xref: /openbmc/linux/block/blk-core.c (revision 9ac8d3fb)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h>
31 
32 #include "blk.h"
33 
34 static int __make_request(struct request_queue *q, struct bio *bio);
35 
36 /*
37  * For the allocated request tables
38  */
39 static struct kmem_cache *request_cachep;
40 
41 /*
42  * For queue allocation
43  */
44 struct kmem_cache *blk_requestq_cachep;
45 
46 /*
47  * Controlling structure to kblockd
48  */
49 static struct workqueue_struct *kblockd_workqueue;
50 
51 static void drive_stat_acct(struct request *rq, int new_io)
52 {
53 	struct hd_struct *part;
54 	int rw = rq_data_dir(rq);
55 	int cpu;
56 
57 	if (!blk_fs_request(rq) || !rq->rq_disk)
58 		return;
59 
60 	cpu = part_stat_lock();
61 	part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
62 
63 	if (!new_io)
64 		part_stat_inc(cpu, part, merges[rw]);
65 	else {
66 		part_round_stats(cpu, part);
67 		part_inc_in_flight(part);
68 	}
69 
70 	part_stat_unlock();
71 }
72 
73 void blk_queue_congestion_threshold(struct request_queue *q)
74 {
75 	int nr;
76 
77 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
78 	if (nr > q->nr_requests)
79 		nr = q->nr_requests;
80 	q->nr_congestion_on = nr;
81 
82 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
83 	if (nr < 1)
84 		nr = 1;
85 	q->nr_congestion_off = nr;
86 }
87 
88 /**
89  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
90  * @bdev:	device
91  *
92  * Locates the passed device's request queue and returns the address of its
93  * backing_dev_info
94  *
95  * Will return NULL if the request queue cannot be located.
96  */
97 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
98 {
99 	struct backing_dev_info *ret = NULL;
100 	struct request_queue *q = bdev_get_queue(bdev);
101 
102 	if (q)
103 		ret = &q->backing_dev_info;
104 	return ret;
105 }
106 EXPORT_SYMBOL(blk_get_backing_dev_info);
107 
108 void blk_rq_init(struct request_queue *q, struct request *rq)
109 {
110 	memset(rq, 0, sizeof(*rq));
111 
112 	INIT_LIST_HEAD(&rq->queuelist);
113 	INIT_LIST_HEAD(&rq->timeout_list);
114 	rq->cpu = -1;
115 	rq->q = q;
116 	rq->sector = rq->hard_sector = (sector_t) -1;
117 	INIT_HLIST_NODE(&rq->hash);
118 	RB_CLEAR_NODE(&rq->rb_node);
119 	rq->cmd = rq->__cmd;
120 	rq->tag = -1;
121 	rq->ref_count = 1;
122 }
123 EXPORT_SYMBOL(blk_rq_init);
124 
125 static void req_bio_endio(struct request *rq, struct bio *bio,
126 			  unsigned int nbytes, int error)
127 {
128 	struct request_queue *q = rq->q;
129 
130 	if (&q->bar_rq != rq) {
131 		if (error)
132 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
133 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
134 			error = -EIO;
135 
136 		if (unlikely(nbytes > bio->bi_size)) {
137 			printk(KERN_ERR "%s: want %u bytes done, %u left\n",
138 			       __func__, nbytes, bio->bi_size);
139 			nbytes = bio->bi_size;
140 		}
141 
142 		bio->bi_size -= nbytes;
143 		bio->bi_sector += (nbytes >> 9);
144 
145 		if (bio_integrity(bio))
146 			bio_integrity_advance(bio, nbytes);
147 
148 		if (bio->bi_size == 0)
149 			bio_endio(bio, error);
150 	} else {
151 
152 		/*
153 		 * Okay, this is the barrier request in progress, just
154 		 * record the error;
155 		 */
156 		if (error && !q->orderr)
157 			q->orderr = error;
158 	}
159 }
160 
161 void blk_dump_rq_flags(struct request *rq, char *msg)
162 {
163 	int bit;
164 
165 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
166 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
167 		rq->cmd_flags);
168 
169 	printk(KERN_INFO "  sector %llu, nr/cnr %lu/%u\n",
170 						(unsigned long long)rq->sector,
171 						rq->nr_sectors,
172 						rq->current_nr_sectors);
173 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, data %p, len %u\n",
174 						rq->bio, rq->biotail,
175 						rq->buffer, rq->data,
176 						rq->data_len);
177 
178 	if (blk_pc_request(rq)) {
179 		printk(KERN_INFO "  cdb: ");
180 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
181 			printk("%02x ", rq->cmd[bit]);
182 		printk("\n");
183 	}
184 }
185 EXPORT_SYMBOL(blk_dump_rq_flags);
186 
187 /*
188  * "plug" the device if there are no outstanding requests: this will
189  * force the transfer to start only after we have put all the requests
190  * on the list.
191  *
192  * This is called with interrupts off and no requests on the queue and
193  * with the queue lock held.
194  */
195 void blk_plug_device(struct request_queue *q)
196 {
197 	WARN_ON(!irqs_disabled());
198 
199 	/*
200 	 * don't plug a stopped queue, it must be paired with blk_start_queue()
201 	 * which will restart the queueing
202 	 */
203 	if (blk_queue_stopped(q))
204 		return;
205 
206 	if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
207 		mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
208 		blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
209 	}
210 }
211 EXPORT_SYMBOL(blk_plug_device);
212 
213 /**
214  * blk_plug_device_unlocked - plug a device without queue lock held
215  * @q:    The &struct request_queue to plug
216  *
217  * Description:
218  *   Like @blk_plug_device(), but grabs the queue lock and disables
219  *   interrupts.
220  **/
221 void blk_plug_device_unlocked(struct request_queue *q)
222 {
223 	unsigned long flags;
224 
225 	spin_lock_irqsave(q->queue_lock, flags);
226 	blk_plug_device(q);
227 	spin_unlock_irqrestore(q->queue_lock, flags);
228 }
229 EXPORT_SYMBOL(blk_plug_device_unlocked);
230 
231 /*
232  * remove the queue from the plugged list, if present. called with
233  * queue lock held and interrupts disabled.
234  */
235 int blk_remove_plug(struct request_queue *q)
236 {
237 	WARN_ON(!irqs_disabled());
238 
239 	if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
240 		return 0;
241 
242 	del_timer(&q->unplug_timer);
243 	return 1;
244 }
245 EXPORT_SYMBOL(blk_remove_plug);
246 
247 /*
248  * remove the plug and let it rip..
249  */
250 void __generic_unplug_device(struct request_queue *q)
251 {
252 	if (unlikely(blk_queue_stopped(q)))
253 		return;
254 
255 	if (!blk_remove_plug(q))
256 		return;
257 
258 	q->request_fn(q);
259 }
260 
261 /**
262  * generic_unplug_device - fire a request queue
263  * @q:    The &struct request_queue in question
264  *
265  * Description:
266  *   Linux uses plugging to build bigger requests queues before letting
267  *   the device have at them. If a queue is plugged, the I/O scheduler
268  *   is still adding and merging requests on the queue. Once the queue
269  *   gets unplugged, the request_fn defined for the queue is invoked and
270  *   transfers started.
271  **/
272 void generic_unplug_device(struct request_queue *q)
273 {
274 	if (blk_queue_plugged(q)) {
275 		spin_lock_irq(q->queue_lock);
276 		__generic_unplug_device(q);
277 		spin_unlock_irq(q->queue_lock);
278 	}
279 }
280 EXPORT_SYMBOL(generic_unplug_device);
281 
282 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
283 				   struct page *page)
284 {
285 	struct request_queue *q = bdi->unplug_io_data;
286 
287 	blk_unplug(q);
288 }
289 
290 void blk_unplug_work(struct work_struct *work)
291 {
292 	struct request_queue *q =
293 		container_of(work, struct request_queue, unplug_work);
294 
295 	blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
296 				q->rq.count[READ] + q->rq.count[WRITE]);
297 
298 	q->unplug_fn(q);
299 }
300 
301 void blk_unplug_timeout(unsigned long data)
302 {
303 	struct request_queue *q = (struct request_queue *)data;
304 
305 	blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
306 				q->rq.count[READ] + q->rq.count[WRITE]);
307 
308 	kblockd_schedule_work(q, &q->unplug_work);
309 }
310 
311 void blk_unplug(struct request_queue *q)
312 {
313 	/*
314 	 * devices don't necessarily have an ->unplug_fn defined
315 	 */
316 	if (q->unplug_fn) {
317 		blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
318 					q->rq.count[READ] + q->rq.count[WRITE]);
319 
320 		q->unplug_fn(q);
321 	}
322 }
323 EXPORT_SYMBOL(blk_unplug);
324 
325 static void blk_invoke_request_fn(struct request_queue *q)
326 {
327 	if (unlikely(blk_queue_stopped(q)))
328 		return;
329 
330 	/*
331 	 * one level of recursion is ok and is much faster than kicking
332 	 * the unplug handling
333 	 */
334 	if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
335 		q->request_fn(q);
336 		queue_flag_clear(QUEUE_FLAG_REENTER, q);
337 	} else {
338 		queue_flag_set(QUEUE_FLAG_PLUGGED, q);
339 		kblockd_schedule_work(q, &q->unplug_work);
340 	}
341 }
342 
343 /**
344  * blk_start_queue - restart a previously stopped queue
345  * @q:    The &struct request_queue in question
346  *
347  * Description:
348  *   blk_start_queue() will clear the stop flag on the queue, and call
349  *   the request_fn for the queue if it was in a stopped state when
350  *   entered. Also see blk_stop_queue(). Queue lock must be held.
351  **/
352 void blk_start_queue(struct request_queue *q)
353 {
354 	WARN_ON(!irqs_disabled());
355 
356 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
357 	blk_invoke_request_fn(q);
358 }
359 EXPORT_SYMBOL(blk_start_queue);
360 
361 /**
362  * blk_stop_queue - stop a queue
363  * @q:    The &struct request_queue in question
364  *
365  * Description:
366  *   The Linux block layer assumes that a block driver will consume all
367  *   entries on the request queue when the request_fn strategy is called.
368  *   Often this will not happen, because of hardware limitations (queue
369  *   depth settings). If a device driver gets a 'queue full' response,
370  *   or if it simply chooses not to queue more I/O at one point, it can
371  *   call this function to prevent the request_fn from being called until
372  *   the driver has signalled it's ready to go again. This happens by calling
373  *   blk_start_queue() to restart queue operations. Queue lock must be held.
374  **/
375 void blk_stop_queue(struct request_queue *q)
376 {
377 	blk_remove_plug(q);
378 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
379 }
380 EXPORT_SYMBOL(blk_stop_queue);
381 
382 /**
383  * blk_sync_queue - cancel any pending callbacks on a queue
384  * @q: the queue
385  *
386  * Description:
387  *     The block layer may perform asynchronous callback activity
388  *     on a queue, such as calling the unplug function after a timeout.
389  *     A block device may call blk_sync_queue to ensure that any
390  *     such activity is cancelled, thus allowing it to release resources
391  *     that the callbacks might use. The caller must already have made sure
392  *     that its ->make_request_fn will not re-add plugging prior to calling
393  *     this function.
394  *
395  */
396 void blk_sync_queue(struct request_queue *q)
397 {
398 	del_timer_sync(&q->unplug_timer);
399 	kblockd_flush_work(&q->unplug_work);
400 }
401 EXPORT_SYMBOL(blk_sync_queue);
402 
403 /**
404  * __blk_run_queue - run a single device queue
405  * @q:	The queue to run
406  *
407  * Description:
408  *    See @blk_run_queue. This variant must be called with the queue lock
409  *    held and interrupts disabled.
410  *
411  */
412 void __blk_run_queue(struct request_queue *q)
413 {
414 	blk_remove_plug(q);
415 
416 	/*
417 	 * Only recurse once to avoid overrunning the stack, let the unplug
418 	 * handling reinvoke the handler shortly if we already got there.
419 	 */
420 	if (!elv_queue_empty(q))
421 		blk_invoke_request_fn(q);
422 }
423 EXPORT_SYMBOL(__blk_run_queue);
424 
425 /**
426  * blk_run_queue - run a single device queue
427  * @q: The queue to run
428  *
429  * Description:
430  *    Invoke request handling on this queue, if it has pending work to do.
431  *    May be used to restart queueing when a request has completed. Also
432  *    See @blk_start_queueing.
433  *
434  */
435 void blk_run_queue(struct request_queue *q)
436 {
437 	unsigned long flags;
438 
439 	spin_lock_irqsave(q->queue_lock, flags);
440 	__blk_run_queue(q);
441 	spin_unlock_irqrestore(q->queue_lock, flags);
442 }
443 EXPORT_SYMBOL(blk_run_queue);
444 
445 void blk_put_queue(struct request_queue *q)
446 {
447 	kobject_put(&q->kobj);
448 }
449 
450 void blk_cleanup_queue(struct request_queue *q)
451 {
452 	/*
453 	 * We know we have process context here, so we can be a little
454 	 * cautious and ensure that pending block actions on this device
455 	 * are done before moving on. Going into this function, we should
456 	 * not have processes doing IO to this device.
457 	 */
458 	blk_sync_queue(q);
459 
460 	mutex_lock(&q->sysfs_lock);
461 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
462 	mutex_unlock(&q->sysfs_lock);
463 
464 	if (q->elevator)
465 		elevator_exit(q->elevator);
466 
467 	blk_put_queue(q);
468 }
469 EXPORT_SYMBOL(blk_cleanup_queue);
470 
471 static int blk_init_free_list(struct request_queue *q)
472 {
473 	struct request_list *rl = &q->rq;
474 
475 	rl->count[READ] = rl->count[WRITE] = 0;
476 	rl->starved[READ] = rl->starved[WRITE] = 0;
477 	rl->elvpriv = 0;
478 	init_waitqueue_head(&rl->wait[READ]);
479 	init_waitqueue_head(&rl->wait[WRITE]);
480 
481 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
482 				mempool_free_slab, request_cachep, q->node);
483 
484 	if (!rl->rq_pool)
485 		return -ENOMEM;
486 
487 	return 0;
488 }
489 
490 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
491 {
492 	return blk_alloc_queue_node(gfp_mask, -1);
493 }
494 EXPORT_SYMBOL(blk_alloc_queue);
495 
496 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
497 {
498 	struct request_queue *q;
499 	int err;
500 
501 	q = kmem_cache_alloc_node(blk_requestq_cachep,
502 				gfp_mask | __GFP_ZERO, node_id);
503 	if (!q)
504 		return NULL;
505 
506 	q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
507 	q->backing_dev_info.unplug_io_data = q;
508 	err = bdi_init(&q->backing_dev_info);
509 	if (err) {
510 		kmem_cache_free(blk_requestq_cachep, q);
511 		return NULL;
512 	}
513 
514 	init_timer(&q->unplug_timer);
515 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
516 	INIT_LIST_HEAD(&q->timeout_list);
517 	INIT_WORK(&q->unplug_work, blk_unplug_work);
518 
519 	kobject_init(&q->kobj, &blk_queue_ktype);
520 
521 	mutex_init(&q->sysfs_lock);
522 	spin_lock_init(&q->__queue_lock);
523 
524 	return q;
525 }
526 EXPORT_SYMBOL(blk_alloc_queue_node);
527 
528 /**
529  * blk_init_queue  - prepare a request queue for use with a block device
530  * @rfn:  The function to be called to process requests that have been
531  *        placed on the queue.
532  * @lock: Request queue spin lock
533  *
534  * Description:
535  *    If a block device wishes to use the standard request handling procedures,
536  *    which sorts requests and coalesces adjacent requests, then it must
537  *    call blk_init_queue().  The function @rfn will be called when there
538  *    are requests on the queue that need to be processed.  If the device
539  *    supports plugging, then @rfn may not be called immediately when requests
540  *    are available on the queue, but may be called at some time later instead.
541  *    Plugged queues are generally unplugged when a buffer belonging to one
542  *    of the requests on the queue is needed, or due to memory pressure.
543  *
544  *    @rfn is not required, or even expected, to remove all requests off the
545  *    queue, but only as many as it can handle at a time.  If it does leave
546  *    requests on the queue, it is responsible for arranging that the requests
547  *    get dealt with eventually.
548  *
549  *    The queue spin lock must be held while manipulating the requests on the
550  *    request queue; this lock will be taken also from interrupt context, so irq
551  *    disabling is needed for it.
552  *
553  *    Function returns a pointer to the initialized request queue, or %NULL if
554  *    it didn't succeed.
555  *
556  * Note:
557  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
558  *    when the block device is deactivated (such as at module unload).
559  **/
560 
561 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
562 {
563 	return blk_init_queue_node(rfn, lock, -1);
564 }
565 EXPORT_SYMBOL(blk_init_queue);
566 
567 struct request_queue *
568 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
569 {
570 	struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
571 
572 	if (!q)
573 		return NULL;
574 
575 	q->node = node_id;
576 	if (blk_init_free_list(q)) {
577 		kmem_cache_free(blk_requestq_cachep, q);
578 		return NULL;
579 	}
580 
581 	/*
582 	 * if caller didn't supply a lock, they get per-queue locking with
583 	 * our embedded lock
584 	 */
585 	if (!lock)
586 		lock = &q->__queue_lock;
587 
588 	q->request_fn		= rfn;
589 	q->prep_rq_fn		= NULL;
590 	q->unplug_fn		= generic_unplug_device;
591 	q->queue_flags		= (1 << QUEUE_FLAG_CLUSTER |
592 				   1 << QUEUE_FLAG_STACKABLE);
593 	q->queue_lock		= lock;
594 
595 	blk_queue_segment_boundary(q, 0xffffffff);
596 
597 	blk_queue_make_request(q, __make_request);
598 	blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
599 
600 	blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
601 	blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
602 
603 	q->sg_reserved_size = INT_MAX;
604 
605 	blk_set_cmd_filter_defaults(&q->cmd_filter);
606 
607 	/*
608 	 * all done
609 	 */
610 	if (!elevator_init(q, NULL)) {
611 		blk_queue_congestion_threshold(q);
612 		return q;
613 	}
614 
615 	blk_put_queue(q);
616 	return NULL;
617 }
618 EXPORT_SYMBOL(blk_init_queue_node);
619 
620 int blk_get_queue(struct request_queue *q)
621 {
622 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
623 		kobject_get(&q->kobj);
624 		return 0;
625 	}
626 
627 	return 1;
628 }
629 
630 static inline void blk_free_request(struct request_queue *q, struct request *rq)
631 {
632 	if (rq->cmd_flags & REQ_ELVPRIV)
633 		elv_put_request(q, rq);
634 	mempool_free(rq, q->rq.rq_pool);
635 }
636 
637 static struct request *
638 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
639 {
640 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
641 
642 	if (!rq)
643 		return NULL;
644 
645 	blk_rq_init(q, rq);
646 
647 	rq->cmd_flags = rw | REQ_ALLOCED;
648 
649 	if (priv) {
650 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
651 			mempool_free(rq, q->rq.rq_pool);
652 			return NULL;
653 		}
654 		rq->cmd_flags |= REQ_ELVPRIV;
655 	}
656 
657 	return rq;
658 }
659 
660 /*
661  * ioc_batching returns true if the ioc is a valid batching request and
662  * should be given priority access to a request.
663  */
664 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
665 {
666 	if (!ioc)
667 		return 0;
668 
669 	/*
670 	 * Make sure the process is able to allocate at least 1 request
671 	 * even if the batch times out, otherwise we could theoretically
672 	 * lose wakeups.
673 	 */
674 	return ioc->nr_batch_requests == q->nr_batching ||
675 		(ioc->nr_batch_requests > 0
676 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
677 }
678 
679 /*
680  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
681  * will cause the process to be a "batcher" on all queues in the system. This
682  * is the behaviour we want though - once it gets a wakeup it should be given
683  * a nice run.
684  */
685 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
686 {
687 	if (!ioc || ioc_batching(q, ioc))
688 		return;
689 
690 	ioc->nr_batch_requests = q->nr_batching;
691 	ioc->last_waited = jiffies;
692 }
693 
694 static void __freed_request(struct request_queue *q, int rw)
695 {
696 	struct request_list *rl = &q->rq;
697 
698 	if (rl->count[rw] < queue_congestion_off_threshold(q))
699 		blk_clear_queue_congested(q, rw);
700 
701 	if (rl->count[rw] + 1 <= q->nr_requests) {
702 		if (waitqueue_active(&rl->wait[rw]))
703 			wake_up(&rl->wait[rw]);
704 
705 		blk_clear_queue_full(q, rw);
706 	}
707 }
708 
709 /*
710  * A request has just been released.  Account for it, update the full and
711  * congestion status, wake up any waiters.   Called under q->queue_lock.
712  */
713 static void freed_request(struct request_queue *q, int rw, int priv)
714 {
715 	struct request_list *rl = &q->rq;
716 
717 	rl->count[rw]--;
718 	if (priv)
719 		rl->elvpriv--;
720 
721 	__freed_request(q, rw);
722 
723 	if (unlikely(rl->starved[rw ^ 1]))
724 		__freed_request(q, rw ^ 1);
725 }
726 
727 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
728 /*
729  * Get a free request, queue_lock must be held.
730  * Returns NULL on failure, with queue_lock held.
731  * Returns !NULL on success, with queue_lock *not held*.
732  */
733 static struct request *get_request(struct request_queue *q, int rw_flags,
734 				   struct bio *bio, gfp_t gfp_mask)
735 {
736 	struct request *rq = NULL;
737 	struct request_list *rl = &q->rq;
738 	struct io_context *ioc = NULL;
739 	const int rw = rw_flags & 0x01;
740 	int may_queue, priv;
741 
742 	may_queue = elv_may_queue(q, rw_flags);
743 	if (may_queue == ELV_MQUEUE_NO)
744 		goto rq_starved;
745 
746 	if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
747 		if (rl->count[rw]+1 >= q->nr_requests) {
748 			ioc = current_io_context(GFP_ATOMIC, q->node);
749 			/*
750 			 * The queue will fill after this allocation, so set
751 			 * it as full, and mark this process as "batching".
752 			 * This process will be allowed to complete a batch of
753 			 * requests, others will be blocked.
754 			 */
755 			if (!blk_queue_full(q, rw)) {
756 				ioc_set_batching(q, ioc);
757 				blk_set_queue_full(q, rw);
758 			} else {
759 				if (may_queue != ELV_MQUEUE_MUST
760 						&& !ioc_batching(q, ioc)) {
761 					/*
762 					 * The queue is full and the allocating
763 					 * process is not a "batcher", and not
764 					 * exempted by the IO scheduler
765 					 */
766 					goto out;
767 				}
768 			}
769 		}
770 		blk_set_queue_congested(q, rw);
771 	}
772 
773 	/*
774 	 * Only allow batching queuers to allocate up to 50% over the defined
775 	 * limit of requests, otherwise we could have thousands of requests
776 	 * allocated with any setting of ->nr_requests
777 	 */
778 	if (rl->count[rw] >= (3 * q->nr_requests / 2))
779 		goto out;
780 
781 	rl->count[rw]++;
782 	rl->starved[rw] = 0;
783 
784 	priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
785 	if (priv)
786 		rl->elvpriv++;
787 
788 	spin_unlock_irq(q->queue_lock);
789 
790 	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
791 	if (unlikely(!rq)) {
792 		/*
793 		 * Allocation failed presumably due to memory. Undo anything
794 		 * we might have messed up.
795 		 *
796 		 * Allocating task should really be put onto the front of the
797 		 * wait queue, but this is pretty rare.
798 		 */
799 		spin_lock_irq(q->queue_lock);
800 		freed_request(q, rw, priv);
801 
802 		/*
803 		 * in the very unlikely event that allocation failed and no
804 		 * requests for this direction was pending, mark us starved
805 		 * so that freeing of a request in the other direction will
806 		 * notice us. another possible fix would be to split the
807 		 * rq mempool into READ and WRITE
808 		 */
809 rq_starved:
810 		if (unlikely(rl->count[rw] == 0))
811 			rl->starved[rw] = 1;
812 
813 		goto out;
814 	}
815 
816 	/*
817 	 * ioc may be NULL here, and ioc_batching will be false. That's
818 	 * OK, if the queue is under the request limit then requests need
819 	 * not count toward the nr_batch_requests limit. There will always
820 	 * be some limit enforced by BLK_BATCH_TIME.
821 	 */
822 	if (ioc_batching(q, ioc))
823 		ioc->nr_batch_requests--;
824 
825 	blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
826 out:
827 	return rq;
828 }
829 
830 /*
831  * No available requests for this queue, unplug the device and wait for some
832  * requests to become available.
833  *
834  * Called with q->queue_lock held, and returns with it unlocked.
835  */
836 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
837 					struct bio *bio)
838 {
839 	const int rw = rw_flags & 0x01;
840 	struct request *rq;
841 
842 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
843 	while (!rq) {
844 		DEFINE_WAIT(wait);
845 		struct io_context *ioc;
846 		struct request_list *rl = &q->rq;
847 
848 		prepare_to_wait_exclusive(&rl->wait[rw], &wait,
849 				TASK_UNINTERRUPTIBLE);
850 
851 		blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
852 
853 		__generic_unplug_device(q);
854 		spin_unlock_irq(q->queue_lock);
855 		io_schedule();
856 
857 		/*
858 		 * After sleeping, we become a "batching" process and
859 		 * will be able to allocate at least one request, and
860 		 * up to a big batch of them for a small period time.
861 		 * See ioc_batching, ioc_set_batching
862 		 */
863 		ioc = current_io_context(GFP_NOIO, q->node);
864 		ioc_set_batching(q, ioc);
865 
866 		spin_lock_irq(q->queue_lock);
867 		finish_wait(&rl->wait[rw], &wait);
868 
869 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
870 	};
871 
872 	return rq;
873 }
874 
875 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
876 {
877 	struct request *rq;
878 
879 	BUG_ON(rw != READ && rw != WRITE);
880 
881 	spin_lock_irq(q->queue_lock);
882 	if (gfp_mask & __GFP_WAIT) {
883 		rq = get_request_wait(q, rw, NULL);
884 	} else {
885 		rq = get_request(q, rw, NULL, gfp_mask);
886 		if (!rq)
887 			spin_unlock_irq(q->queue_lock);
888 	}
889 	/* q->queue_lock is unlocked at this point */
890 
891 	return rq;
892 }
893 EXPORT_SYMBOL(blk_get_request);
894 
895 /**
896  * blk_start_queueing - initiate dispatch of requests to device
897  * @q:		request queue to kick into gear
898  *
899  * This is basically a helper to remove the need to know whether a queue
900  * is plugged or not if someone just wants to initiate dispatch of requests
901  * for this queue. Should be used to start queueing on a device outside
902  * of ->request_fn() context. Also see @blk_run_queue.
903  *
904  * The queue lock must be held with interrupts disabled.
905  */
906 void blk_start_queueing(struct request_queue *q)
907 {
908 	if (!blk_queue_plugged(q)) {
909 		if (unlikely(blk_queue_stopped(q)))
910 			return;
911 		q->request_fn(q);
912 	} else
913 		__generic_unplug_device(q);
914 }
915 EXPORT_SYMBOL(blk_start_queueing);
916 
917 /**
918  * blk_requeue_request - put a request back on queue
919  * @q:		request queue where request should be inserted
920  * @rq:		request to be inserted
921  *
922  * Description:
923  *    Drivers often keep queueing requests until the hardware cannot accept
924  *    more, when that condition happens we need to put the request back
925  *    on the queue. Must be called with queue lock held.
926  */
927 void blk_requeue_request(struct request_queue *q, struct request *rq)
928 {
929 	blk_delete_timer(rq);
930 	blk_clear_rq_complete(rq);
931 	blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
932 
933 	if (blk_rq_tagged(rq))
934 		blk_queue_end_tag(q, rq);
935 
936 	elv_requeue_request(q, rq);
937 }
938 EXPORT_SYMBOL(blk_requeue_request);
939 
940 /**
941  * blk_insert_request - insert a special request into a request queue
942  * @q:		request queue where request should be inserted
943  * @rq:		request to be inserted
944  * @at_head:	insert request at head or tail of queue
945  * @data:	private data
946  *
947  * Description:
948  *    Many block devices need to execute commands asynchronously, so they don't
949  *    block the whole kernel from preemption during request execution.  This is
950  *    accomplished normally by inserting aritficial requests tagged as
951  *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
952  *    be scheduled for actual execution by the request queue.
953  *
954  *    We have the option of inserting the head or the tail of the queue.
955  *    Typically we use the tail for new ioctls and so forth.  We use the head
956  *    of the queue for things like a QUEUE_FULL message from a device, or a
957  *    host that is unable to accept a particular command.
958  */
959 void blk_insert_request(struct request_queue *q, struct request *rq,
960 			int at_head, void *data)
961 {
962 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
963 	unsigned long flags;
964 
965 	/*
966 	 * tell I/O scheduler that this isn't a regular read/write (ie it
967 	 * must not attempt merges on this) and that it acts as a soft
968 	 * barrier
969 	 */
970 	rq->cmd_type = REQ_TYPE_SPECIAL;
971 	rq->cmd_flags |= REQ_SOFTBARRIER;
972 
973 	rq->special = data;
974 
975 	spin_lock_irqsave(q->queue_lock, flags);
976 
977 	/*
978 	 * If command is tagged, release the tag
979 	 */
980 	if (blk_rq_tagged(rq))
981 		blk_queue_end_tag(q, rq);
982 
983 	drive_stat_acct(rq, 1);
984 	__elv_add_request(q, rq, where, 0);
985 	blk_start_queueing(q);
986 	spin_unlock_irqrestore(q->queue_lock, flags);
987 }
988 EXPORT_SYMBOL(blk_insert_request);
989 
990 /*
991  * add-request adds a request to the linked list.
992  * queue lock is held and interrupts disabled, as we muck with the
993  * request queue list.
994  */
995 static inline void add_request(struct request_queue *q, struct request *req)
996 {
997 	drive_stat_acct(req, 1);
998 
999 	/*
1000 	 * elevator indicated where it wants this request to be
1001 	 * inserted at elevator_merge time
1002 	 */
1003 	__elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1004 }
1005 
1006 static void part_round_stats_single(int cpu, struct hd_struct *part,
1007 				    unsigned long now)
1008 {
1009 	if (now == part->stamp)
1010 		return;
1011 
1012 	if (part->in_flight) {
1013 		__part_stat_add(cpu, part, time_in_queue,
1014 				part->in_flight * (now - part->stamp));
1015 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1016 	}
1017 	part->stamp = now;
1018 }
1019 
1020 /**
1021  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1022  * @cpu: cpu number for stats access
1023  * @part: target partition
1024  *
1025  * The average IO queue length and utilisation statistics are maintained
1026  * by observing the current state of the queue length and the amount of
1027  * time it has been in this state for.
1028  *
1029  * Normally, that accounting is done on IO completion, but that can result
1030  * in more than a second's worth of IO being accounted for within any one
1031  * second, leading to >100% utilisation.  To deal with that, we call this
1032  * function to do a round-off before returning the results when reading
1033  * /proc/diskstats.  This accounts immediately for all queue usage up to
1034  * the current jiffies and restarts the counters again.
1035  */
1036 void part_round_stats(int cpu, struct hd_struct *part)
1037 {
1038 	unsigned long now = jiffies;
1039 
1040 	if (part->partno)
1041 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1042 	part_round_stats_single(cpu, part, now);
1043 }
1044 EXPORT_SYMBOL_GPL(part_round_stats);
1045 
1046 /*
1047  * queue lock must be held
1048  */
1049 void __blk_put_request(struct request_queue *q, struct request *req)
1050 {
1051 	if (unlikely(!q))
1052 		return;
1053 	if (unlikely(--req->ref_count))
1054 		return;
1055 
1056 	elv_completed_request(q, req);
1057 
1058 	/*
1059 	 * Request may not have originated from ll_rw_blk. if not,
1060 	 * it didn't come out of our reserved rq pools
1061 	 */
1062 	if (req->cmd_flags & REQ_ALLOCED) {
1063 		int rw = rq_data_dir(req);
1064 		int priv = req->cmd_flags & REQ_ELVPRIV;
1065 
1066 		BUG_ON(!list_empty(&req->queuelist));
1067 		BUG_ON(!hlist_unhashed(&req->hash));
1068 
1069 		blk_free_request(q, req);
1070 		freed_request(q, rw, priv);
1071 	}
1072 }
1073 EXPORT_SYMBOL_GPL(__blk_put_request);
1074 
1075 void blk_put_request(struct request *req)
1076 {
1077 	unsigned long flags;
1078 	struct request_queue *q = req->q;
1079 
1080 	spin_lock_irqsave(q->queue_lock, flags);
1081 	__blk_put_request(q, req);
1082 	spin_unlock_irqrestore(q->queue_lock, flags);
1083 }
1084 EXPORT_SYMBOL(blk_put_request);
1085 
1086 void init_request_from_bio(struct request *req, struct bio *bio)
1087 {
1088 	req->cpu = bio->bi_comp_cpu;
1089 	req->cmd_type = REQ_TYPE_FS;
1090 
1091 	/*
1092 	 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1093 	 */
1094 	if (bio_rw_ahead(bio))
1095 		req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1096 				   REQ_FAILFAST_DRIVER);
1097 	if (bio_failfast_dev(bio))
1098 		req->cmd_flags |= REQ_FAILFAST_DEV;
1099 	if (bio_failfast_transport(bio))
1100 		req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1101 	if (bio_failfast_driver(bio))
1102 		req->cmd_flags |= REQ_FAILFAST_DRIVER;
1103 
1104 	/*
1105 	 * REQ_BARRIER implies no merging, but lets make it explicit
1106 	 */
1107 	if (unlikely(bio_discard(bio))) {
1108 		req->cmd_flags |= REQ_DISCARD;
1109 		if (bio_barrier(bio))
1110 			req->cmd_flags |= REQ_SOFTBARRIER;
1111 		req->q->prepare_discard_fn(req->q, req);
1112 	} else if (unlikely(bio_barrier(bio)))
1113 		req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1114 
1115 	if (bio_sync(bio))
1116 		req->cmd_flags |= REQ_RW_SYNC;
1117 	if (bio_rw_meta(bio))
1118 		req->cmd_flags |= REQ_RW_META;
1119 
1120 	req->errors = 0;
1121 	req->hard_sector = req->sector = bio->bi_sector;
1122 	req->ioprio = bio_prio(bio);
1123 	req->start_time = jiffies;
1124 	blk_rq_bio_prep(req->q, req, bio);
1125 }
1126 
1127 static int __make_request(struct request_queue *q, struct bio *bio)
1128 {
1129 	struct request *req;
1130 	int el_ret, nr_sectors, barrier, discard, err;
1131 	const unsigned short prio = bio_prio(bio);
1132 	const int sync = bio_sync(bio);
1133 	int rw_flags;
1134 
1135 	nr_sectors = bio_sectors(bio);
1136 
1137 	/*
1138 	 * low level driver can indicate that it wants pages above a
1139 	 * certain limit bounced to low memory (ie for highmem, or even
1140 	 * ISA dma in theory)
1141 	 */
1142 	blk_queue_bounce(q, &bio);
1143 
1144 	barrier = bio_barrier(bio);
1145 	if (unlikely(barrier) && bio_has_data(bio) &&
1146 	    (q->next_ordered == QUEUE_ORDERED_NONE)) {
1147 		err = -EOPNOTSUPP;
1148 		goto end_io;
1149 	}
1150 
1151 	discard = bio_discard(bio);
1152 	if (unlikely(discard) && !q->prepare_discard_fn) {
1153 		err = -EOPNOTSUPP;
1154 		goto end_io;
1155 	}
1156 
1157 	spin_lock_irq(q->queue_lock);
1158 
1159 	if (unlikely(barrier) || elv_queue_empty(q))
1160 		goto get_rq;
1161 
1162 	el_ret = elv_merge(q, &req, bio);
1163 	switch (el_ret) {
1164 	case ELEVATOR_BACK_MERGE:
1165 		BUG_ON(!rq_mergeable(req));
1166 
1167 		if (!ll_back_merge_fn(q, req, bio))
1168 			break;
1169 
1170 		blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1171 
1172 		req->biotail->bi_next = bio;
1173 		req->biotail = bio;
1174 		req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1175 		req->ioprio = ioprio_best(req->ioprio, prio);
1176 		if (!blk_rq_cpu_valid(req))
1177 			req->cpu = bio->bi_comp_cpu;
1178 		drive_stat_acct(req, 0);
1179 		if (!attempt_back_merge(q, req))
1180 			elv_merged_request(q, req, el_ret);
1181 		goto out;
1182 
1183 	case ELEVATOR_FRONT_MERGE:
1184 		BUG_ON(!rq_mergeable(req));
1185 
1186 		if (!ll_front_merge_fn(q, req, bio))
1187 			break;
1188 
1189 		blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1190 
1191 		bio->bi_next = req->bio;
1192 		req->bio = bio;
1193 
1194 		/*
1195 		 * may not be valid. if the low level driver said
1196 		 * it didn't need a bounce buffer then it better
1197 		 * not touch req->buffer either...
1198 		 */
1199 		req->buffer = bio_data(bio);
1200 		req->current_nr_sectors = bio_cur_sectors(bio);
1201 		req->hard_cur_sectors = req->current_nr_sectors;
1202 		req->sector = req->hard_sector = bio->bi_sector;
1203 		req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1204 		req->ioprio = ioprio_best(req->ioprio, prio);
1205 		if (!blk_rq_cpu_valid(req))
1206 			req->cpu = bio->bi_comp_cpu;
1207 		drive_stat_acct(req, 0);
1208 		if (!attempt_front_merge(q, req))
1209 			elv_merged_request(q, req, el_ret);
1210 		goto out;
1211 
1212 	/* ELV_NO_MERGE: elevator says don't/can't merge. */
1213 	default:
1214 		;
1215 	}
1216 
1217 get_rq:
1218 	/*
1219 	 * This sync check and mask will be re-done in init_request_from_bio(),
1220 	 * but we need to set it earlier to expose the sync flag to the
1221 	 * rq allocator and io schedulers.
1222 	 */
1223 	rw_flags = bio_data_dir(bio);
1224 	if (sync)
1225 		rw_flags |= REQ_RW_SYNC;
1226 
1227 	/*
1228 	 * Grab a free request. This is might sleep but can not fail.
1229 	 * Returns with the queue unlocked.
1230 	 */
1231 	req = get_request_wait(q, rw_flags, bio);
1232 
1233 	/*
1234 	 * After dropping the lock and possibly sleeping here, our request
1235 	 * may now be mergeable after it had proven unmergeable (above).
1236 	 * We don't worry about that case for efficiency. It won't happen
1237 	 * often, and the elevators are able to handle it.
1238 	 */
1239 	init_request_from_bio(req, bio);
1240 
1241 	spin_lock_irq(q->queue_lock);
1242 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1243 	    bio_flagged(bio, BIO_CPU_AFFINE))
1244 		req->cpu = blk_cpu_to_group(smp_processor_id());
1245 	if (elv_queue_empty(q))
1246 		blk_plug_device(q);
1247 	add_request(q, req);
1248 out:
1249 	if (sync)
1250 		__generic_unplug_device(q);
1251 	spin_unlock_irq(q->queue_lock);
1252 	return 0;
1253 
1254 end_io:
1255 	bio_endio(bio, err);
1256 	return 0;
1257 }
1258 
1259 /*
1260  * If bio->bi_dev is a partition, remap the location
1261  */
1262 static inline void blk_partition_remap(struct bio *bio)
1263 {
1264 	struct block_device *bdev = bio->bi_bdev;
1265 
1266 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1267 		struct hd_struct *p = bdev->bd_part;
1268 
1269 		bio->bi_sector += p->start_sect;
1270 		bio->bi_bdev = bdev->bd_contains;
1271 
1272 		blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1273 				    bdev->bd_dev, bio->bi_sector,
1274 				    bio->bi_sector - p->start_sect);
1275 	}
1276 }
1277 
1278 static void handle_bad_sector(struct bio *bio)
1279 {
1280 	char b[BDEVNAME_SIZE];
1281 
1282 	printk(KERN_INFO "attempt to access beyond end of device\n");
1283 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1284 			bdevname(bio->bi_bdev, b),
1285 			bio->bi_rw,
1286 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1287 			(long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1288 
1289 	set_bit(BIO_EOF, &bio->bi_flags);
1290 }
1291 
1292 #ifdef CONFIG_FAIL_MAKE_REQUEST
1293 
1294 static DECLARE_FAULT_ATTR(fail_make_request);
1295 
1296 static int __init setup_fail_make_request(char *str)
1297 {
1298 	return setup_fault_attr(&fail_make_request, str);
1299 }
1300 __setup("fail_make_request=", setup_fail_make_request);
1301 
1302 static int should_fail_request(struct bio *bio)
1303 {
1304 	struct hd_struct *part = bio->bi_bdev->bd_part;
1305 
1306 	if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1307 		return should_fail(&fail_make_request, bio->bi_size);
1308 
1309 	return 0;
1310 }
1311 
1312 static int __init fail_make_request_debugfs(void)
1313 {
1314 	return init_fault_attr_dentries(&fail_make_request,
1315 					"fail_make_request");
1316 }
1317 
1318 late_initcall(fail_make_request_debugfs);
1319 
1320 #else /* CONFIG_FAIL_MAKE_REQUEST */
1321 
1322 static inline int should_fail_request(struct bio *bio)
1323 {
1324 	return 0;
1325 }
1326 
1327 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1328 
1329 /*
1330  * Check whether this bio extends beyond the end of the device.
1331  */
1332 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1333 {
1334 	sector_t maxsector;
1335 
1336 	if (!nr_sectors)
1337 		return 0;
1338 
1339 	/* Test device or partition size, when known. */
1340 	maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1341 	if (maxsector) {
1342 		sector_t sector = bio->bi_sector;
1343 
1344 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1345 			/*
1346 			 * This may well happen - the kernel calls bread()
1347 			 * without checking the size of the device, e.g., when
1348 			 * mounting a device.
1349 			 */
1350 			handle_bad_sector(bio);
1351 			return 1;
1352 		}
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 /**
1359  * generic_make_request - hand a buffer to its device driver for I/O
1360  * @bio:  The bio describing the location in memory and on the device.
1361  *
1362  * generic_make_request() is used to make I/O requests of block
1363  * devices. It is passed a &struct bio, which describes the I/O that needs
1364  * to be done.
1365  *
1366  * generic_make_request() does not return any status.  The
1367  * success/failure status of the request, along with notification of
1368  * completion, is delivered asynchronously through the bio->bi_end_io
1369  * function described (one day) else where.
1370  *
1371  * The caller of generic_make_request must make sure that bi_io_vec
1372  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1373  * set to describe the device address, and the
1374  * bi_end_io and optionally bi_private are set to describe how
1375  * completion notification should be signaled.
1376  *
1377  * generic_make_request and the drivers it calls may use bi_next if this
1378  * bio happens to be merged with someone else, and may change bi_dev and
1379  * bi_sector for remaps as it sees fit.  So the values of these fields
1380  * should NOT be depended on after the call to generic_make_request.
1381  */
1382 static inline void __generic_make_request(struct bio *bio)
1383 {
1384 	struct request_queue *q;
1385 	sector_t old_sector;
1386 	int ret, nr_sectors = bio_sectors(bio);
1387 	dev_t old_dev;
1388 	int err = -EIO;
1389 
1390 	might_sleep();
1391 
1392 	if (bio_check_eod(bio, nr_sectors))
1393 		goto end_io;
1394 
1395 	/*
1396 	 * Resolve the mapping until finished. (drivers are
1397 	 * still free to implement/resolve their own stacking
1398 	 * by explicitly returning 0)
1399 	 *
1400 	 * NOTE: we don't repeat the blk_size check for each new device.
1401 	 * Stacking drivers are expected to know what they are doing.
1402 	 */
1403 	old_sector = -1;
1404 	old_dev = 0;
1405 	do {
1406 		char b[BDEVNAME_SIZE];
1407 
1408 		q = bdev_get_queue(bio->bi_bdev);
1409 		if (!q) {
1410 			printk(KERN_ERR
1411 			       "generic_make_request: Trying to access "
1412 				"nonexistent block-device %s (%Lu)\n",
1413 				bdevname(bio->bi_bdev, b),
1414 				(long long) bio->bi_sector);
1415 end_io:
1416 			bio_endio(bio, err);
1417 			break;
1418 		}
1419 
1420 		if (unlikely(nr_sectors > q->max_hw_sectors)) {
1421 			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1422 				bdevname(bio->bi_bdev, b),
1423 				bio_sectors(bio),
1424 				q->max_hw_sectors);
1425 			goto end_io;
1426 		}
1427 
1428 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1429 			goto end_io;
1430 
1431 		if (should_fail_request(bio))
1432 			goto end_io;
1433 
1434 		/*
1435 		 * If this device has partitions, remap block n
1436 		 * of partition p to block n+start(p) of the disk.
1437 		 */
1438 		blk_partition_remap(bio);
1439 
1440 		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1441 			goto end_io;
1442 
1443 		if (old_sector != -1)
1444 			blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1445 					    old_sector);
1446 
1447 		blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1448 
1449 		old_sector = bio->bi_sector;
1450 		old_dev = bio->bi_bdev->bd_dev;
1451 
1452 		if (bio_check_eod(bio, nr_sectors))
1453 			goto end_io;
1454 		if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
1455 		    (bio_discard(bio) && !q->prepare_discard_fn)) {
1456 			err = -EOPNOTSUPP;
1457 			goto end_io;
1458 		}
1459 
1460 		ret = q->make_request_fn(q, bio);
1461 	} while (ret);
1462 }
1463 
1464 /*
1465  * We only want one ->make_request_fn to be active at a time,
1466  * else stack usage with stacked devices could be a problem.
1467  * So use current->bio_{list,tail} to keep a list of requests
1468  * submited by a make_request_fn function.
1469  * current->bio_tail is also used as a flag to say if
1470  * generic_make_request is currently active in this task or not.
1471  * If it is NULL, then no make_request is active.  If it is non-NULL,
1472  * then a make_request is active, and new requests should be added
1473  * at the tail
1474  */
1475 void generic_make_request(struct bio *bio)
1476 {
1477 	if (current->bio_tail) {
1478 		/* make_request is active */
1479 		*(current->bio_tail) = bio;
1480 		bio->bi_next = NULL;
1481 		current->bio_tail = &bio->bi_next;
1482 		return;
1483 	}
1484 	/* following loop may be a bit non-obvious, and so deserves some
1485 	 * explanation.
1486 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1487 	 * ensure that) so we have a list with a single bio.
1488 	 * We pretend that we have just taken it off a longer list, so
1489 	 * we assign bio_list to the next (which is NULL) and bio_tail
1490 	 * to &bio_list, thus initialising the bio_list of new bios to be
1491 	 * added.  __generic_make_request may indeed add some more bios
1492 	 * through a recursive call to generic_make_request.  If it
1493 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1494 	 * from the top.  In this case we really did just take the bio
1495 	 * of the top of the list (no pretending) and so fixup bio_list and
1496 	 * bio_tail or bi_next, and call into __generic_make_request again.
1497 	 *
1498 	 * The loop was structured like this to make only one call to
1499 	 * __generic_make_request (which is important as it is large and
1500 	 * inlined) and to keep the structure simple.
1501 	 */
1502 	BUG_ON(bio->bi_next);
1503 	do {
1504 		current->bio_list = bio->bi_next;
1505 		if (bio->bi_next == NULL)
1506 			current->bio_tail = &current->bio_list;
1507 		else
1508 			bio->bi_next = NULL;
1509 		__generic_make_request(bio);
1510 		bio = current->bio_list;
1511 	} while (bio);
1512 	current->bio_tail = NULL; /* deactivate */
1513 }
1514 EXPORT_SYMBOL(generic_make_request);
1515 
1516 /**
1517  * submit_bio - submit a bio to the block device layer for I/O
1518  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1519  * @bio: The &struct bio which describes the I/O
1520  *
1521  * submit_bio() is very similar in purpose to generic_make_request(), and
1522  * uses that function to do most of the work. Both are fairly rough
1523  * interfaces; @bio must be presetup and ready for I/O.
1524  *
1525  */
1526 void submit_bio(int rw, struct bio *bio)
1527 {
1528 	int count = bio_sectors(bio);
1529 
1530 	bio->bi_rw |= rw;
1531 
1532 	/*
1533 	 * If it's a regular read/write or a barrier with data attached,
1534 	 * go through the normal accounting stuff before submission.
1535 	 */
1536 	if (bio_has_data(bio)) {
1537 		if (rw & WRITE) {
1538 			count_vm_events(PGPGOUT, count);
1539 		} else {
1540 			task_io_account_read(bio->bi_size);
1541 			count_vm_events(PGPGIN, count);
1542 		}
1543 
1544 		if (unlikely(block_dump)) {
1545 			char b[BDEVNAME_SIZE];
1546 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1547 			current->comm, task_pid_nr(current),
1548 				(rw & WRITE) ? "WRITE" : "READ",
1549 				(unsigned long long)bio->bi_sector,
1550 				bdevname(bio->bi_bdev, b));
1551 		}
1552 	}
1553 
1554 	generic_make_request(bio);
1555 }
1556 EXPORT_SYMBOL(submit_bio);
1557 
1558 /**
1559  * blk_rq_check_limits - Helper function to check a request for the queue limit
1560  * @q:  the queue
1561  * @rq: the request being checked
1562  *
1563  * Description:
1564  *    @rq may have been made based on weaker limitations of upper-level queues
1565  *    in request stacking drivers, and it may violate the limitation of @q.
1566  *    Since the block layer and the underlying device driver trust @rq
1567  *    after it is inserted to @q, it should be checked against @q before
1568  *    the insertion using this generic function.
1569  *
1570  *    This function should also be useful for request stacking drivers
1571  *    in some cases below, so export this fuction.
1572  *    Request stacking drivers like request-based dm may change the queue
1573  *    limits while requests are in the queue (e.g. dm's table swapping).
1574  *    Such request stacking drivers should check those requests agaist
1575  *    the new queue limits again when they dispatch those requests,
1576  *    although such checkings are also done against the old queue limits
1577  *    when submitting requests.
1578  */
1579 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1580 {
1581 	if (rq->nr_sectors > q->max_sectors ||
1582 	    rq->data_len > q->max_hw_sectors << 9) {
1583 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1584 		return -EIO;
1585 	}
1586 
1587 	/*
1588 	 * queue's settings related to segment counting like q->bounce_pfn
1589 	 * may differ from that of other stacking queues.
1590 	 * Recalculate it to check the request correctly on this queue's
1591 	 * limitation.
1592 	 */
1593 	blk_recalc_rq_segments(rq);
1594 	if (rq->nr_phys_segments > q->max_phys_segments ||
1595 	    rq->nr_phys_segments > q->max_hw_segments) {
1596 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1597 		return -EIO;
1598 	}
1599 
1600 	return 0;
1601 }
1602 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1603 
1604 /**
1605  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1606  * @q:  the queue to submit the request
1607  * @rq: the request being queued
1608  */
1609 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1610 {
1611 	unsigned long flags;
1612 
1613 	if (blk_rq_check_limits(q, rq))
1614 		return -EIO;
1615 
1616 #ifdef CONFIG_FAIL_MAKE_REQUEST
1617 	if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1618 	    should_fail(&fail_make_request, blk_rq_bytes(rq)))
1619 		return -EIO;
1620 #endif
1621 
1622 	spin_lock_irqsave(q->queue_lock, flags);
1623 
1624 	/*
1625 	 * Submitting request must be dequeued before calling this function
1626 	 * because it will be linked to another request_queue
1627 	 */
1628 	BUG_ON(blk_queued_rq(rq));
1629 
1630 	drive_stat_acct(rq, 1);
1631 	__elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1632 
1633 	spin_unlock_irqrestore(q->queue_lock, flags);
1634 
1635 	return 0;
1636 }
1637 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1638 
1639 /**
1640  * __end_that_request_first - end I/O on a request
1641  * @req:      the request being processed
1642  * @error:    %0 for success, < %0 for error
1643  * @nr_bytes: number of bytes to complete
1644  *
1645  * Description:
1646  *     Ends I/O on a number of bytes attached to @req, and sets it up
1647  *     for the next range of segments (if any) in the cluster.
1648  *
1649  * Return:
1650  *     %0 - we are done with this request, call end_that_request_last()
1651  *     %1 - still buffers pending for this request
1652  **/
1653 static int __end_that_request_first(struct request *req, int error,
1654 				    int nr_bytes)
1655 {
1656 	int total_bytes, bio_nbytes, next_idx = 0;
1657 	struct bio *bio;
1658 
1659 	blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1660 
1661 	/*
1662 	 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1663 	 * sense key with us all the way through
1664 	 */
1665 	if (!blk_pc_request(req))
1666 		req->errors = 0;
1667 
1668 	if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1669 		printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1670 				req->rq_disk ? req->rq_disk->disk_name : "?",
1671 				(unsigned long long)req->sector);
1672 	}
1673 
1674 	if (blk_fs_request(req) && req->rq_disk) {
1675 		const int rw = rq_data_dir(req);
1676 		struct hd_struct *part;
1677 		int cpu;
1678 
1679 		cpu = part_stat_lock();
1680 		part = disk_map_sector_rcu(req->rq_disk, req->sector);
1681 		part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9);
1682 		part_stat_unlock();
1683 	}
1684 
1685 	total_bytes = bio_nbytes = 0;
1686 	while ((bio = req->bio) != NULL) {
1687 		int nbytes;
1688 
1689 		/*
1690 		 * For an empty barrier request, the low level driver must
1691 		 * store a potential error location in ->sector. We pass
1692 		 * that back up in ->bi_sector.
1693 		 */
1694 		if (blk_empty_barrier(req))
1695 			bio->bi_sector = req->sector;
1696 
1697 		if (nr_bytes >= bio->bi_size) {
1698 			req->bio = bio->bi_next;
1699 			nbytes = bio->bi_size;
1700 			req_bio_endio(req, bio, nbytes, error);
1701 			next_idx = 0;
1702 			bio_nbytes = 0;
1703 		} else {
1704 			int idx = bio->bi_idx + next_idx;
1705 
1706 			if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1707 				blk_dump_rq_flags(req, "__end_that");
1708 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1709 				       __func__, bio->bi_idx, bio->bi_vcnt);
1710 				break;
1711 			}
1712 
1713 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
1714 			BIO_BUG_ON(nbytes > bio->bi_size);
1715 
1716 			/*
1717 			 * not a complete bvec done
1718 			 */
1719 			if (unlikely(nbytes > nr_bytes)) {
1720 				bio_nbytes += nr_bytes;
1721 				total_bytes += nr_bytes;
1722 				break;
1723 			}
1724 
1725 			/*
1726 			 * advance to the next vector
1727 			 */
1728 			next_idx++;
1729 			bio_nbytes += nbytes;
1730 		}
1731 
1732 		total_bytes += nbytes;
1733 		nr_bytes -= nbytes;
1734 
1735 		bio = req->bio;
1736 		if (bio) {
1737 			/*
1738 			 * end more in this run, or just return 'not-done'
1739 			 */
1740 			if (unlikely(nr_bytes <= 0))
1741 				break;
1742 		}
1743 	}
1744 
1745 	/*
1746 	 * completely done
1747 	 */
1748 	if (!req->bio)
1749 		return 0;
1750 
1751 	/*
1752 	 * if the request wasn't completed, update state
1753 	 */
1754 	if (bio_nbytes) {
1755 		req_bio_endio(req, bio, bio_nbytes, error);
1756 		bio->bi_idx += next_idx;
1757 		bio_iovec(bio)->bv_offset += nr_bytes;
1758 		bio_iovec(bio)->bv_len -= nr_bytes;
1759 	}
1760 
1761 	blk_recalc_rq_sectors(req, total_bytes >> 9);
1762 	blk_recalc_rq_segments(req);
1763 	return 1;
1764 }
1765 
1766 /*
1767  * queue lock must be held
1768  */
1769 static void end_that_request_last(struct request *req, int error)
1770 {
1771 	struct gendisk *disk = req->rq_disk;
1772 
1773 	blk_delete_timer(req);
1774 
1775 	if (blk_rq_tagged(req))
1776 		blk_queue_end_tag(req->q, req);
1777 
1778 	if (blk_queued_rq(req))
1779 		blkdev_dequeue_request(req);
1780 
1781 	if (unlikely(laptop_mode) && blk_fs_request(req))
1782 		laptop_io_completion();
1783 
1784 	/*
1785 	 * Account IO completion.  bar_rq isn't accounted as a normal
1786 	 * IO on queueing nor completion.  Accounting the containing
1787 	 * request is enough.
1788 	 */
1789 	if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1790 		unsigned long duration = jiffies - req->start_time;
1791 		const int rw = rq_data_dir(req);
1792 		struct hd_struct *part;
1793 		int cpu;
1794 
1795 		cpu = part_stat_lock();
1796 		part = disk_map_sector_rcu(disk, req->sector);
1797 
1798 		part_stat_inc(cpu, part, ios[rw]);
1799 		part_stat_add(cpu, part, ticks[rw], duration);
1800 		part_round_stats(cpu, part);
1801 		part_dec_in_flight(part);
1802 
1803 		part_stat_unlock();
1804 	}
1805 
1806 	if (req->end_io)
1807 		req->end_io(req, error);
1808 	else {
1809 		if (blk_bidi_rq(req))
1810 			__blk_put_request(req->next_rq->q, req->next_rq);
1811 
1812 		__blk_put_request(req->q, req);
1813 	}
1814 }
1815 
1816 /**
1817  * blk_rq_bytes - Returns bytes left to complete in the entire request
1818  * @rq: the request being processed
1819  **/
1820 unsigned int blk_rq_bytes(struct request *rq)
1821 {
1822 	if (blk_fs_request(rq))
1823 		return rq->hard_nr_sectors << 9;
1824 
1825 	return rq->data_len;
1826 }
1827 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1828 
1829 /**
1830  * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1831  * @rq: the request being processed
1832  **/
1833 unsigned int blk_rq_cur_bytes(struct request *rq)
1834 {
1835 	if (blk_fs_request(rq))
1836 		return rq->current_nr_sectors << 9;
1837 
1838 	if (rq->bio)
1839 		return rq->bio->bi_size;
1840 
1841 	return rq->data_len;
1842 }
1843 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1844 
1845 /**
1846  * end_request - end I/O on the current segment of the request
1847  * @req:	the request being processed
1848  * @uptodate:	error value or %0/%1 uptodate flag
1849  *
1850  * Description:
1851  *     Ends I/O on the current segment of a request. If that is the only
1852  *     remaining segment, the request is also completed and freed.
1853  *
1854  *     This is a remnant of how older block drivers handled I/O completions.
1855  *     Modern drivers typically end I/O on the full request in one go, unless
1856  *     they have a residual value to account for. For that case this function
1857  *     isn't really useful, unless the residual just happens to be the
1858  *     full current segment. In other words, don't use this function in new
1859  *     code. Use blk_end_request() or __blk_end_request() to end a request.
1860  **/
1861 void end_request(struct request *req, int uptodate)
1862 {
1863 	int error = 0;
1864 
1865 	if (uptodate <= 0)
1866 		error = uptodate ? uptodate : -EIO;
1867 
1868 	__blk_end_request(req, error, req->hard_cur_sectors << 9);
1869 }
1870 EXPORT_SYMBOL(end_request);
1871 
1872 static int end_that_request_data(struct request *rq, int error,
1873 				 unsigned int nr_bytes, unsigned int bidi_bytes)
1874 {
1875 	if (rq->bio) {
1876 		if (__end_that_request_first(rq, error, nr_bytes))
1877 			return 1;
1878 
1879 		/* Bidi request must be completed as a whole */
1880 		if (blk_bidi_rq(rq) &&
1881 		    __end_that_request_first(rq->next_rq, error, bidi_bytes))
1882 			return 1;
1883 	}
1884 
1885 	return 0;
1886 }
1887 
1888 /**
1889  * blk_end_io - Generic end_io function to complete a request.
1890  * @rq:           the request being processed
1891  * @error:        %0 for success, < %0 for error
1892  * @nr_bytes:     number of bytes to complete @rq
1893  * @bidi_bytes:   number of bytes to complete @rq->next_rq
1894  * @drv_callback: function called between completion of bios in the request
1895  *                and completion of the request.
1896  *                If the callback returns non %0, this helper returns without
1897  *                completion of the request.
1898  *
1899  * Description:
1900  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1901  *     If @rq has leftover, sets it up for the next range of segments.
1902  *
1903  * Return:
1904  *     %0 - we are done with this request
1905  *     %1 - this request is not freed yet, it still has pending buffers.
1906  **/
1907 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1908 		      unsigned int bidi_bytes,
1909 		      int (drv_callback)(struct request *))
1910 {
1911 	struct request_queue *q = rq->q;
1912 	unsigned long flags = 0UL;
1913 
1914 	if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1915 		return 1;
1916 
1917 	/* Special feature for tricky drivers */
1918 	if (drv_callback && drv_callback(rq))
1919 		return 1;
1920 
1921 	add_disk_randomness(rq->rq_disk);
1922 
1923 	spin_lock_irqsave(q->queue_lock, flags);
1924 	end_that_request_last(rq, error);
1925 	spin_unlock_irqrestore(q->queue_lock, flags);
1926 
1927 	return 0;
1928 }
1929 
1930 /**
1931  * blk_end_request - Helper function for drivers to complete the request.
1932  * @rq:       the request being processed
1933  * @error:    %0 for success, < %0 for error
1934  * @nr_bytes: number of bytes to complete
1935  *
1936  * Description:
1937  *     Ends I/O on a number of bytes attached to @rq.
1938  *     If @rq has leftover, sets it up for the next range of segments.
1939  *
1940  * Return:
1941  *     %0 - we are done with this request
1942  *     %1 - still buffers pending for this request
1943  **/
1944 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1945 {
1946 	return blk_end_io(rq, error, nr_bytes, 0, NULL);
1947 }
1948 EXPORT_SYMBOL_GPL(blk_end_request);
1949 
1950 /**
1951  * __blk_end_request - Helper function for drivers to complete the request.
1952  * @rq:       the request being processed
1953  * @error:    %0 for success, < %0 for error
1954  * @nr_bytes: number of bytes to complete
1955  *
1956  * Description:
1957  *     Must be called with queue lock held unlike blk_end_request().
1958  *
1959  * Return:
1960  *     %0 - we are done with this request
1961  *     %1 - still buffers pending for this request
1962  **/
1963 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1964 {
1965 	if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
1966 		return 1;
1967 
1968 	add_disk_randomness(rq->rq_disk);
1969 
1970 	end_that_request_last(rq, error);
1971 
1972 	return 0;
1973 }
1974 EXPORT_SYMBOL_GPL(__blk_end_request);
1975 
1976 /**
1977  * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1978  * @rq:         the bidi request being processed
1979  * @error:      %0 for success, < %0 for error
1980  * @nr_bytes:   number of bytes to complete @rq
1981  * @bidi_bytes: number of bytes to complete @rq->next_rq
1982  *
1983  * Description:
1984  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1985  *
1986  * Return:
1987  *     %0 - we are done with this request
1988  *     %1 - still buffers pending for this request
1989  **/
1990 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1991 			 unsigned int bidi_bytes)
1992 {
1993 	return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1994 }
1995 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1996 
1997 /**
1998  * blk_update_request - Special helper function for request stacking drivers
1999  * @rq:           the request being processed
2000  * @error:        %0 for success, < %0 for error
2001  * @nr_bytes:     number of bytes to complete @rq
2002  *
2003  * Description:
2004  *     Ends I/O on a number of bytes attached to @rq, but doesn't complete
2005  *     the request structure even if @rq doesn't have leftover.
2006  *     If @rq has leftover, sets it up for the next range of segments.
2007  *
2008  *     This special helper function is only for request stacking drivers
2009  *     (e.g. request-based dm) so that they can handle partial completion.
2010  *     Actual device drivers should use blk_end_request instead.
2011  */
2012 void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2013 {
2014 	if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2015 		/*
2016 		 * These members are not updated in end_that_request_data()
2017 		 * when all bios are completed.
2018 		 * Update them so that the request stacking driver can find
2019 		 * how many bytes remain in the request later.
2020 		 */
2021 		rq->nr_sectors = rq->hard_nr_sectors = 0;
2022 		rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2023 	}
2024 }
2025 EXPORT_SYMBOL_GPL(blk_update_request);
2026 
2027 /**
2028  * blk_end_request_callback - Special helper function for tricky drivers
2029  * @rq:           the request being processed
2030  * @error:        %0 for success, < %0 for error
2031  * @nr_bytes:     number of bytes to complete
2032  * @drv_callback: function called between completion of bios in the request
2033  *                and completion of the request.
2034  *                If the callback returns non %0, this helper returns without
2035  *                completion of the request.
2036  *
2037  * Description:
2038  *     Ends I/O on a number of bytes attached to @rq.
2039  *     If @rq has leftover, sets it up for the next range of segments.
2040  *
2041  *     This special helper function is used only for existing tricky drivers.
2042  *     (e.g. cdrom_newpc_intr() of ide-cd)
2043  *     This interface will be removed when such drivers are rewritten.
2044  *     Don't use this interface in other places anymore.
2045  *
2046  * Return:
2047  *     %0 - we are done with this request
2048  *     %1 - this request is not freed yet.
2049  *          this request still has pending buffers or
2050  *          the driver doesn't want to finish this request yet.
2051  **/
2052 int blk_end_request_callback(struct request *rq, int error,
2053 			     unsigned int nr_bytes,
2054 			     int (drv_callback)(struct request *))
2055 {
2056 	return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2057 }
2058 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2059 
2060 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2061 		     struct bio *bio)
2062 {
2063 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2064 	   we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2065 	rq->cmd_flags |= (bio->bi_rw & 3);
2066 
2067 	if (bio_has_data(bio)) {
2068 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2069 		rq->buffer = bio_data(bio);
2070 	}
2071 	rq->current_nr_sectors = bio_cur_sectors(bio);
2072 	rq->hard_cur_sectors = rq->current_nr_sectors;
2073 	rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2074 	rq->data_len = bio->bi_size;
2075 
2076 	rq->bio = rq->biotail = bio;
2077 
2078 	if (bio->bi_bdev)
2079 		rq->rq_disk = bio->bi_bdev->bd_disk;
2080 }
2081 
2082 /**
2083  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2084  * @q : the queue of the device being checked
2085  *
2086  * Description:
2087  *    Check if underlying low-level drivers of a device are busy.
2088  *    If the drivers want to export their busy state, they must set own
2089  *    exporting function using blk_queue_lld_busy() first.
2090  *
2091  *    Basically, this function is used only by request stacking drivers
2092  *    to stop dispatching requests to underlying devices when underlying
2093  *    devices are busy.  This behavior helps more I/O merging on the queue
2094  *    of the request stacking driver and prevents I/O throughput regression
2095  *    on burst I/O load.
2096  *
2097  * Return:
2098  *    0 - Not busy (The request stacking driver should dispatch request)
2099  *    1 - Busy (The request stacking driver should stop dispatching request)
2100  */
2101 int blk_lld_busy(struct request_queue *q)
2102 {
2103 	if (q->lld_busy_fn)
2104 		return q->lld_busy_fn(q);
2105 
2106 	return 0;
2107 }
2108 EXPORT_SYMBOL_GPL(blk_lld_busy);
2109 
2110 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2111 {
2112 	return queue_work(kblockd_workqueue, work);
2113 }
2114 EXPORT_SYMBOL(kblockd_schedule_work);
2115 
2116 void kblockd_flush_work(struct work_struct *work)
2117 {
2118 	cancel_work_sync(work);
2119 }
2120 EXPORT_SYMBOL(kblockd_flush_work);
2121 
2122 int __init blk_dev_init(void)
2123 {
2124 	kblockd_workqueue = create_workqueue("kblockd");
2125 	if (!kblockd_workqueue)
2126 		panic("Failed to create kblockd\n");
2127 
2128 	request_cachep = kmem_cache_create("blkdev_requests",
2129 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2130 
2131 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2132 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2133 
2134 	return 0;
2135 }
2136 
2137