xref: /openbmc/linux/block/blk-core.c (revision abfbd895)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39 
40 #include "blk.h"
41 #include "blk-mq.h"
42 
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48 
49 DEFINE_IDA(blk_queue_ida);
50 
51 /*
52  * For the allocated request tables
53  */
54 struct kmem_cache *request_cachep = NULL;
55 
56 /*
57  * For queue allocation
58  */
59 struct kmem_cache *blk_requestq_cachep;
60 
61 /*
62  * Controlling structure to kblockd
63  */
64 static struct workqueue_struct *kblockd_workqueue;
65 
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 	clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 	/*
72 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 	 * flip its congestion state for events on other blkcgs.
74 	 */
75 	if (rl == &rl->q->root_rl)
76 		clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79 
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 	set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 	/* see blk_clear_congested() */
86 	if (rl == &rl->q->root_rl)
87 		set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90 
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 	int nr;
94 
95 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 	if (nr > q->nr_requests)
97 		nr = q->nr_requests;
98 	q->nr_congestion_on = nr;
99 
100 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 	if (nr < 1)
102 		nr = 1;
103 	q->nr_congestion_off = nr;
104 }
105 
106 /**
107  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108  * @bdev:	device
109  *
110  * Locates the passed device's request queue and returns the address of its
111  * backing_dev_info.  This function can only be called if @bdev is opened
112  * and the return value is never NULL.
113  */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 	struct request_queue *q = bdev_get_queue(bdev);
117 
118 	return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121 
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 	memset(rq, 0, sizeof(*rq));
125 
126 	INIT_LIST_HEAD(&rq->queuelist);
127 	INIT_LIST_HEAD(&rq->timeout_list);
128 	rq->cpu = -1;
129 	rq->q = q;
130 	rq->__sector = (sector_t) -1;
131 	INIT_HLIST_NODE(&rq->hash);
132 	RB_CLEAR_NODE(&rq->rb_node);
133 	rq->cmd = rq->__cmd;
134 	rq->cmd_len = BLK_MAX_CDB;
135 	rq->tag = -1;
136 	rq->start_time = jiffies;
137 	set_start_time_ns(rq);
138 	rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141 
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 			  unsigned int nbytes, int error)
144 {
145 	if (error)
146 		bio->bi_error = error;
147 
148 	if (unlikely(rq->cmd_flags & REQ_QUIET))
149 		bio_set_flag(bio, BIO_QUIET);
150 
151 	bio_advance(bio, nbytes);
152 
153 	/* don't actually finish bio if it's part of flush sequence */
154 	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 		bio_endio(bio);
156 }
157 
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 	int bit;
161 
162 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 		(unsigned long long) rq->cmd_flags);
165 
166 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
167 	       (unsigned long long)blk_rq_pos(rq),
168 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
170 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
171 
172 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 		printk(KERN_INFO "  cdb: ");
174 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 			printk("%02x ", rq->cmd[bit]);
176 		printk("\n");
177 	}
178 }
179 EXPORT_SYMBOL(blk_dump_rq_flags);
180 
181 static void blk_delay_work(struct work_struct *work)
182 {
183 	struct request_queue *q;
184 
185 	q = container_of(work, struct request_queue, delay_work.work);
186 	spin_lock_irq(q->queue_lock);
187 	__blk_run_queue(q);
188 	spin_unlock_irq(q->queue_lock);
189 }
190 
191 /**
192  * blk_delay_queue - restart queueing after defined interval
193  * @q:		The &struct request_queue in question
194  * @msecs:	Delay in msecs
195  *
196  * Description:
197  *   Sometimes queueing needs to be postponed for a little while, to allow
198  *   resources to come back. This function will make sure that queueing is
199  *   restarted around the specified time. Queue lock must be held.
200  */
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
202 {
203 	if (likely(!blk_queue_dead(q)))
204 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 				   msecs_to_jiffies(msecs));
206 }
207 EXPORT_SYMBOL(blk_delay_queue);
208 
209 /**
210  * blk_start_queue_async - asynchronously restart a previously stopped queue
211  * @q:    The &struct request_queue in question
212  *
213  * Description:
214  *   blk_start_queue_async() will clear the stop flag on the queue, and
215  *   ensure that the request_fn for the queue is run from an async
216  *   context.
217  **/
218 void blk_start_queue_async(struct request_queue *q)
219 {
220 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 	blk_run_queue_async(q);
222 }
223 EXPORT_SYMBOL(blk_start_queue_async);
224 
225 /**
226  * blk_start_queue - restart a previously stopped queue
227  * @q:    The &struct request_queue in question
228  *
229  * Description:
230  *   blk_start_queue() will clear the stop flag on the queue, and call
231  *   the request_fn for the queue if it was in a stopped state when
232  *   entered. Also see blk_stop_queue(). Queue lock must be held.
233  **/
234 void blk_start_queue(struct request_queue *q)
235 {
236 	WARN_ON(!irqs_disabled());
237 
238 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
239 	__blk_run_queue(q);
240 }
241 EXPORT_SYMBOL(blk_start_queue);
242 
243 /**
244  * blk_stop_queue - stop a queue
245  * @q:    The &struct request_queue in question
246  *
247  * Description:
248  *   The Linux block layer assumes that a block driver will consume all
249  *   entries on the request queue when the request_fn strategy is called.
250  *   Often this will not happen, because of hardware limitations (queue
251  *   depth settings). If a device driver gets a 'queue full' response,
252  *   or if it simply chooses not to queue more I/O at one point, it can
253  *   call this function to prevent the request_fn from being called until
254  *   the driver has signalled it's ready to go again. This happens by calling
255  *   blk_start_queue() to restart queue operations. Queue lock must be held.
256  **/
257 void blk_stop_queue(struct request_queue *q)
258 {
259 	cancel_delayed_work(&q->delay_work);
260 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
261 }
262 EXPORT_SYMBOL(blk_stop_queue);
263 
264 /**
265  * blk_sync_queue - cancel any pending callbacks on a queue
266  * @q: the queue
267  *
268  * Description:
269  *     The block layer may perform asynchronous callback activity
270  *     on a queue, such as calling the unplug function after a timeout.
271  *     A block device may call blk_sync_queue to ensure that any
272  *     such activity is cancelled, thus allowing it to release resources
273  *     that the callbacks might use. The caller must already have made sure
274  *     that its ->make_request_fn will not re-add plugging prior to calling
275  *     this function.
276  *
277  *     This function does not cancel any asynchronous activity arising
278  *     out of elevator or throttling code. That would require elevator_exit()
279  *     and blkcg_exit_queue() to be called with queue lock initialized.
280  *
281  */
282 void blk_sync_queue(struct request_queue *q)
283 {
284 	del_timer_sync(&q->timeout);
285 
286 	if (q->mq_ops) {
287 		struct blk_mq_hw_ctx *hctx;
288 		int i;
289 
290 		queue_for_each_hw_ctx(q, hctx, i) {
291 			cancel_delayed_work_sync(&hctx->run_work);
292 			cancel_delayed_work_sync(&hctx->delay_work);
293 		}
294 	} else {
295 		cancel_delayed_work_sync(&q->delay_work);
296 	}
297 }
298 EXPORT_SYMBOL(blk_sync_queue);
299 
300 /**
301  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302  * @q:	The queue to run
303  *
304  * Description:
305  *    Invoke request handling on a queue if there are any pending requests.
306  *    May be used to restart request handling after a request has completed.
307  *    This variant runs the queue whether or not the queue has been
308  *    stopped. Must be called with the queue lock held and interrupts
309  *    disabled. See also @blk_run_queue.
310  */
311 inline void __blk_run_queue_uncond(struct request_queue *q)
312 {
313 	if (unlikely(blk_queue_dead(q)))
314 		return;
315 
316 	/*
317 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 	 * the queue lock internally. As a result multiple threads may be
319 	 * running such a request function concurrently. Keep track of the
320 	 * number of active request_fn invocations such that blk_drain_queue()
321 	 * can wait until all these request_fn calls have finished.
322 	 */
323 	q->request_fn_active++;
324 	q->request_fn(q);
325 	q->request_fn_active--;
326 }
327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
328 
329 /**
330  * __blk_run_queue - run a single device queue
331  * @q:	The queue to run
332  *
333  * Description:
334  *    See @blk_run_queue. This variant must be called with the queue lock
335  *    held and interrupts disabled.
336  */
337 void __blk_run_queue(struct request_queue *q)
338 {
339 	if (unlikely(blk_queue_stopped(q)))
340 		return;
341 
342 	__blk_run_queue_uncond(q);
343 }
344 EXPORT_SYMBOL(__blk_run_queue);
345 
346 /**
347  * blk_run_queue_async - run a single device queue in workqueue context
348  * @q:	The queue to run
349  *
350  * Description:
351  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
352  *    of us. The caller must hold the queue lock.
353  */
354 void blk_run_queue_async(struct request_queue *q)
355 {
356 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
357 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
358 }
359 EXPORT_SYMBOL(blk_run_queue_async);
360 
361 /**
362  * blk_run_queue - run a single device queue
363  * @q: The queue to run
364  *
365  * Description:
366  *    Invoke request handling on this queue, if it has pending work to do.
367  *    May be used to restart queueing when a request has completed.
368  */
369 void blk_run_queue(struct request_queue *q)
370 {
371 	unsigned long flags;
372 
373 	spin_lock_irqsave(q->queue_lock, flags);
374 	__blk_run_queue(q);
375 	spin_unlock_irqrestore(q->queue_lock, flags);
376 }
377 EXPORT_SYMBOL(blk_run_queue);
378 
379 void blk_put_queue(struct request_queue *q)
380 {
381 	kobject_put(&q->kobj);
382 }
383 EXPORT_SYMBOL(blk_put_queue);
384 
385 /**
386  * __blk_drain_queue - drain requests from request_queue
387  * @q: queue to drain
388  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
389  *
390  * Drain requests from @q.  If @drain_all is set, all requests are drained.
391  * If not, only ELVPRIV requests are drained.  The caller is responsible
392  * for ensuring that no new requests which need to be drained are queued.
393  */
394 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 	__releases(q->queue_lock)
396 	__acquires(q->queue_lock)
397 {
398 	int i;
399 
400 	lockdep_assert_held(q->queue_lock);
401 
402 	while (true) {
403 		bool drain = false;
404 
405 		/*
406 		 * The caller might be trying to drain @q before its
407 		 * elevator is initialized.
408 		 */
409 		if (q->elevator)
410 			elv_drain_elevator(q);
411 
412 		blkcg_drain_queue(q);
413 
414 		/*
415 		 * This function might be called on a queue which failed
416 		 * driver init after queue creation or is not yet fully
417 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
418 		 * in such cases.  Kick queue iff dispatch queue has
419 		 * something on it and @q has request_fn set.
420 		 */
421 		if (!list_empty(&q->queue_head) && q->request_fn)
422 			__blk_run_queue(q);
423 
424 		drain |= q->nr_rqs_elvpriv;
425 		drain |= q->request_fn_active;
426 
427 		/*
428 		 * Unfortunately, requests are queued at and tracked from
429 		 * multiple places and there's no single counter which can
430 		 * be drained.  Check all the queues and counters.
431 		 */
432 		if (drain_all) {
433 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
434 			drain |= !list_empty(&q->queue_head);
435 			for (i = 0; i < 2; i++) {
436 				drain |= q->nr_rqs[i];
437 				drain |= q->in_flight[i];
438 				if (fq)
439 				    drain |= !list_empty(&fq->flush_queue[i]);
440 			}
441 		}
442 
443 		if (!drain)
444 			break;
445 
446 		spin_unlock_irq(q->queue_lock);
447 
448 		msleep(10);
449 
450 		spin_lock_irq(q->queue_lock);
451 	}
452 
453 	/*
454 	 * With queue marked dead, any woken up waiter will fail the
455 	 * allocation path, so the wakeup chaining is lost and we're
456 	 * left with hung waiters. We need to wake up those waiters.
457 	 */
458 	if (q->request_fn) {
459 		struct request_list *rl;
460 
461 		blk_queue_for_each_rl(rl, q)
462 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 				wake_up_all(&rl->wait[i]);
464 	}
465 }
466 
467 /**
468  * blk_queue_bypass_start - enter queue bypass mode
469  * @q: queue of interest
470  *
471  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
472  * function makes @q enter bypass mode and drains all requests which were
473  * throttled or issued before.  On return, it's guaranteed that no request
474  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475  * inside queue or RCU read lock.
476  */
477 void blk_queue_bypass_start(struct request_queue *q)
478 {
479 	spin_lock_irq(q->queue_lock);
480 	q->bypass_depth++;
481 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 	spin_unlock_irq(q->queue_lock);
483 
484 	/*
485 	 * Queues start drained.  Skip actual draining till init is
486 	 * complete.  This avoids lenghty delays during queue init which
487 	 * can happen many times during boot.
488 	 */
489 	if (blk_queue_init_done(q)) {
490 		spin_lock_irq(q->queue_lock);
491 		__blk_drain_queue(q, false);
492 		spin_unlock_irq(q->queue_lock);
493 
494 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
495 		synchronize_rcu();
496 	}
497 }
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499 
500 /**
501  * blk_queue_bypass_end - leave queue bypass mode
502  * @q: queue of interest
503  *
504  * Leave bypass mode and restore the normal queueing behavior.
505  */
506 void blk_queue_bypass_end(struct request_queue *q)
507 {
508 	spin_lock_irq(q->queue_lock);
509 	if (!--q->bypass_depth)
510 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 	WARN_ON_ONCE(q->bypass_depth < 0);
512 	spin_unlock_irq(q->queue_lock);
513 }
514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515 
516 void blk_set_queue_dying(struct request_queue *q)
517 {
518 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
519 
520 	if (q->mq_ops)
521 		blk_mq_wake_waiters(q);
522 	else {
523 		struct request_list *rl;
524 
525 		blk_queue_for_each_rl(rl, q) {
526 			if (rl->rq_pool) {
527 				wake_up(&rl->wait[BLK_RW_SYNC]);
528 				wake_up(&rl->wait[BLK_RW_ASYNC]);
529 			}
530 		}
531 	}
532 }
533 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
534 
535 /**
536  * blk_cleanup_queue - shutdown a request queue
537  * @q: request queue to shutdown
538  *
539  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
540  * put it.  All future requests will be failed immediately with -ENODEV.
541  */
542 void blk_cleanup_queue(struct request_queue *q)
543 {
544 	spinlock_t *lock = q->queue_lock;
545 
546 	/* mark @q DYING, no new request or merges will be allowed afterwards */
547 	mutex_lock(&q->sysfs_lock);
548 	blk_set_queue_dying(q);
549 	spin_lock_irq(lock);
550 
551 	/*
552 	 * A dying queue is permanently in bypass mode till released.  Note
553 	 * that, unlike blk_queue_bypass_start(), we aren't performing
554 	 * synchronize_rcu() after entering bypass mode to avoid the delay
555 	 * as some drivers create and destroy a lot of queues while
556 	 * probing.  This is still safe because blk_release_queue() will be
557 	 * called only after the queue refcnt drops to zero and nothing,
558 	 * RCU or not, would be traversing the queue by then.
559 	 */
560 	q->bypass_depth++;
561 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
562 
563 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
564 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
565 	queue_flag_set(QUEUE_FLAG_DYING, q);
566 	spin_unlock_irq(lock);
567 	mutex_unlock(&q->sysfs_lock);
568 
569 	/*
570 	 * Drain all requests queued before DYING marking. Set DEAD flag to
571 	 * prevent that q->request_fn() gets invoked after draining finished.
572 	 */
573 	blk_freeze_queue(q);
574 	spin_lock_irq(lock);
575 	if (!q->mq_ops)
576 		__blk_drain_queue(q, true);
577 	queue_flag_set(QUEUE_FLAG_DEAD, q);
578 	spin_unlock_irq(lock);
579 
580 	/* for synchronous bio-based driver finish in-flight integrity i/o */
581 	blk_flush_integrity();
582 
583 	/* @q won't process any more request, flush async actions */
584 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
585 	blk_sync_queue(q);
586 
587 	if (q->mq_ops)
588 		blk_mq_free_queue(q);
589 	percpu_ref_exit(&q->q_usage_counter);
590 
591 	spin_lock_irq(lock);
592 	if (q->queue_lock != &q->__queue_lock)
593 		q->queue_lock = &q->__queue_lock;
594 	spin_unlock_irq(lock);
595 
596 	bdi_unregister(&q->backing_dev_info);
597 
598 	/* @q is and will stay empty, shutdown and put */
599 	blk_put_queue(q);
600 }
601 EXPORT_SYMBOL(blk_cleanup_queue);
602 
603 /* Allocate memory local to the request queue */
604 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
605 {
606 	int nid = (int)(long)data;
607 	return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
608 }
609 
610 static void free_request_struct(void *element, void *unused)
611 {
612 	kmem_cache_free(request_cachep, element);
613 }
614 
615 int blk_init_rl(struct request_list *rl, struct request_queue *q,
616 		gfp_t gfp_mask)
617 {
618 	if (unlikely(rl->rq_pool))
619 		return 0;
620 
621 	rl->q = q;
622 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
623 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
624 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
625 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
626 
627 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
628 					  free_request_struct,
629 					  (void *)(long)q->node, gfp_mask,
630 					  q->node);
631 	if (!rl->rq_pool)
632 		return -ENOMEM;
633 
634 	return 0;
635 }
636 
637 void blk_exit_rl(struct request_list *rl)
638 {
639 	if (rl->rq_pool)
640 		mempool_destroy(rl->rq_pool);
641 }
642 
643 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
644 {
645 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
646 }
647 EXPORT_SYMBOL(blk_alloc_queue);
648 
649 int blk_queue_enter(struct request_queue *q, gfp_t gfp)
650 {
651 	while (true) {
652 		int ret;
653 
654 		if (percpu_ref_tryget_live(&q->q_usage_counter))
655 			return 0;
656 
657 		if (!gfpflags_allow_blocking(gfp))
658 			return -EBUSY;
659 
660 		ret = wait_event_interruptible(q->mq_freeze_wq,
661 				!atomic_read(&q->mq_freeze_depth) ||
662 				blk_queue_dying(q));
663 		if (blk_queue_dying(q))
664 			return -ENODEV;
665 		if (ret)
666 			return ret;
667 	}
668 }
669 
670 void blk_queue_exit(struct request_queue *q)
671 {
672 	percpu_ref_put(&q->q_usage_counter);
673 }
674 
675 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676 {
677 	struct request_queue *q =
678 		container_of(ref, struct request_queue, q_usage_counter);
679 
680 	wake_up_all(&q->mq_freeze_wq);
681 }
682 
683 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
684 {
685 	struct request_queue *q;
686 	int err;
687 
688 	q = kmem_cache_alloc_node(blk_requestq_cachep,
689 				gfp_mask | __GFP_ZERO, node_id);
690 	if (!q)
691 		return NULL;
692 
693 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
694 	if (q->id < 0)
695 		goto fail_q;
696 
697 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
698 	if (!q->bio_split)
699 		goto fail_id;
700 
701 	q->backing_dev_info.ra_pages =
702 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
703 	q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
704 	q->backing_dev_info.name = "block";
705 	q->node = node_id;
706 
707 	err = bdi_init(&q->backing_dev_info);
708 	if (err)
709 		goto fail_split;
710 
711 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
712 		    laptop_mode_timer_fn, (unsigned long) q);
713 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
714 	INIT_LIST_HEAD(&q->queue_head);
715 	INIT_LIST_HEAD(&q->timeout_list);
716 	INIT_LIST_HEAD(&q->icq_list);
717 #ifdef CONFIG_BLK_CGROUP
718 	INIT_LIST_HEAD(&q->blkg_list);
719 #endif
720 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
721 
722 	kobject_init(&q->kobj, &blk_queue_ktype);
723 
724 	mutex_init(&q->sysfs_lock);
725 	spin_lock_init(&q->__queue_lock);
726 
727 	/*
728 	 * By default initialize queue_lock to internal lock and driver can
729 	 * override it later if need be.
730 	 */
731 	q->queue_lock = &q->__queue_lock;
732 
733 	/*
734 	 * A queue starts its life with bypass turned on to avoid
735 	 * unnecessary bypass on/off overhead and nasty surprises during
736 	 * init.  The initial bypass will be finished when the queue is
737 	 * registered by blk_register_queue().
738 	 */
739 	q->bypass_depth = 1;
740 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
741 
742 	init_waitqueue_head(&q->mq_freeze_wq);
743 
744 	/*
745 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
746 	 * See blk_register_queue() for details.
747 	 */
748 	if (percpu_ref_init(&q->q_usage_counter,
749 				blk_queue_usage_counter_release,
750 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
751 		goto fail_bdi;
752 
753 	if (blkcg_init_queue(q))
754 		goto fail_ref;
755 
756 	return q;
757 
758 fail_ref:
759 	percpu_ref_exit(&q->q_usage_counter);
760 fail_bdi:
761 	bdi_destroy(&q->backing_dev_info);
762 fail_split:
763 	bioset_free(q->bio_split);
764 fail_id:
765 	ida_simple_remove(&blk_queue_ida, q->id);
766 fail_q:
767 	kmem_cache_free(blk_requestq_cachep, q);
768 	return NULL;
769 }
770 EXPORT_SYMBOL(blk_alloc_queue_node);
771 
772 /**
773  * blk_init_queue  - prepare a request queue for use with a block device
774  * @rfn:  The function to be called to process requests that have been
775  *        placed on the queue.
776  * @lock: Request queue spin lock
777  *
778  * Description:
779  *    If a block device wishes to use the standard request handling procedures,
780  *    which sorts requests and coalesces adjacent requests, then it must
781  *    call blk_init_queue().  The function @rfn will be called when there
782  *    are requests on the queue that need to be processed.  If the device
783  *    supports plugging, then @rfn may not be called immediately when requests
784  *    are available on the queue, but may be called at some time later instead.
785  *    Plugged queues are generally unplugged when a buffer belonging to one
786  *    of the requests on the queue is needed, or due to memory pressure.
787  *
788  *    @rfn is not required, or even expected, to remove all requests off the
789  *    queue, but only as many as it can handle at a time.  If it does leave
790  *    requests on the queue, it is responsible for arranging that the requests
791  *    get dealt with eventually.
792  *
793  *    The queue spin lock must be held while manipulating the requests on the
794  *    request queue; this lock will be taken also from interrupt context, so irq
795  *    disabling is needed for it.
796  *
797  *    Function returns a pointer to the initialized request queue, or %NULL if
798  *    it didn't succeed.
799  *
800  * Note:
801  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
802  *    when the block device is deactivated (such as at module unload).
803  **/
804 
805 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
806 {
807 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
808 }
809 EXPORT_SYMBOL(blk_init_queue);
810 
811 struct request_queue *
812 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
813 {
814 	struct request_queue *uninit_q, *q;
815 
816 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
817 	if (!uninit_q)
818 		return NULL;
819 
820 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
821 	if (!q)
822 		blk_cleanup_queue(uninit_q);
823 
824 	return q;
825 }
826 EXPORT_SYMBOL(blk_init_queue_node);
827 
828 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
829 
830 struct request_queue *
831 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
832 			 spinlock_t *lock)
833 {
834 	if (!q)
835 		return NULL;
836 
837 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
838 	if (!q->fq)
839 		return NULL;
840 
841 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
842 		goto fail;
843 
844 	q->request_fn		= rfn;
845 	q->prep_rq_fn		= NULL;
846 	q->unprep_rq_fn		= NULL;
847 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
848 
849 	/* Override internal queue lock with supplied lock pointer */
850 	if (lock)
851 		q->queue_lock		= lock;
852 
853 	/*
854 	 * This also sets hw/phys segments, boundary and size
855 	 */
856 	blk_queue_make_request(q, blk_queue_bio);
857 
858 	q->sg_reserved_size = INT_MAX;
859 
860 	/* Protect q->elevator from elevator_change */
861 	mutex_lock(&q->sysfs_lock);
862 
863 	/* init elevator */
864 	if (elevator_init(q, NULL)) {
865 		mutex_unlock(&q->sysfs_lock);
866 		goto fail;
867 	}
868 
869 	mutex_unlock(&q->sysfs_lock);
870 
871 	return q;
872 
873 fail:
874 	blk_free_flush_queue(q->fq);
875 	return NULL;
876 }
877 EXPORT_SYMBOL(blk_init_allocated_queue);
878 
879 bool blk_get_queue(struct request_queue *q)
880 {
881 	if (likely(!blk_queue_dying(q))) {
882 		__blk_get_queue(q);
883 		return true;
884 	}
885 
886 	return false;
887 }
888 EXPORT_SYMBOL(blk_get_queue);
889 
890 static inline void blk_free_request(struct request_list *rl, struct request *rq)
891 {
892 	if (rq->cmd_flags & REQ_ELVPRIV) {
893 		elv_put_request(rl->q, rq);
894 		if (rq->elv.icq)
895 			put_io_context(rq->elv.icq->ioc);
896 	}
897 
898 	mempool_free(rq, rl->rq_pool);
899 }
900 
901 /*
902  * ioc_batching returns true if the ioc is a valid batching request and
903  * should be given priority access to a request.
904  */
905 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
906 {
907 	if (!ioc)
908 		return 0;
909 
910 	/*
911 	 * Make sure the process is able to allocate at least 1 request
912 	 * even if the batch times out, otherwise we could theoretically
913 	 * lose wakeups.
914 	 */
915 	return ioc->nr_batch_requests == q->nr_batching ||
916 		(ioc->nr_batch_requests > 0
917 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
918 }
919 
920 /*
921  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
922  * will cause the process to be a "batcher" on all queues in the system. This
923  * is the behaviour we want though - once it gets a wakeup it should be given
924  * a nice run.
925  */
926 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
927 {
928 	if (!ioc || ioc_batching(q, ioc))
929 		return;
930 
931 	ioc->nr_batch_requests = q->nr_batching;
932 	ioc->last_waited = jiffies;
933 }
934 
935 static void __freed_request(struct request_list *rl, int sync)
936 {
937 	struct request_queue *q = rl->q;
938 
939 	if (rl->count[sync] < queue_congestion_off_threshold(q))
940 		blk_clear_congested(rl, sync);
941 
942 	if (rl->count[sync] + 1 <= q->nr_requests) {
943 		if (waitqueue_active(&rl->wait[sync]))
944 			wake_up(&rl->wait[sync]);
945 
946 		blk_clear_rl_full(rl, sync);
947 	}
948 }
949 
950 /*
951  * A request has just been released.  Account for it, update the full and
952  * congestion status, wake up any waiters.   Called under q->queue_lock.
953  */
954 static void freed_request(struct request_list *rl, unsigned int flags)
955 {
956 	struct request_queue *q = rl->q;
957 	int sync = rw_is_sync(flags);
958 
959 	q->nr_rqs[sync]--;
960 	rl->count[sync]--;
961 	if (flags & REQ_ELVPRIV)
962 		q->nr_rqs_elvpriv--;
963 
964 	__freed_request(rl, sync);
965 
966 	if (unlikely(rl->starved[sync ^ 1]))
967 		__freed_request(rl, sync ^ 1);
968 }
969 
970 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
971 {
972 	struct request_list *rl;
973 	int on_thresh, off_thresh;
974 
975 	spin_lock_irq(q->queue_lock);
976 	q->nr_requests = nr;
977 	blk_queue_congestion_threshold(q);
978 	on_thresh = queue_congestion_on_threshold(q);
979 	off_thresh = queue_congestion_off_threshold(q);
980 
981 	blk_queue_for_each_rl(rl, q) {
982 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
983 			blk_set_congested(rl, BLK_RW_SYNC);
984 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
985 			blk_clear_congested(rl, BLK_RW_SYNC);
986 
987 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
988 			blk_set_congested(rl, BLK_RW_ASYNC);
989 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
990 			blk_clear_congested(rl, BLK_RW_ASYNC);
991 
992 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
993 			blk_set_rl_full(rl, BLK_RW_SYNC);
994 		} else {
995 			blk_clear_rl_full(rl, BLK_RW_SYNC);
996 			wake_up(&rl->wait[BLK_RW_SYNC]);
997 		}
998 
999 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1000 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1001 		} else {
1002 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1003 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1004 		}
1005 	}
1006 
1007 	spin_unlock_irq(q->queue_lock);
1008 	return 0;
1009 }
1010 
1011 /*
1012  * Determine if elevator data should be initialized when allocating the
1013  * request associated with @bio.
1014  */
1015 static bool blk_rq_should_init_elevator(struct bio *bio)
1016 {
1017 	if (!bio)
1018 		return true;
1019 
1020 	/*
1021 	 * Flush requests do not use the elevator so skip initialization.
1022 	 * This allows a request to share the flush and elevator data.
1023 	 */
1024 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1025 		return false;
1026 
1027 	return true;
1028 }
1029 
1030 /**
1031  * rq_ioc - determine io_context for request allocation
1032  * @bio: request being allocated is for this bio (can be %NULL)
1033  *
1034  * Determine io_context to use for request allocation for @bio.  May return
1035  * %NULL if %current->io_context doesn't exist.
1036  */
1037 static struct io_context *rq_ioc(struct bio *bio)
1038 {
1039 #ifdef CONFIG_BLK_CGROUP
1040 	if (bio && bio->bi_ioc)
1041 		return bio->bi_ioc;
1042 #endif
1043 	return current->io_context;
1044 }
1045 
1046 /**
1047  * __get_request - get a free request
1048  * @rl: request list to allocate from
1049  * @rw_flags: RW and SYNC flags
1050  * @bio: bio to allocate request for (can be %NULL)
1051  * @gfp_mask: allocation mask
1052  *
1053  * Get a free request from @q.  This function may fail under memory
1054  * pressure or if @q is dead.
1055  *
1056  * Must be called with @q->queue_lock held and,
1057  * Returns ERR_PTR on failure, with @q->queue_lock held.
1058  * Returns request pointer on success, with @q->queue_lock *not held*.
1059  */
1060 static struct request *__get_request(struct request_list *rl, int rw_flags,
1061 				     struct bio *bio, gfp_t gfp_mask)
1062 {
1063 	struct request_queue *q = rl->q;
1064 	struct request *rq;
1065 	struct elevator_type *et = q->elevator->type;
1066 	struct io_context *ioc = rq_ioc(bio);
1067 	struct io_cq *icq = NULL;
1068 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1069 	int may_queue;
1070 
1071 	if (unlikely(blk_queue_dying(q)))
1072 		return ERR_PTR(-ENODEV);
1073 
1074 	may_queue = elv_may_queue(q, rw_flags);
1075 	if (may_queue == ELV_MQUEUE_NO)
1076 		goto rq_starved;
1077 
1078 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1079 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1080 			/*
1081 			 * The queue will fill after this allocation, so set
1082 			 * it as full, and mark this process as "batching".
1083 			 * This process will be allowed to complete a batch of
1084 			 * requests, others will be blocked.
1085 			 */
1086 			if (!blk_rl_full(rl, is_sync)) {
1087 				ioc_set_batching(q, ioc);
1088 				blk_set_rl_full(rl, is_sync);
1089 			} else {
1090 				if (may_queue != ELV_MQUEUE_MUST
1091 						&& !ioc_batching(q, ioc)) {
1092 					/*
1093 					 * The queue is full and the allocating
1094 					 * process is not a "batcher", and not
1095 					 * exempted by the IO scheduler
1096 					 */
1097 					return ERR_PTR(-ENOMEM);
1098 				}
1099 			}
1100 		}
1101 		blk_set_congested(rl, is_sync);
1102 	}
1103 
1104 	/*
1105 	 * Only allow batching queuers to allocate up to 50% over the defined
1106 	 * limit of requests, otherwise we could have thousands of requests
1107 	 * allocated with any setting of ->nr_requests
1108 	 */
1109 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1110 		return ERR_PTR(-ENOMEM);
1111 
1112 	q->nr_rqs[is_sync]++;
1113 	rl->count[is_sync]++;
1114 	rl->starved[is_sync] = 0;
1115 
1116 	/*
1117 	 * Decide whether the new request will be managed by elevator.  If
1118 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
1119 	 * prevent the current elevator from being destroyed until the new
1120 	 * request is freed.  This guarantees icq's won't be destroyed and
1121 	 * makes creating new ones safe.
1122 	 *
1123 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1124 	 * it will be created after releasing queue_lock.
1125 	 */
1126 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1127 		rw_flags |= REQ_ELVPRIV;
1128 		q->nr_rqs_elvpriv++;
1129 		if (et->icq_cache && ioc)
1130 			icq = ioc_lookup_icq(ioc, q);
1131 	}
1132 
1133 	if (blk_queue_io_stat(q))
1134 		rw_flags |= REQ_IO_STAT;
1135 	spin_unlock_irq(q->queue_lock);
1136 
1137 	/* allocate and init request */
1138 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1139 	if (!rq)
1140 		goto fail_alloc;
1141 
1142 	blk_rq_init(q, rq);
1143 	blk_rq_set_rl(rq, rl);
1144 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
1145 
1146 	/* init elvpriv */
1147 	if (rw_flags & REQ_ELVPRIV) {
1148 		if (unlikely(et->icq_cache && !icq)) {
1149 			if (ioc)
1150 				icq = ioc_create_icq(ioc, q, gfp_mask);
1151 			if (!icq)
1152 				goto fail_elvpriv;
1153 		}
1154 
1155 		rq->elv.icq = icq;
1156 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1157 			goto fail_elvpriv;
1158 
1159 		/* @rq->elv.icq holds io_context until @rq is freed */
1160 		if (icq)
1161 			get_io_context(icq->ioc);
1162 	}
1163 out:
1164 	/*
1165 	 * ioc may be NULL here, and ioc_batching will be false. That's
1166 	 * OK, if the queue is under the request limit then requests need
1167 	 * not count toward the nr_batch_requests limit. There will always
1168 	 * be some limit enforced by BLK_BATCH_TIME.
1169 	 */
1170 	if (ioc_batching(q, ioc))
1171 		ioc->nr_batch_requests--;
1172 
1173 	trace_block_getrq(q, bio, rw_flags & 1);
1174 	return rq;
1175 
1176 fail_elvpriv:
1177 	/*
1178 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1179 	 * and may fail indefinitely under memory pressure and thus
1180 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1181 	 * disturb iosched and blkcg but weird is bettern than dead.
1182 	 */
1183 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1184 			   __func__, dev_name(q->backing_dev_info.dev));
1185 
1186 	rq->cmd_flags &= ~REQ_ELVPRIV;
1187 	rq->elv.icq = NULL;
1188 
1189 	spin_lock_irq(q->queue_lock);
1190 	q->nr_rqs_elvpriv--;
1191 	spin_unlock_irq(q->queue_lock);
1192 	goto out;
1193 
1194 fail_alloc:
1195 	/*
1196 	 * Allocation failed presumably due to memory. Undo anything we
1197 	 * might have messed up.
1198 	 *
1199 	 * Allocating task should really be put onto the front of the wait
1200 	 * queue, but this is pretty rare.
1201 	 */
1202 	spin_lock_irq(q->queue_lock);
1203 	freed_request(rl, rw_flags);
1204 
1205 	/*
1206 	 * in the very unlikely event that allocation failed and no
1207 	 * requests for this direction was pending, mark us starved so that
1208 	 * freeing of a request in the other direction will notice
1209 	 * us. another possible fix would be to split the rq mempool into
1210 	 * READ and WRITE
1211 	 */
1212 rq_starved:
1213 	if (unlikely(rl->count[is_sync] == 0))
1214 		rl->starved[is_sync] = 1;
1215 	return ERR_PTR(-ENOMEM);
1216 }
1217 
1218 /**
1219  * get_request - get a free request
1220  * @q: request_queue to allocate request from
1221  * @rw_flags: RW and SYNC flags
1222  * @bio: bio to allocate request for (can be %NULL)
1223  * @gfp_mask: allocation mask
1224  *
1225  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1226  * this function keeps retrying under memory pressure and fails iff @q is dead.
1227  *
1228  * Must be called with @q->queue_lock held and,
1229  * Returns ERR_PTR on failure, with @q->queue_lock held.
1230  * Returns request pointer on success, with @q->queue_lock *not held*.
1231  */
1232 static struct request *get_request(struct request_queue *q, int rw_flags,
1233 				   struct bio *bio, gfp_t gfp_mask)
1234 {
1235 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1236 	DEFINE_WAIT(wait);
1237 	struct request_list *rl;
1238 	struct request *rq;
1239 
1240 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1241 retry:
1242 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1243 	if (!IS_ERR(rq))
1244 		return rq;
1245 
1246 	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1247 		blk_put_rl(rl);
1248 		return rq;
1249 	}
1250 
1251 	/* wait on @rl and retry */
1252 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1253 				  TASK_UNINTERRUPTIBLE);
1254 
1255 	trace_block_sleeprq(q, bio, rw_flags & 1);
1256 
1257 	spin_unlock_irq(q->queue_lock);
1258 	io_schedule();
1259 
1260 	/*
1261 	 * After sleeping, we become a "batching" process and will be able
1262 	 * to allocate at least one request, and up to a big batch of them
1263 	 * for a small period time.  See ioc_batching, ioc_set_batching
1264 	 */
1265 	ioc_set_batching(q, current->io_context);
1266 
1267 	spin_lock_irq(q->queue_lock);
1268 	finish_wait(&rl->wait[is_sync], &wait);
1269 
1270 	goto retry;
1271 }
1272 
1273 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1274 		gfp_t gfp_mask)
1275 {
1276 	struct request *rq;
1277 
1278 	BUG_ON(rw != READ && rw != WRITE);
1279 
1280 	/* create ioc upfront */
1281 	create_io_context(gfp_mask, q->node);
1282 
1283 	spin_lock_irq(q->queue_lock);
1284 	rq = get_request(q, rw, NULL, gfp_mask);
1285 	if (IS_ERR(rq))
1286 		spin_unlock_irq(q->queue_lock);
1287 	/* q->queue_lock is unlocked at this point */
1288 
1289 	return rq;
1290 }
1291 
1292 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1293 {
1294 	if (q->mq_ops)
1295 		return blk_mq_alloc_request(q, rw, gfp_mask, false);
1296 	else
1297 		return blk_old_get_request(q, rw, gfp_mask);
1298 }
1299 EXPORT_SYMBOL(blk_get_request);
1300 
1301 /**
1302  * blk_make_request - given a bio, allocate a corresponding struct request.
1303  * @q: target request queue
1304  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1305  *        It may be a chained-bio properly constructed by block/bio layer.
1306  * @gfp_mask: gfp flags to be used for memory allocation
1307  *
1308  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1309  * type commands. Where the struct request needs to be farther initialized by
1310  * the caller. It is passed a &struct bio, which describes the memory info of
1311  * the I/O transfer.
1312  *
1313  * The caller of blk_make_request must make sure that bi_io_vec
1314  * are set to describe the memory buffers. That bio_data_dir() will return
1315  * the needed direction of the request. (And all bio's in the passed bio-chain
1316  * are properly set accordingly)
1317  *
1318  * If called under none-sleepable conditions, mapped bio buffers must not
1319  * need bouncing, by calling the appropriate masked or flagged allocator,
1320  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1321  * BUG.
1322  *
1323  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1324  * given to how you allocate bios. In particular, you cannot use
1325  * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1326  * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1327  * thus resulting in a deadlock. Alternatively bios should be allocated using
1328  * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1329  * If possible a big IO should be split into smaller parts when allocation
1330  * fails. Partial allocation should not be an error, or you risk a live-lock.
1331  */
1332 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1333 				 gfp_t gfp_mask)
1334 {
1335 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1336 
1337 	if (IS_ERR(rq))
1338 		return rq;
1339 
1340 	blk_rq_set_block_pc(rq);
1341 
1342 	for_each_bio(bio) {
1343 		struct bio *bounce_bio = bio;
1344 		int ret;
1345 
1346 		blk_queue_bounce(q, &bounce_bio);
1347 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1348 		if (unlikely(ret)) {
1349 			blk_put_request(rq);
1350 			return ERR_PTR(ret);
1351 		}
1352 	}
1353 
1354 	return rq;
1355 }
1356 EXPORT_SYMBOL(blk_make_request);
1357 
1358 /**
1359  * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1360  * @rq:		request to be initialized
1361  *
1362  */
1363 void blk_rq_set_block_pc(struct request *rq)
1364 {
1365 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1366 	rq->__data_len = 0;
1367 	rq->__sector = (sector_t) -1;
1368 	rq->bio = rq->biotail = NULL;
1369 	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1370 }
1371 EXPORT_SYMBOL(blk_rq_set_block_pc);
1372 
1373 /**
1374  * blk_requeue_request - put a request back on queue
1375  * @q:		request queue where request should be inserted
1376  * @rq:		request to be inserted
1377  *
1378  * Description:
1379  *    Drivers often keep queueing requests until the hardware cannot accept
1380  *    more, when that condition happens we need to put the request back
1381  *    on the queue. Must be called with queue lock held.
1382  */
1383 void blk_requeue_request(struct request_queue *q, struct request *rq)
1384 {
1385 	blk_delete_timer(rq);
1386 	blk_clear_rq_complete(rq);
1387 	trace_block_rq_requeue(q, rq);
1388 
1389 	if (rq->cmd_flags & REQ_QUEUED)
1390 		blk_queue_end_tag(q, rq);
1391 
1392 	BUG_ON(blk_queued_rq(rq));
1393 
1394 	elv_requeue_request(q, rq);
1395 }
1396 EXPORT_SYMBOL(blk_requeue_request);
1397 
1398 static void add_acct_request(struct request_queue *q, struct request *rq,
1399 			     int where)
1400 {
1401 	blk_account_io_start(rq, true);
1402 	__elv_add_request(q, rq, where);
1403 }
1404 
1405 static void part_round_stats_single(int cpu, struct hd_struct *part,
1406 				    unsigned long now)
1407 {
1408 	int inflight;
1409 
1410 	if (now == part->stamp)
1411 		return;
1412 
1413 	inflight = part_in_flight(part);
1414 	if (inflight) {
1415 		__part_stat_add(cpu, part, time_in_queue,
1416 				inflight * (now - part->stamp));
1417 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1418 	}
1419 	part->stamp = now;
1420 }
1421 
1422 /**
1423  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1424  * @cpu: cpu number for stats access
1425  * @part: target partition
1426  *
1427  * The average IO queue length and utilisation statistics are maintained
1428  * by observing the current state of the queue length and the amount of
1429  * time it has been in this state for.
1430  *
1431  * Normally, that accounting is done on IO completion, but that can result
1432  * in more than a second's worth of IO being accounted for within any one
1433  * second, leading to >100% utilisation.  To deal with that, we call this
1434  * function to do a round-off before returning the results when reading
1435  * /proc/diskstats.  This accounts immediately for all queue usage up to
1436  * the current jiffies and restarts the counters again.
1437  */
1438 void part_round_stats(int cpu, struct hd_struct *part)
1439 {
1440 	unsigned long now = jiffies;
1441 
1442 	if (part->partno)
1443 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1444 	part_round_stats_single(cpu, part, now);
1445 }
1446 EXPORT_SYMBOL_GPL(part_round_stats);
1447 
1448 #ifdef CONFIG_PM
1449 static void blk_pm_put_request(struct request *rq)
1450 {
1451 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1452 		pm_runtime_mark_last_busy(rq->q->dev);
1453 }
1454 #else
1455 static inline void blk_pm_put_request(struct request *rq) {}
1456 #endif
1457 
1458 /*
1459  * queue lock must be held
1460  */
1461 void __blk_put_request(struct request_queue *q, struct request *req)
1462 {
1463 	if (unlikely(!q))
1464 		return;
1465 
1466 	if (q->mq_ops) {
1467 		blk_mq_free_request(req);
1468 		return;
1469 	}
1470 
1471 	blk_pm_put_request(req);
1472 
1473 	elv_completed_request(q, req);
1474 
1475 	/* this is a bio leak */
1476 	WARN_ON(req->bio != NULL);
1477 
1478 	/*
1479 	 * Request may not have originated from ll_rw_blk. if not,
1480 	 * it didn't come out of our reserved rq pools
1481 	 */
1482 	if (req->cmd_flags & REQ_ALLOCED) {
1483 		unsigned int flags = req->cmd_flags;
1484 		struct request_list *rl = blk_rq_rl(req);
1485 
1486 		BUG_ON(!list_empty(&req->queuelist));
1487 		BUG_ON(ELV_ON_HASH(req));
1488 
1489 		blk_free_request(rl, req);
1490 		freed_request(rl, flags);
1491 		blk_put_rl(rl);
1492 	}
1493 }
1494 EXPORT_SYMBOL_GPL(__blk_put_request);
1495 
1496 void blk_put_request(struct request *req)
1497 {
1498 	struct request_queue *q = req->q;
1499 
1500 	if (q->mq_ops)
1501 		blk_mq_free_request(req);
1502 	else {
1503 		unsigned long flags;
1504 
1505 		spin_lock_irqsave(q->queue_lock, flags);
1506 		__blk_put_request(q, req);
1507 		spin_unlock_irqrestore(q->queue_lock, flags);
1508 	}
1509 }
1510 EXPORT_SYMBOL(blk_put_request);
1511 
1512 /**
1513  * blk_add_request_payload - add a payload to a request
1514  * @rq: request to update
1515  * @page: page backing the payload
1516  * @len: length of the payload.
1517  *
1518  * This allows to later add a payload to an already submitted request by
1519  * a block driver.  The driver needs to take care of freeing the payload
1520  * itself.
1521  *
1522  * Note that this is a quite horrible hack and nothing but handling of
1523  * discard requests should ever use it.
1524  */
1525 void blk_add_request_payload(struct request *rq, struct page *page,
1526 		unsigned int len)
1527 {
1528 	struct bio *bio = rq->bio;
1529 
1530 	bio->bi_io_vec->bv_page = page;
1531 	bio->bi_io_vec->bv_offset = 0;
1532 	bio->bi_io_vec->bv_len = len;
1533 
1534 	bio->bi_iter.bi_size = len;
1535 	bio->bi_vcnt = 1;
1536 	bio->bi_phys_segments = 1;
1537 
1538 	rq->__data_len = rq->resid_len = len;
1539 	rq->nr_phys_segments = 1;
1540 }
1541 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1542 
1543 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1544 			    struct bio *bio)
1545 {
1546 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1547 
1548 	if (!ll_back_merge_fn(q, req, bio))
1549 		return false;
1550 
1551 	trace_block_bio_backmerge(q, req, bio);
1552 
1553 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1554 		blk_rq_set_mixed_merge(req);
1555 
1556 	req->biotail->bi_next = bio;
1557 	req->biotail = bio;
1558 	req->__data_len += bio->bi_iter.bi_size;
1559 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1560 
1561 	blk_account_io_start(req, false);
1562 	return true;
1563 }
1564 
1565 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1566 			     struct bio *bio)
1567 {
1568 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1569 
1570 	if (!ll_front_merge_fn(q, req, bio))
1571 		return false;
1572 
1573 	trace_block_bio_frontmerge(q, req, bio);
1574 
1575 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1576 		blk_rq_set_mixed_merge(req);
1577 
1578 	bio->bi_next = req->bio;
1579 	req->bio = bio;
1580 
1581 	req->__sector = bio->bi_iter.bi_sector;
1582 	req->__data_len += bio->bi_iter.bi_size;
1583 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1584 
1585 	blk_account_io_start(req, false);
1586 	return true;
1587 }
1588 
1589 /**
1590  * blk_attempt_plug_merge - try to merge with %current's plugged list
1591  * @q: request_queue new bio is being queued at
1592  * @bio: new bio being queued
1593  * @request_count: out parameter for number of traversed plugged requests
1594  * @same_queue_rq: pointer to &struct request that gets filled in when
1595  * another request associated with @q is found on the plug list
1596  * (optional, may be %NULL)
1597  *
1598  * Determine whether @bio being queued on @q can be merged with a request
1599  * on %current's plugged list.  Returns %true if merge was successful,
1600  * otherwise %false.
1601  *
1602  * Plugging coalesces IOs from the same issuer for the same purpose without
1603  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1604  * than scheduling, and the request, while may have elvpriv data, is not
1605  * added on the elevator at this point.  In addition, we don't have
1606  * reliable access to the elevator outside queue lock.  Only check basic
1607  * merging parameters without querying the elevator.
1608  *
1609  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1610  */
1611 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1612 			    unsigned int *request_count,
1613 			    struct request **same_queue_rq)
1614 {
1615 	struct blk_plug *plug;
1616 	struct request *rq;
1617 	bool ret = false;
1618 	struct list_head *plug_list;
1619 
1620 	plug = current->plug;
1621 	if (!plug)
1622 		goto out;
1623 	*request_count = 0;
1624 
1625 	if (q->mq_ops)
1626 		plug_list = &plug->mq_list;
1627 	else
1628 		plug_list = &plug->list;
1629 
1630 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1631 		int el_ret;
1632 
1633 		if (rq->q == q) {
1634 			(*request_count)++;
1635 			/*
1636 			 * Only blk-mq multiple hardware queues case checks the
1637 			 * rq in the same queue, there should be only one such
1638 			 * rq in a queue
1639 			 **/
1640 			if (same_queue_rq)
1641 				*same_queue_rq = rq;
1642 		}
1643 
1644 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1645 			continue;
1646 
1647 		el_ret = blk_try_merge(rq, bio);
1648 		if (el_ret == ELEVATOR_BACK_MERGE) {
1649 			ret = bio_attempt_back_merge(q, rq, bio);
1650 			if (ret)
1651 				break;
1652 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1653 			ret = bio_attempt_front_merge(q, rq, bio);
1654 			if (ret)
1655 				break;
1656 		}
1657 	}
1658 out:
1659 	return ret;
1660 }
1661 
1662 unsigned int blk_plug_queued_count(struct request_queue *q)
1663 {
1664 	struct blk_plug *plug;
1665 	struct request *rq;
1666 	struct list_head *plug_list;
1667 	unsigned int ret = 0;
1668 
1669 	plug = current->plug;
1670 	if (!plug)
1671 		goto out;
1672 
1673 	if (q->mq_ops)
1674 		plug_list = &plug->mq_list;
1675 	else
1676 		plug_list = &plug->list;
1677 
1678 	list_for_each_entry(rq, plug_list, queuelist) {
1679 		if (rq->q == q)
1680 			ret++;
1681 	}
1682 out:
1683 	return ret;
1684 }
1685 
1686 void init_request_from_bio(struct request *req, struct bio *bio)
1687 {
1688 	req->cmd_type = REQ_TYPE_FS;
1689 
1690 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1691 	if (bio->bi_rw & REQ_RAHEAD)
1692 		req->cmd_flags |= REQ_FAILFAST_MASK;
1693 
1694 	req->errors = 0;
1695 	req->__sector = bio->bi_iter.bi_sector;
1696 	req->ioprio = bio_prio(bio);
1697 	blk_rq_bio_prep(req->q, req, bio);
1698 }
1699 
1700 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1701 {
1702 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1703 	struct blk_plug *plug;
1704 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1705 	struct request *req;
1706 	unsigned int request_count = 0;
1707 
1708 	/*
1709 	 * low level driver can indicate that it wants pages above a
1710 	 * certain limit bounced to low memory (ie for highmem, or even
1711 	 * ISA dma in theory)
1712 	 */
1713 	blk_queue_bounce(q, &bio);
1714 
1715 	blk_queue_split(q, &bio, q->bio_split);
1716 
1717 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1718 		bio->bi_error = -EIO;
1719 		bio_endio(bio);
1720 		return BLK_QC_T_NONE;
1721 	}
1722 
1723 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1724 		spin_lock_irq(q->queue_lock);
1725 		where = ELEVATOR_INSERT_FLUSH;
1726 		goto get_rq;
1727 	}
1728 
1729 	/*
1730 	 * Check if we can merge with the plugged list before grabbing
1731 	 * any locks.
1732 	 */
1733 	if (!blk_queue_nomerges(q)) {
1734 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1735 			return BLK_QC_T_NONE;
1736 	} else
1737 		request_count = blk_plug_queued_count(q);
1738 
1739 	spin_lock_irq(q->queue_lock);
1740 
1741 	el_ret = elv_merge(q, &req, bio);
1742 	if (el_ret == ELEVATOR_BACK_MERGE) {
1743 		if (bio_attempt_back_merge(q, req, bio)) {
1744 			elv_bio_merged(q, req, bio);
1745 			if (!attempt_back_merge(q, req))
1746 				elv_merged_request(q, req, el_ret);
1747 			goto out_unlock;
1748 		}
1749 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1750 		if (bio_attempt_front_merge(q, req, bio)) {
1751 			elv_bio_merged(q, req, bio);
1752 			if (!attempt_front_merge(q, req))
1753 				elv_merged_request(q, req, el_ret);
1754 			goto out_unlock;
1755 		}
1756 	}
1757 
1758 get_rq:
1759 	/*
1760 	 * This sync check and mask will be re-done in init_request_from_bio(),
1761 	 * but we need to set it earlier to expose the sync flag to the
1762 	 * rq allocator and io schedulers.
1763 	 */
1764 	rw_flags = bio_data_dir(bio);
1765 	if (sync)
1766 		rw_flags |= REQ_SYNC;
1767 
1768 	/*
1769 	 * Grab a free request. This is might sleep but can not fail.
1770 	 * Returns with the queue unlocked.
1771 	 */
1772 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1773 	if (IS_ERR(req)) {
1774 		bio->bi_error = PTR_ERR(req);
1775 		bio_endio(bio);
1776 		goto out_unlock;
1777 	}
1778 
1779 	/*
1780 	 * After dropping the lock and possibly sleeping here, our request
1781 	 * may now be mergeable after it had proven unmergeable (above).
1782 	 * We don't worry about that case for efficiency. It won't happen
1783 	 * often, and the elevators are able to handle it.
1784 	 */
1785 	init_request_from_bio(req, bio);
1786 
1787 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1788 		req->cpu = raw_smp_processor_id();
1789 
1790 	plug = current->plug;
1791 	if (plug) {
1792 		/*
1793 		 * If this is the first request added after a plug, fire
1794 		 * of a plug trace.
1795 		 */
1796 		if (!request_count)
1797 			trace_block_plug(q);
1798 		else {
1799 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1800 				blk_flush_plug_list(plug, false);
1801 				trace_block_plug(q);
1802 			}
1803 		}
1804 		list_add_tail(&req->queuelist, &plug->list);
1805 		blk_account_io_start(req, true);
1806 	} else {
1807 		spin_lock_irq(q->queue_lock);
1808 		add_acct_request(q, req, where);
1809 		__blk_run_queue(q);
1810 out_unlock:
1811 		spin_unlock_irq(q->queue_lock);
1812 	}
1813 
1814 	return BLK_QC_T_NONE;
1815 }
1816 
1817 /*
1818  * If bio->bi_dev is a partition, remap the location
1819  */
1820 static inline void blk_partition_remap(struct bio *bio)
1821 {
1822 	struct block_device *bdev = bio->bi_bdev;
1823 
1824 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1825 		struct hd_struct *p = bdev->bd_part;
1826 
1827 		bio->bi_iter.bi_sector += p->start_sect;
1828 		bio->bi_bdev = bdev->bd_contains;
1829 
1830 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1831 				      bdev->bd_dev,
1832 				      bio->bi_iter.bi_sector - p->start_sect);
1833 	}
1834 }
1835 
1836 static void handle_bad_sector(struct bio *bio)
1837 {
1838 	char b[BDEVNAME_SIZE];
1839 
1840 	printk(KERN_INFO "attempt to access beyond end of device\n");
1841 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1842 			bdevname(bio->bi_bdev, b),
1843 			bio->bi_rw,
1844 			(unsigned long long)bio_end_sector(bio),
1845 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1846 }
1847 
1848 #ifdef CONFIG_FAIL_MAKE_REQUEST
1849 
1850 static DECLARE_FAULT_ATTR(fail_make_request);
1851 
1852 static int __init setup_fail_make_request(char *str)
1853 {
1854 	return setup_fault_attr(&fail_make_request, str);
1855 }
1856 __setup("fail_make_request=", setup_fail_make_request);
1857 
1858 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1859 {
1860 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1861 }
1862 
1863 static int __init fail_make_request_debugfs(void)
1864 {
1865 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1866 						NULL, &fail_make_request);
1867 
1868 	return PTR_ERR_OR_ZERO(dir);
1869 }
1870 
1871 late_initcall(fail_make_request_debugfs);
1872 
1873 #else /* CONFIG_FAIL_MAKE_REQUEST */
1874 
1875 static inline bool should_fail_request(struct hd_struct *part,
1876 					unsigned int bytes)
1877 {
1878 	return false;
1879 }
1880 
1881 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1882 
1883 /*
1884  * Check whether this bio extends beyond the end of the device.
1885  */
1886 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1887 {
1888 	sector_t maxsector;
1889 
1890 	if (!nr_sectors)
1891 		return 0;
1892 
1893 	/* Test device or partition size, when known. */
1894 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1895 	if (maxsector) {
1896 		sector_t sector = bio->bi_iter.bi_sector;
1897 
1898 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1899 			/*
1900 			 * This may well happen - the kernel calls bread()
1901 			 * without checking the size of the device, e.g., when
1902 			 * mounting a device.
1903 			 */
1904 			handle_bad_sector(bio);
1905 			return 1;
1906 		}
1907 	}
1908 
1909 	return 0;
1910 }
1911 
1912 static noinline_for_stack bool
1913 generic_make_request_checks(struct bio *bio)
1914 {
1915 	struct request_queue *q;
1916 	int nr_sectors = bio_sectors(bio);
1917 	int err = -EIO;
1918 	char b[BDEVNAME_SIZE];
1919 	struct hd_struct *part;
1920 
1921 	might_sleep();
1922 
1923 	if (bio_check_eod(bio, nr_sectors))
1924 		goto end_io;
1925 
1926 	q = bdev_get_queue(bio->bi_bdev);
1927 	if (unlikely(!q)) {
1928 		printk(KERN_ERR
1929 		       "generic_make_request: Trying to access "
1930 			"nonexistent block-device %s (%Lu)\n",
1931 			bdevname(bio->bi_bdev, b),
1932 			(long long) bio->bi_iter.bi_sector);
1933 		goto end_io;
1934 	}
1935 
1936 	part = bio->bi_bdev->bd_part;
1937 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1938 	    should_fail_request(&part_to_disk(part)->part0,
1939 				bio->bi_iter.bi_size))
1940 		goto end_io;
1941 
1942 	/*
1943 	 * If this device has partitions, remap block n
1944 	 * of partition p to block n+start(p) of the disk.
1945 	 */
1946 	blk_partition_remap(bio);
1947 
1948 	if (bio_check_eod(bio, nr_sectors))
1949 		goto end_io;
1950 
1951 	/*
1952 	 * Filter flush bio's early so that make_request based
1953 	 * drivers without flush support don't have to worry
1954 	 * about them.
1955 	 */
1956 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1957 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1958 		if (!nr_sectors) {
1959 			err = 0;
1960 			goto end_io;
1961 		}
1962 	}
1963 
1964 	if ((bio->bi_rw & REQ_DISCARD) &&
1965 	    (!blk_queue_discard(q) ||
1966 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1967 		err = -EOPNOTSUPP;
1968 		goto end_io;
1969 	}
1970 
1971 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1972 		err = -EOPNOTSUPP;
1973 		goto end_io;
1974 	}
1975 
1976 	/*
1977 	 * Various block parts want %current->io_context and lazy ioc
1978 	 * allocation ends up trading a lot of pain for a small amount of
1979 	 * memory.  Just allocate it upfront.  This may fail and block
1980 	 * layer knows how to live with it.
1981 	 */
1982 	create_io_context(GFP_ATOMIC, q->node);
1983 
1984 	if (!blkcg_bio_issue_check(q, bio))
1985 		return false;
1986 
1987 	trace_block_bio_queue(q, bio);
1988 	return true;
1989 
1990 end_io:
1991 	bio->bi_error = err;
1992 	bio_endio(bio);
1993 	return false;
1994 }
1995 
1996 /**
1997  * generic_make_request - hand a buffer to its device driver for I/O
1998  * @bio:  The bio describing the location in memory and on the device.
1999  *
2000  * generic_make_request() is used to make I/O requests of block
2001  * devices. It is passed a &struct bio, which describes the I/O that needs
2002  * to be done.
2003  *
2004  * generic_make_request() does not return any status.  The
2005  * success/failure status of the request, along with notification of
2006  * completion, is delivered asynchronously through the bio->bi_end_io
2007  * function described (one day) else where.
2008  *
2009  * The caller of generic_make_request must make sure that bi_io_vec
2010  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2011  * set to describe the device address, and the
2012  * bi_end_io and optionally bi_private are set to describe how
2013  * completion notification should be signaled.
2014  *
2015  * generic_make_request and the drivers it calls may use bi_next if this
2016  * bio happens to be merged with someone else, and may resubmit the bio to
2017  * a lower device by calling into generic_make_request recursively, which
2018  * means the bio should NOT be touched after the call to ->make_request_fn.
2019  */
2020 blk_qc_t generic_make_request(struct bio *bio)
2021 {
2022 	struct bio_list bio_list_on_stack;
2023 	blk_qc_t ret = BLK_QC_T_NONE;
2024 
2025 	if (!generic_make_request_checks(bio))
2026 		goto out;
2027 
2028 	/*
2029 	 * We only want one ->make_request_fn to be active at a time, else
2030 	 * stack usage with stacked devices could be a problem.  So use
2031 	 * current->bio_list to keep a list of requests submited by a
2032 	 * make_request_fn function.  current->bio_list is also used as a
2033 	 * flag to say if generic_make_request is currently active in this
2034 	 * task or not.  If it is NULL, then no make_request is active.  If
2035 	 * it is non-NULL, then a make_request is active, and new requests
2036 	 * should be added at the tail
2037 	 */
2038 	if (current->bio_list) {
2039 		bio_list_add(current->bio_list, bio);
2040 		goto out;
2041 	}
2042 
2043 	/* following loop may be a bit non-obvious, and so deserves some
2044 	 * explanation.
2045 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2046 	 * ensure that) so we have a list with a single bio.
2047 	 * We pretend that we have just taken it off a longer list, so
2048 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2049 	 * thus initialising the bio_list of new bios to be
2050 	 * added.  ->make_request() may indeed add some more bios
2051 	 * through a recursive call to generic_make_request.  If it
2052 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2053 	 * from the top.  In this case we really did just take the bio
2054 	 * of the top of the list (no pretending) and so remove it from
2055 	 * bio_list, and call into ->make_request() again.
2056 	 */
2057 	BUG_ON(bio->bi_next);
2058 	bio_list_init(&bio_list_on_stack);
2059 	current->bio_list = &bio_list_on_stack;
2060 	do {
2061 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2062 
2063 		if (likely(blk_queue_enter(q, __GFP_DIRECT_RECLAIM) == 0)) {
2064 
2065 			ret = q->make_request_fn(q, bio);
2066 
2067 			blk_queue_exit(q);
2068 
2069 			bio = bio_list_pop(current->bio_list);
2070 		} else {
2071 			struct bio *bio_next = bio_list_pop(current->bio_list);
2072 
2073 			bio_io_error(bio);
2074 			bio = bio_next;
2075 		}
2076 	} while (bio);
2077 	current->bio_list = NULL; /* deactivate */
2078 
2079 out:
2080 	return ret;
2081 }
2082 EXPORT_SYMBOL(generic_make_request);
2083 
2084 /**
2085  * submit_bio - submit a bio to the block device layer for I/O
2086  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2087  * @bio: The &struct bio which describes the I/O
2088  *
2089  * submit_bio() is very similar in purpose to generic_make_request(), and
2090  * uses that function to do most of the work. Both are fairly rough
2091  * interfaces; @bio must be presetup and ready for I/O.
2092  *
2093  */
2094 blk_qc_t submit_bio(int rw, struct bio *bio)
2095 {
2096 	bio->bi_rw |= rw;
2097 
2098 	/*
2099 	 * If it's a regular read/write or a barrier with data attached,
2100 	 * go through the normal accounting stuff before submission.
2101 	 */
2102 	if (bio_has_data(bio)) {
2103 		unsigned int count;
2104 
2105 		if (unlikely(rw & REQ_WRITE_SAME))
2106 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2107 		else
2108 			count = bio_sectors(bio);
2109 
2110 		if (rw & WRITE) {
2111 			count_vm_events(PGPGOUT, count);
2112 		} else {
2113 			task_io_account_read(bio->bi_iter.bi_size);
2114 			count_vm_events(PGPGIN, count);
2115 		}
2116 
2117 		if (unlikely(block_dump)) {
2118 			char b[BDEVNAME_SIZE];
2119 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2120 			current->comm, task_pid_nr(current),
2121 				(rw & WRITE) ? "WRITE" : "READ",
2122 				(unsigned long long)bio->bi_iter.bi_sector,
2123 				bdevname(bio->bi_bdev, b),
2124 				count);
2125 		}
2126 	}
2127 
2128 	return generic_make_request(bio);
2129 }
2130 EXPORT_SYMBOL(submit_bio);
2131 
2132 /**
2133  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2134  *                              for new the queue limits
2135  * @q:  the queue
2136  * @rq: the request being checked
2137  *
2138  * Description:
2139  *    @rq may have been made based on weaker limitations of upper-level queues
2140  *    in request stacking drivers, and it may violate the limitation of @q.
2141  *    Since the block layer and the underlying device driver trust @rq
2142  *    after it is inserted to @q, it should be checked against @q before
2143  *    the insertion using this generic function.
2144  *
2145  *    Request stacking drivers like request-based dm may change the queue
2146  *    limits when retrying requests on other queues. Those requests need
2147  *    to be checked against the new queue limits again during dispatch.
2148  */
2149 static int blk_cloned_rq_check_limits(struct request_queue *q,
2150 				      struct request *rq)
2151 {
2152 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2153 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2154 		return -EIO;
2155 	}
2156 
2157 	/*
2158 	 * queue's settings related to segment counting like q->bounce_pfn
2159 	 * may differ from that of other stacking queues.
2160 	 * Recalculate it to check the request correctly on this queue's
2161 	 * limitation.
2162 	 */
2163 	blk_recalc_rq_segments(rq);
2164 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2165 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2166 		return -EIO;
2167 	}
2168 
2169 	return 0;
2170 }
2171 
2172 /**
2173  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2174  * @q:  the queue to submit the request
2175  * @rq: the request being queued
2176  */
2177 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2178 {
2179 	unsigned long flags;
2180 	int where = ELEVATOR_INSERT_BACK;
2181 
2182 	if (blk_cloned_rq_check_limits(q, rq))
2183 		return -EIO;
2184 
2185 	if (rq->rq_disk &&
2186 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2187 		return -EIO;
2188 
2189 	if (q->mq_ops) {
2190 		if (blk_queue_io_stat(q))
2191 			blk_account_io_start(rq, true);
2192 		blk_mq_insert_request(rq, false, true, true);
2193 		return 0;
2194 	}
2195 
2196 	spin_lock_irqsave(q->queue_lock, flags);
2197 	if (unlikely(blk_queue_dying(q))) {
2198 		spin_unlock_irqrestore(q->queue_lock, flags);
2199 		return -ENODEV;
2200 	}
2201 
2202 	/*
2203 	 * Submitting request must be dequeued before calling this function
2204 	 * because it will be linked to another request_queue
2205 	 */
2206 	BUG_ON(blk_queued_rq(rq));
2207 
2208 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2209 		where = ELEVATOR_INSERT_FLUSH;
2210 
2211 	add_acct_request(q, rq, where);
2212 	if (where == ELEVATOR_INSERT_FLUSH)
2213 		__blk_run_queue(q);
2214 	spin_unlock_irqrestore(q->queue_lock, flags);
2215 
2216 	return 0;
2217 }
2218 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2219 
2220 /**
2221  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2222  * @rq: request to examine
2223  *
2224  * Description:
2225  *     A request could be merge of IOs which require different failure
2226  *     handling.  This function determines the number of bytes which
2227  *     can be failed from the beginning of the request without
2228  *     crossing into area which need to be retried further.
2229  *
2230  * Return:
2231  *     The number of bytes to fail.
2232  *
2233  * Context:
2234  *     queue_lock must be held.
2235  */
2236 unsigned int blk_rq_err_bytes(const struct request *rq)
2237 {
2238 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2239 	unsigned int bytes = 0;
2240 	struct bio *bio;
2241 
2242 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2243 		return blk_rq_bytes(rq);
2244 
2245 	/*
2246 	 * Currently the only 'mixing' which can happen is between
2247 	 * different fastfail types.  We can safely fail portions
2248 	 * which have all the failfast bits that the first one has -
2249 	 * the ones which are at least as eager to fail as the first
2250 	 * one.
2251 	 */
2252 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2253 		if ((bio->bi_rw & ff) != ff)
2254 			break;
2255 		bytes += bio->bi_iter.bi_size;
2256 	}
2257 
2258 	/* this could lead to infinite loop */
2259 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2260 	return bytes;
2261 }
2262 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2263 
2264 void blk_account_io_completion(struct request *req, unsigned int bytes)
2265 {
2266 	if (blk_do_io_stat(req)) {
2267 		const int rw = rq_data_dir(req);
2268 		struct hd_struct *part;
2269 		int cpu;
2270 
2271 		cpu = part_stat_lock();
2272 		part = req->part;
2273 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2274 		part_stat_unlock();
2275 	}
2276 }
2277 
2278 void blk_account_io_done(struct request *req)
2279 {
2280 	/*
2281 	 * Account IO completion.  flush_rq isn't accounted as a
2282 	 * normal IO on queueing nor completion.  Accounting the
2283 	 * containing request is enough.
2284 	 */
2285 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2286 		unsigned long duration = jiffies - req->start_time;
2287 		const int rw = rq_data_dir(req);
2288 		struct hd_struct *part;
2289 		int cpu;
2290 
2291 		cpu = part_stat_lock();
2292 		part = req->part;
2293 
2294 		part_stat_inc(cpu, part, ios[rw]);
2295 		part_stat_add(cpu, part, ticks[rw], duration);
2296 		part_round_stats(cpu, part);
2297 		part_dec_in_flight(part, rw);
2298 
2299 		hd_struct_put(part);
2300 		part_stat_unlock();
2301 	}
2302 }
2303 
2304 #ifdef CONFIG_PM
2305 /*
2306  * Don't process normal requests when queue is suspended
2307  * or in the process of suspending/resuming
2308  */
2309 static struct request *blk_pm_peek_request(struct request_queue *q,
2310 					   struct request *rq)
2311 {
2312 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2313 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2314 		return NULL;
2315 	else
2316 		return rq;
2317 }
2318 #else
2319 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2320 						  struct request *rq)
2321 {
2322 	return rq;
2323 }
2324 #endif
2325 
2326 void blk_account_io_start(struct request *rq, bool new_io)
2327 {
2328 	struct hd_struct *part;
2329 	int rw = rq_data_dir(rq);
2330 	int cpu;
2331 
2332 	if (!blk_do_io_stat(rq))
2333 		return;
2334 
2335 	cpu = part_stat_lock();
2336 
2337 	if (!new_io) {
2338 		part = rq->part;
2339 		part_stat_inc(cpu, part, merges[rw]);
2340 	} else {
2341 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2342 		if (!hd_struct_try_get(part)) {
2343 			/*
2344 			 * The partition is already being removed,
2345 			 * the request will be accounted on the disk only
2346 			 *
2347 			 * We take a reference on disk->part0 although that
2348 			 * partition will never be deleted, so we can treat
2349 			 * it as any other partition.
2350 			 */
2351 			part = &rq->rq_disk->part0;
2352 			hd_struct_get(part);
2353 		}
2354 		part_round_stats(cpu, part);
2355 		part_inc_in_flight(part, rw);
2356 		rq->part = part;
2357 	}
2358 
2359 	part_stat_unlock();
2360 }
2361 
2362 /**
2363  * blk_peek_request - peek at the top of a request queue
2364  * @q: request queue to peek at
2365  *
2366  * Description:
2367  *     Return the request at the top of @q.  The returned request
2368  *     should be started using blk_start_request() before LLD starts
2369  *     processing it.
2370  *
2371  * Return:
2372  *     Pointer to the request at the top of @q if available.  Null
2373  *     otherwise.
2374  *
2375  * Context:
2376  *     queue_lock must be held.
2377  */
2378 struct request *blk_peek_request(struct request_queue *q)
2379 {
2380 	struct request *rq;
2381 	int ret;
2382 
2383 	while ((rq = __elv_next_request(q)) != NULL) {
2384 
2385 		rq = blk_pm_peek_request(q, rq);
2386 		if (!rq)
2387 			break;
2388 
2389 		if (!(rq->cmd_flags & REQ_STARTED)) {
2390 			/*
2391 			 * This is the first time the device driver
2392 			 * sees this request (possibly after
2393 			 * requeueing).  Notify IO scheduler.
2394 			 */
2395 			if (rq->cmd_flags & REQ_SORTED)
2396 				elv_activate_rq(q, rq);
2397 
2398 			/*
2399 			 * just mark as started even if we don't start
2400 			 * it, a request that has been delayed should
2401 			 * not be passed by new incoming requests
2402 			 */
2403 			rq->cmd_flags |= REQ_STARTED;
2404 			trace_block_rq_issue(q, rq);
2405 		}
2406 
2407 		if (!q->boundary_rq || q->boundary_rq == rq) {
2408 			q->end_sector = rq_end_sector(rq);
2409 			q->boundary_rq = NULL;
2410 		}
2411 
2412 		if (rq->cmd_flags & REQ_DONTPREP)
2413 			break;
2414 
2415 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2416 			/*
2417 			 * make sure space for the drain appears we
2418 			 * know we can do this because max_hw_segments
2419 			 * has been adjusted to be one fewer than the
2420 			 * device can handle
2421 			 */
2422 			rq->nr_phys_segments++;
2423 		}
2424 
2425 		if (!q->prep_rq_fn)
2426 			break;
2427 
2428 		ret = q->prep_rq_fn(q, rq);
2429 		if (ret == BLKPREP_OK) {
2430 			break;
2431 		} else if (ret == BLKPREP_DEFER) {
2432 			/*
2433 			 * the request may have been (partially) prepped.
2434 			 * we need to keep this request in the front to
2435 			 * avoid resource deadlock.  REQ_STARTED will
2436 			 * prevent other fs requests from passing this one.
2437 			 */
2438 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2439 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2440 				/*
2441 				 * remove the space for the drain we added
2442 				 * so that we don't add it again
2443 				 */
2444 				--rq->nr_phys_segments;
2445 			}
2446 
2447 			rq = NULL;
2448 			break;
2449 		} else if (ret == BLKPREP_KILL) {
2450 			rq->cmd_flags |= REQ_QUIET;
2451 			/*
2452 			 * Mark this request as started so we don't trigger
2453 			 * any debug logic in the end I/O path.
2454 			 */
2455 			blk_start_request(rq);
2456 			__blk_end_request_all(rq, -EIO);
2457 		} else {
2458 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2459 			break;
2460 		}
2461 	}
2462 
2463 	return rq;
2464 }
2465 EXPORT_SYMBOL(blk_peek_request);
2466 
2467 void blk_dequeue_request(struct request *rq)
2468 {
2469 	struct request_queue *q = rq->q;
2470 
2471 	BUG_ON(list_empty(&rq->queuelist));
2472 	BUG_ON(ELV_ON_HASH(rq));
2473 
2474 	list_del_init(&rq->queuelist);
2475 
2476 	/*
2477 	 * the time frame between a request being removed from the lists
2478 	 * and to it is freed is accounted as io that is in progress at
2479 	 * the driver side.
2480 	 */
2481 	if (blk_account_rq(rq)) {
2482 		q->in_flight[rq_is_sync(rq)]++;
2483 		set_io_start_time_ns(rq);
2484 	}
2485 }
2486 
2487 /**
2488  * blk_start_request - start request processing on the driver
2489  * @req: request to dequeue
2490  *
2491  * Description:
2492  *     Dequeue @req and start timeout timer on it.  This hands off the
2493  *     request to the driver.
2494  *
2495  *     Block internal functions which don't want to start timer should
2496  *     call blk_dequeue_request().
2497  *
2498  * Context:
2499  *     queue_lock must be held.
2500  */
2501 void blk_start_request(struct request *req)
2502 {
2503 	blk_dequeue_request(req);
2504 
2505 	/*
2506 	 * We are now handing the request to the hardware, initialize
2507 	 * resid_len to full count and add the timeout handler.
2508 	 */
2509 	req->resid_len = blk_rq_bytes(req);
2510 	if (unlikely(blk_bidi_rq(req)))
2511 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2512 
2513 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2514 	blk_add_timer(req);
2515 }
2516 EXPORT_SYMBOL(blk_start_request);
2517 
2518 /**
2519  * blk_fetch_request - fetch a request from a request queue
2520  * @q: request queue to fetch a request from
2521  *
2522  * Description:
2523  *     Return the request at the top of @q.  The request is started on
2524  *     return and LLD can start processing it immediately.
2525  *
2526  * Return:
2527  *     Pointer to the request at the top of @q if available.  Null
2528  *     otherwise.
2529  *
2530  * Context:
2531  *     queue_lock must be held.
2532  */
2533 struct request *blk_fetch_request(struct request_queue *q)
2534 {
2535 	struct request *rq;
2536 
2537 	rq = blk_peek_request(q);
2538 	if (rq)
2539 		blk_start_request(rq);
2540 	return rq;
2541 }
2542 EXPORT_SYMBOL(blk_fetch_request);
2543 
2544 /**
2545  * blk_update_request - Special helper function for request stacking drivers
2546  * @req:      the request being processed
2547  * @error:    %0 for success, < %0 for error
2548  * @nr_bytes: number of bytes to complete @req
2549  *
2550  * Description:
2551  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2552  *     the request structure even if @req doesn't have leftover.
2553  *     If @req has leftover, sets it up for the next range of segments.
2554  *
2555  *     This special helper function is only for request stacking drivers
2556  *     (e.g. request-based dm) so that they can handle partial completion.
2557  *     Actual device drivers should use blk_end_request instead.
2558  *
2559  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2560  *     %false return from this function.
2561  *
2562  * Return:
2563  *     %false - this request doesn't have any more data
2564  *     %true  - this request has more data
2565  **/
2566 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2567 {
2568 	int total_bytes;
2569 
2570 	trace_block_rq_complete(req->q, req, nr_bytes);
2571 
2572 	if (!req->bio)
2573 		return false;
2574 
2575 	/*
2576 	 * For fs requests, rq is just carrier of independent bio's
2577 	 * and each partial completion should be handled separately.
2578 	 * Reset per-request error on each partial completion.
2579 	 *
2580 	 * TODO: tj: This is too subtle.  It would be better to let
2581 	 * low level drivers do what they see fit.
2582 	 */
2583 	if (req->cmd_type == REQ_TYPE_FS)
2584 		req->errors = 0;
2585 
2586 	if (error && req->cmd_type == REQ_TYPE_FS &&
2587 	    !(req->cmd_flags & REQ_QUIET)) {
2588 		char *error_type;
2589 
2590 		switch (error) {
2591 		case -ENOLINK:
2592 			error_type = "recoverable transport";
2593 			break;
2594 		case -EREMOTEIO:
2595 			error_type = "critical target";
2596 			break;
2597 		case -EBADE:
2598 			error_type = "critical nexus";
2599 			break;
2600 		case -ETIMEDOUT:
2601 			error_type = "timeout";
2602 			break;
2603 		case -ENOSPC:
2604 			error_type = "critical space allocation";
2605 			break;
2606 		case -ENODATA:
2607 			error_type = "critical medium";
2608 			break;
2609 		case -EIO:
2610 		default:
2611 			error_type = "I/O";
2612 			break;
2613 		}
2614 		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2615 				   __func__, error_type, req->rq_disk ?
2616 				   req->rq_disk->disk_name : "?",
2617 				   (unsigned long long)blk_rq_pos(req));
2618 
2619 	}
2620 
2621 	blk_account_io_completion(req, nr_bytes);
2622 
2623 	total_bytes = 0;
2624 	while (req->bio) {
2625 		struct bio *bio = req->bio;
2626 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2627 
2628 		if (bio_bytes == bio->bi_iter.bi_size)
2629 			req->bio = bio->bi_next;
2630 
2631 		req_bio_endio(req, bio, bio_bytes, error);
2632 
2633 		total_bytes += bio_bytes;
2634 		nr_bytes -= bio_bytes;
2635 
2636 		if (!nr_bytes)
2637 			break;
2638 	}
2639 
2640 	/*
2641 	 * completely done
2642 	 */
2643 	if (!req->bio) {
2644 		/*
2645 		 * Reset counters so that the request stacking driver
2646 		 * can find how many bytes remain in the request
2647 		 * later.
2648 		 */
2649 		req->__data_len = 0;
2650 		return false;
2651 	}
2652 
2653 	req->__data_len -= total_bytes;
2654 
2655 	/* update sector only for requests with clear definition of sector */
2656 	if (req->cmd_type == REQ_TYPE_FS)
2657 		req->__sector += total_bytes >> 9;
2658 
2659 	/* mixed attributes always follow the first bio */
2660 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2661 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2662 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2663 	}
2664 
2665 	/*
2666 	 * If total number of sectors is less than the first segment
2667 	 * size, something has gone terribly wrong.
2668 	 */
2669 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2670 		blk_dump_rq_flags(req, "request botched");
2671 		req->__data_len = blk_rq_cur_bytes(req);
2672 	}
2673 
2674 	/* recalculate the number of segments */
2675 	blk_recalc_rq_segments(req);
2676 
2677 	return true;
2678 }
2679 EXPORT_SYMBOL_GPL(blk_update_request);
2680 
2681 static bool blk_update_bidi_request(struct request *rq, int error,
2682 				    unsigned int nr_bytes,
2683 				    unsigned int bidi_bytes)
2684 {
2685 	if (blk_update_request(rq, error, nr_bytes))
2686 		return true;
2687 
2688 	/* Bidi request must be completed as a whole */
2689 	if (unlikely(blk_bidi_rq(rq)) &&
2690 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2691 		return true;
2692 
2693 	if (blk_queue_add_random(rq->q))
2694 		add_disk_randomness(rq->rq_disk);
2695 
2696 	return false;
2697 }
2698 
2699 /**
2700  * blk_unprep_request - unprepare a request
2701  * @req:	the request
2702  *
2703  * This function makes a request ready for complete resubmission (or
2704  * completion).  It happens only after all error handling is complete,
2705  * so represents the appropriate moment to deallocate any resources
2706  * that were allocated to the request in the prep_rq_fn.  The queue
2707  * lock is held when calling this.
2708  */
2709 void blk_unprep_request(struct request *req)
2710 {
2711 	struct request_queue *q = req->q;
2712 
2713 	req->cmd_flags &= ~REQ_DONTPREP;
2714 	if (q->unprep_rq_fn)
2715 		q->unprep_rq_fn(q, req);
2716 }
2717 EXPORT_SYMBOL_GPL(blk_unprep_request);
2718 
2719 /*
2720  * queue lock must be held
2721  */
2722 void blk_finish_request(struct request *req, int error)
2723 {
2724 	if (req->cmd_flags & REQ_QUEUED)
2725 		blk_queue_end_tag(req->q, req);
2726 
2727 	BUG_ON(blk_queued_rq(req));
2728 
2729 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2730 		laptop_io_completion(&req->q->backing_dev_info);
2731 
2732 	blk_delete_timer(req);
2733 
2734 	if (req->cmd_flags & REQ_DONTPREP)
2735 		blk_unprep_request(req);
2736 
2737 	blk_account_io_done(req);
2738 
2739 	if (req->end_io)
2740 		req->end_io(req, error);
2741 	else {
2742 		if (blk_bidi_rq(req))
2743 			__blk_put_request(req->next_rq->q, req->next_rq);
2744 
2745 		__blk_put_request(req->q, req);
2746 	}
2747 }
2748 EXPORT_SYMBOL(blk_finish_request);
2749 
2750 /**
2751  * blk_end_bidi_request - Complete a bidi request
2752  * @rq:         the request to complete
2753  * @error:      %0 for success, < %0 for error
2754  * @nr_bytes:   number of bytes to complete @rq
2755  * @bidi_bytes: number of bytes to complete @rq->next_rq
2756  *
2757  * Description:
2758  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2759  *     Drivers that supports bidi can safely call this member for any
2760  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2761  *     just ignored.
2762  *
2763  * Return:
2764  *     %false - we are done with this request
2765  *     %true  - still buffers pending for this request
2766  **/
2767 static bool blk_end_bidi_request(struct request *rq, int error,
2768 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2769 {
2770 	struct request_queue *q = rq->q;
2771 	unsigned long flags;
2772 
2773 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2774 		return true;
2775 
2776 	spin_lock_irqsave(q->queue_lock, flags);
2777 	blk_finish_request(rq, error);
2778 	spin_unlock_irqrestore(q->queue_lock, flags);
2779 
2780 	return false;
2781 }
2782 
2783 /**
2784  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2785  * @rq:         the request to complete
2786  * @error:      %0 for success, < %0 for error
2787  * @nr_bytes:   number of bytes to complete @rq
2788  * @bidi_bytes: number of bytes to complete @rq->next_rq
2789  *
2790  * Description:
2791  *     Identical to blk_end_bidi_request() except that queue lock is
2792  *     assumed to be locked on entry and remains so on return.
2793  *
2794  * Return:
2795  *     %false - we are done with this request
2796  *     %true  - still buffers pending for this request
2797  **/
2798 bool __blk_end_bidi_request(struct request *rq, int error,
2799 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2800 {
2801 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2802 		return true;
2803 
2804 	blk_finish_request(rq, error);
2805 
2806 	return false;
2807 }
2808 
2809 /**
2810  * blk_end_request - Helper function for drivers to complete the request.
2811  * @rq:       the request being processed
2812  * @error:    %0 for success, < %0 for error
2813  * @nr_bytes: number of bytes to complete
2814  *
2815  * Description:
2816  *     Ends I/O on a number of bytes attached to @rq.
2817  *     If @rq has leftover, sets it up for the next range of segments.
2818  *
2819  * Return:
2820  *     %false - we are done with this request
2821  *     %true  - still buffers pending for this request
2822  **/
2823 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2824 {
2825 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2826 }
2827 EXPORT_SYMBOL(blk_end_request);
2828 
2829 /**
2830  * blk_end_request_all - Helper function for drives to finish the request.
2831  * @rq: the request to finish
2832  * @error: %0 for success, < %0 for error
2833  *
2834  * Description:
2835  *     Completely finish @rq.
2836  */
2837 void blk_end_request_all(struct request *rq, int error)
2838 {
2839 	bool pending;
2840 	unsigned int bidi_bytes = 0;
2841 
2842 	if (unlikely(blk_bidi_rq(rq)))
2843 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2844 
2845 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2846 	BUG_ON(pending);
2847 }
2848 EXPORT_SYMBOL(blk_end_request_all);
2849 
2850 /**
2851  * blk_end_request_cur - Helper function to finish the current request chunk.
2852  * @rq: the request to finish the current chunk for
2853  * @error: %0 for success, < %0 for error
2854  *
2855  * Description:
2856  *     Complete the current consecutively mapped chunk from @rq.
2857  *
2858  * Return:
2859  *     %false - we are done with this request
2860  *     %true  - still buffers pending for this request
2861  */
2862 bool blk_end_request_cur(struct request *rq, int error)
2863 {
2864 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2865 }
2866 EXPORT_SYMBOL(blk_end_request_cur);
2867 
2868 /**
2869  * blk_end_request_err - Finish a request till the next failure boundary.
2870  * @rq: the request to finish till the next failure boundary for
2871  * @error: must be negative errno
2872  *
2873  * Description:
2874  *     Complete @rq till the next failure boundary.
2875  *
2876  * Return:
2877  *     %false - we are done with this request
2878  *     %true  - still buffers pending for this request
2879  */
2880 bool blk_end_request_err(struct request *rq, int error)
2881 {
2882 	WARN_ON(error >= 0);
2883 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2884 }
2885 EXPORT_SYMBOL_GPL(blk_end_request_err);
2886 
2887 /**
2888  * __blk_end_request - Helper function for drivers to complete the request.
2889  * @rq:       the request being processed
2890  * @error:    %0 for success, < %0 for error
2891  * @nr_bytes: number of bytes to complete
2892  *
2893  * Description:
2894  *     Must be called with queue lock held unlike blk_end_request().
2895  *
2896  * Return:
2897  *     %false - we are done with this request
2898  *     %true  - still buffers pending for this request
2899  **/
2900 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2901 {
2902 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2903 }
2904 EXPORT_SYMBOL(__blk_end_request);
2905 
2906 /**
2907  * __blk_end_request_all - Helper function for drives to finish the request.
2908  * @rq: the request to finish
2909  * @error: %0 for success, < %0 for error
2910  *
2911  * Description:
2912  *     Completely finish @rq.  Must be called with queue lock held.
2913  */
2914 void __blk_end_request_all(struct request *rq, int error)
2915 {
2916 	bool pending;
2917 	unsigned int bidi_bytes = 0;
2918 
2919 	if (unlikely(blk_bidi_rq(rq)))
2920 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2921 
2922 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2923 	BUG_ON(pending);
2924 }
2925 EXPORT_SYMBOL(__blk_end_request_all);
2926 
2927 /**
2928  * __blk_end_request_cur - Helper function to finish the current request chunk.
2929  * @rq: the request to finish the current chunk for
2930  * @error: %0 for success, < %0 for error
2931  *
2932  * Description:
2933  *     Complete the current consecutively mapped chunk from @rq.  Must
2934  *     be called with queue lock held.
2935  *
2936  * Return:
2937  *     %false - we are done with this request
2938  *     %true  - still buffers pending for this request
2939  */
2940 bool __blk_end_request_cur(struct request *rq, int error)
2941 {
2942 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2943 }
2944 EXPORT_SYMBOL(__blk_end_request_cur);
2945 
2946 /**
2947  * __blk_end_request_err - Finish a request till the next failure boundary.
2948  * @rq: the request to finish till the next failure boundary for
2949  * @error: must be negative errno
2950  *
2951  * Description:
2952  *     Complete @rq till the next failure boundary.  Must be called
2953  *     with queue lock held.
2954  *
2955  * Return:
2956  *     %false - we are done with this request
2957  *     %true  - still buffers pending for this request
2958  */
2959 bool __blk_end_request_err(struct request *rq, int error)
2960 {
2961 	WARN_ON(error >= 0);
2962 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2963 }
2964 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2965 
2966 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2967 		     struct bio *bio)
2968 {
2969 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2970 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2971 
2972 	if (bio_has_data(bio))
2973 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2974 
2975 	rq->__data_len = bio->bi_iter.bi_size;
2976 	rq->bio = rq->biotail = bio;
2977 
2978 	if (bio->bi_bdev)
2979 		rq->rq_disk = bio->bi_bdev->bd_disk;
2980 }
2981 
2982 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2983 /**
2984  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2985  * @rq: the request to be flushed
2986  *
2987  * Description:
2988  *     Flush all pages in @rq.
2989  */
2990 void rq_flush_dcache_pages(struct request *rq)
2991 {
2992 	struct req_iterator iter;
2993 	struct bio_vec bvec;
2994 
2995 	rq_for_each_segment(bvec, rq, iter)
2996 		flush_dcache_page(bvec.bv_page);
2997 }
2998 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2999 #endif
3000 
3001 /**
3002  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3003  * @q : the queue of the device being checked
3004  *
3005  * Description:
3006  *    Check if underlying low-level drivers of a device are busy.
3007  *    If the drivers want to export their busy state, they must set own
3008  *    exporting function using blk_queue_lld_busy() first.
3009  *
3010  *    Basically, this function is used only by request stacking drivers
3011  *    to stop dispatching requests to underlying devices when underlying
3012  *    devices are busy.  This behavior helps more I/O merging on the queue
3013  *    of the request stacking driver and prevents I/O throughput regression
3014  *    on burst I/O load.
3015  *
3016  * Return:
3017  *    0 - Not busy (The request stacking driver should dispatch request)
3018  *    1 - Busy (The request stacking driver should stop dispatching request)
3019  */
3020 int blk_lld_busy(struct request_queue *q)
3021 {
3022 	if (q->lld_busy_fn)
3023 		return q->lld_busy_fn(q);
3024 
3025 	return 0;
3026 }
3027 EXPORT_SYMBOL_GPL(blk_lld_busy);
3028 
3029 /**
3030  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3031  * @rq: the clone request to be cleaned up
3032  *
3033  * Description:
3034  *     Free all bios in @rq for a cloned request.
3035  */
3036 void blk_rq_unprep_clone(struct request *rq)
3037 {
3038 	struct bio *bio;
3039 
3040 	while ((bio = rq->bio) != NULL) {
3041 		rq->bio = bio->bi_next;
3042 
3043 		bio_put(bio);
3044 	}
3045 }
3046 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3047 
3048 /*
3049  * Copy attributes of the original request to the clone request.
3050  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3051  */
3052 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3053 {
3054 	dst->cpu = src->cpu;
3055 	dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
3056 	dst->cmd_type = src->cmd_type;
3057 	dst->__sector = blk_rq_pos(src);
3058 	dst->__data_len = blk_rq_bytes(src);
3059 	dst->nr_phys_segments = src->nr_phys_segments;
3060 	dst->ioprio = src->ioprio;
3061 	dst->extra_len = src->extra_len;
3062 }
3063 
3064 /**
3065  * blk_rq_prep_clone - Helper function to setup clone request
3066  * @rq: the request to be setup
3067  * @rq_src: original request to be cloned
3068  * @bs: bio_set that bios for clone are allocated from
3069  * @gfp_mask: memory allocation mask for bio
3070  * @bio_ctr: setup function to be called for each clone bio.
3071  *           Returns %0 for success, non %0 for failure.
3072  * @data: private data to be passed to @bio_ctr
3073  *
3074  * Description:
3075  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3076  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3077  *     are not copied, and copying such parts is the caller's responsibility.
3078  *     Also, pages which the original bios are pointing to are not copied
3079  *     and the cloned bios just point same pages.
3080  *     So cloned bios must be completed before original bios, which means
3081  *     the caller must complete @rq before @rq_src.
3082  */
3083 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3084 		      struct bio_set *bs, gfp_t gfp_mask,
3085 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3086 		      void *data)
3087 {
3088 	struct bio *bio, *bio_src;
3089 
3090 	if (!bs)
3091 		bs = fs_bio_set;
3092 
3093 	__rq_for_each_bio(bio_src, rq_src) {
3094 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3095 		if (!bio)
3096 			goto free_and_out;
3097 
3098 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3099 			goto free_and_out;
3100 
3101 		if (rq->bio) {
3102 			rq->biotail->bi_next = bio;
3103 			rq->biotail = bio;
3104 		} else
3105 			rq->bio = rq->biotail = bio;
3106 	}
3107 
3108 	__blk_rq_prep_clone(rq, rq_src);
3109 
3110 	return 0;
3111 
3112 free_and_out:
3113 	if (bio)
3114 		bio_put(bio);
3115 	blk_rq_unprep_clone(rq);
3116 
3117 	return -ENOMEM;
3118 }
3119 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3120 
3121 int kblockd_schedule_work(struct work_struct *work)
3122 {
3123 	return queue_work(kblockd_workqueue, work);
3124 }
3125 EXPORT_SYMBOL(kblockd_schedule_work);
3126 
3127 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3128 				  unsigned long delay)
3129 {
3130 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3131 }
3132 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3133 
3134 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3135 				     unsigned long delay)
3136 {
3137 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3138 }
3139 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3140 
3141 /**
3142  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3143  * @plug:	The &struct blk_plug that needs to be initialized
3144  *
3145  * Description:
3146  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3147  *   pending I/O should the task end up blocking between blk_start_plug() and
3148  *   blk_finish_plug(). This is important from a performance perspective, but
3149  *   also ensures that we don't deadlock. For instance, if the task is blocking
3150  *   for a memory allocation, memory reclaim could end up wanting to free a
3151  *   page belonging to that request that is currently residing in our private
3152  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3153  *   this kind of deadlock.
3154  */
3155 void blk_start_plug(struct blk_plug *plug)
3156 {
3157 	struct task_struct *tsk = current;
3158 
3159 	/*
3160 	 * If this is a nested plug, don't actually assign it.
3161 	 */
3162 	if (tsk->plug)
3163 		return;
3164 
3165 	INIT_LIST_HEAD(&plug->list);
3166 	INIT_LIST_HEAD(&plug->mq_list);
3167 	INIT_LIST_HEAD(&plug->cb_list);
3168 	/*
3169 	 * Store ordering should not be needed here, since a potential
3170 	 * preempt will imply a full memory barrier
3171 	 */
3172 	tsk->plug = plug;
3173 }
3174 EXPORT_SYMBOL(blk_start_plug);
3175 
3176 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3177 {
3178 	struct request *rqa = container_of(a, struct request, queuelist);
3179 	struct request *rqb = container_of(b, struct request, queuelist);
3180 
3181 	return !(rqa->q < rqb->q ||
3182 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3183 }
3184 
3185 /*
3186  * If 'from_schedule' is true, then postpone the dispatch of requests
3187  * until a safe kblockd context. We due this to avoid accidental big
3188  * additional stack usage in driver dispatch, in places where the originally
3189  * plugger did not intend it.
3190  */
3191 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3192 			    bool from_schedule)
3193 	__releases(q->queue_lock)
3194 {
3195 	trace_block_unplug(q, depth, !from_schedule);
3196 
3197 	if (from_schedule)
3198 		blk_run_queue_async(q);
3199 	else
3200 		__blk_run_queue(q);
3201 	spin_unlock(q->queue_lock);
3202 }
3203 
3204 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3205 {
3206 	LIST_HEAD(callbacks);
3207 
3208 	while (!list_empty(&plug->cb_list)) {
3209 		list_splice_init(&plug->cb_list, &callbacks);
3210 
3211 		while (!list_empty(&callbacks)) {
3212 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3213 							  struct blk_plug_cb,
3214 							  list);
3215 			list_del(&cb->list);
3216 			cb->callback(cb, from_schedule);
3217 		}
3218 	}
3219 }
3220 
3221 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3222 				      int size)
3223 {
3224 	struct blk_plug *plug = current->plug;
3225 	struct blk_plug_cb *cb;
3226 
3227 	if (!plug)
3228 		return NULL;
3229 
3230 	list_for_each_entry(cb, &plug->cb_list, list)
3231 		if (cb->callback == unplug && cb->data == data)
3232 			return cb;
3233 
3234 	/* Not currently on the callback list */
3235 	BUG_ON(size < sizeof(*cb));
3236 	cb = kzalloc(size, GFP_ATOMIC);
3237 	if (cb) {
3238 		cb->data = data;
3239 		cb->callback = unplug;
3240 		list_add(&cb->list, &plug->cb_list);
3241 	}
3242 	return cb;
3243 }
3244 EXPORT_SYMBOL(blk_check_plugged);
3245 
3246 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3247 {
3248 	struct request_queue *q;
3249 	unsigned long flags;
3250 	struct request *rq;
3251 	LIST_HEAD(list);
3252 	unsigned int depth;
3253 
3254 	flush_plug_callbacks(plug, from_schedule);
3255 
3256 	if (!list_empty(&plug->mq_list))
3257 		blk_mq_flush_plug_list(plug, from_schedule);
3258 
3259 	if (list_empty(&plug->list))
3260 		return;
3261 
3262 	list_splice_init(&plug->list, &list);
3263 
3264 	list_sort(NULL, &list, plug_rq_cmp);
3265 
3266 	q = NULL;
3267 	depth = 0;
3268 
3269 	/*
3270 	 * Save and disable interrupts here, to avoid doing it for every
3271 	 * queue lock we have to take.
3272 	 */
3273 	local_irq_save(flags);
3274 	while (!list_empty(&list)) {
3275 		rq = list_entry_rq(list.next);
3276 		list_del_init(&rq->queuelist);
3277 		BUG_ON(!rq->q);
3278 		if (rq->q != q) {
3279 			/*
3280 			 * This drops the queue lock
3281 			 */
3282 			if (q)
3283 				queue_unplugged(q, depth, from_schedule);
3284 			q = rq->q;
3285 			depth = 0;
3286 			spin_lock(q->queue_lock);
3287 		}
3288 
3289 		/*
3290 		 * Short-circuit if @q is dead
3291 		 */
3292 		if (unlikely(blk_queue_dying(q))) {
3293 			__blk_end_request_all(rq, -ENODEV);
3294 			continue;
3295 		}
3296 
3297 		/*
3298 		 * rq is already accounted, so use raw insert
3299 		 */
3300 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3301 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3302 		else
3303 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3304 
3305 		depth++;
3306 	}
3307 
3308 	/*
3309 	 * This drops the queue lock
3310 	 */
3311 	if (q)
3312 		queue_unplugged(q, depth, from_schedule);
3313 
3314 	local_irq_restore(flags);
3315 }
3316 
3317 void blk_finish_plug(struct blk_plug *plug)
3318 {
3319 	if (plug != current->plug)
3320 		return;
3321 	blk_flush_plug_list(plug, false);
3322 
3323 	current->plug = NULL;
3324 }
3325 EXPORT_SYMBOL(blk_finish_plug);
3326 
3327 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3328 {
3329 	struct blk_plug *plug;
3330 	long state;
3331 
3332 	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3333 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3334 		return false;
3335 
3336 	plug = current->plug;
3337 	if (plug)
3338 		blk_flush_plug_list(plug, false);
3339 
3340 	state = current->state;
3341 	while (!need_resched()) {
3342 		unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3343 		struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3344 		int ret;
3345 
3346 		hctx->poll_invoked++;
3347 
3348 		ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3349 		if (ret > 0) {
3350 			hctx->poll_success++;
3351 			set_current_state(TASK_RUNNING);
3352 			return true;
3353 		}
3354 
3355 		if (signal_pending_state(state, current))
3356 			set_current_state(TASK_RUNNING);
3357 
3358 		if (current->state == TASK_RUNNING)
3359 			return true;
3360 		if (ret < 0)
3361 			break;
3362 		cpu_relax();
3363 	}
3364 
3365 	return false;
3366 }
3367 
3368 #ifdef CONFIG_PM
3369 /**
3370  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3371  * @q: the queue of the device
3372  * @dev: the device the queue belongs to
3373  *
3374  * Description:
3375  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3376  *    @dev. Drivers that want to take advantage of request-based runtime PM
3377  *    should call this function after @dev has been initialized, and its
3378  *    request queue @q has been allocated, and runtime PM for it can not happen
3379  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3380  *    cases, driver should call this function before any I/O has taken place.
3381  *
3382  *    This function takes care of setting up using auto suspend for the device,
3383  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3384  *    until an updated value is either set by user or by driver. Drivers do
3385  *    not need to touch other autosuspend settings.
3386  *
3387  *    The block layer runtime PM is request based, so only works for drivers
3388  *    that use request as their IO unit instead of those directly use bio's.
3389  */
3390 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3391 {
3392 	q->dev = dev;
3393 	q->rpm_status = RPM_ACTIVE;
3394 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3395 	pm_runtime_use_autosuspend(q->dev);
3396 }
3397 EXPORT_SYMBOL(blk_pm_runtime_init);
3398 
3399 /**
3400  * blk_pre_runtime_suspend - Pre runtime suspend check
3401  * @q: the queue of the device
3402  *
3403  * Description:
3404  *    This function will check if runtime suspend is allowed for the device
3405  *    by examining if there are any requests pending in the queue. If there
3406  *    are requests pending, the device can not be runtime suspended; otherwise,
3407  *    the queue's status will be updated to SUSPENDING and the driver can
3408  *    proceed to suspend the device.
3409  *
3410  *    For the not allowed case, we mark last busy for the device so that
3411  *    runtime PM core will try to autosuspend it some time later.
3412  *
3413  *    This function should be called near the start of the device's
3414  *    runtime_suspend callback.
3415  *
3416  * Return:
3417  *    0		- OK to runtime suspend the device
3418  *    -EBUSY	- Device should not be runtime suspended
3419  */
3420 int blk_pre_runtime_suspend(struct request_queue *q)
3421 {
3422 	int ret = 0;
3423 
3424 	if (!q->dev)
3425 		return ret;
3426 
3427 	spin_lock_irq(q->queue_lock);
3428 	if (q->nr_pending) {
3429 		ret = -EBUSY;
3430 		pm_runtime_mark_last_busy(q->dev);
3431 	} else {
3432 		q->rpm_status = RPM_SUSPENDING;
3433 	}
3434 	spin_unlock_irq(q->queue_lock);
3435 	return ret;
3436 }
3437 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3438 
3439 /**
3440  * blk_post_runtime_suspend - Post runtime suspend processing
3441  * @q: the queue of the device
3442  * @err: return value of the device's runtime_suspend function
3443  *
3444  * Description:
3445  *    Update the queue's runtime status according to the return value of the
3446  *    device's runtime suspend function and mark last busy for the device so
3447  *    that PM core will try to auto suspend the device at a later time.
3448  *
3449  *    This function should be called near the end of the device's
3450  *    runtime_suspend callback.
3451  */
3452 void blk_post_runtime_suspend(struct request_queue *q, int err)
3453 {
3454 	if (!q->dev)
3455 		return;
3456 
3457 	spin_lock_irq(q->queue_lock);
3458 	if (!err) {
3459 		q->rpm_status = RPM_SUSPENDED;
3460 	} else {
3461 		q->rpm_status = RPM_ACTIVE;
3462 		pm_runtime_mark_last_busy(q->dev);
3463 	}
3464 	spin_unlock_irq(q->queue_lock);
3465 }
3466 EXPORT_SYMBOL(blk_post_runtime_suspend);
3467 
3468 /**
3469  * blk_pre_runtime_resume - Pre runtime resume processing
3470  * @q: the queue of the device
3471  *
3472  * Description:
3473  *    Update the queue's runtime status to RESUMING in preparation for the
3474  *    runtime resume of the device.
3475  *
3476  *    This function should be called near the start of the device's
3477  *    runtime_resume callback.
3478  */
3479 void blk_pre_runtime_resume(struct request_queue *q)
3480 {
3481 	if (!q->dev)
3482 		return;
3483 
3484 	spin_lock_irq(q->queue_lock);
3485 	q->rpm_status = RPM_RESUMING;
3486 	spin_unlock_irq(q->queue_lock);
3487 }
3488 EXPORT_SYMBOL(blk_pre_runtime_resume);
3489 
3490 /**
3491  * blk_post_runtime_resume - Post runtime resume processing
3492  * @q: the queue of the device
3493  * @err: return value of the device's runtime_resume function
3494  *
3495  * Description:
3496  *    Update the queue's runtime status according to the return value of the
3497  *    device's runtime_resume function. If it is successfully resumed, process
3498  *    the requests that are queued into the device's queue when it is resuming
3499  *    and then mark last busy and initiate autosuspend for it.
3500  *
3501  *    This function should be called near the end of the device's
3502  *    runtime_resume callback.
3503  */
3504 void blk_post_runtime_resume(struct request_queue *q, int err)
3505 {
3506 	if (!q->dev)
3507 		return;
3508 
3509 	spin_lock_irq(q->queue_lock);
3510 	if (!err) {
3511 		q->rpm_status = RPM_ACTIVE;
3512 		__blk_run_queue(q);
3513 		pm_runtime_mark_last_busy(q->dev);
3514 		pm_request_autosuspend(q->dev);
3515 	} else {
3516 		q->rpm_status = RPM_SUSPENDED;
3517 	}
3518 	spin_unlock_irq(q->queue_lock);
3519 }
3520 EXPORT_SYMBOL(blk_post_runtime_resume);
3521 #endif
3522 
3523 int __init blk_dev_init(void)
3524 {
3525 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3526 			FIELD_SIZEOF(struct request, cmd_flags));
3527 
3528 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3529 	kblockd_workqueue = alloc_workqueue("kblockd",
3530 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3531 	if (!kblockd_workqueue)
3532 		panic("Failed to create kblockd\n");
3533 
3534 	request_cachep = kmem_cache_create("blkdev_requests",
3535 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3536 
3537 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3538 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3539 
3540 	return 0;
3541 }
3542