1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/fault-inject.h> 30 #include <linux/list_sort.h> 31 32 #define CREATE_TRACE_POINTS 33 #include <trace/events/block.h> 34 35 #include "blk.h" 36 37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 40 41 static int __make_request(struct request_queue *q, struct bio *bio); 42 43 /* 44 * For the allocated request tables 45 */ 46 static struct kmem_cache *request_cachep; 47 48 /* 49 * For queue allocation 50 */ 51 struct kmem_cache *blk_requestq_cachep; 52 53 /* 54 * Controlling structure to kblockd 55 */ 56 static struct workqueue_struct *kblockd_workqueue; 57 58 static void drive_stat_acct(struct request *rq, int new_io) 59 { 60 struct hd_struct *part; 61 int rw = rq_data_dir(rq); 62 int cpu; 63 64 if (!blk_do_io_stat(rq)) 65 return; 66 67 cpu = part_stat_lock(); 68 69 if (!new_io) { 70 part = rq->part; 71 part_stat_inc(cpu, part, merges[rw]); 72 } else { 73 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 74 if (!hd_struct_try_get(part)) { 75 /* 76 * The partition is already being removed, 77 * the request will be accounted on the disk only 78 * 79 * We take a reference on disk->part0 although that 80 * partition will never be deleted, so we can treat 81 * it as any other partition. 82 */ 83 part = &rq->rq_disk->part0; 84 hd_struct_get(part); 85 } 86 part_round_stats(cpu, part); 87 part_inc_in_flight(part, rw); 88 rq->part = part; 89 } 90 91 part_stat_unlock(); 92 } 93 94 void blk_queue_congestion_threshold(struct request_queue *q) 95 { 96 int nr; 97 98 nr = q->nr_requests - (q->nr_requests / 8) + 1; 99 if (nr > q->nr_requests) 100 nr = q->nr_requests; 101 q->nr_congestion_on = nr; 102 103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 104 if (nr < 1) 105 nr = 1; 106 q->nr_congestion_off = nr; 107 } 108 109 /** 110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 111 * @bdev: device 112 * 113 * Locates the passed device's request queue and returns the address of its 114 * backing_dev_info 115 * 116 * Will return NULL if the request queue cannot be located. 117 */ 118 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 119 { 120 struct backing_dev_info *ret = NULL; 121 struct request_queue *q = bdev_get_queue(bdev); 122 123 if (q) 124 ret = &q->backing_dev_info; 125 return ret; 126 } 127 EXPORT_SYMBOL(blk_get_backing_dev_info); 128 129 void blk_rq_init(struct request_queue *q, struct request *rq) 130 { 131 memset(rq, 0, sizeof(*rq)); 132 133 INIT_LIST_HEAD(&rq->queuelist); 134 INIT_LIST_HEAD(&rq->timeout_list); 135 rq->cpu = -1; 136 rq->q = q; 137 rq->__sector = (sector_t) -1; 138 INIT_HLIST_NODE(&rq->hash); 139 RB_CLEAR_NODE(&rq->rb_node); 140 rq->cmd = rq->__cmd; 141 rq->cmd_len = BLK_MAX_CDB; 142 rq->tag = -1; 143 rq->ref_count = 1; 144 rq->start_time = jiffies; 145 set_start_time_ns(rq); 146 rq->part = NULL; 147 } 148 EXPORT_SYMBOL(blk_rq_init); 149 150 static void req_bio_endio(struct request *rq, struct bio *bio, 151 unsigned int nbytes, int error) 152 { 153 if (error) 154 clear_bit(BIO_UPTODATE, &bio->bi_flags); 155 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 156 error = -EIO; 157 158 if (unlikely(nbytes > bio->bi_size)) { 159 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 160 __func__, nbytes, bio->bi_size); 161 nbytes = bio->bi_size; 162 } 163 164 if (unlikely(rq->cmd_flags & REQ_QUIET)) 165 set_bit(BIO_QUIET, &bio->bi_flags); 166 167 bio->bi_size -= nbytes; 168 bio->bi_sector += (nbytes >> 9); 169 170 if (bio_integrity(bio)) 171 bio_integrity_advance(bio, nbytes); 172 173 /* don't actually finish bio if it's part of flush sequence */ 174 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 175 bio_endio(bio, error); 176 } 177 178 void blk_dump_rq_flags(struct request *rq, char *msg) 179 { 180 int bit; 181 182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 184 rq->cmd_flags); 185 186 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 187 (unsigned long long)blk_rq_pos(rq), 188 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 189 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 190 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 191 192 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 193 printk(KERN_INFO " cdb: "); 194 for (bit = 0; bit < BLK_MAX_CDB; bit++) 195 printk("%02x ", rq->cmd[bit]); 196 printk("\n"); 197 } 198 } 199 EXPORT_SYMBOL(blk_dump_rq_flags); 200 201 static void blk_delay_work(struct work_struct *work) 202 { 203 struct request_queue *q; 204 205 q = container_of(work, struct request_queue, delay_work.work); 206 spin_lock_irq(q->queue_lock); 207 __blk_run_queue(q); 208 spin_unlock_irq(q->queue_lock); 209 } 210 211 /** 212 * blk_delay_queue - restart queueing after defined interval 213 * @q: The &struct request_queue in question 214 * @msecs: Delay in msecs 215 * 216 * Description: 217 * Sometimes queueing needs to be postponed for a little while, to allow 218 * resources to come back. This function will make sure that queueing is 219 * restarted around the specified time. 220 */ 221 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 222 { 223 queue_delayed_work(kblockd_workqueue, &q->delay_work, 224 msecs_to_jiffies(msecs)); 225 } 226 EXPORT_SYMBOL(blk_delay_queue); 227 228 /** 229 * blk_start_queue - restart a previously stopped queue 230 * @q: The &struct request_queue in question 231 * 232 * Description: 233 * blk_start_queue() will clear the stop flag on the queue, and call 234 * the request_fn for the queue if it was in a stopped state when 235 * entered. Also see blk_stop_queue(). Queue lock must be held. 236 **/ 237 void blk_start_queue(struct request_queue *q) 238 { 239 WARN_ON(!irqs_disabled()); 240 241 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 242 __blk_run_queue(q); 243 } 244 EXPORT_SYMBOL(blk_start_queue); 245 246 /** 247 * blk_stop_queue - stop a queue 248 * @q: The &struct request_queue in question 249 * 250 * Description: 251 * The Linux block layer assumes that a block driver will consume all 252 * entries on the request queue when the request_fn strategy is called. 253 * Often this will not happen, because of hardware limitations (queue 254 * depth settings). If a device driver gets a 'queue full' response, 255 * or if it simply chooses not to queue more I/O at one point, it can 256 * call this function to prevent the request_fn from being called until 257 * the driver has signalled it's ready to go again. This happens by calling 258 * blk_start_queue() to restart queue operations. Queue lock must be held. 259 **/ 260 void blk_stop_queue(struct request_queue *q) 261 { 262 __cancel_delayed_work(&q->delay_work); 263 queue_flag_set(QUEUE_FLAG_STOPPED, q); 264 } 265 EXPORT_SYMBOL(blk_stop_queue); 266 267 /** 268 * blk_sync_queue - cancel any pending callbacks on a queue 269 * @q: the queue 270 * 271 * Description: 272 * The block layer may perform asynchronous callback activity 273 * on a queue, such as calling the unplug function after a timeout. 274 * A block device may call blk_sync_queue to ensure that any 275 * such activity is cancelled, thus allowing it to release resources 276 * that the callbacks might use. The caller must already have made sure 277 * that its ->make_request_fn will not re-add plugging prior to calling 278 * this function. 279 * 280 * This function does not cancel any asynchronous activity arising 281 * out of elevator or throttling code. That would require elevaotor_exit() 282 * and blk_throtl_exit() to be called with queue lock initialized. 283 * 284 */ 285 void blk_sync_queue(struct request_queue *q) 286 { 287 del_timer_sync(&q->timeout); 288 cancel_delayed_work_sync(&q->delay_work); 289 } 290 EXPORT_SYMBOL(blk_sync_queue); 291 292 /** 293 * __blk_run_queue - run a single device queue 294 * @q: The queue to run 295 * 296 * Description: 297 * See @blk_run_queue. This variant must be called with the queue lock 298 * held and interrupts disabled. 299 */ 300 void __blk_run_queue(struct request_queue *q) 301 { 302 if (unlikely(blk_queue_stopped(q))) 303 return; 304 305 q->request_fn(q); 306 } 307 EXPORT_SYMBOL(__blk_run_queue); 308 309 /** 310 * blk_run_queue_async - run a single device queue in workqueue context 311 * @q: The queue to run 312 * 313 * Description: 314 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 315 * of us. 316 */ 317 void blk_run_queue_async(struct request_queue *q) 318 { 319 if (likely(!blk_queue_stopped(q))) { 320 __cancel_delayed_work(&q->delay_work); 321 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0); 322 } 323 } 324 EXPORT_SYMBOL(blk_run_queue_async); 325 326 /** 327 * blk_run_queue - run a single device queue 328 * @q: The queue to run 329 * 330 * Description: 331 * Invoke request handling on this queue, if it has pending work to do. 332 * May be used to restart queueing when a request has completed. 333 */ 334 void blk_run_queue(struct request_queue *q) 335 { 336 unsigned long flags; 337 338 spin_lock_irqsave(q->queue_lock, flags); 339 __blk_run_queue(q); 340 spin_unlock_irqrestore(q->queue_lock, flags); 341 } 342 EXPORT_SYMBOL(blk_run_queue); 343 344 void blk_put_queue(struct request_queue *q) 345 { 346 kobject_put(&q->kobj); 347 } 348 EXPORT_SYMBOL(blk_put_queue); 349 350 /* 351 * Note: If a driver supplied the queue lock, it should not zap that lock 352 * unexpectedly as some queue cleanup components like elevator_exit() and 353 * blk_throtl_exit() need queue lock. 354 */ 355 void blk_cleanup_queue(struct request_queue *q) 356 { 357 /* 358 * We know we have process context here, so we can be a little 359 * cautious and ensure that pending block actions on this device 360 * are done before moving on. Going into this function, we should 361 * not have processes doing IO to this device. 362 */ 363 blk_sync_queue(q); 364 365 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 366 mutex_lock(&q->sysfs_lock); 367 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 368 mutex_unlock(&q->sysfs_lock); 369 370 if (q->elevator) 371 elevator_exit(q->elevator); 372 373 blk_throtl_exit(q); 374 375 blk_put_queue(q); 376 } 377 EXPORT_SYMBOL(blk_cleanup_queue); 378 379 static int blk_init_free_list(struct request_queue *q) 380 { 381 struct request_list *rl = &q->rq; 382 383 if (unlikely(rl->rq_pool)) 384 return 0; 385 386 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 387 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 388 rl->elvpriv = 0; 389 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 390 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 391 392 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 393 mempool_free_slab, request_cachep, q->node); 394 395 if (!rl->rq_pool) 396 return -ENOMEM; 397 398 return 0; 399 } 400 401 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 402 { 403 return blk_alloc_queue_node(gfp_mask, -1); 404 } 405 EXPORT_SYMBOL(blk_alloc_queue); 406 407 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 408 { 409 struct request_queue *q; 410 int err; 411 412 q = kmem_cache_alloc_node(blk_requestq_cachep, 413 gfp_mask | __GFP_ZERO, node_id); 414 if (!q) 415 return NULL; 416 417 q->backing_dev_info.ra_pages = 418 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 419 q->backing_dev_info.state = 0; 420 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 421 q->backing_dev_info.name = "block"; 422 423 err = bdi_init(&q->backing_dev_info); 424 if (err) { 425 kmem_cache_free(blk_requestq_cachep, q); 426 return NULL; 427 } 428 429 if (blk_throtl_init(q)) { 430 kmem_cache_free(blk_requestq_cachep, q); 431 return NULL; 432 } 433 434 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 435 laptop_mode_timer_fn, (unsigned long) q); 436 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 437 INIT_LIST_HEAD(&q->timeout_list); 438 INIT_LIST_HEAD(&q->flush_queue[0]); 439 INIT_LIST_HEAD(&q->flush_queue[1]); 440 INIT_LIST_HEAD(&q->flush_data_in_flight); 441 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 442 443 kobject_init(&q->kobj, &blk_queue_ktype); 444 445 mutex_init(&q->sysfs_lock); 446 spin_lock_init(&q->__queue_lock); 447 448 /* 449 * By default initialize queue_lock to internal lock and driver can 450 * override it later if need be. 451 */ 452 q->queue_lock = &q->__queue_lock; 453 454 return q; 455 } 456 EXPORT_SYMBOL(blk_alloc_queue_node); 457 458 /** 459 * blk_init_queue - prepare a request queue for use with a block device 460 * @rfn: The function to be called to process requests that have been 461 * placed on the queue. 462 * @lock: Request queue spin lock 463 * 464 * Description: 465 * If a block device wishes to use the standard request handling procedures, 466 * which sorts requests and coalesces adjacent requests, then it must 467 * call blk_init_queue(). The function @rfn will be called when there 468 * are requests on the queue that need to be processed. If the device 469 * supports plugging, then @rfn may not be called immediately when requests 470 * are available on the queue, but may be called at some time later instead. 471 * Plugged queues are generally unplugged when a buffer belonging to one 472 * of the requests on the queue is needed, or due to memory pressure. 473 * 474 * @rfn is not required, or even expected, to remove all requests off the 475 * queue, but only as many as it can handle at a time. If it does leave 476 * requests on the queue, it is responsible for arranging that the requests 477 * get dealt with eventually. 478 * 479 * The queue spin lock must be held while manipulating the requests on the 480 * request queue; this lock will be taken also from interrupt context, so irq 481 * disabling is needed for it. 482 * 483 * Function returns a pointer to the initialized request queue, or %NULL if 484 * it didn't succeed. 485 * 486 * Note: 487 * blk_init_queue() must be paired with a blk_cleanup_queue() call 488 * when the block device is deactivated (such as at module unload). 489 **/ 490 491 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 492 { 493 return blk_init_queue_node(rfn, lock, -1); 494 } 495 EXPORT_SYMBOL(blk_init_queue); 496 497 struct request_queue * 498 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 499 { 500 struct request_queue *uninit_q, *q; 501 502 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 503 if (!uninit_q) 504 return NULL; 505 506 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id); 507 if (!q) 508 blk_cleanup_queue(uninit_q); 509 510 return q; 511 } 512 EXPORT_SYMBOL(blk_init_queue_node); 513 514 struct request_queue * 515 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 516 spinlock_t *lock) 517 { 518 return blk_init_allocated_queue_node(q, rfn, lock, -1); 519 } 520 EXPORT_SYMBOL(blk_init_allocated_queue); 521 522 struct request_queue * 523 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn, 524 spinlock_t *lock, int node_id) 525 { 526 if (!q) 527 return NULL; 528 529 q->node = node_id; 530 if (blk_init_free_list(q)) 531 return NULL; 532 533 q->request_fn = rfn; 534 q->prep_rq_fn = NULL; 535 q->unprep_rq_fn = NULL; 536 q->queue_flags = QUEUE_FLAG_DEFAULT; 537 538 /* Override internal queue lock with supplied lock pointer */ 539 if (lock) 540 q->queue_lock = lock; 541 542 /* 543 * This also sets hw/phys segments, boundary and size 544 */ 545 blk_queue_make_request(q, __make_request); 546 547 q->sg_reserved_size = INT_MAX; 548 549 /* 550 * all done 551 */ 552 if (!elevator_init(q, NULL)) { 553 blk_queue_congestion_threshold(q); 554 return q; 555 } 556 557 return NULL; 558 } 559 EXPORT_SYMBOL(blk_init_allocated_queue_node); 560 561 int blk_get_queue(struct request_queue *q) 562 { 563 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 564 kobject_get(&q->kobj); 565 return 0; 566 } 567 568 return 1; 569 } 570 EXPORT_SYMBOL(blk_get_queue); 571 572 static inline void blk_free_request(struct request_queue *q, struct request *rq) 573 { 574 if (rq->cmd_flags & REQ_ELVPRIV) 575 elv_put_request(q, rq); 576 mempool_free(rq, q->rq.rq_pool); 577 } 578 579 static struct request * 580 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask) 581 { 582 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 583 584 if (!rq) 585 return NULL; 586 587 blk_rq_init(q, rq); 588 589 rq->cmd_flags = flags | REQ_ALLOCED; 590 591 if (priv) { 592 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 593 mempool_free(rq, q->rq.rq_pool); 594 return NULL; 595 } 596 rq->cmd_flags |= REQ_ELVPRIV; 597 } 598 599 return rq; 600 } 601 602 /* 603 * ioc_batching returns true if the ioc is a valid batching request and 604 * should be given priority access to a request. 605 */ 606 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 607 { 608 if (!ioc) 609 return 0; 610 611 /* 612 * Make sure the process is able to allocate at least 1 request 613 * even if the batch times out, otherwise we could theoretically 614 * lose wakeups. 615 */ 616 return ioc->nr_batch_requests == q->nr_batching || 617 (ioc->nr_batch_requests > 0 618 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 619 } 620 621 /* 622 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 623 * will cause the process to be a "batcher" on all queues in the system. This 624 * is the behaviour we want though - once it gets a wakeup it should be given 625 * a nice run. 626 */ 627 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 628 { 629 if (!ioc || ioc_batching(q, ioc)) 630 return; 631 632 ioc->nr_batch_requests = q->nr_batching; 633 ioc->last_waited = jiffies; 634 } 635 636 static void __freed_request(struct request_queue *q, int sync) 637 { 638 struct request_list *rl = &q->rq; 639 640 if (rl->count[sync] < queue_congestion_off_threshold(q)) 641 blk_clear_queue_congested(q, sync); 642 643 if (rl->count[sync] + 1 <= q->nr_requests) { 644 if (waitqueue_active(&rl->wait[sync])) 645 wake_up(&rl->wait[sync]); 646 647 blk_clear_queue_full(q, sync); 648 } 649 } 650 651 /* 652 * A request has just been released. Account for it, update the full and 653 * congestion status, wake up any waiters. Called under q->queue_lock. 654 */ 655 static void freed_request(struct request_queue *q, int sync, int priv) 656 { 657 struct request_list *rl = &q->rq; 658 659 rl->count[sync]--; 660 if (priv) 661 rl->elvpriv--; 662 663 __freed_request(q, sync); 664 665 if (unlikely(rl->starved[sync ^ 1])) 666 __freed_request(q, sync ^ 1); 667 } 668 669 /* 670 * Determine if elevator data should be initialized when allocating the 671 * request associated with @bio. 672 */ 673 static bool blk_rq_should_init_elevator(struct bio *bio) 674 { 675 if (!bio) 676 return true; 677 678 /* 679 * Flush requests do not use the elevator so skip initialization. 680 * This allows a request to share the flush and elevator data. 681 */ 682 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 683 return false; 684 685 return true; 686 } 687 688 /* 689 * Get a free request, queue_lock must be held. 690 * Returns NULL on failure, with queue_lock held. 691 * Returns !NULL on success, with queue_lock *not held*. 692 */ 693 static struct request *get_request(struct request_queue *q, int rw_flags, 694 struct bio *bio, gfp_t gfp_mask) 695 { 696 struct request *rq = NULL; 697 struct request_list *rl = &q->rq; 698 struct io_context *ioc = NULL; 699 const bool is_sync = rw_is_sync(rw_flags) != 0; 700 int may_queue, priv = 0; 701 702 may_queue = elv_may_queue(q, rw_flags); 703 if (may_queue == ELV_MQUEUE_NO) 704 goto rq_starved; 705 706 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 707 if (rl->count[is_sync]+1 >= q->nr_requests) { 708 ioc = current_io_context(GFP_ATOMIC, q->node); 709 /* 710 * The queue will fill after this allocation, so set 711 * it as full, and mark this process as "batching". 712 * This process will be allowed to complete a batch of 713 * requests, others will be blocked. 714 */ 715 if (!blk_queue_full(q, is_sync)) { 716 ioc_set_batching(q, ioc); 717 blk_set_queue_full(q, is_sync); 718 } else { 719 if (may_queue != ELV_MQUEUE_MUST 720 && !ioc_batching(q, ioc)) { 721 /* 722 * The queue is full and the allocating 723 * process is not a "batcher", and not 724 * exempted by the IO scheduler 725 */ 726 goto out; 727 } 728 } 729 } 730 blk_set_queue_congested(q, is_sync); 731 } 732 733 /* 734 * Only allow batching queuers to allocate up to 50% over the defined 735 * limit of requests, otherwise we could have thousands of requests 736 * allocated with any setting of ->nr_requests 737 */ 738 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 739 goto out; 740 741 rl->count[is_sync]++; 742 rl->starved[is_sync] = 0; 743 744 if (blk_rq_should_init_elevator(bio)) { 745 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 746 if (priv) 747 rl->elvpriv++; 748 } 749 750 if (blk_queue_io_stat(q)) 751 rw_flags |= REQ_IO_STAT; 752 spin_unlock_irq(q->queue_lock); 753 754 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 755 if (unlikely(!rq)) { 756 /* 757 * Allocation failed presumably due to memory. Undo anything 758 * we might have messed up. 759 * 760 * Allocating task should really be put onto the front of the 761 * wait queue, but this is pretty rare. 762 */ 763 spin_lock_irq(q->queue_lock); 764 freed_request(q, is_sync, priv); 765 766 /* 767 * in the very unlikely event that allocation failed and no 768 * requests for this direction was pending, mark us starved 769 * so that freeing of a request in the other direction will 770 * notice us. another possible fix would be to split the 771 * rq mempool into READ and WRITE 772 */ 773 rq_starved: 774 if (unlikely(rl->count[is_sync] == 0)) 775 rl->starved[is_sync] = 1; 776 777 goto out; 778 } 779 780 /* 781 * ioc may be NULL here, and ioc_batching will be false. That's 782 * OK, if the queue is under the request limit then requests need 783 * not count toward the nr_batch_requests limit. There will always 784 * be some limit enforced by BLK_BATCH_TIME. 785 */ 786 if (ioc_batching(q, ioc)) 787 ioc->nr_batch_requests--; 788 789 trace_block_getrq(q, bio, rw_flags & 1); 790 out: 791 return rq; 792 } 793 794 /* 795 * No available requests for this queue, wait for some requests to become 796 * available. 797 * 798 * Called with q->queue_lock held, and returns with it unlocked. 799 */ 800 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 801 struct bio *bio) 802 { 803 const bool is_sync = rw_is_sync(rw_flags) != 0; 804 struct request *rq; 805 806 rq = get_request(q, rw_flags, bio, GFP_NOIO); 807 while (!rq) { 808 DEFINE_WAIT(wait); 809 struct io_context *ioc; 810 struct request_list *rl = &q->rq; 811 812 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 813 TASK_UNINTERRUPTIBLE); 814 815 trace_block_sleeprq(q, bio, rw_flags & 1); 816 817 spin_unlock_irq(q->queue_lock); 818 io_schedule(); 819 820 /* 821 * After sleeping, we become a "batching" process and 822 * will be able to allocate at least one request, and 823 * up to a big batch of them for a small period time. 824 * See ioc_batching, ioc_set_batching 825 */ 826 ioc = current_io_context(GFP_NOIO, q->node); 827 ioc_set_batching(q, ioc); 828 829 spin_lock_irq(q->queue_lock); 830 finish_wait(&rl->wait[is_sync], &wait); 831 832 rq = get_request(q, rw_flags, bio, GFP_NOIO); 833 }; 834 835 return rq; 836 } 837 838 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 839 { 840 struct request *rq; 841 842 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 843 return NULL; 844 845 BUG_ON(rw != READ && rw != WRITE); 846 847 spin_lock_irq(q->queue_lock); 848 if (gfp_mask & __GFP_WAIT) { 849 rq = get_request_wait(q, rw, NULL); 850 } else { 851 rq = get_request(q, rw, NULL, gfp_mask); 852 if (!rq) 853 spin_unlock_irq(q->queue_lock); 854 } 855 /* q->queue_lock is unlocked at this point */ 856 857 return rq; 858 } 859 EXPORT_SYMBOL(blk_get_request); 860 861 /** 862 * blk_make_request - given a bio, allocate a corresponding struct request. 863 * @q: target request queue 864 * @bio: The bio describing the memory mappings that will be submitted for IO. 865 * It may be a chained-bio properly constructed by block/bio layer. 866 * @gfp_mask: gfp flags to be used for memory allocation 867 * 868 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 869 * type commands. Where the struct request needs to be farther initialized by 870 * the caller. It is passed a &struct bio, which describes the memory info of 871 * the I/O transfer. 872 * 873 * The caller of blk_make_request must make sure that bi_io_vec 874 * are set to describe the memory buffers. That bio_data_dir() will return 875 * the needed direction of the request. (And all bio's in the passed bio-chain 876 * are properly set accordingly) 877 * 878 * If called under none-sleepable conditions, mapped bio buffers must not 879 * need bouncing, by calling the appropriate masked or flagged allocator, 880 * suitable for the target device. Otherwise the call to blk_queue_bounce will 881 * BUG. 882 * 883 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 884 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 885 * anything but the first bio in the chain. Otherwise you risk waiting for IO 886 * completion of a bio that hasn't been submitted yet, thus resulting in a 887 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 888 * of bio_alloc(), as that avoids the mempool deadlock. 889 * If possible a big IO should be split into smaller parts when allocation 890 * fails. Partial allocation should not be an error, or you risk a live-lock. 891 */ 892 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 893 gfp_t gfp_mask) 894 { 895 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 896 897 if (unlikely(!rq)) 898 return ERR_PTR(-ENOMEM); 899 900 for_each_bio(bio) { 901 struct bio *bounce_bio = bio; 902 int ret; 903 904 blk_queue_bounce(q, &bounce_bio); 905 ret = blk_rq_append_bio(q, rq, bounce_bio); 906 if (unlikely(ret)) { 907 blk_put_request(rq); 908 return ERR_PTR(ret); 909 } 910 } 911 912 return rq; 913 } 914 EXPORT_SYMBOL(blk_make_request); 915 916 /** 917 * blk_requeue_request - put a request back on queue 918 * @q: request queue where request should be inserted 919 * @rq: request to be inserted 920 * 921 * Description: 922 * Drivers often keep queueing requests until the hardware cannot accept 923 * more, when that condition happens we need to put the request back 924 * on the queue. Must be called with queue lock held. 925 */ 926 void blk_requeue_request(struct request_queue *q, struct request *rq) 927 { 928 blk_delete_timer(rq); 929 blk_clear_rq_complete(rq); 930 trace_block_rq_requeue(q, rq); 931 932 if (blk_rq_tagged(rq)) 933 blk_queue_end_tag(q, rq); 934 935 BUG_ON(blk_queued_rq(rq)); 936 937 elv_requeue_request(q, rq); 938 } 939 EXPORT_SYMBOL(blk_requeue_request); 940 941 static void add_acct_request(struct request_queue *q, struct request *rq, 942 int where) 943 { 944 drive_stat_acct(rq, 1); 945 __elv_add_request(q, rq, where); 946 } 947 948 /** 949 * blk_insert_request - insert a special request into a request queue 950 * @q: request queue where request should be inserted 951 * @rq: request to be inserted 952 * @at_head: insert request at head or tail of queue 953 * @data: private data 954 * 955 * Description: 956 * Many block devices need to execute commands asynchronously, so they don't 957 * block the whole kernel from preemption during request execution. This is 958 * accomplished normally by inserting aritficial requests tagged as 959 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 960 * be scheduled for actual execution by the request queue. 961 * 962 * We have the option of inserting the head or the tail of the queue. 963 * Typically we use the tail for new ioctls and so forth. We use the head 964 * of the queue for things like a QUEUE_FULL message from a device, or a 965 * host that is unable to accept a particular command. 966 */ 967 void blk_insert_request(struct request_queue *q, struct request *rq, 968 int at_head, void *data) 969 { 970 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 971 unsigned long flags; 972 973 /* 974 * tell I/O scheduler that this isn't a regular read/write (ie it 975 * must not attempt merges on this) and that it acts as a soft 976 * barrier 977 */ 978 rq->cmd_type = REQ_TYPE_SPECIAL; 979 980 rq->special = data; 981 982 spin_lock_irqsave(q->queue_lock, flags); 983 984 /* 985 * If command is tagged, release the tag 986 */ 987 if (blk_rq_tagged(rq)) 988 blk_queue_end_tag(q, rq); 989 990 add_acct_request(q, rq, where); 991 __blk_run_queue(q); 992 spin_unlock_irqrestore(q->queue_lock, flags); 993 } 994 EXPORT_SYMBOL(blk_insert_request); 995 996 static void part_round_stats_single(int cpu, struct hd_struct *part, 997 unsigned long now) 998 { 999 if (now == part->stamp) 1000 return; 1001 1002 if (part_in_flight(part)) { 1003 __part_stat_add(cpu, part, time_in_queue, 1004 part_in_flight(part) * (now - part->stamp)); 1005 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1006 } 1007 part->stamp = now; 1008 } 1009 1010 /** 1011 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1012 * @cpu: cpu number for stats access 1013 * @part: target partition 1014 * 1015 * The average IO queue length and utilisation statistics are maintained 1016 * by observing the current state of the queue length and the amount of 1017 * time it has been in this state for. 1018 * 1019 * Normally, that accounting is done on IO completion, but that can result 1020 * in more than a second's worth of IO being accounted for within any one 1021 * second, leading to >100% utilisation. To deal with that, we call this 1022 * function to do a round-off before returning the results when reading 1023 * /proc/diskstats. This accounts immediately for all queue usage up to 1024 * the current jiffies and restarts the counters again. 1025 */ 1026 void part_round_stats(int cpu, struct hd_struct *part) 1027 { 1028 unsigned long now = jiffies; 1029 1030 if (part->partno) 1031 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1032 part_round_stats_single(cpu, part, now); 1033 } 1034 EXPORT_SYMBOL_GPL(part_round_stats); 1035 1036 /* 1037 * queue lock must be held 1038 */ 1039 void __blk_put_request(struct request_queue *q, struct request *req) 1040 { 1041 if (unlikely(!q)) 1042 return; 1043 if (unlikely(--req->ref_count)) 1044 return; 1045 1046 elv_completed_request(q, req); 1047 1048 /* this is a bio leak */ 1049 WARN_ON(req->bio != NULL); 1050 1051 /* 1052 * Request may not have originated from ll_rw_blk. if not, 1053 * it didn't come out of our reserved rq pools 1054 */ 1055 if (req->cmd_flags & REQ_ALLOCED) { 1056 int is_sync = rq_is_sync(req) != 0; 1057 int priv = req->cmd_flags & REQ_ELVPRIV; 1058 1059 BUG_ON(!list_empty(&req->queuelist)); 1060 BUG_ON(!hlist_unhashed(&req->hash)); 1061 1062 blk_free_request(q, req); 1063 freed_request(q, is_sync, priv); 1064 } 1065 } 1066 EXPORT_SYMBOL_GPL(__blk_put_request); 1067 1068 void blk_put_request(struct request *req) 1069 { 1070 unsigned long flags; 1071 struct request_queue *q = req->q; 1072 1073 spin_lock_irqsave(q->queue_lock, flags); 1074 __blk_put_request(q, req); 1075 spin_unlock_irqrestore(q->queue_lock, flags); 1076 } 1077 EXPORT_SYMBOL(blk_put_request); 1078 1079 /** 1080 * blk_add_request_payload - add a payload to a request 1081 * @rq: request to update 1082 * @page: page backing the payload 1083 * @len: length of the payload. 1084 * 1085 * This allows to later add a payload to an already submitted request by 1086 * a block driver. The driver needs to take care of freeing the payload 1087 * itself. 1088 * 1089 * Note that this is a quite horrible hack and nothing but handling of 1090 * discard requests should ever use it. 1091 */ 1092 void blk_add_request_payload(struct request *rq, struct page *page, 1093 unsigned int len) 1094 { 1095 struct bio *bio = rq->bio; 1096 1097 bio->bi_io_vec->bv_page = page; 1098 bio->bi_io_vec->bv_offset = 0; 1099 bio->bi_io_vec->bv_len = len; 1100 1101 bio->bi_size = len; 1102 bio->bi_vcnt = 1; 1103 bio->bi_phys_segments = 1; 1104 1105 rq->__data_len = rq->resid_len = len; 1106 rq->nr_phys_segments = 1; 1107 rq->buffer = bio_data(bio); 1108 } 1109 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1110 1111 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1112 struct bio *bio) 1113 { 1114 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1115 1116 if (!ll_back_merge_fn(q, req, bio)) 1117 return false; 1118 1119 trace_block_bio_backmerge(q, bio); 1120 1121 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1122 blk_rq_set_mixed_merge(req); 1123 1124 req->biotail->bi_next = bio; 1125 req->biotail = bio; 1126 req->__data_len += bio->bi_size; 1127 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1128 1129 drive_stat_acct(req, 0); 1130 elv_bio_merged(q, req, bio); 1131 return true; 1132 } 1133 1134 static bool bio_attempt_front_merge(struct request_queue *q, 1135 struct request *req, struct bio *bio) 1136 { 1137 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1138 1139 if (!ll_front_merge_fn(q, req, bio)) 1140 return false; 1141 1142 trace_block_bio_frontmerge(q, bio); 1143 1144 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1145 blk_rq_set_mixed_merge(req); 1146 1147 bio->bi_next = req->bio; 1148 req->bio = bio; 1149 1150 /* 1151 * may not be valid. if the low level driver said 1152 * it didn't need a bounce buffer then it better 1153 * not touch req->buffer either... 1154 */ 1155 req->buffer = bio_data(bio); 1156 req->__sector = bio->bi_sector; 1157 req->__data_len += bio->bi_size; 1158 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1159 1160 drive_stat_acct(req, 0); 1161 elv_bio_merged(q, req, bio); 1162 return true; 1163 } 1164 1165 /* 1166 * Attempts to merge with the plugged list in the current process. Returns 1167 * true if merge was successful, otherwise false. 1168 */ 1169 static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q, 1170 struct bio *bio, unsigned int *request_count) 1171 { 1172 struct blk_plug *plug; 1173 struct request *rq; 1174 bool ret = false; 1175 1176 plug = tsk->plug; 1177 if (!plug) 1178 goto out; 1179 *request_count = 0; 1180 1181 list_for_each_entry_reverse(rq, &plug->list, queuelist) { 1182 int el_ret; 1183 1184 (*request_count)++; 1185 1186 if (rq->q != q) 1187 continue; 1188 1189 el_ret = elv_try_merge(rq, bio); 1190 if (el_ret == ELEVATOR_BACK_MERGE) { 1191 ret = bio_attempt_back_merge(q, rq, bio); 1192 if (ret) 1193 break; 1194 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1195 ret = bio_attempt_front_merge(q, rq, bio); 1196 if (ret) 1197 break; 1198 } 1199 } 1200 out: 1201 return ret; 1202 } 1203 1204 void init_request_from_bio(struct request *req, struct bio *bio) 1205 { 1206 req->cpu = bio->bi_comp_cpu; 1207 req->cmd_type = REQ_TYPE_FS; 1208 1209 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1210 if (bio->bi_rw & REQ_RAHEAD) 1211 req->cmd_flags |= REQ_FAILFAST_MASK; 1212 1213 req->errors = 0; 1214 req->__sector = bio->bi_sector; 1215 req->ioprio = bio_prio(bio); 1216 blk_rq_bio_prep(req->q, req, bio); 1217 } 1218 1219 static int __make_request(struct request_queue *q, struct bio *bio) 1220 { 1221 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1222 struct blk_plug *plug; 1223 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1224 struct request *req; 1225 unsigned int request_count = 0; 1226 1227 /* 1228 * low level driver can indicate that it wants pages above a 1229 * certain limit bounced to low memory (ie for highmem, or even 1230 * ISA dma in theory) 1231 */ 1232 blk_queue_bounce(q, &bio); 1233 1234 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1235 spin_lock_irq(q->queue_lock); 1236 where = ELEVATOR_INSERT_FLUSH; 1237 goto get_rq; 1238 } 1239 1240 /* 1241 * Check if we can merge with the plugged list before grabbing 1242 * any locks. 1243 */ 1244 if (attempt_plug_merge(current, q, bio, &request_count)) 1245 goto out; 1246 1247 spin_lock_irq(q->queue_lock); 1248 1249 el_ret = elv_merge(q, &req, bio); 1250 if (el_ret == ELEVATOR_BACK_MERGE) { 1251 if (bio_attempt_back_merge(q, req, bio)) { 1252 if (!attempt_back_merge(q, req)) 1253 elv_merged_request(q, req, el_ret); 1254 goto out_unlock; 1255 } 1256 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1257 if (bio_attempt_front_merge(q, req, bio)) { 1258 if (!attempt_front_merge(q, req)) 1259 elv_merged_request(q, req, el_ret); 1260 goto out_unlock; 1261 } 1262 } 1263 1264 get_rq: 1265 /* 1266 * This sync check and mask will be re-done in init_request_from_bio(), 1267 * but we need to set it earlier to expose the sync flag to the 1268 * rq allocator and io schedulers. 1269 */ 1270 rw_flags = bio_data_dir(bio); 1271 if (sync) 1272 rw_flags |= REQ_SYNC; 1273 1274 /* 1275 * Grab a free request. This is might sleep but can not fail. 1276 * Returns with the queue unlocked. 1277 */ 1278 req = get_request_wait(q, rw_flags, bio); 1279 1280 /* 1281 * After dropping the lock and possibly sleeping here, our request 1282 * may now be mergeable after it had proven unmergeable (above). 1283 * We don't worry about that case for efficiency. It won't happen 1284 * often, and the elevators are able to handle it. 1285 */ 1286 init_request_from_bio(req, bio); 1287 1288 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1289 bio_flagged(bio, BIO_CPU_AFFINE)) 1290 req->cpu = raw_smp_processor_id(); 1291 1292 plug = current->plug; 1293 if (plug) { 1294 /* 1295 * If this is the first request added after a plug, fire 1296 * of a plug trace. If others have been added before, check 1297 * if we have multiple devices in this plug. If so, make a 1298 * note to sort the list before dispatch. 1299 */ 1300 if (list_empty(&plug->list)) 1301 trace_block_plug(q); 1302 else if (!plug->should_sort) { 1303 struct request *__rq; 1304 1305 __rq = list_entry_rq(plug->list.prev); 1306 if (__rq->q != q) 1307 plug->should_sort = 1; 1308 } 1309 if (request_count >= BLK_MAX_REQUEST_COUNT) 1310 blk_flush_plug_list(plug, false); 1311 list_add_tail(&req->queuelist, &plug->list); 1312 drive_stat_acct(req, 1); 1313 } else { 1314 spin_lock_irq(q->queue_lock); 1315 add_acct_request(q, req, where); 1316 __blk_run_queue(q); 1317 out_unlock: 1318 spin_unlock_irq(q->queue_lock); 1319 } 1320 out: 1321 return 0; 1322 } 1323 1324 /* 1325 * If bio->bi_dev is a partition, remap the location 1326 */ 1327 static inline void blk_partition_remap(struct bio *bio) 1328 { 1329 struct block_device *bdev = bio->bi_bdev; 1330 1331 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1332 struct hd_struct *p = bdev->bd_part; 1333 1334 bio->bi_sector += p->start_sect; 1335 bio->bi_bdev = bdev->bd_contains; 1336 1337 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1338 bdev->bd_dev, 1339 bio->bi_sector - p->start_sect); 1340 } 1341 } 1342 1343 static void handle_bad_sector(struct bio *bio) 1344 { 1345 char b[BDEVNAME_SIZE]; 1346 1347 printk(KERN_INFO "attempt to access beyond end of device\n"); 1348 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1349 bdevname(bio->bi_bdev, b), 1350 bio->bi_rw, 1351 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1352 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1353 1354 set_bit(BIO_EOF, &bio->bi_flags); 1355 } 1356 1357 #ifdef CONFIG_FAIL_MAKE_REQUEST 1358 1359 static DECLARE_FAULT_ATTR(fail_make_request); 1360 1361 static int __init setup_fail_make_request(char *str) 1362 { 1363 return setup_fault_attr(&fail_make_request, str); 1364 } 1365 __setup("fail_make_request=", setup_fail_make_request); 1366 1367 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1368 { 1369 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1370 } 1371 1372 static int __init fail_make_request_debugfs(void) 1373 { 1374 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1375 NULL, &fail_make_request); 1376 1377 return IS_ERR(dir) ? PTR_ERR(dir) : 0; 1378 } 1379 1380 late_initcall(fail_make_request_debugfs); 1381 1382 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1383 1384 static inline bool should_fail_request(struct hd_struct *part, 1385 unsigned int bytes) 1386 { 1387 return false; 1388 } 1389 1390 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1391 1392 /* 1393 * Check whether this bio extends beyond the end of the device. 1394 */ 1395 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1396 { 1397 sector_t maxsector; 1398 1399 if (!nr_sectors) 1400 return 0; 1401 1402 /* Test device or partition size, when known. */ 1403 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1404 if (maxsector) { 1405 sector_t sector = bio->bi_sector; 1406 1407 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1408 /* 1409 * This may well happen - the kernel calls bread() 1410 * without checking the size of the device, e.g., when 1411 * mounting a device. 1412 */ 1413 handle_bad_sector(bio); 1414 return 1; 1415 } 1416 } 1417 1418 return 0; 1419 } 1420 1421 /** 1422 * generic_make_request - hand a buffer to its device driver for I/O 1423 * @bio: The bio describing the location in memory and on the device. 1424 * 1425 * generic_make_request() is used to make I/O requests of block 1426 * devices. It is passed a &struct bio, which describes the I/O that needs 1427 * to be done. 1428 * 1429 * generic_make_request() does not return any status. The 1430 * success/failure status of the request, along with notification of 1431 * completion, is delivered asynchronously through the bio->bi_end_io 1432 * function described (one day) else where. 1433 * 1434 * The caller of generic_make_request must make sure that bi_io_vec 1435 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1436 * set to describe the device address, and the 1437 * bi_end_io and optionally bi_private are set to describe how 1438 * completion notification should be signaled. 1439 * 1440 * generic_make_request and the drivers it calls may use bi_next if this 1441 * bio happens to be merged with someone else, and may change bi_dev and 1442 * bi_sector for remaps as it sees fit. So the values of these fields 1443 * should NOT be depended on after the call to generic_make_request. 1444 */ 1445 static inline void __generic_make_request(struct bio *bio) 1446 { 1447 struct request_queue *q; 1448 sector_t old_sector; 1449 int ret, nr_sectors = bio_sectors(bio); 1450 dev_t old_dev; 1451 int err = -EIO; 1452 1453 might_sleep(); 1454 1455 if (bio_check_eod(bio, nr_sectors)) 1456 goto end_io; 1457 1458 /* 1459 * Resolve the mapping until finished. (drivers are 1460 * still free to implement/resolve their own stacking 1461 * by explicitly returning 0) 1462 * 1463 * NOTE: we don't repeat the blk_size check for each new device. 1464 * Stacking drivers are expected to know what they are doing. 1465 */ 1466 old_sector = -1; 1467 old_dev = 0; 1468 do { 1469 char b[BDEVNAME_SIZE]; 1470 struct hd_struct *part; 1471 1472 q = bdev_get_queue(bio->bi_bdev); 1473 if (unlikely(!q)) { 1474 printk(KERN_ERR 1475 "generic_make_request: Trying to access " 1476 "nonexistent block-device %s (%Lu)\n", 1477 bdevname(bio->bi_bdev, b), 1478 (long long) bio->bi_sector); 1479 goto end_io; 1480 } 1481 1482 if (unlikely(!(bio->bi_rw & REQ_DISCARD) && 1483 nr_sectors > queue_max_hw_sectors(q))) { 1484 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1485 bdevname(bio->bi_bdev, b), 1486 bio_sectors(bio), 1487 queue_max_hw_sectors(q)); 1488 goto end_io; 1489 } 1490 1491 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1492 goto end_io; 1493 1494 part = bio->bi_bdev->bd_part; 1495 if (should_fail_request(part, bio->bi_size) || 1496 should_fail_request(&part_to_disk(part)->part0, 1497 bio->bi_size)) 1498 goto end_io; 1499 1500 /* 1501 * If this device has partitions, remap block n 1502 * of partition p to block n+start(p) of the disk. 1503 */ 1504 blk_partition_remap(bio); 1505 1506 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1507 goto end_io; 1508 1509 if (old_sector != -1) 1510 trace_block_bio_remap(q, bio, old_dev, old_sector); 1511 1512 old_sector = bio->bi_sector; 1513 old_dev = bio->bi_bdev->bd_dev; 1514 1515 if (bio_check_eod(bio, nr_sectors)) 1516 goto end_io; 1517 1518 /* 1519 * Filter flush bio's early so that make_request based 1520 * drivers without flush support don't have to worry 1521 * about them. 1522 */ 1523 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1524 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1525 if (!nr_sectors) { 1526 err = 0; 1527 goto end_io; 1528 } 1529 } 1530 1531 if ((bio->bi_rw & REQ_DISCARD) && 1532 (!blk_queue_discard(q) || 1533 ((bio->bi_rw & REQ_SECURE) && 1534 !blk_queue_secdiscard(q)))) { 1535 err = -EOPNOTSUPP; 1536 goto end_io; 1537 } 1538 1539 if (blk_throtl_bio(q, &bio)) 1540 goto end_io; 1541 1542 /* 1543 * If bio = NULL, bio has been throttled and will be submitted 1544 * later. 1545 */ 1546 if (!bio) 1547 break; 1548 1549 trace_block_bio_queue(q, bio); 1550 1551 ret = q->make_request_fn(q, bio); 1552 } while (ret); 1553 1554 return; 1555 1556 end_io: 1557 bio_endio(bio, err); 1558 } 1559 1560 /* 1561 * We only want one ->make_request_fn to be active at a time, 1562 * else stack usage with stacked devices could be a problem. 1563 * So use current->bio_list to keep a list of requests 1564 * submited by a make_request_fn function. 1565 * current->bio_list is also used as a flag to say if 1566 * generic_make_request is currently active in this task or not. 1567 * If it is NULL, then no make_request is active. If it is non-NULL, 1568 * then a make_request is active, and new requests should be added 1569 * at the tail 1570 */ 1571 void generic_make_request(struct bio *bio) 1572 { 1573 struct bio_list bio_list_on_stack; 1574 1575 if (current->bio_list) { 1576 /* make_request is active */ 1577 bio_list_add(current->bio_list, bio); 1578 return; 1579 } 1580 /* following loop may be a bit non-obvious, and so deserves some 1581 * explanation. 1582 * Before entering the loop, bio->bi_next is NULL (as all callers 1583 * ensure that) so we have a list with a single bio. 1584 * We pretend that we have just taken it off a longer list, so 1585 * we assign bio_list to a pointer to the bio_list_on_stack, 1586 * thus initialising the bio_list of new bios to be 1587 * added. __generic_make_request may indeed add some more bios 1588 * through a recursive call to generic_make_request. If it 1589 * did, we find a non-NULL value in bio_list and re-enter the loop 1590 * from the top. In this case we really did just take the bio 1591 * of the top of the list (no pretending) and so remove it from 1592 * bio_list, and call into __generic_make_request again. 1593 * 1594 * The loop was structured like this to make only one call to 1595 * __generic_make_request (which is important as it is large and 1596 * inlined) and to keep the structure simple. 1597 */ 1598 BUG_ON(bio->bi_next); 1599 bio_list_init(&bio_list_on_stack); 1600 current->bio_list = &bio_list_on_stack; 1601 do { 1602 __generic_make_request(bio); 1603 bio = bio_list_pop(current->bio_list); 1604 } while (bio); 1605 current->bio_list = NULL; /* deactivate */ 1606 } 1607 EXPORT_SYMBOL(generic_make_request); 1608 1609 /** 1610 * submit_bio - submit a bio to the block device layer for I/O 1611 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1612 * @bio: The &struct bio which describes the I/O 1613 * 1614 * submit_bio() is very similar in purpose to generic_make_request(), and 1615 * uses that function to do most of the work. Both are fairly rough 1616 * interfaces; @bio must be presetup and ready for I/O. 1617 * 1618 */ 1619 void submit_bio(int rw, struct bio *bio) 1620 { 1621 int count = bio_sectors(bio); 1622 1623 bio->bi_rw |= rw; 1624 1625 /* 1626 * If it's a regular read/write or a barrier with data attached, 1627 * go through the normal accounting stuff before submission. 1628 */ 1629 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) { 1630 if (rw & WRITE) { 1631 count_vm_events(PGPGOUT, count); 1632 } else { 1633 task_io_account_read(bio->bi_size); 1634 count_vm_events(PGPGIN, count); 1635 } 1636 1637 if (unlikely(block_dump)) { 1638 char b[BDEVNAME_SIZE]; 1639 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1640 current->comm, task_pid_nr(current), 1641 (rw & WRITE) ? "WRITE" : "READ", 1642 (unsigned long long)bio->bi_sector, 1643 bdevname(bio->bi_bdev, b), 1644 count); 1645 } 1646 } 1647 1648 generic_make_request(bio); 1649 } 1650 EXPORT_SYMBOL(submit_bio); 1651 1652 /** 1653 * blk_rq_check_limits - Helper function to check a request for the queue limit 1654 * @q: the queue 1655 * @rq: the request being checked 1656 * 1657 * Description: 1658 * @rq may have been made based on weaker limitations of upper-level queues 1659 * in request stacking drivers, and it may violate the limitation of @q. 1660 * Since the block layer and the underlying device driver trust @rq 1661 * after it is inserted to @q, it should be checked against @q before 1662 * the insertion using this generic function. 1663 * 1664 * This function should also be useful for request stacking drivers 1665 * in some cases below, so export this function. 1666 * Request stacking drivers like request-based dm may change the queue 1667 * limits while requests are in the queue (e.g. dm's table swapping). 1668 * Such request stacking drivers should check those requests agaist 1669 * the new queue limits again when they dispatch those requests, 1670 * although such checkings are also done against the old queue limits 1671 * when submitting requests. 1672 */ 1673 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1674 { 1675 if (rq->cmd_flags & REQ_DISCARD) 1676 return 0; 1677 1678 if (blk_rq_sectors(rq) > queue_max_sectors(q) || 1679 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) { 1680 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1681 return -EIO; 1682 } 1683 1684 /* 1685 * queue's settings related to segment counting like q->bounce_pfn 1686 * may differ from that of other stacking queues. 1687 * Recalculate it to check the request correctly on this queue's 1688 * limitation. 1689 */ 1690 blk_recalc_rq_segments(rq); 1691 if (rq->nr_phys_segments > queue_max_segments(q)) { 1692 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1693 return -EIO; 1694 } 1695 1696 return 0; 1697 } 1698 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1699 1700 /** 1701 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1702 * @q: the queue to submit the request 1703 * @rq: the request being queued 1704 */ 1705 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1706 { 1707 unsigned long flags; 1708 int where = ELEVATOR_INSERT_BACK; 1709 1710 if (blk_rq_check_limits(q, rq)) 1711 return -EIO; 1712 1713 if (rq->rq_disk && 1714 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1715 return -EIO; 1716 1717 spin_lock_irqsave(q->queue_lock, flags); 1718 1719 /* 1720 * Submitting request must be dequeued before calling this function 1721 * because it will be linked to another request_queue 1722 */ 1723 BUG_ON(blk_queued_rq(rq)); 1724 1725 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 1726 where = ELEVATOR_INSERT_FLUSH; 1727 1728 add_acct_request(q, rq, where); 1729 spin_unlock_irqrestore(q->queue_lock, flags); 1730 1731 return 0; 1732 } 1733 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1734 1735 /** 1736 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1737 * @rq: request to examine 1738 * 1739 * Description: 1740 * A request could be merge of IOs which require different failure 1741 * handling. This function determines the number of bytes which 1742 * can be failed from the beginning of the request without 1743 * crossing into area which need to be retried further. 1744 * 1745 * Return: 1746 * The number of bytes to fail. 1747 * 1748 * Context: 1749 * queue_lock must be held. 1750 */ 1751 unsigned int blk_rq_err_bytes(const struct request *rq) 1752 { 1753 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1754 unsigned int bytes = 0; 1755 struct bio *bio; 1756 1757 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1758 return blk_rq_bytes(rq); 1759 1760 /* 1761 * Currently the only 'mixing' which can happen is between 1762 * different fastfail types. We can safely fail portions 1763 * which have all the failfast bits that the first one has - 1764 * the ones which are at least as eager to fail as the first 1765 * one. 1766 */ 1767 for (bio = rq->bio; bio; bio = bio->bi_next) { 1768 if ((bio->bi_rw & ff) != ff) 1769 break; 1770 bytes += bio->bi_size; 1771 } 1772 1773 /* this could lead to infinite loop */ 1774 BUG_ON(blk_rq_bytes(rq) && !bytes); 1775 return bytes; 1776 } 1777 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1778 1779 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1780 { 1781 if (blk_do_io_stat(req)) { 1782 const int rw = rq_data_dir(req); 1783 struct hd_struct *part; 1784 int cpu; 1785 1786 cpu = part_stat_lock(); 1787 part = req->part; 1788 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1789 part_stat_unlock(); 1790 } 1791 } 1792 1793 static void blk_account_io_done(struct request *req) 1794 { 1795 /* 1796 * Account IO completion. flush_rq isn't accounted as a 1797 * normal IO on queueing nor completion. Accounting the 1798 * containing request is enough. 1799 */ 1800 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 1801 unsigned long duration = jiffies - req->start_time; 1802 const int rw = rq_data_dir(req); 1803 struct hd_struct *part; 1804 int cpu; 1805 1806 cpu = part_stat_lock(); 1807 part = req->part; 1808 1809 part_stat_inc(cpu, part, ios[rw]); 1810 part_stat_add(cpu, part, ticks[rw], duration); 1811 part_round_stats(cpu, part); 1812 part_dec_in_flight(part, rw); 1813 1814 hd_struct_put(part); 1815 part_stat_unlock(); 1816 } 1817 } 1818 1819 /** 1820 * blk_peek_request - peek at the top of a request queue 1821 * @q: request queue to peek at 1822 * 1823 * Description: 1824 * Return the request at the top of @q. The returned request 1825 * should be started using blk_start_request() before LLD starts 1826 * processing it. 1827 * 1828 * Return: 1829 * Pointer to the request at the top of @q if available. Null 1830 * otherwise. 1831 * 1832 * Context: 1833 * queue_lock must be held. 1834 */ 1835 struct request *blk_peek_request(struct request_queue *q) 1836 { 1837 struct request *rq; 1838 int ret; 1839 1840 while ((rq = __elv_next_request(q)) != NULL) { 1841 if (!(rq->cmd_flags & REQ_STARTED)) { 1842 /* 1843 * This is the first time the device driver 1844 * sees this request (possibly after 1845 * requeueing). Notify IO scheduler. 1846 */ 1847 if (rq->cmd_flags & REQ_SORTED) 1848 elv_activate_rq(q, rq); 1849 1850 /* 1851 * just mark as started even if we don't start 1852 * it, a request that has been delayed should 1853 * not be passed by new incoming requests 1854 */ 1855 rq->cmd_flags |= REQ_STARTED; 1856 trace_block_rq_issue(q, rq); 1857 } 1858 1859 if (!q->boundary_rq || q->boundary_rq == rq) { 1860 q->end_sector = rq_end_sector(rq); 1861 q->boundary_rq = NULL; 1862 } 1863 1864 if (rq->cmd_flags & REQ_DONTPREP) 1865 break; 1866 1867 if (q->dma_drain_size && blk_rq_bytes(rq)) { 1868 /* 1869 * make sure space for the drain appears we 1870 * know we can do this because max_hw_segments 1871 * has been adjusted to be one fewer than the 1872 * device can handle 1873 */ 1874 rq->nr_phys_segments++; 1875 } 1876 1877 if (!q->prep_rq_fn) 1878 break; 1879 1880 ret = q->prep_rq_fn(q, rq); 1881 if (ret == BLKPREP_OK) { 1882 break; 1883 } else if (ret == BLKPREP_DEFER) { 1884 /* 1885 * the request may have been (partially) prepped. 1886 * we need to keep this request in the front to 1887 * avoid resource deadlock. REQ_STARTED will 1888 * prevent other fs requests from passing this one. 1889 */ 1890 if (q->dma_drain_size && blk_rq_bytes(rq) && 1891 !(rq->cmd_flags & REQ_DONTPREP)) { 1892 /* 1893 * remove the space for the drain we added 1894 * so that we don't add it again 1895 */ 1896 --rq->nr_phys_segments; 1897 } 1898 1899 rq = NULL; 1900 break; 1901 } else if (ret == BLKPREP_KILL) { 1902 rq->cmd_flags |= REQ_QUIET; 1903 /* 1904 * Mark this request as started so we don't trigger 1905 * any debug logic in the end I/O path. 1906 */ 1907 blk_start_request(rq); 1908 __blk_end_request_all(rq, -EIO); 1909 } else { 1910 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 1911 break; 1912 } 1913 } 1914 1915 return rq; 1916 } 1917 EXPORT_SYMBOL(blk_peek_request); 1918 1919 void blk_dequeue_request(struct request *rq) 1920 { 1921 struct request_queue *q = rq->q; 1922 1923 BUG_ON(list_empty(&rq->queuelist)); 1924 BUG_ON(ELV_ON_HASH(rq)); 1925 1926 list_del_init(&rq->queuelist); 1927 1928 /* 1929 * the time frame between a request being removed from the lists 1930 * and to it is freed is accounted as io that is in progress at 1931 * the driver side. 1932 */ 1933 if (blk_account_rq(rq)) { 1934 q->in_flight[rq_is_sync(rq)]++; 1935 set_io_start_time_ns(rq); 1936 } 1937 } 1938 1939 /** 1940 * blk_start_request - start request processing on the driver 1941 * @req: request to dequeue 1942 * 1943 * Description: 1944 * Dequeue @req and start timeout timer on it. This hands off the 1945 * request to the driver. 1946 * 1947 * Block internal functions which don't want to start timer should 1948 * call blk_dequeue_request(). 1949 * 1950 * Context: 1951 * queue_lock must be held. 1952 */ 1953 void blk_start_request(struct request *req) 1954 { 1955 blk_dequeue_request(req); 1956 1957 /* 1958 * We are now handing the request to the hardware, initialize 1959 * resid_len to full count and add the timeout handler. 1960 */ 1961 req->resid_len = blk_rq_bytes(req); 1962 if (unlikely(blk_bidi_rq(req))) 1963 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 1964 1965 blk_add_timer(req); 1966 } 1967 EXPORT_SYMBOL(blk_start_request); 1968 1969 /** 1970 * blk_fetch_request - fetch a request from a request queue 1971 * @q: request queue to fetch a request from 1972 * 1973 * Description: 1974 * Return the request at the top of @q. The request is started on 1975 * return and LLD can start processing it immediately. 1976 * 1977 * Return: 1978 * Pointer to the request at the top of @q if available. Null 1979 * otherwise. 1980 * 1981 * Context: 1982 * queue_lock must be held. 1983 */ 1984 struct request *blk_fetch_request(struct request_queue *q) 1985 { 1986 struct request *rq; 1987 1988 rq = blk_peek_request(q); 1989 if (rq) 1990 blk_start_request(rq); 1991 return rq; 1992 } 1993 EXPORT_SYMBOL(blk_fetch_request); 1994 1995 /** 1996 * blk_update_request - Special helper function for request stacking drivers 1997 * @req: the request being processed 1998 * @error: %0 for success, < %0 for error 1999 * @nr_bytes: number of bytes to complete @req 2000 * 2001 * Description: 2002 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2003 * the request structure even if @req doesn't have leftover. 2004 * If @req has leftover, sets it up for the next range of segments. 2005 * 2006 * This special helper function is only for request stacking drivers 2007 * (e.g. request-based dm) so that they can handle partial completion. 2008 * Actual device drivers should use blk_end_request instead. 2009 * 2010 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2011 * %false return from this function. 2012 * 2013 * Return: 2014 * %false - this request doesn't have any more data 2015 * %true - this request has more data 2016 **/ 2017 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2018 { 2019 int total_bytes, bio_nbytes, next_idx = 0; 2020 struct bio *bio; 2021 2022 if (!req->bio) 2023 return false; 2024 2025 trace_block_rq_complete(req->q, req); 2026 2027 /* 2028 * For fs requests, rq is just carrier of independent bio's 2029 * and each partial completion should be handled separately. 2030 * Reset per-request error on each partial completion. 2031 * 2032 * TODO: tj: This is too subtle. It would be better to let 2033 * low level drivers do what they see fit. 2034 */ 2035 if (req->cmd_type == REQ_TYPE_FS) 2036 req->errors = 0; 2037 2038 if (error && req->cmd_type == REQ_TYPE_FS && 2039 !(req->cmd_flags & REQ_QUIET)) { 2040 char *error_type; 2041 2042 switch (error) { 2043 case -ENOLINK: 2044 error_type = "recoverable transport"; 2045 break; 2046 case -EREMOTEIO: 2047 error_type = "critical target"; 2048 break; 2049 case -EBADE: 2050 error_type = "critical nexus"; 2051 break; 2052 case -EIO: 2053 default: 2054 error_type = "I/O"; 2055 break; 2056 } 2057 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2058 error_type, req->rq_disk ? req->rq_disk->disk_name : "?", 2059 (unsigned long long)blk_rq_pos(req)); 2060 } 2061 2062 blk_account_io_completion(req, nr_bytes); 2063 2064 total_bytes = bio_nbytes = 0; 2065 while ((bio = req->bio) != NULL) { 2066 int nbytes; 2067 2068 if (nr_bytes >= bio->bi_size) { 2069 req->bio = bio->bi_next; 2070 nbytes = bio->bi_size; 2071 req_bio_endio(req, bio, nbytes, error); 2072 next_idx = 0; 2073 bio_nbytes = 0; 2074 } else { 2075 int idx = bio->bi_idx + next_idx; 2076 2077 if (unlikely(idx >= bio->bi_vcnt)) { 2078 blk_dump_rq_flags(req, "__end_that"); 2079 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 2080 __func__, idx, bio->bi_vcnt); 2081 break; 2082 } 2083 2084 nbytes = bio_iovec_idx(bio, idx)->bv_len; 2085 BIO_BUG_ON(nbytes > bio->bi_size); 2086 2087 /* 2088 * not a complete bvec done 2089 */ 2090 if (unlikely(nbytes > nr_bytes)) { 2091 bio_nbytes += nr_bytes; 2092 total_bytes += nr_bytes; 2093 break; 2094 } 2095 2096 /* 2097 * advance to the next vector 2098 */ 2099 next_idx++; 2100 bio_nbytes += nbytes; 2101 } 2102 2103 total_bytes += nbytes; 2104 nr_bytes -= nbytes; 2105 2106 bio = req->bio; 2107 if (bio) { 2108 /* 2109 * end more in this run, or just return 'not-done' 2110 */ 2111 if (unlikely(nr_bytes <= 0)) 2112 break; 2113 } 2114 } 2115 2116 /* 2117 * completely done 2118 */ 2119 if (!req->bio) { 2120 /* 2121 * Reset counters so that the request stacking driver 2122 * can find how many bytes remain in the request 2123 * later. 2124 */ 2125 req->__data_len = 0; 2126 return false; 2127 } 2128 2129 /* 2130 * if the request wasn't completed, update state 2131 */ 2132 if (bio_nbytes) { 2133 req_bio_endio(req, bio, bio_nbytes, error); 2134 bio->bi_idx += next_idx; 2135 bio_iovec(bio)->bv_offset += nr_bytes; 2136 bio_iovec(bio)->bv_len -= nr_bytes; 2137 } 2138 2139 req->__data_len -= total_bytes; 2140 req->buffer = bio_data(req->bio); 2141 2142 /* update sector only for requests with clear definition of sector */ 2143 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD)) 2144 req->__sector += total_bytes >> 9; 2145 2146 /* mixed attributes always follow the first bio */ 2147 if (req->cmd_flags & REQ_MIXED_MERGE) { 2148 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2149 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2150 } 2151 2152 /* 2153 * If total number of sectors is less than the first segment 2154 * size, something has gone terribly wrong. 2155 */ 2156 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2157 blk_dump_rq_flags(req, "request botched"); 2158 req->__data_len = blk_rq_cur_bytes(req); 2159 } 2160 2161 /* recalculate the number of segments */ 2162 blk_recalc_rq_segments(req); 2163 2164 return true; 2165 } 2166 EXPORT_SYMBOL_GPL(blk_update_request); 2167 2168 static bool blk_update_bidi_request(struct request *rq, int error, 2169 unsigned int nr_bytes, 2170 unsigned int bidi_bytes) 2171 { 2172 if (blk_update_request(rq, error, nr_bytes)) 2173 return true; 2174 2175 /* Bidi request must be completed as a whole */ 2176 if (unlikely(blk_bidi_rq(rq)) && 2177 blk_update_request(rq->next_rq, error, bidi_bytes)) 2178 return true; 2179 2180 if (blk_queue_add_random(rq->q)) 2181 add_disk_randomness(rq->rq_disk); 2182 2183 return false; 2184 } 2185 2186 /** 2187 * blk_unprep_request - unprepare a request 2188 * @req: the request 2189 * 2190 * This function makes a request ready for complete resubmission (or 2191 * completion). It happens only after all error handling is complete, 2192 * so represents the appropriate moment to deallocate any resources 2193 * that were allocated to the request in the prep_rq_fn. The queue 2194 * lock is held when calling this. 2195 */ 2196 void blk_unprep_request(struct request *req) 2197 { 2198 struct request_queue *q = req->q; 2199 2200 req->cmd_flags &= ~REQ_DONTPREP; 2201 if (q->unprep_rq_fn) 2202 q->unprep_rq_fn(q, req); 2203 } 2204 EXPORT_SYMBOL_GPL(blk_unprep_request); 2205 2206 /* 2207 * queue lock must be held 2208 */ 2209 static void blk_finish_request(struct request *req, int error) 2210 { 2211 if (blk_rq_tagged(req)) 2212 blk_queue_end_tag(req->q, req); 2213 2214 BUG_ON(blk_queued_rq(req)); 2215 2216 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2217 laptop_io_completion(&req->q->backing_dev_info); 2218 2219 blk_delete_timer(req); 2220 2221 if (req->cmd_flags & REQ_DONTPREP) 2222 blk_unprep_request(req); 2223 2224 2225 blk_account_io_done(req); 2226 2227 if (req->end_io) 2228 req->end_io(req, error); 2229 else { 2230 if (blk_bidi_rq(req)) 2231 __blk_put_request(req->next_rq->q, req->next_rq); 2232 2233 __blk_put_request(req->q, req); 2234 } 2235 } 2236 2237 /** 2238 * blk_end_bidi_request - Complete a bidi request 2239 * @rq: the request to complete 2240 * @error: %0 for success, < %0 for error 2241 * @nr_bytes: number of bytes to complete @rq 2242 * @bidi_bytes: number of bytes to complete @rq->next_rq 2243 * 2244 * Description: 2245 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2246 * Drivers that supports bidi can safely call this member for any 2247 * type of request, bidi or uni. In the later case @bidi_bytes is 2248 * just ignored. 2249 * 2250 * Return: 2251 * %false - we are done with this request 2252 * %true - still buffers pending for this request 2253 **/ 2254 static bool blk_end_bidi_request(struct request *rq, int error, 2255 unsigned int nr_bytes, unsigned int bidi_bytes) 2256 { 2257 struct request_queue *q = rq->q; 2258 unsigned long flags; 2259 2260 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2261 return true; 2262 2263 spin_lock_irqsave(q->queue_lock, flags); 2264 blk_finish_request(rq, error); 2265 spin_unlock_irqrestore(q->queue_lock, flags); 2266 2267 return false; 2268 } 2269 2270 /** 2271 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2272 * @rq: the request to complete 2273 * @error: %0 for success, < %0 for error 2274 * @nr_bytes: number of bytes to complete @rq 2275 * @bidi_bytes: number of bytes to complete @rq->next_rq 2276 * 2277 * Description: 2278 * Identical to blk_end_bidi_request() except that queue lock is 2279 * assumed to be locked on entry and remains so on return. 2280 * 2281 * Return: 2282 * %false - we are done with this request 2283 * %true - still buffers pending for this request 2284 **/ 2285 bool __blk_end_bidi_request(struct request *rq, int error, 2286 unsigned int nr_bytes, unsigned int bidi_bytes) 2287 { 2288 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2289 return true; 2290 2291 blk_finish_request(rq, error); 2292 2293 return false; 2294 } 2295 2296 /** 2297 * blk_end_request - Helper function for drivers to complete the request. 2298 * @rq: the request being processed 2299 * @error: %0 for success, < %0 for error 2300 * @nr_bytes: number of bytes to complete 2301 * 2302 * Description: 2303 * Ends I/O on a number of bytes attached to @rq. 2304 * If @rq has leftover, sets it up for the next range of segments. 2305 * 2306 * Return: 2307 * %false - we are done with this request 2308 * %true - still buffers pending for this request 2309 **/ 2310 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2311 { 2312 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2313 } 2314 EXPORT_SYMBOL(blk_end_request); 2315 2316 /** 2317 * blk_end_request_all - Helper function for drives to finish the request. 2318 * @rq: the request to finish 2319 * @error: %0 for success, < %0 for error 2320 * 2321 * Description: 2322 * Completely finish @rq. 2323 */ 2324 void blk_end_request_all(struct request *rq, int error) 2325 { 2326 bool pending; 2327 unsigned int bidi_bytes = 0; 2328 2329 if (unlikely(blk_bidi_rq(rq))) 2330 bidi_bytes = blk_rq_bytes(rq->next_rq); 2331 2332 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2333 BUG_ON(pending); 2334 } 2335 EXPORT_SYMBOL(blk_end_request_all); 2336 2337 /** 2338 * blk_end_request_cur - Helper function to finish the current request chunk. 2339 * @rq: the request to finish the current chunk for 2340 * @error: %0 for success, < %0 for error 2341 * 2342 * Description: 2343 * Complete the current consecutively mapped chunk from @rq. 2344 * 2345 * Return: 2346 * %false - we are done with this request 2347 * %true - still buffers pending for this request 2348 */ 2349 bool blk_end_request_cur(struct request *rq, int error) 2350 { 2351 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2352 } 2353 EXPORT_SYMBOL(blk_end_request_cur); 2354 2355 /** 2356 * blk_end_request_err - Finish a request till the next failure boundary. 2357 * @rq: the request to finish till the next failure boundary for 2358 * @error: must be negative errno 2359 * 2360 * Description: 2361 * Complete @rq till the next failure boundary. 2362 * 2363 * Return: 2364 * %false - we are done with this request 2365 * %true - still buffers pending for this request 2366 */ 2367 bool blk_end_request_err(struct request *rq, int error) 2368 { 2369 WARN_ON(error >= 0); 2370 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2371 } 2372 EXPORT_SYMBOL_GPL(blk_end_request_err); 2373 2374 /** 2375 * __blk_end_request - Helper function for drivers to complete the request. 2376 * @rq: the request being processed 2377 * @error: %0 for success, < %0 for error 2378 * @nr_bytes: number of bytes to complete 2379 * 2380 * Description: 2381 * Must be called with queue lock held unlike blk_end_request(). 2382 * 2383 * Return: 2384 * %false - we are done with this request 2385 * %true - still buffers pending for this request 2386 **/ 2387 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2388 { 2389 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2390 } 2391 EXPORT_SYMBOL(__blk_end_request); 2392 2393 /** 2394 * __blk_end_request_all - Helper function for drives to finish the request. 2395 * @rq: the request to finish 2396 * @error: %0 for success, < %0 for error 2397 * 2398 * Description: 2399 * Completely finish @rq. Must be called with queue lock held. 2400 */ 2401 void __blk_end_request_all(struct request *rq, int error) 2402 { 2403 bool pending; 2404 unsigned int bidi_bytes = 0; 2405 2406 if (unlikely(blk_bidi_rq(rq))) 2407 bidi_bytes = blk_rq_bytes(rq->next_rq); 2408 2409 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2410 BUG_ON(pending); 2411 } 2412 EXPORT_SYMBOL(__blk_end_request_all); 2413 2414 /** 2415 * __blk_end_request_cur - Helper function to finish the current request chunk. 2416 * @rq: the request to finish the current chunk for 2417 * @error: %0 for success, < %0 for error 2418 * 2419 * Description: 2420 * Complete the current consecutively mapped chunk from @rq. Must 2421 * be called with queue lock held. 2422 * 2423 * Return: 2424 * %false - we are done with this request 2425 * %true - still buffers pending for this request 2426 */ 2427 bool __blk_end_request_cur(struct request *rq, int error) 2428 { 2429 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2430 } 2431 EXPORT_SYMBOL(__blk_end_request_cur); 2432 2433 /** 2434 * __blk_end_request_err - Finish a request till the next failure boundary. 2435 * @rq: the request to finish till the next failure boundary for 2436 * @error: must be negative errno 2437 * 2438 * Description: 2439 * Complete @rq till the next failure boundary. Must be called 2440 * with queue lock held. 2441 * 2442 * Return: 2443 * %false - we are done with this request 2444 * %true - still buffers pending for this request 2445 */ 2446 bool __blk_end_request_err(struct request *rq, int error) 2447 { 2448 WARN_ON(error >= 0); 2449 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2450 } 2451 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2452 2453 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2454 struct bio *bio) 2455 { 2456 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2457 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2458 2459 if (bio_has_data(bio)) { 2460 rq->nr_phys_segments = bio_phys_segments(q, bio); 2461 rq->buffer = bio_data(bio); 2462 } 2463 rq->__data_len = bio->bi_size; 2464 rq->bio = rq->biotail = bio; 2465 2466 if (bio->bi_bdev) 2467 rq->rq_disk = bio->bi_bdev->bd_disk; 2468 } 2469 2470 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2471 /** 2472 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2473 * @rq: the request to be flushed 2474 * 2475 * Description: 2476 * Flush all pages in @rq. 2477 */ 2478 void rq_flush_dcache_pages(struct request *rq) 2479 { 2480 struct req_iterator iter; 2481 struct bio_vec *bvec; 2482 2483 rq_for_each_segment(bvec, rq, iter) 2484 flush_dcache_page(bvec->bv_page); 2485 } 2486 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2487 #endif 2488 2489 /** 2490 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2491 * @q : the queue of the device being checked 2492 * 2493 * Description: 2494 * Check if underlying low-level drivers of a device are busy. 2495 * If the drivers want to export their busy state, they must set own 2496 * exporting function using blk_queue_lld_busy() first. 2497 * 2498 * Basically, this function is used only by request stacking drivers 2499 * to stop dispatching requests to underlying devices when underlying 2500 * devices are busy. This behavior helps more I/O merging on the queue 2501 * of the request stacking driver and prevents I/O throughput regression 2502 * on burst I/O load. 2503 * 2504 * Return: 2505 * 0 - Not busy (The request stacking driver should dispatch request) 2506 * 1 - Busy (The request stacking driver should stop dispatching request) 2507 */ 2508 int blk_lld_busy(struct request_queue *q) 2509 { 2510 if (q->lld_busy_fn) 2511 return q->lld_busy_fn(q); 2512 2513 return 0; 2514 } 2515 EXPORT_SYMBOL_GPL(blk_lld_busy); 2516 2517 /** 2518 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2519 * @rq: the clone request to be cleaned up 2520 * 2521 * Description: 2522 * Free all bios in @rq for a cloned request. 2523 */ 2524 void blk_rq_unprep_clone(struct request *rq) 2525 { 2526 struct bio *bio; 2527 2528 while ((bio = rq->bio) != NULL) { 2529 rq->bio = bio->bi_next; 2530 2531 bio_put(bio); 2532 } 2533 } 2534 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2535 2536 /* 2537 * Copy attributes of the original request to the clone request. 2538 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2539 */ 2540 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2541 { 2542 dst->cpu = src->cpu; 2543 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2544 dst->cmd_type = src->cmd_type; 2545 dst->__sector = blk_rq_pos(src); 2546 dst->__data_len = blk_rq_bytes(src); 2547 dst->nr_phys_segments = src->nr_phys_segments; 2548 dst->ioprio = src->ioprio; 2549 dst->extra_len = src->extra_len; 2550 } 2551 2552 /** 2553 * blk_rq_prep_clone - Helper function to setup clone request 2554 * @rq: the request to be setup 2555 * @rq_src: original request to be cloned 2556 * @bs: bio_set that bios for clone are allocated from 2557 * @gfp_mask: memory allocation mask for bio 2558 * @bio_ctr: setup function to be called for each clone bio. 2559 * Returns %0 for success, non %0 for failure. 2560 * @data: private data to be passed to @bio_ctr 2561 * 2562 * Description: 2563 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2564 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2565 * are not copied, and copying such parts is the caller's responsibility. 2566 * Also, pages which the original bios are pointing to are not copied 2567 * and the cloned bios just point same pages. 2568 * So cloned bios must be completed before original bios, which means 2569 * the caller must complete @rq before @rq_src. 2570 */ 2571 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2572 struct bio_set *bs, gfp_t gfp_mask, 2573 int (*bio_ctr)(struct bio *, struct bio *, void *), 2574 void *data) 2575 { 2576 struct bio *bio, *bio_src; 2577 2578 if (!bs) 2579 bs = fs_bio_set; 2580 2581 blk_rq_init(NULL, rq); 2582 2583 __rq_for_each_bio(bio_src, rq_src) { 2584 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs); 2585 if (!bio) 2586 goto free_and_out; 2587 2588 __bio_clone(bio, bio_src); 2589 2590 if (bio_integrity(bio_src) && 2591 bio_integrity_clone(bio, bio_src, gfp_mask, bs)) 2592 goto free_and_out; 2593 2594 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2595 goto free_and_out; 2596 2597 if (rq->bio) { 2598 rq->biotail->bi_next = bio; 2599 rq->biotail = bio; 2600 } else 2601 rq->bio = rq->biotail = bio; 2602 } 2603 2604 __blk_rq_prep_clone(rq, rq_src); 2605 2606 return 0; 2607 2608 free_and_out: 2609 if (bio) 2610 bio_free(bio, bs); 2611 blk_rq_unprep_clone(rq); 2612 2613 return -ENOMEM; 2614 } 2615 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2616 2617 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2618 { 2619 return queue_work(kblockd_workqueue, work); 2620 } 2621 EXPORT_SYMBOL(kblockd_schedule_work); 2622 2623 int kblockd_schedule_delayed_work(struct request_queue *q, 2624 struct delayed_work *dwork, unsigned long delay) 2625 { 2626 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2627 } 2628 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2629 2630 #define PLUG_MAGIC 0x91827364 2631 2632 void blk_start_plug(struct blk_plug *plug) 2633 { 2634 struct task_struct *tsk = current; 2635 2636 plug->magic = PLUG_MAGIC; 2637 INIT_LIST_HEAD(&plug->list); 2638 INIT_LIST_HEAD(&plug->cb_list); 2639 plug->should_sort = 0; 2640 2641 /* 2642 * If this is a nested plug, don't actually assign it. It will be 2643 * flushed on its own. 2644 */ 2645 if (!tsk->plug) { 2646 /* 2647 * Store ordering should not be needed here, since a potential 2648 * preempt will imply a full memory barrier 2649 */ 2650 tsk->plug = plug; 2651 } 2652 } 2653 EXPORT_SYMBOL(blk_start_plug); 2654 2655 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 2656 { 2657 struct request *rqa = container_of(a, struct request, queuelist); 2658 struct request *rqb = container_of(b, struct request, queuelist); 2659 2660 return !(rqa->q <= rqb->q); 2661 } 2662 2663 /* 2664 * If 'from_schedule' is true, then postpone the dispatch of requests 2665 * until a safe kblockd context. We due this to avoid accidental big 2666 * additional stack usage in driver dispatch, in places where the originally 2667 * plugger did not intend it. 2668 */ 2669 static void queue_unplugged(struct request_queue *q, unsigned int depth, 2670 bool from_schedule) 2671 __releases(q->queue_lock) 2672 { 2673 trace_block_unplug(q, depth, !from_schedule); 2674 2675 /* 2676 * If we are punting this to kblockd, then we can safely drop 2677 * the queue_lock before waking kblockd (which needs to take 2678 * this lock). 2679 */ 2680 if (from_schedule) { 2681 spin_unlock(q->queue_lock); 2682 blk_run_queue_async(q); 2683 } else { 2684 __blk_run_queue(q); 2685 spin_unlock(q->queue_lock); 2686 } 2687 2688 } 2689 2690 static void flush_plug_callbacks(struct blk_plug *plug) 2691 { 2692 LIST_HEAD(callbacks); 2693 2694 if (list_empty(&plug->cb_list)) 2695 return; 2696 2697 list_splice_init(&plug->cb_list, &callbacks); 2698 2699 while (!list_empty(&callbacks)) { 2700 struct blk_plug_cb *cb = list_first_entry(&callbacks, 2701 struct blk_plug_cb, 2702 list); 2703 list_del(&cb->list); 2704 cb->callback(cb); 2705 } 2706 } 2707 2708 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2709 { 2710 struct request_queue *q; 2711 unsigned long flags; 2712 struct request *rq; 2713 LIST_HEAD(list); 2714 unsigned int depth; 2715 2716 BUG_ON(plug->magic != PLUG_MAGIC); 2717 2718 flush_plug_callbacks(plug); 2719 if (list_empty(&plug->list)) 2720 return; 2721 2722 list_splice_init(&plug->list, &list); 2723 2724 if (plug->should_sort) { 2725 list_sort(NULL, &list, plug_rq_cmp); 2726 plug->should_sort = 0; 2727 } 2728 2729 q = NULL; 2730 depth = 0; 2731 2732 /* 2733 * Save and disable interrupts here, to avoid doing it for every 2734 * queue lock we have to take. 2735 */ 2736 local_irq_save(flags); 2737 while (!list_empty(&list)) { 2738 rq = list_entry_rq(list.next); 2739 list_del_init(&rq->queuelist); 2740 BUG_ON(!rq->q); 2741 if (rq->q != q) { 2742 /* 2743 * This drops the queue lock 2744 */ 2745 if (q) 2746 queue_unplugged(q, depth, from_schedule); 2747 q = rq->q; 2748 depth = 0; 2749 spin_lock(q->queue_lock); 2750 } 2751 /* 2752 * rq is already accounted, so use raw insert 2753 */ 2754 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 2755 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 2756 else 2757 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 2758 2759 depth++; 2760 } 2761 2762 /* 2763 * This drops the queue lock 2764 */ 2765 if (q) 2766 queue_unplugged(q, depth, from_schedule); 2767 2768 local_irq_restore(flags); 2769 } 2770 2771 void blk_finish_plug(struct blk_plug *plug) 2772 { 2773 blk_flush_plug_list(plug, false); 2774 2775 if (plug == current->plug) 2776 current->plug = NULL; 2777 } 2778 EXPORT_SYMBOL(blk_finish_plug); 2779 2780 int __init blk_dev_init(void) 2781 { 2782 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 2783 sizeof(((struct request *)0)->cmd_flags)); 2784 2785 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 2786 kblockd_workqueue = alloc_workqueue("kblockd", 2787 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2788 if (!kblockd_workqueue) 2789 panic("Failed to create kblockd\n"); 2790 2791 request_cachep = kmem_cache_create("blkdev_requests", 2792 sizeof(struct request), 0, SLAB_PANIC, NULL); 2793 2794 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2795 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2796 2797 return 0; 2798 } 2799