xref: /openbmc/linux/block/blk-core.c (revision a50b854e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/debugfs.h>
38 #include <linux/bpf.h>
39 #include <linux/psi.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/block.h>
43 
44 #include "blk.h"
45 #include "blk-mq.h"
46 #include "blk-mq-sched.h"
47 #include "blk-pm.h"
48 #include "blk-rq-qos.h"
49 
50 #ifdef CONFIG_DEBUG_FS
51 struct dentry *blk_debugfs_root;
52 #endif
53 
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
59 
60 DEFINE_IDA(blk_queue_ida);
61 
62 /*
63  * For queue allocation
64  */
65 struct kmem_cache *blk_requestq_cachep;
66 
67 /*
68  * Controlling structure to kblockd
69  */
70 static struct workqueue_struct *kblockd_workqueue;
71 
72 /**
73  * blk_queue_flag_set - atomically set a queue flag
74  * @flag: flag to be set
75  * @q: request queue
76  */
77 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
78 {
79 	set_bit(flag, &q->queue_flags);
80 }
81 EXPORT_SYMBOL(blk_queue_flag_set);
82 
83 /**
84  * blk_queue_flag_clear - atomically clear a queue flag
85  * @flag: flag to be cleared
86  * @q: request queue
87  */
88 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
89 {
90 	clear_bit(flag, &q->queue_flags);
91 }
92 EXPORT_SYMBOL(blk_queue_flag_clear);
93 
94 /**
95  * blk_queue_flag_test_and_set - atomically test and set a queue flag
96  * @flag: flag to be set
97  * @q: request queue
98  *
99  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
100  * the flag was already set.
101  */
102 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
103 {
104 	return test_and_set_bit(flag, &q->queue_flags);
105 }
106 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
107 
108 void blk_rq_init(struct request_queue *q, struct request *rq)
109 {
110 	memset(rq, 0, sizeof(*rq));
111 
112 	INIT_LIST_HEAD(&rq->queuelist);
113 	rq->q = q;
114 	rq->__sector = (sector_t) -1;
115 	INIT_HLIST_NODE(&rq->hash);
116 	RB_CLEAR_NODE(&rq->rb_node);
117 	rq->tag = -1;
118 	rq->internal_tag = -1;
119 	rq->start_time_ns = ktime_get_ns();
120 	rq->part = NULL;
121 	refcount_set(&rq->ref, 1);
122 }
123 EXPORT_SYMBOL(blk_rq_init);
124 
125 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
126 static const char *const blk_op_name[] = {
127 	REQ_OP_NAME(READ),
128 	REQ_OP_NAME(WRITE),
129 	REQ_OP_NAME(FLUSH),
130 	REQ_OP_NAME(DISCARD),
131 	REQ_OP_NAME(SECURE_ERASE),
132 	REQ_OP_NAME(ZONE_RESET),
133 	REQ_OP_NAME(ZONE_RESET_ALL),
134 	REQ_OP_NAME(WRITE_SAME),
135 	REQ_OP_NAME(WRITE_ZEROES),
136 	REQ_OP_NAME(SCSI_IN),
137 	REQ_OP_NAME(SCSI_OUT),
138 	REQ_OP_NAME(DRV_IN),
139 	REQ_OP_NAME(DRV_OUT),
140 };
141 #undef REQ_OP_NAME
142 
143 /**
144  * blk_op_str - Return string XXX in the REQ_OP_XXX.
145  * @op: REQ_OP_XXX.
146  *
147  * Description: Centralize block layer function to convert REQ_OP_XXX into
148  * string format. Useful in the debugging and tracing bio or request. For
149  * invalid REQ_OP_XXX it returns string "UNKNOWN".
150  */
151 inline const char *blk_op_str(unsigned int op)
152 {
153 	const char *op_str = "UNKNOWN";
154 
155 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
156 		op_str = blk_op_name[op];
157 
158 	return op_str;
159 }
160 EXPORT_SYMBOL_GPL(blk_op_str);
161 
162 static const struct {
163 	int		errno;
164 	const char	*name;
165 } blk_errors[] = {
166 	[BLK_STS_OK]		= { 0,		"" },
167 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
168 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
169 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
170 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
171 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
172 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
173 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
174 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
175 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
176 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
177 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
178 
179 	/* device mapper special case, should not leak out: */
180 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
181 
182 	/* everything else not covered above: */
183 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
184 };
185 
186 blk_status_t errno_to_blk_status(int errno)
187 {
188 	int i;
189 
190 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
191 		if (blk_errors[i].errno == errno)
192 			return (__force blk_status_t)i;
193 	}
194 
195 	return BLK_STS_IOERR;
196 }
197 EXPORT_SYMBOL_GPL(errno_to_blk_status);
198 
199 int blk_status_to_errno(blk_status_t status)
200 {
201 	int idx = (__force int)status;
202 
203 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
204 		return -EIO;
205 	return blk_errors[idx].errno;
206 }
207 EXPORT_SYMBOL_GPL(blk_status_to_errno);
208 
209 static void print_req_error(struct request *req, blk_status_t status,
210 		const char *caller)
211 {
212 	int idx = (__force int)status;
213 
214 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
215 		return;
216 
217 	printk_ratelimited(KERN_ERR
218 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
219 		"phys_seg %u prio class %u\n",
220 		caller, blk_errors[idx].name,
221 		req->rq_disk ? req->rq_disk->disk_name : "?",
222 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
223 		req->cmd_flags & ~REQ_OP_MASK,
224 		req->nr_phys_segments,
225 		IOPRIO_PRIO_CLASS(req->ioprio));
226 }
227 
228 static void req_bio_endio(struct request *rq, struct bio *bio,
229 			  unsigned int nbytes, blk_status_t error)
230 {
231 	if (error)
232 		bio->bi_status = error;
233 
234 	if (unlikely(rq->rq_flags & RQF_QUIET))
235 		bio_set_flag(bio, BIO_QUIET);
236 
237 	bio_advance(bio, nbytes);
238 
239 	/* don't actually finish bio if it's part of flush sequence */
240 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
241 		bio_endio(bio);
242 }
243 
244 void blk_dump_rq_flags(struct request *rq, char *msg)
245 {
246 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
247 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
248 		(unsigned long long) rq->cmd_flags);
249 
250 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
251 	       (unsigned long long)blk_rq_pos(rq),
252 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
253 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
254 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
255 }
256 EXPORT_SYMBOL(blk_dump_rq_flags);
257 
258 /**
259  * blk_sync_queue - cancel any pending callbacks on a queue
260  * @q: the queue
261  *
262  * Description:
263  *     The block layer may perform asynchronous callback activity
264  *     on a queue, such as calling the unplug function after a timeout.
265  *     A block device may call blk_sync_queue to ensure that any
266  *     such activity is cancelled, thus allowing it to release resources
267  *     that the callbacks might use. The caller must already have made sure
268  *     that its ->make_request_fn will not re-add plugging prior to calling
269  *     this function.
270  *
271  *     This function does not cancel any asynchronous activity arising
272  *     out of elevator or throttling code. That would require elevator_exit()
273  *     and blkcg_exit_queue() to be called with queue lock initialized.
274  *
275  */
276 void blk_sync_queue(struct request_queue *q)
277 {
278 	del_timer_sync(&q->timeout);
279 	cancel_work_sync(&q->timeout_work);
280 }
281 EXPORT_SYMBOL(blk_sync_queue);
282 
283 /**
284  * blk_set_pm_only - increment pm_only counter
285  * @q: request queue pointer
286  */
287 void blk_set_pm_only(struct request_queue *q)
288 {
289 	atomic_inc(&q->pm_only);
290 }
291 EXPORT_SYMBOL_GPL(blk_set_pm_only);
292 
293 void blk_clear_pm_only(struct request_queue *q)
294 {
295 	int pm_only;
296 
297 	pm_only = atomic_dec_return(&q->pm_only);
298 	WARN_ON_ONCE(pm_only < 0);
299 	if (pm_only == 0)
300 		wake_up_all(&q->mq_freeze_wq);
301 }
302 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
303 
304 void blk_put_queue(struct request_queue *q)
305 {
306 	kobject_put(&q->kobj);
307 }
308 EXPORT_SYMBOL(blk_put_queue);
309 
310 void blk_set_queue_dying(struct request_queue *q)
311 {
312 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
313 
314 	/*
315 	 * When queue DYING flag is set, we need to block new req
316 	 * entering queue, so we call blk_freeze_queue_start() to
317 	 * prevent I/O from crossing blk_queue_enter().
318 	 */
319 	blk_freeze_queue_start(q);
320 
321 	if (queue_is_mq(q))
322 		blk_mq_wake_waiters(q);
323 
324 	/* Make blk_queue_enter() reexamine the DYING flag. */
325 	wake_up_all(&q->mq_freeze_wq);
326 }
327 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
328 
329 /**
330  * blk_cleanup_queue - shutdown a request queue
331  * @q: request queue to shutdown
332  *
333  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
334  * put it.  All future requests will be failed immediately with -ENODEV.
335  */
336 void blk_cleanup_queue(struct request_queue *q)
337 {
338 	/* mark @q DYING, no new request or merges will be allowed afterwards */
339 	mutex_lock(&q->sysfs_lock);
340 	blk_set_queue_dying(q);
341 
342 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
343 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
344 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
345 	mutex_unlock(&q->sysfs_lock);
346 
347 	/*
348 	 * Drain all requests queued before DYING marking. Set DEAD flag to
349 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
350 	 * after draining finished.
351 	 */
352 	blk_freeze_queue(q);
353 
354 	rq_qos_exit(q);
355 
356 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
357 
358 	/* for synchronous bio-based driver finish in-flight integrity i/o */
359 	blk_flush_integrity();
360 
361 	/* @q won't process any more request, flush async actions */
362 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
363 	blk_sync_queue(q);
364 
365 	if (queue_is_mq(q))
366 		blk_mq_exit_queue(q);
367 
368 	/*
369 	 * In theory, request pool of sched_tags belongs to request queue.
370 	 * However, the current implementation requires tag_set for freeing
371 	 * requests, so free the pool now.
372 	 *
373 	 * Queue has become frozen, there can't be any in-queue requests, so
374 	 * it is safe to free requests now.
375 	 */
376 	mutex_lock(&q->sysfs_lock);
377 	if (q->elevator)
378 		blk_mq_sched_free_requests(q);
379 	mutex_unlock(&q->sysfs_lock);
380 
381 	percpu_ref_exit(&q->q_usage_counter);
382 
383 	/* @q is and will stay empty, shutdown and put */
384 	blk_put_queue(q);
385 }
386 EXPORT_SYMBOL(blk_cleanup_queue);
387 
388 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
389 {
390 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
391 }
392 EXPORT_SYMBOL(blk_alloc_queue);
393 
394 /**
395  * blk_queue_enter() - try to increase q->q_usage_counter
396  * @q: request queue pointer
397  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
398  */
399 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
400 {
401 	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
402 
403 	while (true) {
404 		bool success = false;
405 
406 		rcu_read_lock();
407 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
408 			/*
409 			 * The code that increments the pm_only counter is
410 			 * responsible for ensuring that that counter is
411 			 * globally visible before the queue is unfrozen.
412 			 */
413 			if (pm || !blk_queue_pm_only(q)) {
414 				success = true;
415 			} else {
416 				percpu_ref_put(&q->q_usage_counter);
417 			}
418 		}
419 		rcu_read_unlock();
420 
421 		if (success)
422 			return 0;
423 
424 		if (flags & BLK_MQ_REQ_NOWAIT)
425 			return -EBUSY;
426 
427 		/*
428 		 * read pair of barrier in blk_freeze_queue_start(),
429 		 * we need to order reading __PERCPU_REF_DEAD flag of
430 		 * .q_usage_counter and reading .mq_freeze_depth or
431 		 * queue dying flag, otherwise the following wait may
432 		 * never return if the two reads are reordered.
433 		 */
434 		smp_rmb();
435 
436 		wait_event(q->mq_freeze_wq,
437 			   (!q->mq_freeze_depth &&
438 			    (pm || (blk_pm_request_resume(q),
439 				    !blk_queue_pm_only(q)))) ||
440 			   blk_queue_dying(q));
441 		if (blk_queue_dying(q))
442 			return -ENODEV;
443 	}
444 }
445 
446 void blk_queue_exit(struct request_queue *q)
447 {
448 	percpu_ref_put(&q->q_usage_counter);
449 }
450 
451 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
452 {
453 	struct request_queue *q =
454 		container_of(ref, struct request_queue, q_usage_counter);
455 
456 	wake_up_all(&q->mq_freeze_wq);
457 }
458 
459 static void blk_rq_timed_out_timer(struct timer_list *t)
460 {
461 	struct request_queue *q = from_timer(q, t, timeout);
462 
463 	kblockd_schedule_work(&q->timeout_work);
464 }
465 
466 static void blk_timeout_work(struct work_struct *work)
467 {
468 }
469 
470 /**
471  * blk_alloc_queue_node - allocate a request queue
472  * @gfp_mask: memory allocation flags
473  * @node_id: NUMA node to allocate memory from
474  */
475 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
476 {
477 	struct request_queue *q;
478 	int ret;
479 
480 	q = kmem_cache_alloc_node(blk_requestq_cachep,
481 				gfp_mask | __GFP_ZERO, node_id);
482 	if (!q)
483 		return NULL;
484 
485 	q->last_merge = NULL;
486 
487 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
488 	if (q->id < 0)
489 		goto fail_q;
490 
491 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
492 	if (ret)
493 		goto fail_id;
494 
495 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
496 	if (!q->backing_dev_info)
497 		goto fail_split;
498 
499 	q->stats = blk_alloc_queue_stats();
500 	if (!q->stats)
501 		goto fail_stats;
502 
503 	q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
504 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
505 	q->backing_dev_info->name = "block";
506 	q->node = node_id;
507 
508 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
509 		    laptop_mode_timer_fn, 0);
510 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
511 	INIT_WORK(&q->timeout_work, blk_timeout_work);
512 	INIT_LIST_HEAD(&q->icq_list);
513 #ifdef CONFIG_BLK_CGROUP
514 	INIT_LIST_HEAD(&q->blkg_list);
515 #endif
516 
517 	kobject_init(&q->kobj, &blk_queue_ktype);
518 
519 #ifdef CONFIG_BLK_DEV_IO_TRACE
520 	mutex_init(&q->blk_trace_mutex);
521 #endif
522 	mutex_init(&q->sysfs_lock);
523 	mutex_init(&q->sysfs_dir_lock);
524 	spin_lock_init(&q->queue_lock);
525 
526 	init_waitqueue_head(&q->mq_freeze_wq);
527 	mutex_init(&q->mq_freeze_lock);
528 
529 	/*
530 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
531 	 * See blk_register_queue() for details.
532 	 */
533 	if (percpu_ref_init(&q->q_usage_counter,
534 				blk_queue_usage_counter_release,
535 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
536 		goto fail_bdi;
537 
538 	if (blkcg_init_queue(q))
539 		goto fail_ref;
540 
541 	return q;
542 
543 fail_ref:
544 	percpu_ref_exit(&q->q_usage_counter);
545 fail_bdi:
546 	blk_free_queue_stats(q->stats);
547 fail_stats:
548 	bdi_put(q->backing_dev_info);
549 fail_split:
550 	bioset_exit(&q->bio_split);
551 fail_id:
552 	ida_simple_remove(&blk_queue_ida, q->id);
553 fail_q:
554 	kmem_cache_free(blk_requestq_cachep, q);
555 	return NULL;
556 }
557 EXPORT_SYMBOL(blk_alloc_queue_node);
558 
559 bool blk_get_queue(struct request_queue *q)
560 {
561 	if (likely(!blk_queue_dying(q))) {
562 		__blk_get_queue(q);
563 		return true;
564 	}
565 
566 	return false;
567 }
568 EXPORT_SYMBOL(blk_get_queue);
569 
570 /**
571  * blk_get_request - allocate a request
572  * @q: request queue to allocate a request for
573  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
574  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
575  */
576 struct request *blk_get_request(struct request_queue *q, unsigned int op,
577 				blk_mq_req_flags_t flags)
578 {
579 	struct request *req;
580 
581 	WARN_ON_ONCE(op & REQ_NOWAIT);
582 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
583 
584 	req = blk_mq_alloc_request(q, op, flags);
585 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
586 		q->mq_ops->initialize_rq_fn(req);
587 
588 	return req;
589 }
590 EXPORT_SYMBOL(blk_get_request);
591 
592 void blk_put_request(struct request *req)
593 {
594 	blk_mq_free_request(req);
595 }
596 EXPORT_SYMBOL(blk_put_request);
597 
598 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
599 		unsigned int nr_segs)
600 {
601 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
602 
603 	if (!ll_back_merge_fn(req, bio, nr_segs))
604 		return false;
605 
606 	trace_block_bio_backmerge(req->q, req, bio);
607 	rq_qos_merge(req->q, req, bio);
608 
609 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
610 		blk_rq_set_mixed_merge(req);
611 
612 	req->biotail->bi_next = bio;
613 	req->biotail = bio;
614 	req->__data_len += bio->bi_iter.bi_size;
615 
616 	blk_account_io_start(req, false);
617 	return true;
618 }
619 
620 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
621 		unsigned int nr_segs)
622 {
623 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
624 
625 	if (!ll_front_merge_fn(req, bio, nr_segs))
626 		return false;
627 
628 	trace_block_bio_frontmerge(req->q, req, bio);
629 	rq_qos_merge(req->q, req, bio);
630 
631 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
632 		blk_rq_set_mixed_merge(req);
633 
634 	bio->bi_next = req->bio;
635 	req->bio = bio;
636 
637 	req->__sector = bio->bi_iter.bi_sector;
638 	req->__data_len += bio->bi_iter.bi_size;
639 
640 	blk_account_io_start(req, false);
641 	return true;
642 }
643 
644 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
645 		struct bio *bio)
646 {
647 	unsigned short segments = blk_rq_nr_discard_segments(req);
648 
649 	if (segments >= queue_max_discard_segments(q))
650 		goto no_merge;
651 	if (blk_rq_sectors(req) + bio_sectors(bio) >
652 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
653 		goto no_merge;
654 
655 	rq_qos_merge(q, req, bio);
656 
657 	req->biotail->bi_next = bio;
658 	req->biotail = bio;
659 	req->__data_len += bio->bi_iter.bi_size;
660 	req->nr_phys_segments = segments + 1;
661 
662 	blk_account_io_start(req, false);
663 	return true;
664 no_merge:
665 	req_set_nomerge(q, req);
666 	return false;
667 }
668 
669 /**
670  * blk_attempt_plug_merge - try to merge with %current's plugged list
671  * @q: request_queue new bio is being queued at
672  * @bio: new bio being queued
673  * @nr_segs: number of segments in @bio
674  * @same_queue_rq: pointer to &struct request that gets filled in when
675  * another request associated with @q is found on the plug list
676  * (optional, may be %NULL)
677  *
678  * Determine whether @bio being queued on @q can be merged with a request
679  * on %current's plugged list.  Returns %true if merge was successful,
680  * otherwise %false.
681  *
682  * Plugging coalesces IOs from the same issuer for the same purpose without
683  * going through @q->queue_lock.  As such it's more of an issuing mechanism
684  * than scheduling, and the request, while may have elvpriv data, is not
685  * added on the elevator at this point.  In addition, we don't have
686  * reliable access to the elevator outside queue lock.  Only check basic
687  * merging parameters without querying the elevator.
688  *
689  * Caller must ensure !blk_queue_nomerges(q) beforehand.
690  */
691 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
692 		unsigned int nr_segs, struct request **same_queue_rq)
693 {
694 	struct blk_plug *plug;
695 	struct request *rq;
696 	struct list_head *plug_list;
697 
698 	plug = blk_mq_plug(q, bio);
699 	if (!plug)
700 		return false;
701 
702 	plug_list = &plug->mq_list;
703 
704 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
705 		bool merged = false;
706 
707 		if (rq->q == q && same_queue_rq) {
708 			/*
709 			 * Only blk-mq multiple hardware queues case checks the
710 			 * rq in the same queue, there should be only one such
711 			 * rq in a queue
712 			 **/
713 			*same_queue_rq = rq;
714 		}
715 
716 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
717 			continue;
718 
719 		switch (blk_try_merge(rq, bio)) {
720 		case ELEVATOR_BACK_MERGE:
721 			merged = bio_attempt_back_merge(rq, bio, nr_segs);
722 			break;
723 		case ELEVATOR_FRONT_MERGE:
724 			merged = bio_attempt_front_merge(rq, bio, nr_segs);
725 			break;
726 		case ELEVATOR_DISCARD_MERGE:
727 			merged = bio_attempt_discard_merge(q, rq, bio);
728 			break;
729 		default:
730 			break;
731 		}
732 
733 		if (merged)
734 			return true;
735 	}
736 
737 	return false;
738 }
739 
740 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
741 {
742 	char b[BDEVNAME_SIZE];
743 
744 	printk(KERN_INFO "attempt to access beyond end of device\n");
745 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
746 			bio_devname(bio, b), bio->bi_opf,
747 			(unsigned long long)bio_end_sector(bio),
748 			(long long)maxsector);
749 }
750 
751 #ifdef CONFIG_FAIL_MAKE_REQUEST
752 
753 static DECLARE_FAULT_ATTR(fail_make_request);
754 
755 static int __init setup_fail_make_request(char *str)
756 {
757 	return setup_fault_attr(&fail_make_request, str);
758 }
759 __setup("fail_make_request=", setup_fail_make_request);
760 
761 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
762 {
763 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
764 }
765 
766 static int __init fail_make_request_debugfs(void)
767 {
768 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
769 						NULL, &fail_make_request);
770 
771 	return PTR_ERR_OR_ZERO(dir);
772 }
773 
774 late_initcall(fail_make_request_debugfs);
775 
776 #else /* CONFIG_FAIL_MAKE_REQUEST */
777 
778 static inline bool should_fail_request(struct hd_struct *part,
779 					unsigned int bytes)
780 {
781 	return false;
782 }
783 
784 #endif /* CONFIG_FAIL_MAKE_REQUEST */
785 
786 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
787 {
788 	const int op = bio_op(bio);
789 
790 	if (part->policy && op_is_write(op)) {
791 		char b[BDEVNAME_SIZE];
792 
793 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
794 			return false;
795 
796 		WARN_ONCE(1,
797 		       "generic_make_request: Trying to write "
798 			"to read-only block-device %s (partno %d)\n",
799 			bio_devname(bio, b), part->partno);
800 		/* Older lvm-tools actually trigger this */
801 		return false;
802 	}
803 
804 	return false;
805 }
806 
807 static noinline int should_fail_bio(struct bio *bio)
808 {
809 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
810 		return -EIO;
811 	return 0;
812 }
813 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
814 
815 /*
816  * Check whether this bio extends beyond the end of the device or partition.
817  * This may well happen - the kernel calls bread() without checking the size of
818  * the device, e.g., when mounting a file system.
819  */
820 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
821 {
822 	unsigned int nr_sectors = bio_sectors(bio);
823 
824 	if (nr_sectors && maxsector &&
825 	    (nr_sectors > maxsector ||
826 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
827 		handle_bad_sector(bio, maxsector);
828 		return -EIO;
829 	}
830 	return 0;
831 }
832 
833 /*
834  * Remap block n of partition p to block n+start(p) of the disk.
835  */
836 static inline int blk_partition_remap(struct bio *bio)
837 {
838 	struct hd_struct *p;
839 	int ret = -EIO;
840 
841 	rcu_read_lock();
842 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
843 	if (unlikely(!p))
844 		goto out;
845 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
846 		goto out;
847 	if (unlikely(bio_check_ro(bio, p)))
848 		goto out;
849 
850 	/*
851 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
852 	 * Include a test for the reset op code and perform the remap if needed.
853 	 */
854 	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
855 		if (bio_check_eod(bio, part_nr_sects_read(p)))
856 			goto out;
857 		bio->bi_iter.bi_sector += p->start_sect;
858 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
859 				      bio->bi_iter.bi_sector - p->start_sect);
860 	}
861 	bio->bi_partno = 0;
862 	ret = 0;
863 out:
864 	rcu_read_unlock();
865 	return ret;
866 }
867 
868 static noinline_for_stack bool
869 generic_make_request_checks(struct bio *bio)
870 {
871 	struct request_queue *q;
872 	int nr_sectors = bio_sectors(bio);
873 	blk_status_t status = BLK_STS_IOERR;
874 	char b[BDEVNAME_SIZE];
875 
876 	might_sleep();
877 
878 	q = bio->bi_disk->queue;
879 	if (unlikely(!q)) {
880 		printk(KERN_ERR
881 		       "generic_make_request: Trying to access "
882 			"nonexistent block-device %s (%Lu)\n",
883 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
884 		goto end_io;
885 	}
886 
887 	/*
888 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
889 	 * if queue is not a request based queue.
890 	 */
891 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
892 		goto not_supported;
893 
894 	if (should_fail_bio(bio))
895 		goto end_io;
896 
897 	if (bio->bi_partno) {
898 		if (unlikely(blk_partition_remap(bio)))
899 			goto end_io;
900 	} else {
901 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
902 			goto end_io;
903 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
904 			goto end_io;
905 	}
906 
907 	/*
908 	 * Filter flush bio's early so that make_request based
909 	 * drivers without flush support don't have to worry
910 	 * about them.
911 	 */
912 	if (op_is_flush(bio->bi_opf) &&
913 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
914 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
915 		if (!nr_sectors) {
916 			status = BLK_STS_OK;
917 			goto end_io;
918 		}
919 	}
920 
921 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
922 		bio->bi_opf &= ~REQ_HIPRI;
923 
924 	switch (bio_op(bio)) {
925 	case REQ_OP_DISCARD:
926 		if (!blk_queue_discard(q))
927 			goto not_supported;
928 		break;
929 	case REQ_OP_SECURE_ERASE:
930 		if (!blk_queue_secure_erase(q))
931 			goto not_supported;
932 		break;
933 	case REQ_OP_WRITE_SAME:
934 		if (!q->limits.max_write_same_sectors)
935 			goto not_supported;
936 		break;
937 	case REQ_OP_ZONE_RESET:
938 		if (!blk_queue_is_zoned(q))
939 			goto not_supported;
940 		break;
941 	case REQ_OP_ZONE_RESET_ALL:
942 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
943 			goto not_supported;
944 		break;
945 	case REQ_OP_WRITE_ZEROES:
946 		if (!q->limits.max_write_zeroes_sectors)
947 			goto not_supported;
948 		break;
949 	default:
950 		break;
951 	}
952 
953 	/*
954 	 * Various block parts want %current->io_context and lazy ioc
955 	 * allocation ends up trading a lot of pain for a small amount of
956 	 * memory.  Just allocate it upfront.  This may fail and block
957 	 * layer knows how to live with it.
958 	 */
959 	create_io_context(GFP_ATOMIC, q->node);
960 
961 	if (!blkcg_bio_issue_check(q, bio))
962 		return false;
963 
964 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
965 		trace_block_bio_queue(q, bio);
966 		/* Now that enqueuing has been traced, we need to trace
967 		 * completion as well.
968 		 */
969 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
970 	}
971 	return true;
972 
973 not_supported:
974 	status = BLK_STS_NOTSUPP;
975 end_io:
976 	bio->bi_status = status;
977 	bio_endio(bio);
978 	return false;
979 }
980 
981 /**
982  * generic_make_request - hand a buffer to its device driver for I/O
983  * @bio:  The bio describing the location in memory and on the device.
984  *
985  * generic_make_request() is used to make I/O requests of block
986  * devices. It is passed a &struct bio, which describes the I/O that needs
987  * to be done.
988  *
989  * generic_make_request() does not return any status.  The
990  * success/failure status of the request, along with notification of
991  * completion, is delivered asynchronously through the bio->bi_end_io
992  * function described (one day) else where.
993  *
994  * The caller of generic_make_request must make sure that bi_io_vec
995  * are set to describe the memory buffer, and that bi_dev and bi_sector are
996  * set to describe the device address, and the
997  * bi_end_io and optionally bi_private are set to describe how
998  * completion notification should be signaled.
999  *
1000  * generic_make_request and the drivers it calls may use bi_next if this
1001  * bio happens to be merged with someone else, and may resubmit the bio to
1002  * a lower device by calling into generic_make_request recursively, which
1003  * means the bio should NOT be touched after the call to ->make_request_fn.
1004  */
1005 blk_qc_t generic_make_request(struct bio *bio)
1006 {
1007 	/*
1008 	 * bio_list_on_stack[0] contains bios submitted by the current
1009 	 * make_request_fn.
1010 	 * bio_list_on_stack[1] contains bios that were submitted before
1011 	 * the current make_request_fn, but that haven't been processed
1012 	 * yet.
1013 	 */
1014 	struct bio_list bio_list_on_stack[2];
1015 	blk_qc_t ret = BLK_QC_T_NONE;
1016 
1017 	if (!generic_make_request_checks(bio))
1018 		goto out;
1019 
1020 	/*
1021 	 * We only want one ->make_request_fn to be active at a time, else
1022 	 * stack usage with stacked devices could be a problem.  So use
1023 	 * current->bio_list to keep a list of requests submited by a
1024 	 * make_request_fn function.  current->bio_list is also used as a
1025 	 * flag to say if generic_make_request is currently active in this
1026 	 * task or not.  If it is NULL, then no make_request is active.  If
1027 	 * it is non-NULL, then a make_request is active, and new requests
1028 	 * should be added at the tail
1029 	 */
1030 	if (current->bio_list) {
1031 		bio_list_add(&current->bio_list[0], bio);
1032 		goto out;
1033 	}
1034 
1035 	/* following loop may be a bit non-obvious, and so deserves some
1036 	 * explanation.
1037 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1038 	 * ensure that) so we have a list with a single bio.
1039 	 * We pretend that we have just taken it off a longer list, so
1040 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1041 	 * thus initialising the bio_list of new bios to be
1042 	 * added.  ->make_request() may indeed add some more bios
1043 	 * through a recursive call to generic_make_request.  If it
1044 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1045 	 * from the top.  In this case we really did just take the bio
1046 	 * of the top of the list (no pretending) and so remove it from
1047 	 * bio_list, and call into ->make_request() again.
1048 	 */
1049 	BUG_ON(bio->bi_next);
1050 	bio_list_init(&bio_list_on_stack[0]);
1051 	current->bio_list = bio_list_on_stack;
1052 	do {
1053 		struct request_queue *q = bio->bi_disk->queue;
1054 		blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1055 			BLK_MQ_REQ_NOWAIT : 0;
1056 
1057 		if (likely(blk_queue_enter(q, flags) == 0)) {
1058 			struct bio_list lower, same;
1059 
1060 			/* Create a fresh bio_list for all subordinate requests */
1061 			bio_list_on_stack[1] = bio_list_on_stack[0];
1062 			bio_list_init(&bio_list_on_stack[0]);
1063 			ret = q->make_request_fn(q, bio);
1064 
1065 			blk_queue_exit(q);
1066 
1067 			/* sort new bios into those for a lower level
1068 			 * and those for the same level
1069 			 */
1070 			bio_list_init(&lower);
1071 			bio_list_init(&same);
1072 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1073 				if (q == bio->bi_disk->queue)
1074 					bio_list_add(&same, bio);
1075 				else
1076 					bio_list_add(&lower, bio);
1077 			/* now assemble so we handle the lowest level first */
1078 			bio_list_merge(&bio_list_on_stack[0], &lower);
1079 			bio_list_merge(&bio_list_on_stack[0], &same);
1080 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1081 		} else {
1082 			if (unlikely(!blk_queue_dying(q) &&
1083 					(bio->bi_opf & REQ_NOWAIT)))
1084 				bio_wouldblock_error(bio);
1085 			else
1086 				bio_io_error(bio);
1087 		}
1088 		bio = bio_list_pop(&bio_list_on_stack[0]);
1089 	} while (bio);
1090 	current->bio_list = NULL; /* deactivate */
1091 
1092 out:
1093 	return ret;
1094 }
1095 EXPORT_SYMBOL(generic_make_request);
1096 
1097 /**
1098  * direct_make_request - hand a buffer directly to its device driver for I/O
1099  * @bio:  The bio describing the location in memory and on the device.
1100  *
1101  * This function behaves like generic_make_request(), but does not protect
1102  * against recursion.  Must only be used if the called driver is known
1103  * to not call generic_make_request (or direct_make_request) again from
1104  * its make_request function.  (Calling direct_make_request again from
1105  * a workqueue is perfectly fine as that doesn't recurse).
1106  */
1107 blk_qc_t direct_make_request(struct bio *bio)
1108 {
1109 	struct request_queue *q = bio->bi_disk->queue;
1110 	bool nowait = bio->bi_opf & REQ_NOWAIT;
1111 	blk_qc_t ret;
1112 
1113 	if (!generic_make_request_checks(bio))
1114 		return BLK_QC_T_NONE;
1115 
1116 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1117 		if (nowait && !blk_queue_dying(q))
1118 			bio->bi_status = BLK_STS_AGAIN;
1119 		else
1120 			bio->bi_status = BLK_STS_IOERR;
1121 		bio_endio(bio);
1122 		return BLK_QC_T_NONE;
1123 	}
1124 
1125 	ret = q->make_request_fn(q, bio);
1126 	blk_queue_exit(q);
1127 	return ret;
1128 }
1129 EXPORT_SYMBOL_GPL(direct_make_request);
1130 
1131 /**
1132  * submit_bio - submit a bio to the block device layer for I/O
1133  * @bio: The &struct bio which describes the I/O
1134  *
1135  * submit_bio() is very similar in purpose to generic_make_request(), and
1136  * uses that function to do most of the work. Both are fairly rough
1137  * interfaces; @bio must be presetup and ready for I/O.
1138  *
1139  */
1140 blk_qc_t submit_bio(struct bio *bio)
1141 {
1142 	bool workingset_read = false;
1143 	unsigned long pflags;
1144 	blk_qc_t ret;
1145 
1146 	if (blkcg_punt_bio_submit(bio))
1147 		return BLK_QC_T_NONE;
1148 
1149 	/*
1150 	 * If it's a regular read/write or a barrier with data attached,
1151 	 * go through the normal accounting stuff before submission.
1152 	 */
1153 	if (bio_has_data(bio)) {
1154 		unsigned int count;
1155 
1156 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1157 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1158 		else
1159 			count = bio_sectors(bio);
1160 
1161 		if (op_is_write(bio_op(bio))) {
1162 			count_vm_events(PGPGOUT, count);
1163 		} else {
1164 			if (bio_flagged(bio, BIO_WORKINGSET))
1165 				workingset_read = true;
1166 			task_io_account_read(bio->bi_iter.bi_size);
1167 			count_vm_events(PGPGIN, count);
1168 		}
1169 
1170 		if (unlikely(block_dump)) {
1171 			char b[BDEVNAME_SIZE];
1172 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1173 			current->comm, task_pid_nr(current),
1174 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1175 				(unsigned long long)bio->bi_iter.bi_sector,
1176 				bio_devname(bio, b), count);
1177 		}
1178 	}
1179 
1180 	/*
1181 	 * If we're reading data that is part of the userspace
1182 	 * workingset, count submission time as memory stall. When the
1183 	 * device is congested, or the submitting cgroup IO-throttled,
1184 	 * submission can be a significant part of overall IO time.
1185 	 */
1186 	if (workingset_read)
1187 		psi_memstall_enter(&pflags);
1188 
1189 	ret = generic_make_request(bio);
1190 
1191 	if (workingset_read)
1192 		psi_memstall_leave(&pflags);
1193 
1194 	return ret;
1195 }
1196 EXPORT_SYMBOL(submit_bio);
1197 
1198 /**
1199  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1200  *                              for new the queue limits
1201  * @q:  the queue
1202  * @rq: the request being checked
1203  *
1204  * Description:
1205  *    @rq may have been made based on weaker limitations of upper-level queues
1206  *    in request stacking drivers, and it may violate the limitation of @q.
1207  *    Since the block layer and the underlying device driver trust @rq
1208  *    after it is inserted to @q, it should be checked against @q before
1209  *    the insertion using this generic function.
1210  *
1211  *    Request stacking drivers like request-based dm may change the queue
1212  *    limits when retrying requests on other queues. Those requests need
1213  *    to be checked against the new queue limits again during dispatch.
1214  */
1215 static int blk_cloned_rq_check_limits(struct request_queue *q,
1216 				      struct request *rq)
1217 {
1218 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1219 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1220 			__func__, blk_rq_sectors(rq),
1221 			blk_queue_get_max_sectors(q, req_op(rq)));
1222 		return -EIO;
1223 	}
1224 
1225 	/*
1226 	 * queue's settings related to segment counting like q->bounce_pfn
1227 	 * may differ from that of other stacking queues.
1228 	 * Recalculate it to check the request correctly on this queue's
1229 	 * limitation.
1230 	 */
1231 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1232 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1233 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1234 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1235 		return -EIO;
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 /**
1242  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1243  * @q:  the queue to submit the request
1244  * @rq: the request being queued
1245  */
1246 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1247 {
1248 	if (blk_cloned_rq_check_limits(q, rq))
1249 		return BLK_STS_IOERR;
1250 
1251 	if (rq->rq_disk &&
1252 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1253 		return BLK_STS_IOERR;
1254 
1255 	if (blk_queue_io_stat(q))
1256 		blk_account_io_start(rq, true);
1257 
1258 	/*
1259 	 * Since we have a scheduler attached on the top device,
1260 	 * bypass a potential scheduler on the bottom device for
1261 	 * insert.
1262 	 */
1263 	return blk_mq_request_issue_directly(rq, true);
1264 }
1265 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1266 
1267 /**
1268  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1269  * @rq: request to examine
1270  *
1271  * Description:
1272  *     A request could be merge of IOs which require different failure
1273  *     handling.  This function determines the number of bytes which
1274  *     can be failed from the beginning of the request without
1275  *     crossing into area which need to be retried further.
1276  *
1277  * Return:
1278  *     The number of bytes to fail.
1279  */
1280 unsigned int blk_rq_err_bytes(const struct request *rq)
1281 {
1282 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1283 	unsigned int bytes = 0;
1284 	struct bio *bio;
1285 
1286 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1287 		return blk_rq_bytes(rq);
1288 
1289 	/*
1290 	 * Currently the only 'mixing' which can happen is between
1291 	 * different fastfail types.  We can safely fail portions
1292 	 * which have all the failfast bits that the first one has -
1293 	 * the ones which are at least as eager to fail as the first
1294 	 * one.
1295 	 */
1296 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1297 		if ((bio->bi_opf & ff) != ff)
1298 			break;
1299 		bytes += bio->bi_iter.bi_size;
1300 	}
1301 
1302 	/* this could lead to infinite loop */
1303 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1304 	return bytes;
1305 }
1306 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1307 
1308 void blk_account_io_completion(struct request *req, unsigned int bytes)
1309 {
1310 	if (blk_do_io_stat(req)) {
1311 		const int sgrp = op_stat_group(req_op(req));
1312 		struct hd_struct *part;
1313 
1314 		part_stat_lock();
1315 		part = req->part;
1316 		part_stat_add(part, sectors[sgrp], bytes >> 9);
1317 		part_stat_unlock();
1318 	}
1319 }
1320 
1321 void blk_account_io_done(struct request *req, u64 now)
1322 {
1323 	/*
1324 	 * Account IO completion.  flush_rq isn't accounted as a
1325 	 * normal IO on queueing nor completion.  Accounting the
1326 	 * containing request is enough.
1327 	 */
1328 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1329 		const int sgrp = op_stat_group(req_op(req));
1330 		struct hd_struct *part;
1331 
1332 		part_stat_lock();
1333 		part = req->part;
1334 
1335 		update_io_ticks(part, jiffies);
1336 		part_stat_inc(part, ios[sgrp]);
1337 		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1338 		part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1339 		part_dec_in_flight(req->q, part, rq_data_dir(req));
1340 
1341 		hd_struct_put(part);
1342 		part_stat_unlock();
1343 	}
1344 }
1345 
1346 void blk_account_io_start(struct request *rq, bool new_io)
1347 {
1348 	struct hd_struct *part;
1349 	int rw = rq_data_dir(rq);
1350 
1351 	if (!blk_do_io_stat(rq))
1352 		return;
1353 
1354 	part_stat_lock();
1355 
1356 	if (!new_io) {
1357 		part = rq->part;
1358 		part_stat_inc(part, merges[rw]);
1359 	} else {
1360 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1361 		if (!hd_struct_try_get(part)) {
1362 			/*
1363 			 * The partition is already being removed,
1364 			 * the request will be accounted on the disk only
1365 			 *
1366 			 * We take a reference on disk->part0 although that
1367 			 * partition will never be deleted, so we can treat
1368 			 * it as any other partition.
1369 			 */
1370 			part = &rq->rq_disk->part0;
1371 			hd_struct_get(part);
1372 		}
1373 		part_inc_in_flight(rq->q, part, rw);
1374 		rq->part = part;
1375 	}
1376 
1377 	update_io_ticks(part, jiffies);
1378 
1379 	part_stat_unlock();
1380 }
1381 
1382 /*
1383  * Steal bios from a request and add them to a bio list.
1384  * The request must not have been partially completed before.
1385  */
1386 void blk_steal_bios(struct bio_list *list, struct request *rq)
1387 {
1388 	if (rq->bio) {
1389 		if (list->tail)
1390 			list->tail->bi_next = rq->bio;
1391 		else
1392 			list->head = rq->bio;
1393 		list->tail = rq->biotail;
1394 
1395 		rq->bio = NULL;
1396 		rq->biotail = NULL;
1397 	}
1398 
1399 	rq->__data_len = 0;
1400 }
1401 EXPORT_SYMBOL_GPL(blk_steal_bios);
1402 
1403 /**
1404  * blk_update_request - Special helper function for request stacking drivers
1405  * @req:      the request being processed
1406  * @error:    block status code
1407  * @nr_bytes: number of bytes to complete @req
1408  *
1409  * Description:
1410  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1411  *     the request structure even if @req doesn't have leftover.
1412  *     If @req has leftover, sets it up for the next range of segments.
1413  *
1414  *     This special helper function is only for request stacking drivers
1415  *     (e.g. request-based dm) so that they can handle partial completion.
1416  *     Actual device drivers should use blk_mq_end_request instead.
1417  *
1418  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1419  *     %false return from this function.
1420  *
1421  * Note:
1422  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1423  *	blk_rq_bytes() and in blk_update_request().
1424  *
1425  * Return:
1426  *     %false - this request doesn't have any more data
1427  *     %true  - this request has more data
1428  **/
1429 bool blk_update_request(struct request *req, blk_status_t error,
1430 		unsigned int nr_bytes)
1431 {
1432 	int total_bytes;
1433 
1434 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1435 
1436 	if (!req->bio)
1437 		return false;
1438 
1439 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1440 		     !(req->rq_flags & RQF_QUIET)))
1441 		print_req_error(req, error, __func__);
1442 
1443 	blk_account_io_completion(req, nr_bytes);
1444 
1445 	total_bytes = 0;
1446 	while (req->bio) {
1447 		struct bio *bio = req->bio;
1448 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1449 
1450 		if (bio_bytes == bio->bi_iter.bi_size)
1451 			req->bio = bio->bi_next;
1452 
1453 		/* Completion has already been traced */
1454 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1455 		req_bio_endio(req, bio, bio_bytes, error);
1456 
1457 		total_bytes += bio_bytes;
1458 		nr_bytes -= bio_bytes;
1459 
1460 		if (!nr_bytes)
1461 			break;
1462 	}
1463 
1464 	/*
1465 	 * completely done
1466 	 */
1467 	if (!req->bio) {
1468 		/*
1469 		 * Reset counters so that the request stacking driver
1470 		 * can find how many bytes remain in the request
1471 		 * later.
1472 		 */
1473 		req->__data_len = 0;
1474 		return false;
1475 	}
1476 
1477 	req->__data_len -= total_bytes;
1478 
1479 	/* update sector only for requests with clear definition of sector */
1480 	if (!blk_rq_is_passthrough(req))
1481 		req->__sector += total_bytes >> 9;
1482 
1483 	/* mixed attributes always follow the first bio */
1484 	if (req->rq_flags & RQF_MIXED_MERGE) {
1485 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1486 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1487 	}
1488 
1489 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1490 		/*
1491 		 * If total number of sectors is less than the first segment
1492 		 * size, something has gone terribly wrong.
1493 		 */
1494 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1495 			blk_dump_rq_flags(req, "request botched");
1496 			req->__data_len = blk_rq_cur_bytes(req);
1497 		}
1498 
1499 		/* recalculate the number of segments */
1500 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1501 	}
1502 
1503 	return true;
1504 }
1505 EXPORT_SYMBOL_GPL(blk_update_request);
1506 
1507 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1508 /**
1509  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1510  * @rq: the request to be flushed
1511  *
1512  * Description:
1513  *     Flush all pages in @rq.
1514  */
1515 void rq_flush_dcache_pages(struct request *rq)
1516 {
1517 	struct req_iterator iter;
1518 	struct bio_vec bvec;
1519 
1520 	rq_for_each_segment(bvec, rq, iter)
1521 		flush_dcache_page(bvec.bv_page);
1522 }
1523 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1524 #endif
1525 
1526 /**
1527  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1528  * @q : the queue of the device being checked
1529  *
1530  * Description:
1531  *    Check if underlying low-level drivers of a device are busy.
1532  *    If the drivers want to export their busy state, they must set own
1533  *    exporting function using blk_queue_lld_busy() first.
1534  *
1535  *    Basically, this function is used only by request stacking drivers
1536  *    to stop dispatching requests to underlying devices when underlying
1537  *    devices are busy.  This behavior helps more I/O merging on the queue
1538  *    of the request stacking driver and prevents I/O throughput regression
1539  *    on burst I/O load.
1540  *
1541  * Return:
1542  *    0 - Not busy (The request stacking driver should dispatch request)
1543  *    1 - Busy (The request stacking driver should stop dispatching request)
1544  */
1545 int blk_lld_busy(struct request_queue *q)
1546 {
1547 	if (queue_is_mq(q) && q->mq_ops->busy)
1548 		return q->mq_ops->busy(q);
1549 
1550 	return 0;
1551 }
1552 EXPORT_SYMBOL_GPL(blk_lld_busy);
1553 
1554 /**
1555  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1556  * @rq: the clone request to be cleaned up
1557  *
1558  * Description:
1559  *     Free all bios in @rq for a cloned request.
1560  */
1561 void blk_rq_unprep_clone(struct request *rq)
1562 {
1563 	struct bio *bio;
1564 
1565 	while ((bio = rq->bio) != NULL) {
1566 		rq->bio = bio->bi_next;
1567 
1568 		bio_put(bio);
1569 	}
1570 }
1571 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1572 
1573 /*
1574  * Copy attributes of the original request to the clone request.
1575  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1576  */
1577 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1578 {
1579 	dst->__sector = blk_rq_pos(src);
1580 	dst->__data_len = blk_rq_bytes(src);
1581 	if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1582 		dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1583 		dst->special_vec = src->special_vec;
1584 	}
1585 	dst->nr_phys_segments = src->nr_phys_segments;
1586 	dst->ioprio = src->ioprio;
1587 	dst->extra_len = src->extra_len;
1588 }
1589 
1590 /**
1591  * blk_rq_prep_clone - Helper function to setup clone request
1592  * @rq: the request to be setup
1593  * @rq_src: original request to be cloned
1594  * @bs: bio_set that bios for clone are allocated from
1595  * @gfp_mask: memory allocation mask for bio
1596  * @bio_ctr: setup function to be called for each clone bio.
1597  *           Returns %0 for success, non %0 for failure.
1598  * @data: private data to be passed to @bio_ctr
1599  *
1600  * Description:
1601  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1602  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1603  *     are not copied, and copying such parts is the caller's responsibility.
1604  *     Also, pages which the original bios are pointing to are not copied
1605  *     and the cloned bios just point same pages.
1606  *     So cloned bios must be completed before original bios, which means
1607  *     the caller must complete @rq before @rq_src.
1608  */
1609 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1610 		      struct bio_set *bs, gfp_t gfp_mask,
1611 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1612 		      void *data)
1613 {
1614 	struct bio *bio, *bio_src;
1615 
1616 	if (!bs)
1617 		bs = &fs_bio_set;
1618 
1619 	__rq_for_each_bio(bio_src, rq_src) {
1620 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1621 		if (!bio)
1622 			goto free_and_out;
1623 
1624 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1625 			goto free_and_out;
1626 
1627 		if (rq->bio) {
1628 			rq->biotail->bi_next = bio;
1629 			rq->biotail = bio;
1630 		} else
1631 			rq->bio = rq->biotail = bio;
1632 	}
1633 
1634 	__blk_rq_prep_clone(rq, rq_src);
1635 
1636 	return 0;
1637 
1638 free_and_out:
1639 	if (bio)
1640 		bio_put(bio);
1641 	blk_rq_unprep_clone(rq);
1642 
1643 	return -ENOMEM;
1644 }
1645 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1646 
1647 int kblockd_schedule_work(struct work_struct *work)
1648 {
1649 	return queue_work(kblockd_workqueue, work);
1650 }
1651 EXPORT_SYMBOL(kblockd_schedule_work);
1652 
1653 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1654 {
1655 	return queue_work_on(cpu, kblockd_workqueue, work);
1656 }
1657 EXPORT_SYMBOL(kblockd_schedule_work_on);
1658 
1659 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1660 				unsigned long delay)
1661 {
1662 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1663 }
1664 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1665 
1666 /**
1667  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1668  * @plug:	The &struct blk_plug that needs to be initialized
1669  *
1670  * Description:
1671  *   blk_start_plug() indicates to the block layer an intent by the caller
1672  *   to submit multiple I/O requests in a batch.  The block layer may use
1673  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1674  *   is called.  However, the block layer may choose to submit requests
1675  *   before a call to blk_finish_plug() if the number of queued I/Os
1676  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1677  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1678  *   the task schedules (see below).
1679  *
1680  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1681  *   pending I/O should the task end up blocking between blk_start_plug() and
1682  *   blk_finish_plug(). This is important from a performance perspective, but
1683  *   also ensures that we don't deadlock. For instance, if the task is blocking
1684  *   for a memory allocation, memory reclaim could end up wanting to free a
1685  *   page belonging to that request that is currently residing in our private
1686  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1687  *   this kind of deadlock.
1688  */
1689 void blk_start_plug(struct blk_plug *plug)
1690 {
1691 	struct task_struct *tsk = current;
1692 
1693 	/*
1694 	 * If this is a nested plug, don't actually assign it.
1695 	 */
1696 	if (tsk->plug)
1697 		return;
1698 
1699 	INIT_LIST_HEAD(&plug->mq_list);
1700 	INIT_LIST_HEAD(&plug->cb_list);
1701 	plug->rq_count = 0;
1702 	plug->multiple_queues = false;
1703 
1704 	/*
1705 	 * Store ordering should not be needed here, since a potential
1706 	 * preempt will imply a full memory barrier
1707 	 */
1708 	tsk->plug = plug;
1709 }
1710 EXPORT_SYMBOL(blk_start_plug);
1711 
1712 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1713 {
1714 	LIST_HEAD(callbacks);
1715 
1716 	while (!list_empty(&plug->cb_list)) {
1717 		list_splice_init(&plug->cb_list, &callbacks);
1718 
1719 		while (!list_empty(&callbacks)) {
1720 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1721 							  struct blk_plug_cb,
1722 							  list);
1723 			list_del(&cb->list);
1724 			cb->callback(cb, from_schedule);
1725 		}
1726 	}
1727 }
1728 
1729 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1730 				      int size)
1731 {
1732 	struct blk_plug *plug = current->plug;
1733 	struct blk_plug_cb *cb;
1734 
1735 	if (!plug)
1736 		return NULL;
1737 
1738 	list_for_each_entry(cb, &plug->cb_list, list)
1739 		if (cb->callback == unplug && cb->data == data)
1740 			return cb;
1741 
1742 	/* Not currently on the callback list */
1743 	BUG_ON(size < sizeof(*cb));
1744 	cb = kzalloc(size, GFP_ATOMIC);
1745 	if (cb) {
1746 		cb->data = data;
1747 		cb->callback = unplug;
1748 		list_add(&cb->list, &plug->cb_list);
1749 	}
1750 	return cb;
1751 }
1752 EXPORT_SYMBOL(blk_check_plugged);
1753 
1754 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1755 {
1756 	flush_plug_callbacks(plug, from_schedule);
1757 
1758 	if (!list_empty(&plug->mq_list))
1759 		blk_mq_flush_plug_list(plug, from_schedule);
1760 }
1761 
1762 /**
1763  * blk_finish_plug - mark the end of a batch of submitted I/O
1764  * @plug:	The &struct blk_plug passed to blk_start_plug()
1765  *
1766  * Description:
1767  * Indicate that a batch of I/O submissions is complete.  This function
1768  * must be paired with an initial call to blk_start_plug().  The intent
1769  * is to allow the block layer to optimize I/O submission.  See the
1770  * documentation for blk_start_plug() for more information.
1771  */
1772 void blk_finish_plug(struct blk_plug *plug)
1773 {
1774 	if (plug != current->plug)
1775 		return;
1776 	blk_flush_plug_list(plug, false);
1777 
1778 	current->plug = NULL;
1779 }
1780 EXPORT_SYMBOL(blk_finish_plug);
1781 
1782 int __init blk_dev_init(void)
1783 {
1784 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1785 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1786 			FIELD_SIZEOF(struct request, cmd_flags));
1787 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1788 			FIELD_SIZEOF(struct bio, bi_opf));
1789 
1790 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1791 	kblockd_workqueue = alloc_workqueue("kblockd",
1792 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1793 	if (!kblockd_workqueue)
1794 		panic("Failed to create kblockd\n");
1795 
1796 	blk_requestq_cachep = kmem_cache_create("request_queue",
1797 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1798 
1799 #ifdef CONFIG_DEBUG_FS
1800 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1801 #endif
1802 
1803 	return 0;
1804 }
1805