; 1501 } 1502 1503 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1504 /** 1505 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1506 * @rq: the request to be flushed 1507 * 1508 * Description: 1509 * Flush all pages in @rq. 1510 */ 1511 void rq_flush_dcache_pages(struct request *rq) 1512 { 1513 struct req_iterator iter; 1514 struct bio_vec bvec; 1515 1516 rq_for_each_segment(bvec, rq, iter) 1517 flush_dcache_page(bvec.bv_page); 1518 } 1519 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1520 #endif 1521 1522 /** 1523 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1524 * @q : the queue of the device being checked 1525 * 1526 * Description: 1527 * Check if underlying low-level drivers of a device are busy. 1528 * If the drivers want to export their busy state, they must set own 1529 * exporting function using blk_queue_lld_busy() first. 1530 * 1531 * Basically, this function is used only by request stacking drivers 1532 * to stop dispatching requests to underlying devices when underlying 1533 * devices are busy. This behavior helps more I/O merging on the queue 1534 * of the request stacking driver and prevents I/O throughput regression 1535 * on burst I/O load. 1536 * 1537 * Return: 1538 * 0 - Not busy (The request stacking driver should dispatch request) 1539 * 1 - Busy (The request stacking driver should stop dispatching request) 1540 */ 1541 int blk_lld_busy(struct request_queue *q) 1542 { 1543 if (queue_is_mq(q) && q->mq_ops->busy) 1544 return q->mq_ops->busy(q); 1545 1546 return 0; 1547 } 1548 EXPORT_SYMBOL_GPL(blk_lld_busy); 1549 1550 /** 1551 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1552 * @rq: the clone request to be cleaned up 1553 * 1554 * Description: 1555 * Free all bios in @rq for a cloned request. 1556 */ 1557 void blk_rq_unprep_clone(struct request *rq) 1558 { 1559 struct bio *bio; 1560 1561 while ((bio = rq->bio) != NULL) { 1562 rq->bio = bio->bi_next; 1563 1564 bio_put(bio); 1565 } 1566 } 1567 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1568 1569 /* 1570 * Copy attributes of the original request to the clone request. 1571 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 1572 */ 1573 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 1574 { 1575 dst->__sector = blk_rq_pos(src); 1576 dst->__data_len = blk_rq_bytes(src); 1577 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1578 dst->rq_flags |= RQF_SPECIAL_PAYLOAD; 1579 dst->special_vec = src->special_vec; 1580 } 1581 dst->nr_phys_segments = src->nr_phys_segments; 1582 dst->ioprio = src->ioprio; 1583 dst->extra_len = src->extra_len; 1584 } 1585 1586 /** 1587 * blk_rq_prep_clone - Helper function to setup clone request 1588 * @rq: the request to be setup 1589 * @rq_src: original request to be cloned 1590 * @bs: bio_set that bios for clone are allocated from 1591 * @gfp_mask: memory allocation mask for bio 1592 * @bio_ctr: setup function to be called for each clone bio. 1593 * Returns %0 for success, non %0 for failure. 1594 * @data: private data to be passed to @bio_ctr 1595 * 1596 * Description: 1597 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1598 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 1599 * are not copied, and copying such parts is the caller's responsibility. 1600 * Also, pages which the original bios are pointing to are not copied 1601 * and the cloned bios just point same pages. 1602 * So cloned bios must be completed before original bios, which means 1603 * the caller must complete @rq before @rq_src. 1604 */ 1605 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1606 struct bio_set *bs, gfp_t gfp_mask, 1607 int (*bio_ctr)(struct bio *, struct bio *, void *), 1608 void *data) 1609 { 1610 struct bio *bio, *bio_src; 1611 1612 if (!bs) 1613 bs = &fs_bio_set; 1614 1615 __rq_for_each_bio(bio_src, rq_src) { 1616 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1617 if (!bio) 1618 goto free_and_out; 1619 1620 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1621 goto free_and_out; 1622 1623 if (rq->bio) { 1624 rq->biotail->bi_next = bio; 1625 rq->biotail = bio; 1626 } else 1627 rq->bio = rq->biotail = bio; 1628 } 1629 1630 __blk_rq_prep_clone(rq, rq_src); 1631 1632 return 0; 1633 1634 free_and_out: 1635 if (bio) 1636 bio_put(bio); 1637 blk_rq_unprep_clone(rq); 1638 1639 return -ENOMEM; 1640 } 1641 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1642 1643 int kblockd_schedule_work(struct work_struct *work) 1644 { 1645 return queue_work(kblockd_workqueue, work); 1646 } 1647 EXPORT_SYMBOL(kblockd_schedule_work); 1648 1649 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 1650 { 1651 return queue_work_on(cpu, kblockd_workqueue, work); 1652 } 1653 EXPORT_SYMBOL(kblockd_schedule_work_on); 1654 1655 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1656 unsigned long delay) 1657 { 1658 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1659 } 1660 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1661 1662 /** 1663 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1664 * @plug: The &struct blk_plug that needs to be initialized 1665 * 1666 * Description: 1667 * blk_start_plug() indicates to the block layer an intent by the caller 1668 * to submit multiple I/O requests in a batch. The block layer may use 1669 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1670 * is called. However, the block layer may choose to submit requests 1671 * before a call to blk_finish_plug() if the number of queued I/Os 1672 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1673 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1674 * the task schedules (see below). 1675 * 1676 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1677 * pending I/O should the task end up blocking between blk_start_plug() and 1678 * blk_finish_plug(). This is important from a performance perspective, but 1679 * also ensures that we don't deadlock. For instance, if the task is blocking 1680 * for a memory allocation, memory reclaim could end up wanting to free a 1681 * page belonging to that request that is currently residing in our private 1682 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1683 * this kind of deadlock. 1684 */ 1685 void blk_start_plug(struct blk_plug *plug) 1686 { 1687 struct task_struct *tsk = current; 1688 1689 /* 1690 * If this is a nested plug, don't actually assign it. 1691 */ 1692 if (tsk->plug) 1693 return; 1694 1695 INIT_LIST_HEAD(&plug->mq_list); 1696 INIT_LIST_HEAD(&plug->cb_list); 1697 plug->rq_count = 0; 1698 plug->multiple_queues = false; 1699 1700 /* 1701 * Store ordering should not be needed here, since a potential 1702 * preempt will imply a full memory barrier 1703 */ 1704 tsk->plug = plug; 1705 } 1706 EXPORT_SYMBOL(blk_start_plug); 1707 1708 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1709 { 1710 LIST_HEAD(callbacks); 1711 1712 while (!list_empty(&plug->cb_list)) { 1713 list_splice_init(&plug->cb_list, &callbacks); 1714 1715 while (!list_empty(&callbacks)) { 1716 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1717 struct blk_plug_cb, 1718 list); 1719 list_del(&cb->list); 1720 cb->callback(cb, from_schedule); 1721 } 1722 } 1723 } 1724 1725 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1726 int size) 1727 { 1728 struct blk_plug *plug = current->plug; 1729 struct blk_plug_cb *cb; 1730 1731 if (!plug) 1732 return NULL; 1733 1734 list_for_each_entry(cb, &plug->cb_list, list) 1735 if (cb->callback == unplug && cb->data == data) 1736 return cb; 1737 1738 /* Not currently on the callback list */ 1739 BUG_ON(size < sizeof(*cb)); 1740 cb = kzalloc(size, GFP_ATOMIC); 1741 if (cb) { 1742 cb->data = data; 1743 cb->callback = unplug; 1744 list_add(&cb->list, &plug->cb_list); 1745 } 1746 return cb; 1747 } 1748 EXPORT_SYMBOL(blk_check_plugged); 1749 1750 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1751 { 1752 flush_plug_callbacks(plug, from_schedule); 1753 1754 if (!list_empty(&plug->mq_list)) 1755 blk_mq_flush_plug_list(plug, from_schedule); 1756 } 1757 1758 /** 1759 * blk_finish_plug - mark the end of a batch of submitted I/O 1760 * @plug: The &struct blk_plug passed to blk_start_plug() 1761 * 1762 * Description: 1763 * Indicate that a batch of I/O submissions is complete. This function 1764 * must be paired with an initial call to blk_start_plug(). The intent 1765 * is to allow the block layer to optimize I/O submission. See the 1766 * documentation for blk_start_plug() for more information. 1767 */ 1768 void blk_finish_plug(struct blk_plug *plug) 1769 { 1770 if (plug != current->plug) 1771 return; 1772 blk_flush_plug_list(plug, false); 1773 1774 current->plug = NULL; 1775 } 1776 EXPORT_SYMBOL(blk_finish_plug); 1777 1778 int __init blk_dev_init(void) 1779 { 1780 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1781 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1782 FIELD_SIZEOF(struct request, cmd_flags)); 1783 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1784 FIELD_SIZEOF(struct bio, bi_opf)); 1785 1786 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1787 kblockd_workqueue = alloc_workqueue("kblockd", 1788 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1789 if (!kblockd_workqueue) 1790 panic("Failed to create kblockd\n"); 1791 1792 blk_requestq_cachep = kmem_cache_create("request_queue", 1793 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1794 1795 #ifdef CONFIG_DEBUG_FS 1796 blk_debugfs_root = debugfs_create_dir("block", NULL); 1797 #endif 1798 1799 return 0; 1800 } 1801