xref: /openbmc/linux/block/blk-core.c (revision 9ae05fd1)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40 
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45 
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49 
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55 
56 DEFINE_IDA(blk_queue_ida);
57 
58 /*
59  * For the allocated request tables
60  */
61 struct kmem_cache *request_cachep;
62 
63 /*
64  * For queue allocation
65  */
66 struct kmem_cache *blk_requestq_cachep;
67 
68 /*
69  * Controlling structure to kblockd
70  */
71 static struct workqueue_struct *kblockd_workqueue;
72 
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 	clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 	/*
79 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 	 * flip its congestion state for events on other blkcgs.
81 	 */
82 	if (rl == &rl->q->root_rl)
83 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86 
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 	set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 	/* see blk_clear_congested() */
93 	if (rl == &rl->q->root_rl)
94 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97 
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 	int nr;
101 
102 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 	if (nr > q->nr_requests)
104 		nr = q->nr_requests;
105 	q->nr_congestion_on = nr;
106 
107 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 	if (nr < 1)
109 		nr = 1;
110 	q->nr_congestion_off = nr;
111 }
112 
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 	memset(rq, 0, sizeof(*rq));
116 
117 	INIT_LIST_HEAD(&rq->queuelist);
118 	INIT_LIST_HEAD(&rq->timeout_list);
119 	rq->cpu = -1;
120 	rq->q = q;
121 	rq->__sector = (sector_t) -1;
122 	INIT_HLIST_NODE(&rq->hash);
123 	RB_CLEAR_NODE(&rq->rb_node);
124 	rq->tag = -1;
125 	rq->internal_tag = -1;
126 	rq->start_time = jiffies;
127 	set_start_time_ns(rq);
128 	rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131 
132 static void req_bio_endio(struct request *rq, struct bio *bio,
133 			  unsigned int nbytes, int error)
134 {
135 	if (error)
136 		bio->bi_error = error;
137 
138 	if (unlikely(rq->rq_flags & RQF_QUIET))
139 		bio_set_flag(bio, BIO_QUIET);
140 
141 	bio_advance(bio, nbytes);
142 
143 	/* don't actually finish bio if it's part of flush sequence */
144 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
145 		bio_endio(bio);
146 }
147 
148 void blk_dump_rq_flags(struct request *rq, char *msg)
149 {
150 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
151 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
152 		(unsigned long long) rq->cmd_flags);
153 
154 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
155 	       (unsigned long long)blk_rq_pos(rq),
156 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
157 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
158 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
159 }
160 EXPORT_SYMBOL(blk_dump_rq_flags);
161 
162 static void blk_delay_work(struct work_struct *work)
163 {
164 	struct request_queue *q;
165 
166 	q = container_of(work, struct request_queue, delay_work.work);
167 	spin_lock_irq(q->queue_lock);
168 	__blk_run_queue(q);
169 	spin_unlock_irq(q->queue_lock);
170 }
171 
172 /**
173  * blk_delay_queue - restart queueing after defined interval
174  * @q:		The &struct request_queue in question
175  * @msecs:	Delay in msecs
176  *
177  * Description:
178  *   Sometimes queueing needs to be postponed for a little while, to allow
179  *   resources to come back. This function will make sure that queueing is
180  *   restarted around the specified time. Queue lock must be held.
181  */
182 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
183 {
184 	if (likely(!blk_queue_dead(q)))
185 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 				   msecs_to_jiffies(msecs));
187 }
188 EXPORT_SYMBOL(blk_delay_queue);
189 
190 /**
191  * blk_start_queue_async - asynchronously restart a previously stopped queue
192  * @q:    The &struct request_queue in question
193  *
194  * Description:
195  *   blk_start_queue_async() will clear the stop flag on the queue, and
196  *   ensure that the request_fn for the queue is run from an async
197  *   context.
198  **/
199 void blk_start_queue_async(struct request_queue *q)
200 {
201 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 	blk_run_queue_async(q);
203 }
204 EXPORT_SYMBOL(blk_start_queue_async);
205 
206 /**
207  * blk_start_queue - restart a previously stopped queue
208  * @q:    The &struct request_queue in question
209  *
210  * Description:
211  *   blk_start_queue() will clear the stop flag on the queue, and call
212  *   the request_fn for the queue if it was in a stopped state when
213  *   entered. Also see blk_stop_queue(). Queue lock must be held.
214  **/
215 void blk_start_queue(struct request_queue *q)
216 {
217 	WARN_ON(!irqs_disabled());
218 
219 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
220 	__blk_run_queue(q);
221 }
222 EXPORT_SYMBOL(blk_start_queue);
223 
224 /**
225  * blk_stop_queue - stop a queue
226  * @q:    The &struct request_queue in question
227  *
228  * Description:
229  *   The Linux block layer assumes that a block driver will consume all
230  *   entries on the request queue when the request_fn strategy is called.
231  *   Often this will not happen, because of hardware limitations (queue
232  *   depth settings). If a device driver gets a 'queue full' response,
233  *   or if it simply chooses not to queue more I/O at one point, it can
234  *   call this function to prevent the request_fn from being called until
235  *   the driver has signalled it's ready to go again. This happens by calling
236  *   blk_start_queue() to restart queue operations. Queue lock must be held.
237  **/
238 void blk_stop_queue(struct request_queue *q)
239 {
240 	cancel_delayed_work(&q->delay_work);
241 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
242 }
243 EXPORT_SYMBOL(blk_stop_queue);
244 
245 /**
246  * blk_sync_queue - cancel any pending callbacks on a queue
247  * @q: the queue
248  *
249  * Description:
250  *     The block layer may perform asynchronous callback activity
251  *     on a queue, such as calling the unplug function after a timeout.
252  *     A block device may call blk_sync_queue to ensure that any
253  *     such activity is cancelled, thus allowing it to release resources
254  *     that the callbacks might use. The caller must already have made sure
255  *     that its ->make_request_fn will not re-add plugging prior to calling
256  *     this function.
257  *
258  *     This function does not cancel any asynchronous activity arising
259  *     out of elevator or throttling code. That would require elevator_exit()
260  *     and blkcg_exit_queue() to be called with queue lock initialized.
261  *
262  */
263 void blk_sync_queue(struct request_queue *q)
264 {
265 	del_timer_sync(&q->timeout);
266 
267 	if (q->mq_ops) {
268 		struct blk_mq_hw_ctx *hctx;
269 		int i;
270 
271 		queue_for_each_hw_ctx(q, hctx, i) {
272 			cancel_work_sync(&hctx->run_work);
273 			cancel_delayed_work_sync(&hctx->delay_work);
274 		}
275 	} else {
276 		cancel_delayed_work_sync(&q->delay_work);
277 	}
278 }
279 EXPORT_SYMBOL(blk_sync_queue);
280 
281 /**
282  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
283  * @q:	The queue to run
284  *
285  * Description:
286  *    Invoke request handling on a queue if there are any pending requests.
287  *    May be used to restart request handling after a request has completed.
288  *    This variant runs the queue whether or not the queue has been
289  *    stopped. Must be called with the queue lock held and interrupts
290  *    disabled. See also @blk_run_queue.
291  */
292 inline void __blk_run_queue_uncond(struct request_queue *q)
293 {
294 	if (unlikely(blk_queue_dead(q)))
295 		return;
296 
297 	/*
298 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
299 	 * the queue lock internally. As a result multiple threads may be
300 	 * running such a request function concurrently. Keep track of the
301 	 * number of active request_fn invocations such that blk_drain_queue()
302 	 * can wait until all these request_fn calls have finished.
303 	 */
304 	q->request_fn_active++;
305 	q->request_fn(q);
306 	q->request_fn_active--;
307 }
308 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
309 
310 /**
311  * __blk_run_queue - run a single device queue
312  * @q:	The queue to run
313  *
314  * Description:
315  *    See @blk_run_queue. This variant must be called with the queue lock
316  *    held and interrupts disabled.
317  */
318 void __blk_run_queue(struct request_queue *q)
319 {
320 	if (unlikely(blk_queue_stopped(q)))
321 		return;
322 
323 	__blk_run_queue_uncond(q);
324 }
325 EXPORT_SYMBOL(__blk_run_queue);
326 
327 /**
328  * blk_run_queue_async - run a single device queue in workqueue context
329  * @q:	The queue to run
330  *
331  * Description:
332  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
333  *    of us. The caller must hold the queue lock.
334  */
335 void blk_run_queue_async(struct request_queue *q)
336 {
337 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
338 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
339 }
340 EXPORT_SYMBOL(blk_run_queue_async);
341 
342 /**
343  * blk_run_queue - run a single device queue
344  * @q: The queue to run
345  *
346  * Description:
347  *    Invoke request handling on this queue, if it has pending work to do.
348  *    May be used to restart queueing when a request has completed.
349  */
350 void blk_run_queue(struct request_queue *q)
351 {
352 	unsigned long flags;
353 
354 	spin_lock_irqsave(q->queue_lock, flags);
355 	__blk_run_queue(q);
356 	spin_unlock_irqrestore(q->queue_lock, flags);
357 }
358 EXPORT_SYMBOL(blk_run_queue);
359 
360 void blk_put_queue(struct request_queue *q)
361 {
362 	kobject_put(&q->kobj);
363 }
364 EXPORT_SYMBOL(blk_put_queue);
365 
366 /**
367  * __blk_drain_queue - drain requests from request_queue
368  * @q: queue to drain
369  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
370  *
371  * Drain requests from @q.  If @drain_all is set, all requests are drained.
372  * If not, only ELVPRIV requests are drained.  The caller is responsible
373  * for ensuring that no new requests which need to be drained are queued.
374  */
375 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
376 	__releases(q->queue_lock)
377 	__acquires(q->queue_lock)
378 {
379 	int i;
380 
381 	lockdep_assert_held(q->queue_lock);
382 
383 	while (true) {
384 		bool drain = false;
385 
386 		/*
387 		 * The caller might be trying to drain @q before its
388 		 * elevator is initialized.
389 		 */
390 		if (q->elevator)
391 			elv_drain_elevator(q);
392 
393 		blkcg_drain_queue(q);
394 
395 		/*
396 		 * This function might be called on a queue which failed
397 		 * driver init after queue creation or is not yet fully
398 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
399 		 * in such cases.  Kick queue iff dispatch queue has
400 		 * something on it and @q has request_fn set.
401 		 */
402 		if (!list_empty(&q->queue_head) && q->request_fn)
403 			__blk_run_queue(q);
404 
405 		drain |= q->nr_rqs_elvpriv;
406 		drain |= q->request_fn_active;
407 
408 		/*
409 		 * Unfortunately, requests are queued at and tracked from
410 		 * multiple places and there's no single counter which can
411 		 * be drained.  Check all the queues and counters.
412 		 */
413 		if (drain_all) {
414 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
415 			drain |= !list_empty(&q->queue_head);
416 			for (i = 0; i < 2; i++) {
417 				drain |= q->nr_rqs[i];
418 				drain |= q->in_flight[i];
419 				if (fq)
420 				    drain |= !list_empty(&fq->flush_queue[i]);
421 			}
422 		}
423 
424 		if (!drain)
425 			break;
426 
427 		spin_unlock_irq(q->queue_lock);
428 
429 		msleep(10);
430 
431 		spin_lock_irq(q->queue_lock);
432 	}
433 
434 	/*
435 	 * With queue marked dead, any woken up waiter will fail the
436 	 * allocation path, so the wakeup chaining is lost and we're
437 	 * left with hung waiters. We need to wake up those waiters.
438 	 */
439 	if (q->request_fn) {
440 		struct request_list *rl;
441 
442 		blk_queue_for_each_rl(rl, q)
443 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
444 				wake_up_all(&rl->wait[i]);
445 	}
446 }
447 
448 /**
449  * blk_queue_bypass_start - enter queue bypass mode
450  * @q: queue of interest
451  *
452  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
453  * function makes @q enter bypass mode and drains all requests which were
454  * throttled or issued before.  On return, it's guaranteed that no request
455  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
456  * inside queue or RCU read lock.
457  */
458 void blk_queue_bypass_start(struct request_queue *q)
459 {
460 	spin_lock_irq(q->queue_lock);
461 	q->bypass_depth++;
462 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
463 	spin_unlock_irq(q->queue_lock);
464 
465 	/*
466 	 * Queues start drained.  Skip actual draining till init is
467 	 * complete.  This avoids lenghty delays during queue init which
468 	 * can happen many times during boot.
469 	 */
470 	if (blk_queue_init_done(q)) {
471 		spin_lock_irq(q->queue_lock);
472 		__blk_drain_queue(q, false);
473 		spin_unlock_irq(q->queue_lock);
474 
475 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
476 		synchronize_rcu();
477 	}
478 }
479 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
480 
481 /**
482  * blk_queue_bypass_end - leave queue bypass mode
483  * @q: queue of interest
484  *
485  * Leave bypass mode and restore the normal queueing behavior.
486  */
487 void blk_queue_bypass_end(struct request_queue *q)
488 {
489 	spin_lock_irq(q->queue_lock);
490 	if (!--q->bypass_depth)
491 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
492 	WARN_ON_ONCE(q->bypass_depth < 0);
493 	spin_unlock_irq(q->queue_lock);
494 }
495 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
496 
497 void blk_set_queue_dying(struct request_queue *q)
498 {
499 	spin_lock_irq(q->queue_lock);
500 	queue_flag_set(QUEUE_FLAG_DYING, q);
501 	spin_unlock_irq(q->queue_lock);
502 
503 	if (q->mq_ops)
504 		blk_mq_wake_waiters(q);
505 	else {
506 		struct request_list *rl;
507 
508 		spin_lock_irq(q->queue_lock);
509 		blk_queue_for_each_rl(rl, q) {
510 			if (rl->rq_pool) {
511 				wake_up(&rl->wait[BLK_RW_SYNC]);
512 				wake_up(&rl->wait[BLK_RW_ASYNC]);
513 			}
514 		}
515 		spin_unlock_irq(q->queue_lock);
516 	}
517 }
518 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
519 
520 /**
521  * blk_cleanup_queue - shutdown a request queue
522  * @q: request queue to shutdown
523  *
524  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
525  * put it.  All future requests will be failed immediately with -ENODEV.
526  */
527 void blk_cleanup_queue(struct request_queue *q)
528 {
529 	spinlock_t *lock = q->queue_lock;
530 
531 	/* mark @q DYING, no new request or merges will be allowed afterwards */
532 	mutex_lock(&q->sysfs_lock);
533 	blk_set_queue_dying(q);
534 	spin_lock_irq(lock);
535 
536 	/*
537 	 * A dying queue is permanently in bypass mode till released.  Note
538 	 * that, unlike blk_queue_bypass_start(), we aren't performing
539 	 * synchronize_rcu() after entering bypass mode to avoid the delay
540 	 * as some drivers create and destroy a lot of queues while
541 	 * probing.  This is still safe because blk_release_queue() will be
542 	 * called only after the queue refcnt drops to zero and nothing,
543 	 * RCU or not, would be traversing the queue by then.
544 	 */
545 	q->bypass_depth++;
546 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
547 
548 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
549 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
550 	queue_flag_set(QUEUE_FLAG_DYING, q);
551 	spin_unlock_irq(lock);
552 	mutex_unlock(&q->sysfs_lock);
553 
554 	/*
555 	 * Drain all requests queued before DYING marking. Set DEAD flag to
556 	 * prevent that q->request_fn() gets invoked after draining finished.
557 	 */
558 	blk_freeze_queue(q);
559 	spin_lock_irq(lock);
560 	if (!q->mq_ops)
561 		__blk_drain_queue(q, true);
562 	queue_flag_set(QUEUE_FLAG_DEAD, q);
563 	spin_unlock_irq(lock);
564 
565 	/* for synchronous bio-based driver finish in-flight integrity i/o */
566 	blk_flush_integrity();
567 
568 	/* @q won't process any more request, flush async actions */
569 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
570 	blk_sync_queue(q);
571 
572 	if (q->mq_ops)
573 		blk_mq_free_queue(q);
574 	percpu_ref_exit(&q->q_usage_counter);
575 
576 	spin_lock_irq(lock);
577 	if (q->queue_lock != &q->__queue_lock)
578 		q->queue_lock = &q->__queue_lock;
579 	spin_unlock_irq(lock);
580 
581 	/* @q is and will stay empty, shutdown and put */
582 	blk_put_queue(q);
583 }
584 EXPORT_SYMBOL(blk_cleanup_queue);
585 
586 /* Allocate memory local to the request queue */
587 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
588 {
589 	struct request_queue *q = data;
590 
591 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
592 }
593 
594 static void free_request_simple(void *element, void *data)
595 {
596 	kmem_cache_free(request_cachep, element);
597 }
598 
599 static void *alloc_request_size(gfp_t gfp_mask, void *data)
600 {
601 	struct request_queue *q = data;
602 	struct request *rq;
603 
604 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
605 			q->node);
606 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
607 		kfree(rq);
608 		rq = NULL;
609 	}
610 	return rq;
611 }
612 
613 static void free_request_size(void *element, void *data)
614 {
615 	struct request_queue *q = data;
616 
617 	if (q->exit_rq_fn)
618 		q->exit_rq_fn(q, element);
619 	kfree(element);
620 }
621 
622 int blk_init_rl(struct request_list *rl, struct request_queue *q,
623 		gfp_t gfp_mask)
624 {
625 	if (unlikely(rl->rq_pool))
626 		return 0;
627 
628 	rl->q = q;
629 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
630 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
631 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
632 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
633 
634 	if (q->cmd_size) {
635 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
636 				alloc_request_size, free_request_size,
637 				q, gfp_mask, q->node);
638 	} else {
639 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
640 				alloc_request_simple, free_request_simple,
641 				q, gfp_mask, q->node);
642 	}
643 	if (!rl->rq_pool)
644 		return -ENOMEM;
645 
646 	return 0;
647 }
648 
649 void blk_exit_rl(struct request_list *rl)
650 {
651 	if (rl->rq_pool)
652 		mempool_destroy(rl->rq_pool);
653 }
654 
655 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
656 {
657 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
658 }
659 EXPORT_SYMBOL(blk_alloc_queue);
660 
661 int blk_queue_enter(struct request_queue *q, bool nowait)
662 {
663 	while (true) {
664 		int ret;
665 
666 		if (percpu_ref_tryget_live(&q->q_usage_counter))
667 			return 0;
668 
669 		if (nowait)
670 			return -EBUSY;
671 
672 		ret = wait_event_interruptible(q->mq_freeze_wq,
673 				!atomic_read(&q->mq_freeze_depth) ||
674 				blk_queue_dying(q));
675 		if (blk_queue_dying(q))
676 			return -ENODEV;
677 		if (ret)
678 			return ret;
679 	}
680 }
681 
682 void blk_queue_exit(struct request_queue *q)
683 {
684 	percpu_ref_put(&q->q_usage_counter);
685 }
686 
687 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
688 {
689 	struct request_queue *q =
690 		container_of(ref, struct request_queue, q_usage_counter);
691 
692 	wake_up_all(&q->mq_freeze_wq);
693 }
694 
695 static void blk_rq_timed_out_timer(unsigned long data)
696 {
697 	struct request_queue *q = (struct request_queue *)data;
698 
699 	kblockd_schedule_work(&q->timeout_work);
700 }
701 
702 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
703 {
704 	struct request_queue *q;
705 
706 	q = kmem_cache_alloc_node(blk_requestq_cachep,
707 				gfp_mask | __GFP_ZERO, node_id);
708 	if (!q)
709 		return NULL;
710 
711 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
712 	if (q->id < 0)
713 		goto fail_q;
714 
715 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
716 	if (!q->bio_split)
717 		goto fail_id;
718 
719 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
720 	if (!q->backing_dev_info)
721 		goto fail_split;
722 
723 	q->backing_dev_info->ra_pages =
724 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
725 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
726 	q->backing_dev_info->name = "block";
727 	q->node = node_id;
728 
729 	setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
730 		    laptop_mode_timer_fn, (unsigned long) q);
731 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
732 	INIT_LIST_HEAD(&q->queue_head);
733 	INIT_LIST_HEAD(&q->timeout_list);
734 	INIT_LIST_HEAD(&q->icq_list);
735 #ifdef CONFIG_BLK_CGROUP
736 	INIT_LIST_HEAD(&q->blkg_list);
737 #endif
738 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
739 
740 	kobject_init(&q->kobj, &blk_queue_ktype);
741 
742 	mutex_init(&q->sysfs_lock);
743 	spin_lock_init(&q->__queue_lock);
744 
745 	/*
746 	 * By default initialize queue_lock to internal lock and driver can
747 	 * override it later if need be.
748 	 */
749 	q->queue_lock = &q->__queue_lock;
750 
751 	/*
752 	 * A queue starts its life with bypass turned on to avoid
753 	 * unnecessary bypass on/off overhead and nasty surprises during
754 	 * init.  The initial bypass will be finished when the queue is
755 	 * registered by blk_register_queue().
756 	 */
757 	q->bypass_depth = 1;
758 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
759 
760 	init_waitqueue_head(&q->mq_freeze_wq);
761 
762 	/*
763 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
764 	 * See blk_register_queue() for details.
765 	 */
766 	if (percpu_ref_init(&q->q_usage_counter,
767 				blk_queue_usage_counter_release,
768 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
769 		goto fail_bdi;
770 
771 	if (blkcg_init_queue(q))
772 		goto fail_ref;
773 
774 	return q;
775 
776 fail_ref:
777 	percpu_ref_exit(&q->q_usage_counter);
778 fail_bdi:
779 	bdi_put(q->backing_dev_info);
780 fail_split:
781 	bioset_free(q->bio_split);
782 fail_id:
783 	ida_simple_remove(&blk_queue_ida, q->id);
784 fail_q:
785 	kmem_cache_free(blk_requestq_cachep, q);
786 	return NULL;
787 }
788 EXPORT_SYMBOL(blk_alloc_queue_node);
789 
790 /**
791  * blk_init_queue  - prepare a request queue for use with a block device
792  * @rfn:  The function to be called to process requests that have been
793  *        placed on the queue.
794  * @lock: Request queue spin lock
795  *
796  * Description:
797  *    If a block device wishes to use the standard request handling procedures,
798  *    which sorts requests and coalesces adjacent requests, then it must
799  *    call blk_init_queue().  The function @rfn will be called when there
800  *    are requests on the queue that need to be processed.  If the device
801  *    supports plugging, then @rfn may not be called immediately when requests
802  *    are available on the queue, but may be called at some time later instead.
803  *    Plugged queues are generally unplugged when a buffer belonging to one
804  *    of the requests on the queue is needed, or due to memory pressure.
805  *
806  *    @rfn is not required, or even expected, to remove all requests off the
807  *    queue, but only as many as it can handle at a time.  If it does leave
808  *    requests on the queue, it is responsible for arranging that the requests
809  *    get dealt with eventually.
810  *
811  *    The queue spin lock must be held while manipulating the requests on the
812  *    request queue; this lock will be taken also from interrupt context, so irq
813  *    disabling is needed for it.
814  *
815  *    Function returns a pointer to the initialized request queue, or %NULL if
816  *    it didn't succeed.
817  *
818  * Note:
819  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
820  *    when the block device is deactivated (such as at module unload).
821  **/
822 
823 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
824 {
825 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
826 }
827 EXPORT_SYMBOL(blk_init_queue);
828 
829 struct request_queue *
830 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
831 {
832 	struct request_queue *q;
833 
834 	q = blk_alloc_queue_node(GFP_KERNEL, node_id);
835 	if (!q)
836 		return NULL;
837 
838 	q->request_fn = rfn;
839 	if (lock)
840 		q->queue_lock = lock;
841 	if (blk_init_allocated_queue(q) < 0) {
842 		blk_cleanup_queue(q);
843 		return NULL;
844 	}
845 
846 	return q;
847 }
848 EXPORT_SYMBOL(blk_init_queue_node);
849 
850 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
851 
852 
853 int blk_init_allocated_queue(struct request_queue *q)
854 {
855 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
856 	if (!q->fq)
857 		return -ENOMEM;
858 
859 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
860 		goto out_free_flush_queue;
861 
862 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
863 		goto out_exit_flush_rq;
864 
865 	INIT_WORK(&q->timeout_work, blk_timeout_work);
866 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
867 
868 	/*
869 	 * This also sets hw/phys segments, boundary and size
870 	 */
871 	blk_queue_make_request(q, blk_queue_bio);
872 
873 	q->sg_reserved_size = INT_MAX;
874 
875 	/* Protect q->elevator from elevator_change */
876 	mutex_lock(&q->sysfs_lock);
877 
878 	/* init elevator */
879 	if (elevator_init(q, NULL)) {
880 		mutex_unlock(&q->sysfs_lock);
881 		goto out_exit_flush_rq;
882 	}
883 
884 	mutex_unlock(&q->sysfs_lock);
885 	return 0;
886 
887 out_exit_flush_rq:
888 	if (q->exit_rq_fn)
889 		q->exit_rq_fn(q, q->fq->flush_rq);
890 out_free_flush_queue:
891 	blk_free_flush_queue(q->fq);
892 	wbt_exit(q);
893 	return -ENOMEM;
894 }
895 EXPORT_SYMBOL(blk_init_allocated_queue);
896 
897 bool blk_get_queue(struct request_queue *q)
898 {
899 	if (likely(!blk_queue_dying(q))) {
900 		__blk_get_queue(q);
901 		return true;
902 	}
903 
904 	return false;
905 }
906 EXPORT_SYMBOL(blk_get_queue);
907 
908 static inline void blk_free_request(struct request_list *rl, struct request *rq)
909 {
910 	if (rq->rq_flags & RQF_ELVPRIV) {
911 		elv_put_request(rl->q, rq);
912 		if (rq->elv.icq)
913 			put_io_context(rq->elv.icq->ioc);
914 	}
915 
916 	mempool_free(rq, rl->rq_pool);
917 }
918 
919 /*
920  * ioc_batching returns true if the ioc is a valid batching request and
921  * should be given priority access to a request.
922  */
923 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
924 {
925 	if (!ioc)
926 		return 0;
927 
928 	/*
929 	 * Make sure the process is able to allocate at least 1 request
930 	 * even if the batch times out, otherwise we could theoretically
931 	 * lose wakeups.
932 	 */
933 	return ioc->nr_batch_requests == q->nr_batching ||
934 		(ioc->nr_batch_requests > 0
935 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
936 }
937 
938 /*
939  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
940  * will cause the process to be a "batcher" on all queues in the system. This
941  * is the behaviour we want though - once it gets a wakeup it should be given
942  * a nice run.
943  */
944 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
945 {
946 	if (!ioc || ioc_batching(q, ioc))
947 		return;
948 
949 	ioc->nr_batch_requests = q->nr_batching;
950 	ioc->last_waited = jiffies;
951 }
952 
953 static void __freed_request(struct request_list *rl, int sync)
954 {
955 	struct request_queue *q = rl->q;
956 
957 	if (rl->count[sync] < queue_congestion_off_threshold(q))
958 		blk_clear_congested(rl, sync);
959 
960 	if (rl->count[sync] + 1 <= q->nr_requests) {
961 		if (waitqueue_active(&rl->wait[sync]))
962 			wake_up(&rl->wait[sync]);
963 
964 		blk_clear_rl_full(rl, sync);
965 	}
966 }
967 
968 /*
969  * A request has just been released.  Account for it, update the full and
970  * congestion status, wake up any waiters.   Called under q->queue_lock.
971  */
972 static void freed_request(struct request_list *rl, bool sync,
973 		req_flags_t rq_flags)
974 {
975 	struct request_queue *q = rl->q;
976 
977 	q->nr_rqs[sync]--;
978 	rl->count[sync]--;
979 	if (rq_flags & RQF_ELVPRIV)
980 		q->nr_rqs_elvpriv--;
981 
982 	__freed_request(rl, sync);
983 
984 	if (unlikely(rl->starved[sync ^ 1]))
985 		__freed_request(rl, sync ^ 1);
986 }
987 
988 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
989 {
990 	struct request_list *rl;
991 	int on_thresh, off_thresh;
992 
993 	spin_lock_irq(q->queue_lock);
994 	q->nr_requests = nr;
995 	blk_queue_congestion_threshold(q);
996 	on_thresh = queue_congestion_on_threshold(q);
997 	off_thresh = queue_congestion_off_threshold(q);
998 
999 	blk_queue_for_each_rl(rl, q) {
1000 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1001 			blk_set_congested(rl, BLK_RW_SYNC);
1002 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1003 			blk_clear_congested(rl, BLK_RW_SYNC);
1004 
1005 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1006 			blk_set_congested(rl, BLK_RW_ASYNC);
1007 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1008 			blk_clear_congested(rl, BLK_RW_ASYNC);
1009 
1010 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1011 			blk_set_rl_full(rl, BLK_RW_SYNC);
1012 		} else {
1013 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1014 			wake_up(&rl->wait[BLK_RW_SYNC]);
1015 		}
1016 
1017 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1018 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1019 		} else {
1020 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1021 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1022 		}
1023 	}
1024 
1025 	spin_unlock_irq(q->queue_lock);
1026 	return 0;
1027 }
1028 
1029 /**
1030  * __get_request - get a free request
1031  * @rl: request list to allocate from
1032  * @op: operation and flags
1033  * @bio: bio to allocate request for (can be %NULL)
1034  * @gfp_mask: allocation mask
1035  *
1036  * Get a free request from @q.  This function may fail under memory
1037  * pressure or if @q is dead.
1038  *
1039  * Must be called with @q->queue_lock held and,
1040  * Returns ERR_PTR on failure, with @q->queue_lock held.
1041  * Returns request pointer on success, with @q->queue_lock *not held*.
1042  */
1043 static struct request *__get_request(struct request_list *rl, unsigned int op,
1044 		struct bio *bio, gfp_t gfp_mask)
1045 {
1046 	struct request_queue *q = rl->q;
1047 	struct request *rq;
1048 	struct elevator_type *et = q->elevator->type;
1049 	struct io_context *ioc = rq_ioc(bio);
1050 	struct io_cq *icq = NULL;
1051 	const bool is_sync = op_is_sync(op);
1052 	int may_queue;
1053 	req_flags_t rq_flags = RQF_ALLOCED;
1054 
1055 	if (unlikely(blk_queue_dying(q)))
1056 		return ERR_PTR(-ENODEV);
1057 
1058 	may_queue = elv_may_queue(q, op);
1059 	if (may_queue == ELV_MQUEUE_NO)
1060 		goto rq_starved;
1061 
1062 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1063 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1064 			/*
1065 			 * The queue will fill after this allocation, so set
1066 			 * it as full, and mark this process as "batching".
1067 			 * This process will be allowed to complete a batch of
1068 			 * requests, others will be blocked.
1069 			 */
1070 			if (!blk_rl_full(rl, is_sync)) {
1071 				ioc_set_batching(q, ioc);
1072 				blk_set_rl_full(rl, is_sync);
1073 			} else {
1074 				if (may_queue != ELV_MQUEUE_MUST
1075 						&& !ioc_batching(q, ioc)) {
1076 					/*
1077 					 * The queue is full and the allocating
1078 					 * process is not a "batcher", and not
1079 					 * exempted by the IO scheduler
1080 					 */
1081 					return ERR_PTR(-ENOMEM);
1082 				}
1083 			}
1084 		}
1085 		blk_set_congested(rl, is_sync);
1086 	}
1087 
1088 	/*
1089 	 * Only allow batching queuers to allocate up to 50% over the defined
1090 	 * limit of requests, otherwise we could have thousands of requests
1091 	 * allocated with any setting of ->nr_requests
1092 	 */
1093 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1094 		return ERR_PTR(-ENOMEM);
1095 
1096 	q->nr_rqs[is_sync]++;
1097 	rl->count[is_sync]++;
1098 	rl->starved[is_sync] = 0;
1099 
1100 	/*
1101 	 * Decide whether the new request will be managed by elevator.  If
1102 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1103 	 * prevent the current elevator from being destroyed until the new
1104 	 * request is freed.  This guarantees icq's won't be destroyed and
1105 	 * makes creating new ones safe.
1106 	 *
1107 	 * Flush requests do not use the elevator so skip initialization.
1108 	 * This allows a request to share the flush and elevator data.
1109 	 *
1110 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1111 	 * it will be created after releasing queue_lock.
1112 	 */
1113 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1114 		rq_flags |= RQF_ELVPRIV;
1115 		q->nr_rqs_elvpriv++;
1116 		if (et->icq_cache && ioc)
1117 			icq = ioc_lookup_icq(ioc, q);
1118 	}
1119 
1120 	if (blk_queue_io_stat(q))
1121 		rq_flags |= RQF_IO_STAT;
1122 	spin_unlock_irq(q->queue_lock);
1123 
1124 	/* allocate and init request */
1125 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1126 	if (!rq)
1127 		goto fail_alloc;
1128 
1129 	blk_rq_init(q, rq);
1130 	blk_rq_set_rl(rq, rl);
1131 	blk_rq_set_prio(rq, ioc);
1132 	rq->cmd_flags = op;
1133 	rq->rq_flags = rq_flags;
1134 
1135 	/* init elvpriv */
1136 	if (rq_flags & RQF_ELVPRIV) {
1137 		if (unlikely(et->icq_cache && !icq)) {
1138 			if (ioc)
1139 				icq = ioc_create_icq(ioc, q, gfp_mask);
1140 			if (!icq)
1141 				goto fail_elvpriv;
1142 		}
1143 
1144 		rq->elv.icq = icq;
1145 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1146 			goto fail_elvpriv;
1147 
1148 		/* @rq->elv.icq holds io_context until @rq is freed */
1149 		if (icq)
1150 			get_io_context(icq->ioc);
1151 	}
1152 out:
1153 	/*
1154 	 * ioc may be NULL here, and ioc_batching will be false. That's
1155 	 * OK, if the queue is under the request limit then requests need
1156 	 * not count toward the nr_batch_requests limit. There will always
1157 	 * be some limit enforced by BLK_BATCH_TIME.
1158 	 */
1159 	if (ioc_batching(q, ioc))
1160 		ioc->nr_batch_requests--;
1161 
1162 	trace_block_getrq(q, bio, op);
1163 	return rq;
1164 
1165 fail_elvpriv:
1166 	/*
1167 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1168 	 * and may fail indefinitely under memory pressure and thus
1169 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1170 	 * disturb iosched and blkcg but weird is bettern than dead.
1171 	 */
1172 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1173 			   __func__, dev_name(q->backing_dev_info->dev));
1174 
1175 	rq->rq_flags &= ~RQF_ELVPRIV;
1176 	rq->elv.icq = NULL;
1177 
1178 	spin_lock_irq(q->queue_lock);
1179 	q->nr_rqs_elvpriv--;
1180 	spin_unlock_irq(q->queue_lock);
1181 	goto out;
1182 
1183 fail_alloc:
1184 	/*
1185 	 * Allocation failed presumably due to memory. Undo anything we
1186 	 * might have messed up.
1187 	 *
1188 	 * Allocating task should really be put onto the front of the wait
1189 	 * queue, but this is pretty rare.
1190 	 */
1191 	spin_lock_irq(q->queue_lock);
1192 	freed_request(rl, is_sync, rq_flags);
1193 
1194 	/*
1195 	 * in the very unlikely event that allocation failed and no
1196 	 * requests for this direction was pending, mark us starved so that
1197 	 * freeing of a request in the other direction will notice
1198 	 * us. another possible fix would be to split the rq mempool into
1199 	 * READ and WRITE
1200 	 */
1201 rq_starved:
1202 	if (unlikely(rl->count[is_sync] == 0))
1203 		rl->starved[is_sync] = 1;
1204 	return ERR_PTR(-ENOMEM);
1205 }
1206 
1207 /**
1208  * get_request - get a free request
1209  * @q: request_queue to allocate request from
1210  * @op: operation and flags
1211  * @bio: bio to allocate request for (can be %NULL)
1212  * @gfp_mask: allocation mask
1213  *
1214  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1215  * this function keeps retrying under memory pressure and fails iff @q is dead.
1216  *
1217  * Must be called with @q->queue_lock held and,
1218  * Returns ERR_PTR on failure, with @q->queue_lock held.
1219  * Returns request pointer on success, with @q->queue_lock *not held*.
1220  */
1221 static struct request *get_request(struct request_queue *q, unsigned int op,
1222 		struct bio *bio, gfp_t gfp_mask)
1223 {
1224 	const bool is_sync = op_is_sync(op);
1225 	DEFINE_WAIT(wait);
1226 	struct request_list *rl;
1227 	struct request *rq;
1228 
1229 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1230 retry:
1231 	rq = __get_request(rl, op, bio, gfp_mask);
1232 	if (!IS_ERR(rq))
1233 		return rq;
1234 
1235 	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1236 		blk_put_rl(rl);
1237 		return rq;
1238 	}
1239 
1240 	/* wait on @rl and retry */
1241 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1242 				  TASK_UNINTERRUPTIBLE);
1243 
1244 	trace_block_sleeprq(q, bio, op);
1245 
1246 	spin_unlock_irq(q->queue_lock);
1247 	io_schedule();
1248 
1249 	/*
1250 	 * After sleeping, we become a "batching" process and will be able
1251 	 * to allocate at least one request, and up to a big batch of them
1252 	 * for a small period time.  See ioc_batching, ioc_set_batching
1253 	 */
1254 	ioc_set_batching(q, current->io_context);
1255 
1256 	spin_lock_irq(q->queue_lock);
1257 	finish_wait(&rl->wait[is_sync], &wait);
1258 
1259 	goto retry;
1260 }
1261 
1262 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1263 		gfp_t gfp_mask)
1264 {
1265 	struct request *rq;
1266 
1267 	/* create ioc upfront */
1268 	create_io_context(gfp_mask, q->node);
1269 
1270 	spin_lock_irq(q->queue_lock);
1271 	rq = get_request(q, rw, NULL, gfp_mask);
1272 	if (IS_ERR(rq)) {
1273 		spin_unlock_irq(q->queue_lock);
1274 		return rq;
1275 	}
1276 
1277 	/* q->queue_lock is unlocked at this point */
1278 	rq->__data_len = 0;
1279 	rq->__sector = (sector_t) -1;
1280 	rq->bio = rq->biotail = NULL;
1281 	return rq;
1282 }
1283 
1284 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1285 {
1286 	if (q->mq_ops)
1287 		return blk_mq_alloc_request(q, rw,
1288 			(gfp_mask & __GFP_DIRECT_RECLAIM) ?
1289 				0 : BLK_MQ_REQ_NOWAIT);
1290 	else
1291 		return blk_old_get_request(q, rw, gfp_mask);
1292 }
1293 EXPORT_SYMBOL(blk_get_request);
1294 
1295 /**
1296  * blk_requeue_request - put a request back on queue
1297  * @q:		request queue where request should be inserted
1298  * @rq:		request to be inserted
1299  *
1300  * Description:
1301  *    Drivers often keep queueing requests until the hardware cannot accept
1302  *    more, when that condition happens we need to put the request back
1303  *    on the queue. Must be called with queue lock held.
1304  */
1305 void blk_requeue_request(struct request_queue *q, struct request *rq)
1306 {
1307 	blk_delete_timer(rq);
1308 	blk_clear_rq_complete(rq);
1309 	trace_block_rq_requeue(q, rq);
1310 	wbt_requeue(q->rq_wb, &rq->issue_stat);
1311 
1312 	if (rq->rq_flags & RQF_QUEUED)
1313 		blk_queue_end_tag(q, rq);
1314 
1315 	BUG_ON(blk_queued_rq(rq));
1316 
1317 	elv_requeue_request(q, rq);
1318 }
1319 EXPORT_SYMBOL(blk_requeue_request);
1320 
1321 static void add_acct_request(struct request_queue *q, struct request *rq,
1322 			     int where)
1323 {
1324 	blk_account_io_start(rq, true);
1325 	__elv_add_request(q, rq, where);
1326 }
1327 
1328 static void part_round_stats_single(int cpu, struct hd_struct *part,
1329 				    unsigned long now)
1330 {
1331 	int inflight;
1332 
1333 	if (now == part->stamp)
1334 		return;
1335 
1336 	inflight = part_in_flight(part);
1337 	if (inflight) {
1338 		__part_stat_add(cpu, part, time_in_queue,
1339 				inflight * (now - part->stamp));
1340 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1341 	}
1342 	part->stamp = now;
1343 }
1344 
1345 /**
1346  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1347  * @cpu: cpu number for stats access
1348  * @part: target partition
1349  *
1350  * The average IO queue length and utilisation statistics are maintained
1351  * by observing the current state of the queue length and the amount of
1352  * time it has been in this state for.
1353  *
1354  * Normally, that accounting is done on IO completion, but that can result
1355  * in more than a second's worth of IO being accounted for within any one
1356  * second, leading to >100% utilisation.  To deal with that, we call this
1357  * function to do a round-off before returning the results when reading
1358  * /proc/diskstats.  This accounts immediately for all queue usage up to
1359  * the current jiffies and restarts the counters again.
1360  */
1361 void part_round_stats(int cpu, struct hd_struct *part)
1362 {
1363 	unsigned long now = jiffies;
1364 
1365 	if (part->partno)
1366 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1367 	part_round_stats_single(cpu, part, now);
1368 }
1369 EXPORT_SYMBOL_GPL(part_round_stats);
1370 
1371 #ifdef CONFIG_PM
1372 static void blk_pm_put_request(struct request *rq)
1373 {
1374 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1375 		pm_runtime_mark_last_busy(rq->q->dev);
1376 }
1377 #else
1378 static inline void blk_pm_put_request(struct request *rq) {}
1379 #endif
1380 
1381 /*
1382  * queue lock must be held
1383  */
1384 void __blk_put_request(struct request_queue *q, struct request *req)
1385 {
1386 	req_flags_t rq_flags = req->rq_flags;
1387 
1388 	if (unlikely(!q))
1389 		return;
1390 
1391 	if (q->mq_ops) {
1392 		blk_mq_free_request(req);
1393 		return;
1394 	}
1395 
1396 	blk_pm_put_request(req);
1397 
1398 	elv_completed_request(q, req);
1399 
1400 	/* this is a bio leak */
1401 	WARN_ON(req->bio != NULL);
1402 
1403 	wbt_done(q->rq_wb, &req->issue_stat);
1404 
1405 	/*
1406 	 * Request may not have originated from ll_rw_blk. if not,
1407 	 * it didn't come out of our reserved rq pools
1408 	 */
1409 	if (rq_flags & RQF_ALLOCED) {
1410 		struct request_list *rl = blk_rq_rl(req);
1411 		bool sync = op_is_sync(req->cmd_flags);
1412 
1413 		BUG_ON(!list_empty(&req->queuelist));
1414 		BUG_ON(ELV_ON_HASH(req));
1415 
1416 		blk_free_request(rl, req);
1417 		freed_request(rl, sync, rq_flags);
1418 		blk_put_rl(rl);
1419 	}
1420 }
1421 EXPORT_SYMBOL_GPL(__blk_put_request);
1422 
1423 void blk_put_request(struct request *req)
1424 {
1425 	struct request_queue *q = req->q;
1426 
1427 	if (q->mq_ops)
1428 		blk_mq_free_request(req);
1429 	else {
1430 		unsigned long flags;
1431 
1432 		spin_lock_irqsave(q->queue_lock, flags);
1433 		__blk_put_request(q, req);
1434 		spin_unlock_irqrestore(q->queue_lock, flags);
1435 	}
1436 }
1437 EXPORT_SYMBOL(blk_put_request);
1438 
1439 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1440 			    struct bio *bio)
1441 {
1442 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1443 
1444 	if (!ll_back_merge_fn(q, req, bio))
1445 		return false;
1446 
1447 	trace_block_bio_backmerge(q, req, bio);
1448 
1449 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1450 		blk_rq_set_mixed_merge(req);
1451 
1452 	req->biotail->bi_next = bio;
1453 	req->biotail = bio;
1454 	req->__data_len += bio->bi_iter.bi_size;
1455 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1456 
1457 	blk_account_io_start(req, false);
1458 	return true;
1459 }
1460 
1461 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1462 			     struct bio *bio)
1463 {
1464 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1465 
1466 	if (!ll_front_merge_fn(q, req, bio))
1467 		return false;
1468 
1469 	trace_block_bio_frontmerge(q, req, bio);
1470 
1471 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1472 		blk_rq_set_mixed_merge(req);
1473 
1474 	bio->bi_next = req->bio;
1475 	req->bio = bio;
1476 
1477 	req->__sector = bio->bi_iter.bi_sector;
1478 	req->__data_len += bio->bi_iter.bi_size;
1479 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1480 
1481 	blk_account_io_start(req, false);
1482 	return true;
1483 }
1484 
1485 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1486 		struct bio *bio)
1487 {
1488 	unsigned short segments = blk_rq_nr_discard_segments(req);
1489 
1490 	if (segments >= queue_max_discard_segments(q))
1491 		goto no_merge;
1492 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1493 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1494 		goto no_merge;
1495 
1496 	req->biotail->bi_next = bio;
1497 	req->biotail = bio;
1498 	req->__data_len += bio->bi_iter.bi_size;
1499 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1500 	req->nr_phys_segments = segments + 1;
1501 
1502 	blk_account_io_start(req, false);
1503 	return true;
1504 no_merge:
1505 	req_set_nomerge(q, req);
1506 	return false;
1507 }
1508 
1509 /**
1510  * blk_attempt_plug_merge - try to merge with %current's plugged list
1511  * @q: request_queue new bio is being queued at
1512  * @bio: new bio being queued
1513  * @request_count: out parameter for number of traversed plugged requests
1514  * @same_queue_rq: pointer to &struct request that gets filled in when
1515  * another request associated with @q is found on the plug list
1516  * (optional, may be %NULL)
1517  *
1518  * Determine whether @bio being queued on @q can be merged with a request
1519  * on %current's plugged list.  Returns %true if merge was successful,
1520  * otherwise %false.
1521  *
1522  * Plugging coalesces IOs from the same issuer for the same purpose without
1523  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1524  * than scheduling, and the request, while may have elvpriv data, is not
1525  * added on the elevator at this point.  In addition, we don't have
1526  * reliable access to the elevator outside queue lock.  Only check basic
1527  * merging parameters without querying the elevator.
1528  *
1529  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1530  */
1531 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1532 			    unsigned int *request_count,
1533 			    struct request **same_queue_rq)
1534 {
1535 	struct blk_plug *plug;
1536 	struct request *rq;
1537 	struct list_head *plug_list;
1538 
1539 	plug = current->plug;
1540 	if (!plug)
1541 		return false;
1542 	*request_count = 0;
1543 
1544 	if (q->mq_ops)
1545 		plug_list = &plug->mq_list;
1546 	else
1547 		plug_list = &plug->list;
1548 
1549 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1550 		bool merged = false;
1551 
1552 		if (rq->q == q) {
1553 			(*request_count)++;
1554 			/*
1555 			 * Only blk-mq multiple hardware queues case checks the
1556 			 * rq in the same queue, there should be only one such
1557 			 * rq in a queue
1558 			 **/
1559 			if (same_queue_rq)
1560 				*same_queue_rq = rq;
1561 		}
1562 
1563 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1564 			continue;
1565 
1566 		switch (blk_try_merge(rq, bio)) {
1567 		case ELEVATOR_BACK_MERGE:
1568 			merged = bio_attempt_back_merge(q, rq, bio);
1569 			break;
1570 		case ELEVATOR_FRONT_MERGE:
1571 			merged = bio_attempt_front_merge(q, rq, bio);
1572 			break;
1573 		case ELEVATOR_DISCARD_MERGE:
1574 			merged = bio_attempt_discard_merge(q, rq, bio);
1575 			break;
1576 		default:
1577 			break;
1578 		}
1579 
1580 		if (merged)
1581 			return true;
1582 	}
1583 
1584 	return false;
1585 }
1586 
1587 unsigned int blk_plug_queued_count(struct request_queue *q)
1588 {
1589 	struct blk_plug *plug;
1590 	struct request *rq;
1591 	struct list_head *plug_list;
1592 	unsigned int ret = 0;
1593 
1594 	plug = current->plug;
1595 	if (!plug)
1596 		goto out;
1597 
1598 	if (q->mq_ops)
1599 		plug_list = &plug->mq_list;
1600 	else
1601 		plug_list = &plug->list;
1602 
1603 	list_for_each_entry(rq, plug_list, queuelist) {
1604 		if (rq->q == q)
1605 			ret++;
1606 	}
1607 out:
1608 	return ret;
1609 }
1610 
1611 void init_request_from_bio(struct request *req, struct bio *bio)
1612 {
1613 	if (bio->bi_opf & REQ_RAHEAD)
1614 		req->cmd_flags |= REQ_FAILFAST_MASK;
1615 
1616 	req->errors = 0;
1617 	req->__sector = bio->bi_iter.bi_sector;
1618 	if (ioprio_valid(bio_prio(bio)))
1619 		req->ioprio = bio_prio(bio);
1620 	blk_rq_bio_prep(req->q, req, bio);
1621 }
1622 
1623 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1624 {
1625 	struct blk_plug *plug;
1626 	int where = ELEVATOR_INSERT_SORT;
1627 	struct request *req, *free;
1628 	unsigned int request_count = 0;
1629 	unsigned int wb_acct;
1630 
1631 	/*
1632 	 * low level driver can indicate that it wants pages above a
1633 	 * certain limit bounced to low memory (ie for highmem, or even
1634 	 * ISA dma in theory)
1635 	 */
1636 	blk_queue_bounce(q, &bio);
1637 
1638 	blk_queue_split(q, &bio, q->bio_split);
1639 
1640 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1641 		bio->bi_error = -EIO;
1642 		bio_endio(bio);
1643 		return BLK_QC_T_NONE;
1644 	}
1645 
1646 	if (op_is_flush(bio->bi_opf)) {
1647 		spin_lock_irq(q->queue_lock);
1648 		where = ELEVATOR_INSERT_FLUSH;
1649 		goto get_rq;
1650 	}
1651 
1652 	/*
1653 	 * Check if we can merge with the plugged list before grabbing
1654 	 * any locks.
1655 	 */
1656 	if (!blk_queue_nomerges(q)) {
1657 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1658 			return BLK_QC_T_NONE;
1659 	} else
1660 		request_count = blk_plug_queued_count(q);
1661 
1662 	spin_lock_irq(q->queue_lock);
1663 
1664 	switch (elv_merge(q, &req, bio)) {
1665 	case ELEVATOR_BACK_MERGE:
1666 		if (!bio_attempt_back_merge(q, req, bio))
1667 			break;
1668 		elv_bio_merged(q, req, bio);
1669 		free = attempt_back_merge(q, req);
1670 		if (free)
1671 			__blk_put_request(q, free);
1672 		else
1673 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1674 		goto out_unlock;
1675 	case ELEVATOR_FRONT_MERGE:
1676 		if (!bio_attempt_front_merge(q, req, bio))
1677 			break;
1678 		elv_bio_merged(q, req, bio);
1679 		free = attempt_front_merge(q, req);
1680 		if (free)
1681 			__blk_put_request(q, free);
1682 		else
1683 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1684 		goto out_unlock;
1685 	default:
1686 		break;
1687 	}
1688 
1689 get_rq:
1690 	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1691 
1692 	/*
1693 	 * Grab a free request. This is might sleep but can not fail.
1694 	 * Returns with the queue unlocked.
1695 	 */
1696 	req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1697 	if (IS_ERR(req)) {
1698 		__wbt_done(q->rq_wb, wb_acct);
1699 		bio->bi_error = PTR_ERR(req);
1700 		bio_endio(bio);
1701 		goto out_unlock;
1702 	}
1703 
1704 	wbt_track(&req->issue_stat, wb_acct);
1705 
1706 	/*
1707 	 * After dropping the lock and possibly sleeping here, our request
1708 	 * may now be mergeable after it had proven unmergeable (above).
1709 	 * We don't worry about that case for efficiency. It won't happen
1710 	 * often, and the elevators are able to handle it.
1711 	 */
1712 	init_request_from_bio(req, bio);
1713 
1714 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1715 		req->cpu = raw_smp_processor_id();
1716 
1717 	plug = current->plug;
1718 	if (plug) {
1719 		/*
1720 		 * If this is the first request added after a plug, fire
1721 		 * of a plug trace.
1722 		 *
1723 		 * @request_count may become stale because of schedule
1724 		 * out, so check plug list again.
1725 		 */
1726 		if (!request_count || list_empty(&plug->list))
1727 			trace_block_plug(q);
1728 		else {
1729 			struct request *last = list_entry_rq(plug->list.prev);
1730 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
1731 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1732 				blk_flush_plug_list(plug, false);
1733 				trace_block_plug(q);
1734 			}
1735 		}
1736 		list_add_tail(&req->queuelist, &plug->list);
1737 		blk_account_io_start(req, true);
1738 	} else {
1739 		spin_lock_irq(q->queue_lock);
1740 		add_acct_request(q, req, where);
1741 		__blk_run_queue(q);
1742 out_unlock:
1743 		spin_unlock_irq(q->queue_lock);
1744 	}
1745 
1746 	return BLK_QC_T_NONE;
1747 }
1748 
1749 /*
1750  * If bio->bi_dev is a partition, remap the location
1751  */
1752 static inline void blk_partition_remap(struct bio *bio)
1753 {
1754 	struct block_device *bdev = bio->bi_bdev;
1755 
1756 	/*
1757 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
1758 	 * Include a test for the reset op code and perform the remap if needed.
1759 	 */
1760 	if (bdev != bdev->bd_contains &&
1761 	    (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1762 		struct hd_struct *p = bdev->bd_part;
1763 
1764 		bio->bi_iter.bi_sector += p->start_sect;
1765 		bio->bi_bdev = bdev->bd_contains;
1766 
1767 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1768 				      bdev->bd_dev,
1769 				      bio->bi_iter.bi_sector - p->start_sect);
1770 	}
1771 }
1772 
1773 static void handle_bad_sector(struct bio *bio)
1774 {
1775 	char b[BDEVNAME_SIZE];
1776 
1777 	printk(KERN_INFO "attempt to access beyond end of device\n");
1778 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1779 			bdevname(bio->bi_bdev, b),
1780 			bio->bi_opf,
1781 			(unsigned long long)bio_end_sector(bio),
1782 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1783 }
1784 
1785 #ifdef CONFIG_FAIL_MAKE_REQUEST
1786 
1787 static DECLARE_FAULT_ATTR(fail_make_request);
1788 
1789 static int __init setup_fail_make_request(char *str)
1790 {
1791 	return setup_fault_attr(&fail_make_request, str);
1792 }
1793 __setup("fail_make_request=", setup_fail_make_request);
1794 
1795 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1796 {
1797 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1798 }
1799 
1800 static int __init fail_make_request_debugfs(void)
1801 {
1802 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1803 						NULL, &fail_make_request);
1804 
1805 	return PTR_ERR_OR_ZERO(dir);
1806 }
1807 
1808 late_initcall(fail_make_request_debugfs);
1809 
1810 #else /* CONFIG_FAIL_MAKE_REQUEST */
1811 
1812 static inline bool should_fail_request(struct hd_struct *part,
1813 					unsigned int bytes)
1814 {
1815 	return false;
1816 }
1817 
1818 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1819 
1820 /*
1821  * Check whether this bio extends beyond the end of the device.
1822  */
1823 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1824 {
1825 	sector_t maxsector;
1826 
1827 	if (!nr_sectors)
1828 		return 0;
1829 
1830 	/* Test device or partition size, when known. */
1831 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1832 	if (maxsector) {
1833 		sector_t sector = bio->bi_iter.bi_sector;
1834 
1835 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1836 			/*
1837 			 * This may well happen - the kernel calls bread()
1838 			 * without checking the size of the device, e.g., when
1839 			 * mounting a device.
1840 			 */
1841 			handle_bad_sector(bio);
1842 			return 1;
1843 		}
1844 	}
1845 
1846 	return 0;
1847 }
1848 
1849 static noinline_for_stack bool
1850 generic_make_request_checks(struct bio *bio)
1851 {
1852 	struct request_queue *q;
1853 	int nr_sectors = bio_sectors(bio);
1854 	int err = -EIO;
1855 	char b[BDEVNAME_SIZE];
1856 	struct hd_struct *part;
1857 
1858 	might_sleep();
1859 
1860 	if (bio_check_eod(bio, nr_sectors))
1861 		goto end_io;
1862 
1863 	q = bdev_get_queue(bio->bi_bdev);
1864 	if (unlikely(!q)) {
1865 		printk(KERN_ERR
1866 		       "generic_make_request: Trying to access "
1867 			"nonexistent block-device %s (%Lu)\n",
1868 			bdevname(bio->bi_bdev, b),
1869 			(long long) bio->bi_iter.bi_sector);
1870 		goto end_io;
1871 	}
1872 
1873 	part = bio->bi_bdev->bd_part;
1874 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1875 	    should_fail_request(&part_to_disk(part)->part0,
1876 				bio->bi_iter.bi_size))
1877 		goto end_io;
1878 
1879 	/*
1880 	 * If this device has partitions, remap block n
1881 	 * of partition p to block n+start(p) of the disk.
1882 	 */
1883 	blk_partition_remap(bio);
1884 
1885 	if (bio_check_eod(bio, nr_sectors))
1886 		goto end_io;
1887 
1888 	/*
1889 	 * Filter flush bio's early so that make_request based
1890 	 * drivers without flush support don't have to worry
1891 	 * about them.
1892 	 */
1893 	if (op_is_flush(bio->bi_opf) &&
1894 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1895 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1896 		if (!nr_sectors) {
1897 			err = 0;
1898 			goto end_io;
1899 		}
1900 	}
1901 
1902 	switch (bio_op(bio)) {
1903 	case REQ_OP_DISCARD:
1904 		if (!blk_queue_discard(q))
1905 			goto not_supported;
1906 		break;
1907 	case REQ_OP_SECURE_ERASE:
1908 		if (!blk_queue_secure_erase(q))
1909 			goto not_supported;
1910 		break;
1911 	case REQ_OP_WRITE_SAME:
1912 		if (!bdev_write_same(bio->bi_bdev))
1913 			goto not_supported;
1914 		break;
1915 	case REQ_OP_ZONE_REPORT:
1916 	case REQ_OP_ZONE_RESET:
1917 		if (!bdev_is_zoned(bio->bi_bdev))
1918 			goto not_supported;
1919 		break;
1920 	case REQ_OP_WRITE_ZEROES:
1921 		if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1922 			goto not_supported;
1923 		break;
1924 	default:
1925 		break;
1926 	}
1927 
1928 	/*
1929 	 * Various block parts want %current->io_context and lazy ioc
1930 	 * allocation ends up trading a lot of pain for a small amount of
1931 	 * memory.  Just allocate it upfront.  This may fail and block
1932 	 * layer knows how to live with it.
1933 	 */
1934 	create_io_context(GFP_ATOMIC, q->node);
1935 
1936 	if (!blkcg_bio_issue_check(q, bio))
1937 		return false;
1938 
1939 	trace_block_bio_queue(q, bio);
1940 	return true;
1941 
1942 not_supported:
1943 	err = -EOPNOTSUPP;
1944 end_io:
1945 	bio->bi_error = err;
1946 	bio_endio(bio);
1947 	return false;
1948 }
1949 
1950 /**
1951  * generic_make_request - hand a buffer to its device driver for I/O
1952  * @bio:  The bio describing the location in memory and on the device.
1953  *
1954  * generic_make_request() is used to make I/O requests of block
1955  * devices. It is passed a &struct bio, which describes the I/O that needs
1956  * to be done.
1957  *
1958  * generic_make_request() does not return any status.  The
1959  * success/failure status of the request, along with notification of
1960  * completion, is delivered asynchronously through the bio->bi_end_io
1961  * function described (one day) else where.
1962  *
1963  * The caller of generic_make_request must make sure that bi_io_vec
1964  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1965  * set to describe the device address, and the
1966  * bi_end_io and optionally bi_private are set to describe how
1967  * completion notification should be signaled.
1968  *
1969  * generic_make_request and the drivers it calls may use bi_next if this
1970  * bio happens to be merged with someone else, and may resubmit the bio to
1971  * a lower device by calling into generic_make_request recursively, which
1972  * means the bio should NOT be touched after the call to ->make_request_fn.
1973  */
1974 blk_qc_t generic_make_request(struct bio *bio)
1975 {
1976 	/*
1977 	 * bio_list_on_stack[0] contains bios submitted by the current
1978 	 * make_request_fn.
1979 	 * bio_list_on_stack[1] contains bios that were submitted before
1980 	 * the current make_request_fn, but that haven't been processed
1981 	 * yet.
1982 	 */
1983 	struct bio_list bio_list_on_stack[2];
1984 	blk_qc_t ret = BLK_QC_T_NONE;
1985 
1986 	if (!generic_make_request_checks(bio))
1987 		goto out;
1988 
1989 	/*
1990 	 * We only want one ->make_request_fn to be active at a time, else
1991 	 * stack usage with stacked devices could be a problem.  So use
1992 	 * current->bio_list to keep a list of requests submited by a
1993 	 * make_request_fn function.  current->bio_list is also used as a
1994 	 * flag to say if generic_make_request is currently active in this
1995 	 * task or not.  If it is NULL, then no make_request is active.  If
1996 	 * it is non-NULL, then a make_request is active, and new requests
1997 	 * should be added at the tail
1998 	 */
1999 	if (current->bio_list) {
2000 		bio_list_add(&current->bio_list[0], bio);
2001 		goto out;
2002 	}
2003 
2004 	/* following loop may be a bit non-obvious, and so deserves some
2005 	 * explanation.
2006 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2007 	 * ensure that) so we have a list with a single bio.
2008 	 * We pretend that we have just taken it off a longer list, so
2009 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2010 	 * thus initialising the bio_list of new bios to be
2011 	 * added.  ->make_request() may indeed add some more bios
2012 	 * through a recursive call to generic_make_request.  If it
2013 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2014 	 * from the top.  In this case we really did just take the bio
2015 	 * of the top of the list (no pretending) and so remove it from
2016 	 * bio_list, and call into ->make_request() again.
2017 	 */
2018 	BUG_ON(bio->bi_next);
2019 	bio_list_init(&bio_list_on_stack[0]);
2020 	current->bio_list = bio_list_on_stack;
2021 	do {
2022 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2023 
2024 		if (likely(blk_queue_enter(q, false) == 0)) {
2025 			struct bio_list lower, same;
2026 
2027 			/* Create a fresh bio_list for all subordinate requests */
2028 			bio_list_on_stack[1] = bio_list_on_stack[0];
2029 			bio_list_init(&bio_list_on_stack[0]);
2030 			ret = q->make_request_fn(q, bio);
2031 
2032 			blk_queue_exit(q);
2033 
2034 			/* sort new bios into those for a lower level
2035 			 * and those for the same level
2036 			 */
2037 			bio_list_init(&lower);
2038 			bio_list_init(&same);
2039 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2040 				if (q == bdev_get_queue(bio->bi_bdev))
2041 					bio_list_add(&same, bio);
2042 				else
2043 					bio_list_add(&lower, bio);
2044 			/* now assemble so we handle the lowest level first */
2045 			bio_list_merge(&bio_list_on_stack[0], &lower);
2046 			bio_list_merge(&bio_list_on_stack[0], &same);
2047 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2048 		} else {
2049 			bio_io_error(bio);
2050 		}
2051 		bio = bio_list_pop(&bio_list_on_stack[0]);
2052 	} while (bio);
2053 	current->bio_list = NULL; /* deactivate */
2054 
2055 out:
2056 	return ret;
2057 }
2058 EXPORT_SYMBOL(generic_make_request);
2059 
2060 /**
2061  * submit_bio - submit a bio to the block device layer for I/O
2062  * @bio: The &struct bio which describes the I/O
2063  *
2064  * submit_bio() is very similar in purpose to generic_make_request(), and
2065  * uses that function to do most of the work. Both are fairly rough
2066  * interfaces; @bio must be presetup and ready for I/O.
2067  *
2068  */
2069 blk_qc_t submit_bio(struct bio *bio)
2070 {
2071 	/*
2072 	 * If it's a regular read/write or a barrier with data attached,
2073 	 * go through the normal accounting stuff before submission.
2074 	 */
2075 	if (bio_has_data(bio)) {
2076 		unsigned int count;
2077 
2078 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2079 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2080 		else
2081 			count = bio_sectors(bio);
2082 
2083 		if (op_is_write(bio_op(bio))) {
2084 			count_vm_events(PGPGOUT, count);
2085 		} else {
2086 			task_io_account_read(bio->bi_iter.bi_size);
2087 			count_vm_events(PGPGIN, count);
2088 		}
2089 
2090 		if (unlikely(block_dump)) {
2091 			char b[BDEVNAME_SIZE];
2092 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2093 			current->comm, task_pid_nr(current),
2094 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2095 				(unsigned long long)bio->bi_iter.bi_sector,
2096 				bdevname(bio->bi_bdev, b),
2097 				count);
2098 		}
2099 	}
2100 
2101 	return generic_make_request(bio);
2102 }
2103 EXPORT_SYMBOL(submit_bio);
2104 
2105 /**
2106  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2107  *                              for new the queue limits
2108  * @q:  the queue
2109  * @rq: the request being checked
2110  *
2111  * Description:
2112  *    @rq may have been made based on weaker limitations of upper-level queues
2113  *    in request stacking drivers, and it may violate the limitation of @q.
2114  *    Since the block layer and the underlying device driver trust @rq
2115  *    after it is inserted to @q, it should be checked against @q before
2116  *    the insertion using this generic function.
2117  *
2118  *    Request stacking drivers like request-based dm may change the queue
2119  *    limits when retrying requests on other queues. Those requests need
2120  *    to be checked against the new queue limits again during dispatch.
2121  */
2122 static int blk_cloned_rq_check_limits(struct request_queue *q,
2123 				      struct request *rq)
2124 {
2125 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2126 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2127 		return -EIO;
2128 	}
2129 
2130 	/*
2131 	 * queue's settings related to segment counting like q->bounce_pfn
2132 	 * may differ from that of other stacking queues.
2133 	 * Recalculate it to check the request correctly on this queue's
2134 	 * limitation.
2135 	 */
2136 	blk_recalc_rq_segments(rq);
2137 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2138 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2139 		return -EIO;
2140 	}
2141 
2142 	return 0;
2143 }
2144 
2145 /**
2146  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2147  * @q:  the queue to submit the request
2148  * @rq: the request being queued
2149  */
2150 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2151 {
2152 	unsigned long flags;
2153 	int where = ELEVATOR_INSERT_BACK;
2154 
2155 	if (blk_cloned_rq_check_limits(q, rq))
2156 		return -EIO;
2157 
2158 	if (rq->rq_disk &&
2159 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2160 		return -EIO;
2161 
2162 	if (q->mq_ops) {
2163 		if (blk_queue_io_stat(q))
2164 			blk_account_io_start(rq, true);
2165 		blk_mq_sched_insert_request(rq, false, true, false, false);
2166 		return 0;
2167 	}
2168 
2169 	spin_lock_irqsave(q->queue_lock, flags);
2170 	if (unlikely(blk_queue_dying(q))) {
2171 		spin_unlock_irqrestore(q->queue_lock, flags);
2172 		return -ENODEV;
2173 	}
2174 
2175 	/*
2176 	 * Submitting request must be dequeued before calling this function
2177 	 * because it will be linked to another request_queue
2178 	 */
2179 	BUG_ON(blk_queued_rq(rq));
2180 
2181 	if (op_is_flush(rq->cmd_flags))
2182 		where = ELEVATOR_INSERT_FLUSH;
2183 
2184 	add_acct_request(q, rq, where);
2185 	if (where == ELEVATOR_INSERT_FLUSH)
2186 		__blk_run_queue(q);
2187 	spin_unlock_irqrestore(q->queue_lock, flags);
2188 
2189 	return 0;
2190 }
2191 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2192 
2193 /**
2194  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2195  * @rq: request to examine
2196  *
2197  * Description:
2198  *     A request could be merge of IOs which require different failure
2199  *     handling.  This function determines the number of bytes which
2200  *     can be failed from the beginning of the request without
2201  *     crossing into area which need to be retried further.
2202  *
2203  * Return:
2204  *     The number of bytes to fail.
2205  *
2206  * Context:
2207  *     queue_lock must be held.
2208  */
2209 unsigned int blk_rq_err_bytes(const struct request *rq)
2210 {
2211 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2212 	unsigned int bytes = 0;
2213 	struct bio *bio;
2214 
2215 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2216 		return blk_rq_bytes(rq);
2217 
2218 	/*
2219 	 * Currently the only 'mixing' which can happen is between
2220 	 * different fastfail types.  We can safely fail portions
2221 	 * which have all the failfast bits that the first one has -
2222 	 * the ones which are at least as eager to fail as the first
2223 	 * one.
2224 	 */
2225 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2226 		if ((bio->bi_opf & ff) != ff)
2227 			break;
2228 		bytes += bio->bi_iter.bi_size;
2229 	}
2230 
2231 	/* this could lead to infinite loop */
2232 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2233 	return bytes;
2234 }
2235 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2236 
2237 void blk_account_io_completion(struct request *req, unsigned int bytes)
2238 {
2239 	if (blk_do_io_stat(req)) {
2240 		const int rw = rq_data_dir(req);
2241 		struct hd_struct *part;
2242 		int cpu;
2243 
2244 		cpu = part_stat_lock();
2245 		part = req->part;
2246 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2247 		part_stat_unlock();
2248 	}
2249 }
2250 
2251 void blk_account_io_done(struct request *req)
2252 {
2253 	/*
2254 	 * Account IO completion.  flush_rq isn't accounted as a
2255 	 * normal IO on queueing nor completion.  Accounting the
2256 	 * containing request is enough.
2257 	 */
2258 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2259 		unsigned long duration = jiffies - req->start_time;
2260 		const int rw = rq_data_dir(req);
2261 		struct hd_struct *part;
2262 		int cpu;
2263 
2264 		cpu = part_stat_lock();
2265 		part = req->part;
2266 
2267 		part_stat_inc(cpu, part, ios[rw]);
2268 		part_stat_add(cpu, part, ticks[rw], duration);
2269 		part_round_stats(cpu, part);
2270 		part_dec_in_flight(part, rw);
2271 
2272 		hd_struct_put(part);
2273 		part_stat_unlock();
2274 	}
2275 }
2276 
2277 #ifdef CONFIG_PM
2278 /*
2279  * Don't process normal requests when queue is suspended
2280  * or in the process of suspending/resuming
2281  */
2282 static struct request *blk_pm_peek_request(struct request_queue *q,
2283 					   struct request *rq)
2284 {
2285 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2286 	    (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2287 		return NULL;
2288 	else
2289 		return rq;
2290 }
2291 #else
2292 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2293 						  struct request *rq)
2294 {
2295 	return rq;
2296 }
2297 #endif
2298 
2299 void blk_account_io_start(struct request *rq, bool new_io)
2300 {
2301 	struct hd_struct *part;
2302 	int rw = rq_data_dir(rq);
2303 	int cpu;
2304 
2305 	if (!blk_do_io_stat(rq))
2306 		return;
2307 
2308 	cpu = part_stat_lock();
2309 
2310 	if (!new_io) {
2311 		part = rq->part;
2312 		part_stat_inc(cpu, part, merges[rw]);
2313 	} else {
2314 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2315 		if (!hd_struct_try_get(part)) {
2316 			/*
2317 			 * The partition is already being removed,
2318 			 * the request will be accounted on the disk only
2319 			 *
2320 			 * We take a reference on disk->part0 although that
2321 			 * partition will never be deleted, so we can treat
2322 			 * it as any other partition.
2323 			 */
2324 			part = &rq->rq_disk->part0;
2325 			hd_struct_get(part);
2326 		}
2327 		part_round_stats(cpu, part);
2328 		part_inc_in_flight(part, rw);
2329 		rq->part = part;
2330 	}
2331 
2332 	part_stat_unlock();
2333 }
2334 
2335 /**
2336  * blk_peek_request - peek at the top of a request queue
2337  * @q: request queue to peek at
2338  *
2339  * Description:
2340  *     Return the request at the top of @q.  The returned request
2341  *     should be started using blk_start_request() before LLD starts
2342  *     processing it.
2343  *
2344  * Return:
2345  *     Pointer to the request at the top of @q if available.  Null
2346  *     otherwise.
2347  *
2348  * Context:
2349  *     queue_lock must be held.
2350  */
2351 struct request *blk_peek_request(struct request_queue *q)
2352 {
2353 	struct request *rq;
2354 	int ret;
2355 
2356 	while ((rq = __elv_next_request(q)) != NULL) {
2357 
2358 		rq = blk_pm_peek_request(q, rq);
2359 		if (!rq)
2360 			break;
2361 
2362 		if (!(rq->rq_flags & RQF_STARTED)) {
2363 			/*
2364 			 * This is the first time the device driver
2365 			 * sees this request (possibly after
2366 			 * requeueing).  Notify IO scheduler.
2367 			 */
2368 			if (rq->rq_flags & RQF_SORTED)
2369 				elv_activate_rq(q, rq);
2370 
2371 			/*
2372 			 * just mark as started even if we don't start
2373 			 * it, a request that has been delayed should
2374 			 * not be passed by new incoming requests
2375 			 */
2376 			rq->rq_flags |= RQF_STARTED;
2377 			trace_block_rq_issue(q, rq);
2378 		}
2379 
2380 		if (!q->boundary_rq || q->boundary_rq == rq) {
2381 			q->end_sector = rq_end_sector(rq);
2382 			q->boundary_rq = NULL;
2383 		}
2384 
2385 		if (rq->rq_flags & RQF_DONTPREP)
2386 			break;
2387 
2388 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2389 			/*
2390 			 * make sure space for the drain appears we
2391 			 * know we can do this because max_hw_segments
2392 			 * has been adjusted to be one fewer than the
2393 			 * device can handle
2394 			 */
2395 			rq->nr_phys_segments++;
2396 		}
2397 
2398 		if (!q->prep_rq_fn)
2399 			break;
2400 
2401 		ret = q->prep_rq_fn(q, rq);
2402 		if (ret == BLKPREP_OK) {
2403 			break;
2404 		} else if (ret == BLKPREP_DEFER) {
2405 			/*
2406 			 * the request may have been (partially) prepped.
2407 			 * we need to keep this request in the front to
2408 			 * avoid resource deadlock.  RQF_STARTED will
2409 			 * prevent other fs requests from passing this one.
2410 			 */
2411 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2412 			    !(rq->rq_flags & RQF_DONTPREP)) {
2413 				/*
2414 				 * remove the space for the drain we added
2415 				 * so that we don't add it again
2416 				 */
2417 				--rq->nr_phys_segments;
2418 			}
2419 
2420 			rq = NULL;
2421 			break;
2422 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2423 			int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2424 
2425 			rq->rq_flags |= RQF_QUIET;
2426 			/*
2427 			 * Mark this request as started so we don't trigger
2428 			 * any debug logic in the end I/O path.
2429 			 */
2430 			blk_start_request(rq);
2431 			__blk_end_request_all(rq, err);
2432 		} else {
2433 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2434 			break;
2435 		}
2436 	}
2437 
2438 	return rq;
2439 }
2440 EXPORT_SYMBOL(blk_peek_request);
2441 
2442 void blk_dequeue_request(struct request *rq)
2443 {
2444 	struct request_queue *q = rq->q;
2445 
2446 	BUG_ON(list_empty(&rq->queuelist));
2447 	BUG_ON(ELV_ON_HASH(rq));
2448 
2449 	list_del_init(&rq->queuelist);
2450 
2451 	/*
2452 	 * the time frame between a request being removed from the lists
2453 	 * and to it is freed is accounted as io that is in progress at
2454 	 * the driver side.
2455 	 */
2456 	if (blk_account_rq(rq)) {
2457 		q->in_flight[rq_is_sync(rq)]++;
2458 		set_io_start_time_ns(rq);
2459 	}
2460 }
2461 
2462 /**
2463  * blk_start_request - start request processing on the driver
2464  * @req: request to dequeue
2465  *
2466  * Description:
2467  *     Dequeue @req and start timeout timer on it.  This hands off the
2468  *     request to the driver.
2469  *
2470  *     Block internal functions which don't want to start timer should
2471  *     call blk_dequeue_request().
2472  *
2473  * Context:
2474  *     queue_lock must be held.
2475  */
2476 void blk_start_request(struct request *req)
2477 {
2478 	blk_dequeue_request(req);
2479 
2480 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2481 		blk_stat_set_issue_time(&req->issue_stat);
2482 		req->rq_flags |= RQF_STATS;
2483 		wbt_issue(req->q->rq_wb, &req->issue_stat);
2484 	}
2485 
2486 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2487 	blk_add_timer(req);
2488 }
2489 EXPORT_SYMBOL(blk_start_request);
2490 
2491 /**
2492  * blk_fetch_request - fetch a request from a request queue
2493  * @q: request queue to fetch a request from
2494  *
2495  * Description:
2496  *     Return the request at the top of @q.  The request is started on
2497  *     return and LLD can start processing it immediately.
2498  *
2499  * Return:
2500  *     Pointer to the request at the top of @q if available.  Null
2501  *     otherwise.
2502  *
2503  * Context:
2504  *     queue_lock must be held.
2505  */
2506 struct request *blk_fetch_request(struct request_queue *q)
2507 {
2508 	struct request *rq;
2509 
2510 	rq = blk_peek_request(q);
2511 	if (rq)
2512 		blk_start_request(rq);
2513 	return rq;
2514 }
2515 EXPORT_SYMBOL(blk_fetch_request);
2516 
2517 /**
2518  * blk_update_request - Special helper function for request stacking drivers
2519  * @req:      the request being processed
2520  * @error:    %0 for success, < %0 for error
2521  * @nr_bytes: number of bytes to complete @req
2522  *
2523  * Description:
2524  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2525  *     the request structure even if @req doesn't have leftover.
2526  *     If @req has leftover, sets it up for the next range of segments.
2527  *
2528  *     This special helper function is only for request stacking drivers
2529  *     (e.g. request-based dm) so that they can handle partial completion.
2530  *     Actual device drivers should use blk_end_request instead.
2531  *
2532  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2533  *     %false return from this function.
2534  *
2535  * Return:
2536  *     %false - this request doesn't have any more data
2537  *     %true  - this request has more data
2538  **/
2539 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2540 {
2541 	int total_bytes;
2542 
2543 	trace_block_rq_complete(req->q, req, nr_bytes);
2544 
2545 	if (!req->bio)
2546 		return false;
2547 
2548 	/*
2549 	 * For fs requests, rq is just carrier of independent bio's
2550 	 * and each partial completion should be handled separately.
2551 	 * Reset per-request error on each partial completion.
2552 	 *
2553 	 * TODO: tj: This is too subtle.  It would be better to let
2554 	 * low level drivers do what they see fit.
2555 	 */
2556 	if (!blk_rq_is_passthrough(req))
2557 		req->errors = 0;
2558 
2559 	if (error && !blk_rq_is_passthrough(req) &&
2560 	    !(req->rq_flags & RQF_QUIET)) {
2561 		char *error_type;
2562 
2563 		switch (error) {
2564 		case -ENOLINK:
2565 			error_type = "recoverable transport";
2566 			break;
2567 		case -EREMOTEIO:
2568 			error_type = "critical target";
2569 			break;
2570 		case -EBADE:
2571 			error_type = "critical nexus";
2572 			break;
2573 		case -ETIMEDOUT:
2574 			error_type = "timeout";
2575 			break;
2576 		case -ENOSPC:
2577 			error_type = "critical space allocation";
2578 			break;
2579 		case -ENODATA:
2580 			error_type = "critical medium";
2581 			break;
2582 		case -EIO:
2583 		default:
2584 			error_type = "I/O";
2585 			break;
2586 		}
2587 		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2588 				   __func__, error_type, req->rq_disk ?
2589 				   req->rq_disk->disk_name : "?",
2590 				   (unsigned long long)blk_rq_pos(req));
2591 
2592 	}
2593 
2594 	blk_account_io_completion(req, nr_bytes);
2595 
2596 	total_bytes = 0;
2597 	while (req->bio) {
2598 		struct bio *bio = req->bio;
2599 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2600 
2601 		if (bio_bytes == bio->bi_iter.bi_size)
2602 			req->bio = bio->bi_next;
2603 
2604 		req_bio_endio(req, bio, bio_bytes, error);
2605 
2606 		total_bytes += bio_bytes;
2607 		nr_bytes -= bio_bytes;
2608 
2609 		if (!nr_bytes)
2610 			break;
2611 	}
2612 
2613 	/*
2614 	 * completely done
2615 	 */
2616 	if (!req->bio) {
2617 		/*
2618 		 * Reset counters so that the request stacking driver
2619 		 * can find how many bytes remain in the request
2620 		 * later.
2621 		 */
2622 		req->__data_len = 0;
2623 		return false;
2624 	}
2625 
2626 	WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2627 
2628 	req->__data_len -= total_bytes;
2629 
2630 	/* update sector only for requests with clear definition of sector */
2631 	if (!blk_rq_is_passthrough(req))
2632 		req->__sector += total_bytes >> 9;
2633 
2634 	/* mixed attributes always follow the first bio */
2635 	if (req->rq_flags & RQF_MIXED_MERGE) {
2636 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2637 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2638 	}
2639 
2640 	/*
2641 	 * If total number of sectors is less than the first segment
2642 	 * size, something has gone terribly wrong.
2643 	 */
2644 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2645 		blk_dump_rq_flags(req, "request botched");
2646 		req->__data_len = blk_rq_cur_bytes(req);
2647 	}
2648 
2649 	/* recalculate the number of segments */
2650 	blk_recalc_rq_segments(req);
2651 
2652 	return true;
2653 }
2654 EXPORT_SYMBOL_GPL(blk_update_request);
2655 
2656 static bool blk_update_bidi_request(struct request *rq, int error,
2657 				    unsigned int nr_bytes,
2658 				    unsigned int bidi_bytes)
2659 {
2660 	if (blk_update_request(rq, error, nr_bytes))
2661 		return true;
2662 
2663 	/* Bidi request must be completed as a whole */
2664 	if (unlikely(blk_bidi_rq(rq)) &&
2665 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2666 		return true;
2667 
2668 	if (blk_queue_add_random(rq->q))
2669 		add_disk_randomness(rq->rq_disk);
2670 
2671 	return false;
2672 }
2673 
2674 /**
2675  * blk_unprep_request - unprepare a request
2676  * @req:	the request
2677  *
2678  * This function makes a request ready for complete resubmission (or
2679  * completion).  It happens only after all error handling is complete,
2680  * so represents the appropriate moment to deallocate any resources
2681  * that were allocated to the request in the prep_rq_fn.  The queue
2682  * lock is held when calling this.
2683  */
2684 void blk_unprep_request(struct request *req)
2685 {
2686 	struct request_queue *q = req->q;
2687 
2688 	req->rq_flags &= ~RQF_DONTPREP;
2689 	if (q->unprep_rq_fn)
2690 		q->unprep_rq_fn(q, req);
2691 }
2692 EXPORT_SYMBOL_GPL(blk_unprep_request);
2693 
2694 /*
2695  * queue lock must be held
2696  */
2697 void blk_finish_request(struct request *req, int error)
2698 {
2699 	struct request_queue *q = req->q;
2700 
2701 	if (req->rq_flags & RQF_STATS)
2702 		blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2703 
2704 	if (req->rq_flags & RQF_QUEUED)
2705 		blk_queue_end_tag(q, req);
2706 
2707 	BUG_ON(blk_queued_rq(req));
2708 
2709 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2710 		laptop_io_completion(req->q->backing_dev_info);
2711 
2712 	blk_delete_timer(req);
2713 
2714 	if (req->rq_flags & RQF_DONTPREP)
2715 		blk_unprep_request(req);
2716 
2717 	blk_account_io_done(req);
2718 
2719 	if (req->end_io) {
2720 		wbt_done(req->q->rq_wb, &req->issue_stat);
2721 		req->end_io(req, error);
2722 	} else {
2723 		if (blk_bidi_rq(req))
2724 			__blk_put_request(req->next_rq->q, req->next_rq);
2725 
2726 		__blk_put_request(q, req);
2727 	}
2728 }
2729 EXPORT_SYMBOL(blk_finish_request);
2730 
2731 /**
2732  * blk_end_bidi_request - Complete a bidi request
2733  * @rq:         the request to complete
2734  * @error:      %0 for success, < %0 for error
2735  * @nr_bytes:   number of bytes to complete @rq
2736  * @bidi_bytes: number of bytes to complete @rq->next_rq
2737  *
2738  * Description:
2739  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2740  *     Drivers that supports bidi can safely call this member for any
2741  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2742  *     just ignored.
2743  *
2744  * Return:
2745  *     %false - we are done with this request
2746  *     %true  - still buffers pending for this request
2747  **/
2748 static bool blk_end_bidi_request(struct request *rq, int error,
2749 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2750 {
2751 	struct request_queue *q = rq->q;
2752 	unsigned long flags;
2753 
2754 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2755 		return true;
2756 
2757 	spin_lock_irqsave(q->queue_lock, flags);
2758 	blk_finish_request(rq, error);
2759 	spin_unlock_irqrestore(q->queue_lock, flags);
2760 
2761 	return false;
2762 }
2763 
2764 /**
2765  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2766  * @rq:         the request to complete
2767  * @error:      %0 for success, < %0 for error
2768  * @nr_bytes:   number of bytes to complete @rq
2769  * @bidi_bytes: number of bytes to complete @rq->next_rq
2770  *
2771  * Description:
2772  *     Identical to blk_end_bidi_request() except that queue lock is
2773  *     assumed to be locked on entry and remains so on return.
2774  *
2775  * Return:
2776  *     %false - we are done with this request
2777  *     %true  - still buffers pending for this request
2778  **/
2779 bool __blk_end_bidi_request(struct request *rq, int error,
2780 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2781 {
2782 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2783 		return true;
2784 
2785 	blk_finish_request(rq, error);
2786 
2787 	return false;
2788 }
2789 
2790 /**
2791  * blk_end_request - Helper function for drivers to complete the request.
2792  * @rq:       the request being processed
2793  * @error:    %0 for success, < %0 for error
2794  * @nr_bytes: number of bytes to complete
2795  *
2796  * Description:
2797  *     Ends I/O on a number of bytes attached to @rq.
2798  *     If @rq has leftover, sets it up for the next range of segments.
2799  *
2800  * Return:
2801  *     %false - we are done with this request
2802  *     %true  - still buffers pending for this request
2803  **/
2804 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2805 {
2806 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2807 }
2808 EXPORT_SYMBOL(blk_end_request);
2809 
2810 /**
2811  * blk_end_request_all - Helper function for drives to finish the request.
2812  * @rq: the request to finish
2813  * @error: %0 for success, < %0 for error
2814  *
2815  * Description:
2816  *     Completely finish @rq.
2817  */
2818 void blk_end_request_all(struct request *rq, int error)
2819 {
2820 	bool pending;
2821 	unsigned int bidi_bytes = 0;
2822 
2823 	if (unlikely(blk_bidi_rq(rq)))
2824 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2825 
2826 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2827 	BUG_ON(pending);
2828 }
2829 EXPORT_SYMBOL(blk_end_request_all);
2830 
2831 /**
2832  * blk_end_request_cur - Helper function to finish the current request chunk.
2833  * @rq: the request to finish the current chunk for
2834  * @error: %0 for success, < %0 for error
2835  *
2836  * Description:
2837  *     Complete the current consecutively mapped chunk from @rq.
2838  *
2839  * Return:
2840  *     %false - we are done with this request
2841  *     %true  - still buffers pending for this request
2842  */
2843 bool blk_end_request_cur(struct request *rq, int error)
2844 {
2845 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2846 }
2847 EXPORT_SYMBOL(blk_end_request_cur);
2848 
2849 /**
2850  * blk_end_request_err - Finish a request till the next failure boundary.
2851  * @rq: the request to finish till the next failure boundary for
2852  * @error: must be negative errno
2853  *
2854  * Description:
2855  *     Complete @rq till the next failure boundary.
2856  *
2857  * Return:
2858  *     %false - we are done with this request
2859  *     %true  - still buffers pending for this request
2860  */
2861 bool blk_end_request_err(struct request *rq, int error)
2862 {
2863 	WARN_ON(error >= 0);
2864 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2865 }
2866 EXPORT_SYMBOL_GPL(blk_end_request_err);
2867 
2868 /**
2869  * __blk_end_request - Helper function for drivers to complete the request.
2870  * @rq:       the request being processed
2871  * @error:    %0 for success, < %0 for error
2872  * @nr_bytes: number of bytes to complete
2873  *
2874  * Description:
2875  *     Must be called with queue lock held unlike blk_end_request().
2876  *
2877  * Return:
2878  *     %false - we are done with this request
2879  *     %true  - still buffers pending for this request
2880  **/
2881 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2882 {
2883 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2884 }
2885 EXPORT_SYMBOL(__blk_end_request);
2886 
2887 /**
2888  * __blk_end_request_all - Helper function for drives to finish the request.
2889  * @rq: the request to finish
2890  * @error: %0 for success, < %0 for error
2891  *
2892  * Description:
2893  *     Completely finish @rq.  Must be called with queue lock held.
2894  */
2895 void __blk_end_request_all(struct request *rq, int error)
2896 {
2897 	bool pending;
2898 	unsigned int bidi_bytes = 0;
2899 
2900 	if (unlikely(blk_bidi_rq(rq)))
2901 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2902 
2903 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2904 	BUG_ON(pending);
2905 }
2906 EXPORT_SYMBOL(__blk_end_request_all);
2907 
2908 /**
2909  * __blk_end_request_cur - Helper function to finish the current request chunk.
2910  * @rq: the request to finish the current chunk for
2911  * @error: %0 for success, < %0 for error
2912  *
2913  * Description:
2914  *     Complete the current consecutively mapped chunk from @rq.  Must
2915  *     be called with queue lock held.
2916  *
2917  * Return:
2918  *     %false - we are done with this request
2919  *     %true  - still buffers pending for this request
2920  */
2921 bool __blk_end_request_cur(struct request *rq, int error)
2922 {
2923 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2924 }
2925 EXPORT_SYMBOL(__blk_end_request_cur);
2926 
2927 /**
2928  * __blk_end_request_err - Finish a request till the next failure boundary.
2929  * @rq: the request to finish till the next failure boundary for
2930  * @error: must be negative errno
2931  *
2932  * Description:
2933  *     Complete @rq till the next failure boundary.  Must be called
2934  *     with queue lock held.
2935  *
2936  * Return:
2937  *     %false - we are done with this request
2938  *     %true  - still buffers pending for this request
2939  */
2940 bool __blk_end_request_err(struct request *rq, int error)
2941 {
2942 	WARN_ON(error >= 0);
2943 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2944 }
2945 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2946 
2947 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2948 		     struct bio *bio)
2949 {
2950 	if (bio_has_data(bio))
2951 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2952 
2953 	rq->__data_len = bio->bi_iter.bi_size;
2954 	rq->bio = rq->biotail = bio;
2955 
2956 	if (bio->bi_bdev)
2957 		rq->rq_disk = bio->bi_bdev->bd_disk;
2958 }
2959 
2960 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2961 /**
2962  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2963  * @rq: the request to be flushed
2964  *
2965  * Description:
2966  *     Flush all pages in @rq.
2967  */
2968 void rq_flush_dcache_pages(struct request *rq)
2969 {
2970 	struct req_iterator iter;
2971 	struct bio_vec bvec;
2972 
2973 	rq_for_each_segment(bvec, rq, iter)
2974 		flush_dcache_page(bvec.bv_page);
2975 }
2976 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2977 #endif
2978 
2979 /**
2980  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2981  * @q : the queue of the device being checked
2982  *
2983  * Description:
2984  *    Check if underlying low-level drivers of a device are busy.
2985  *    If the drivers want to export their busy state, they must set own
2986  *    exporting function using blk_queue_lld_busy() first.
2987  *
2988  *    Basically, this function is used only by request stacking drivers
2989  *    to stop dispatching requests to underlying devices when underlying
2990  *    devices are busy.  This behavior helps more I/O merging on the queue
2991  *    of the request stacking driver and prevents I/O throughput regression
2992  *    on burst I/O load.
2993  *
2994  * Return:
2995  *    0 - Not busy (The request stacking driver should dispatch request)
2996  *    1 - Busy (The request stacking driver should stop dispatching request)
2997  */
2998 int blk_lld_busy(struct request_queue *q)
2999 {
3000 	if (q->lld_busy_fn)
3001 		return q->lld_busy_fn(q);
3002 
3003 	return 0;
3004 }
3005 EXPORT_SYMBOL_GPL(blk_lld_busy);
3006 
3007 /**
3008  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3009  * @rq: the clone request to be cleaned up
3010  *
3011  * Description:
3012  *     Free all bios in @rq for a cloned request.
3013  */
3014 void blk_rq_unprep_clone(struct request *rq)
3015 {
3016 	struct bio *bio;
3017 
3018 	while ((bio = rq->bio) != NULL) {
3019 		rq->bio = bio->bi_next;
3020 
3021 		bio_put(bio);
3022 	}
3023 }
3024 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3025 
3026 /*
3027  * Copy attributes of the original request to the clone request.
3028  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3029  */
3030 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3031 {
3032 	dst->cpu = src->cpu;
3033 	dst->__sector = blk_rq_pos(src);
3034 	dst->__data_len = blk_rq_bytes(src);
3035 	dst->nr_phys_segments = src->nr_phys_segments;
3036 	dst->ioprio = src->ioprio;
3037 	dst->extra_len = src->extra_len;
3038 }
3039 
3040 /**
3041  * blk_rq_prep_clone - Helper function to setup clone request
3042  * @rq: the request to be setup
3043  * @rq_src: original request to be cloned
3044  * @bs: bio_set that bios for clone are allocated from
3045  * @gfp_mask: memory allocation mask for bio
3046  * @bio_ctr: setup function to be called for each clone bio.
3047  *           Returns %0 for success, non %0 for failure.
3048  * @data: private data to be passed to @bio_ctr
3049  *
3050  * Description:
3051  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3052  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3053  *     are not copied, and copying such parts is the caller's responsibility.
3054  *     Also, pages which the original bios are pointing to are not copied
3055  *     and the cloned bios just point same pages.
3056  *     So cloned bios must be completed before original bios, which means
3057  *     the caller must complete @rq before @rq_src.
3058  */
3059 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3060 		      struct bio_set *bs, gfp_t gfp_mask,
3061 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3062 		      void *data)
3063 {
3064 	struct bio *bio, *bio_src;
3065 
3066 	if (!bs)
3067 		bs = fs_bio_set;
3068 
3069 	__rq_for_each_bio(bio_src, rq_src) {
3070 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3071 		if (!bio)
3072 			goto free_and_out;
3073 
3074 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3075 			goto free_and_out;
3076 
3077 		if (rq->bio) {
3078 			rq->biotail->bi_next = bio;
3079 			rq->biotail = bio;
3080 		} else
3081 			rq->bio = rq->biotail = bio;
3082 	}
3083 
3084 	__blk_rq_prep_clone(rq, rq_src);
3085 
3086 	return 0;
3087 
3088 free_and_out:
3089 	if (bio)
3090 		bio_put(bio);
3091 	blk_rq_unprep_clone(rq);
3092 
3093 	return -ENOMEM;
3094 }
3095 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3096 
3097 int kblockd_schedule_work(struct work_struct *work)
3098 {
3099 	return queue_work(kblockd_workqueue, work);
3100 }
3101 EXPORT_SYMBOL(kblockd_schedule_work);
3102 
3103 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3104 {
3105 	return queue_work_on(cpu, kblockd_workqueue, work);
3106 }
3107 EXPORT_SYMBOL(kblockd_schedule_work_on);
3108 
3109 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3110 				  unsigned long delay)
3111 {
3112 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3113 }
3114 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3115 
3116 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3117 				     unsigned long delay)
3118 {
3119 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3120 }
3121 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3122 
3123 /**
3124  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3125  * @plug:	The &struct blk_plug that needs to be initialized
3126  *
3127  * Description:
3128  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3129  *   pending I/O should the task end up blocking between blk_start_plug() and
3130  *   blk_finish_plug(). This is important from a performance perspective, but
3131  *   also ensures that we don't deadlock. For instance, if the task is blocking
3132  *   for a memory allocation, memory reclaim could end up wanting to free a
3133  *   page belonging to that request that is currently residing in our private
3134  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3135  *   this kind of deadlock.
3136  */
3137 void blk_start_plug(struct blk_plug *plug)
3138 {
3139 	struct task_struct *tsk = current;
3140 
3141 	/*
3142 	 * If this is a nested plug, don't actually assign it.
3143 	 */
3144 	if (tsk->plug)
3145 		return;
3146 
3147 	INIT_LIST_HEAD(&plug->list);
3148 	INIT_LIST_HEAD(&plug->mq_list);
3149 	INIT_LIST_HEAD(&plug->cb_list);
3150 	/*
3151 	 * Store ordering should not be needed here, since a potential
3152 	 * preempt will imply a full memory barrier
3153 	 */
3154 	tsk->plug = plug;
3155 }
3156 EXPORT_SYMBOL(blk_start_plug);
3157 
3158 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3159 {
3160 	struct request *rqa = container_of(a, struct request, queuelist);
3161 	struct request *rqb = container_of(b, struct request, queuelist);
3162 
3163 	return !(rqa->q < rqb->q ||
3164 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3165 }
3166 
3167 /*
3168  * If 'from_schedule' is true, then postpone the dispatch of requests
3169  * until a safe kblockd context. We due this to avoid accidental big
3170  * additional stack usage in driver dispatch, in places where the originally
3171  * plugger did not intend it.
3172  */
3173 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3174 			    bool from_schedule)
3175 	__releases(q->queue_lock)
3176 {
3177 	trace_block_unplug(q, depth, !from_schedule);
3178 
3179 	if (from_schedule)
3180 		blk_run_queue_async(q);
3181 	else
3182 		__blk_run_queue(q);
3183 	spin_unlock(q->queue_lock);
3184 }
3185 
3186 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3187 {
3188 	LIST_HEAD(callbacks);
3189 
3190 	while (!list_empty(&plug->cb_list)) {
3191 		list_splice_init(&plug->cb_list, &callbacks);
3192 
3193 		while (!list_empty(&callbacks)) {
3194 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3195 							  struct blk_plug_cb,
3196 							  list);
3197 			list_del(&cb->list);
3198 			cb->callback(cb, from_schedule);
3199 		}
3200 	}
3201 }
3202 
3203 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3204 				      int size)
3205 {
3206 	struct blk_plug *plug = current->plug;
3207 	struct blk_plug_cb *cb;
3208 
3209 	if (!plug)
3210 		return NULL;
3211 
3212 	list_for_each_entry(cb, &plug->cb_list, list)
3213 		if (cb->callback == unplug && cb->data == data)
3214 			return cb;
3215 
3216 	/* Not currently on the callback list */
3217 	BUG_ON(size < sizeof(*cb));
3218 	cb = kzalloc(size, GFP_ATOMIC);
3219 	if (cb) {
3220 		cb->data = data;
3221 		cb->callback = unplug;
3222 		list_add(&cb->list, &plug->cb_list);
3223 	}
3224 	return cb;
3225 }
3226 EXPORT_SYMBOL(blk_check_plugged);
3227 
3228 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3229 {
3230 	struct request_queue *q;
3231 	unsigned long flags;
3232 	struct request *rq;
3233 	LIST_HEAD(list);
3234 	unsigned int depth;
3235 
3236 	flush_plug_callbacks(plug, from_schedule);
3237 
3238 	if (!list_empty(&plug->mq_list))
3239 		blk_mq_flush_plug_list(plug, from_schedule);
3240 
3241 	if (list_empty(&plug->list))
3242 		return;
3243 
3244 	list_splice_init(&plug->list, &list);
3245 
3246 	list_sort(NULL, &list, plug_rq_cmp);
3247 
3248 	q = NULL;
3249 	depth = 0;
3250 
3251 	/*
3252 	 * Save and disable interrupts here, to avoid doing it for every
3253 	 * queue lock we have to take.
3254 	 */
3255 	local_irq_save(flags);
3256 	while (!list_empty(&list)) {
3257 		rq = list_entry_rq(list.next);
3258 		list_del_init(&rq->queuelist);
3259 		BUG_ON(!rq->q);
3260 		if (rq->q != q) {
3261 			/*
3262 			 * This drops the queue lock
3263 			 */
3264 			if (q)
3265 				queue_unplugged(q, depth, from_schedule);
3266 			q = rq->q;
3267 			depth = 0;
3268 			spin_lock(q->queue_lock);
3269 		}
3270 
3271 		/*
3272 		 * Short-circuit if @q is dead
3273 		 */
3274 		if (unlikely(blk_queue_dying(q))) {
3275 			__blk_end_request_all(rq, -ENODEV);
3276 			continue;
3277 		}
3278 
3279 		/*
3280 		 * rq is already accounted, so use raw insert
3281 		 */
3282 		if (op_is_flush(rq->cmd_flags))
3283 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3284 		else
3285 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3286 
3287 		depth++;
3288 	}
3289 
3290 	/*
3291 	 * This drops the queue lock
3292 	 */
3293 	if (q)
3294 		queue_unplugged(q, depth, from_schedule);
3295 
3296 	local_irq_restore(flags);
3297 }
3298 
3299 void blk_finish_plug(struct blk_plug *plug)
3300 {
3301 	if (plug != current->plug)
3302 		return;
3303 	blk_flush_plug_list(plug, false);
3304 
3305 	current->plug = NULL;
3306 }
3307 EXPORT_SYMBOL(blk_finish_plug);
3308 
3309 #ifdef CONFIG_PM
3310 /**
3311  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3312  * @q: the queue of the device
3313  * @dev: the device the queue belongs to
3314  *
3315  * Description:
3316  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3317  *    @dev. Drivers that want to take advantage of request-based runtime PM
3318  *    should call this function after @dev has been initialized, and its
3319  *    request queue @q has been allocated, and runtime PM for it can not happen
3320  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3321  *    cases, driver should call this function before any I/O has taken place.
3322  *
3323  *    This function takes care of setting up using auto suspend for the device,
3324  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3325  *    until an updated value is either set by user or by driver. Drivers do
3326  *    not need to touch other autosuspend settings.
3327  *
3328  *    The block layer runtime PM is request based, so only works for drivers
3329  *    that use request as their IO unit instead of those directly use bio's.
3330  */
3331 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3332 {
3333 	q->dev = dev;
3334 	q->rpm_status = RPM_ACTIVE;
3335 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3336 	pm_runtime_use_autosuspend(q->dev);
3337 }
3338 EXPORT_SYMBOL(blk_pm_runtime_init);
3339 
3340 /**
3341  * blk_pre_runtime_suspend - Pre runtime suspend check
3342  * @q: the queue of the device
3343  *
3344  * Description:
3345  *    This function will check if runtime suspend is allowed for the device
3346  *    by examining if there are any requests pending in the queue. If there
3347  *    are requests pending, the device can not be runtime suspended; otherwise,
3348  *    the queue's status will be updated to SUSPENDING and the driver can
3349  *    proceed to suspend the device.
3350  *
3351  *    For the not allowed case, we mark last busy for the device so that
3352  *    runtime PM core will try to autosuspend it some time later.
3353  *
3354  *    This function should be called near the start of the device's
3355  *    runtime_suspend callback.
3356  *
3357  * Return:
3358  *    0		- OK to runtime suspend the device
3359  *    -EBUSY	- Device should not be runtime suspended
3360  */
3361 int blk_pre_runtime_suspend(struct request_queue *q)
3362 {
3363 	int ret = 0;
3364 
3365 	if (!q->dev)
3366 		return ret;
3367 
3368 	spin_lock_irq(q->queue_lock);
3369 	if (q->nr_pending) {
3370 		ret = -EBUSY;
3371 		pm_runtime_mark_last_busy(q->dev);
3372 	} else {
3373 		q->rpm_status = RPM_SUSPENDING;
3374 	}
3375 	spin_unlock_irq(q->queue_lock);
3376 	return ret;
3377 }
3378 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3379 
3380 /**
3381  * blk_post_runtime_suspend - Post runtime suspend processing
3382  * @q: the queue of the device
3383  * @err: return value of the device's runtime_suspend function
3384  *
3385  * Description:
3386  *    Update the queue's runtime status according to the return value of the
3387  *    device's runtime suspend function and mark last busy for the device so
3388  *    that PM core will try to auto suspend the device at a later time.
3389  *
3390  *    This function should be called near the end of the device's
3391  *    runtime_suspend callback.
3392  */
3393 void blk_post_runtime_suspend(struct request_queue *q, int err)
3394 {
3395 	if (!q->dev)
3396 		return;
3397 
3398 	spin_lock_irq(q->queue_lock);
3399 	if (!err) {
3400 		q->rpm_status = RPM_SUSPENDED;
3401 	} else {
3402 		q->rpm_status = RPM_ACTIVE;
3403 		pm_runtime_mark_last_busy(q->dev);
3404 	}
3405 	spin_unlock_irq(q->queue_lock);
3406 }
3407 EXPORT_SYMBOL(blk_post_runtime_suspend);
3408 
3409 /**
3410  * blk_pre_runtime_resume - Pre runtime resume processing
3411  * @q: the queue of the device
3412  *
3413  * Description:
3414  *    Update the queue's runtime status to RESUMING in preparation for the
3415  *    runtime resume of the device.
3416  *
3417  *    This function should be called near the start of the device's
3418  *    runtime_resume callback.
3419  */
3420 void blk_pre_runtime_resume(struct request_queue *q)
3421 {
3422 	if (!q->dev)
3423 		return;
3424 
3425 	spin_lock_irq(q->queue_lock);
3426 	q->rpm_status = RPM_RESUMING;
3427 	spin_unlock_irq(q->queue_lock);
3428 }
3429 EXPORT_SYMBOL(blk_pre_runtime_resume);
3430 
3431 /**
3432  * blk_post_runtime_resume - Post runtime resume processing
3433  * @q: the queue of the device
3434  * @err: return value of the device's runtime_resume function
3435  *
3436  * Description:
3437  *    Update the queue's runtime status according to the return value of the
3438  *    device's runtime_resume function. If it is successfully resumed, process
3439  *    the requests that are queued into the device's queue when it is resuming
3440  *    and then mark last busy and initiate autosuspend for it.
3441  *
3442  *    This function should be called near the end of the device's
3443  *    runtime_resume callback.
3444  */
3445 void blk_post_runtime_resume(struct request_queue *q, int err)
3446 {
3447 	if (!q->dev)
3448 		return;
3449 
3450 	spin_lock_irq(q->queue_lock);
3451 	if (!err) {
3452 		q->rpm_status = RPM_ACTIVE;
3453 		__blk_run_queue(q);
3454 		pm_runtime_mark_last_busy(q->dev);
3455 		pm_request_autosuspend(q->dev);
3456 	} else {
3457 		q->rpm_status = RPM_SUSPENDED;
3458 	}
3459 	spin_unlock_irq(q->queue_lock);
3460 }
3461 EXPORT_SYMBOL(blk_post_runtime_resume);
3462 
3463 /**
3464  * blk_set_runtime_active - Force runtime status of the queue to be active
3465  * @q: the queue of the device
3466  *
3467  * If the device is left runtime suspended during system suspend the resume
3468  * hook typically resumes the device and corrects runtime status
3469  * accordingly. However, that does not affect the queue runtime PM status
3470  * which is still "suspended". This prevents processing requests from the
3471  * queue.
3472  *
3473  * This function can be used in driver's resume hook to correct queue
3474  * runtime PM status and re-enable peeking requests from the queue. It
3475  * should be called before first request is added to the queue.
3476  */
3477 void blk_set_runtime_active(struct request_queue *q)
3478 {
3479 	spin_lock_irq(q->queue_lock);
3480 	q->rpm_status = RPM_ACTIVE;
3481 	pm_runtime_mark_last_busy(q->dev);
3482 	pm_request_autosuspend(q->dev);
3483 	spin_unlock_irq(q->queue_lock);
3484 }
3485 EXPORT_SYMBOL(blk_set_runtime_active);
3486 #endif
3487 
3488 int __init blk_dev_init(void)
3489 {
3490 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3491 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3492 			FIELD_SIZEOF(struct request, cmd_flags));
3493 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3494 			FIELD_SIZEOF(struct bio, bi_opf));
3495 
3496 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3497 	kblockd_workqueue = alloc_workqueue("kblockd",
3498 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3499 	if (!kblockd_workqueue)
3500 		panic("Failed to create kblockd\n");
3501 
3502 	request_cachep = kmem_cache_create("blkdev_requests",
3503 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3504 
3505 	blk_requestq_cachep = kmem_cache_create("request_queue",
3506 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3507 
3508 #ifdef CONFIG_DEBUG_FS
3509 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3510 #endif
3511 
3512 	return 0;
3513 }
3514