1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/blk-pm.h> 21 #include <linux/blk-integrity.h> 22 #include <linux/highmem.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/string.h> 27 #include <linux/init.h> 28 #include <linux/completion.h> 29 #include <linux/slab.h> 30 #include <linux/swap.h> 31 #include <linux/writeback.h> 32 #include <linux/task_io_accounting_ops.h> 33 #include <linux/fault-inject.h> 34 #include <linux/list_sort.h> 35 #include <linux/delay.h> 36 #include <linux/ratelimit.h> 37 #include <linux/pm_runtime.h> 38 #include <linux/blk-cgroup.h> 39 #include <linux/t10-pi.h> 40 #include <linux/debugfs.h> 41 #include <linux/bpf.h> 42 #include <linux/psi.h> 43 #include <linux/sched/sysctl.h> 44 #include <linux/blk-crypto.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/block.h> 48 49 #include "blk.h" 50 #include "blk-mq.h" 51 #include "blk-mq-sched.h" 52 #include "blk-pm.h" 53 #include "blk-throttle.h" 54 55 struct dentry *blk_debugfs_root; 56 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert); 63 64 DEFINE_IDA(blk_queue_ida); 65 66 /* 67 * For queue allocation 68 */ 69 struct kmem_cache *blk_requestq_cachep; 70 71 /* 72 * Controlling structure to kblockd 73 */ 74 static struct workqueue_struct *kblockd_workqueue; 75 76 /** 77 * blk_queue_flag_set - atomically set a queue flag 78 * @flag: flag to be set 79 * @q: request queue 80 */ 81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 82 { 83 set_bit(flag, &q->queue_flags); 84 } 85 EXPORT_SYMBOL(blk_queue_flag_set); 86 87 /** 88 * blk_queue_flag_clear - atomically clear a queue flag 89 * @flag: flag to be cleared 90 * @q: request queue 91 */ 92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 93 { 94 clear_bit(flag, &q->queue_flags); 95 } 96 EXPORT_SYMBOL(blk_queue_flag_clear); 97 98 /** 99 * blk_queue_flag_test_and_set - atomically test and set a queue flag 100 * @flag: flag to be set 101 * @q: request queue 102 * 103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 104 * the flag was already set. 105 */ 106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 107 { 108 return test_and_set_bit(flag, &q->queue_flags); 109 } 110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 111 112 void blk_rq_init(struct request_queue *q, struct request *rq) 113 { 114 memset(rq, 0, sizeof(*rq)); 115 116 INIT_LIST_HEAD(&rq->queuelist); 117 rq->q = q; 118 rq->__sector = (sector_t) -1; 119 INIT_HLIST_NODE(&rq->hash); 120 RB_CLEAR_NODE(&rq->rb_node); 121 rq->tag = BLK_MQ_NO_TAG; 122 rq->internal_tag = BLK_MQ_NO_TAG; 123 rq->start_time_ns = ktime_get_ns(); 124 rq->part = NULL; 125 blk_crypto_rq_set_defaults(rq); 126 } 127 EXPORT_SYMBOL(blk_rq_init); 128 129 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 130 static const char *const blk_op_name[] = { 131 REQ_OP_NAME(READ), 132 REQ_OP_NAME(WRITE), 133 REQ_OP_NAME(FLUSH), 134 REQ_OP_NAME(DISCARD), 135 REQ_OP_NAME(SECURE_ERASE), 136 REQ_OP_NAME(ZONE_RESET), 137 REQ_OP_NAME(ZONE_RESET_ALL), 138 REQ_OP_NAME(ZONE_OPEN), 139 REQ_OP_NAME(ZONE_CLOSE), 140 REQ_OP_NAME(ZONE_FINISH), 141 REQ_OP_NAME(ZONE_APPEND), 142 REQ_OP_NAME(WRITE_SAME), 143 REQ_OP_NAME(WRITE_ZEROES), 144 REQ_OP_NAME(DRV_IN), 145 REQ_OP_NAME(DRV_OUT), 146 }; 147 #undef REQ_OP_NAME 148 149 /** 150 * blk_op_str - Return string XXX in the REQ_OP_XXX. 151 * @op: REQ_OP_XXX. 152 * 153 * Description: Centralize block layer function to convert REQ_OP_XXX into 154 * string format. Useful in the debugging and tracing bio or request. For 155 * invalid REQ_OP_XXX it returns string "UNKNOWN". 156 */ 157 inline const char *blk_op_str(unsigned int op) 158 { 159 const char *op_str = "UNKNOWN"; 160 161 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 162 op_str = blk_op_name[op]; 163 164 return op_str; 165 } 166 EXPORT_SYMBOL_GPL(blk_op_str); 167 168 static const struct { 169 int errno; 170 const char *name; 171 } blk_errors[] = { 172 [BLK_STS_OK] = { 0, "" }, 173 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 174 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 175 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 176 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 177 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 178 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 179 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 180 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 181 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 182 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 183 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 184 185 /* device mapper special case, should not leak out: */ 186 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 187 188 /* zone device specific errors */ 189 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" }, 190 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" }, 191 192 /* everything else not covered above: */ 193 [BLK_STS_IOERR] = { -EIO, "I/O" }, 194 }; 195 196 blk_status_t errno_to_blk_status(int errno) 197 { 198 int i; 199 200 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 201 if (blk_errors[i].errno == errno) 202 return (__force blk_status_t)i; 203 } 204 205 return BLK_STS_IOERR; 206 } 207 EXPORT_SYMBOL_GPL(errno_to_blk_status); 208 209 int blk_status_to_errno(blk_status_t status) 210 { 211 int idx = (__force int)status; 212 213 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 214 return -EIO; 215 return blk_errors[idx].errno; 216 } 217 EXPORT_SYMBOL_GPL(blk_status_to_errno); 218 219 void blk_print_req_error(struct request *req, blk_status_t status) 220 { 221 int idx = (__force int)status; 222 223 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 224 return; 225 226 printk_ratelimited(KERN_ERR 227 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 228 "phys_seg %u prio class %u\n", 229 blk_errors[idx].name, 230 req->rq_disk ? req->rq_disk->disk_name : "?", 231 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 232 req->cmd_flags & ~REQ_OP_MASK, 233 req->nr_phys_segments, 234 IOPRIO_PRIO_CLASS(req->ioprio)); 235 } 236 237 void blk_dump_rq_flags(struct request *rq, char *msg) 238 { 239 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 240 rq->rq_disk ? rq->rq_disk->disk_name : "?", 241 (unsigned long long) rq->cmd_flags); 242 243 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 244 (unsigned long long)blk_rq_pos(rq), 245 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 246 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 247 rq->bio, rq->biotail, blk_rq_bytes(rq)); 248 } 249 EXPORT_SYMBOL(blk_dump_rq_flags); 250 251 /** 252 * blk_sync_queue - cancel any pending callbacks on a queue 253 * @q: the queue 254 * 255 * Description: 256 * The block layer may perform asynchronous callback activity 257 * on a queue, such as calling the unplug function after a timeout. 258 * A block device may call blk_sync_queue to ensure that any 259 * such activity is cancelled, thus allowing it to release resources 260 * that the callbacks might use. The caller must already have made sure 261 * that its ->submit_bio will not re-add plugging prior to calling 262 * this function. 263 * 264 * This function does not cancel any asynchronous activity arising 265 * out of elevator or throttling code. That would require elevator_exit() 266 * and blkcg_exit_queue() to be called with queue lock initialized. 267 * 268 */ 269 void blk_sync_queue(struct request_queue *q) 270 { 271 del_timer_sync(&q->timeout); 272 cancel_work_sync(&q->timeout_work); 273 } 274 EXPORT_SYMBOL(blk_sync_queue); 275 276 /** 277 * blk_set_pm_only - increment pm_only counter 278 * @q: request queue pointer 279 */ 280 void blk_set_pm_only(struct request_queue *q) 281 { 282 atomic_inc(&q->pm_only); 283 } 284 EXPORT_SYMBOL_GPL(blk_set_pm_only); 285 286 void blk_clear_pm_only(struct request_queue *q) 287 { 288 int pm_only; 289 290 pm_only = atomic_dec_return(&q->pm_only); 291 WARN_ON_ONCE(pm_only < 0); 292 if (pm_only == 0) 293 wake_up_all(&q->mq_freeze_wq); 294 } 295 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 296 297 /** 298 * blk_put_queue - decrement the request_queue refcount 299 * @q: the request_queue structure to decrement the refcount for 300 * 301 * Decrements the refcount of the request_queue kobject. When this reaches 0 302 * we'll have blk_release_queue() called. 303 * 304 * Context: Any context, but the last reference must not be dropped from 305 * atomic context. 306 */ 307 void blk_put_queue(struct request_queue *q) 308 { 309 kobject_put(&q->kobj); 310 } 311 EXPORT_SYMBOL(blk_put_queue); 312 313 void blk_queue_start_drain(struct request_queue *q) 314 { 315 /* 316 * When queue DYING flag is set, we need to block new req 317 * entering queue, so we call blk_freeze_queue_start() to 318 * prevent I/O from crossing blk_queue_enter(). 319 */ 320 blk_freeze_queue_start(q); 321 if (queue_is_mq(q)) 322 blk_mq_wake_waiters(q); 323 /* Make blk_queue_enter() reexamine the DYING flag. */ 324 wake_up_all(&q->mq_freeze_wq); 325 } 326 327 void blk_set_queue_dying(struct request_queue *q) 328 { 329 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 330 blk_queue_start_drain(q); 331 } 332 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 333 334 /** 335 * blk_cleanup_queue - shutdown a request queue 336 * @q: request queue to shutdown 337 * 338 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 339 * put it. All future requests will be failed immediately with -ENODEV. 340 * 341 * Context: can sleep 342 */ 343 void blk_cleanup_queue(struct request_queue *q) 344 { 345 /* cannot be called from atomic context */ 346 might_sleep(); 347 348 WARN_ON_ONCE(blk_queue_registered(q)); 349 350 /* mark @q DYING, no new request or merges will be allowed afterwards */ 351 blk_set_queue_dying(q); 352 353 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 354 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 355 356 /* 357 * Drain all requests queued before DYING marking. Set DEAD flag to 358 * prevent that blk_mq_run_hw_queues() accesses the hardware queues 359 * after draining finished. 360 */ 361 blk_freeze_queue(q); 362 363 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 364 365 blk_sync_queue(q); 366 if (queue_is_mq(q)) { 367 blk_mq_cancel_work_sync(q); 368 blk_mq_exit_queue(q); 369 } 370 371 /* 372 * In theory, request pool of sched_tags belongs to request queue. 373 * However, the current implementation requires tag_set for freeing 374 * requests, so free the pool now. 375 * 376 * Queue has become frozen, there can't be any in-queue requests, so 377 * it is safe to free requests now. 378 */ 379 mutex_lock(&q->sysfs_lock); 380 if (q->elevator) 381 blk_mq_sched_free_rqs(q); 382 mutex_unlock(&q->sysfs_lock); 383 384 percpu_ref_exit(&q->q_usage_counter); 385 386 /* @q is and will stay empty, shutdown and put */ 387 blk_put_queue(q); 388 } 389 EXPORT_SYMBOL(blk_cleanup_queue); 390 391 /** 392 * blk_queue_enter() - try to increase q->q_usage_counter 393 * @q: request queue pointer 394 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM 395 */ 396 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 397 { 398 const bool pm = flags & BLK_MQ_REQ_PM; 399 400 while (!blk_try_enter_queue(q, pm)) { 401 if (flags & BLK_MQ_REQ_NOWAIT) 402 return -EBUSY; 403 404 /* 405 * read pair of barrier in blk_freeze_queue_start(), we need to 406 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and 407 * reading .mq_freeze_depth or queue dying flag, otherwise the 408 * following wait may never return if the two reads are 409 * reordered. 410 */ 411 smp_rmb(); 412 wait_event(q->mq_freeze_wq, 413 (!q->mq_freeze_depth && 414 blk_pm_resume_queue(pm, q)) || 415 blk_queue_dying(q)); 416 if (blk_queue_dying(q)) 417 return -ENODEV; 418 } 419 420 return 0; 421 } 422 423 int __bio_queue_enter(struct request_queue *q, struct bio *bio) 424 { 425 while (!blk_try_enter_queue(q, false)) { 426 struct gendisk *disk = bio->bi_bdev->bd_disk; 427 428 if (bio->bi_opf & REQ_NOWAIT) { 429 if (test_bit(GD_DEAD, &disk->state)) 430 goto dead; 431 bio_wouldblock_error(bio); 432 return -EBUSY; 433 } 434 435 /* 436 * read pair of barrier in blk_freeze_queue_start(), we need to 437 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and 438 * reading .mq_freeze_depth or queue dying flag, otherwise the 439 * following wait may never return if the two reads are 440 * reordered. 441 */ 442 smp_rmb(); 443 wait_event(q->mq_freeze_wq, 444 (!q->mq_freeze_depth && 445 blk_pm_resume_queue(false, q)) || 446 test_bit(GD_DEAD, &disk->state)); 447 if (test_bit(GD_DEAD, &disk->state)) 448 goto dead; 449 } 450 451 return 0; 452 dead: 453 bio_io_error(bio); 454 return -ENODEV; 455 } 456 457 void blk_queue_exit(struct request_queue *q) 458 { 459 percpu_ref_put(&q->q_usage_counter); 460 } 461 462 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 463 { 464 struct request_queue *q = 465 container_of(ref, struct request_queue, q_usage_counter); 466 467 wake_up_all(&q->mq_freeze_wq); 468 } 469 470 static void blk_rq_timed_out_timer(struct timer_list *t) 471 { 472 struct request_queue *q = from_timer(q, t, timeout); 473 474 kblockd_schedule_work(&q->timeout_work); 475 } 476 477 static void blk_timeout_work(struct work_struct *work) 478 { 479 } 480 481 struct request_queue *blk_alloc_queue(int node_id) 482 { 483 struct request_queue *q; 484 int ret; 485 486 q = kmem_cache_alloc_node(blk_requestq_cachep, 487 GFP_KERNEL | __GFP_ZERO, node_id); 488 if (!q) 489 return NULL; 490 491 q->last_merge = NULL; 492 493 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL); 494 if (q->id < 0) 495 goto fail_q; 496 497 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0); 498 if (ret) 499 goto fail_id; 500 501 q->stats = blk_alloc_queue_stats(); 502 if (!q->stats) 503 goto fail_split; 504 505 q->node = node_id; 506 507 atomic_set(&q->nr_active_requests_shared_tags, 0); 508 509 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 510 INIT_WORK(&q->timeout_work, blk_timeout_work); 511 INIT_LIST_HEAD(&q->icq_list); 512 #ifdef CONFIG_BLK_CGROUP 513 INIT_LIST_HEAD(&q->blkg_list); 514 #endif 515 516 kobject_init(&q->kobj, &blk_queue_ktype); 517 518 mutex_init(&q->debugfs_mutex); 519 mutex_init(&q->sysfs_lock); 520 mutex_init(&q->sysfs_dir_lock); 521 spin_lock_init(&q->queue_lock); 522 523 init_waitqueue_head(&q->mq_freeze_wq); 524 mutex_init(&q->mq_freeze_lock); 525 526 /* 527 * Init percpu_ref in atomic mode so that it's faster to shutdown. 528 * See blk_register_queue() for details. 529 */ 530 if (percpu_ref_init(&q->q_usage_counter, 531 blk_queue_usage_counter_release, 532 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 533 goto fail_stats; 534 535 if (blkcg_init_queue(q)) 536 goto fail_ref; 537 538 blk_queue_dma_alignment(q, 511); 539 blk_set_default_limits(&q->limits); 540 q->nr_requests = BLKDEV_DEFAULT_RQ; 541 542 return q; 543 544 fail_ref: 545 percpu_ref_exit(&q->q_usage_counter); 546 fail_stats: 547 blk_free_queue_stats(q->stats); 548 fail_split: 549 bioset_exit(&q->bio_split); 550 fail_id: 551 ida_simple_remove(&blk_queue_ida, q->id); 552 fail_q: 553 kmem_cache_free(blk_requestq_cachep, q); 554 return NULL; 555 } 556 557 /** 558 * blk_get_queue - increment the request_queue refcount 559 * @q: the request_queue structure to increment the refcount for 560 * 561 * Increment the refcount of the request_queue kobject. 562 * 563 * Context: Any context. 564 */ 565 bool blk_get_queue(struct request_queue *q) 566 { 567 if (likely(!blk_queue_dying(q))) { 568 __blk_get_queue(q); 569 return true; 570 } 571 572 return false; 573 } 574 EXPORT_SYMBOL(blk_get_queue); 575 576 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 577 { 578 char b[BDEVNAME_SIZE]; 579 580 pr_info_ratelimited("%s: attempt to access beyond end of device\n" 581 "%s: rw=%d, want=%llu, limit=%llu\n", 582 current->comm, 583 bio_devname(bio, b), bio->bi_opf, 584 bio_end_sector(bio), maxsector); 585 } 586 587 #ifdef CONFIG_FAIL_MAKE_REQUEST 588 589 static DECLARE_FAULT_ATTR(fail_make_request); 590 591 static int __init setup_fail_make_request(char *str) 592 { 593 return setup_fault_attr(&fail_make_request, str); 594 } 595 __setup("fail_make_request=", setup_fail_make_request); 596 597 static bool should_fail_request(struct block_device *part, unsigned int bytes) 598 { 599 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes); 600 } 601 602 static int __init fail_make_request_debugfs(void) 603 { 604 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 605 NULL, &fail_make_request); 606 607 return PTR_ERR_OR_ZERO(dir); 608 } 609 610 late_initcall(fail_make_request_debugfs); 611 612 #else /* CONFIG_FAIL_MAKE_REQUEST */ 613 614 static inline bool should_fail_request(struct block_device *part, 615 unsigned int bytes) 616 { 617 return false; 618 } 619 620 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 621 622 static inline bool bio_check_ro(struct bio *bio) 623 { 624 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) { 625 char b[BDEVNAME_SIZE]; 626 627 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 628 return false; 629 630 WARN_ONCE(1, 631 "Trying to write to read-only block-device %s (partno %d)\n", 632 bio_devname(bio, b), bio->bi_bdev->bd_partno); 633 /* Older lvm-tools actually trigger this */ 634 return false; 635 } 636 637 return false; 638 } 639 640 static noinline int should_fail_bio(struct bio *bio) 641 { 642 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size)) 643 return -EIO; 644 return 0; 645 } 646 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 647 648 /* 649 * Check whether this bio extends beyond the end of the device or partition. 650 * This may well happen - the kernel calls bread() without checking the size of 651 * the device, e.g., when mounting a file system. 652 */ 653 static inline int bio_check_eod(struct bio *bio) 654 { 655 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 656 unsigned int nr_sectors = bio_sectors(bio); 657 658 if (nr_sectors && maxsector && 659 (nr_sectors > maxsector || 660 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 661 handle_bad_sector(bio, maxsector); 662 return -EIO; 663 } 664 return 0; 665 } 666 667 /* 668 * Remap block n of partition p to block n+start(p) of the disk. 669 */ 670 static int blk_partition_remap(struct bio *bio) 671 { 672 struct block_device *p = bio->bi_bdev; 673 674 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 675 return -EIO; 676 if (bio_sectors(bio)) { 677 bio->bi_iter.bi_sector += p->bd_start_sect; 678 trace_block_bio_remap(bio, p->bd_dev, 679 bio->bi_iter.bi_sector - 680 p->bd_start_sect); 681 } 682 bio_set_flag(bio, BIO_REMAPPED); 683 return 0; 684 } 685 686 /* 687 * Check write append to a zoned block device. 688 */ 689 static inline blk_status_t blk_check_zone_append(struct request_queue *q, 690 struct bio *bio) 691 { 692 sector_t pos = bio->bi_iter.bi_sector; 693 int nr_sectors = bio_sectors(bio); 694 695 /* Only applicable to zoned block devices */ 696 if (!blk_queue_is_zoned(q)) 697 return BLK_STS_NOTSUPP; 698 699 /* The bio sector must point to the start of a sequential zone */ 700 if (pos & (blk_queue_zone_sectors(q) - 1) || 701 !blk_queue_zone_is_seq(q, pos)) 702 return BLK_STS_IOERR; 703 704 /* 705 * Not allowed to cross zone boundaries. Otherwise, the BIO will be 706 * split and could result in non-contiguous sectors being written in 707 * different zones. 708 */ 709 if (nr_sectors > q->limits.chunk_sectors) 710 return BLK_STS_IOERR; 711 712 /* Make sure the BIO is small enough and will not get split */ 713 if (nr_sectors > q->limits.max_zone_append_sectors) 714 return BLK_STS_IOERR; 715 716 bio->bi_opf |= REQ_NOMERGE; 717 718 return BLK_STS_OK; 719 } 720 721 noinline_for_stack bool submit_bio_checks(struct bio *bio) 722 { 723 struct block_device *bdev = bio->bi_bdev; 724 struct request_queue *q = bdev_get_queue(bdev); 725 blk_status_t status = BLK_STS_IOERR; 726 struct blk_plug *plug; 727 728 might_sleep(); 729 730 plug = blk_mq_plug(q, bio); 731 if (plug && plug->nowait) 732 bio->bi_opf |= REQ_NOWAIT; 733 734 /* 735 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 736 * if queue does not support NOWAIT. 737 */ 738 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q)) 739 goto not_supported; 740 741 if (should_fail_bio(bio)) 742 goto end_io; 743 if (unlikely(bio_check_ro(bio))) 744 goto end_io; 745 if (!bio_flagged(bio, BIO_REMAPPED)) { 746 if (unlikely(bio_check_eod(bio))) 747 goto end_io; 748 if (bdev->bd_partno && unlikely(blk_partition_remap(bio))) 749 goto end_io; 750 } 751 752 /* 753 * Filter flush bio's early so that bio based drivers without flush 754 * support don't have to worry about them. 755 */ 756 if (op_is_flush(bio->bi_opf) && 757 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 758 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 759 if (!bio_sectors(bio)) { 760 status = BLK_STS_OK; 761 goto end_io; 762 } 763 } 764 765 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 766 bio_clear_polled(bio); 767 768 switch (bio_op(bio)) { 769 case REQ_OP_DISCARD: 770 if (!blk_queue_discard(q)) 771 goto not_supported; 772 break; 773 case REQ_OP_SECURE_ERASE: 774 if (!blk_queue_secure_erase(q)) 775 goto not_supported; 776 break; 777 case REQ_OP_WRITE_SAME: 778 if (!q->limits.max_write_same_sectors) 779 goto not_supported; 780 break; 781 case REQ_OP_ZONE_APPEND: 782 status = blk_check_zone_append(q, bio); 783 if (status != BLK_STS_OK) 784 goto end_io; 785 break; 786 case REQ_OP_ZONE_RESET: 787 case REQ_OP_ZONE_OPEN: 788 case REQ_OP_ZONE_CLOSE: 789 case REQ_OP_ZONE_FINISH: 790 if (!blk_queue_is_zoned(q)) 791 goto not_supported; 792 break; 793 case REQ_OP_ZONE_RESET_ALL: 794 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q)) 795 goto not_supported; 796 break; 797 case REQ_OP_WRITE_ZEROES: 798 if (!q->limits.max_write_zeroes_sectors) 799 goto not_supported; 800 break; 801 default: 802 break; 803 } 804 805 /* 806 * Various block parts want %current->io_context, so allocate it up 807 * front rather than dealing with lots of pain to allocate it only 808 * where needed. This may fail and the block layer knows how to live 809 * with it. 810 */ 811 if (unlikely(!current->io_context)) 812 create_task_io_context(current, GFP_ATOMIC, q->node); 813 814 if (blk_throtl_bio(bio)) 815 return false; 816 817 blk_cgroup_bio_start(bio); 818 blkcg_bio_issue_init(bio); 819 820 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 821 trace_block_bio_queue(bio); 822 /* Now that enqueuing has been traced, we need to trace 823 * completion as well. 824 */ 825 bio_set_flag(bio, BIO_TRACE_COMPLETION); 826 } 827 return true; 828 829 not_supported: 830 status = BLK_STS_NOTSUPP; 831 end_io: 832 bio->bi_status = status; 833 bio_endio(bio); 834 return false; 835 } 836 837 static void __submit_bio_fops(struct gendisk *disk, struct bio *bio) 838 { 839 if (unlikely(bio_queue_enter(bio) != 0)) 840 return; 841 if (submit_bio_checks(bio) && blk_crypto_bio_prep(&bio)) 842 disk->fops->submit_bio(bio); 843 blk_queue_exit(disk->queue); 844 } 845 846 static void __submit_bio(struct bio *bio) 847 { 848 struct gendisk *disk = bio->bi_bdev->bd_disk; 849 850 if (!disk->fops->submit_bio) 851 blk_mq_submit_bio(bio); 852 else 853 __submit_bio_fops(disk, bio); 854 } 855 856 /* 857 * The loop in this function may be a bit non-obvious, and so deserves some 858 * explanation: 859 * 860 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure 861 * that), so we have a list with a single bio. 862 * - We pretend that we have just taken it off a longer list, so we assign 863 * bio_list to a pointer to the bio_list_on_stack, thus initialising the 864 * bio_list of new bios to be added. ->submit_bio() may indeed add some more 865 * bios through a recursive call to submit_bio_noacct. If it did, we find a 866 * non-NULL value in bio_list and re-enter the loop from the top. 867 * - In this case we really did just take the bio of the top of the list (no 868 * pretending) and so remove it from bio_list, and call into ->submit_bio() 869 * again. 870 * 871 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio. 872 * bio_list_on_stack[1] contains bios that were submitted before the current 873 * ->submit_bio_bio, but that haven't been processed yet. 874 */ 875 static void __submit_bio_noacct(struct bio *bio) 876 { 877 struct bio_list bio_list_on_stack[2]; 878 879 BUG_ON(bio->bi_next); 880 881 bio_list_init(&bio_list_on_stack[0]); 882 current->bio_list = bio_list_on_stack; 883 884 do { 885 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 886 struct bio_list lower, same; 887 888 /* 889 * Create a fresh bio_list for all subordinate requests. 890 */ 891 bio_list_on_stack[1] = bio_list_on_stack[0]; 892 bio_list_init(&bio_list_on_stack[0]); 893 894 __submit_bio(bio); 895 896 /* 897 * Sort new bios into those for a lower level and those for the 898 * same level. 899 */ 900 bio_list_init(&lower); 901 bio_list_init(&same); 902 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 903 if (q == bdev_get_queue(bio->bi_bdev)) 904 bio_list_add(&same, bio); 905 else 906 bio_list_add(&lower, bio); 907 908 /* 909 * Now assemble so we handle the lowest level first. 910 */ 911 bio_list_merge(&bio_list_on_stack[0], &lower); 912 bio_list_merge(&bio_list_on_stack[0], &same); 913 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 914 } while ((bio = bio_list_pop(&bio_list_on_stack[0]))); 915 916 current->bio_list = NULL; 917 } 918 919 static void __submit_bio_noacct_mq(struct bio *bio) 920 { 921 struct bio_list bio_list[2] = { }; 922 923 current->bio_list = bio_list; 924 925 do { 926 __submit_bio(bio); 927 } while ((bio = bio_list_pop(&bio_list[0]))); 928 929 current->bio_list = NULL; 930 } 931 932 /** 933 * submit_bio_noacct - re-submit a bio to the block device layer for I/O 934 * @bio: The bio describing the location in memory and on the device. 935 * 936 * This is a version of submit_bio() that shall only be used for I/O that is 937 * resubmitted to lower level drivers by stacking block drivers. All file 938 * systems and other upper level users of the block layer should use 939 * submit_bio() instead. 940 */ 941 void submit_bio_noacct(struct bio *bio) 942 { 943 /* 944 * We only want one ->submit_bio to be active at a time, else stack 945 * usage with stacked devices could be a problem. Use current->bio_list 946 * to collect a list of requests submited by a ->submit_bio method while 947 * it is active, and then process them after it returned. 948 */ 949 if (current->bio_list) 950 bio_list_add(¤t->bio_list[0], bio); 951 else if (!bio->bi_bdev->bd_disk->fops->submit_bio) 952 __submit_bio_noacct_mq(bio); 953 else 954 __submit_bio_noacct(bio); 955 } 956 EXPORT_SYMBOL(submit_bio_noacct); 957 958 /** 959 * submit_bio - submit a bio to the block device layer for I/O 960 * @bio: The &struct bio which describes the I/O 961 * 962 * submit_bio() is used to submit I/O requests to block devices. It is passed a 963 * fully set up &struct bio that describes the I/O that needs to be done. The 964 * bio will be send to the device described by the bi_bdev field. 965 * 966 * The success/failure status of the request, along with notification of 967 * completion, is delivered asynchronously through the ->bi_end_io() callback 968 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has 969 * been called. 970 */ 971 void submit_bio(struct bio *bio) 972 { 973 if (blkcg_punt_bio_submit(bio)) 974 return; 975 976 /* 977 * If it's a regular read/write or a barrier with data attached, 978 * go through the normal accounting stuff before submission. 979 */ 980 if (bio_has_data(bio)) { 981 unsigned int count; 982 983 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 984 count = queue_logical_block_size( 985 bdev_get_queue(bio->bi_bdev)) >> 9; 986 else 987 count = bio_sectors(bio); 988 989 if (op_is_write(bio_op(bio))) { 990 count_vm_events(PGPGOUT, count); 991 } else { 992 task_io_account_read(bio->bi_iter.bi_size); 993 count_vm_events(PGPGIN, count); 994 } 995 } 996 997 /* 998 * If we're reading data that is part of the userspace workingset, count 999 * submission time as memory stall. When the device is congested, or 1000 * the submitting cgroup IO-throttled, submission can be a significant 1001 * part of overall IO time. 1002 */ 1003 if (unlikely(bio_op(bio) == REQ_OP_READ && 1004 bio_flagged(bio, BIO_WORKINGSET))) { 1005 unsigned long pflags; 1006 1007 psi_memstall_enter(&pflags); 1008 submit_bio_noacct(bio); 1009 psi_memstall_leave(&pflags); 1010 return; 1011 } 1012 1013 submit_bio_noacct(bio); 1014 } 1015 EXPORT_SYMBOL(submit_bio); 1016 1017 /** 1018 * bio_poll - poll for BIO completions 1019 * @bio: bio to poll for 1020 * @iob: batches of IO 1021 * @flags: BLK_POLL_* flags that control the behavior 1022 * 1023 * Poll for completions on queue associated with the bio. Returns number of 1024 * completed entries found. 1025 * 1026 * Note: the caller must either be the context that submitted @bio, or 1027 * be in a RCU critical section to prevent freeing of @bio. 1028 */ 1029 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags) 1030 { 1031 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1032 blk_qc_t cookie = READ_ONCE(bio->bi_cookie); 1033 int ret; 1034 1035 if (cookie == BLK_QC_T_NONE || 1036 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 1037 return 0; 1038 1039 if (current->plug) 1040 blk_flush_plug(current->plug, false); 1041 1042 if (blk_queue_enter(q, BLK_MQ_REQ_NOWAIT)) 1043 return 0; 1044 if (WARN_ON_ONCE(!queue_is_mq(q))) 1045 ret = 0; /* not yet implemented, should not happen */ 1046 else 1047 ret = blk_mq_poll(q, cookie, iob, flags); 1048 blk_queue_exit(q); 1049 return ret; 1050 } 1051 EXPORT_SYMBOL_GPL(bio_poll); 1052 1053 /* 1054 * Helper to implement file_operations.iopoll. Requires the bio to be stored 1055 * in iocb->private, and cleared before freeing the bio. 1056 */ 1057 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 1058 unsigned int flags) 1059 { 1060 struct bio *bio; 1061 int ret = 0; 1062 1063 /* 1064 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can 1065 * point to a freshly allocated bio at this point. If that happens 1066 * we have a few cases to consider: 1067 * 1068 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just 1069 * simply nothing in this case 1070 * 2) the bio points to a not poll enabled device. bio_poll will catch 1071 * this and return 0 1072 * 3) the bio points to a poll capable device, including but not 1073 * limited to the one that the original bio pointed to. In this 1074 * case we will call into the actual poll method and poll for I/O, 1075 * even if we don't need to, but it won't cause harm either. 1076 * 1077 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev 1078 * is still allocated. Because partitions hold a reference to the whole 1079 * device bdev and thus disk, the disk is also still valid. Grabbing 1080 * a reference to the queue in bio_poll() ensures the hctxs and requests 1081 * are still valid as well. 1082 */ 1083 rcu_read_lock(); 1084 bio = READ_ONCE(kiocb->private); 1085 if (bio && bio->bi_bdev) 1086 ret = bio_poll(bio, iob, flags); 1087 rcu_read_unlock(); 1088 1089 return ret; 1090 } 1091 EXPORT_SYMBOL_GPL(iocb_bio_iopoll); 1092 1093 /** 1094 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1095 * for the new queue limits 1096 * @q: the queue 1097 * @rq: the request being checked 1098 * 1099 * Description: 1100 * @rq may have been made based on weaker limitations of upper-level queues 1101 * in request stacking drivers, and it may violate the limitation of @q. 1102 * Since the block layer and the underlying device driver trust @rq 1103 * after it is inserted to @q, it should be checked against @q before 1104 * the insertion using this generic function. 1105 * 1106 * Request stacking drivers like request-based dm may change the queue 1107 * limits when retrying requests on other queues. Those requests need 1108 * to be checked against the new queue limits again during dispatch. 1109 */ 1110 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q, 1111 struct request *rq) 1112 { 1113 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 1114 1115 if (blk_rq_sectors(rq) > max_sectors) { 1116 /* 1117 * SCSI device does not have a good way to return if 1118 * Write Same/Zero is actually supported. If a device rejects 1119 * a non-read/write command (discard, write same,etc.) the 1120 * low-level device driver will set the relevant queue limit to 1121 * 0 to prevent blk-lib from issuing more of the offending 1122 * operations. Commands queued prior to the queue limit being 1123 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 1124 * errors being propagated to upper layers. 1125 */ 1126 if (max_sectors == 0) 1127 return BLK_STS_NOTSUPP; 1128 1129 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 1130 __func__, blk_rq_sectors(rq), max_sectors); 1131 return BLK_STS_IOERR; 1132 } 1133 1134 /* 1135 * The queue settings related to segment counting may differ from the 1136 * original queue. 1137 */ 1138 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 1139 if (rq->nr_phys_segments > queue_max_segments(q)) { 1140 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 1141 __func__, rq->nr_phys_segments, queue_max_segments(q)); 1142 return BLK_STS_IOERR; 1143 } 1144 1145 return BLK_STS_OK; 1146 } 1147 1148 /** 1149 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1150 * @q: the queue to submit the request 1151 * @rq: the request being queued 1152 */ 1153 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1154 { 1155 blk_status_t ret; 1156 1157 ret = blk_cloned_rq_check_limits(q, rq); 1158 if (ret != BLK_STS_OK) 1159 return ret; 1160 1161 if (rq->rq_disk && 1162 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq))) 1163 return BLK_STS_IOERR; 1164 1165 if (blk_crypto_insert_cloned_request(rq)) 1166 return BLK_STS_IOERR; 1167 1168 blk_account_io_start(rq); 1169 1170 /* 1171 * Since we have a scheduler attached on the top device, 1172 * bypass a potential scheduler on the bottom device for 1173 * insert. 1174 */ 1175 return blk_mq_request_issue_directly(rq, true); 1176 } 1177 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1178 1179 /** 1180 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1181 * @rq: request to examine 1182 * 1183 * Description: 1184 * A request could be merge of IOs which require different failure 1185 * handling. This function determines the number of bytes which 1186 * can be failed from the beginning of the request without 1187 * crossing into area which need to be retried further. 1188 * 1189 * Return: 1190 * The number of bytes to fail. 1191 */ 1192 unsigned int blk_rq_err_bytes(const struct request *rq) 1193 { 1194 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1195 unsigned int bytes = 0; 1196 struct bio *bio; 1197 1198 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1199 return blk_rq_bytes(rq); 1200 1201 /* 1202 * Currently the only 'mixing' which can happen is between 1203 * different fastfail types. We can safely fail portions 1204 * which have all the failfast bits that the first one has - 1205 * the ones which are at least as eager to fail as the first 1206 * one. 1207 */ 1208 for (bio = rq->bio; bio; bio = bio->bi_next) { 1209 if ((bio->bi_opf & ff) != ff) 1210 break; 1211 bytes += bio->bi_iter.bi_size; 1212 } 1213 1214 /* this could lead to infinite loop */ 1215 BUG_ON(blk_rq_bytes(rq) && !bytes); 1216 return bytes; 1217 } 1218 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1219 1220 static void update_io_ticks(struct block_device *part, unsigned long now, 1221 bool end) 1222 { 1223 unsigned long stamp; 1224 again: 1225 stamp = READ_ONCE(part->bd_stamp); 1226 if (unlikely(time_after(now, stamp))) { 1227 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp)) 1228 __part_stat_add(part, io_ticks, end ? now - stamp : 1); 1229 } 1230 if (part->bd_partno) { 1231 part = bdev_whole(part); 1232 goto again; 1233 } 1234 } 1235 1236 void __blk_account_io_done(struct request *req, u64 now) 1237 { 1238 const int sgrp = op_stat_group(req_op(req)); 1239 1240 part_stat_lock(); 1241 update_io_ticks(req->part, jiffies, true); 1242 part_stat_inc(req->part, ios[sgrp]); 1243 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1244 part_stat_unlock(); 1245 } 1246 1247 void __blk_account_io_start(struct request *rq) 1248 { 1249 /* passthrough requests can hold bios that do not have ->bi_bdev set */ 1250 if (rq->bio && rq->bio->bi_bdev) 1251 rq->part = rq->bio->bi_bdev; 1252 else 1253 rq->part = rq->rq_disk->part0; 1254 1255 part_stat_lock(); 1256 update_io_ticks(rq->part, jiffies, false); 1257 part_stat_unlock(); 1258 } 1259 1260 static unsigned long __part_start_io_acct(struct block_device *part, 1261 unsigned int sectors, unsigned int op) 1262 { 1263 const int sgrp = op_stat_group(op); 1264 unsigned long now = READ_ONCE(jiffies); 1265 1266 part_stat_lock(); 1267 update_io_ticks(part, now, false); 1268 part_stat_inc(part, ios[sgrp]); 1269 part_stat_add(part, sectors[sgrp], sectors); 1270 part_stat_local_inc(part, in_flight[op_is_write(op)]); 1271 part_stat_unlock(); 1272 1273 return now; 1274 } 1275 1276 /** 1277 * bio_start_io_acct - start I/O accounting for bio based drivers 1278 * @bio: bio to start account for 1279 * 1280 * Returns the start time that should be passed back to bio_end_io_acct(). 1281 */ 1282 unsigned long bio_start_io_acct(struct bio *bio) 1283 { 1284 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio)); 1285 } 1286 EXPORT_SYMBOL_GPL(bio_start_io_acct); 1287 1288 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1289 unsigned int op) 1290 { 1291 return __part_start_io_acct(disk->part0, sectors, op); 1292 } 1293 EXPORT_SYMBOL(disk_start_io_acct); 1294 1295 static void __part_end_io_acct(struct block_device *part, unsigned int op, 1296 unsigned long start_time) 1297 { 1298 const int sgrp = op_stat_group(op); 1299 unsigned long now = READ_ONCE(jiffies); 1300 unsigned long duration = now - start_time; 1301 1302 part_stat_lock(); 1303 update_io_ticks(part, now, true); 1304 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1305 part_stat_local_dec(part, in_flight[op_is_write(op)]); 1306 part_stat_unlock(); 1307 } 1308 1309 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1310 struct block_device *orig_bdev) 1311 { 1312 __part_end_io_acct(orig_bdev, bio_op(bio), start_time); 1313 } 1314 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped); 1315 1316 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1317 unsigned long start_time) 1318 { 1319 __part_end_io_acct(disk->part0, op, start_time); 1320 } 1321 EXPORT_SYMBOL(disk_end_io_acct); 1322 1323 /* 1324 * Steal bios from a request and add them to a bio list. 1325 * The request must not have been partially completed before. 1326 */ 1327 void blk_steal_bios(struct bio_list *list, struct request *rq) 1328 { 1329 if (rq->bio) { 1330 if (list->tail) 1331 list->tail->bi_next = rq->bio; 1332 else 1333 list->head = rq->bio; 1334 list->tail = rq->biotail; 1335 1336 rq->bio = NULL; 1337 rq->biotail = NULL; 1338 } 1339 1340 rq->__data_len = 0; 1341 } 1342 EXPORT_SYMBOL_GPL(blk_steal_bios); 1343 1344 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1345 /** 1346 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1347 * @rq: the request to be flushed 1348 * 1349 * Description: 1350 * Flush all pages in @rq. 1351 */ 1352 void rq_flush_dcache_pages(struct request *rq) 1353 { 1354 struct req_iterator iter; 1355 struct bio_vec bvec; 1356 1357 rq_for_each_segment(bvec, rq, iter) 1358 flush_dcache_page(bvec.bv_page); 1359 } 1360 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1361 #endif 1362 1363 /** 1364 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1365 * @q : the queue of the device being checked 1366 * 1367 * Description: 1368 * Check if underlying low-level drivers of a device are busy. 1369 * If the drivers want to export their busy state, they must set own 1370 * exporting function using blk_queue_lld_busy() first. 1371 * 1372 * Basically, this function is used only by request stacking drivers 1373 * to stop dispatching requests to underlying devices when underlying 1374 * devices are busy. This behavior helps more I/O merging on the queue 1375 * of the request stacking driver and prevents I/O throughput regression 1376 * on burst I/O load. 1377 * 1378 * Return: 1379 * 0 - Not busy (The request stacking driver should dispatch request) 1380 * 1 - Busy (The request stacking driver should stop dispatching request) 1381 */ 1382 int blk_lld_busy(struct request_queue *q) 1383 { 1384 if (queue_is_mq(q) && q->mq_ops->busy) 1385 return q->mq_ops->busy(q); 1386 1387 return 0; 1388 } 1389 EXPORT_SYMBOL_GPL(blk_lld_busy); 1390 1391 /** 1392 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1393 * @rq: the clone request to be cleaned up 1394 * 1395 * Description: 1396 * Free all bios in @rq for a cloned request. 1397 */ 1398 void blk_rq_unprep_clone(struct request *rq) 1399 { 1400 struct bio *bio; 1401 1402 while ((bio = rq->bio) != NULL) { 1403 rq->bio = bio->bi_next; 1404 1405 bio_put(bio); 1406 } 1407 } 1408 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1409 1410 /** 1411 * blk_rq_prep_clone - Helper function to setup clone request 1412 * @rq: the request to be setup 1413 * @rq_src: original request to be cloned 1414 * @bs: bio_set that bios for clone are allocated from 1415 * @gfp_mask: memory allocation mask for bio 1416 * @bio_ctr: setup function to be called for each clone bio. 1417 * Returns %0 for success, non %0 for failure. 1418 * @data: private data to be passed to @bio_ctr 1419 * 1420 * Description: 1421 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1422 * Also, pages which the original bios are pointing to are not copied 1423 * and the cloned bios just point same pages. 1424 * So cloned bios must be completed before original bios, which means 1425 * the caller must complete @rq before @rq_src. 1426 */ 1427 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1428 struct bio_set *bs, gfp_t gfp_mask, 1429 int (*bio_ctr)(struct bio *, struct bio *, void *), 1430 void *data) 1431 { 1432 struct bio *bio, *bio_src; 1433 1434 if (!bs) 1435 bs = &fs_bio_set; 1436 1437 __rq_for_each_bio(bio_src, rq_src) { 1438 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1439 if (!bio) 1440 goto free_and_out; 1441 1442 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1443 goto free_and_out; 1444 1445 if (rq->bio) { 1446 rq->biotail->bi_next = bio; 1447 rq->biotail = bio; 1448 } else { 1449 rq->bio = rq->biotail = bio; 1450 } 1451 bio = NULL; 1452 } 1453 1454 /* Copy attributes of the original request to the clone request. */ 1455 rq->__sector = blk_rq_pos(rq_src); 1456 rq->__data_len = blk_rq_bytes(rq_src); 1457 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1458 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 1459 rq->special_vec = rq_src->special_vec; 1460 } 1461 rq->nr_phys_segments = rq_src->nr_phys_segments; 1462 rq->ioprio = rq_src->ioprio; 1463 1464 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 1465 goto free_and_out; 1466 1467 return 0; 1468 1469 free_and_out: 1470 if (bio) 1471 bio_put(bio); 1472 blk_rq_unprep_clone(rq); 1473 1474 return -ENOMEM; 1475 } 1476 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1477 1478 int kblockd_schedule_work(struct work_struct *work) 1479 { 1480 return queue_work(kblockd_workqueue, work); 1481 } 1482 EXPORT_SYMBOL(kblockd_schedule_work); 1483 1484 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1485 unsigned long delay) 1486 { 1487 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1488 } 1489 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1490 1491 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios) 1492 { 1493 struct task_struct *tsk = current; 1494 1495 /* 1496 * If this is a nested plug, don't actually assign it. 1497 */ 1498 if (tsk->plug) 1499 return; 1500 1501 plug->mq_list = NULL; 1502 plug->cached_rq = NULL; 1503 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT); 1504 plug->rq_count = 0; 1505 plug->multiple_queues = false; 1506 plug->has_elevator = false; 1507 plug->nowait = false; 1508 INIT_LIST_HEAD(&plug->cb_list); 1509 1510 /* 1511 * Store ordering should not be needed here, since a potential 1512 * preempt will imply a full memory barrier 1513 */ 1514 tsk->plug = plug; 1515 } 1516 1517 /** 1518 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1519 * @plug: The &struct blk_plug that needs to be initialized 1520 * 1521 * Description: 1522 * blk_start_plug() indicates to the block layer an intent by the caller 1523 * to submit multiple I/O requests in a batch. The block layer may use 1524 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1525 * is called. However, the block layer may choose to submit requests 1526 * before a call to blk_finish_plug() if the number of queued I/Os 1527 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1528 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1529 * the task schedules (see below). 1530 * 1531 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1532 * pending I/O should the task end up blocking between blk_start_plug() and 1533 * blk_finish_plug(). This is important from a performance perspective, but 1534 * also ensures that we don't deadlock. For instance, if the task is blocking 1535 * for a memory allocation, memory reclaim could end up wanting to free a 1536 * page belonging to that request that is currently residing in our private 1537 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1538 * this kind of deadlock. 1539 */ 1540 void blk_start_plug(struct blk_plug *plug) 1541 { 1542 blk_start_plug_nr_ios(plug, 1); 1543 } 1544 EXPORT_SYMBOL(blk_start_plug); 1545 1546 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1547 { 1548 LIST_HEAD(callbacks); 1549 1550 while (!list_empty(&plug->cb_list)) { 1551 list_splice_init(&plug->cb_list, &callbacks); 1552 1553 while (!list_empty(&callbacks)) { 1554 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1555 struct blk_plug_cb, 1556 list); 1557 list_del(&cb->list); 1558 cb->callback(cb, from_schedule); 1559 } 1560 } 1561 } 1562 1563 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1564 int size) 1565 { 1566 struct blk_plug *plug = current->plug; 1567 struct blk_plug_cb *cb; 1568 1569 if (!plug) 1570 return NULL; 1571 1572 list_for_each_entry(cb, &plug->cb_list, list) 1573 if (cb->callback == unplug && cb->data == data) 1574 return cb; 1575 1576 /* Not currently on the callback list */ 1577 BUG_ON(size < sizeof(*cb)); 1578 cb = kzalloc(size, GFP_ATOMIC); 1579 if (cb) { 1580 cb->data = data; 1581 cb->callback = unplug; 1582 list_add(&cb->list, &plug->cb_list); 1583 } 1584 return cb; 1585 } 1586 EXPORT_SYMBOL(blk_check_plugged); 1587 1588 void blk_flush_plug(struct blk_plug *plug, bool from_schedule) 1589 { 1590 if (!list_empty(&plug->cb_list)) 1591 flush_plug_callbacks(plug, from_schedule); 1592 if (!rq_list_empty(plug->mq_list)) 1593 blk_mq_flush_plug_list(plug, from_schedule); 1594 /* 1595 * Unconditionally flush out cached requests, even if the unplug 1596 * event came from schedule. Since we know hold references to the 1597 * queue for cached requests, we don't want a blocked task holding 1598 * up a queue freeze/quiesce event. 1599 */ 1600 if (unlikely(!rq_list_empty(plug->cached_rq))) 1601 blk_mq_free_plug_rqs(plug); 1602 } 1603 1604 /** 1605 * blk_finish_plug - mark the end of a batch of submitted I/O 1606 * @plug: The &struct blk_plug passed to blk_start_plug() 1607 * 1608 * Description: 1609 * Indicate that a batch of I/O submissions is complete. This function 1610 * must be paired with an initial call to blk_start_plug(). The intent 1611 * is to allow the block layer to optimize I/O submission. See the 1612 * documentation for blk_start_plug() for more information. 1613 */ 1614 void blk_finish_plug(struct blk_plug *plug) 1615 { 1616 if (plug == current->plug) { 1617 blk_flush_plug(plug, false); 1618 current->plug = NULL; 1619 } 1620 } 1621 EXPORT_SYMBOL(blk_finish_plug); 1622 1623 void blk_io_schedule(void) 1624 { 1625 /* Prevent hang_check timer from firing at us during very long I/O */ 1626 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 1627 1628 if (timeout) 1629 io_schedule_timeout(timeout); 1630 else 1631 io_schedule(); 1632 } 1633 EXPORT_SYMBOL_GPL(blk_io_schedule); 1634 1635 int __init blk_dev_init(void) 1636 { 1637 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1638 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1639 sizeof_field(struct request, cmd_flags)); 1640 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1641 sizeof_field(struct bio, bi_opf)); 1642 1643 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1644 kblockd_workqueue = alloc_workqueue("kblockd", 1645 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1646 if (!kblockd_workqueue) 1647 panic("Failed to create kblockd\n"); 1648 1649 blk_requestq_cachep = kmem_cache_create("request_queue", 1650 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1651 1652 blk_debugfs_root = debugfs_create_dir("block", NULL); 1653 1654 return 0; 1655 } 1656