xref: /openbmc/linux/block/blk-core.c (revision a6ca5ac746d104019e76c29e69c2a1fc6dd2b29f)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40 
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45 
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49 
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55 
56 DEFINE_IDA(blk_queue_ida);
57 
58 /*
59  * For the allocated request tables
60  */
61 struct kmem_cache *request_cachep;
62 
63 /*
64  * For queue allocation
65  */
66 struct kmem_cache *blk_requestq_cachep;
67 
68 /*
69  * Controlling structure to kblockd
70  */
71 static struct workqueue_struct *kblockd_workqueue;
72 
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 	clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 	/*
79 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 	 * flip its congestion state for events on other blkcgs.
81 	 */
82 	if (rl == &rl->q->root_rl)
83 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86 
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 	set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 	/* see blk_clear_congested() */
93 	if (rl == &rl->q->root_rl)
94 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97 
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 	int nr;
101 
102 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 	if (nr > q->nr_requests)
104 		nr = q->nr_requests;
105 	q->nr_congestion_on = nr;
106 
107 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 	if (nr < 1)
109 		nr = 1;
110 	q->nr_congestion_off = nr;
111 }
112 
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 	memset(rq, 0, sizeof(*rq));
116 
117 	INIT_LIST_HEAD(&rq->queuelist);
118 	INIT_LIST_HEAD(&rq->timeout_list);
119 	rq->cpu = -1;
120 	rq->q = q;
121 	rq->__sector = (sector_t) -1;
122 	INIT_HLIST_NODE(&rq->hash);
123 	RB_CLEAR_NODE(&rq->rb_node);
124 	rq->tag = -1;
125 	rq->internal_tag = -1;
126 	rq->start_time = jiffies;
127 	set_start_time_ns(rq);
128 	rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131 
132 static void req_bio_endio(struct request *rq, struct bio *bio,
133 			  unsigned int nbytes, int error)
134 {
135 	if (error)
136 		bio->bi_error = error;
137 
138 	if (unlikely(rq->rq_flags & RQF_QUIET))
139 		bio_set_flag(bio, BIO_QUIET);
140 
141 	bio_advance(bio, nbytes);
142 
143 	/* don't actually finish bio if it's part of flush sequence */
144 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
145 		bio_endio(bio);
146 }
147 
148 void blk_dump_rq_flags(struct request *rq, char *msg)
149 {
150 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
151 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
152 		(unsigned long long) rq->cmd_flags);
153 
154 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
155 	       (unsigned long long)blk_rq_pos(rq),
156 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
157 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
158 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
159 }
160 EXPORT_SYMBOL(blk_dump_rq_flags);
161 
162 static void blk_delay_work(struct work_struct *work)
163 {
164 	struct request_queue *q;
165 
166 	q = container_of(work, struct request_queue, delay_work.work);
167 	spin_lock_irq(q->queue_lock);
168 	__blk_run_queue(q);
169 	spin_unlock_irq(q->queue_lock);
170 }
171 
172 /**
173  * blk_delay_queue - restart queueing after defined interval
174  * @q:		The &struct request_queue in question
175  * @msecs:	Delay in msecs
176  *
177  * Description:
178  *   Sometimes queueing needs to be postponed for a little while, to allow
179  *   resources to come back. This function will make sure that queueing is
180  *   restarted around the specified time. Queue lock must be held.
181  */
182 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
183 {
184 	if (likely(!blk_queue_dead(q)))
185 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 				   msecs_to_jiffies(msecs));
187 }
188 EXPORT_SYMBOL(blk_delay_queue);
189 
190 /**
191  * blk_start_queue_async - asynchronously restart a previously stopped queue
192  * @q:    The &struct request_queue in question
193  *
194  * Description:
195  *   blk_start_queue_async() will clear the stop flag on the queue, and
196  *   ensure that the request_fn for the queue is run from an async
197  *   context.
198  **/
199 void blk_start_queue_async(struct request_queue *q)
200 {
201 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 	blk_run_queue_async(q);
203 }
204 EXPORT_SYMBOL(blk_start_queue_async);
205 
206 /**
207  * blk_start_queue - restart a previously stopped queue
208  * @q:    The &struct request_queue in question
209  *
210  * Description:
211  *   blk_start_queue() will clear the stop flag on the queue, and call
212  *   the request_fn for the queue if it was in a stopped state when
213  *   entered. Also see blk_stop_queue(). Queue lock must be held.
214  **/
215 void blk_start_queue(struct request_queue *q)
216 {
217 	WARN_ON(!irqs_disabled());
218 
219 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
220 	__blk_run_queue(q);
221 }
222 EXPORT_SYMBOL(blk_start_queue);
223 
224 /**
225  * blk_stop_queue - stop a queue
226  * @q:    The &struct request_queue in question
227  *
228  * Description:
229  *   The Linux block layer assumes that a block driver will consume all
230  *   entries on the request queue when the request_fn strategy is called.
231  *   Often this will not happen, because of hardware limitations (queue
232  *   depth settings). If a device driver gets a 'queue full' response,
233  *   or if it simply chooses not to queue more I/O at one point, it can
234  *   call this function to prevent the request_fn from being called until
235  *   the driver has signalled it's ready to go again. This happens by calling
236  *   blk_start_queue() to restart queue operations. Queue lock must be held.
237  **/
238 void blk_stop_queue(struct request_queue *q)
239 {
240 	cancel_delayed_work(&q->delay_work);
241 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
242 }
243 EXPORT_SYMBOL(blk_stop_queue);
244 
245 /**
246  * blk_sync_queue - cancel any pending callbacks on a queue
247  * @q: the queue
248  *
249  * Description:
250  *     The block layer may perform asynchronous callback activity
251  *     on a queue, such as calling the unplug function after a timeout.
252  *     A block device may call blk_sync_queue to ensure that any
253  *     such activity is cancelled, thus allowing it to release resources
254  *     that the callbacks might use. The caller must already have made sure
255  *     that its ->make_request_fn will not re-add plugging prior to calling
256  *     this function.
257  *
258  *     This function does not cancel any asynchronous activity arising
259  *     out of elevator or throttling code. That would require elevator_exit()
260  *     and blkcg_exit_queue() to be called with queue lock initialized.
261  *
262  */
263 void blk_sync_queue(struct request_queue *q)
264 {
265 	del_timer_sync(&q->timeout);
266 
267 	if (q->mq_ops) {
268 		struct blk_mq_hw_ctx *hctx;
269 		int i;
270 
271 		queue_for_each_hw_ctx(q, hctx, i)
272 			cancel_delayed_work_sync(&hctx->run_work);
273 	} else {
274 		cancel_delayed_work_sync(&q->delay_work);
275 	}
276 }
277 EXPORT_SYMBOL(blk_sync_queue);
278 
279 /**
280  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
281  * @q:	The queue to run
282  *
283  * Description:
284  *    Invoke request handling on a queue if there are any pending requests.
285  *    May be used to restart request handling after a request has completed.
286  *    This variant runs the queue whether or not the queue has been
287  *    stopped. Must be called with the queue lock held and interrupts
288  *    disabled. See also @blk_run_queue.
289  */
290 inline void __blk_run_queue_uncond(struct request_queue *q)
291 {
292 	if (unlikely(blk_queue_dead(q)))
293 		return;
294 
295 	/*
296 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
297 	 * the queue lock internally. As a result multiple threads may be
298 	 * running such a request function concurrently. Keep track of the
299 	 * number of active request_fn invocations such that blk_drain_queue()
300 	 * can wait until all these request_fn calls have finished.
301 	 */
302 	q->request_fn_active++;
303 	q->request_fn(q);
304 	q->request_fn_active--;
305 }
306 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
307 
308 /**
309  * __blk_run_queue - run a single device queue
310  * @q:	The queue to run
311  *
312  * Description:
313  *    See @blk_run_queue. This variant must be called with the queue lock
314  *    held and interrupts disabled.
315  */
316 void __blk_run_queue(struct request_queue *q)
317 {
318 	if (unlikely(blk_queue_stopped(q)))
319 		return;
320 
321 	__blk_run_queue_uncond(q);
322 }
323 EXPORT_SYMBOL(__blk_run_queue);
324 
325 /**
326  * blk_run_queue_async - run a single device queue in workqueue context
327  * @q:	The queue to run
328  *
329  * Description:
330  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
331  *    of us. The caller must hold the queue lock.
332  */
333 void blk_run_queue_async(struct request_queue *q)
334 {
335 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
336 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
337 }
338 EXPORT_SYMBOL(blk_run_queue_async);
339 
340 /**
341  * blk_run_queue - run a single device queue
342  * @q: The queue to run
343  *
344  * Description:
345  *    Invoke request handling on this queue, if it has pending work to do.
346  *    May be used to restart queueing when a request has completed.
347  */
348 void blk_run_queue(struct request_queue *q)
349 {
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(q->queue_lock, flags);
353 	__blk_run_queue(q);
354 	spin_unlock_irqrestore(q->queue_lock, flags);
355 }
356 EXPORT_SYMBOL(blk_run_queue);
357 
358 void blk_put_queue(struct request_queue *q)
359 {
360 	kobject_put(&q->kobj);
361 }
362 EXPORT_SYMBOL(blk_put_queue);
363 
364 /**
365  * __blk_drain_queue - drain requests from request_queue
366  * @q: queue to drain
367  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
368  *
369  * Drain requests from @q.  If @drain_all is set, all requests are drained.
370  * If not, only ELVPRIV requests are drained.  The caller is responsible
371  * for ensuring that no new requests which need to be drained are queued.
372  */
373 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
374 	__releases(q->queue_lock)
375 	__acquires(q->queue_lock)
376 {
377 	int i;
378 
379 	lockdep_assert_held(q->queue_lock);
380 
381 	while (true) {
382 		bool drain = false;
383 
384 		/*
385 		 * The caller might be trying to drain @q before its
386 		 * elevator is initialized.
387 		 */
388 		if (q->elevator)
389 			elv_drain_elevator(q);
390 
391 		blkcg_drain_queue(q);
392 
393 		/*
394 		 * This function might be called on a queue which failed
395 		 * driver init after queue creation or is not yet fully
396 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
397 		 * in such cases.  Kick queue iff dispatch queue has
398 		 * something on it and @q has request_fn set.
399 		 */
400 		if (!list_empty(&q->queue_head) && q->request_fn)
401 			__blk_run_queue(q);
402 
403 		drain |= q->nr_rqs_elvpriv;
404 		drain |= q->request_fn_active;
405 
406 		/*
407 		 * Unfortunately, requests are queued at and tracked from
408 		 * multiple places and there's no single counter which can
409 		 * be drained.  Check all the queues and counters.
410 		 */
411 		if (drain_all) {
412 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
413 			drain |= !list_empty(&q->queue_head);
414 			for (i = 0; i < 2; i++) {
415 				drain |= q->nr_rqs[i];
416 				drain |= q->in_flight[i];
417 				if (fq)
418 				    drain |= !list_empty(&fq->flush_queue[i]);
419 			}
420 		}
421 
422 		if (!drain)
423 			break;
424 
425 		spin_unlock_irq(q->queue_lock);
426 
427 		msleep(10);
428 
429 		spin_lock_irq(q->queue_lock);
430 	}
431 
432 	/*
433 	 * With queue marked dead, any woken up waiter will fail the
434 	 * allocation path, so the wakeup chaining is lost and we're
435 	 * left with hung waiters. We need to wake up those waiters.
436 	 */
437 	if (q->request_fn) {
438 		struct request_list *rl;
439 
440 		blk_queue_for_each_rl(rl, q)
441 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
442 				wake_up_all(&rl->wait[i]);
443 	}
444 }
445 
446 /**
447  * blk_queue_bypass_start - enter queue bypass mode
448  * @q: queue of interest
449  *
450  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
451  * function makes @q enter bypass mode and drains all requests which were
452  * throttled or issued before.  On return, it's guaranteed that no request
453  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
454  * inside queue or RCU read lock.
455  */
456 void blk_queue_bypass_start(struct request_queue *q)
457 {
458 	spin_lock_irq(q->queue_lock);
459 	q->bypass_depth++;
460 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
461 	spin_unlock_irq(q->queue_lock);
462 
463 	/*
464 	 * Queues start drained.  Skip actual draining till init is
465 	 * complete.  This avoids lenghty delays during queue init which
466 	 * can happen many times during boot.
467 	 */
468 	if (blk_queue_init_done(q)) {
469 		spin_lock_irq(q->queue_lock);
470 		__blk_drain_queue(q, false);
471 		spin_unlock_irq(q->queue_lock);
472 
473 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
474 		synchronize_rcu();
475 	}
476 }
477 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
478 
479 /**
480  * blk_queue_bypass_end - leave queue bypass mode
481  * @q: queue of interest
482  *
483  * Leave bypass mode and restore the normal queueing behavior.
484  */
485 void blk_queue_bypass_end(struct request_queue *q)
486 {
487 	spin_lock_irq(q->queue_lock);
488 	if (!--q->bypass_depth)
489 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
490 	WARN_ON_ONCE(q->bypass_depth < 0);
491 	spin_unlock_irq(q->queue_lock);
492 }
493 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
494 
495 void blk_set_queue_dying(struct request_queue *q)
496 {
497 	spin_lock_irq(q->queue_lock);
498 	queue_flag_set(QUEUE_FLAG_DYING, q);
499 	spin_unlock_irq(q->queue_lock);
500 
501 	/*
502 	 * When queue DYING flag is set, we need to block new req
503 	 * entering queue, so we call blk_freeze_queue_start() to
504 	 * prevent I/O from crossing blk_queue_enter().
505 	 */
506 	blk_freeze_queue_start(q);
507 
508 	if (q->mq_ops)
509 		blk_mq_wake_waiters(q);
510 	else {
511 		struct request_list *rl;
512 
513 		spin_lock_irq(q->queue_lock);
514 		blk_queue_for_each_rl(rl, q) {
515 			if (rl->rq_pool) {
516 				wake_up(&rl->wait[BLK_RW_SYNC]);
517 				wake_up(&rl->wait[BLK_RW_ASYNC]);
518 			}
519 		}
520 		spin_unlock_irq(q->queue_lock);
521 	}
522 }
523 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
524 
525 /**
526  * blk_cleanup_queue - shutdown a request queue
527  * @q: request queue to shutdown
528  *
529  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
530  * put it.  All future requests will be failed immediately with -ENODEV.
531  */
532 void blk_cleanup_queue(struct request_queue *q)
533 {
534 	spinlock_t *lock = q->queue_lock;
535 
536 	/* mark @q DYING, no new request or merges will be allowed afterwards */
537 	mutex_lock(&q->sysfs_lock);
538 	blk_set_queue_dying(q);
539 	spin_lock_irq(lock);
540 
541 	/*
542 	 * A dying queue is permanently in bypass mode till released.  Note
543 	 * that, unlike blk_queue_bypass_start(), we aren't performing
544 	 * synchronize_rcu() after entering bypass mode to avoid the delay
545 	 * as some drivers create and destroy a lot of queues while
546 	 * probing.  This is still safe because blk_release_queue() will be
547 	 * called only after the queue refcnt drops to zero and nothing,
548 	 * RCU or not, would be traversing the queue by then.
549 	 */
550 	q->bypass_depth++;
551 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
552 
553 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
554 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
555 	queue_flag_set(QUEUE_FLAG_DYING, q);
556 	spin_unlock_irq(lock);
557 	mutex_unlock(&q->sysfs_lock);
558 
559 	/*
560 	 * Drain all requests queued before DYING marking. Set DEAD flag to
561 	 * prevent that q->request_fn() gets invoked after draining finished.
562 	 */
563 	blk_freeze_queue(q);
564 	spin_lock_irq(lock);
565 	if (!q->mq_ops)
566 		__blk_drain_queue(q, true);
567 	queue_flag_set(QUEUE_FLAG_DEAD, q);
568 	spin_unlock_irq(lock);
569 
570 	/* for synchronous bio-based driver finish in-flight integrity i/o */
571 	blk_flush_integrity();
572 
573 	/* @q won't process any more request, flush async actions */
574 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
575 	blk_sync_queue(q);
576 
577 	if (q->mq_ops)
578 		blk_mq_free_queue(q);
579 	percpu_ref_exit(&q->q_usage_counter);
580 
581 	spin_lock_irq(lock);
582 	if (q->queue_lock != &q->__queue_lock)
583 		q->queue_lock = &q->__queue_lock;
584 	spin_unlock_irq(lock);
585 
586 	/* @q is and will stay empty, shutdown and put */
587 	blk_put_queue(q);
588 }
589 EXPORT_SYMBOL(blk_cleanup_queue);
590 
591 /* Allocate memory local to the request queue */
592 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
593 {
594 	struct request_queue *q = data;
595 
596 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
597 }
598 
599 static void free_request_simple(void *element, void *data)
600 {
601 	kmem_cache_free(request_cachep, element);
602 }
603 
604 static void *alloc_request_size(gfp_t gfp_mask, void *data)
605 {
606 	struct request_queue *q = data;
607 	struct request *rq;
608 
609 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
610 			q->node);
611 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
612 		kfree(rq);
613 		rq = NULL;
614 	}
615 	return rq;
616 }
617 
618 static void free_request_size(void *element, void *data)
619 {
620 	struct request_queue *q = data;
621 
622 	if (q->exit_rq_fn)
623 		q->exit_rq_fn(q, element);
624 	kfree(element);
625 }
626 
627 int blk_init_rl(struct request_list *rl, struct request_queue *q,
628 		gfp_t gfp_mask)
629 {
630 	if (unlikely(rl->rq_pool))
631 		return 0;
632 
633 	rl->q = q;
634 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
635 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
636 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
637 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
638 
639 	if (q->cmd_size) {
640 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
641 				alloc_request_size, free_request_size,
642 				q, gfp_mask, q->node);
643 	} else {
644 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
645 				alloc_request_simple, free_request_simple,
646 				q, gfp_mask, q->node);
647 	}
648 	if (!rl->rq_pool)
649 		return -ENOMEM;
650 
651 	return 0;
652 }
653 
654 void blk_exit_rl(struct request_list *rl)
655 {
656 	if (rl->rq_pool)
657 		mempool_destroy(rl->rq_pool);
658 }
659 
660 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
661 {
662 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
663 }
664 EXPORT_SYMBOL(blk_alloc_queue);
665 
666 int blk_queue_enter(struct request_queue *q, bool nowait)
667 {
668 	while (true) {
669 		int ret;
670 
671 		if (percpu_ref_tryget_live(&q->q_usage_counter))
672 			return 0;
673 
674 		if (nowait)
675 			return -EBUSY;
676 
677 		/*
678 		 * read pair of barrier in blk_freeze_queue_start(),
679 		 * we need to order reading __PERCPU_REF_DEAD flag of
680 		 * .q_usage_counter and reading .mq_freeze_depth or
681 		 * queue dying flag, otherwise the following wait may
682 		 * never return if the two reads are reordered.
683 		 */
684 		smp_rmb();
685 
686 		ret = wait_event_interruptible(q->mq_freeze_wq,
687 				!atomic_read(&q->mq_freeze_depth) ||
688 				blk_queue_dying(q));
689 		if (blk_queue_dying(q))
690 			return -ENODEV;
691 		if (ret)
692 			return ret;
693 	}
694 }
695 
696 void blk_queue_exit(struct request_queue *q)
697 {
698 	percpu_ref_put(&q->q_usage_counter);
699 }
700 
701 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
702 {
703 	struct request_queue *q =
704 		container_of(ref, struct request_queue, q_usage_counter);
705 
706 	wake_up_all(&q->mq_freeze_wq);
707 }
708 
709 static void blk_rq_timed_out_timer(unsigned long data)
710 {
711 	struct request_queue *q = (struct request_queue *)data;
712 
713 	kblockd_schedule_work(&q->timeout_work);
714 }
715 
716 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
717 {
718 	struct request_queue *q;
719 
720 	q = kmem_cache_alloc_node(blk_requestq_cachep,
721 				gfp_mask | __GFP_ZERO, node_id);
722 	if (!q)
723 		return NULL;
724 
725 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
726 	if (q->id < 0)
727 		goto fail_q;
728 
729 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
730 	if (!q->bio_split)
731 		goto fail_id;
732 
733 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
734 	if (!q->backing_dev_info)
735 		goto fail_split;
736 
737 	q->stats = blk_alloc_queue_stats();
738 	if (!q->stats)
739 		goto fail_stats;
740 
741 	q->backing_dev_info->ra_pages =
742 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
743 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
744 	q->backing_dev_info->name = "block";
745 	q->node = node_id;
746 
747 	setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
748 		    laptop_mode_timer_fn, (unsigned long) q);
749 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
750 	INIT_LIST_HEAD(&q->queue_head);
751 	INIT_LIST_HEAD(&q->timeout_list);
752 	INIT_LIST_HEAD(&q->icq_list);
753 #ifdef CONFIG_BLK_CGROUP
754 	INIT_LIST_HEAD(&q->blkg_list);
755 #endif
756 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
757 
758 	kobject_init(&q->kobj, &blk_queue_ktype);
759 
760 	mutex_init(&q->sysfs_lock);
761 	spin_lock_init(&q->__queue_lock);
762 
763 	/*
764 	 * By default initialize queue_lock to internal lock and driver can
765 	 * override it later if need be.
766 	 */
767 	q->queue_lock = &q->__queue_lock;
768 
769 	/*
770 	 * A queue starts its life with bypass turned on to avoid
771 	 * unnecessary bypass on/off overhead and nasty surprises during
772 	 * init.  The initial bypass will be finished when the queue is
773 	 * registered by blk_register_queue().
774 	 */
775 	q->bypass_depth = 1;
776 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
777 
778 	init_waitqueue_head(&q->mq_freeze_wq);
779 
780 	/*
781 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
782 	 * See blk_register_queue() for details.
783 	 */
784 	if (percpu_ref_init(&q->q_usage_counter,
785 				blk_queue_usage_counter_release,
786 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
787 		goto fail_bdi;
788 
789 	if (blkcg_init_queue(q))
790 		goto fail_ref;
791 
792 	return q;
793 
794 fail_ref:
795 	percpu_ref_exit(&q->q_usage_counter);
796 fail_bdi:
797 	blk_free_queue_stats(q->stats);
798 fail_stats:
799 	bdi_put(q->backing_dev_info);
800 fail_split:
801 	bioset_free(q->bio_split);
802 fail_id:
803 	ida_simple_remove(&blk_queue_ida, q->id);
804 fail_q:
805 	kmem_cache_free(blk_requestq_cachep, q);
806 	return NULL;
807 }
808 EXPORT_SYMBOL(blk_alloc_queue_node);
809 
810 /**
811  * blk_init_queue  - prepare a request queue for use with a block device
812  * @rfn:  The function to be called to process requests that have been
813  *        placed on the queue.
814  * @lock: Request queue spin lock
815  *
816  * Description:
817  *    If a block device wishes to use the standard request handling procedures,
818  *    which sorts requests and coalesces adjacent requests, then it must
819  *    call blk_init_queue().  The function @rfn will be called when there
820  *    are requests on the queue that need to be processed.  If the device
821  *    supports plugging, then @rfn may not be called immediately when requests
822  *    are available on the queue, but may be called at some time later instead.
823  *    Plugged queues are generally unplugged when a buffer belonging to one
824  *    of the requests on the queue is needed, or due to memory pressure.
825  *
826  *    @rfn is not required, or even expected, to remove all requests off the
827  *    queue, but only as many as it can handle at a time.  If it does leave
828  *    requests on the queue, it is responsible for arranging that the requests
829  *    get dealt with eventually.
830  *
831  *    The queue spin lock must be held while manipulating the requests on the
832  *    request queue; this lock will be taken also from interrupt context, so irq
833  *    disabling is needed for it.
834  *
835  *    Function returns a pointer to the initialized request queue, or %NULL if
836  *    it didn't succeed.
837  *
838  * Note:
839  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
840  *    when the block device is deactivated (such as at module unload).
841  **/
842 
843 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
844 {
845 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
846 }
847 EXPORT_SYMBOL(blk_init_queue);
848 
849 struct request_queue *
850 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
851 {
852 	struct request_queue *q;
853 
854 	q = blk_alloc_queue_node(GFP_KERNEL, node_id);
855 	if (!q)
856 		return NULL;
857 
858 	q->request_fn = rfn;
859 	if (lock)
860 		q->queue_lock = lock;
861 	if (blk_init_allocated_queue(q) < 0) {
862 		blk_cleanup_queue(q);
863 		return NULL;
864 	}
865 
866 	return q;
867 }
868 EXPORT_SYMBOL(blk_init_queue_node);
869 
870 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
871 
872 
873 int blk_init_allocated_queue(struct request_queue *q)
874 {
875 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
876 	if (!q->fq)
877 		return -ENOMEM;
878 
879 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
880 		goto out_free_flush_queue;
881 
882 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
883 		goto out_exit_flush_rq;
884 
885 	INIT_WORK(&q->timeout_work, blk_timeout_work);
886 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
887 
888 	/*
889 	 * This also sets hw/phys segments, boundary and size
890 	 */
891 	blk_queue_make_request(q, blk_queue_bio);
892 
893 	q->sg_reserved_size = INT_MAX;
894 
895 	/* Protect q->elevator from elevator_change */
896 	mutex_lock(&q->sysfs_lock);
897 
898 	/* init elevator */
899 	if (elevator_init(q, NULL)) {
900 		mutex_unlock(&q->sysfs_lock);
901 		goto out_exit_flush_rq;
902 	}
903 
904 	mutex_unlock(&q->sysfs_lock);
905 	return 0;
906 
907 out_exit_flush_rq:
908 	if (q->exit_rq_fn)
909 		q->exit_rq_fn(q, q->fq->flush_rq);
910 out_free_flush_queue:
911 	blk_free_flush_queue(q->fq);
912 	return -ENOMEM;
913 }
914 EXPORT_SYMBOL(blk_init_allocated_queue);
915 
916 bool blk_get_queue(struct request_queue *q)
917 {
918 	if (likely(!blk_queue_dying(q))) {
919 		__blk_get_queue(q);
920 		return true;
921 	}
922 
923 	return false;
924 }
925 EXPORT_SYMBOL(blk_get_queue);
926 
927 static inline void blk_free_request(struct request_list *rl, struct request *rq)
928 {
929 	if (rq->rq_flags & RQF_ELVPRIV) {
930 		elv_put_request(rl->q, rq);
931 		if (rq->elv.icq)
932 			put_io_context(rq->elv.icq->ioc);
933 	}
934 
935 	mempool_free(rq, rl->rq_pool);
936 }
937 
938 /*
939  * ioc_batching returns true if the ioc is a valid batching request and
940  * should be given priority access to a request.
941  */
942 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
943 {
944 	if (!ioc)
945 		return 0;
946 
947 	/*
948 	 * Make sure the process is able to allocate at least 1 request
949 	 * even if the batch times out, otherwise we could theoretically
950 	 * lose wakeups.
951 	 */
952 	return ioc->nr_batch_requests == q->nr_batching ||
953 		(ioc->nr_batch_requests > 0
954 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
955 }
956 
957 /*
958  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
959  * will cause the process to be a "batcher" on all queues in the system. This
960  * is the behaviour we want though - once it gets a wakeup it should be given
961  * a nice run.
962  */
963 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
964 {
965 	if (!ioc || ioc_batching(q, ioc))
966 		return;
967 
968 	ioc->nr_batch_requests = q->nr_batching;
969 	ioc->last_waited = jiffies;
970 }
971 
972 static void __freed_request(struct request_list *rl, int sync)
973 {
974 	struct request_queue *q = rl->q;
975 
976 	if (rl->count[sync] < queue_congestion_off_threshold(q))
977 		blk_clear_congested(rl, sync);
978 
979 	if (rl->count[sync] + 1 <= q->nr_requests) {
980 		if (waitqueue_active(&rl->wait[sync]))
981 			wake_up(&rl->wait[sync]);
982 
983 		blk_clear_rl_full(rl, sync);
984 	}
985 }
986 
987 /*
988  * A request has just been released.  Account for it, update the full and
989  * congestion status, wake up any waiters.   Called under q->queue_lock.
990  */
991 static void freed_request(struct request_list *rl, bool sync,
992 		req_flags_t rq_flags)
993 {
994 	struct request_queue *q = rl->q;
995 
996 	q->nr_rqs[sync]--;
997 	rl->count[sync]--;
998 	if (rq_flags & RQF_ELVPRIV)
999 		q->nr_rqs_elvpriv--;
1000 
1001 	__freed_request(rl, sync);
1002 
1003 	if (unlikely(rl->starved[sync ^ 1]))
1004 		__freed_request(rl, sync ^ 1);
1005 }
1006 
1007 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1008 {
1009 	struct request_list *rl;
1010 	int on_thresh, off_thresh;
1011 
1012 	spin_lock_irq(q->queue_lock);
1013 	q->nr_requests = nr;
1014 	blk_queue_congestion_threshold(q);
1015 	on_thresh = queue_congestion_on_threshold(q);
1016 	off_thresh = queue_congestion_off_threshold(q);
1017 
1018 	blk_queue_for_each_rl(rl, q) {
1019 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1020 			blk_set_congested(rl, BLK_RW_SYNC);
1021 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1022 			blk_clear_congested(rl, BLK_RW_SYNC);
1023 
1024 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1025 			blk_set_congested(rl, BLK_RW_ASYNC);
1026 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1027 			blk_clear_congested(rl, BLK_RW_ASYNC);
1028 
1029 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1030 			blk_set_rl_full(rl, BLK_RW_SYNC);
1031 		} else {
1032 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1033 			wake_up(&rl->wait[BLK_RW_SYNC]);
1034 		}
1035 
1036 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1037 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1038 		} else {
1039 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1040 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1041 		}
1042 	}
1043 
1044 	spin_unlock_irq(q->queue_lock);
1045 	return 0;
1046 }
1047 
1048 /**
1049  * __get_request - get a free request
1050  * @rl: request list to allocate from
1051  * @op: operation and flags
1052  * @bio: bio to allocate request for (can be %NULL)
1053  * @gfp_mask: allocation mask
1054  *
1055  * Get a free request from @q.  This function may fail under memory
1056  * pressure or if @q is dead.
1057  *
1058  * Must be called with @q->queue_lock held and,
1059  * Returns ERR_PTR on failure, with @q->queue_lock held.
1060  * Returns request pointer on success, with @q->queue_lock *not held*.
1061  */
1062 static struct request *__get_request(struct request_list *rl, unsigned int op,
1063 		struct bio *bio, gfp_t gfp_mask)
1064 {
1065 	struct request_queue *q = rl->q;
1066 	struct request *rq;
1067 	struct elevator_type *et = q->elevator->type;
1068 	struct io_context *ioc = rq_ioc(bio);
1069 	struct io_cq *icq = NULL;
1070 	const bool is_sync = op_is_sync(op);
1071 	int may_queue;
1072 	req_flags_t rq_flags = RQF_ALLOCED;
1073 
1074 	if (unlikely(blk_queue_dying(q)))
1075 		return ERR_PTR(-ENODEV);
1076 
1077 	may_queue = elv_may_queue(q, op);
1078 	if (may_queue == ELV_MQUEUE_NO)
1079 		goto rq_starved;
1080 
1081 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1082 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1083 			/*
1084 			 * The queue will fill after this allocation, so set
1085 			 * it as full, and mark this process as "batching".
1086 			 * This process will be allowed to complete a batch of
1087 			 * requests, others will be blocked.
1088 			 */
1089 			if (!blk_rl_full(rl, is_sync)) {
1090 				ioc_set_batching(q, ioc);
1091 				blk_set_rl_full(rl, is_sync);
1092 			} else {
1093 				if (may_queue != ELV_MQUEUE_MUST
1094 						&& !ioc_batching(q, ioc)) {
1095 					/*
1096 					 * The queue is full and the allocating
1097 					 * process is not a "batcher", and not
1098 					 * exempted by the IO scheduler
1099 					 */
1100 					return ERR_PTR(-ENOMEM);
1101 				}
1102 			}
1103 		}
1104 		blk_set_congested(rl, is_sync);
1105 	}
1106 
1107 	/*
1108 	 * Only allow batching queuers to allocate up to 50% over the defined
1109 	 * limit of requests, otherwise we could have thousands of requests
1110 	 * allocated with any setting of ->nr_requests
1111 	 */
1112 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1113 		return ERR_PTR(-ENOMEM);
1114 
1115 	q->nr_rqs[is_sync]++;
1116 	rl->count[is_sync]++;
1117 	rl->starved[is_sync] = 0;
1118 
1119 	/*
1120 	 * Decide whether the new request will be managed by elevator.  If
1121 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1122 	 * prevent the current elevator from being destroyed until the new
1123 	 * request is freed.  This guarantees icq's won't be destroyed and
1124 	 * makes creating new ones safe.
1125 	 *
1126 	 * Flush requests do not use the elevator so skip initialization.
1127 	 * This allows a request to share the flush and elevator data.
1128 	 *
1129 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1130 	 * it will be created after releasing queue_lock.
1131 	 */
1132 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1133 		rq_flags |= RQF_ELVPRIV;
1134 		q->nr_rqs_elvpriv++;
1135 		if (et->icq_cache && ioc)
1136 			icq = ioc_lookup_icq(ioc, q);
1137 	}
1138 
1139 	if (blk_queue_io_stat(q))
1140 		rq_flags |= RQF_IO_STAT;
1141 	spin_unlock_irq(q->queue_lock);
1142 
1143 	/* allocate and init request */
1144 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1145 	if (!rq)
1146 		goto fail_alloc;
1147 
1148 	blk_rq_init(q, rq);
1149 	blk_rq_set_rl(rq, rl);
1150 	rq->cmd_flags = op;
1151 	rq->rq_flags = rq_flags;
1152 
1153 	/* init elvpriv */
1154 	if (rq_flags & RQF_ELVPRIV) {
1155 		if (unlikely(et->icq_cache && !icq)) {
1156 			if (ioc)
1157 				icq = ioc_create_icq(ioc, q, gfp_mask);
1158 			if (!icq)
1159 				goto fail_elvpriv;
1160 		}
1161 
1162 		rq->elv.icq = icq;
1163 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1164 			goto fail_elvpriv;
1165 
1166 		/* @rq->elv.icq holds io_context until @rq is freed */
1167 		if (icq)
1168 			get_io_context(icq->ioc);
1169 	}
1170 out:
1171 	/*
1172 	 * ioc may be NULL here, and ioc_batching will be false. That's
1173 	 * OK, if the queue is under the request limit then requests need
1174 	 * not count toward the nr_batch_requests limit. There will always
1175 	 * be some limit enforced by BLK_BATCH_TIME.
1176 	 */
1177 	if (ioc_batching(q, ioc))
1178 		ioc->nr_batch_requests--;
1179 
1180 	trace_block_getrq(q, bio, op);
1181 	return rq;
1182 
1183 fail_elvpriv:
1184 	/*
1185 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1186 	 * and may fail indefinitely under memory pressure and thus
1187 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1188 	 * disturb iosched and blkcg but weird is bettern than dead.
1189 	 */
1190 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1191 			   __func__, dev_name(q->backing_dev_info->dev));
1192 
1193 	rq->rq_flags &= ~RQF_ELVPRIV;
1194 	rq->elv.icq = NULL;
1195 
1196 	spin_lock_irq(q->queue_lock);
1197 	q->nr_rqs_elvpriv--;
1198 	spin_unlock_irq(q->queue_lock);
1199 	goto out;
1200 
1201 fail_alloc:
1202 	/*
1203 	 * Allocation failed presumably due to memory. Undo anything we
1204 	 * might have messed up.
1205 	 *
1206 	 * Allocating task should really be put onto the front of the wait
1207 	 * queue, but this is pretty rare.
1208 	 */
1209 	spin_lock_irq(q->queue_lock);
1210 	freed_request(rl, is_sync, rq_flags);
1211 
1212 	/*
1213 	 * in the very unlikely event that allocation failed and no
1214 	 * requests for this direction was pending, mark us starved so that
1215 	 * freeing of a request in the other direction will notice
1216 	 * us. another possible fix would be to split the rq mempool into
1217 	 * READ and WRITE
1218 	 */
1219 rq_starved:
1220 	if (unlikely(rl->count[is_sync] == 0))
1221 		rl->starved[is_sync] = 1;
1222 	return ERR_PTR(-ENOMEM);
1223 }
1224 
1225 /**
1226  * get_request - get a free request
1227  * @q: request_queue to allocate request from
1228  * @op: operation and flags
1229  * @bio: bio to allocate request for (can be %NULL)
1230  * @gfp_mask: allocation mask
1231  *
1232  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1233  * this function keeps retrying under memory pressure and fails iff @q is dead.
1234  *
1235  * Must be called with @q->queue_lock held and,
1236  * Returns ERR_PTR on failure, with @q->queue_lock held.
1237  * Returns request pointer on success, with @q->queue_lock *not held*.
1238  */
1239 static struct request *get_request(struct request_queue *q, unsigned int op,
1240 		struct bio *bio, gfp_t gfp_mask)
1241 {
1242 	const bool is_sync = op_is_sync(op);
1243 	DEFINE_WAIT(wait);
1244 	struct request_list *rl;
1245 	struct request *rq;
1246 
1247 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1248 retry:
1249 	rq = __get_request(rl, op, bio, gfp_mask);
1250 	if (!IS_ERR(rq))
1251 		return rq;
1252 
1253 	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1254 		blk_put_rl(rl);
1255 		return rq;
1256 	}
1257 
1258 	/* wait on @rl and retry */
1259 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1260 				  TASK_UNINTERRUPTIBLE);
1261 
1262 	trace_block_sleeprq(q, bio, op);
1263 
1264 	spin_unlock_irq(q->queue_lock);
1265 	io_schedule();
1266 
1267 	/*
1268 	 * After sleeping, we become a "batching" process and will be able
1269 	 * to allocate at least one request, and up to a big batch of them
1270 	 * for a small period time.  See ioc_batching, ioc_set_batching
1271 	 */
1272 	ioc_set_batching(q, current->io_context);
1273 
1274 	spin_lock_irq(q->queue_lock);
1275 	finish_wait(&rl->wait[is_sync], &wait);
1276 
1277 	goto retry;
1278 }
1279 
1280 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1281 		gfp_t gfp_mask)
1282 {
1283 	struct request *rq;
1284 
1285 	/* create ioc upfront */
1286 	create_io_context(gfp_mask, q->node);
1287 
1288 	spin_lock_irq(q->queue_lock);
1289 	rq = get_request(q, rw, NULL, gfp_mask);
1290 	if (IS_ERR(rq)) {
1291 		spin_unlock_irq(q->queue_lock);
1292 		return rq;
1293 	}
1294 
1295 	/* q->queue_lock is unlocked at this point */
1296 	rq->__data_len = 0;
1297 	rq->__sector = (sector_t) -1;
1298 	rq->bio = rq->biotail = NULL;
1299 	return rq;
1300 }
1301 
1302 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1303 {
1304 	if (q->mq_ops)
1305 		return blk_mq_alloc_request(q, rw,
1306 			(gfp_mask & __GFP_DIRECT_RECLAIM) ?
1307 				0 : BLK_MQ_REQ_NOWAIT);
1308 	else
1309 		return blk_old_get_request(q, rw, gfp_mask);
1310 }
1311 EXPORT_SYMBOL(blk_get_request);
1312 
1313 /**
1314  * blk_requeue_request - put a request back on queue
1315  * @q:		request queue where request should be inserted
1316  * @rq:		request to be inserted
1317  *
1318  * Description:
1319  *    Drivers often keep queueing requests until the hardware cannot accept
1320  *    more, when that condition happens we need to put the request back
1321  *    on the queue. Must be called with queue lock held.
1322  */
1323 void blk_requeue_request(struct request_queue *q, struct request *rq)
1324 {
1325 	blk_delete_timer(rq);
1326 	blk_clear_rq_complete(rq);
1327 	trace_block_rq_requeue(q, rq);
1328 	wbt_requeue(q->rq_wb, &rq->issue_stat);
1329 
1330 	if (rq->rq_flags & RQF_QUEUED)
1331 		blk_queue_end_tag(q, rq);
1332 
1333 	BUG_ON(blk_queued_rq(rq));
1334 
1335 	elv_requeue_request(q, rq);
1336 }
1337 EXPORT_SYMBOL(blk_requeue_request);
1338 
1339 static void add_acct_request(struct request_queue *q, struct request *rq,
1340 			     int where)
1341 {
1342 	blk_account_io_start(rq, true);
1343 	__elv_add_request(q, rq, where);
1344 }
1345 
1346 static void part_round_stats_single(int cpu, struct hd_struct *part,
1347 				    unsigned long now)
1348 {
1349 	int inflight;
1350 
1351 	if (now == part->stamp)
1352 		return;
1353 
1354 	inflight = part_in_flight(part);
1355 	if (inflight) {
1356 		__part_stat_add(cpu, part, time_in_queue,
1357 				inflight * (now - part->stamp));
1358 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1359 	}
1360 	part->stamp = now;
1361 }
1362 
1363 /**
1364  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1365  * @cpu: cpu number for stats access
1366  * @part: target partition
1367  *
1368  * The average IO queue length and utilisation statistics are maintained
1369  * by observing the current state of the queue length and the amount of
1370  * time it has been in this state for.
1371  *
1372  * Normally, that accounting is done on IO completion, but that can result
1373  * in more than a second's worth of IO being accounted for within any one
1374  * second, leading to >100% utilisation.  To deal with that, we call this
1375  * function to do a round-off before returning the results when reading
1376  * /proc/diskstats.  This accounts immediately for all queue usage up to
1377  * the current jiffies and restarts the counters again.
1378  */
1379 void part_round_stats(int cpu, struct hd_struct *part)
1380 {
1381 	unsigned long now = jiffies;
1382 
1383 	if (part->partno)
1384 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1385 	part_round_stats_single(cpu, part, now);
1386 }
1387 EXPORT_SYMBOL_GPL(part_round_stats);
1388 
1389 #ifdef CONFIG_PM
1390 static void blk_pm_put_request(struct request *rq)
1391 {
1392 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1393 		pm_runtime_mark_last_busy(rq->q->dev);
1394 }
1395 #else
1396 static inline void blk_pm_put_request(struct request *rq) {}
1397 #endif
1398 
1399 /*
1400  * queue lock must be held
1401  */
1402 void __blk_put_request(struct request_queue *q, struct request *req)
1403 {
1404 	req_flags_t rq_flags = req->rq_flags;
1405 
1406 	if (unlikely(!q))
1407 		return;
1408 
1409 	if (q->mq_ops) {
1410 		blk_mq_free_request(req);
1411 		return;
1412 	}
1413 
1414 	blk_pm_put_request(req);
1415 
1416 	elv_completed_request(q, req);
1417 
1418 	/* this is a bio leak */
1419 	WARN_ON(req->bio != NULL);
1420 
1421 	wbt_done(q->rq_wb, &req->issue_stat);
1422 
1423 	/*
1424 	 * Request may not have originated from ll_rw_blk. if not,
1425 	 * it didn't come out of our reserved rq pools
1426 	 */
1427 	if (rq_flags & RQF_ALLOCED) {
1428 		struct request_list *rl = blk_rq_rl(req);
1429 		bool sync = op_is_sync(req->cmd_flags);
1430 
1431 		BUG_ON(!list_empty(&req->queuelist));
1432 		BUG_ON(ELV_ON_HASH(req));
1433 
1434 		blk_free_request(rl, req);
1435 		freed_request(rl, sync, rq_flags);
1436 		blk_put_rl(rl);
1437 	}
1438 }
1439 EXPORT_SYMBOL_GPL(__blk_put_request);
1440 
1441 void blk_put_request(struct request *req)
1442 {
1443 	struct request_queue *q = req->q;
1444 
1445 	if (q->mq_ops)
1446 		blk_mq_free_request(req);
1447 	else {
1448 		unsigned long flags;
1449 
1450 		spin_lock_irqsave(q->queue_lock, flags);
1451 		__blk_put_request(q, req);
1452 		spin_unlock_irqrestore(q->queue_lock, flags);
1453 	}
1454 }
1455 EXPORT_SYMBOL(blk_put_request);
1456 
1457 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1458 			    struct bio *bio)
1459 {
1460 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1461 
1462 	if (!ll_back_merge_fn(q, req, bio))
1463 		return false;
1464 
1465 	trace_block_bio_backmerge(q, req, bio);
1466 
1467 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1468 		blk_rq_set_mixed_merge(req);
1469 
1470 	req->biotail->bi_next = bio;
1471 	req->biotail = bio;
1472 	req->__data_len += bio->bi_iter.bi_size;
1473 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1474 
1475 	blk_account_io_start(req, false);
1476 	return true;
1477 }
1478 
1479 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1480 			     struct bio *bio)
1481 {
1482 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1483 
1484 	if (!ll_front_merge_fn(q, req, bio))
1485 		return false;
1486 
1487 	trace_block_bio_frontmerge(q, req, bio);
1488 
1489 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1490 		blk_rq_set_mixed_merge(req);
1491 
1492 	bio->bi_next = req->bio;
1493 	req->bio = bio;
1494 
1495 	req->__sector = bio->bi_iter.bi_sector;
1496 	req->__data_len += bio->bi_iter.bi_size;
1497 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1498 
1499 	blk_account_io_start(req, false);
1500 	return true;
1501 }
1502 
1503 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1504 		struct bio *bio)
1505 {
1506 	unsigned short segments = blk_rq_nr_discard_segments(req);
1507 
1508 	if (segments >= queue_max_discard_segments(q))
1509 		goto no_merge;
1510 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1511 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1512 		goto no_merge;
1513 
1514 	req->biotail->bi_next = bio;
1515 	req->biotail = bio;
1516 	req->__data_len += bio->bi_iter.bi_size;
1517 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1518 	req->nr_phys_segments = segments + 1;
1519 
1520 	blk_account_io_start(req, false);
1521 	return true;
1522 no_merge:
1523 	req_set_nomerge(q, req);
1524 	return false;
1525 }
1526 
1527 /**
1528  * blk_attempt_plug_merge - try to merge with %current's plugged list
1529  * @q: request_queue new bio is being queued at
1530  * @bio: new bio being queued
1531  * @request_count: out parameter for number of traversed plugged requests
1532  * @same_queue_rq: pointer to &struct request that gets filled in when
1533  * another request associated with @q is found on the plug list
1534  * (optional, may be %NULL)
1535  *
1536  * Determine whether @bio being queued on @q can be merged with a request
1537  * on %current's plugged list.  Returns %true if merge was successful,
1538  * otherwise %false.
1539  *
1540  * Plugging coalesces IOs from the same issuer for the same purpose without
1541  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1542  * than scheduling, and the request, while may have elvpriv data, is not
1543  * added on the elevator at this point.  In addition, we don't have
1544  * reliable access to the elevator outside queue lock.  Only check basic
1545  * merging parameters without querying the elevator.
1546  *
1547  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1548  */
1549 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1550 			    unsigned int *request_count,
1551 			    struct request **same_queue_rq)
1552 {
1553 	struct blk_plug *plug;
1554 	struct request *rq;
1555 	struct list_head *plug_list;
1556 
1557 	plug = current->plug;
1558 	if (!plug)
1559 		return false;
1560 	*request_count = 0;
1561 
1562 	if (q->mq_ops)
1563 		plug_list = &plug->mq_list;
1564 	else
1565 		plug_list = &plug->list;
1566 
1567 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1568 		bool merged = false;
1569 
1570 		if (rq->q == q) {
1571 			(*request_count)++;
1572 			/*
1573 			 * Only blk-mq multiple hardware queues case checks the
1574 			 * rq in the same queue, there should be only one such
1575 			 * rq in a queue
1576 			 **/
1577 			if (same_queue_rq)
1578 				*same_queue_rq = rq;
1579 		}
1580 
1581 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1582 			continue;
1583 
1584 		switch (blk_try_merge(rq, bio)) {
1585 		case ELEVATOR_BACK_MERGE:
1586 			merged = bio_attempt_back_merge(q, rq, bio);
1587 			break;
1588 		case ELEVATOR_FRONT_MERGE:
1589 			merged = bio_attempt_front_merge(q, rq, bio);
1590 			break;
1591 		case ELEVATOR_DISCARD_MERGE:
1592 			merged = bio_attempt_discard_merge(q, rq, bio);
1593 			break;
1594 		default:
1595 			break;
1596 		}
1597 
1598 		if (merged)
1599 			return true;
1600 	}
1601 
1602 	return false;
1603 }
1604 
1605 unsigned int blk_plug_queued_count(struct request_queue *q)
1606 {
1607 	struct blk_plug *plug;
1608 	struct request *rq;
1609 	struct list_head *plug_list;
1610 	unsigned int ret = 0;
1611 
1612 	plug = current->plug;
1613 	if (!plug)
1614 		goto out;
1615 
1616 	if (q->mq_ops)
1617 		plug_list = &plug->mq_list;
1618 	else
1619 		plug_list = &plug->list;
1620 
1621 	list_for_each_entry(rq, plug_list, queuelist) {
1622 		if (rq->q == q)
1623 			ret++;
1624 	}
1625 out:
1626 	return ret;
1627 }
1628 
1629 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1630 {
1631 	struct io_context *ioc = rq_ioc(bio);
1632 
1633 	if (bio->bi_opf & REQ_RAHEAD)
1634 		req->cmd_flags |= REQ_FAILFAST_MASK;
1635 
1636 	req->__sector = bio->bi_iter.bi_sector;
1637 	if (ioprio_valid(bio_prio(bio)))
1638 		req->ioprio = bio_prio(bio);
1639 	else if (ioc)
1640 		req->ioprio = ioc->ioprio;
1641 	else
1642 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1643 	blk_rq_bio_prep(req->q, req, bio);
1644 }
1645 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1646 
1647 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1648 {
1649 	struct blk_plug *plug;
1650 	int where = ELEVATOR_INSERT_SORT;
1651 	struct request *req, *free;
1652 	unsigned int request_count = 0;
1653 	unsigned int wb_acct;
1654 
1655 	/*
1656 	 * low level driver can indicate that it wants pages above a
1657 	 * certain limit bounced to low memory (ie for highmem, or even
1658 	 * ISA dma in theory)
1659 	 */
1660 	blk_queue_bounce(q, &bio);
1661 
1662 	blk_queue_split(q, &bio, q->bio_split);
1663 
1664 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1665 		bio->bi_error = -EIO;
1666 		bio_endio(bio);
1667 		return BLK_QC_T_NONE;
1668 	}
1669 
1670 	if (op_is_flush(bio->bi_opf)) {
1671 		spin_lock_irq(q->queue_lock);
1672 		where = ELEVATOR_INSERT_FLUSH;
1673 		goto get_rq;
1674 	}
1675 
1676 	/*
1677 	 * Check if we can merge with the plugged list before grabbing
1678 	 * any locks.
1679 	 */
1680 	if (!blk_queue_nomerges(q)) {
1681 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1682 			return BLK_QC_T_NONE;
1683 	} else
1684 		request_count = blk_plug_queued_count(q);
1685 
1686 	spin_lock_irq(q->queue_lock);
1687 
1688 	switch (elv_merge(q, &req, bio)) {
1689 	case ELEVATOR_BACK_MERGE:
1690 		if (!bio_attempt_back_merge(q, req, bio))
1691 			break;
1692 		elv_bio_merged(q, req, bio);
1693 		free = attempt_back_merge(q, req);
1694 		if (free)
1695 			__blk_put_request(q, free);
1696 		else
1697 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1698 		goto out_unlock;
1699 	case ELEVATOR_FRONT_MERGE:
1700 		if (!bio_attempt_front_merge(q, req, bio))
1701 			break;
1702 		elv_bio_merged(q, req, bio);
1703 		free = attempt_front_merge(q, req);
1704 		if (free)
1705 			__blk_put_request(q, free);
1706 		else
1707 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1708 		goto out_unlock;
1709 	default:
1710 		break;
1711 	}
1712 
1713 get_rq:
1714 	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1715 
1716 	/*
1717 	 * Grab a free request. This is might sleep but can not fail.
1718 	 * Returns with the queue unlocked.
1719 	 */
1720 	req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1721 	if (IS_ERR(req)) {
1722 		__wbt_done(q->rq_wb, wb_acct);
1723 		bio->bi_error = PTR_ERR(req);
1724 		bio_endio(bio);
1725 		goto out_unlock;
1726 	}
1727 
1728 	wbt_track(&req->issue_stat, wb_acct);
1729 
1730 	/*
1731 	 * After dropping the lock and possibly sleeping here, our request
1732 	 * may now be mergeable after it had proven unmergeable (above).
1733 	 * We don't worry about that case for efficiency. It won't happen
1734 	 * often, and the elevators are able to handle it.
1735 	 */
1736 	blk_init_request_from_bio(req, bio);
1737 
1738 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1739 		req->cpu = raw_smp_processor_id();
1740 
1741 	plug = current->plug;
1742 	if (plug) {
1743 		/*
1744 		 * If this is the first request added after a plug, fire
1745 		 * of a plug trace.
1746 		 *
1747 		 * @request_count may become stale because of schedule
1748 		 * out, so check plug list again.
1749 		 */
1750 		if (!request_count || list_empty(&plug->list))
1751 			trace_block_plug(q);
1752 		else {
1753 			struct request *last = list_entry_rq(plug->list.prev);
1754 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
1755 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1756 				blk_flush_plug_list(plug, false);
1757 				trace_block_plug(q);
1758 			}
1759 		}
1760 		list_add_tail(&req->queuelist, &plug->list);
1761 		blk_account_io_start(req, true);
1762 	} else {
1763 		spin_lock_irq(q->queue_lock);
1764 		add_acct_request(q, req, where);
1765 		__blk_run_queue(q);
1766 out_unlock:
1767 		spin_unlock_irq(q->queue_lock);
1768 	}
1769 
1770 	return BLK_QC_T_NONE;
1771 }
1772 
1773 /*
1774  * If bio->bi_dev is a partition, remap the location
1775  */
1776 static inline void blk_partition_remap(struct bio *bio)
1777 {
1778 	struct block_device *bdev = bio->bi_bdev;
1779 
1780 	/*
1781 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
1782 	 * Include a test for the reset op code and perform the remap if needed.
1783 	 */
1784 	if (bdev != bdev->bd_contains &&
1785 	    (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1786 		struct hd_struct *p = bdev->bd_part;
1787 
1788 		bio->bi_iter.bi_sector += p->start_sect;
1789 		bio->bi_bdev = bdev->bd_contains;
1790 
1791 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1792 				      bdev->bd_dev,
1793 				      bio->bi_iter.bi_sector - p->start_sect);
1794 	}
1795 }
1796 
1797 static void handle_bad_sector(struct bio *bio)
1798 {
1799 	char b[BDEVNAME_SIZE];
1800 
1801 	printk(KERN_INFO "attempt to access beyond end of device\n");
1802 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1803 			bdevname(bio->bi_bdev, b),
1804 			bio->bi_opf,
1805 			(unsigned long long)bio_end_sector(bio),
1806 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1807 }
1808 
1809 #ifdef CONFIG_FAIL_MAKE_REQUEST
1810 
1811 static DECLARE_FAULT_ATTR(fail_make_request);
1812 
1813 static int __init setup_fail_make_request(char *str)
1814 {
1815 	return setup_fault_attr(&fail_make_request, str);
1816 }
1817 __setup("fail_make_request=", setup_fail_make_request);
1818 
1819 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1820 {
1821 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1822 }
1823 
1824 static int __init fail_make_request_debugfs(void)
1825 {
1826 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1827 						NULL, &fail_make_request);
1828 
1829 	return PTR_ERR_OR_ZERO(dir);
1830 }
1831 
1832 late_initcall(fail_make_request_debugfs);
1833 
1834 #else /* CONFIG_FAIL_MAKE_REQUEST */
1835 
1836 static inline bool should_fail_request(struct hd_struct *part,
1837 					unsigned int bytes)
1838 {
1839 	return false;
1840 }
1841 
1842 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1843 
1844 /*
1845  * Check whether this bio extends beyond the end of the device.
1846  */
1847 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1848 {
1849 	sector_t maxsector;
1850 
1851 	if (!nr_sectors)
1852 		return 0;
1853 
1854 	/* Test device or partition size, when known. */
1855 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1856 	if (maxsector) {
1857 		sector_t sector = bio->bi_iter.bi_sector;
1858 
1859 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1860 			/*
1861 			 * This may well happen - the kernel calls bread()
1862 			 * without checking the size of the device, e.g., when
1863 			 * mounting a device.
1864 			 */
1865 			handle_bad_sector(bio);
1866 			return 1;
1867 		}
1868 	}
1869 
1870 	return 0;
1871 }
1872 
1873 static noinline_for_stack bool
1874 generic_make_request_checks(struct bio *bio)
1875 {
1876 	struct request_queue *q;
1877 	int nr_sectors = bio_sectors(bio);
1878 	int err = -EIO;
1879 	char b[BDEVNAME_SIZE];
1880 	struct hd_struct *part;
1881 
1882 	might_sleep();
1883 
1884 	if (bio_check_eod(bio, nr_sectors))
1885 		goto end_io;
1886 
1887 	q = bdev_get_queue(bio->bi_bdev);
1888 	if (unlikely(!q)) {
1889 		printk(KERN_ERR
1890 		       "generic_make_request: Trying to access "
1891 			"nonexistent block-device %s (%Lu)\n",
1892 			bdevname(bio->bi_bdev, b),
1893 			(long long) bio->bi_iter.bi_sector);
1894 		goto end_io;
1895 	}
1896 
1897 	part = bio->bi_bdev->bd_part;
1898 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1899 	    should_fail_request(&part_to_disk(part)->part0,
1900 				bio->bi_iter.bi_size))
1901 		goto end_io;
1902 
1903 	/*
1904 	 * If this device has partitions, remap block n
1905 	 * of partition p to block n+start(p) of the disk.
1906 	 */
1907 	blk_partition_remap(bio);
1908 
1909 	if (bio_check_eod(bio, nr_sectors))
1910 		goto end_io;
1911 
1912 	/*
1913 	 * Filter flush bio's early so that make_request based
1914 	 * drivers without flush support don't have to worry
1915 	 * about them.
1916 	 */
1917 	if (op_is_flush(bio->bi_opf) &&
1918 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1919 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1920 		if (!nr_sectors) {
1921 			err = 0;
1922 			goto end_io;
1923 		}
1924 	}
1925 
1926 	switch (bio_op(bio)) {
1927 	case REQ_OP_DISCARD:
1928 		if (!blk_queue_discard(q))
1929 			goto not_supported;
1930 		break;
1931 	case REQ_OP_SECURE_ERASE:
1932 		if (!blk_queue_secure_erase(q))
1933 			goto not_supported;
1934 		break;
1935 	case REQ_OP_WRITE_SAME:
1936 		if (!bdev_write_same(bio->bi_bdev))
1937 			goto not_supported;
1938 		break;
1939 	case REQ_OP_ZONE_REPORT:
1940 	case REQ_OP_ZONE_RESET:
1941 		if (!bdev_is_zoned(bio->bi_bdev))
1942 			goto not_supported;
1943 		break;
1944 	case REQ_OP_WRITE_ZEROES:
1945 		if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1946 			goto not_supported;
1947 		break;
1948 	default:
1949 		break;
1950 	}
1951 
1952 	/*
1953 	 * Various block parts want %current->io_context and lazy ioc
1954 	 * allocation ends up trading a lot of pain for a small amount of
1955 	 * memory.  Just allocate it upfront.  This may fail and block
1956 	 * layer knows how to live with it.
1957 	 */
1958 	create_io_context(GFP_ATOMIC, q->node);
1959 
1960 	if (!blkcg_bio_issue_check(q, bio))
1961 		return false;
1962 
1963 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1964 		trace_block_bio_queue(q, bio);
1965 		/* Now that enqueuing has been traced, we need to trace
1966 		 * completion as well.
1967 		 */
1968 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
1969 	}
1970 	return true;
1971 
1972 not_supported:
1973 	err = -EOPNOTSUPP;
1974 end_io:
1975 	bio->bi_error = err;
1976 	bio_endio(bio);
1977 	return false;
1978 }
1979 
1980 /**
1981  * generic_make_request - hand a buffer to its device driver for I/O
1982  * @bio:  The bio describing the location in memory and on the device.
1983  *
1984  * generic_make_request() is used to make I/O requests of block
1985  * devices. It is passed a &struct bio, which describes the I/O that needs
1986  * to be done.
1987  *
1988  * generic_make_request() does not return any status.  The
1989  * success/failure status of the request, along with notification of
1990  * completion, is delivered asynchronously through the bio->bi_end_io
1991  * function described (one day) else where.
1992  *
1993  * The caller of generic_make_request must make sure that bi_io_vec
1994  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1995  * set to describe the device address, and the
1996  * bi_end_io and optionally bi_private are set to describe how
1997  * completion notification should be signaled.
1998  *
1999  * generic_make_request and the drivers it calls may use bi_next if this
2000  * bio happens to be merged with someone else, and may resubmit the bio to
2001  * a lower device by calling into generic_make_request recursively, which
2002  * means the bio should NOT be touched after the call to ->make_request_fn.
2003  */
2004 blk_qc_t generic_make_request(struct bio *bio)
2005 {
2006 	/*
2007 	 * bio_list_on_stack[0] contains bios submitted by the current
2008 	 * make_request_fn.
2009 	 * bio_list_on_stack[1] contains bios that were submitted before
2010 	 * the current make_request_fn, but that haven't been processed
2011 	 * yet.
2012 	 */
2013 	struct bio_list bio_list_on_stack[2];
2014 	blk_qc_t ret = BLK_QC_T_NONE;
2015 
2016 	if (!generic_make_request_checks(bio))
2017 		goto out;
2018 
2019 	/*
2020 	 * We only want one ->make_request_fn to be active at a time, else
2021 	 * stack usage with stacked devices could be a problem.  So use
2022 	 * current->bio_list to keep a list of requests submited by a
2023 	 * make_request_fn function.  current->bio_list is also used as a
2024 	 * flag to say if generic_make_request is currently active in this
2025 	 * task or not.  If it is NULL, then no make_request is active.  If
2026 	 * it is non-NULL, then a make_request is active, and new requests
2027 	 * should be added at the tail
2028 	 */
2029 	if (current->bio_list) {
2030 		bio_list_add(&current->bio_list[0], bio);
2031 		goto out;
2032 	}
2033 
2034 	/* following loop may be a bit non-obvious, and so deserves some
2035 	 * explanation.
2036 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2037 	 * ensure that) so we have a list with a single bio.
2038 	 * We pretend that we have just taken it off a longer list, so
2039 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2040 	 * thus initialising the bio_list of new bios to be
2041 	 * added.  ->make_request() may indeed add some more bios
2042 	 * through a recursive call to generic_make_request.  If it
2043 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2044 	 * from the top.  In this case we really did just take the bio
2045 	 * of the top of the list (no pretending) and so remove it from
2046 	 * bio_list, and call into ->make_request() again.
2047 	 */
2048 	BUG_ON(bio->bi_next);
2049 	bio_list_init(&bio_list_on_stack[0]);
2050 	current->bio_list = bio_list_on_stack;
2051 	do {
2052 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2053 
2054 		if (likely(blk_queue_enter(q, false) == 0)) {
2055 			struct bio_list lower, same;
2056 
2057 			/* Create a fresh bio_list for all subordinate requests */
2058 			bio_list_on_stack[1] = bio_list_on_stack[0];
2059 			bio_list_init(&bio_list_on_stack[0]);
2060 			ret = q->make_request_fn(q, bio);
2061 
2062 			blk_queue_exit(q);
2063 
2064 			/* sort new bios into those for a lower level
2065 			 * and those for the same level
2066 			 */
2067 			bio_list_init(&lower);
2068 			bio_list_init(&same);
2069 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2070 				if (q == bdev_get_queue(bio->bi_bdev))
2071 					bio_list_add(&same, bio);
2072 				else
2073 					bio_list_add(&lower, bio);
2074 			/* now assemble so we handle the lowest level first */
2075 			bio_list_merge(&bio_list_on_stack[0], &lower);
2076 			bio_list_merge(&bio_list_on_stack[0], &same);
2077 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2078 		} else {
2079 			bio_io_error(bio);
2080 		}
2081 		bio = bio_list_pop(&bio_list_on_stack[0]);
2082 	} while (bio);
2083 	current->bio_list = NULL; /* deactivate */
2084 
2085 out:
2086 	return ret;
2087 }
2088 EXPORT_SYMBOL(generic_make_request);
2089 
2090 /**
2091  * submit_bio - submit a bio to the block device layer for I/O
2092  * @bio: The &struct bio which describes the I/O
2093  *
2094  * submit_bio() is very similar in purpose to generic_make_request(), and
2095  * uses that function to do most of the work. Both are fairly rough
2096  * interfaces; @bio must be presetup and ready for I/O.
2097  *
2098  */
2099 blk_qc_t submit_bio(struct bio *bio)
2100 {
2101 	/*
2102 	 * If it's a regular read/write or a barrier with data attached,
2103 	 * go through the normal accounting stuff before submission.
2104 	 */
2105 	if (bio_has_data(bio)) {
2106 		unsigned int count;
2107 
2108 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2109 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2110 		else
2111 			count = bio_sectors(bio);
2112 
2113 		if (op_is_write(bio_op(bio))) {
2114 			count_vm_events(PGPGOUT, count);
2115 		} else {
2116 			task_io_account_read(bio->bi_iter.bi_size);
2117 			count_vm_events(PGPGIN, count);
2118 		}
2119 
2120 		if (unlikely(block_dump)) {
2121 			char b[BDEVNAME_SIZE];
2122 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2123 			current->comm, task_pid_nr(current),
2124 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2125 				(unsigned long long)bio->bi_iter.bi_sector,
2126 				bdevname(bio->bi_bdev, b),
2127 				count);
2128 		}
2129 	}
2130 
2131 	return generic_make_request(bio);
2132 }
2133 EXPORT_SYMBOL(submit_bio);
2134 
2135 /**
2136  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2137  *                              for new the queue limits
2138  * @q:  the queue
2139  * @rq: the request being checked
2140  *
2141  * Description:
2142  *    @rq may have been made based on weaker limitations of upper-level queues
2143  *    in request stacking drivers, and it may violate the limitation of @q.
2144  *    Since the block layer and the underlying device driver trust @rq
2145  *    after it is inserted to @q, it should be checked against @q before
2146  *    the insertion using this generic function.
2147  *
2148  *    Request stacking drivers like request-based dm may change the queue
2149  *    limits when retrying requests on other queues. Those requests need
2150  *    to be checked against the new queue limits again during dispatch.
2151  */
2152 static int blk_cloned_rq_check_limits(struct request_queue *q,
2153 				      struct request *rq)
2154 {
2155 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2156 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2157 		return -EIO;
2158 	}
2159 
2160 	/*
2161 	 * queue's settings related to segment counting like q->bounce_pfn
2162 	 * may differ from that of other stacking queues.
2163 	 * Recalculate it to check the request correctly on this queue's
2164 	 * limitation.
2165 	 */
2166 	blk_recalc_rq_segments(rq);
2167 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2168 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2169 		return -EIO;
2170 	}
2171 
2172 	return 0;
2173 }
2174 
2175 /**
2176  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2177  * @q:  the queue to submit the request
2178  * @rq: the request being queued
2179  */
2180 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2181 {
2182 	unsigned long flags;
2183 	int where = ELEVATOR_INSERT_BACK;
2184 
2185 	if (blk_cloned_rq_check_limits(q, rq))
2186 		return -EIO;
2187 
2188 	if (rq->rq_disk &&
2189 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2190 		return -EIO;
2191 
2192 	if (q->mq_ops) {
2193 		if (blk_queue_io_stat(q))
2194 			blk_account_io_start(rq, true);
2195 		blk_mq_sched_insert_request(rq, false, true, false, false);
2196 		return 0;
2197 	}
2198 
2199 	spin_lock_irqsave(q->queue_lock, flags);
2200 	if (unlikely(blk_queue_dying(q))) {
2201 		spin_unlock_irqrestore(q->queue_lock, flags);
2202 		return -ENODEV;
2203 	}
2204 
2205 	/*
2206 	 * Submitting request must be dequeued before calling this function
2207 	 * because it will be linked to another request_queue
2208 	 */
2209 	BUG_ON(blk_queued_rq(rq));
2210 
2211 	if (op_is_flush(rq->cmd_flags))
2212 		where = ELEVATOR_INSERT_FLUSH;
2213 
2214 	add_acct_request(q, rq, where);
2215 	if (where == ELEVATOR_INSERT_FLUSH)
2216 		__blk_run_queue(q);
2217 	spin_unlock_irqrestore(q->queue_lock, flags);
2218 
2219 	return 0;
2220 }
2221 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2222 
2223 /**
2224  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2225  * @rq: request to examine
2226  *
2227  * Description:
2228  *     A request could be merge of IOs which require different failure
2229  *     handling.  This function determines the number of bytes which
2230  *     can be failed from the beginning of the request without
2231  *     crossing into area which need to be retried further.
2232  *
2233  * Return:
2234  *     The number of bytes to fail.
2235  *
2236  * Context:
2237  *     queue_lock must be held.
2238  */
2239 unsigned int blk_rq_err_bytes(const struct request *rq)
2240 {
2241 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2242 	unsigned int bytes = 0;
2243 	struct bio *bio;
2244 
2245 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2246 		return blk_rq_bytes(rq);
2247 
2248 	/*
2249 	 * Currently the only 'mixing' which can happen is between
2250 	 * different fastfail types.  We can safely fail portions
2251 	 * which have all the failfast bits that the first one has -
2252 	 * the ones which are at least as eager to fail as the first
2253 	 * one.
2254 	 */
2255 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2256 		if ((bio->bi_opf & ff) != ff)
2257 			break;
2258 		bytes += bio->bi_iter.bi_size;
2259 	}
2260 
2261 	/* this could lead to infinite loop */
2262 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2263 	return bytes;
2264 }
2265 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2266 
2267 void blk_account_io_completion(struct request *req, unsigned int bytes)
2268 {
2269 	if (blk_do_io_stat(req)) {
2270 		const int rw = rq_data_dir(req);
2271 		struct hd_struct *part;
2272 		int cpu;
2273 
2274 		cpu = part_stat_lock();
2275 		part = req->part;
2276 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2277 		part_stat_unlock();
2278 	}
2279 }
2280 
2281 void blk_account_io_done(struct request *req)
2282 {
2283 	/*
2284 	 * Account IO completion.  flush_rq isn't accounted as a
2285 	 * normal IO on queueing nor completion.  Accounting the
2286 	 * containing request is enough.
2287 	 */
2288 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2289 		unsigned long duration = jiffies - req->start_time;
2290 		const int rw = rq_data_dir(req);
2291 		struct hd_struct *part;
2292 		int cpu;
2293 
2294 		cpu = part_stat_lock();
2295 		part = req->part;
2296 
2297 		part_stat_inc(cpu, part, ios[rw]);
2298 		part_stat_add(cpu, part, ticks[rw], duration);
2299 		part_round_stats(cpu, part);
2300 		part_dec_in_flight(part, rw);
2301 
2302 		hd_struct_put(part);
2303 		part_stat_unlock();
2304 	}
2305 }
2306 
2307 #ifdef CONFIG_PM
2308 /*
2309  * Don't process normal requests when queue is suspended
2310  * or in the process of suspending/resuming
2311  */
2312 static struct request *blk_pm_peek_request(struct request_queue *q,
2313 					   struct request *rq)
2314 {
2315 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2316 	    (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2317 		return NULL;
2318 	else
2319 		return rq;
2320 }
2321 #else
2322 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2323 						  struct request *rq)
2324 {
2325 	return rq;
2326 }
2327 #endif
2328 
2329 void blk_account_io_start(struct request *rq, bool new_io)
2330 {
2331 	struct hd_struct *part;
2332 	int rw = rq_data_dir(rq);
2333 	int cpu;
2334 
2335 	if (!blk_do_io_stat(rq))
2336 		return;
2337 
2338 	cpu = part_stat_lock();
2339 
2340 	if (!new_io) {
2341 		part = rq->part;
2342 		part_stat_inc(cpu, part, merges[rw]);
2343 	} else {
2344 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2345 		if (!hd_struct_try_get(part)) {
2346 			/*
2347 			 * The partition is already being removed,
2348 			 * the request will be accounted on the disk only
2349 			 *
2350 			 * We take a reference on disk->part0 although that
2351 			 * partition will never be deleted, so we can treat
2352 			 * it as any other partition.
2353 			 */
2354 			part = &rq->rq_disk->part0;
2355 			hd_struct_get(part);
2356 		}
2357 		part_round_stats(cpu, part);
2358 		part_inc_in_flight(part, rw);
2359 		rq->part = part;
2360 	}
2361 
2362 	part_stat_unlock();
2363 }
2364 
2365 /**
2366  * blk_peek_request - peek at the top of a request queue
2367  * @q: request queue to peek at
2368  *
2369  * Description:
2370  *     Return the request at the top of @q.  The returned request
2371  *     should be started using blk_start_request() before LLD starts
2372  *     processing it.
2373  *
2374  * Return:
2375  *     Pointer to the request at the top of @q if available.  Null
2376  *     otherwise.
2377  *
2378  * Context:
2379  *     queue_lock must be held.
2380  */
2381 struct request *blk_peek_request(struct request_queue *q)
2382 {
2383 	struct request *rq;
2384 	int ret;
2385 
2386 	while ((rq = __elv_next_request(q)) != NULL) {
2387 
2388 		rq = blk_pm_peek_request(q, rq);
2389 		if (!rq)
2390 			break;
2391 
2392 		if (!(rq->rq_flags & RQF_STARTED)) {
2393 			/*
2394 			 * This is the first time the device driver
2395 			 * sees this request (possibly after
2396 			 * requeueing).  Notify IO scheduler.
2397 			 */
2398 			if (rq->rq_flags & RQF_SORTED)
2399 				elv_activate_rq(q, rq);
2400 
2401 			/*
2402 			 * just mark as started even if we don't start
2403 			 * it, a request that has been delayed should
2404 			 * not be passed by new incoming requests
2405 			 */
2406 			rq->rq_flags |= RQF_STARTED;
2407 			trace_block_rq_issue(q, rq);
2408 		}
2409 
2410 		if (!q->boundary_rq || q->boundary_rq == rq) {
2411 			q->end_sector = rq_end_sector(rq);
2412 			q->boundary_rq = NULL;
2413 		}
2414 
2415 		if (rq->rq_flags & RQF_DONTPREP)
2416 			break;
2417 
2418 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2419 			/*
2420 			 * make sure space for the drain appears we
2421 			 * know we can do this because max_hw_segments
2422 			 * has been adjusted to be one fewer than the
2423 			 * device can handle
2424 			 */
2425 			rq->nr_phys_segments++;
2426 		}
2427 
2428 		if (!q->prep_rq_fn)
2429 			break;
2430 
2431 		ret = q->prep_rq_fn(q, rq);
2432 		if (ret == BLKPREP_OK) {
2433 			break;
2434 		} else if (ret == BLKPREP_DEFER) {
2435 			/*
2436 			 * the request may have been (partially) prepped.
2437 			 * we need to keep this request in the front to
2438 			 * avoid resource deadlock.  RQF_STARTED will
2439 			 * prevent other fs requests from passing this one.
2440 			 */
2441 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2442 			    !(rq->rq_flags & RQF_DONTPREP)) {
2443 				/*
2444 				 * remove the space for the drain we added
2445 				 * so that we don't add it again
2446 				 */
2447 				--rq->nr_phys_segments;
2448 			}
2449 
2450 			rq = NULL;
2451 			break;
2452 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2453 			int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2454 
2455 			rq->rq_flags |= RQF_QUIET;
2456 			/*
2457 			 * Mark this request as started so we don't trigger
2458 			 * any debug logic in the end I/O path.
2459 			 */
2460 			blk_start_request(rq);
2461 			__blk_end_request_all(rq, err);
2462 		} else {
2463 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2464 			break;
2465 		}
2466 	}
2467 
2468 	return rq;
2469 }
2470 EXPORT_SYMBOL(blk_peek_request);
2471 
2472 void blk_dequeue_request(struct request *rq)
2473 {
2474 	struct request_queue *q = rq->q;
2475 
2476 	BUG_ON(list_empty(&rq->queuelist));
2477 	BUG_ON(ELV_ON_HASH(rq));
2478 
2479 	list_del_init(&rq->queuelist);
2480 
2481 	/*
2482 	 * the time frame between a request being removed from the lists
2483 	 * and to it is freed is accounted as io that is in progress at
2484 	 * the driver side.
2485 	 */
2486 	if (blk_account_rq(rq)) {
2487 		q->in_flight[rq_is_sync(rq)]++;
2488 		set_io_start_time_ns(rq);
2489 	}
2490 }
2491 
2492 /**
2493  * blk_start_request - start request processing on the driver
2494  * @req: request to dequeue
2495  *
2496  * Description:
2497  *     Dequeue @req and start timeout timer on it.  This hands off the
2498  *     request to the driver.
2499  *
2500  *     Block internal functions which don't want to start timer should
2501  *     call blk_dequeue_request().
2502  *
2503  * Context:
2504  *     queue_lock must be held.
2505  */
2506 void blk_start_request(struct request *req)
2507 {
2508 	blk_dequeue_request(req);
2509 
2510 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2511 		blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2512 		req->rq_flags |= RQF_STATS;
2513 		wbt_issue(req->q->rq_wb, &req->issue_stat);
2514 	}
2515 
2516 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2517 	blk_add_timer(req);
2518 }
2519 EXPORT_SYMBOL(blk_start_request);
2520 
2521 /**
2522  * blk_fetch_request - fetch a request from a request queue
2523  * @q: request queue to fetch a request from
2524  *
2525  * Description:
2526  *     Return the request at the top of @q.  The request is started on
2527  *     return and LLD can start processing it immediately.
2528  *
2529  * Return:
2530  *     Pointer to the request at the top of @q if available.  Null
2531  *     otherwise.
2532  *
2533  * Context:
2534  *     queue_lock must be held.
2535  */
2536 struct request *blk_fetch_request(struct request_queue *q)
2537 {
2538 	struct request *rq;
2539 
2540 	rq = blk_peek_request(q);
2541 	if (rq)
2542 		blk_start_request(rq);
2543 	return rq;
2544 }
2545 EXPORT_SYMBOL(blk_fetch_request);
2546 
2547 /**
2548  * blk_update_request - Special helper function for request stacking drivers
2549  * @req:      the request being processed
2550  * @error:    %0 for success, < %0 for error
2551  * @nr_bytes: number of bytes to complete @req
2552  *
2553  * Description:
2554  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2555  *     the request structure even if @req doesn't have leftover.
2556  *     If @req has leftover, sets it up for the next range of segments.
2557  *
2558  *     This special helper function is only for request stacking drivers
2559  *     (e.g. request-based dm) so that they can handle partial completion.
2560  *     Actual device drivers should use blk_end_request instead.
2561  *
2562  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2563  *     %false return from this function.
2564  *
2565  * Return:
2566  *     %false - this request doesn't have any more data
2567  *     %true  - this request has more data
2568  **/
2569 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2570 {
2571 	int total_bytes;
2572 
2573 	trace_block_rq_complete(req, error, nr_bytes);
2574 
2575 	if (!req->bio)
2576 		return false;
2577 
2578 	if (error && !blk_rq_is_passthrough(req) &&
2579 	    !(req->rq_flags & RQF_QUIET)) {
2580 		char *error_type;
2581 
2582 		switch (error) {
2583 		case -ENOLINK:
2584 			error_type = "recoverable transport";
2585 			break;
2586 		case -EREMOTEIO:
2587 			error_type = "critical target";
2588 			break;
2589 		case -EBADE:
2590 			error_type = "critical nexus";
2591 			break;
2592 		case -ETIMEDOUT:
2593 			error_type = "timeout";
2594 			break;
2595 		case -ENOSPC:
2596 			error_type = "critical space allocation";
2597 			break;
2598 		case -ENODATA:
2599 			error_type = "critical medium";
2600 			break;
2601 		case -EIO:
2602 		default:
2603 			error_type = "I/O";
2604 			break;
2605 		}
2606 		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2607 				   __func__, error_type, req->rq_disk ?
2608 				   req->rq_disk->disk_name : "?",
2609 				   (unsigned long long)blk_rq_pos(req));
2610 
2611 	}
2612 
2613 	blk_account_io_completion(req, nr_bytes);
2614 
2615 	total_bytes = 0;
2616 	while (req->bio) {
2617 		struct bio *bio = req->bio;
2618 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2619 
2620 		if (bio_bytes == bio->bi_iter.bi_size)
2621 			req->bio = bio->bi_next;
2622 
2623 		/* Completion has already been traced */
2624 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2625 		req_bio_endio(req, bio, bio_bytes, error);
2626 
2627 		total_bytes += bio_bytes;
2628 		nr_bytes -= bio_bytes;
2629 
2630 		if (!nr_bytes)
2631 			break;
2632 	}
2633 
2634 	/*
2635 	 * completely done
2636 	 */
2637 	if (!req->bio) {
2638 		/*
2639 		 * Reset counters so that the request stacking driver
2640 		 * can find how many bytes remain in the request
2641 		 * later.
2642 		 */
2643 		req->__data_len = 0;
2644 		return false;
2645 	}
2646 
2647 	req->__data_len -= total_bytes;
2648 
2649 	/* update sector only for requests with clear definition of sector */
2650 	if (!blk_rq_is_passthrough(req))
2651 		req->__sector += total_bytes >> 9;
2652 
2653 	/* mixed attributes always follow the first bio */
2654 	if (req->rq_flags & RQF_MIXED_MERGE) {
2655 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2656 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2657 	}
2658 
2659 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2660 		/*
2661 		 * If total number of sectors is less than the first segment
2662 		 * size, something has gone terribly wrong.
2663 		 */
2664 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2665 			blk_dump_rq_flags(req, "request botched");
2666 			req->__data_len = blk_rq_cur_bytes(req);
2667 		}
2668 
2669 		/* recalculate the number of segments */
2670 		blk_recalc_rq_segments(req);
2671 	}
2672 
2673 	return true;
2674 }
2675 EXPORT_SYMBOL_GPL(blk_update_request);
2676 
2677 static bool blk_update_bidi_request(struct request *rq, int error,
2678 				    unsigned int nr_bytes,
2679 				    unsigned int bidi_bytes)
2680 {
2681 	if (blk_update_request(rq, error, nr_bytes))
2682 		return true;
2683 
2684 	/* Bidi request must be completed as a whole */
2685 	if (unlikely(blk_bidi_rq(rq)) &&
2686 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2687 		return true;
2688 
2689 	if (blk_queue_add_random(rq->q))
2690 		add_disk_randomness(rq->rq_disk);
2691 
2692 	return false;
2693 }
2694 
2695 /**
2696  * blk_unprep_request - unprepare a request
2697  * @req:	the request
2698  *
2699  * This function makes a request ready for complete resubmission (or
2700  * completion).  It happens only after all error handling is complete,
2701  * so represents the appropriate moment to deallocate any resources
2702  * that were allocated to the request in the prep_rq_fn.  The queue
2703  * lock is held when calling this.
2704  */
2705 void blk_unprep_request(struct request *req)
2706 {
2707 	struct request_queue *q = req->q;
2708 
2709 	req->rq_flags &= ~RQF_DONTPREP;
2710 	if (q->unprep_rq_fn)
2711 		q->unprep_rq_fn(q, req);
2712 }
2713 EXPORT_SYMBOL_GPL(blk_unprep_request);
2714 
2715 /*
2716  * queue lock must be held
2717  */
2718 void blk_finish_request(struct request *req, int error)
2719 {
2720 	struct request_queue *q = req->q;
2721 
2722 	if (req->rq_flags & RQF_STATS)
2723 		blk_stat_add(req);
2724 
2725 	if (req->rq_flags & RQF_QUEUED)
2726 		blk_queue_end_tag(q, req);
2727 
2728 	BUG_ON(blk_queued_rq(req));
2729 
2730 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2731 		laptop_io_completion(req->q->backing_dev_info);
2732 
2733 	blk_delete_timer(req);
2734 
2735 	if (req->rq_flags & RQF_DONTPREP)
2736 		blk_unprep_request(req);
2737 
2738 	blk_account_io_done(req);
2739 
2740 	if (req->end_io) {
2741 		wbt_done(req->q->rq_wb, &req->issue_stat);
2742 		req->end_io(req, error);
2743 	} else {
2744 		if (blk_bidi_rq(req))
2745 			__blk_put_request(req->next_rq->q, req->next_rq);
2746 
2747 		__blk_put_request(q, req);
2748 	}
2749 }
2750 EXPORT_SYMBOL(blk_finish_request);
2751 
2752 /**
2753  * blk_end_bidi_request - Complete a bidi request
2754  * @rq:         the request to complete
2755  * @error:      %0 for success, < %0 for error
2756  * @nr_bytes:   number of bytes to complete @rq
2757  * @bidi_bytes: number of bytes to complete @rq->next_rq
2758  *
2759  * Description:
2760  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2761  *     Drivers that supports bidi can safely call this member for any
2762  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2763  *     just ignored.
2764  *
2765  * Return:
2766  *     %false - we are done with this request
2767  *     %true  - still buffers pending for this request
2768  **/
2769 static bool blk_end_bidi_request(struct request *rq, int error,
2770 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2771 {
2772 	struct request_queue *q = rq->q;
2773 	unsigned long flags;
2774 
2775 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2776 		return true;
2777 
2778 	spin_lock_irqsave(q->queue_lock, flags);
2779 	blk_finish_request(rq, error);
2780 	spin_unlock_irqrestore(q->queue_lock, flags);
2781 
2782 	return false;
2783 }
2784 
2785 /**
2786  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2787  * @rq:         the request to complete
2788  * @error:      %0 for success, < %0 for error
2789  * @nr_bytes:   number of bytes to complete @rq
2790  * @bidi_bytes: number of bytes to complete @rq->next_rq
2791  *
2792  * Description:
2793  *     Identical to blk_end_bidi_request() except that queue lock is
2794  *     assumed to be locked on entry and remains so on return.
2795  *
2796  * Return:
2797  *     %false - we are done with this request
2798  *     %true  - still buffers pending for this request
2799  **/
2800 static bool __blk_end_bidi_request(struct request *rq, int error,
2801 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2802 {
2803 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2804 		return true;
2805 
2806 	blk_finish_request(rq, error);
2807 
2808 	return false;
2809 }
2810 
2811 /**
2812  * blk_end_request - Helper function for drivers to complete the request.
2813  * @rq:       the request being processed
2814  * @error:    %0 for success, < %0 for error
2815  * @nr_bytes: number of bytes to complete
2816  *
2817  * Description:
2818  *     Ends I/O on a number of bytes attached to @rq.
2819  *     If @rq has leftover, sets it up for the next range of segments.
2820  *
2821  * Return:
2822  *     %false - we are done with this request
2823  *     %true  - still buffers pending for this request
2824  **/
2825 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2826 {
2827 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2828 }
2829 EXPORT_SYMBOL(blk_end_request);
2830 
2831 /**
2832  * blk_end_request_all - Helper function for drives to finish the request.
2833  * @rq: the request to finish
2834  * @error: %0 for success, < %0 for error
2835  *
2836  * Description:
2837  *     Completely finish @rq.
2838  */
2839 void blk_end_request_all(struct request *rq, int error)
2840 {
2841 	bool pending;
2842 	unsigned int bidi_bytes = 0;
2843 
2844 	if (unlikely(blk_bidi_rq(rq)))
2845 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2846 
2847 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2848 	BUG_ON(pending);
2849 }
2850 EXPORT_SYMBOL(blk_end_request_all);
2851 
2852 /**
2853  * __blk_end_request - Helper function for drivers to complete the request.
2854  * @rq:       the request being processed
2855  * @error:    %0 for success, < %0 for error
2856  * @nr_bytes: number of bytes to complete
2857  *
2858  * Description:
2859  *     Must be called with queue lock held unlike blk_end_request().
2860  *
2861  * Return:
2862  *     %false - we are done with this request
2863  *     %true  - still buffers pending for this request
2864  **/
2865 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2866 {
2867 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2868 }
2869 EXPORT_SYMBOL(__blk_end_request);
2870 
2871 /**
2872  * __blk_end_request_all - Helper function for drives to finish the request.
2873  * @rq: the request to finish
2874  * @error: %0 for success, < %0 for error
2875  *
2876  * Description:
2877  *     Completely finish @rq.  Must be called with queue lock held.
2878  */
2879 void __blk_end_request_all(struct request *rq, int error)
2880 {
2881 	bool pending;
2882 	unsigned int bidi_bytes = 0;
2883 
2884 	if (unlikely(blk_bidi_rq(rq)))
2885 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2886 
2887 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2888 	BUG_ON(pending);
2889 }
2890 EXPORT_SYMBOL(__blk_end_request_all);
2891 
2892 /**
2893  * __blk_end_request_cur - Helper function to finish the current request chunk.
2894  * @rq: the request to finish the current chunk for
2895  * @error: %0 for success, < %0 for error
2896  *
2897  * Description:
2898  *     Complete the current consecutively mapped chunk from @rq.  Must
2899  *     be called with queue lock held.
2900  *
2901  * Return:
2902  *     %false - we are done with this request
2903  *     %true  - still buffers pending for this request
2904  */
2905 bool __blk_end_request_cur(struct request *rq, int error)
2906 {
2907 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2908 }
2909 EXPORT_SYMBOL(__blk_end_request_cur);
2910 
2911 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2912 		     struct bio *bio)
2913 {
2914 	if (bio_has_data(bio))
2915 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2916 
2917 	rq->__data_len = bio->bi_iter.bi_size;
2918 	rq->bio = rq->biotail = bio;
2919 
2920 	if (bio->bi_bdev)
2921 		rq->rq_disk = bio->bi_bdev->bd_disk;
2922 }
2923 
2924 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2925 /**
2926  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2927  * @rq: the request to be flushed
2928  *
2929  * Description:
2930  *     Flush all pages in @rq.
2931  */
2932 void rq_flush_dcache_pages(struct request *rq)
2933 {
2934 	struct req_iterator iter;
2935 	struct bio_vec bvec;
2936 
2937 	rq_for_each_segment(bvec, rq, iter)
2938 		flush_dcache_page(bvec.bv_page);
2939 }
2940 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2941 #endif
2942 
2943 /**
2944  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2945  * @q : the queue of the device being checked
2946  *
2947  * Description:
2948  *    Check if underlying low-level drivers of a device are busy.
2949  *    If the drivers want to export their busy state, they must set own
2950  *    exporting function using blk_queue_lld_busy() first.
2951  *
2952  *    Basically, this function is used only by request stacking drivers
2953  *    to stop dispatching requests to underlying devices when underlying
2954  *    devices are busy.  This behavior helps more I/O merging on the queue
2955  *    of the request stacking driver and prevents I/O throughput regression
2956  *    on burst I/O load.
2957  *
2958  * Return:
2959  *    0 - Not busy (The request stacking driver should dispatch request)
2960  *    1 - Busy (The request stacking driver should stop dispatching request)
2961  */
2962 int blk_lld_busy(struct request_queue *q)
2963 {
2964 	if (q->lld_busy_fn)
2965 		return q->lld_busy_fn(q);
2966 
2967 	return 0;
2968 }
2969 EXPORT_SYMBOL_GPL(blk_lld_busy);
2970 
2971 /**
2972  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2973  * @rq: the clone request to be cleaned up
2974  *
2975  * Description:
2976  *     Free all bios in @rq for a cloned request.
2977  */
2978 void blk_rq_unprep_clone(struct request *rq)
2979 {
2980 	struct bio *bio;
2981 
2982 	while ((bio = rq->bio) != NULL) {
2983 		rq->bio = bio->bi_next;
2984 
2985 		bio_put(bio);
2986 	}
2987 }
2988 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2989 
2990 /*
2991  * Copy attributes of the original request to the clone request.
2992  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2993  */
2994 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2995 {
2996 	dst->cpu = src->cpu;
2997 	dst->__sector = blk_rq_pos(src);
2998 	dst->__data_len = blk_rq_bytes(src);
2999 	dst->nr_phys_segments = src->nr_phys_segments;
3000 	dst->ioprio = src->ioprio;
3001 	dst->extra_len = src->extra_len;
3002 }
3003 
3004 /**
3005  * blk_rq_prep_clone - Helper function to setup clone request
3006  * @rq: the request to be setup
3007  * @rq_src: original request to be cloned
3008  * @bs: bio_set that bios for clone are allocated from
3009  * @gfp_mask: memory allocation mask for bio
3010  * @bio_ctr: setup function to be called for each clone bio.
3011  *           Returns %0 for success, non %0 for failure.
3012  * @data: private data to be passed to @bio_ctr
3013  *
3014  * Description:
3015  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3016  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3017  *     are not copied, and copying such parts is the caller's responsibility.
3018  *     Also, pages which the original bios are pointing to are not copied
3019  *     and the cloned bios just point same pages.
3020  *     So cloned bios must be completed before original bios, which means
3021  *     the caller must complete @rq before @rq_src.
3022  */
3023 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3024 		      struct bio_set *bs, gfp_t gfp_mask,
3025 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3026 		      void *data)
3027 {
3028 	struct bio *bio, *bio_src;
3029 
3030 	if (!bs)
3031 		bs = fs_bio_set;
3032 
3033 	__rq_for_each_bio(bio_src, rq_src) {
3034 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3035 		if (!bio)
3036 			goto free_and_out;
3037 
3038 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3039 			goto free_and_out;
3040 
3041 		if (rq->bio) {
3042 			rq->biotail->bi_next = bio;
3043 			rq->biotail = bio;
3044 		} else
3045 			rq->bio = rq->biotail = bio;
3046 	}
3047 
3048 	__blk_rq_prep_clone(rq, rq_src);
3049 
3050 	return 0;
3051 
3052 free_and_out:
3053 	if (bio)
3054 		bio_put(bio);
3055 	blk_rq_unprep_clone(rq);
3056 
3057 	return -ENOMEM;
3058 }
3059 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3060 
3061 int kblockd_schedule_work(struct work_struct *work)
3062 {
3063 	return queue_work(kblockd_workqueue, work);
3064 }
3065 EXPORT_SYMBOL(kblockd_schedule_work);
3066 
3067 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3068 {
3069 	return queue_work_on(cpu, kblockd_workqueue, work);
3070 }
3071 EXPORT_SYMBOL(kblockd_schedule_work_on);
3072 
3073 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3074 				unsigned long delay)
3075 {
3076 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3077 }
3078 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3079 
3080 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3081 				  unsigned long delay)
3082 {
3083 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3084 }
3085 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3086 
3087 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3088 				     unsigned long delay)
3089 {
3090 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3091 }
3092 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3093 
3094 /**
3095  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3096  * @plug:	The &struct blk_plug that needs to be initialized
3097  *
3098  * Description:
3099  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3100  *   pending I/O should the task end up blocking between blk_start_plug() and
3101  *   blk_finish_plug(). This is important from a performance perspective, but
3102  *   also ensures that we don't deadlock. For instance, if the task is blocking
3103  *   for a memory allocation, memory reclaim could end up wanting to free a
3104  *   page belonging to that request that is currently residing in our private
3105  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3106  *   this kind of deadlock.
3107  */
3108 void blk_start_plug(struct blk_plug *plug)
3109 {
3110 	struct task_struct *tsk = current;
3111 
3112 	/*
3113 	 * If this is a nested plug, don't actually assign it.
3114 	 */
3115 	if (tsk->plug)
3116 		return;
3117 
3118 	INIT_LIST_HEAD(&plug->list);
3119 	INIT_LIST_HEAD(&plug->mq_list);
3120 	INIT_LIST_HEAD(&plug->cb_list);
3121 	/*
3122 	 * Store ordering should not be needed here, since a potential
3123 	 * preempt will imply a full memory barrier
3124 	 */
3125 	tsk->plug = plug;
3126 }
3127 EXPORT_SYMBOL(blk_start_plug);
3128 
3129 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3130 {
3131 	struct request *rqa = container_of(a, struct request, queuelist);
3132 	struct request *rqb = container_of(b, struct request, queuelist);
3133 
3134 	return !(rqa->q < rqb->q ||
3135 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3136 }
3137 
3138 /*
3139  * If 'from_schedule' is true, then postpone the dispatch of requests
3140  * until a safe kblockd context. We due this to avoid accidental big
3141  * additional stack usage in driver dispatch, in places where the originally
3142  * plugger did not intend it.
3143  */
3144 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3145 			    bool from_schedule)
3146 	__releases(q->queue_lock)
3147 {
3148 	trace_block_unplug(q, depth, !from_schedule);
3149 
3150 	if (from_schedule)
3151 		blk_run_queue_async(q);
3152 	else
3153 		__blk_run_queue(q);
3154 	spin_unlock(q->queue_lock);
3155 }
3156 
3157 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3158 {
3159 	LIST_HEAD(callbacks);
3160 
3161 	while (!list_empty(&plug->cb_list)) {
3162 		list_splice_init(&plug->cb_list, &callbacks);
3163 
3164 		while (!list_empty(&callbacks)) {
3165 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3166 							  struct blk_plug_cb,
3167 							  list);
3168 			list_del(&cb->list);
3169 			cb->callback(cb, from_schedule);
3170 		}
3171 	}
3172 }
3173 
3174 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3175 				      int size)
3176 {
3177 	struct blk_plug *plug = current->plug;
3178 	struct blk_plug_cb *cb;
3179 
3180 	if (!plug)
3181 		return NULL;
3182 
3183 	list_for_each_entry(cb, &plug->cb_list, list)
3184 		if (cb->callback == unplug && cb->data == data)
3185 			return cb;
3186 
3187 	/* Not currently on the callback list */
3188 	BUG_ON(size < sizeof(*cb));
3189 	cb = kzalloc(size, GFP_ATOMIC);
3190 	if (cb) {
3191 		cb->data = data;
3192 		cb->callback = unplug;
3193 		list_add(&cb->list, &plug->cb_list);
3194 	}
3195 	return cb;
3196 }
3197 EXPORT_SYMBOL(blk_check_plugged);
3198 
3199 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3200 {
3201 	struct request_queue *q;
3202 	unsigned long flags;
3203 	struct request *rq;
3204 	LIST_HEAD(list);
3205 	unsigned int depth;
3206 
3207 	flush_plug_callbacks(plug, from_schedule);
3208 
3209 	if (!list_empty(&plug->mq_list))
3210 		blk_mq_flush_plug_list(plug, from_schedule);
3211 
3212 	if (list_empty(&plug->list))
3213 		return;
3214 
3215 	list_splice_init(&plug->list, &list);
3216 
3217 	list_sort(NULL, &list, plug_rq_cmp);
3218 
3219 	q = NULL;
3220 	depth = 0;
3221 
3222 	/*
3223 	 * Save and disable interrupts here, to avoid doing it for every
3224 	 * queue lock we have to take.
3225 	 */
3226 	local_irq_save(flags);
3227 	while (!list_empty(&list)) {
3228 		rq = list_entry_rq(list.next);
3229 		list_del_init(&rq->queuelist);
3230 		BUG_ON(!rq->q);
3231 		if (rq->q != q) {
3232 			/*
3233 			 * This drops the queue lock
3234 			 */
3235 			if (q)
3236 				queue_unplugged(q, depth, from_schedule);
3237 			q = rq->q;
3238 			depth = 0;
3239 			spin_lock(q->queue_lock);
3240 		}
3241 
3242 		/*
3243 		 * Short-circuit if @q is dead
3244 		 */
3245 		if (unlikely(blk_queue_dying(q))) {
3246 			__blk_end_request_all(rq, -ENODEV);
3247 			continue;
3248 		}
3249 
3250 		/*
3251 		 * rq is already accounted, so use raw insert
3252 		 */
3253 		if (op_is_flush(rq->cmd_flags))
3254 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3255 		else
3256 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3257 
3258 		depth++;
3259 	}
3260 
3261 	/*
3262 	 * This drops the queue lock
3263 	 */
3264 	if (q)
3265 		queue_unplugged(q, depth, from_schedule);
3266 
3267 	local_irq_restore(flags);
3268 }
3269 
3270 void blk_finish_plug(struct blk_plug *plug)
3271 {
3272 	if (plug != current->plug)
3273 		return;
3274 	blk_flush_plug_list(plug, false);
3275 
3276 	current->plug = NULL;
3277 }
3278 EXPORT_SYMBOL(blk_finish_plug);
3279 
3280 #ifdef CONFIG_PM
3281 /**
3282  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3283  * @q: the queue of the device
3284  * @dev: the device the queue belongs to
3285  *
3286  * Description:
3287  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3288  *    @dev. Drivers that want to take advantage of request-based runtime PM
3289  *    should call this function after @dev has been initialized, and its
3290  *    request queue @q has been allocated, and runtime PM for it can not happen
3291  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3292  *    cases, driver should call this function before any I/O has taken place.
3293  *
3294  *    This function takes care of setting up using auto suspend for the device,
3295  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3296  *    until an updated value is either set by user or by driver. Drivers do
3297  *    not need to touch other autosuspend settings.
3298  *
3299  *    The block layer runtime PM is request based, so only works for drivers
3300  *    that use request as their IO unit instead of those directly use bio's.
3301  */
3302 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3303 {
3304 	q->dev = dev;
3305 	q->rpm_status = RPM_ACTIVE;
3306 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3307 	pm_runtime_use_autosuspend(q->dev);
3308 }
3309 EXPORT_SYMBOL(blk_pm_runtime_init);
3310 
3311 /**
3312  * blk_pre_runtime_suspend - Pre runtime suspend check
3313  * @q: the queue of the device
3314  *
3315  * Description:
3316  *    This function will check if runtime suspend is allowed for the device
3317  *    by examining if there are any requests pending in the queue. If there
3318  *    are requests pending, the device can not be runtime suspended; otherwise,
3319  *    the queue's status will be updated to SUSPENDING and the driver can
3320  *    proceed to suspend the device.
3321  *
3322  *    For the not allowed case, we mark last busy for the device so that
3323  *    runtime PM core will try to autosuspend it some time later.
3324  *
3325  *    This function should be called near the start of the device's
3326  *    runtime_suspend callback.
3327  *
3328  * Return:
3329  *    0		- OK to runtime suspend the device
3330  *    -EBUSY	- Device should not be runtime suspended
3331  */
3332 int blk_pre_runtime_suspend(struct request_queue *q)
3333 {
3334 	int ret = 0;
3335 
3336 	if (!q->dev)
3337 		return ret;
3338 
3339 	spin_lock_irq(q->queue_lock);
3340 	if (q->nr_pending) {
3341 		ret = -EBUSY;
3342 		pm_runtime_mark_last_busy(q->dev);
3343 	} else {
3344 		q->rpm_status = RPM_SUSPENDING;
3345 	}
3346 	spin_unlock_irq(q->queue_lock);
3347 	return ret;
3348 }
3349 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3350 
3351 /**
3352  * blk_post_runtime_suspend - Post runtime suspend processing
3353  * @q: the queue of the device
3354  * @err: return value of the device's runtime_suspend function
3355  *
3356  * Description:
3357  *    Update the queue's runtime status according to the return value of the
3358  *    device's runtime suspend function and mark last busy for the device so
3359  *    that PM core will try to auto suspend the device at a later time.
3360  *
3361  *    This function should be called near the end of the device's
3362  *    runtime_suspend callback.
3363  */
3364 void blk_post_runtime_suspend(struct request_queue *q, int err)
3365 {
3366 	if (!q->dev)
3367 		return;
3368 
3369 	spin_lock_irq(q->queue_lock);
3370 	if (!err) {
3371 		q->rpm_status = RPM_SUSPENDED;
3372 	} else {
3373 		q->rpm_status = RPM_ACTIVE;
3374 		pm_runtime_mark_last_busy(q->dev);
3375 	}
3376 	spin_unlock_irq(q->queue_lock);
3377 }
3378 EXPORT_SYMBOL(blk_post_runtime_suspend);
3379 
3380 /**
3381  * blk_pre_runtime_resume - Pre runtime resume processing
3382  * @q: the queue of the device
3383  *
3384  * Description:
3385  *    Update the queue's runtime status to RESUMING in preparation for the
3386  *    runtime resume of the device.
3387  *
3388  *    This function should be called near the start of the device's
3389  *    runtime_resume callback.
3390  */
3391 void blk_pre_runtime_resume(struct request_queue *q)
3392 {
3393 	if (!q->dev)
3394 		return;
3395 
3396 	spin_lock_irq(q->queue_lock);
3397 	q->rpm_status = RPM_RESUMING;
3398 	spin_unlock_irq(q->queue_lock);
3399 }
3400 EXPORT_SYMBOL(blk_pre_runtime_resume);
3401 
3402 /**
3403  * blk_post_runtime_resume - Post runtime resume processing
3404  * @q: the queue of the device
3405  * @err: return value of the device's runtime_resume function
3406  *
3407  * Description:
3408  *    Update the queue's runtime status according to the return value of the
3409  *    device's runtime_resume function. If it is successfully resumed, process
3410  *    the requests that are queued into the device's queue when it is resuming
3411  *    and then mark last busy and initiate autosuspend for it.
3412  *
3413  *    This function should be called near the end of the device's
3414  *    runtime_resume callback.
3415  */
3416 void blk_post_runtime_resume(struct request_queue *q, int err)
3417 {
3418 	if (!q->dev)
3419 		return;
3420 
3421 	spin_lock_irq(q->queue_lock);
3422 	if (!err) {
3423 		q->rpm_status = RPM_ACTIVE;
3424 		__blk_run_queue(q);
3425 		pm_runtime_mark_last_busy(q->dev);
3426 		pm_request_autosuspend(q->dev);
3427 	} else {
3428 		q->rpm_status = RPM_SUSPENDED;
3429 	}
3430 	spin_unlock_irq(q->queue_lock);
3431 }
3432 EXPORT_SYMBOL(blk_post_runtime_resume);
3433 
3434 /**
3435  * blk_set_runtime_active - Force runtime status of the queue to be active
3436  * @q: the queue of the device
3437  *
3438  * If the device is left runtime suspended during system suspend the resume
3439  * hook typically resumes the device and corrects runtime status
3440  * accordingly. However, that does not affect the queue runtime PM status
3441  * which is still "suspended". This prevents processing requests from the
3442  * queue.
3443  *
3444  * This function can be used in driver's resume hook to correct queue
3445  * runtime PM status and re-enable peeking requests from the queue. It
3446  * should be called before first request is added to the queue.
3447  */
3448 void blk_set_runtime_active(struct request_queue *q)
3449 {
3450 	spin_lock_irq(q->queue_lock);
3451 	q->rpm_status = RPM_ACTIVE;
3452 	pm_runtime_mark_last_busy(q->dev);
3453 	pm_request_autosuspend(q->dev);
3454 	spin_unlock_irq(q->queue_lock);
3455 }
3456 EXPORT_SYMBOL(blk_set_runtime_active);
3457 #endif
3458 
3459 int __init blk_dev_init(void)
3460 {
3461 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3462 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3463 			FIELD_SIZEOF(struct request, cmd_flags));
3464 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3465 			FIELD_SIZEOF(struct bio, bi_opf));
3466 
3467 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3468 	kblockd_workqueue = alloc_workqueue("kblockd",
3469 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3470 	if (!kblockd_workqueue)
3471 		panic("Failed to create kblockd\n");
3472 
3473 	request_cachep = kmem_cache_create("blkdev_requests",
3474 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3475 
3476 	blk_requestq_cachep = kmem_cache_create("request_queue",
3477 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3478 
3479 #ifdef CONFIG_DEBUG_FS
3480 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3481 #endif
3482 
3483 	return 0;
3484 }
3485