xref: /openbmc/linux/block/blk-core.c (revision 9c1f8594)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/block.h>
34 
35 #include "blk.h"
36 
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
40 
41 static int __make_request(struct request_queue *q, struct bio *bio);
42 
43 /*
44  * For the allocated request tables
45  */
46 static struct kmem_cache *request_cachep;
47 
48 /*
49  * For queue allocation
50  */
51 struct kmem_cache *blk_requestq_cachep;
52 
53 /*
54  * Controlling structure to kblockd
55  */
56 static struct workqueue_struct *kblockd_workqueue;
57 
58 static void drive_stat_acct(struct request *rq, int new_io)
59 {
60 	struct hd_struct *part;
61 	int rw = rq_data_dir(rq);
62 	int cpu;
63 
64 	if (!blk_do_io_stat(rq))
65 		return;
66 
67 	cpu = part_stat_lock();
68 
69 	if (!new_io) {
70 		part = rq->part;
71 		part_stat_inc(cpu, part, merges[rw]);
72 	} else {
73 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
74 		if (!hd_struct_try_get(part)) {
75 			/*
76 			 * The partition is already being removed,
77 			 * the request will be accounted on the disk only
78 			 *
79 			 * We take a reference on disk->part0 although that
80 			 * partition will never be deleted, so we can treat
81 			 * it as any other partition.
82 			 */
83 			part = &rq->rq_disk->part0;
84 			hd_struct_get(part);
85 		}
86 		part_round_stats(cpu, part);
87 		part_inc_in_flight(part, rw);
88 		rq->part = part;
89 	}
90 
91 	part_stat_unlock();
92 }
93 
94 void blk_queue_congestion_threshold(struct request_queue *q)
95 {
96 	int nr;
97 
98 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 	if (nr > q->nr_requests)
100 		nr = q->nr_requests;
101 	q->nr_congestion_on = nr;
102 
103 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 	if (nr < 1)
105 		nr = 1;
106 	q->nr_congestion_off = nr;
107 }
108 
109 /**
110  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
111  * @bdev:	device
112  *
113  * Locates the passed device's request queue and returns the address of its
114  * backing_dev_info
115  *
116  * Will return NULL if the request queue cannot be located.
117  */
118 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
119 {
120 	struct backing_dev_info *ret = NULL;
121 	struct request_queue *q = bdev_get_queue(bdev);
122 
123 	if (q)
124 		ret = &q->backing_dev_info;
125 	return ret;
126 }
127 EXPORT_SYMBOL(blk_get_backing_dev_info);
128 
129 void blk_rq_init(struct request_queue *q, struct request *rq)
130 {
131 	memset(rq, 0, sizeof(*rq));
132 
133 	INIT_LIST_HEAD(&rq->queuelist);
134 	INIT_LIST_HEAD(&rq->timeout_list);
135 	rq->cpu = -1;
136 	rq->q = q;
137 	rq->__sector = (sector_t) -1;
138 	INIT_HLIST_NODE(&rq->hash);
139 	RB_CLEAR_NODE(&rq->rb_node);
140 	rq->cmd = rq->__cmd;
141 	rq->cmd_len = BLK_MAX_CDB;
142 	rq->tag = -1;
143 	rq->ref_count = 1;
144 	rq->start_time = jiffies;
145 	set_start_time_ns(rq);
146 	rq->part = NULL;
147 }
148 EXPORT_SYMBOL(blk_rq_init);
149 
150 static void req_bio_endio(struct request *rq, struct bio *bio,
151 			  unsigned int nbytes, int error)
152 {
153 	if (error)
154 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
155 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
156 		error = -EIO;
157 
158 	if (unlikely(nbytes > bio->bi_size)) {
159 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
160 		       __func__, nbytes, bio->bi_size);
161 		nbytes = bio->bi_size;
162 	}
163 
164 	if (unlikely(rq->cmd_flags & REQ_QUIET))
165 		set_bit(BIO_QUIET, &bio->bi_flags);
166 
167 	bio->bi_size -= nbytes;
168 	bio->bi_sector += (nbytes >> 9);
169 
170 	if (bio_integrity(bio))
171 		bio_integrity_advance(bio, nbytes);
172 
173 	/* don't actually finish bio if it's part of flush sequence */
174 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
175 		bio_endio(bio, error);
176 }
177 
178 void blk_dump_rq_flags(struct request *rq, char *msg)
179 {
180 	int bit;
181 
182 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
183 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 		rq->cmd_flags);
185 
186 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
187 	       (unsigned long long)blk_rq_pos(rq),
188 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
189 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
190 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
191 
192 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
193 		printk(KERN_INFO "  cdb: ");
194 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
195 			printk("%02x ", rq->cmd[bit]);
196 		printk("\n");
197 	}
198 }
199 EXPORT_SYMBOL(blk_dump_rq_flags);
200 
201 static void blk_delay_work(struct work_struct *work)
202 {
203 	struct request_queue *q;
204 
205 	q = container_of(work, struct request_queue, delay_work.work);
206 	spin_lock_irq(q->queue_lock);
207 	__blk_run_queue(q);
208 	spin_unlock_irq(q->queue_lock);
209 }
210 
211 /**
212  * blk_delay_queue - restart queueing after defined interval
213  * @q:		The &struct request_queue in question
214  * @msecs:	Delay in msecs
215  *
216  * Description:
217  *   Sometimes queueing needs to be postponed for a little while, to allow
218  *   resources to come back. This function will make sure that queueing is
219  *   restarted around the specified time.
220  */
221 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
222 {
223 	queue_delayed_work(kblockd_workqueue, &q->delay_work,
224 				msecs_to_jiffies(msecs));
225 }
226 EXPORT_SYMBOL(blk_delay_queue);
227 
228 /**
229  * blk_start_queue - restart a previously stopped queue
230  * @q:    The &struct request_queue in question
231  *
232  * Description:
233  *   blk_start_queue() will clear the stop flag on the queue, and call
234  *   the request_fn for the queue if it was in a stopped state when
235  *   entered. Also see blk_stop_queue(). Queue lock must be held.
236  **/
237 void blk_start_queue(struct request_queue *q)
238 {
239 	WARN_ON(!irqs_disabled());
240 
241 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
242 	__blk_run_queue(q);
243 }
244 EXPORT_SYMBOL(blk_start_queue);
245 
246 /**
247  * blk_stop_queue - stop a queue
248  * @q:    The &struct request_queue in question
249  *
250  * Description:
251  *   The Linux block layer assumes that a block driver will consume all
252  *   entries on the request queue when the request_fn strategy is called.
253  *   Often this will not happen, because of hardware limitations (queue
254  *   depth settings). If a device driver gets a 'queue full' response,
255  *   or if it simply chooses not to queue more I/O at one point, it can
256  *   call this function to prevent the request_fn from being called until
257  *   the driver has signalled it's ready to go again. This happens by calling
258  *   blk_start_queue() to restart queue operations. Queue lock must be held.
259  **/
260 void blk_stop_queue(struct request_queue *q)
261 {
262 	__cancel_delayed_work(&q->delay_work);
263 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
264 }
265 EXPORT_SYMBOL(blk_stop_queue);
266 
267 /**
268  * blk_sync_queue - cancel any pending callbacks on a queue
269  * @q: the queue
270  *
271  * Description:
272  *     The block layer may perform asynchronous callback activity
273  *     on a queue, such as calling the unplug function after a timeout.
274  *     A block device may call blk_sync_queue to ensure that any
275  *     such activity is cancelled, thus allowing it to release resources
276  *     that the callbacks might use. The caller must already have made sure
277  *     that its ->make_request_fn will not re-add plugging prior to calling
278  *     this function.
279  *
280  *     This function does not cancel any asynchronous activity arising
281  *     out of elevator or throttling code. That would require elevaotor_exit()
282  *     and blk_throtl_exit() to be called with queue lock initialized.
283  *
284  */
285 void blk_sync_queue(struct request_queue *q)
286 {
287 	del_timer_sync(&q->timeout);
288 	cancel_delayed_work_sync(&q->delay_work);
289 }
290 EXPORT_SYMBOL(blk_sync_queue);
291 
292 /**
293  * __blk_run_queue - run a single device queue
294  * @q:	The queue to run
295  *
296  * Description:
297  *    See @blk_run_queue. This variant must be called with the queue lock
298  *    held and interrupts disabled.
299  */
300 void __blk_run_queue(struct request_queue *q)
301 {
302 	if (unlikely(blk_queue_stopped(q)))
303 		return;
304 
305 	q->request_fn(q);
306 }
307 EXPORT_SYMBOL(__blk_run_queue);
308 
309 /**
310  * blk_run_queue_async - run a single device queue in workqueue context
311  * @q:	The queue to run
312  *
313  * Description:
314  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
315  *    of us.
316  */
317 void blk_run_queue_async(struct request_queue *q)
318 {
319 	if (likely(!blk_queue_stopped(q))) {
320 		__cancel_delayed_work(&q->delay_work);
321 		queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
322 	}
323 }
324 EXPORT_SYMBOL(blk_run_queue_async);
325 
326 /**
327  * blk_run_queue - run a single device queue
328  * @q: The queue to run
329  *
330  * Description:
331  *    Invoke request handling on this queue, if it has pending work to do.
332  *    May be used to restart queueing when a request has completed.
333  */
334 void blk_run_queue(struct request_queue *q)
335 {
336 	unsigned long flags;
337 
338 	spin_lock_irqsave(q->queue_lock, flags);
339 	__blk_run_queue(q);
340 	spin_unlock_irqrestore(q->queue_lock, flags);
341 }
342 EXPORT_SYMBOL(blk_run_queue);
343 
344 void blk_put_queue(struct request_queue *q)
345 {
346 	kobject_put(&q->kobj);
347 }
348 EXPORT_SYMBOL(blk_put_queue);
349 
350 /*
351  * Note: If a driver supplied the queue lock, it should not zap that lock
352  * unexpectedly as some queue cleanup components like elevator_exit() and
353  * blk_throtl_exit() need queue lock.
354  */
355 void blk_cleanup_queue(struct request_queue *q)
356 {
357 	/*
358 	 * We know we have process context here, so we can be a little
359 	 * cautious and ensure that pending block actions on this device
360 	 * are done before moving on. Going into this function, we should
361 	 * not have processes doing IO to this device.
362 	 */
363 	blk_sync_queue(q);
364 
365 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
366 	mutex_lock(&q->sysfs_lock);
367 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
368 	mutex_unlock(&q->sysfs_lock);
369 
370 	if (q->elevator)
371 		elevator_exit(q->elevator);
372 
373 	blk_throtl_exit(q);
374 
375 	blk_put_queue(q);
376 }
377 EXPORT_SYMBOL(blk_cleanup_queue);
378 
379 static int blk_init_free_list(struct request_queue *q)
380 {
381 	struct request_list *rl = &q->rq;
382 
383 	if (unlikely(rl->rq_pool))
384 		return 0;
385 
386 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
387 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
388 	rl->elvpriv = 0;
389 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
390 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
391 
392 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
393 				mempool_free_slab, request_cachep, q->node);
394 
395 	if (!rl->rq_pool)
396 		return -ENOMEM;
397 
398 	return 0;
399 }
400 
401 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
402 {
403 	return blk_alloc_queue_node(gfp_mask, -1);
404 }
405 EXPORT_SYMBOL(blk_alloc_queue);
406 
407 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
408 {
409 	struct request_queue *q;
410 	int err;
411 
412 	q = kmem_cache_alloc_node(blk_requestq_cachep,
413 				gfp_mask | __GFP_ZERO, node_id);
414 	if (!q)
415 		return NULL;
416 
417 	q->backing_dev_info.ra_pages =
418 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
419 	q->backing_dev_info.state = 0;
420 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
421 	q->backing_dev_info.name = "block";
422 
423 	err = bdi_init(&q->backing_dev_info);
424 	if (err) {
425 		kmem_cache_free(blk_requestq_cachep, q);
426 		return NULL;
427 	}
428 
429 	if (blk_throtl_init(q)) {
430 		kmem_cache_free(blk_requestq_cachep, q);
431 		return NULL;
432 	}
433 
434 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
435 		    laptop_mode_timer_fn, (unsigned long) q);
436 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
437 	INIT_LIST_HEAD(&q->timeout_list);
438 	INIT_LIST_HEAD(&q->flush_queue[0]);
439 	INIT_LIST_HEAD(&q->flush_queue[1]);
440 	INIT_LIST_HEAD(&q->flush_data_in_flight);
441 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
442 
443 	kobject_init(&q->kobj, &blk_queue_ktype);
444 
445 	mutex_init(&q->sysfs_lock);
446 	spin_lock_init(&q->__queue_lock);
447 
448 	/*
449 	 * By default initialize queue_lock to internal lock and driver can
450 	 * override it later if need be.
451 	 */
452 	q->queue_lock = &q->__queue_lock;
453 
454 	return q;
455 }
456 EXPORT_SYMBOL(blk_alloc_queue_node);
457 
458 /**
459  * blk_init_queue  - prepare a request queue for use with a block device
460  * @rfn:  The function to be called to process requests that have been
461  *        placed on the queue.
462  * @lock: Request queue spin lock
463  *
464  * Description:
465  *    If a block device wishes to use the standard request handling procedures,
466  *    which sorts requests and coalesces adjacent requests, then it must
467  *    call blk_init_queue().  The function @rfn will be called when there
468  *    are requests on the queue that need to be processed.  If the device
469  *    supports plugging, then @rfn may not be called immediately when requests
470  *    are available on the queue, but may be called at some time later instead.
471  *    Plugged queues are generally unplugged when a buffer belonging to one
472  *    of the requests on the queue is needed, or due to memory pressure.
473  *
474  *    @rfn is not required, or even expected, to remove all requests off the
475  *    queue, but only as many as it can handle at a time.  If it does leave
476  *    requests on the queue, it is responsible for arranging that the requests
477  *    get dealt with eventually.
478  *
479  *    The queue spin lock must be held while manipulating the requests on the
480  *    request queue; this lock will be taken also from interrupt context, so irq
481  *    disabling is needed for it.
482  *
483  *    Function returns a pointer to the initialized request queue, or %NULL if
484  *    it didn't succeed.
485  *
486  * Note:
487  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
488  *    when the block device is deactivated (such as at module unload).
489  **/
490 
491 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
492 {
493 	return blk_init_queue_node(rfn, lock, -1);
494 }
495 EXPORT_SYMBOL(blk_init_queue);
496 
497 struct request_queue *
498 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
499 {
500 	struct request_queue *uninit_q, *q;
501 
502 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
503 	if (!uninit_q)
504 		return NULL;
505 
506 	q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
507 	if (!q)
508 		blk_cleanup_queue(uninit_q);
509 
510 	return q;
511 }
512 EXPORT_SYMBOL(blk_init_queue_node);
513 
514 struct request_queue *
515 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
516 			 spinlock_t *lock)
517 {
518 	return blk_init_allocated_queue_node(q, rfn, lock, -1);
519 }
520 EXPORT_SYMBOL(blk_init_allocated_queue);
521 
522 struct request_queue *
523 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
524 			      spinlock_t *lock, int node_id)
525 {
526 	if (!q)
527 		return NULL;
528 
529 	q->node = node_id;
530 	if (blk_init_free_list(q))
531 		return NULL;
532 
533 	q->request_fn		= rfn;
534 	q->prep_rq_fn		= NULL;
535 	q->unprep_rq_fn		= NULL;
536 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
537 
538 	/* Override internal queue lock with supplied lock pointer */
539 	if (lock)
540 		q->queue_lock		= lock;
541 
542 	/*
543 	 * This also sets hw/phys segments, boundary and size
544 	 */
545 	blk_queue_make_request(q, __make_request);
546 
547 	q->sg_reserved_size = INT_MAX;
548 
549 	/*
550 	 * all done
551 	 */
552 	if (!elevator_init(q, NULL)) {
553 		blk_queue_congestion_threshold(q);
554 		return q;
555 	}
556 
557 	return NULL;
558 }
559 EXPORT_SYMBOL(blk_init_allocated_queue_node);
560 
561 int blk_get_queue(struct request_queue *q)
562 {
563 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
564 		kobject_get(&q->kobj);
565 		return 0;
566 	}
567 
568 	return 1;
569 }
570 EXPORT_SYMBOL(blk_get_queue);
571 
572 static inline void blk_free_request(struct request_queue *q, struct request *rq)
573 {
574 	if (rq->cmd_flags & REQ_ELVPRIV)
575 		elv_put_request(q, rq);
576 	mempool_free(rq, q->rq.rq_pool);
577 }
578 
579 static struct request *
580 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
581 {
582 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
583 
584 	if (!rq)
585 		return NULL;
586 
587 	blk_rq_init(q, rq);
588 
589 	rq->cmd_flags = flags | REQ_ALLOCED;
590 
591 	if (priv) {
592 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
593 			mempool_free(rq, q->rq.rq_pool);
594 			return NULL;
595 		}
596 		rq->cmd_flags |= REQ_ELVPRIV;
597 	}
598 
599 	return rq;
600 }
601 
602 /*
603  * ioc_batching returns true if the ioc is a valid batching request and
604  * should be given priority access to a request.
605  */
606 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
607 {
608 	if (!ioc)
609 		return 0;
610 
611 	/*
612 	 * Make sure the process is able to allocate at least 1 request
613 	 * even if the batch times out, otherwise we could theoretically
614 	 * lose wakeups.
615 	 */
616 	return ioc->nr_batch_requests == q->nr_batching ||
617 		(ioc->nr_batch_requests > 0
618 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
619 }
620 
621 /*
622  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
623  * will cause the process to be a "batcher" on all queues in the system. This
624  * is the behaviour we want though - once it gets a wakeup it should be given
625  * a nice run.
626  */
627 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
628 {
629 	if (!ioc || ioc_batching(q, ioc))
630 		return;
631 
632 	ioc->nr_batch_requests = q->nr_batching;
633 	ioc->last_waited = jiffies;
634 }
635 
636 static void __freed_request(struct request_queue *q, int sync)
637 {
638 	struct request_list *rl = &q->rq;
639 
640 	if (rl->count[sync] < queue_congestion_off_threshold(q))
641 		blk_clear_queue_congested(q, sync);
642 
643 	if (rl->count[sync] + 1 <= q->nr_requests) {
644 		if (waitqueue_active(&rl->wait[sync]))
645 			wake_up(&rl->wait[sync]);
646 
647 		blk_clear_queue_full(q, sync);
648 	}
649 }
650 
651 /*
652  * A request has just been released.  Account for it, update the full and
653  * congestion status, wake up any waiters.   Called under q->queue_lock.
654  */
655 static void freed_request(struct request_queue *q, int sync, int priv)
656 {
657 	struct request_list *rl = &q->rq;
658 
659 	rl->count[sync]--;
660 	if (priv)
661 		rl->elvpriv--;
662 
663 	__freed_request(q, sync);
664 
665 	if (unlikely(rl->starved[sync ^ 1]))
666 		__freed_request(q, sync ^ 1);
667 }
668 
669 /*
670  * Determine if elevator data should be initialized when allocating the
671  * request associated with @bio.
672  */
673 static bool blk_rq_should_init_elevator(struct bio *bio)
674 {
675 	if (!bio)
676 		return true;
677 
678 	/*
679 	 * Flush requests do not use the elevator so skip initialization.
680 	 * This allows a request to share the flush and elevator data.
681 	 */
682 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
683 		return false;
684 
685 	return true;
686 }
687 
688 /*
689  * Get a free request, queue_lock must be held.
690  * Returns NULL on failure, with queue_lock held.
691  * Returns !NULL on success, with queue_lock *not held*.
692  */
693 static struct request *get_request(struct request_queue *q, int rw_flags,
694 				   struct bio *bio, gfp_t gfp_mask)
695 {
696 	struct request *rq = NULL;
697 	struct request_list *rl = &q->rq;
698 	struct io_context *ioc = NULL;
699 	const bool is_sync = rw_is_sync(rw_flags) != 0;
700 	int may_queue, priv = 0;
701 
702 	may_queue = elv_may_queue(q, rw_flags);
703 	if (may_queue == ELV_MQUEUE_NO)
704 		goto rq_starved;
705 
706 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
707 		if (rl->count[is_sync]+1 >= q->nr_requests) {
708 			ioc = current_io_context(GFP_ATOMIC, q->node);
709 			/*
710 			 * The queue will fill after this allocation, so set
711 			 * it as full, and mark this process as "batching".
712 			 * This process will be allowed to complete a batch of
713 			 * requests, others will be blocked.
714 			 */
715 			if (!blk_queue_full(q, is_sync)) {
716 				ioc_set_batching(q, ioc);
717 				blk_set_queue_full(q, is_sync);
718 			} else {
719 				if (may_queue != ELV_MQUEUE_MUST
720 						&& !ioc_batching(q, ioc)) {
721 					/*
722 					 * The queue is full and the allocating
723 					 * process is not a "batcher", and not
724 					 * exempted by the IO scheduler
725 					 */
726 					goto out;
727 				}
728 			}
729 		}
730 		blk_set_queue_congested(q, is_sync);
731 	}
732 
733 	/*
734 	 * Only allow batching queuers to allocate up to 50% over the defined
735 	 * limit of requests, otherwise we could have thousands of requests
736 	 * allocated with any setting of ->nr_requests
737 	 */
738 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
739 		goto out;
740 
741 	rl->count[is_sync]++;
742 	rl->starved[is_sync] = 0;
743 
744 	if (blk_rq_should_init_elevator(bio)) {
745 		priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
746 		if (priv)
747 			rl->elvpriv++;
748 	}
749 
750 	if (blk_queue_io_stat(q))
751 		rw_flags |= REQ_IO_STAT;
752 	spin_unlock_irq(q->queue_lock);
753 
754 	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
755 	if (unlikely(!rq)) {
756 		/*
757 		 * Allocation failed presumably due to memory. Undo anything
758 		 * we might have messed up.
759 		 *
760 		 * Allocating task should really be put onto the front of the
761 		 * wait queue, but this is pretty rare.
762 		 */
763 		spin_lock_irq(q->queue_lock);
764 		freed_request(q, is_sync, priv);
765 
766 		/*
767 		 * in the very unlikely event that allocation failed and no
768 		 * requests for this direction was pending, mark us starved
769 		 * so that freeing of a request in the other direction will
770 		 * notice us. another possible fix would be to split the
771 		 * rq mempool into READ and WRITE
772 		 */
773 rq_starved:
774 		if (unlikely(rl->count[is_sync] == 0))
775 			rl->starved[is_sync] = 1;
776 
777 		goto out;
778 	}
779 
780 	/*
781 	 * ioc may be NULL here, and ioc_batching will be false. That's
782 	 * OK, if the queue is under the request limit then requests need
783 	 * not count toward the nr_batch_requests limit. There will always
784 	 * be some limit enforced by BLK_BATCH_TIME.
785 	 */
786 	if (ioc_batching(q, ioc))
787 		ioc->nr_batch_requests--;
788 
789 	trace_block_getrq(q, bio, rw_flags & 1);
790 out:
791 	return rq;
792 }
793 
794 /*
795  * No available requests for this queue, wait for some requests to become
796  * available.
797  *
798  * Called with q->queue_lock held, and returns with it unlocked.
799  */
800 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
801 					struct bio *bio)
802 {
803 	const bool is_sync = rw_is_sync(rw_flags) != 0;
804 	struct request *rq;
805 
806 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
807 	while (!rq) {
808 		DEFINE_WAIT(wait);
809 		struct io_context *ioc;
810 		struct request_list *rl = &q->rq;
811 
812 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
813 				TASK_UNINTERRUPTIBLE);
814 
815 		trace_block_sleeprq(q, bio, rw_flags & 1);
816 
817 		spin_unlock_irq(q->queue_lock);
818 		io_schedule();
819 
820 		/*
821 		 * After sleeping, we become a "batching" process and
822 		 * will be able to allocate at least one request, and
823 		 * up to a big batch of them for a small period time.
824 		 * See ioc_batching, ioc_set_batching
825 		 */
826 		ioc = current_io_context(GFP_NOIO, q->node);
827 		ioc_set_batching(q, ioc);
828 
829 		spin_lock_irq(q->queue_lock);
830 		finish_wait(&rl->wait[is_sync], &wait);
831 
832 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
833 	};
834 
835 	return rq;
836 }
837 
838 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
839 {
840 	struct request *rq;
841 
842 	if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
843 		return NULL;
844 
845 	BUG_ON(rw != READ && rw != WRITE);
846 
847 	spin_lock_irq(q->queue_lock);
848 	if (gfp_mask & __GFP_WAIT) {
849 		rq = get_request_wait(q, rw, NULL);
850 	} else {
851 		rq = get_request(q, rw, NULL, gfp_mask);
852 		if (!rq)
853 			spin_unlock_irq(q->queue_lock);
854 	}
855 	/* q->queue_lock is unlocked at this point */
856 
857 	return rq;
858 }
859 EXPORT_SYMBOL(blk_get_request);
860 
861 /**
862  * blk_make_request - given a bio, allocate a corresponding struct request.
863  * @q: target request queue
864  * @bio:  The bio describing the memory mappings that will be submitted for IO.
865  *        It may be a chained-bio properly constructed by block/bio layer.
866  * @gfp_mask: gfp flags to be used for memory allocation
867  *
868  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
869  * type commands. Where the struct request needs to be farther initialized by
870  * the caller. It is passed a &struct bio, which describes the memory info of
871  * the I/O transfer.
872  *
873  * The caller of blk_make_request must make sure that bi_io_vec
874  * are set to describe the memory buffers. That bio_data_dir() will return
875  * the needed direction of the request. (And all bio's in the passed bio-chain
876  * are properly set accordingly)
877  *
878  * If called under none-sleepable conditions, mapped bio buffers must not
879  * need bouncing, by calling the appropriate masked or flagged allocator,
880  * suitable for the target device. Otherwise the call to blk_queue_bounce will
881  * BUG.
882  *
883  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
884  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
885  * anything but the first bio in the chain. Otherwise you risk waiting for IO
886  * completion of a bio that hasn't been submitted yet, thus resulting in a
887  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
888  * of bio_alloc(), as that avoids the mempool deadlock.
889  * If possible a big IO should be split into smaller parts when allocation
890  * fails. Partial allocation should not be an error, or you risk a live-lock.
891  */
892 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
893 				 gfp_t gfp_mask)
894 {
895 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
896 
897 	if (unlikely(!rq))
898 		return ERR_PTR(-ENOMEM);
899 
900 	for_each_bio(bio) {
901 		struct bio *bounce_bio = bio;
902 		int ret;
903 
904 		blk_queue_bounce(q, &bounce_bio);
905 		ret = blk_rq_append_bio(q, rq, bounce_bio);
906 		if (unlikely(ret)) {
907 			blk_put_request(rq);
908 			return ERR_PTR(ret);
909 		}
910 	}
911 
912 	return rq;
913 }
914 EXPORT_SYMBOL(blk_make_request);
915 
916 /**
917  * blk_requeue_request - put a request back on queue
918  * @q:		request queue where request should be inserted
919  * @rq:		request to be inserted
920  *
921  * Description:
922  *    Drivers often keep queueing requests until the hardware cannot accept
923  *    more, when that condition happens we need to put the request back
924  *    on the queue. Must be called with queue lock held.
925  */
926 void blk_requeue_request(struct request_queue *q, struct request *rq)
927 {
928 	blk_delete_timer(rq);
929 	blk_clear_rq_complete(rq);
930 	trace_block_rq_requeue(q, rq);
931 
932 	if (blk_rq_tagged(rq))
933 		blk_queue_end_tag(q, rq);
934 
935 	BUG_ON(blk_queued_rq(rq));
936 
937 	elv_requeue_request(q, rq);
938 }
939 EXPORT_SYMBOL(blk_requeue_request);
940 
941 static void add_acct_request(struct request_queue *q, struct request *rq,
942 			     int where)
943 {
944 	drive_stat_acct(rq, 1);
945 	__elv_add_request(q, rq, where);
946 }
947 
948 /**
949  * blk_insert_request - insert a special request into a request queue
950  * @q:		request queue where request should be inserted
951  * @rq:		request to be inserted
952  * @at_head:	insert request at head or tail of queue
953  * @data:	private data
954  *
955  * Description:
956  *    Many block devices need to execute commands asynchronously, so they don't
957  *    block the whole kernel from preemption during request execution.  This is
958  *    accomplished normally by inserting aritficial requests tagged as
959  *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
960  *    be scheduled for actual execution by the request queue.
961  *
962  *    We have the option of inserting the head or the tail of the queue.
963  *    Typically we use the tail for new ioctls and so forth.  We use the head
964  *    of the queue for things like a QUEUE_FULL message from a device, or a
965  *    host that is unable to accept a particular command.
966  */
967 void blk_insert_request(struct request_queue *q, struct request *rq,
968 			int at_head, void *data)
969 {
970 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
971 	unsigned long flags;
972 
973 	/*
974 	 * tell I/O scheduler that this isn't a regular read/write (ie it
975 	 * must not attempt merges on this) and that it acts as a soft
976 	 * barrier
977 	 */
978 	rq->cmd_type = REQ_TYPE_SPECIAL;
979 
980 	rq->special = data;
981 
982 	spin_lock_irqsave(q->queue_lock, flags);
983 
984 	/*
985 	 * If command is tagged, release the tag
986 	 */
987 	if (blk_rq_tagged(rq))
988 		blk_queue_end_tag(q, rq);
989 
990 	add_acct_request(q, rq, where);
991 	__blk_run_queue(q);
992 	spin_unlock_irqrestore(q->queue_lock, flags);
993 }
994 EXPORT_SYMBOL(blk_insert_request);
995 
996 static void part_round_stats_single(int cpu, struct hd_struct *part,
997 				    unsigned long now)
998 {
999 	if (now == part->stamp)
1000 		return;
1001 
1002 	if (part_in_flight(part)) {
1003 		__part_stat_add(cpu, part, time_in_queue,
1004 				part_in_flight(part) * (now - part->stamp));
1005 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1006 	}
1007 	part->stamp = now;
1008 }
1009 
1010 /**
1011  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1012  * @cpu: cpu number for stats access
1013  * @part: target partition
1014  *
1015  * The average IO queue length and utilisation statistics are maintained
1016  * by observing the current state of the queue length and the amount of
1017  * time it has been in this state for.
1018  *
1019  * Normally, that accounting is done on IO completion, but that can result
1020  * in more than a second's worth of IO being accounted for within any one
1021  * second, leading to >100% utilisation.  To deal with that, we call this
1022  * function to do a round-off before returning the results when reading
1023  * /proc/diskstats.  This accounts immediately for all queue usage up to
1024  * the current jiffies and restarts the counters again.
1025  */
1026 void part_round_stats(int cpu, struct hd_struct *part)
1027 {
1028 	unsigned long now = jiffies;
1029 
1030 	if (part->partno)
1031 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1032 	part_round_stats_single(cpu, part, now);
1033 }
1034 EXPORT_SYMBOL_GPL(part_round_stats);
1035 
1036 /*
1037  * queue lock must be held
1038  */
1039 void __blk_put_request(struct request_queue *q, struct request *req)
1040 {
1041 	if (unlikely(!q))
1042 		return;
1043 	if (unlikely(--req->ref_count))
1044 		return;
1045 
1046 	elv_completed_request(q, req);
1047 
1048 	/* this is a bio leak */
1049 	WARN_ON(req->bio != NULL);
1050 
1051 	/*
1052 	 * Request may not have originated from ll_rw_blk. if not,
1053 	 * it didn't come out of our reserved rq pools
1054 	 */
1055 	if (req->cmd_flags & REQ_ALLOCED) {
1056 		int is_sync = rq_is_sync(req) != 0;
1057 		int priv = req->cmd_flags & REQ_ELVPRIV;
1058 
1059 		BUG_ON(!list_empty(&req->queuelist));
1060 		BUG_ON(!hlist_unhashed(&req->hash));
1061 
1062 		blk_free_request(q, req);
1063 		freed_request(q, is_sync, priv);
1064 	}
1065 }
1066 EXPORT_SYMBOL_GPL(__blk_put_request);
1067 
1068 void blk_put_request(struct request *req)
1069 {
1070 	unsigned long flags;
1071 	struct request_queue *q = req->q;
1072 
1073 	spin_lock_irqsave(q->queue_lock, flags);
1074 	__blk_put_request(q, req);
1075 	spin_unlock_irqrestore(q->queue_lock, flags);
1076 }
1077 EXPORT_SYMBOL(blk_put_request);
1078 
1079 /**
1080  * blk_add_request_payload - add a payload to a request
1081  * @rq: request to update
1082  * @page: page backing the payload
1083  * @len: length of the payload.
1084  *
1085  * This allows to later add a payload to an already submitted request by
1086  * a block driver.  The driver needs to take care of freeing the payload
1087  * itself.
1088  *
1089  * Note that this is a quite horrible hack and nothing but handling of
1090  * discard requests should ever use it.
1091  */
1092 void blk_add_request_payload(struct request *rq, struct page *page,
1093 		unsigned int len)
1094 {
1095 	struct bio *bio = rq->bio;
1096 
1097 	bio->bi_io_vec->bv_page = page;
1098 	bio->bi_io_vec->bv_offset = 0;
1099 	bio->bi_io_vec->bv_len = len;
1100 
1101 	bio->bi_size = len;
1102 	bio->bi_vcnt = 1;
1103 	bio->bi_phys_segments = 1;
1104 
1105 	rq->__data_len = rq->resid_len = len;
1106 	rq->nr_phys_segments = 1;
1107 	rq->buffer = bio_data(bio);
1108 }
1109 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1110 
1111 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1112 				   struct bio *bio)
1113 {
1114 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1115 
1116 	if (!ll_back_merge_fn(q, req, bio))
1117 		return false;
1118 
1119 	trace_block_bio_backmerge(q, bio);
1120 
1121 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1122 		blk_rq_set_mixed_merge(req);
1123 
1124 	req->biotail->bi_next = bio;
1125 	req->biotail = bio;
1126 	req->__data_len += bio->bi_size;
1127 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1128 
1129 	drive_stat_acct(req, 0);
1130 	elv_bio_merged(q, req, bio);
1131 	return true;
1132 }
1133 
1134 static bool bio_attempt_front_merge(struct request_queue *q,
1135 				    struct request *req, struct bio *bio)
1136 {
1137 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1138 
1139 	if (!ll_front_merge_fn(q, req, bio))
1140 		return false;
1141 
1142 	trace_block_bio_frontmerge(q, bio);
1143 
1144 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1145 		blk_rq_set_mixed_merge(req);
1146 
1147 	bio->bi_next = req->bio;
1148 	req->bio = bio;
1149 
1150 	/*
1151 	 * may not be valid. if the low level driver said
1152 	 * it didn't need a bounce buffer then it better
1153 	 * not touch req->buffer either...
1154 	 */
1155 	req->buffer = bio_data(bio);
1156 	req->__sector = bio->bi_sector;
1157 	req->__data_len += bio->bi_size;
1158 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1159 
1160 	drive_stat_acct(req, 0);
1161 	elv_bio_merged(q, req, bio);
1162 	return true;
1163 }
1164 
1165 /*
1166  * Attempts to merge with the plugged list in the current process. Returns
1167  * true if merge was successful, otherwise false.
1168  */
1169 static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1170 			       struct bio *bio, unsigned int *request_count)
1171 {
1172 	struct blk_plug *plug;
1173 	struct request *rq;
1174 	bool ret = false;
1175 
1176 	plug = tsk->plug;
1177 	if (!plug)
1178 		goto out;
1179 	*request_count = 0;
1180 
1181 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1182 		int el_ret;
1183 
1184 		(*request_count)++;
1185 
1186 		if (rq->q != q)
1187 			continue;
1188 
1189 		el_ret = elv_try_merge(rq, bio);
1190 		if (el_ret == ELEVATOR_BACK_MERGE) {
1191 			ret = bio_attempt_back_merge(q, rq, bio);
1192 			if (ret)
1193 				break;
1194 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1195 			ret = bio_attempt_front_merge(q, rq, bio);
1196 			if (ret)
1197 				break;
1198 		}
1199 	}
1200 out:
1201 	return ret;
1202 }
1203 
1204 void init_request_from_bio(struct request *req, struct bio *bio)
1205 {
1206 	req->cpu = bio->bi_comp_cpu;
1207 	req->cmd_type = REQ_TYPE_FS;
1208 
1209 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1210 	if (bio->bi_rw & REQ_RAHEAD)
1211 		req->cmd_flags |= REQ_FAILFAST_MASK;
1212 
1213 	req->errors = 0;
1214 	req->__sector = bio->bi_sector;
1215 	req->ioprio = bio_prio(bio);
1216 	blk_rq_bio_prep(req->q, req, bio);
1217 }
1218 
1219 static int __make_request(struct request_queue *q, struct bio *bio)
1220 {
1221 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1222 	struct blk_plug *plug;
1223 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1224 	struct request *req;
1225 	unsigned int request_count = 0;
1226 
1227 	/*
1228 	 * low level driver can indicate that it wants pages above a
1229 	 * certain limit bounced to low memory (ie for highmem, or even
1230 	 * ISA dma in theory)
1231 	 */
1232 	blk_queue_bounce(q, &bio);
1233 
1234 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1235 		spin_lock_irq(q->queue_lock);
1236 		where = ELEVATOR_INSERT_FLUSH;
1237 		goto get_rq;
1238 	}
1239 
1240 	/*
1241 	 * Check if we can merge with the plugged list before grabbing
1242 	 * any locks.
1243 	 */
1244 	if (attempt_plug_merge(current, q, bio, &request_count))
1245 		goto out;
1246 
1247 	spin_lock_irq(q->queue_lock);
1248 
1249 	el_ret = elv_merge(q, &req, bio);
1250 	if (el_ret == ELEVATOR_BACK_MERGE) {
1251 		if (bio_attempt_back_merge(q, req, bio)) {
1252 			if (!attempt_back_merge(q, req))
1253 				elv_merged_request(q, req, el_ret);
1254 			goto out_unlock;
1255 		}
1256 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1257 		if (bio_attempt_front_merge(q, req, bio)) {
1258 			if (!attempt_front_merge(q, req))
1259 				elv_merged_request(q, req, el_ret);
1260 			goto out_unlock;
1261 		}
1262 	}
1263 
1264 get_rq:
1265 	/*
1266 	 * This sync check and mask will be re-done in init_request_from_bio(),
1267 	 * but we need to set it earlier to expose the sync flag to the
1268 	 * rq allocator and io schedulers.
1269 	 */
1270 	rw_flags = bio_data_dir(bio);
1271 	if (sync)
1272 		rw_flags |= REQ_SYNC;
1273 
1274 	/*
1275 	 * Grab a free request. This is might sleep but can not fail.
1276 	 * Returns with the queue unlocked.
1277 	 */
1278 	req = get_request_wait(q, rw_flags, bio);
1279 
1280 	/*
1281 	 * After dropping the lock and possibly sleeping here, our request
1282 	 * may now be mergeable after it had proven unmergeable (above).
1283 	 * We don't worry about that case for efficiency. It won't happen
1284 	 * often, and the elevators are able to handle it.
1285 	 */
1286 	init_request_from_bio(req, bio);
1287 
1288 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1289 	    bio_flagged(bio, BIO_CPU_AFFINE))
1290 		req->cpu = raw_smp_processor_id();
1291 
1292 	plug = current->plug;
1293 	if (plug) {
1294 		/*
1295 		 * If this is the first request added after a plug, fire
1296 		 * of a plug trace. If others have been added before, check
1297 		 * if we have multiple devices in this plug. If so, make a
1298 		 * note to sort the list before dispatch.
1299 		 */
1300 		if (list_empty(&plug->list))
1301 			trace_block_plug(q);
1302 		else if (!plug->should_sort) {
1303 			struct request *__rq;
1304 
1305 			__rq = list_entry_rq(plug->list.prev);
1306 			if (__rq->q != q)
1307 				plug->should_sort = 1;
1308 		}
1309 		if (request_count >= BLK_MAX_REQUEST_COUNT)
1310 			blk_flush_plug_list(plug, false);
1311 		list_add_tail(&req->queuelist, &plug->list);
1312 		drive_stat_acct(req, 1);
1313 	} else {
1314 		spin_lock_irq(q->queue_lock);
1315 		add_acct_request(q, req, where);
1316 		__blk_run_queue(q);
1317 out_unlock:
1318 		spin_unlock_irq(q->queue_lock);
1319 	}
1320 out:
1321 	return 0;
1322 }
1323 
1324 /*
1325  * If bio->bi_dev is a partition, remap the location
1326  */
1327 static inline void blk_partition_remap(struct bio *bio)
1328 {
1329 	struct block_device *bdev = bio->bi_bdev;
1330 
1331 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1332 		struct hd_struct *p = bdev->bd_part;
1333 
1334 		bio->bi_sector += p->start_sect;
1335 		bio->bi_bdev = bdev->bd_contains;
1336 
1337 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1338 				      bdev->bd_dev,
1339 				      bio->bi_sector - p->start_sect);
1340 	}
1341 }
1342 
1343 static void handle_bad_sector(struct bio *bio)
1344 {
1345 	char b[BDEVNAME_SIZE];
1346 
1347 	printk(KERN_INFO "attempt to access beyond end of device\n");
1348 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1349 			bdevname(bio->bi_bdev, b),
1350 			bio->bi_rw,
1351 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1352 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1353 
1354 	set_bit(BIO_EOF, &bio->bi_flags);
1355 }
1356 
1357 #ifdef CONFIG_FAIL_MAKE_REQUEST
1358 
1359 static DECLARE_FAULT_ATTR(fail_make_request);
1360 
1361 static int __init setup_fail_make_request(char *str)
1362 {
1363 	return setup_fault_attr(&fail_make_request, str);
1364 }
1365 __setup("fail_make_request=", setup_fail_make_request);
1366 
1367 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1368 {
1369 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1370 }
1371 
1372 static int __init fail_make_request_debugfs(void)
1373 {
1374 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1375 						NULL, &fail_make_request);
1376 
1377 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1378 }
1379 
1380 late_initcall(fail_make_request_debugfs);
1381 
1382 #else /* CONFIG_FAIL_MAKE_REQUEST */
1383 
1384 static inline bool should_fail_request(struct hd_struct *part,
1385 					unsigned int bytes)
1386 {
1387 	return false;
1388 }
1389 
1390 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1391 
1392 /*
1393  * Check whether this bio extends beyond the end of the device.
1394  */
1395 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1396 {
1397 	sector_t maxsector;
1398 
1399 	if (!nr_sectors)
1400 		return 0;
1401 
1402 	/* Test device or partition size, when known. */
1403 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1404 	if (maxsector) {
1405 		sector_t sector = bio->bi_sector;
1406 
1407 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1408 			/*
1409 			 * This may well happen - the kernel calls bread()
1410 			 * without checking the size of the device, e.g., when
1411 			 * mounting a device.
1412 			 */
1413 			handle_bad_sector(bio);
1414 			return 1;
1415 		}
1416 	}
1417 
1418 	return 0;
1419 }
1420 
1421 /**
1422  * generic_make_request - hand a buffer to its device driver for I/O
1423  * @bio:  The bio describing the location in memory and on the device.
1424  *
1425  * generic_make_request() is used to make I/O requests of block
1426  * devices. It is passed a &struct bio, which describes the I/O that needs
1427  * to be done.
1428  *
1429  * generic_make_request() does not return any status.  The
1430  * success/failure status of the request, along with notification of
1431  * completion, is delivered asynchronously through the bio->bi_end_io
1432  * function described (one day) else where.
1433  *
1434  * The caller of generic_make_request must make sure that bi_io_vec
1435  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1436  * set to describe the device address, and the
1437  * bi_end_io and optionally bi_private are set to describe how
1438  * completion notification should be signaled.
1439  *
1440  * generic_make_request and the drivers it calls may use bi_next if this
1441  * bio happens to be merged with someone else, and may change bi_dev and
1442  * bi_sector for remaps as it sees fit.  So the values of these fields
1443  * should NOT be depended on after the call to generic_make_request.
1444  */
1445 static inline void __generic_make_request(struct bio *bio)
1446 {
1447 	struct request_queue *q;
1448 	sector_t old_sector;
1449 	int ret, nr_sectors = bio_sectors(bio);
1450 	dev_t old_dev;
1451 	int err = -EIO;
1452 
1453 	might_sleep();
1454 
1455 	if (bio_check_eod(bio, nr_sectors))
1456 		goto end_io;
1457 
1458 	/*
1459 	 * Resolve the mapping until finished. (drivers are
1460 	 * still free to implement/resolve their own stacking
1461 	 * by explicitly returning 0)
1462 	 *
1463 	 * NOTE: we don't repeat the blk_size check for each new device.
1464 	 * Stacking drivers are expected to know what they are doing.
1465 	 */
1466 	old_sector = -1;
1467 	old_dev = 0;
1468 	do {
1469 		char b[BDEVNAME_SIZE];
1470 		struct hd_struct *part;
1471 
1472 		q = bdev_get_queue(bio->bi_bdev);
1473 		if (unlikely(!q)) {
1474 			printk(KERN_ERR
1475 			       "generic_make_request: Trying to access "
1476 				"nonexistent block-device %s (%Lu)\n",
1477 				bdevname(bio->bi_bdev, b),
1478 				(long long) bio->bi_sector);
1479 			goto end_io;
1480 		}
1481 
1482 		if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1483 			     nr_sectors > queue_max_hw_sectors(q))) {
1484 			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1485 			       bdevname(bio->bi_bdev, b),
1486 			       bio_sectors(bio),
1487 			       queue_max_hw_sectors(q));
1488 			goto end_io;
1489 		}
1490 
1491 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1492 			goto end_io;
1493 
1494 		part = bio->bi_bdev->bd_part;
1495 		if (should_fail_request(part, bio->bi_size) ||
1496 		    should_fail_request(&part_to_disk(part)->part0,
1497 					bio->bi_size))
1498 			goto end_io;
1499 
1500 		/*
1501 		 * If this device has partitions, remap block n
1502 		 * of partition p to block n+start(p) of the disk.
1503 		 */
1504 		blk_partition_remap(bio);
1505 
1506 		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1507 			goto end_io;
1508 
1509 		if (old_sector != -1)
1510 			trace_block_bio_remap(q, bio, old_dev, old_sector);
1511 
1512 		old_sector = bio->bi_sector;
1513 		old_dev = bio->bi_bdev->bd_dev;
1514 
1515 		if (bio_check_eod(bio, nr_sectors))
1516 			goto end_io;
1517 
1518 		/*
1519 		 * Filter flush bio's early so that make_request based
1520 		 * drivers without flush support don't have to worry
1521 		 * about them.
1522 		 */
1523 		if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1524 			bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1525 			if (!nr_sectors) {
1526 				err = 0;
1527 				goto end_io;
1528 			}
1529 		}
1530 
1531 		if ((bio->bi_rw & REQ_DISCARD) &&
1532 		    (!blk_queue_discard(q) ||
1533 		     ((bio->bi_rw & REQ_SECURE) &&
1534 		      !blk_queue_secdiscard(q)))) {
1535 			err = -EOPNOTSUPP;
1536 			goto end_io;
1537 		}
1538 
1539 		if (blk_throtl_bio(q, &bio))
1540 			goto end_io;
1541 
1542 		/*
1543 		 * If bio = NULL, bio has been throttled and will be submitted
1544 		 * later.
1545 		 */
1546 		if (!bio)
1547 			break;
1548 
1549 		trace_block_bio_queue(q, bio);
1550 
1551 		ret = q->make_request_fn(q, bio);
1552 	} while (ret);
1553 
1554 	return;
1555 
1556 end_io:
1557 	bio_endio(bio, err);
1558 }
1559 
1560 /*
1561  * We only want one ->make_request_fn to be active at a time,
1562  * else stack usage with stacked devices could be a problem.
1563  * So use current->bio_list to keep a list of requests
1564  * submited by a make_request_fn function.
1565  * current->bio_list is also used as a flag to say if
1566  * generic_make_request is currently active in this task or not.
1567  * If it is NULL, then no make_request is active.  If it is non-NULL,
1568  * then a make_request is active, and new requests should be added
1569  * at the tail
1570  */
1571 void generic_make_request(struct bio *bio)
1572 {
1573 	struct bio_list bio_list_on_stack;
1574 
1575 	if (current->bio_list) {
1576 		/* make_request is active */
1577 		bio_list_add(current->bio_list, bio);
1578 		return;
1579 	}
1580 	/* following loop may be a bit non-obvious, and so deserves some
1581 	 * explanation.
1582 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1583 	 * ensure that) so we have a list with a single bio.
1584 	 * We pretend that we have just taken it off a longer list, so
1585 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1586 	 * thus initialising the bio_list of new bios to be
1587 	 * added.  __generic_make_request may indeed add some more bios
1588 	 * through a recursive call to generic_make_request.  If it
1589 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1590 	 * from the top.  In this case we really did just take the bio
1591 	 * of the top of the list (no pretending) and so remove it from
1592 	 * bio_list, and call into __generic_make_request again.
1593 	 *
1594 	 * The loop was structured like this to make only one call to
1595 	 * __generic_make_request (which is important as it is large and
1596 	 * inlined) and to keep the structure simple.
1597 	 */
1598 	BUG_ON(bio->bi_next);
1599 	bio_list_init(&bio_list_on_stack);
1600 	current->bio_list = &bio_list_on_stack;
1601 	do {
1602 		__generic_make_request(bio);
1603 		bio = bio_list_pop(current->bio_list);
1604 	} while (bio);
1605 	current->bio_list = NULL; /* deactivate */
1606 }
1607 EXPORT_SYMBOL(generic_make_request);
1608 
1609 /**
1610  * submit_bio - submit a bio to the block device layer for I/O
1611  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1612  * @bio: The &struct bio which describes the I/O
1613  *
1614  * submit_bio() is very similar in purpose to generic_make_request(), and
1615  * uses that function to do most of the work. Both are fairly rough
1616  * interfaces; @bio must be presetup and ready for I/O.
1617  *
1618  */
1619 void submit_bio(int rw, struct bio *bio)
1620 {
1621 	int count = bio_sectors(bio);
1622 
1623 	bio->bi_rw |= rw;
1624 
1625 	/*
1626 	 * If it's a regular read/write or a barrier with data attached,
1627 	 * go through the normal accounting stuff before submission.
1628 	 */
1629 	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1630 		if (rw & WRITE) {
1631 			count_vm_events(PGPGOUT, count);
1632 		} else {
1633 			task_io_account_read(bio->bi_size);
1634 			count_vm_events(PGPGIN, count);
1635 		}
1636 
1637 		if (unlikely(block_dump)) {
1638 			char b[BDEVNAME_SIZE];
1639 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1640 			current->comm, task_pid_nr(current),
1641 				(rw & WRITE) ? "WRITE" : "READ",
1642 				(unsigned long long)bio->bi_sector,
1643 				bdevname(bio->bi_bdev, b),
1644 				count);
1645 		}
1646 	}
1647 
1648 	generic_make_request(bio);
1649 }
1650 EXPORT_SYMBOL(submit_bio);
1651 
1652 /**
1653  * blk_rq_check_limits - Helper function to check a request for the queue limit
1654  * @q:  the queue
1655  * @rq: the request being checked
1656  *
1657  * Description:
1658  *    @rq may have been made based on weaker limitations of upper-level queues
1659  *    in request stacking drivers, and it may violate the limitation of @q.
1660  *    Since the block layer and the underlying device driver trust @rq
1661  *    after it is inserted to @q, it should be checked against @q before
1662  *    the insertion using this generic function.
1663  *
1664  *    This function should also be useful for request stacking drivers
1665  *    in some cases below, so export this function.
1666  *    Request stacking drivers like request-based dm may change the queue
1667  *    limits while requests are in the queue (e.g. dm's table swapping).
1668  *    Such request stacking drivers should check those requests agaist
1669  *    the new queue limits again when they dispatch those requests,
1670  *    although such checkings are also done against the old queue limits
1671  *    when submitting requests.
1672  */
1673 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1674 {
1675 	if (rq->cmd_flags & REQ_DISCARD)
1676 		return 0;
1677 
1678 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1679 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1680 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1681 		return -EIO;
1682 	}
1683 
1684 	/*
1685 	 * queue's settings related to segment counting like q->bounce_pfn
1686 	 * may differ from that of other stacking queues.
1687 	 * Recalculate it to check the request correctly on this queue's
1688 	 * limitation.
1689 	 */
1690 	blk_recalc_rq_segments(rq);
1691 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1692 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1693 		return -EIO;
1694 	}
1695 
1696 	return 0;
1697 }
1698 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1699 
1700 /**
1701  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1702  * @q:  the queue to submit the request
1703  * @rq: the request being queued
1704  */
1705 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1706 {
1707 	unsigned long flags;
1708 	int where = ELEVATOR_INSERT_BACK;
1709 
1710 	if (blk_rq_check_limits(q, rq))
1711 		return -EIO;
1712 
1713 	if (rq->rq_disk &&
1714 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1715 		return -EIO;
1716 
1717 	spin_lock_irqsave(q->queue_lock, flags);
1718 
1719 	/*
1720 	 * Submitting request must be dequeued before calling this function
1721 	 * because it will be linked to another request_queue
1722 	 */
1723 	BUG_ON(blk_queued_rq(rq));
1724 
1725 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1726 		where = ELEVATOR_INSERT_FLUSH;
1727 
1728 	add_acct_request(q, rq, where);
1729 	spin_unlock_irqrestore(q->queue_lock, flags);
1730 
1731 	return 0;
1732 }
1733 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1734 
1735 /**
1736  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1737  * @rq: request to examine
1738  *
1739  * Description:
1740  *     A request could be merge of IOs which require different failure
1741  *     handling.  This function determines the number of bytes which
1742  *     can be failed from the beginning of the request without
1743  *     crossing into area which need to be retried further.
1744  *
1745  * Return:
1746  *     The number of bytes to fail.
1747  *
1748  * Context:
1749  *     queue_lock must be held.
1750  */
1751 unsigned int blk_rq_err_bytes(const struct request *rq)
1752 {
1753 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1754 	unsigned int bytes = 0;
1755 	struct bio *bio;
1756 
1757 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1758 		return blk_rq_bytes(rq);
1759 
1760 	/*
1761 	 * Currently the only 'mixing' which can happen is between
1762 	 * different fastfail types.  We can safely fail portions
1763 	 * which have all the failfast bits that the first one has -
1764 	 * the ones which are at least as eager to fail as the first
1765 	 * one.
1766 	 */
1767 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1768 		if ((bio->bi_rw & ff) != ff)
1769 			break;
1770 		bytes += bio->bi_size;
1771 	}
1772 
1773 	/* this could lead to infinite loop */
1774 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1775 	return bytes;
1776 }
1777 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1778 
1779 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1780 {
1781 	if (blk_do_io_stat(req)) {
1782 		const int rw = rq_data_dir(req);
1783 		struct hd_struct *part;
1784 		int cpu;
1785 
1786 		cpu = part_stat_lock();
1787 		part = req->part;
1788 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1789 		part_stat_unlock();
1790 	}
1791 }
1792 
1793 static void blk_account_io_done(struct request *req)
1794 {
1795 	/*
1796 	 * Account IO completion.  flush_rq isn't accounted as a
1797 	 * normal IO on queueing nor completion.  Accounting the
1798 	 * containing request is enough.
1799 	 */
1800 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1801 		unsigned long duration = jiffies - req->start_time;
1802 		const int rw = rq_data_dir(req);
1803 		struct hd_struct *part;
1804 		int cpu;
1805 
1806 		cpu = part_stat_lock();
1807 		part = req->part;
1808 
1809 		part_stat_inc(cpu, part, ios[rw]);
1810 		part_stat_add(cpu, part, ticks[rw], duration);
1811 		part_round_stats(cpu, part);
1812 		part_dec_in_flight(part, rw);
1813 
1814 		hd_struct_put(part);
1815 		part_stat_unlock();
1816 	}
1817 }
1818 
1819 /**
1820  * blk_peek_request - peek at the top of a request queue
1821  * @q: request queue to peek at
1822  *
1823  * Description:
1824  *     Return the request at the top of @q.  The returned request
1825  *     should be started using blk_start_request() before LLD starts
1826  *     processing it.
1827  *
1828  * Return:
1829  *     Pointer to the request at the top of @q if available.  Null
1830  *     otherwise.
1831  *
1832  * Context:
1833  *     queue_lock must be held.
1834  */
1835 struct request *blk_peek_request(struct request_queue *q)
1836 {
1837 	struct request *rq;
1838 	int ret;
1839 
1840 	while ((rq = __elv_next_request(q)) != NULL) {
1841 		if (!(rq->cmd_flags & REQ_STARTED)) {
1842 			/*
1843 			 * This is the first time the device driver
1844 			 * sees this request (possibly after
1845 			 * requeueing).  Notify IO scheduler.
1846 			 */
1847 			if (rq->cmd_flags & REQ_SORTED)
1848 				elv_activate_rq(q, rq);
1849 
1850 			/*
1851 			 * just mark as started even if we don't start
1852 			 * it, a request that has been delayed should
1853 			 * not be passed by new incoming requests
1854 			 */
1855 			rq->cmd_flags |= REQ_STARTED;
1856 			trace_block_rq_issue(q, rq);
1857 		}
1858 
1859 		if (!q->boundary_rq || q->boundary_rq == rq) {
1860 			q->end_sector = rq_end_sector(rq);
1861 			q->boundary_rq = NULL;
1862 		}
1863 
1864 		if (rq->cmd_flags & REQ_DONTPREP)
1865 			break;
1866 
1867 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1868 			/*
1869 			 * make sure space for the drain appears we
1870 			 * know we can do this because max_hw_segments
1871 			 * has been adjusted to be one fewer than the
1872 			 * device can handle
1873 			 */
1874 			rq->nr_phys_segments++;
1875 		}
1876 
1877 		if (!q->prep_rq_fn)
1878 			break;
1879 
1880 		ret = q->prep_rq_fn(q, rq);
1881 		if (ret == BLKPREP_OK) {
1882 			break;
1883 		} else if (ret == BLKPREP_DEFER) {
1884 			/*
1885 			 * the request may have been (partially) prepped.
1886 			 * we need to keep this request in the front to
1887 			 * avoid resource deadlock.  REQ_STARTED will
1888 			 * prevent other fs requests from passing this one.
1889 			 */
1890 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1891 			    !(rq->cmd_flags & REQ_DONTPREP)) {
1892 				/*
1893 				 * remove the space for the drain we added
1894 				 * so that we don't add it again
1895 				 */
1896 				--rq->nr_phys_segments;
1897 			}
1898 
1899 			rq = NULL;
1900 			break;
1901 		} else if (ret == BLKPREP_KILL) {
1902 			rq->cmd_flags |= REQ_QUIET;
1903 			/*
1904 			 * Mark this request as started so we don't trigger
1905 			 * any debug logic in the end I/O path.
1906 			 */
1907 			blk_start_request(rq);
1908 			__blk_end_request_all(rq, -EIO);
1909 		} else {
1910 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1911 			break;
1912 		}
1913 	}
1914 
1915 	return rq;
1916 }
1917 EXPORT_SYMBOL(blk_peek_request);
1918 
1919 void blk_dequeue_request(struct request *rq)
1920 {
1921 	struct request_queue *q = rq->q;
1922 
1923 	BUG_ON(list_empty(&rq->queuelist));
1924 	BUG_ON(ELV_ON_HASH(rq));
1925 
1926 	list_del_init(&rq->queuelist);
1927 
1928 	/*
1929 	 * the time frame between a request being removed from the lists
1930 	 * and to it is freed is accounted as io that is in progress at
1931 	 * the driver side.
1932 	 */
1933 	if (blk_account_rq(rq)) {
1934 		q->in_flight[rq_is_sync(rq)]++;
1935 		set_io_start_time_ns(rq);
1936 	}
1937 }
1938 
1939 /**
1940  * blk_start_request - start request processing on the driver
1941  * @req: request to dequeue
1942  *
1943  * Description:
1944  *     Dequeue @req and start timeout timer on it.  This hands off the
1945  *     request to the driver.
1946  *
1947  *     Block internal functions which don't want to start timer should
1948  *     call blk_dequeue_request().
1949  *
1950  * Context:
1951  *     queue_lock must be held.
1952  */
1953 void blk_start_request(struct request *req)
1954 {
1955 	blk_dequeue_request(req);
1956 
1957 	/*
1958 	 * We are now handing the request to the hardware, initialize
1959 	 * resid_len to full count and add the timeout handler.
1960 	 */
1961 	req->resid_len = blk_rq_bytes(req);
1962 	if (unlikely(blk_bidi_rq(req)))
1963 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1964 
1965 	blk_add_timer(req);
1966 }
1967 EXPORT_SYMBOL(blk_start_request);
1968 
1969 /**
1970  * blk_fetch_request - fetch a request from a request queue
1971  * @q: request queue to fetch a request from
1972  *
1973  * Description:
1974  *     Return the request at the top of @q.  The request is started on
1975  *     return and LLD can start processing it immediately.
1976  *
1977  * Return:
1978  *     Pointer to the request at the top of @q if available.  Null
1979  *     otherwise.
1980  *
1981  * Context:
1982  *     queue_lock must be held.
1983  */
1984 struct request *blk_fetch_request(struct request_queue *q)
1985 {
1986 	struct request *rq;
1987 
1988 	rq = blk_peek_request(q);
1989 	if (rq)
1990 		blk_start_request(rq);
1991 	return rq;
1992 }
1993 EXPORT_SYMBOL(blk_fetch_request);
1994 
1995 /**
1996  * blk_update_request - Special helper function for request stacking drivers
1997  * @req:      the request being processed
1998  * @error:    %0 for success, < %0 for error
1999  * @nr_bytes: number of bytes to complete @req
2000  *
2001  * Description:
2002  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2003  *     the request structure even if @req doesn't have leftover.
2004  *     If @req has leftover, sets it up for the next range of segments.
2005  *
2006  *     This special helper function is only for request stacking drivers
2007  *     (e.g. request-based dm) so that they can handle partial completion.
2008  *     Actual device drivers should use blk_end_request instead.
2009  *
2010  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2011  *     %false return from this function.
2012  *
2013  * Return:
2014  *     %false - this request doesn't have any more data
2015  *     %true  - this request has more data
2016  **/
2017 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2018 {
2019 	int total_bytes, bio_nbytes, next_idx = 0;
2020 	struct bio *bio;
2021 
2022 	if (!req->bio)
2023 		return false;
2024 
2025 	trace_block_rq_complete(req->q, req);
2026 
2027 	/*
2028 	 * For fs requests, rq is just carrier of independent bio's
2029 	 * and each partial completion should be handled separately.
2030 	 * Reset per-request error on each partial completion.
2031 	 *
2032 	 * TODO: tj: This is too subtle.  It would be better to let
2033 	 * low level drivers do what they see fit.
2034 	 */
2035 	if (req->cmd_type == REQ_TYPE_FS)
2036 		req->errors = 0;
2037 
2038 	if (error && req->cmd_type == REQ_TYPE_FS &&
2039 	    !(req->cmd_flags & REQ_QUIET)) {
2040 		char *error_type;
2041 
2042 		switch (error) {
2043 		case -ENOLINK:
2044 			error_type = "recoverable transport";
2045 			break;
2046 		case -EREMOTEIO:
2047 			error_type = "critical target";
2048 			break;
2049 		case -EBADE:
2050 			error_type = "critical nexus";
2051 			break;
2052 		case -EIO:
2053 		default:
2054 			error_type = "I/O";
2055 			break;
2056 		}
2057 		printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2058 		       error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2059 		       (unsigned long long)blk_rq_pos(req));
2060 	}
2061 
2062 	blk_account_io_completion(req, nr_bytes);
2063 
2064 	total_bytes = bio_nbytes = 0;
2065 	while ((bio = req->bio) != NULL) {
2066 		int nbytes;
2067 
2068 		if (nr_bytes >= bio->bi_size) {
2069 			req->bio = bio->bi_next;
2070 			nbytes = bio->bi_size;
2071 			req_bio_endio(req, bio, nbytes, error);
2072 			next_idx = 0;
2073 			bio_nbytes = 0;
2074 		} else {
2075 			int idx = bio->bi_idx + next_idx;
2076 
2077 			if (unlikely(idx >= bio->bi_vcnt)) {
2078 				blk_dump_rq_flags(req, "__end_that");
2079 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2080 				       __func__, idx, bio->bi_vcnt);
2081 				break;
2082 			}
2083 
2084 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2085 			BIO_BUG_ON(nbytes > bio->bi_size);
2086 
2087 			/*
2088 			 * not a complete bvec done
2089 			 */
2090 			if (unlikely(nbytes > nr_bytes)) {
2091 				bio_nbytes += nr_bytes;
2092 				total_bytes += nr_bytes;
2093 				break;
2094 			}
2095 
2096 			/*
2097 			 * advance to the next vector
2098 			 */
2099 			next_idx++;
2100 			bio_nbytes += nbytes;
2101 		}
2102 
2103 		total_bytes += nbytes;
2104 		nr_bytes -= nbytes;
2105 
2106 		bio = req->bio;
2107 		if (bio) {
2108 			/*
2109 			 * end more in this run, or just return 'not-done'
2110 			 */
2111 			if (unlikely(nr_bytes <= 0))
2112 				break;
2113 		}
2114 	}
2115 
2116 	/*
2117 	 * completely done
2118 	 */
2119 	if (!req->bio) {
2120 		/*
2121 		 * Reset counters so that the request stacking driver
2122 		 * can find how many bytes remain in the request
2123 		 * later.
2124 		 */
2125 		req->__data_len = 0;
2126 		return false;
2127 	}
2128 
2129 	/*
2130 	 * if the request wasn't completed, update state
2131 	 */
2132 	if (bio_nbytes) {
2133 		req_bio_endio(req, bio, bio_nbytes, error);
2134 		bio->bi_idx += next_idx;
2135 		bio_iovec(bio)->bv_offset += nr_bytes;
2136 		bio_iovec(bio)->bv_len -= nr_bytes;
2137 	}
2138 
2139 	req->__data_len -= total_bytes;
2140 	req->buffer = bio_data(req->bio);
2141 
2142 	/* update sector only for requests with clear definition of sector */
2143 	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2144 		req->__sector += total_bytes >> 9;
2145 
2146 	/* mixed attributes always follow the first bio */
2147 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2148 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2149 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2150 	}
2151 
2152 	/*
2153 	 * If total number of sectors is less than the first segment
2154 	 * size, something has gone terribly wrong.
2155 	 */
2156 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2157 		blk_dump_rq_flags(req, "request botched");
2158 		req->__data_len = blk_rq_cur_bytes(req);
2159 	}
2160 
2161 	/* recalculate the number of segments */
2162 	blk_recalc_rq_segments(req);
2163 
2164 	return true;
2165 }
2166 EXPORT_SYMBOL_GPL(blk_update_request);
2167 
2168 static bool blk_update_bidi_request(struct request *rq, int error,
2169 				    unsigned int nr_bytes,
2170 				    unsigned int bidi_bytes)
2171 {
2172 	if (blk_update_request(rq, error, nr_bytes))
2173 		return true;
2174 
2175 	/* Bidi request must be completed as a whole */
2176 	if (unlikely(blk_bidi_rq(rq)) &&
2177 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2178 		return true;
2179 
2180 	if (blk_queue_add_random(rq->q))
2181 		add_disk_randomness(rq->rq_disk);
2182 
2183 	return false;
2184 }
2185 
2186 /**
2187  * blk_unprep_request - unprepare a request
2188  * @req:	the request
2189  *
2190  * This function makes a request ready for complete resubmission (or
2191  * completion).  It happens only after all error handling is complete,
2192  * so represents the appropriate moment to deallocate any resources
2193  * that were allocated to the request in the prep_rq_fn.  The queue
2194  * lock is held when calling this.
2195  */
2196 void blk_unprep_request(struct request *req)
2197 {
2198 	struct request_queue *q = req->q;
2199 
2200 	req->cmd_flags &= ~REQ_DONTPREP;
2201 	if (q->unprep_rq_fn)
2202 		q->unprep_rq_fn(q, req);
2203 }
2204 EXPORT_SYMBOL_GPL(blk_unprep_request);
2205 
2206 /*
2207  * queue lock must be held
2208  */
2209 static void blk_finish_request(struct request *req, int error)
2210 {
2211 	if (blk_rq_tagged(req))
2212 		blk_queue_end_tag(req->q, req);
2213 
2214 	BUG_ON(blk_queued_rq(req));
2215 
2216 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2217 		laptop_io_completion(&req->q->backing_dev_info);
2218 
2219 	blk_delete_timer(req);
2220 
2221 	if (req->cmd_flags & REQ_DONTPREP)
2222 		blk_unprep_request(req);
2223 
2224 
2225 	blk_account_io_done(req);
2226 
2227 	if (req->end_io)
2228 		req->end_io(req, error);
2229 	else {
2230 		if (blk_bidi_rq(req))
2231 			__blk_put_request(req->next_rq->q, req->next_rq);
2232 
2233 		__blk_put_request(req->q, req);
2234 	}
2235 }
2236 
2237 /**
2238  * blk_end_bidi_request - Complete a bidi request
2239  * @rq:         the request to complete
2240  * @error:      %0 for success, < %0 for error
2241  * @nr_bytes:   number of bytes to complete @rq
2242  * @bidi_bytes: number of bytes to complete @rq->next_rq
2243  *
2244  * Description:
2245  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2246  *     Drivers that supports bidi can safely call this member for any
2247  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2248  *     just ignored.
2249  *
2250  * Return:
2251  *     %false - we are done with this request
2252  *     %true  - still buffers pending for this request
2253  **/
2254 static bool blk_end_bidi_request(struct request *rq, int error,
2255 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2256 {
2257 	struct request_queue *q = rq->q;
2258 	unsigned long flags;
2259 
2260 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2261 		return true;
2262 
2263 	spin_lock_irqsave(q->queue_lock, flags);
2264 	blk_finish_request(rq, error);
2265 	spin_unlock_irqrestore(q->queue_lock, flags);
2266 
2267 	return false;
2268 }
2269 
2270 /**
2271  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2272  * @rq:         the request to complete
2273  * @error:      %0 for success, < %0 for error
2274  * @nr_bytes:   number of bytes to complete @rq
2275  * @bidi_bytes: number of bytes to complete @rq->next_rq
2276  *
2277  * Description:
2278  *     Identical to blk_end_bidi_request() except that queue lock is
2279  *     assumed to be locked on entry and remains so on return.
2280  *
2281  * Return:
2282  *     %false - we are done with this request
2283  *     %true  - still buffers pending for this request
2284  **/
2285 bool __blk_end_bidi_request(struct request *rq, int error,
2286 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2287 {
2288 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2289 		return true;
2290 
2291 	blk_finish_request(rq, error);
2292 
2293 	return false;
2294 }
2295 
2296 /**
2297  * blk_end_request - Helper function for drivers to complete the request.
2298  * @rq:       the request being processed
2299  * @error:    %0 for success, < %0 for error
2300  * @nr_bytes: number of bytes to complete
2301  *
2302  * Description:
2303  *     Ends I/O on a number of bytes attached to @rq.
2304  *     If @rq has leftover, sets it up for the next range of segments.
2305  *
2306  * Return:
2307  *     %false - we are done with this request
2308  *     %true  - still buffers pending for this request
2309  **/
2310 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2311 {
2312 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2313 }
2314 EXPORT_SYMBOL(blk_end_request);
2315 
2316 /**
2317  * blk_end_request_all - Helper function for drives to finish the request.
2318  * @rq: the request to finish
2319  * @error: %0 for success, < %0 for error
2320  *
2321  * Description:
2322  *     Completely finish @rq.
2323  */
2324 void blk_end_request_all(struct request *rq, int error)
2325 {
2326 	bool pending;
2327 	unsigned int bidi_bytes = 0;
2328 
2329 	if (unlikely(blk_bidi_rq(rq)))
2330 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2331 
2332 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2333 	BUG_ON(pending);
2334 }
2335 EXPORT_SYMBOL(blk_end_request_all);
2336 
2337 /**
2338  * blk_end_request_cur - Helper function to finish the current request chunk.
2339  * @rq: the request to finish the current chunk for
2340  * @error: %0 for success, < %0 for error
2341  *
2342  * Description:
2343  *     Complete the current consecutively mapped chunk from @rq.
2344  *
2345  * Return:
2346  *     %false - we are done with this request
2347  *     %true  - still buffers pending for this request
2348  */
2349 bool blk_end_request_cur(struct request *rq, int error)
2350 {
2351 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2352 }
2353 EXPORT_SYMBOL(blk_end_request_cur);
2354 
2355 /**
2356  * blk_end_request_err - Finish a request till the next failure boundary.
2357  * @rq: the request to finish till the next failure boundary for
2358  * @error: must be negative errno
2359  *
2360  * Description:
2361  *     Complete @rq till the next failure boundary.
2362  *
2363  * Return:
2364  *     %false - we are done with this request
2365  *     %true  - still buffers pending for this request
2366  */
2367 bool blk_end_request_err(struct request *rq, int error)
2368 {
2369 	WARN_ON(error >= 0);
2370 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2371 }
2372 EXPORT_SYMBOL_GPL(blk_end_request_err);
2373 
2374 /**
2375  * __blk_end_request - Helper function for drivers to complete the request.
2376  * @rq:       the request being processed
2377  * @error:    %0 for success, < %0 for error
2378  * @nr_bytes: number of bytes to complete
2379  *
2380  * Description:
2381  *     Must be called with queue lock held unlike blk_end_request().
2382  *
2383  * Return:
2384  *     %false - we are done with this request
2385  *     %true  - still buffers pending for this request
2386  **/
2387 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2388 {
2389 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2390 }
2391 EXPORT_SYMBOL(__blk_end_request);
2392 
2393 /**
2394  * __blk_end_request_all - Helper function for drives to finish the request.
2395  * @rq: the request to finish
2396  * @error: %0 for success, < %0 for error
2397  *
2398  * Description:
2399  *     Completely finish @rq.  Must be called with queue lock held.
2400  */
2401 void __blk_end_request_all(struct request *rq, int error)
2402 {
2403 	bool pending;
2404 	unsigned int bidi_bytes = 0;
2405 
2406 	if (unlikely(blk_bidi_rq(rq)))
2407 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2408 
2409 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2410 	BUG_ON(pending);
2411 }
2412 EXPORT_SYMBOL(__blk_end_request_all);
2413 
2414 /**
2415  * __blk_end_request_cur - Helper function to finish the current request chunk.
2416  * @rq: the request to finish the current chunk for
2417  * @error: %0 for success, < %0 for error
2418  *
2419  * Description:
2420  *     Complete the current consecutively mapped chunk from @rq.  Must
2421  *     be called with queue lock held.
2422  *
2423  * Return:
2424  *     %false - we are done with this request
2425  *     %true  - still buffers pending for this request
2426  */
2427 bool __blk_end_request_cur(struct request *rq, int error)
2428 {
2429 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2430 }
2431 EXPORT_SYMBOL(__blk_end_request_cur);
2432 
2433 /**
2434  * __blk_end_request_err - Finish a request till the next failure boundary.
2435  * @rq: the request to finish till the next failure boundary for
2436  * @error: must be negative errno
2437  *
2438  * Description:
2439  *     Complete @rq till the next failure boundary.  Must be called
2440  *     with queue lock held.
2441  *
2442  * Return:
2443  *     %false - we are done with this request
2444  *     %true  - still buffers pending for this request
2445  */
2446 bool __blk_end_request_err(struct request *rq, int error)
2447 {
2448 	WARN_ON(error >= 0);
2449 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2450 }
2451 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2452 
2453 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2454 		     struct bio *bio)
2455 {
2456 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2457 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2458 
2459 	if (bio_has_data(bio)) {
2460 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2461 		rq->buffer = bio_data(bio);
2462 	}
2463 	rq->__data_len = bio->bi_size;
2464 	rq->bio = rq->biotail = bio;
2465 
2466 	if (bio->bi_bdev)
2467 		rq->rq_disk = bio->bi_bdev->bd_disk;
2468 }
2469 
2470 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2471 /**
2472  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2473  * @rq: the request to be flushed
2474  *
2475  * Description:
2476  *     Flush all pages in @rq.
2477  */
2478 void rq_flush_dcache_pages(struct request *rq)
2479 {
2480 	struct req_iterator iter;
2481 	struct bio_vec *bvec;
2482 
2483 	rq_for_each_segment(bvec, rq, iter)
2484 		flush_dcache_page(bvec->bv_page);
2485 }
2486 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2487 #endif
2488 
2489 /**
2490  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2491  * @q : the queue of the device being checked
2492  *
2493  * Description:
2494  *    Check if underlying low-level drivers of a device are busy.
2495  *    If the drivers want to export their busy state, they must set own
2496  *    exporting function using blk_queue_lld_busy() first.
2497  *
2498  *    Basically, this function is used only by request stacking drivers
2499  *    to stop dispatching requests to underlying devices when underlying
2500  *    devices are busy.  This behavior helps more I/O merging on the queue
2501  *    of the request stacking driver and prevents I/O throughput regression
2502  *    on burst I/O load.
2503  *
2504  * Return:
2505  *    0 - Not busy (The request stacking driver should dispatch request)
2506  *    1 - Busy (The request stacking driver should stop dispatching request)
2507  */
2508 int blk_lld_busy(struct request_queue *q)
2509 {
2510 	if (q->lld_busy_fn)
2511 		return q->lld_busy_fn(q);
2512 
2513 	return 0;
2514 }
2515 EXPORT_SYMBOL_GPL(blk_lld_busy);
2516 
2517 /**
2518  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2519  * @rq: the clone request to be cleaned up
2520  *
2521  * Description:
2522  *     Free all bios in @rq for a cloned request.
2523  */
2524 void blk_rq_unprep_clone(struct request *rq)
2525 {
2526 	struct bio *bio;
2527 
2528 	while ((bio = rq->bio) != NULL) {
2529 		rq->bio = bio->bi_next;
2530 
2531 		bio_put(bio);
2532 	}
2533 }
2534 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2535 
2536 /*
2537  * Copy attributes of the original request to the clone request.
2538  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2539  */
2540 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2541 {
2542 	dst->cpu = src->cpu;
2543 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2544 	dst->cmd_type = src->cmd_type;
2545 	dst->__sector = blk_rq_pos(src);
2546 	dst->__data_len = blk_rq_bytes(src);
2547 	dst->nr_phys_segments = src->nr_phys_segments;
2548 	dst->ioprio = src->ioprio;
2549 	dst->extra_len = src->extra_len;
2550 }
2551 
2552 /**
2553  * blk_rq_prep_clone - Helper function to setup clone request
2554  * @rq: the request to be setup
2555  * @rq_src: original request to be cloned
2556  * @bs: bio_set that bios for clone are allocated from
2557  * @gfp_mask: memory allocation mask for bio
2558  * @bio_ctr: setup function to be called for each clone bio.
2559  *           Returns %0 for success, non %0 for failure.
2560  * @data: private data to be passed to @bio_ctr
2561  *
2562  * Description:
2563  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2564  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2565  *     are not copied, and copying such parts is the caller's responsibility.
2566  *     Also, pages which the original bios are pointing to are not copied
2567  *     and the cloned bios just point same pages.
2568  *     So cloned bios must be completed before original bios, which means
2569  *     the caller must complete @rq before @rq_src.
2570  */
2571 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2572 		      struct bio_set *bs, gfp_t gfp_mask,
2573 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2574 		      void *data)
2575 {
2576 	struct bio *bio, *bio_src;
2577 
2578 	if (!bs)
2579 		bs = fs_bio_set;
2580 
2581 	blk_rq_init(NULL, rq);
2582 
2583 	__rq_for_each_bio(bio_src, rq_src) {
2584 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2585 		if (!bio)
2586 			goto free_and_out;
2587 
2588 		__bio_clone(bio, bio_src);
2589 
2590 		if (bio_integrity(bio_src) &&
2591 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2592 			goto free_and_out;
2593 
2594 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2595 			goto free_and_out;
2596 
2597 		if (rq->bio) {
2598 			rq->biotail->bi_next = bio;
2599 			rq->biotail = bio;
2600 		} else
2601 			rq->bio = rq->biotail = bio;
2602 	}
2603 
2604 	__blk_rq_prep_clone(rq, rq_src);
2605 
2606 	return 0;
2607 
2608 free_and_out:
2609 	if (bio)
2610 		bio_free(bio, bs);
2611 	blk_rq_unprep_clone(rq);
2612 
2613 	return -ENOMEM;
2614 }
2615 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2616 
2617 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2618 {
2619 	return queue_work(kblockd_workqueue, work);
2620 }
2621 EXPORT_SYMBOL(kblockd_schedule_work);
2622 
2623 int kblockd_schedule_delayed_work(struct request_queue *q,
2624 			struct delayed_work *dwork, unsigned long delay)
2625 {
2626 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2627 }
2628 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2629 
2630 #define PLUG_MAGIC	0x91827364
2631 
2632 void blk_start_plug(struct blk_plug *plug)
2633 {
2634 	struct task_struct *tsk = current;
2635 
2636 	plug->magic = PLUG_MAGIC;
2637 	INIT_LIST_HEAD(&plug->list);
2638 	INIT_LIST_HEAD(&plug->cb_list);
2639 	plug->should_sort = 0;
2640 
2641 	/*
2642 	 * If this is a nested plug, don't actually assign it. It will be
2643 	 * flushed on its own.
2644 	 */
2645 	if (!tsk->plug) {
2646 		/*
2647 		 * Store ordering should not be needed here, since a potential
2648 		 * preempt will imply a full memory barrier
2649 		 */
2650 		tsk->plug = plug;
2651 	}
2652 }
2653 EXPORT_SYMBOL(blk_start_plug);
2654 
2655 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2656 {
2657 	struct request *rqa = container_of(a, struct request, queuelist);
2658 	struct request *rqb = container_of(b, struct request, queuelist);
2659 
2660 	return !(rqa->q <= rqb->q);
2661 }
2662 
2663 /*
2664  * If 'from_schedule' is true, then postpone the dispatch of requests
2665  * until a safe kblockd context. We due this to avoid accidental big
2666  * additional stack usage in driver dispatch, in places where the originally
2667  * plugger did not intend it.
2668  */
2669 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2670 			    bool from_schedule)
2671 	__releases(q->queue_lock)
2672 {
2673 	trace_block_unplug(q, depth, !from_schedule);
2674 
2675 	/*
2676 	 * If we are punting this to kblockd, then we can safely drop
2677 	 * the queue_lock before waking kblockd (which needs to take
2678 	 * this lock).
2679 	 */
2680 	if (from_schedule) {
2681 		spin_unlock(q->queue_lock);
2682 		blk_run_queue_async(q);
2683 	} else {
2684 		__blk_run_queue(q);
2685 		spin_unlock(q->queue_lock);
2686 	}
2687 
2688 }
2689 
2690 static void flush_plug_callbacks(struct blk_plug *plug)
2691 {
2692 	LIST_HEAD(callbacks);
2693 
2694 	if (list_empty(&plug->cb_list))
2695 		return;
2696 
2697 	list_splice_init(&plug->cb_list, &callbacks);
2698 
2699 	while (!list_empty(&callbacks)) {
2700 		struct blk_plug_cb *cb = list_first_entry(&callbacks,
2701 							  struct blk_plug_cb,
2702 							  list);
2703 		list_del(&cb->list);
2704 		cb->callback(cb);
2705 	}
2706 }
2707 
2708 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2709 {
2710 	struct request_queue *q;
2711 	unsigned long flags;
2712 	struct request *rq;
2713 	LIST_HEAD(list);
2714 	unsigned int depth;
2715 
2716 	BUG_ON(plug->magic != PLUG_MAGIC);
2717 
2718 	flush_plug_callbacks(plug);
2719 	if (list_empty(&plug->list))
2720 		return;
2721 
2722 	list_splice_init(&plug->list, &list);
2723 
2724 	if (plug->should_sort) {
2725 		list_sort(NULL, &list, plug_rq_cmp);
2726 		plug->should_sort = 0;
2727 	}
2728 
2729 	q = NULL;
2730 	depth = 0;
2731 
2732 	/*
2733 	 * Save and disable interrupts here, to avoid doing it for every
2734 	 * queue lock we have to take.
2735 	 */
2736 	local_irq_save(flags);
2737 	while (!list_empty(&list)) {
2738 		rq = list_entry_rq(list.next);
2739 		list_del_init(&rq->queuelist);
2740 		BUG_ON(!rq->q);
2741 		if (rq->q != q) {
2742 			/*
2743 			 * This drops the queue lock
2744 			 */
2745 			if (q)
2746 				queue_unplugged(q, depth, from_schedule);
2747 			q = rq->q;
2748 			depth = 0;
2749 			spin_lock(q->queue_lock);
2750 		}
2751 		/*
2752 		 * rq is already accounted, so use raw insert
2753 		 */
2754 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2755 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2756 		else
2757 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2758 
2759 		depth++;
2760 	}
2761 
2762 	/*
2763 	 * This drops the queue lock
2764 	 */
2765 	if (q)
2766 		queue_unplugged(q, depth, from_schedule);
2767 
2768 	local_irq_restore(flags);
2769 }
2770 
2771 void blk_finish_plug(struct blk_plug *plug)
2772 {
2773 	blk_flush_plug_list(plug, false);
2774 
2775 	if (plug == current->plug)
2776 		current->plug = NULL;
2777 }
2778 EXPORT_SYMBOL(blk_finish_plug);
2779 
2780 int __init blk_dev_init(void)
2781 {
2782 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2783 			sizeof(((struct request *)0)->cmd_flags));
2784 
2785 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
2786 	kblockd_workqueue = alloc_workqueue("kblockd",
2787 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2788 	if (!kblockd_workqueue)
2789 		panic("Failed to create kblockd\n");
2790 
2791 	request_cachep = kmem_cache_create("blkdev_requests",
2792 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2793 
2794 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2795 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2796 
2797 	return 0;
2798 }
2799