xref: /openbmc/linux/block/blk-core.c (revision 976fa9a3)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38 
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42 
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48 
49 DEFINE_IDA(blk_queue_ida);
50 
51 /*
52  * For the allocated request tables
53  */
54 struct kmem_cache *request_cachep = NULL;
55 
56 /*
57  * For queue allocation
58  */
59 struct kmem_cache *blk_requestq_cachep;
60 
61 /*
62  * Controlling structure to kblockd
63  */
64 static struct workqueue_struct *kblockd_workqueue;
65 
66 void blk_queue_congestion_threshold(struct request_queue *q)
67 {
68 	int nr;
69 
70 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 	if (nr > q->nr_requests)
72 		nr = q->nr_requests;
73 	q->nr_congestion_on = nr;
74 
75 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 	if (nr < 1)
77 		nr = 1;
78 	q->nr_congestion_off = nr;
79 }
80 
81 /**
82  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83  * @bdev:	device
84  *
85  * Locates the passed device's request queue and returns the address of its
86  * backing_dev_info.  This function can only be called if @bdev is opened
87  * and the return value is never NULL.
88  */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 	struct request_queue *q = bdev_get_queue(bdev);
92 
93 	return &q->backing_dev_info;
94 }
95 EXPORT_SYMBOL(blk_get_backing_dev_info);
96 
97 void blk_rq_init(struct request_queue *q, struct request *rq)
98 {
99 	memset(rq, 0, sizeof(*rq));
100 
101 	INIT_LIST_HEAD(&rq->queuelist);
102 	INIT_LIST_HEAD(&rq->timeout_list);
103 	rq->cpu = -1;
104 	rq->q = q;
105 	rq->__sector = (sector_t) -1;
106 	INIT_HLIST_NODE(&rq->hash);
107 	RB_CLEAR_NODE(&rq->rb_node);
108 	rq->cmd = rq->__cmd;
109 	rq->cmd_len = BLK_MAX_CDB;
110 	rq->tag = -1;
111 	rq->start_time = jiffies;
112 	set_start_time_ns(rq);
113 	rq->part = NULL;
114 }
115 EXPORT_SYMBOL(blk_rq_init);
116 
117 static void req_bio_endio(struct request *rq, struct bio *bio,
118 			  unsigned int nbytes, int error)
119 {
120 	if (error)
121 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 		error = -EIO;
124 
125 	if (unlikely(rq->cmd_flags & REQ_QUIET))
126 		set_bit(BIO_QUIET, &bio->bi_flags);
127 
128 	bio_advance(bio, nbytes);
129 
130 	/* don't actually finish bio if it's part of flush sequence */
131 	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
132 		bio_endio(bio, error);
133 }
134 
135 void blk_dump_rq_flags(struct request *rq, char *msg)
136 {
137 	int bit;
138 
139 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
140 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
141 		(unsigned long long) rq->cmd_flags);
142 
143 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
144 	       (unsigned long long)blk_rq_pos(rq),
145 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
146 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
147 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
148 
149 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
150 		printk(KERN_INFO "  cdb: ");
151 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
152 			printk("%02x ", rq->cmd[bit]);
153 		printk("\n");
154 	}
155 }
156 EXPORT_SYMBOL(blk_dump_rq_flags);
157 
158 static void blk_delay_work(struct work_struct *work)
159 {
160 	struct request_queue *q;
161 
162 	q = container_of(work, struct request_queue, delay_work.work);
163 	spin_lock_irq(q->queue_lock);
164 	__blk_run_queue(q);
165 	spin_unlock_irq(q->queue_lock);
166 }
167 
168 /**
169  * blk_delay_queue - restart queueing after defined interval
170  * @q:		The &struct request_queue in question
171  * @msecs:	Delay in msecs
172  *
173  * Description:
174  *   Sometimes queueing needs to be postponed for a little while, to allow
175  *   resources to come back. This function will make sure that queueing is
176  *   restarted around the specified time. Queue lock must be held.
177  */
178 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
179 {
180 	if (likely(!blk_queue_dead(q)))
181 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
182 				   msecs_to_jiffies(msecs));
183 }
184 EXPORT_SYMBOL(blk_delay_queue);
185 
186 /**
187  * blk_start_queue - restart a previously stopped queue
188  * @q:    The &struct request_queue in question
189  *
190  * Description:
191  *   blk_start_queue() will clear the stop flag on the queue, and call
192  *   the request_fn for the queue if it was in a stopped state when
193  *   entered. Also see blk_stop_queue(). Queue lock must be held.
194  **/
195 void blk_start_queue(struct request_queue *q)
196 {
197 	WARN_ON(!irqs_disabled());
198 
199 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
200 	__blk_run_queue(q);
201 }
202 EXPORT_SYMBOL(blk_start_queue);
203 
204 /**
205  * blk_stop_queue - stop a queue
206  * @q:    The &struct request_queue in question
207  *
208  * Description:
209  *   The Linux block layer assumes that a block driver will consume all
210  *   entries on the request queue when the request_fn strategy is called.
211  *   Often this will not happen, because of hardware limitations (queue
212  *   depth settings). If a device driver gets a 'queue full' response,
213  *   or if it simply chooses not to queue more I/O at one point, it can
214  *   call this function to prevent the request_fn from being called until
215  *   the driver has signalled it's ready to go again. This happens by calling
216  *   blk_start_queue() to restart queue operations. Queue lock must be held.
217  **/
218 void blk_stop_queue(struct request_queue *q)
219 {
220 	cancel_delayed_work(&q->delay_work);
221 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
222 }
223 EXPORT_SYMBOL(blk_stop_queue);
224 
225 /**
226  * blk_sync_queue - cancel any pending callbacks on a queue
227  * @q: the queue
228  *
229  * Description:
230  *     The block layer may perform asynchronous callback activity
231  *     on a queue, such as calling the unplug function after a timeout.
232  *     A block device may call blk_sync_queue to ensure that any
233  *     such activity is cancelled, thus allowing it to release resources
234  *     that the callbacks might use. The caller must already have made sure
235  *     that its ->make_request_fn will not re-add plugging prior to calling
236  *     this function.
237  *
238  *     This function does not cancel any asynchronous activity arising
239  *     out of elevator or throttling code. That would require elevator_exit()
240  *     and blkcg_exit_queue() to be called with queue lock initialized.
241  *
242  */
243 void blk_sync_queue(struct request_queue *q)
244 {
245 	del_timer_sync(&q->timeout);
246 
247 	if (q->mq_ops) {
248 		struct blk_mq_hw_ctx *hctx;
249 		int i;
250 
251 		queue_for_each_hw_ctx(q, hctx, i) {
252 			cancel_delayed_work_sync(&hctx->run_work);
253 			cancel_delayed_work_sync(&hctx->delay_work);
254 		}
255 	} else {
256 		cancel_delayed_work_sync(&q->delay_work);
257 	}
258 }
259 EXPORT_SYMBOL(blk_sync_queue);
260 
261 /**
262  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
263  * @q:	The queue to run
264  *
265  * Description:
266  *    Invoke request handling on a queue if there are any pending requests.
267  *    May be used to restart request handling after a request has completed.
268  *    This variant runs the queue whether or not the queue has been
269  *    stopped. Must be called with the queue lock held and interrupts
270  *    disabled. See also @blk_run_queue.
271  */
272 inline void __blk_run_queue_uncond(struct request_queue *q)
273 {
274 	if (unlikely(blk_queue_dead(q)))
275 		return;
276 
277 	/*
278 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
279 	 * the queue lock internally. As a result multiple threads may be
280 	 * running such a request function concurrently. Keep track of the
281 	 * number of active request_fn invocations such that blk_drain_queue()
282 	 * can wait until all these request_fn calls have finished.
283 	 */
284 	q->request_fn_active++;
285 	q->request_fn(q);
286 	q->request_fn_active--;
287 }
288 
289 /**
290  * __blk_run_queue - run a single device queue
291  * @q:	The queue to run
292  *
293  * Description:
294  *    See @blk_run_queue. This variant must be called with the queue lock
295  *    held and interrupts disabled.
296  */
297 void __blk_run_queue(struct request_queue *q)
298 {
299 	if (unlikely(blk_queue_stopped(q)))
300 		return;
301 
302 	__blk_run_queue_uncond(q);
303 }
304 EXPORT_SYMBOL(__blk_run_queue);
305 
306 /**
307  * blk_run_queue_async - run a single device queue in workqueue context
308  * @q:	The queue to run
309  *
310  * Description:
311  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
312  *    of us. The caller must hold the queue lock.
313  */
314 void blk_run_queue_async(struct request_queue *q)
315 {
316 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
317 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
318 }
319 EXPORT_SYMBOL(blk_run_queue_async);
320 
321 /**
322  * blk_run_queue - run a single device queue
323  * @q: The queue to run
324  *
325  * Description:
326  *    Invoke request handling on this queue, if it has pending work to do.
327  *    May be used to restart queueing when a request has completed.
328  */
329 void blk_run_queue(struct request_queue *q)
330 {
331 	unsigned long flags;
332 
333 	spin_lock_irqsave(q->queue_lock, flags);
334 	__blk_run_queue(q);
335 	spin_unlock_irqrestore(q->queue_lock, flags);
336 }
337 EXPORT_SYMBOL(blk_run_queue);
338 
339 void blk_put_queue(struct request_queue *q)
340 {
341 	kobject_put(&q->kobj);
342 }
343 EXPORT_SYMBOL(blk_put_queue);
344 
345 /**
346  * __blk_drain_queue - drain requests from request_queue
347  * @q: queue to drain
348  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
349  *
350  * Drain requests from @q.  If @drain_all is set, all requests are drained.
351  * If not, only ELVPRIV requests are drained.  The caller is responsible
352  * for ensuring that no new requests which need to be drained are queued.
353  */
354 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
355 	__releases(q->queue_lock)
356 	__acquires(q->queue_lock)
357 {
358 	int i;
359 
360 	lockdep_assert_held(q->queue_lock);
361 
362 	while (true) {
363 		bool drain = false;
364 
365 		/*
366 		 * The caller might be trying to drain @q before its
367 		 * elevator is initialized.
368 		 */
369 		if (q->elevator)
370 			elv_drain_elevator(q);
371 
372 		blkcg_drain_queue(q);
373 
374 		/*
375 		 * This function might be called on a queue which failed
376 		 * driver init after queue creation or is not yet fully
377 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
378 		 * in such cases.  Kick queue iff dispatch queue has
379 		 * something on it and @q has request_fn set.
380 		 */
381 		if (!list_empty(&q->queue_head) && q->request_fn)
382 			__blk_run_queue(q);
383 
384 		drain |= q->nr_rqs_elvpriv;
385 		drain |= q->request_fn_active;
386 
387 		/*
388 		 * Unfortunately, requests are queued at and tracked from
389 		 * multiple places and there's no single counter which can
390 		 * be drained.  Check all the queues and counters.
391 		 */
392 		if (drain_all) {
393 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
394 			drain |= !list_empty(&q->queue_head);
395 			for (i = 0; i < 2; i++) {
396 				drain |= q->nr_rqs[i];
397 				drain |= q->in_flight[i];
398 				if (fq)
399 				    drain |= !list_empty(&fq->flush_queue[i]);
400 			}
401 		}
402 
403 		if (!drain)
404 			break;
405 
406 		spin_unlock_irq(q->queue_lock);
407 
408 		msleep(10);
409 
410 		spin_lock_irq(q->queue_lock);
411 	}
412 
413 	/*
414 	 * With queue marked dead, any woken up waiter will fail the
415 	 * allocation path, so the wakeup chaining is lost and we're
416 	 * left with hung waiters. We need to wake up those waiters.
417 	 */
418 	if (q->request_fn) {
419 		struct request_list *rl;
420 
421 		blk_queue_for_each_rl(rl, q)
422 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
423 				wake_up_all(&rl->wait[i]);
424 	}
425 }
426 
427 /**
428  * blk_queue_bypass_start - enter queue bypass mode
429  * @q: queue of interest
430  *
431  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
432  * function makes @q enter bypass mode and drains all requests which were
433  * throttled or issued before.  On return, it's guaranteed that no request
434  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
435  * inside queue or RCU read lock.
436  */
437 void blk_queue_bypass_start(struct request_queue *q)
438 {
439 	spin_lock_irq(q->queue_lock);
440 	q->bypass_depth++;
441 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
442 	spin_unlock_irq(q->queue_lock);
443 
444 	/*
445 	 * Queues start drained.  Skip actual draining till init is
446 	 * complete.  This avoids lenghty delays during queue init which
447 	 * can happen many times during boot.
448 	 */
449 	if (blk_queue_init_done(q)) {
450 		spin_lock_irq(q->queue_lock);
451 		__blk_drain_queue(q, false);
452 		spin_unlock_irq(q->queue_lock);
453 
454 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
455 		synchronize_rcu();
456 	}
457 }
458 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
459 
460 /**
461  * blk_queue_bypass_end - leave queue bypass mode
462  * @q: queue of interest
463  *
464  * Leave bypass mode and restore the normal queueing behavior.
465  */
466 void blk_queue_bypass_end(struct request_queue *q)
467 {
468 	spin_lock_irq(q->queue_lock);
469 	if (!--q->bypass_depth)
470 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
471 	WARN_ON_ONCE(q->bypass_depth < 0);
472 	spin_unlock_irq(q->queue_lock);
473 }
474 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
475 
476 void blk_set_queue_dying(struct request_queue *q)
477 {
478 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
479 
480 	if (q->mq_ops)
481 		blk_mq_wake_waiters(q);
482 	else {
483 		struct request_list *rl;
484 
485 		blk_queue_for_each_rl(rl, q) {
486 			if (rl->rq_pool) {
487 				wake_up(&rl->wait[BLK_RW_SYNC]);
488 				wake_up(&rl->wait[BLK_RW_ASYNC]);
489 			}
490 		}
491 	}
492 }
493 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
494 
495 /**
496  * blk_cleanup_queue - shutdown a request queue
497  * @q: request queue to shutdown
498  *
499  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
500  * put it.  All future requests will be failed immediately with -ENODEV.
501  */
502 void blk_cleanup_queue(struct request_queue *q)
503 {
504 	spinlock_t *lock = q->queue_lock;
505 
506 	/* mark @q DYING, no new request or merges will be allowed afterwards */
507 	mutex_lock(&q->sysfs_lock);
508 	blk_set_queue_dying(q);
509 	spin_lock_irq(lock);
510 
511 	/*
512 	 * A dying queue is permanently in bypass mode till released.  Note
513 	 * that, unlike blk_queue_bypass_start(), we aren't performing
514 	 * synchronize_rcu() after entering bypass mode to avoid the delay
515 	 * as some drivers create and destroy a lot of queues while
516 	 * probing.  This is still safe because blk_release_queue() will be
517 	 * called only after the queue refcnt drops to zero and nothing,
518 	 * RCU or not, would be traversing the queue by then.
519 	 */
520 	q->bypass_depth++;
521 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
522 
523 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
524 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
525 	queue_flag_set(QUEUE_FLAG_DYING, q);
526 	spin_unlock_irq(lock);
527 	mutex_unlock(&q->sysfs_lock);
528 
529 	/*
530 	 * Drain all requests queued before DYING marking. Set DEAD flag to
531 	 * prevent that q->request_fn() gets invoked after draining finished.
532 	 */
533 	if (q->mq_ops) {
534 		blk_mq_freeze_queue(q);
535 		spin_lock_irq(lock);
536 	} else {
537 		spin_lock_irq(lock);
538 		__blk_drain_queue(q, true);
539 	}
540 	queue_flag_set(QUEUE_FLAG_DEAD, q);
541 	spin_unlock_irq(lock);
542 
543 	/* @q won't process any more request, flush async actions */
544 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
545 	blk_sync_queue(q);
546 
547 	if (q->mq_ops)
548 		blk_mq_free_queue(q);
549 
550 	spin_lock_irq(lock);
551 	if (q->queue_lock != &q->__queue_lock)
552 		q->queue_lock = &q->__queue_lock;
553 	spin_unlock_irq(lock);
554 
555 	bdi_destroy(&q->backing_dev_info);
556 
557 	/* @q is and will stay empty, shutdown and put */
558 	blk_put_queue(q);
559 }
560 EXPORT_SYMBOL(blk_cleanup_queue);
561 
562 /* Allocate memory local to the request queue */
563 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
564 {
565 	int nid = (int)(long)data;
566 	return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
567 }
568 
569 static void free_request_struct(void *element, void *unused)
570 {
571 	kmem_cache_free(request_cachep, element);
572 }
573 
574 int blk_init_rl(struct request_list *rl, struct request_queue *q,
575 		gfp_t gfp_mask)
576 {
577 	if (unlikely(rl->rq_pool))
578 		return 0;
579 
580 	rl->q = q;
581 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
582 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
583 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
584 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
585 
586 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
587 					  free_request_struct,
588 					  (void *)(long)q->node, gfp_mask,
589 					  q->node);
590 	if (!rl->rq_pool)
591 		return -ENOMEM;
592 
593 	return 0;
594 }
595 
596 void blk_exit_rl(struct request_list *rl)
597 {
598 	if (rl->rq_pool)
599 		mempool_destroy(rl->rq_pool);
600 }
601 
602 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
603 {
604 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
605 }
606 EXPORT_SYMBOL(blk_alloc_queue);
607 
608 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
609 {
610 	struct request_queue *q;
611 	int err;
612 
613 	q = kmem_cache_alloc_node(blk_requestq_cachep,
614 				gfp_mask | __GFP_ZERO, node_id);
615 	if (!q)
616 		return NULL;
617 
618 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
619 	if (q->id < 0)
620 		goto fail_q;
621 
622 	q->backing_dev_info.ra_pages =
623 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
624 	q->backing_dev_info.state = 0;
625 	q->backing_dev_info.capabilities = 0;
626 	q->backing_dev_info.name = "block";
627 	q->node = node_id;
628 
629 	err = bdi_init(&q->backing_dev_info);
630 	if (err)
631 		goto fail_id;
632 
633 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
634 		    laptop_mode_timer_fn, (unsigned long) q);
635 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
636 	INIT_LIST_HEAD(&q->queue_head);
637 	INIT_LIST_HEAD(&q->timeout_list);
638 	INIT_LIST_HEAD(&q->icq_list);
639 #ifdef CONFIG_BLK_CGROUP
640 	INIT_LIST_HEAD(&q->blkg_list);
641 #endif
642 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
643 
644 	kobject_init(&q->kobj, &blk_queue_ktype);
645 
646 	mutex_init(&q->sysfs_lock);
647 	spin_lock_init(&q->__queue_lock);
648 
649 	/*
650 	 * By default initialize queue_lock to internal lock and driver can
651 	 * override it later if need be.
652 	 */
653 	q->queue_lock = &q->__queue_lock;
654 
655 	/*
656 	 * A queue starts its life with bypass turned on to avoid
657 	 * unnecessary bypass on/off overhead and nasty surprises during
658 	 * init.  The initial bypass will be finished when the queue is
659 	 * registered by blk_register_queue().
660 	 */
661 	q->bypass_depth = 1;
662 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
663 
664 	init_waitqueue_head(&q->mq_freeze_wq);
665 
666 	if (blkcg_init_queue(q))
667 		goto fail_bdi;
668 
669 	return q;
670 
671 fail_bdi:
672 	bdi_destroy(&q->backing_dev_info);
673 fail_id:
674 	ida_simple_remove(&blk_queue_ida, q->id);
675 fail_q:
676 	kmem_cache_free(blk_requestq_cachep, q);
677 	return NULL;
678 }
679 EXPORT_SYMBOL(blk_alloc_queue_node);
680 
681 /**
682  * blk_init_queue  - prepare a request queue for use with a block device
683  * @rfn:  The function to be called to process requests that have been
684  *        placed on the queue.
685  * @lock: Request queue spin lock
686  *
687  * Description:
688  *    If a block device wishes to use the standard request handling procedures,
689  *    which sorts requests and coalesces adjacent requests, then it must
690  *    call blk_init_queue().  The function @rfn will be called when there
691  *    are requests on the queue that need to be processed.  If the device
692  *    supports plugging, then @rfn may not be called immediately when requests
693  *    are available on the queue, but may be called at some time later instead.
694  *    Plugged queues are generally unplugged when a buffer belonging to one
695  *    of the requests on the queue is needed, or due to memory pressure.
696  *
697  *    @rfn is not required, or even expected, to remove all requests off the
698  *    queue, but only as many as it can handle at a time.  If it does leave
699  *    requests on the queue, it is responsible for arranging that the requests
700  *    get dealt with eventually.
701  *
702  *    The queue spin lock must be held while manipulating the requests on the
703  *    request queue; this lock will be taken also from interrupt context, so irq
704  *    disabling is needed for it.
705  *
706  *    Function returns a pointer to the initialized request queue, or %NULL if
707  *    it didn't succeed.
708  *
709  * Note:
710  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
711  *    when the block device is deactivated (such as at module unload).
712  **/
713 
714 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
715 {
716 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
717 }
718 EXPORT_SYMBOL(blk_init_queue);
719 
720 struct request_queue *
721 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
722 {
723 	struct request_queue *uninit_q, *q;
724 
725 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
726 	if (!uninit_q)
727 		return NULL;
728 
729 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
730 	if (!q)
731 		blk_cleanup_queue(uninit_q);
732 
733 	return q;
734 }
735 EXPORT_SYMBOL(blk_init_queue_node);
736 
737 struct request_queue *
738 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
739 			 spinlock_t *lock)
740 {
741 	if (!q)
742 		return NULL;
743 
744 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
745 	if (!q->fq)
746 		return NULL;
747 
748 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
749 		goto fail;
750 
751 	q->request_fn		= rfn;
752 	q->prep_rq_fn		= NULL;
753 	q->unprep_rq_fn		= NULL;
754 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
755 
756 	/* Override internal queue lock with supplied lock pointer */
757 	if (lock)
758 		q->queue_lock		= lock;
759 
760 	/*
761 	 * This also sets hw/phys segments, boundary and size
762 	 */
763 	blk_queue_make_request(q, blk_queue_bio);
764 
765 	q->sg_reserved_size = INT_MAX;
766 
767 	/* Protect q->elevator from elevator_change */
768 	mutex_lock(&q->sysfs_lock);
769 
770 	/* init elevator */
771 	if (elevator_init(q, NULL)) {
772 		mutex_unlock(&q->sysfs_lock);
773 		goto fail;
774 	}
775 
776 	mutex_unlock(&q->sysfs_lock);
777 
778 	return q;
779 
780 fail:
781 	blk_free_flush_queue(q->fq);
782 	return NULL;
783 }
784 EXPORT_SYMBOL(blk_init_allocated_queue);
785 
786 bool blk_get_queue(struct request_queue *q)
787 {
788 	if (likely(!blk_queue_dying(q))) {
789 		__blk_get_queue(q);
790 		return true;
791 	}
792 
793 	return false;
794 }
795 EXPORT_SYMBOL(blk_get_queue);
796 
797 static inline void blk_free_request(struct request_list *rl, struct request *rq)
798 {
799 	if (rq->cmd_flags & REQ_ELVPRIV) {
800 		elv_put_request(rl->q, rq);
801 		if (rq->elv.icq)
802 			put_io_context(rq->elv.icq->ioc);
803 	}
804 
805 	mempool_free(rq, rl->rq_pool);
806 }
807 
808 /*
809  * ioc_batching returns true if the ioc is a valid batching request and
810  * should be given priority access to a request.
811  */
812 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
813 {
814 	if (!ioc)
815 		return 0;
816 
817 	/*
818 	 * Make sure the process is able to allocate at least 1 request
819 	 * even if the batch times out, otherwise we could theoretically
820 	 * lose wakeups.
821 	 */
822 	return ioc->nr_batch_requests == q->nr_batching ||
823 		(ioc->nr_batch_requests > 0
824 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
825 }
826 
827 /*
828  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
829  * will cause the process to be a "batcher" on all queues in the system. This
830  * is the behaviour we want though - once it gets a wakeup it should be given
831  * a nice run.
832  */
833 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
834 {
835 	if (!ioc || ioc_batching(q, ioc))
836 		return;
837 
838 	ioc->nr_batch_requests = q->nr_batching;
839 	ioc->last_waited = jiffies;
840 }
841 
842 static void __freed_request(struct request_list *rl, int sync)
843 {
844 	struct request_queue *q = rl->q;
845 
846 	/*
847 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
848 	 * blkcg anyway, just use root blkcg state.
849 	 */
850 	if (rl == &q->root_rl &&
851 	    rl->count[sync] < queue_congestion_off_threshold(q))
852 		blk_clear_queue_congested(q, sync);
853 
854 	if (rl->count[sync] + 1 <= q->nr_requests) {
855 		if (waitqueue_active(&rl->wait[sync]))
856 			wake_up(&rl->wait[sync]);
857 
858 		blk_clear_rl_full(rl, sync);
859 	}
860 }
861 
862 /*
863  * A request has just been released.  Account for it, update the full and
864  * congestion status, wake up any waiters.   Called under q->queue_lock.
865  */
866 static void freed_request(struct request_list *rl, unsigned int flags)
867 {
868 	struct request_queue *q = rl->q;
869 	int sync = rw_is_sync(flags);
870 
871 	q->nr_rqs[sync]--;
872 	rl->count[sync]--;
873 	if (flags & REQ_ELVPRIV)
874 		q->nr_rqs_elvpriv--;
875 
876 	__freed_request(rl, sync);
877 
878 	if (unlikely(rl->starved[sync ^ 1]))
879 		__freed_request(rl, sync ^ 1);
880 }
881 
882 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
883 {
884 	struct request_list *rl;
885 
886 	spin_lock_irq(q->queue_lock);
887 	q->nr_requests = nr;
888 	blk_queue_congestion_threshold(q);
889 
890 	/* congestion isn't cgroup aware and follows root blkcg for now */
891 	rl = &q->root_rl;
892 
893 	if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
894 		blk_set_queue_congested(q, BLK_RW_SYNC);
895 	else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
896 		blk_clear_queue_congested(q, BLK_RW_SYNC);
897 
898 	if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
899 		blk_set_queue_congested(q, BLK_RW_ASYNC);
900 	else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
901 		blk_clear_queue_congested(q, BLK_RW_ASYNC);
902 
903 	blk_queue_for_each_rl(rl, q) {
904 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
905 			blk_set_rl_full(rl, BLK_RW_SYNC);
906 		} else {
907 			blk_clear_rl_full(rl, BLK_RW_SYNC);
908 			wake_up(&rl->wait[BLK_RW_SYNC]);
909 		}
910 
911 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
912 			blk_set_rl_full(rl, BLK_RW_ASYNC);
913 		} else {
914 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
915 			wake_up(&rl->wait[BLK_RW_ASYNC]);
916 		}
917 	}
918 
919 	spin_unlock_irq(q->queue_lock);
920 	return 0;
921 }
922 
923 /*
924  * Determine if elevator data should be initialized when allocating the
925  * request associated with @bio.
926  */
927 static bool blk_rq_should_init_elevator(struct bio *bio)
928 {
929 	if (!bio)
930 		return true;
931 
932 	/*
933 	 * Flush requests do not use the elevator so skip initialization.
934 	 * This allows a request to share the flush and elevator data.
935 	 */
936 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
937 		return false;
938 
939 	return true;
940 }
941 
942 /**
943  * rq_ioc - determine io_context for request allocation
944  * @bio: request being allocated is for this bio (can be %NULL)
945  *
946  * Determine io_context to use for request allocation for @bio.  May return
947  * %NULL if %current->io_context doesn't exist.
948  */
949 static struct io_context *rq_ioc(struct bio *bio)
950 {
951 #ifdef CONFIG_BLK_CGROUP
952 	if (bio && bio->bi_ioc)
953 		return bio->bi_ioc;
954 #endif
955 	return current->io_context;
956 }
957 
958 /**
959  * __get_request - get a free request
960  * @rl: request list to allocate from
961  * @rw_flags: RW and SYNC flags
962  * @bio: bio to allocate request for (can be %NULL)
963  * @gfp_mask: allocation mask
964  *
965  * Get a free request from @q.  This function may fail under memory
966  * pressure or if @q is dead.
967  *
968  * Must be called with @q->queue_lock held and,
969  * Returns ERR_PTR on failure, with @q->queue_lock held.
970  * Returns request pointer on success, with @q->queue_lock *not held*.
971  */
972 static struct request *__get_request(struct request_list *rl, int rw_flags,
973 				     struct bio *bio, gfp_t gfp_mask)
974 {
975 	struct request_queue *q = rl->q;
976 	struct request *rq;
977 	struct elevator_type *et = q->elevator->type;
978 	struct io_context *ioc = rq_ioc(bio);
979 	struct io_cq *icq = NULL;
980 	const bool is_sync = rw_is_sync(rw_flags) != 0;
981 	int may_queue;
982 
983 	if (unlikely(blk_queue_dying(q)))
984 		return ERR_PTR(-ENODEV);
985 
986 	may_queue = elv_may_queue(q, rw_flags);
987 	if (may_queue == ELV_MQUEUE_NO)
988 		goto rq_starved;
989 
990 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
991 		if (rl->count[is_sync]+1 >= q->nr_requests) {
992 			/*
993 			 * The queue will fill after this allocation, so set
994 			 * it as full, and mark this process as "batching".
995 			 * This process will be allowed to complete a batch of
996 			 * requests, others will be blocked.
997 			 */
998 			if (!blk_rl_full(rl, is_sync)) {
999 				ioc_set_batching(q, ioc);
1000 				blk_set_rl_full(rl, is_sync);
1001 			} else {
1002 				if (may_queue != ELV_MQUEUE_MUST
1003 						&& !ioc_batching(q, ioc)) {
1004 					/*
1005 					 * The queue is full and the allocating
1006 					 * process is not a "batcher", and not
1007 					 * exempted by the IO scheduler
1008 					 */
1009 					return ERR_PTR(-ENOMEM);
1010 				}
1011 			}
1012 		}
1013 		/*
1014 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
1015 		 * root blkcg anyway, just use root blkcg state.
1016 		 */
1017 		if (rl == &q->root_rl)
1018 			blk_set_queue_congested(q, is_sync);
1019 	}
1020 
1021 	/*
1022 	 * Only allow batching queuers to allocate up to 50% over the defined
1023 	 * limit of requests, otherwise we could have thousands of requests
1024 	 * allocated with any setting of ->nr_requests
1025 	 */
1026 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1027 		return ERR_PTR(-ENOMEM);
1028 
1029 	q->nr_rqs[is_sync]++;
1030 	rl->count[is_sync]++;
1031 	rl->starved[is_sync] = 0;
1032 
1033 	/*
1034 	 * Decide whether the new request will be managed by elevator.  If
1035 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
1036 	 * prevent the current elevator from being destroyed until the new
1037 	 * request is freed.  This guarantees icq's won't be destroyed and
1038 	 * makes creating new ones safe.
1039 	 *
1040 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1041 	 * it will be created after releasing queue_lock.
1042 	 */
1043 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1044 		rw_flags |= REQ_ELVPRIV;
1045 		q->nr_rqs_elvpriv++;
1046 		if (et->icq_cache && ioc)
1047 			icq = ioc_lookup_icq(ioc, q);
1048 	}
1049 
1050 	if (blk_queue_io_stat(q))
1051 		rw_flags |= REQ_IO_STAT;
1052 	spin_unlock_irq(q->queue_lock);
1053 
1054 	/* allocate and init request */
1055 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1056 	if (!rq)
1057 		goto fail_alloc;
1058 
1059 	blk_rq_init(q, rq);
1060 	blk_rq_set_rl(rq, rl);
1061 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
1062 
1063 	/* init elvpriv */
1064 	if (rw_flags & REQ_ELVPRIV) {
1065 		if (unlikely(et->icq_cache && !icq)) {
1066 			if (ioc)
1067 				icq = ioc_create_icq(ioc, q, gfp_mask);
1068 			if (!icq)
1069 				goto fail_elvpriv;
1070 		}
1071 
1072 		rq->elv.icq = icq;
1073 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1074 			goto fail_elvpriv;
1075 
1076 		/* @rq->elv.icq holds io_context until @rq is freed */
1077 		if (icq)
1078 			get_io_context(icq->ioc);
1079 	}
1080 out:
1081 	/*
1082 	 * ioc may be NULL here, and ioc_batching will be false. That's
1083 	 * OK, if the queue is under the request limit then requests need
1084 	 * not count toward the nr_batch_requests limit. There will always
1085 	 * be some limit enforced by BLK_BATCH_TIME.
1086 	 */
1087 	if (ioc_batching(q, ioc))
1088 		ioc->nr_batch_requests--;
1089 
1090 	trace_block_getrq(q, bio, rw_flags & 1);
1091 	return rq;
1092 
1093 fail_elvpriv:
1094 	/*
1095 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1096 	 * and may fail indefinitely under memory pressure and thus
1097 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1098 	 * disturb iosched and blkcg but weird is bettern than dead.
1099 	 */
1100 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1101 			   __func__, dev_name(q->backing_dev_info.dev));
1102 
1103 	rq->cmd_flags &= ~REQ_ELVPRIV;
1104 	rq->elv.icq = NULL;
1105 
1106 	spin_lock_irq(q->queue_lock);
1107 	q->nr_rqs_elvpriv--;
1108 	spin_unlock_irq(q->queue_lock);
1109 	goto out;
1110 
1111 fail_alloc:
1112 	/*
1113 	 * Allocation failed presumably due to memory. Undo anything we
1114 	 * might have messed up.
1115 	 *
1116 	 * Allocating task should really be put onto the front of the wait
1117 	 * queue, but this is pretty rare.
1118 	 */
1119 	spin_lock_irq(q->queue_lock);
1120 	freed_request(rl, rw_flags);
1121 
1122 	/*
1123 	 * in the very unlikely event that allocation failed and no
1124 	 * requests for this direction was pending, mark us starved so that
1125 	 * freeing of a request in the other direction will notice
1126 	 * us. another possible fix would be to split the rq mempool into
1127 	 * READ and WRITE
1128 	 */
1129 rq_starved:
1130 	if (unlikely(rl->count[is_sync] == 0))
1131 		rl->starved[is_sync] = 1;
1132 	return ERR_PTR(-ENOMEM);
1133 }
1134 
1135 /**
1136  * get_request - get a free request
1137  * @q: request_queue to allocate request from
1138  * @rw_flags: RW and SYNC flags
1139  * @bio: bio to allocate request for (can be %NULL)
1140  * @gfp_mask: allocation mask
1141  *
1142  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1143  * function keeps retrying under memory pressure and fails iff @q is dead.
1144  *
1145  * Must be called with @q->queue_lock held and,
1146  * Returns ERR_PTR on failure, with @q->queue_lock held.
1147  * Returns request pointer on success, with @q->queue_lock *not held*.
1148  */
1149 static struct request *get_request(struct request_queue *q, int rw_flags,
1150 				   struct bio *bio, gfp_t gfp_mask)
1151 {
1152 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1153 	DEFINE_WAIT(wait);
1154 	struct request_list *rl;
1155 	struct request *rq;
1156 
1157 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1158 retry:
1159 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1160 	if (!IS_ERR(rq))
1161 		return rq;
1162 
1163 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1164 		blk_put_rl(rl);
1165 		return rq;
1166 	}
1167 
1168 	/* wait on @rl and retry */
1169 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1170 				  TASK_UNINTERRUPTIBLE);
1171 
1172 	trace_block_sleeprq(q, bio, rw_flags & 1);
1173 
1174 	spin_unlock_irq(q->queue_lock);
1175 	io_schedule();
1176 
1177 	/*
1178 	 * After sleeping, we become a "batching" process and will be able
1179 	 * to allocate at least one request, and up to a big batch of them
1180 	 * for a small period time.  See ioc_batching, ioc_set_batching
1181 	 */
1182 	ioc_set_batching(q, current->io_context);
1183 
1184 	spin_lock_irq(q->queue_lock);
1185 	finish_wait(&rl->wait[is_sync], &wait);
1186 
1187 	goto retry;
1188 }
1189 
1190 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1191 		gfp_t gfp_mask)
1192 {
1193 	struct request *rq;
1194 
1195 	BUG_ON(rw != READ && rw != WRITE);
1196 
1197 	/* create ioc upfront */
1198 	create_io_context(gfp_mask, q->node);
1199 
1200 	spin_lock_irq(q->queue_lock);
1201 	rq = get_request(q, rw, NULL, gfp_mask);
1202 	if (IS_ERR(rq))
1203 		spin_unlock_irq(q->queue_lock);
1204 	/* q->queue_lock is unlocked at this point */
1205 
1206 	return rq;
1207 }
1208 
1209 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1210 {
1211 	if (q->mq_ops)
1212 		return blk_mq_alloc_request(q, rw, gfp_mask, false);
1213 	else
1214 		return blk_old_get_request(q, rw, gfp_mask);
1215 }
1216 EXPORT_SYMBOL(blk_get_request);
1217 
1218 /**
1219  * blk_make_request - given a bio, allocate a corresponding struct request.
1220  * @q: target request queue
1221  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1222  *        It may be a chained-bio properly constructed by block/bio layer.
1223  * @gfp_mask: gfp flags to be used for memory allocation
1224  *
1225  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1226  * type commands. Where the struct request needs to be farther initialized by
1227  * the caller. It is passed a &struct bio, which describes the memory info of
1228  * the I/O transfer.
1229  *
1230  * The caller of blk_make_request must make sure that bi_io_vec
1231  * are set to describe the memory buffers. That bio_data_dir() will return
1232  * the needed direction of the request. (And all bio's in the passed bio-chain
1233  * are properly set accordingly)
1234  *
1235  * If called under none-sleepable conditions, mapped bio buffers must not
1236  * need bouncing, by calling the appropriate masked or flagged allocator,
1237  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1238  * BUG.
1239  *
1240  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1241  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1242  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1243  * completion of a bio that hasn't been submitted yet, thus resulting in a
1244  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1245  * of bio_alloc(), as that avoids the mempool deadlock.
1246  * If possible a big IO should be split into smaller parts when allocation
1247  * fails. Partial allocation should not be an error, or you risk a live-lock.
1248  */
1249 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1250 				 gfp_t gfp_mask)
1251 {
1252 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1253 
1254 	if (IS_ERR(rq))
1255 		return rq;
1256 
1257 	blk_rq_set_block_pc(rq);
1258 
1259 	for_each_bio(bio) {
1260 		struct bio *bounce_bio = bio;
1261 		int ret;
1262 
1263 		blk_queue_bounce(q, &bounce_bio);
1264 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1265 		if (unlikely(ret)) {
1266 			blk_put_request(rq);
1267 			return ERR_PTR(ret);
1268 		}
1269 	}
1270 
1271 	return rq;
1272 }
1273 EXPORT_SYMBOL(blk_make_request);
1274 
1275 /**
1276  * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1277  * @rq:		request to be initialized
1278  *
1279  */
1280 void blk_rq_set_block_pc(struct request *rq)
1281 {
1282 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1283 	rq->__data_len = 0;
1284 	rq->__sector = (sector_t) -1;
1285 	rq->bio = rq->biotail = NULL;
1286 	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1287 }
1288 EXPORT_SYMBOL(blk_rq_set_block_pc);
1289 
1290 /**
1291  * blk_requeue_request - put a request back on queue
1292  * @q:		request queue where request should be inserted
1293  * @rq:		request to be inserted
1294  *
1295  * Description:
1296  *    Drivers often keep queueing requests until the hardware cannot accept
1297  *    more, when that condition happens we need to put the request back
1298  *    on the queue. Must be called with queue lock held.
1299  */
1300 void blk_requeue_request(struct request_queue *q, struct request *rq)
1301 {
1302 	blk_delete_timer(rq);
1303 	blk_clear_rq_complete(rq);
1304 	trace_block_rq_requeue(q, rq);
1305 
1306 	if (rq->cmd_flags & REQ_QUEUED)
1307 		blk_queue_end_tag(q, rq);
1308 
1309 	BUG_ON(blk_queued_rq(rq));
1310 
1311 	elv_requeue_request(q, rq);
1312 }
1313 EXPORT_SYMBOL(blk_requeue_request);
1314 
1315 static void add_acct_request(struct request_queue *q, struct request *rq,
1316 			     int where)
1317 {
1318 	blk_account_io_start(rq, true);
1319 	__elv_add_request(q, rq, where);
1320 }
1321 
1322 static void part_round_stats_single(int cpu, struct hd_struct *part,
1323 				    unsigned long now)
1324 {
1325 	int inflight;
1326 
1327 	if (now == part->stamp)
1328 		return;
1329 
1330 	inflight = part_in_flight(part);
1331 	if (inflight) {
1332 		__part_stat_add(cpu, part, time_in_queue,
1333 				inflight * (now - part->stamp));
1334 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1335 	}
1336 	part->stamp = now;
1337 }
1338 
1339 /**
1340  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1341  * @cpu: cpu number for stats access
1342  * @part: target partition
1343  *
1344  * The average IO queue length and utilisation statistics are maintained
1345  * by observing the current state of the queue length and the amount of
1346  * time it has been in this state for.
1347  *
1348  * Normally, that accounting is done on IO completion, but that can result
1349  * in more than a second's worth of IO being accounted for within any one
1350  * second, leading to >100% utilisation.  To deal with that, we call this
1351  * function to do a round-off before returning the results when reading
1352  * /proc/diskstats.  This accounts immediately for all queue usage up to
1353  * the current jiffies and restarts the counters again.
1354  */
1355 void part_round_stats(int cpu, struct hd_struct *part)
1356 {
1357 	unsigned long now = jiffies;
1358 
1359 	if (part->partno)
1360 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1361 	part_round_stats_single(cpu, part, now);
1362 }
1363 EXPORT_SYMBOL_GPL(part_round_stats);
1364 
1365 #ifdef CONFIG_PM
1366 static void blk_pm_put_request(struct request *rq)
1367 {
1368 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1369 		pm_runtime_mark_last_busy(rq->q->dev);
1370 }
1371 #else
1372 static inline void blk_pm_put_request(struct request *rq) {}
1373 #endif
1374 
1375 /*
1376  * queue lock must be held
1377  */
1378 void __blk_put_request(struct request_queue *q, struct request *req)
1379 {
1380 	if (unlikely(!q))
1381 		return;
1382 
1383 	if (q->mq_ops) {
1384 		blk_mq_free_request(req);
1385 		return;
1386 	}
1387 
1388 	blk_pm_put_request(req);
1389 
1390 	elv_completed_request(q, req);
1391 
1392 	/* this is a bio leak */
1393 	WARN_ON(req->bio != NULL);
1394 
1395 	/*
1396 	 * Request may not have originated from ll_rw_blk. if not,
1397 	 * it didn't come out of our reserved rq pools
1398 	 */
1399 	if (req->cmd_flags & REQ_ALLOCED) {
1400 		unsigned int flags = req->cmd_flags;
1401 		struct request_list *rl = blk_rq_rl(req);
1402 
1403 		BUG_ON(!list_empty(&req->queuelist));
1404 		BUG_ON(ELV_ON_HASH(req));
1405 
1406 		blk_free_request(rl, req);
1407 		freed_request(rl, flags);
1408 		blk_put_rl(rl);
1409 	}
1410 }
1411 EXPORT_SYMBOL_GPL(__blk_put_request);
1412 
1413 void blk_put_request(struct request *req)
1414 {
1415 	struct request_queue *q = req->q;
1416 
1417 	if (q->mq_ops)
1418 		blk_mq_free_request(req);
1419 	else {
1420 		unsigned long flags;
1421 
1422 		spin_lock_irqsave(q->queue_lock, flags);
1423 		__blk_put_request(q, req);
1424 		spin_unlock_irqrestore(q->queue_lock, flags);
1425 	}
1426 }
1427 EXPORT_SYMBOL(blk_put_request);
1428 
1429 /**
1430  * blk_add_request_payload - add a payload to a request
1431  * @rq: request to update
1432  * @page: page backing the payload
1433  * @len: length of the payload.
1434  *
1435  * This allows to later add a payload to an already submitted request by
1436  * a block driver.  The driver needs to take care of freeing the payload
1437  * itself.
1438  *
1439  * Note that this is a quite horrible hack and nothing but handling of
1440  * discard requests should ever use it.
1441  */
1442 void blk_add_request_payload(struct request *rq, struct page *page,
1443 		unsigned int len)
1444 {
1445 	struct bio *bio = rq->bio;
1446 
1447 	bio->bi_io_vec->bv_page = page;
1448 	bio->bi_io_vec->bv_offset = 0;
1449 	bio->bi_io_vec->bv_len = len;
1450 
1451 	bio->bi_iter.bi_size = len;
1452 	bio->bi_vcnt = 1;
1453 	bio->bi_phys_segments = 1;
1454 
1455 	rq->__data_len = rq->resid_len = len;
1456 	rq->nr_phys_segments = 1;
1457 }
1458 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1459 
1460 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1461 			    struct bio *bio)
1462 {
1463 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1464 
1465 	if (!ll_back_merge_fn(q, req, bio))
1466 		return false;
1467 
1468 	trace_block_bio_backmerge(q, req, bio);
1469 
1470 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1471 		blk_rq_set_mixed_merge(req);
1472 
1473 	req->biotail->bi_next = bio;
1474 	req->biotail = bio;
1475 	req->__data_len += bio->bi_iter.bi_size;
1476 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1477 
1478 	blk_account_io_start(req, false);
1479 	return true;
1480 }
1481 
1482 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1483 			     struct bio *bio)
1484 {
1485 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1486 
1487 	if (!ll_front_merge_fn(q, req, bio))
1488 		return false;
1489 
1490 	trace_block_bio_frontmerge(q, req, bio);
1491 
1492 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1493 		blk_rq_set_mixed_merge(req);
1494 
1495 	bio->bi_next = req->bio;
1496 	req->bio = bio;
1497 
1498 	req->__sector = bio->bi_iter.bi_sector;
1499 	req->__data_len += bio->bi_iter.bi_size;
1500 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1501 
1502 	blk_account_io_start(req, false);
1503 	return true;
1504 }
1505 
1506 /**
1507  * blk_attempt_plug_merge - try to merge with %current's plugged list
1508  * @q: request_queue new bio is being queued at
1509  * @bio: new bio being queued
1510  * @request_count: out parameter for number of traversed plugged requests
1511  *
1512  * Determine whether @bio being queued on @q can be merged with a request
1513  * on %current's plugged list.  Returns %true if merge was successful,
1514  * otherwise %false.
1515  *
1516  * Plugging coalesces IOs from the same issuer for the same purpose without
1517  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1518  * than scheduling, and the request, while may have elvpriv data, is not
1519  * added on the elevator at this point.  In addition, we don't have
1520  * reliable access to the elevator outside queue lock.  Only check basic
1521  * merging parameters without querying the elevator.
1522  *
1523  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1524  */
1525 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1526 			    unsigned int *request_count)
1527 {
1528 	struct blk_plug *plug;
1529 	struct request *rq;
1530 	bool ret = false;
1531 	struct list_head *plug_list;
1532 
1533 	plug = current->plug;
1534 	if (!plug)
1535 		goto out;
1536 	*request_count = 0;
1537 
1538 	if (q->mq_ops)
1539 		plug_list = &plug->mq_list;
1540 	else
1541 		plug_list = &plug->list;
1542 
1543 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1544 		int el_ret;
1545 
1546 		if (rq->q == q)
1547 			(*request_count)++;
1548 
1549 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1550 			continue;
1551 
1552 		el_ret = blk_try_merge(rq, bio);
1553 		if (el_ret == ELEVATOR_BACK_MERGE) {
1554 			ret = bio_attempt_back_merge(q, rq, bio);
1555 			if (ret)
1556 				break;
1557 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1558 			ret = bio_attempt_front_merge(q, rq, bio);
1559 			if (ret)
1560 				break;
1561 		}
1562 	}
1563 out:
1564 	return ret;
1565 }
1566 
1567 void init_request_from_bio(struct request *req, struct bio *bio)
1568 {
1569 	req->cmd_type = REQ_TYPE_FS;
1570 
1571 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1572 	if (bio->bi_rw & REQ_RAHEAD)
1573 		req->cmd_flags |= REQ_FAILFAST_MASK;
1574 
1575 	req->errors = 0;
1576 	req->__sector = bio->bi_iter.bi_sector;
1577 	req->ioprio = bio_prio(bio);
1578 	blk_rq_bio_prep(req->q, req, bio);
1579 }
1580 
1581 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1582 {
1583 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1584 	struct blk_plug *plug;
1585 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1586 	struct request *req;
1587 	unsigned int request_count = 0;
1588 
1589 	/*
1590 	 * low level driver can indicate that it wants pages above a
1591 	 * certain limit bounced to low memory (ie for highmem, or even
1592 	 * ISA dma in theory)
1593 	 */
1594 	blk_queue_bounce(q, &bio);
1595 
1596 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1597 		bio_endio(bio, -EIO);
1598 		return;
1599 	}
1600 
1601 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1602 		spin_lock_irq(q->queue_lock);
1603 		where = ELEVATOR_INSERT_FLUSH;
1604 		goto get_rq;
1605 	}
1606 
1607 	/*
1608 	 * Check if we can merge with the plugged list before grabbing
1609 	 * any locks.
1610 	 */
1611 	if (!blk_queue_nomerges(q) &&
1612 	    blk_attempt_plug_merge(q, bio, &request_count))
1613 		return;
1614 
1615 	spin_lock_irq(q->queue_lock);
1616 
1617 	el_ret = elv_merge(q, &req, bio);
1618 	if (el_ret == ELEVATOR_BACK_MERGE) {
1619 		if (bio_attempt_back_merge(q, req, bio)) {
1620 			elv_bio_merged(q, req, bio);
1621 			if (!attempt_back_merge(q, req))
1622 				elv_merged_request(q, req, el_ret);
1623 			goto out_unlock;
1624 		}
1625 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1626 		if (bio_attempt_front_merge(q, req, bio)) {
1627 			elv_bio_merged(q, req, bio);
1628 			if (!attempt_front_merge(q, req))
1629 				elv_merged_request(q, req, el_ret);
1630 			goto out_unlock;
1631 		}
1632 	}
1633 
1634 get_rq:
1635 	/*
1636 	 * This sync check and mask will be re-done in init_request_from_bio(),
1637 	 * but we need to set it earlier to expose the sync flag to the
1638 	 * rq allocator and io schedulers.
1639 	 */
1640 	rw_flags = bio_data_dir(bio);
1641 	if (sync)
1642 		rw_flags |= REQ_SYNC;
1643 
1644 	/*
1645 	 * Grab a free request. This is might sleep but can not fail.
1646 	 * Returns with the queue unlocked.
1647 	 */
1648 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1649 	if (IS_ERR(req)) {
1650 		bio_endio(bio, PTR_ERR(req));	/* @q is dead */
1651 		goto out_unlock;
1652 	}
1653 
1654 	/*
1655 	 * After dropping the lock and possibly sleeping here, our request
1656 	 * may now be mergeable after it had proven unmergeable (above).
1657 	 * We don't worry about that case for efficiency. It won't happen
1658 	 * often, and the elevators are able to handle it.
1659 	 */
1660 	init_request_from_bio(req, bio);
1661 
1662 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1663 		req->cpu = raw_smp_processor_id();
1664 
1665 	plug = current->plug;
1666 	if (plug) {
1667 		/*
1668 		 * If this is the first request added after a plug, fire
1669 		 * of a plug trace.
1670 		 */
1671 		if (!request_count)
1672 			trace_block_plug(q);
1673 		else {
1674 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1675 				blk_flush_plug_list(plug, false);
1676 				trace_block_plug(q);
1677 			}
1678 		}
1679 		list_add_tail(&req->queuelist, &plug->list);
1680 		blk_account_io_start(req, true);
1681 	} else {
1682 		spin_lock_irq(q->queue_lock);
1683 		add_acct_request(q, req, where);
1684 		__blk_run_queue(q);
1685 out_unlock:
1686 		spin_unlock_irq(q->queue_lock);
1687 	}
1688 }
1689 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1690 
1691 /*
1692  * If bio->bi_dev is a partition, remap the location
1693  */
1694 static inline void blk_partition_remap(struct bio *bio)
1695 {
1696 	struct block_device *bdev = bio->bi_bdev;
1697 
1698 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1699 		struct hd_struct *p = bdev->bd_part;
1700 
1701 		bio->bi_iter.bi_sector += p->start_sect;
1702 		bio->bi_bdev = bdev->bd_contains;
1703 
1704 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1705 				      bdev->bd_dev,
1706 				      bio->bi_iter.bi_sector - p->start_sect);
1707 	}
1708 }
1709 
1710 static void handle_bad_sector(struct bio *bio)
1711 {
1712 	char b[BDEVNAME_SIZE];
1713 
1714 	printk(KERN_INFO "attempt to access beyond end of device\n");
1715 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1716 			bdevname(bio->bi_bdev, b),
1717 			bio->bi_rw,
1718 			(unsigned long long)bio_end_sector(bio),
1719 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1720 
1721 	set_bit(BIO_EOF, &bio->bi_flags);
1722 }
1723 
1724 #ifdef CONFIG_FAIL_MAKE_REQUEST
1725 
1726 static DECLARE_FAULT_ATTR(fail_make_request);
1727 
1728 static int __init setup_fail_make_request(char *str)
1729 {
1730 	return setup_fault_attr(&fail_make_request, str);
1731 }
1732 __setup("fail_make_request=", setup_fail_make_request);
1733 
1734 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1735 {
1736 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1737 }
1738 
1739 static int __init fail_make_request_debugfs(void)
1740 {
1741 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1742 						NULL, &fail_make_request);
1743 
1744 	return PTR_ERR_OR_ZERO(dir);
1745 }
1746 
1747 late_initcall(fail_make_request_debugfs);
1748 
1749 #else /* CONFIG_FAIL_MAKE_REQUEST */
1750 
1751 static inline bool should_fail_request(struct hd_struct *part,
1752 					unsigned int bytes)
1753 {
1754 	return false;
1755 }
1756 
1757 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1758 
1759 /*
1760  * Check whether this bio extends beyond the end of the device.
1761  */
1762 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1763 {
1764 	sector_t maxsector;
1765 
1766 	if (!nr_sectors)
1767 		return 0;
1768 
1769 	/* Test device or partition size, when known. */
1770 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1771 	if (maxsector) {
1772 		sector_t sector = bio->bi_iter.bi_sector;
1773 
1774 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1775 			/*
1776 			 * This may well happen - the kernel calls bread()
1777 			 * without checking the size of the device, e.g., when
1778 			 * mounting a device.
1779 			 */
1780 			handle_bad_sector(bio);
1781 			return 1;
1782 		}
1783 	}
1784 
1785 	return 0;
1786 }
1787 
1788 static noinline_for_stack bool
1789 generic_make_request_checks(struct bio *bio)
1790 {
1791 	struct request_queue *q;
1792 	int nr_sectors = bio_sectors(bio);
1793 	int err = -EIO;
1794 	char b[BDEVNAME_SIZE];
1795 	struct hd_struct *part;
1796 
1797 	might_sleep();
1798 
1799 	if (bio_check_eod(bio, nr_sectors))
1800 		goto end_io;
1801 
1802 	q = bdev_get_queue(bio->bi_bdev);
1803 	if (unlikely(!q)) {
1804 		printk(KERN_ERR
1805 		       "generic_make_request: Trying to access "
1806 			"nonexistent block-device %s (%Lu)\n",
1807 			bdevname(bio->bi_bdev, b),
1808 			(long long) bio->bi_iter.bi_sector);
1809 		goto end_io;
1810 	}
1811 
1812 	if (likely(bio_is_rw(bio) &&
1813 		   nr_sectors > queue_max_hw_sectors(q))) {
1814 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1815 		       bdevname(bio->bi_bdev, b),
1816 		       bio_sectors(bio),
1817 		       queue_max_hw_sectors(q));
1818 		goto end_io;
1819 	}
1820 
1821 	part = bio->bi_bdev->bd_part;
1822 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1823 	    should_fail_request(&part_to_disk(part)->part0,
1824 				bio->bi_iter.bi_size))
1825 		goto end_io;
1826 
1827 	/*
1828 	 * If this device has partitions, remap block n
1829 	 * of partition p to block n+start(p) of the disk.
1830 	 */
1831 	blk_partition_remap(bio);
1832 
1833 	if (bio_check_eod(bio, nr_sectors))
1834 		goto end_io;
1835 
1836 	/*
1837 	 * Filter flush bio's early so that make_request based
1838 	 * drivers without flush support don't have to worry
1839 	 * about them.
1840 	 */
1841 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1842 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1843 		if (!nr_sectors) {
1844 			err = 0;
1845 			goto end_io;
1846 		}
1847 	}
1848 
1849 	if ((bio->bi_rw & REQ_DISCARD) &&
1850 	    (!blk_queue_discard(q) ||
1851 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1852 		err = -EOPNOTSUPP;
1853 		goto end_io;
1854 	}
1855 
1856 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1857 		err = -EOPNOTSUPP;
1858 		goto end_io;
1859 	}
1860 
1861 	/*
1862 	 * Various block parts want %current->io_context and lazy ioc
1863 	 * allocation ends up trading a lot of pain for a small amount of
1864 	 * memory.  Just allocate it upfront.  This may fail and block
1865 	 * layer knows how to live with it.
1866 	 */
1867 	create_io_context(GFP_ATOMIC, q->node);
1868 
1869 	if (blk_throtl_bio(q, bio))
1870 		return false;	/* throttled, will be resubmitted later */
1871 
1872 	trace_block_bio_queue(q, bio);
1873 	return true;
1874 
1875 end_io:
1876 	bio_endio(bio, err);
1877 	return false;
1878 }
1879 
1880 /**
1881  * generic_make_request - hand a buffer to its device driver for I/O
1882  * @bio:  The bio describing the location in memory and on the device.
1883  *
1884  * generic_make_request() is used to make I/O requests of block
1885  * devices. It is passed a &struct bio, which describes the I/O that needs
1886  * to be done.
1887  *
1888  * generic_make_request() does not return any status.  The
1889  * success/failure status of the request, along with notification of
1890  * completion, is delivered asynchronously through the bio->bi_end_io
1891  * function described (one day) else where.
1892  *
1893  * The caller of generic_make_request must make sure that bi_io_vec
1894  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1895  * set to describe the device address, and the
1896  * bi_end_io and optionally bi_private are set to describe how
1897  * completion notification should be signaled.
1898  *
1899  * generic_make_request and the drivers it calls may use bi_next if this
1900  * bio happens to be merged with someone else, and may resubmit the bio to
1901  * a lower device by calling into generic_make_request recursively, which
1902  * means the bio should NOT be touched after the call to ->make_request_fn.
1903  */
1904 void generic_make_request(struct bio *bio)
1905 {
1906 	struct bio_list bio_list_on_stack;
1907 
1908 	if (!generic_make_request_checks(bio))
1909 		return;
1910 
1911 	/*
1912 	 * We only want one ->make_request_fn to be active at a time, else
1913 	 * stack usage with stacked devices could be a problem.  So use
1914 	 * current->bio_list to keep a list of requests submited by a
1915 	 * make_request_fn function.  current->bio_list is also used as a
1916 	 * flag to say if generic_make_request is currently active in this
1917 	 * task or not.  If it is NULL, then no make_request is active.  If
1918 	 * it is non-NULL, then a make_request is active, and new requests
1919 	 * should be added at the tail
1920 	 */
1921 	if (current->bio_list) {
1922 		bio_list_add(current->bio_list, bio);
1923 		return;
1924 	}
1925 
1926 	/* following loop may be a bit non-obvious, and so deserves some
1927 	 * explanation.
1928 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1929 	 * ensure that) so we have a list with a single bio.
1930 	 * We pretend that we have just taken it off a longer list, so
1931 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1932 	 * thus initialising the bio_list of new bios to be
1933 	 * added.  ->make_request() may indeed add some more bios
1934 	 * through a recursive call to generic_make_request.  If it
1935 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1936 	 * from the top.  In this case we really did just take the bio
1937 	 * of the top of the list (no pretending) and so remove it from
1938 	 * bio_list, and call into ->make_request() again.
1939 	 */
1940 	BUG_ON(bio->bi_next);
1941 	bio_list_init(&bio_list_on_stack);
1942 	current->bio_list = &bio_list_on_stack;
1943 	do {
1944 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1945 
1946 		q->make_request_fn(q, bio);
1947 
1948 		bio = bio_list_pop(current->bio_list);
1949 	} while (bio);
1950 	current->bio_list = NULL; /* deactivate */
1951 }
1952 EXPORT_SYMBOL(generic_make_request);
1953 
1954 /**
1955  * submit_bio - submit a bio to the block device layer for I/O
1956  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1957  * @bio: The &struct bio which describes the I/O
1958  *
1959  * submit_bio() is very similar in purpose to generic_make_request(), and
1960  * uses that function to do most of the work. Both are fairly rough
1961  * interfaces; @bio must be presetup and ready for I/O.
1962  *
1963  */
1964 void submit_bio(int rw, struct bio *bio)
1965 {
1966 	bio->bi_rw |= rw;
1967 
1968 	/*
1969 	 * If it's a regular read/write or a barrier with data attached,
1970 	 * go through the normal accounting stuff before submission.
1971 	 */
1972 	if (bio_has_data(bio)) {
1973 		unsigned int count;
1974 
1975 		if (unlikely(rw & REQ_WRITE_SAME))
1976 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1977 		else
1978 			count = bio_sectors(bio);
1979 
1980 		if (rw & WRITE) {
1981 			count_vm_events(PGPGOUT, count);
1982 		} else {
1983 			task_io_account_read(bio->bi_iter.bi_size);
1984 			count_vm_events(PGPGIN, count);
1985 		}
1986 
1987 		if (unlikely(block_dump)) {
1988 			char b[BDEVNAME_SIZE];
1989 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1990 			current->comm, task_pid_nr(current),
1991 				(rw & WRITE) ? "WRITE" : "READ",
1992 				(unsigned long long)bio->bi_iter.bi_sector,
1993 				bdevname(bio->bi_bdev, b),
1994 				count);
1995 		}
1996 	}
1997 
1998 	generic_make_request(bio);
1999 }
2000 EXPORT_SYMBOL(submit_bio);
2001 
2002 /**
2003  * blk_rq_check_limits - Helper function to check a request for the queue limit
2004  * @q:  the queue
2005  * @rq: the request being checked
2006  *
2007  * Description:
2008  *    @rq may have been made based on weaker limitations of upper-level queues
2009  *    in request stacking drivers, and it may violate the limitation of @q.
2010  *    Since the block layer and the underlying device driver trust @rq
2011  *    after it is inserted to @q, it should be checked against @q before
2012  *    the insertion using this generic function.
2013  *
2014  *    This function should also be useful for request stacking drivers
2015  *    in some cases below, so export this function.
2016  *    Request stacking drivers like request-based dm may change the queue
2017  *    limits while requests are in the queue (e.g. dm's table swapping).
2018  *    Such request stacking drivers should check those requests against
2019  *    the new queue limits again when they dispatch those requests,
2020  *    although such checkings are also done against the old queue limits
2021  *    when submitting requests.
2022  */
2023 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2024 {
2025 	if (!rq_mergeable(rq))
2026 		return 0;
2027 
2028 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2029 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2030 		return -EIO;
2031 	}
2032 
2033 	/*
2034 	 * queue's settings related to segment counting like q->bounce_pfn
2035 	 * may differ from that of other stacking queues.
2036 	 * Recalculate it to check the request correctly on this queue's
2037 	 * limitation.
2038 	 */
2039 	blk_recalc_rq_segments(rq);
2040 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2041 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2042 		return -EIO;
2043 	}
2044 
2045 	return 0;
2046 }
2047 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2048 
2049 /**
2050  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2051  * @q:  the queue to submit the request
2052  * @rq: the request being queued
2053  */
2054 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2055 {
2056 	unsigned long flags;
2057 	int where = ELEVATOR_INSERT_BACK;
2058 
2059 	if (blk_rq_check_limits(q, rq))
2060 		return -EIO;
2061 
2062 	if (rq->rq_disk &&
2063 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2064 		return -EIO;
2065 
2066 	if (q->mq_ops) {
2067 		if (blk_queue_io_stat(q))
2068 			blk_account_io_start(rq, true);
2069 		blk_mq_insert_request(rq, false, true, true);
2070 		return 0;
2071 	}
2072 
2073 	spin_lock_irqsave(q->queue_lock, flags);
2074 	if (unlikely(blk_queue_dying(q))) {
2075 		spin_unlock_irqrestore(q->queue_lock, flags);
2076 		return -ENODEV;
2077 	}
2078 
2079 	/*
2080 	 * Submitting request must be dequeued before calling this function
2081 	 * because it will be linked to another request_queue
2082 	 */
2083 	BUG_ON(blk_queued_rq(rq));
2084 
2085 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2086 		where = ELEVATOR_INSERT_FLUSH;
2087 
2088 	add_acct_request(q, rq, where);
2089 	if (where == ELEVATOR_INSERT_FLUSH)
2090 		__blk_run_queue(q);
2091 	spin_unlock_irqrestore(q->queue_lock, flags);
2092 
2093 	return 0;
2094 }
2095 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2096 
2097 /**
2098  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2099  * @rq: request to examine
2100  *
2101  * Description:
2102  *     A request could be merge of IOs which require different failure
2103  *     handling.  This function determines the number of bytes which
2104  *     can be failed from the beginning of the request without
2105  *     crossing into area which need to be retried further.
2106  *
2107  * Return:
2108  *     The number of bytes to fail.
2109  *
2110  * Context:
2111  *     queue_lock must be held.
2112  */
2113 unsigned int blk_rq_err_bytes(const struct request *rq)
2114 {
2115 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2116 	unsigned int bytes = 0;
2117 	struct bio *bio;
2118 
2119 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2120 		return blk_rq_bytes(rq);
2121 
2122 	/*
2123 	 * Currently the only 'mixing' which can happen is between
2124 	 * different fastfail types.  We can safely fail portions
2125 	 * which have all the failfast bits that the first one has -
2126 	 * the ones which are at least as eager to fail as the first
2127 	 * one.
2128 	 */
2129 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2130 		if ((bio->bi_rw & ff) != ff)
2131 			break;
2132 		bytes += bio->bi_iter.bi_size;
2133 	}
2134 
2135 	/* this could lead to infinite loop */
2136 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2137 	return bytes;
2138 }
2139 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2140 
2141 void blk_account_io_completion(struct request *req, unsigned int bytes)
2142 {
2143 	if (blk_do_io_stat(req)) {
2144 		const int rw = rq_data_dir(req);
2145 		struct hd_struct *part;
2146 		int cpu;
2147 
2148 		cpu = part_stat_lock();
2149 		part = req->part;
2150 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2151 		part_stat_unlock();
2152 	}
2153 }
2154 
2155 void blk_account_io_done(struct request *req)
2156 {
2157 	/*
2158 	 * Account IO completion.  flush_rq isn't accounted as a
2159 	 * normal IO on queueing nor completion.  Accounting the
2160 	 * containing request is enough.
2161 	 */
2162 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2163 		unsigned long duration = jiffies - req->start_time;
2164 		const int rw = rq_data_dir(req);
2165 		struct hd_struct *part;
2166 		int cpu;
2167 
2168 		cpu = part_stat_lock();
2169 		part = req->part;
2170 
2171 		part_stat_inc(cpu, part, ios[rw]);
2172 		part_stat_add(cpu, part, ticks[rw], duration);
2173 		part_round_stats(cpu, part);
2174 		part_dec_in_flight(part, rw);
2175 
2176 		hd_struct_put(part);
2177 		part_stat_unlock();
2178 	}
2179 }
2180 
2181 #ifdef CONFIG_PM
2182 /*
2183  * Don't process normal requests when queue is suspended
2184  * or in the process of suspending/resuming
2185  */
2186 static struct request *blk_pm_peek_request(struct request_queue *q,
2187 					   struct request *rq)
2188 {
2189 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2190 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2191 		return NULL;
2192 	else
2193 		return rq;
2194 }
2195 #else
2196 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2197 						  struct request *rq)
2198 {
2199 	return rq;
2200 }
2201 #endif
2202 
2203 void blk_account_io_start(struct request *rq, bool new_io)
2204 {
2205 	struct hd_struct *part;
2206 	int rw = rq_data_dir(rq);
2207 	int cpu;
2208 
2209 	if (!blk_do_io_stat(rq))
2210 		return;
2211 
2212 	cpu = part_stat_lock();
2213 
2214 	if (!new_io) {
2215 		part = rq->part;
2216 		part_stat_inc(cpu, part, merges[rw]);
2217 	} else {
2218 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2219 		if (!hd_struct_try_get(part)) {
2220 			/*
2221 			 * The partition is already being removed,
2222 			 * the request will be accounted on the disk only
2223 			 *
2224 			 * We take a reference on disk->part0 although that
2225 			 * partition will never be deleted, so we can treat
2226 			 * it as any other partition.
2227 			 */
2228 			part = &rq->rq_disk->part0;
2229 			hd_struct_get(part);
2230 		}
2231 		part_round_stats(cpu, part);
2232 		part_inc_in_flight(part, rw);
2233 		rq->part = part;
2234 	}
2235 
2236 	part_stat_unlock();
2237 }
2238 
2239 /**
2240  * blk_peek_request - peek at the top of a request queue
2241  * @q: request queue to peek at
2242  *
2243  * Description:
2244  *     Return the request at the top of @q.  The returned request
2245  *     should be started using blk_start_request() before LLD starts
2246  *     processing it.
2247  *
2248  * Return:
2249  *     Pointer to the request at the top of @q if available.  Null
2250  *     otherwise.
2251  *
2252  * Context:
2253  *     queue_lock must be held.
2254  */
2255 struct request *blk_peek_request(struct request_queue *q)
2256 {
2257 	struct request *rq;
2258 	int ret;
2259 
2260 	while ((rq = __elv_next_request(q)) != NULL) {
2261 
2262 		rq = blk_pm_peek_request(q, rq);
2263 		if (!rq)
2264 			break;
2265 
2266 		if (!(rq->cmd_flags & REQ_STARTED)) {
2267 			/*
2268 			 * This is the first time the device driver
2269 			 * sees this request (possibly after
2270 			 * requeueing).  Notify IO scheduler.
2271 			 */
2272 			if (rq->cmd_flags & REQ_SORTED)
2273 				elv_activate_rq(q, rq);
2274 
2275 			/*
2276 			 * just mark as started even if we don't start
2277 			 * it, a request that has been delayed should
2278 			 * not be passed by new incoming requests
2279 			 */
2280 			rq->cmd_flags |= REQ_STARTED;
2281 			trace_block_rq_issue(q, rq);
2282 		}
2283 
2284 		if (!q->boundary_rq || q->boundary_rq == rq) {
2285 			q->end_sector = rq_end_sector(rq);
2286 			q->boundary_rq = NULL;
2287 		}
2288 
2289 		if (rq->cmd_flags & REQ_DONTPREP)
2290 			break;
2291 
2292 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2293 			/*
2294 			 * make sure space for the drain appears we
2295 			 * know we can do this because max_hw_segments
2296 			 * has been adjusted to be one fewer than the
2297 			 * device can handle
2298 			 */
2299 			rq->nr_phys_segments++;
2300 		}
2301 
2302 		if (!q->prep_rq_fn)
2303 			break;
2304 
2305 		ret = q->prep_rq_fn(q, rq);
2306 		if (ret == BLKPREP_OK) {
2307 			break;
2308 		} else if (ret == BLKPREP_DEFER) {
2309 			/*
2310 			 * the request may have been (partially) prepped.
2311 			 * we need to keep this request in the front to
2312 			 * avoid resource deadlock.  REQ_STARTED will
2313 			 * prevent other fs requests from passing this one.
2314 			 */
2315 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2316 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2317 				/*
2318 				 * remove the space for the drain we added
2319 				 * so that we don't add it again
2320 				 */
2321 				--rq->nr_phys_segments;
2322 			}
2323 
2324 			rq = NULL;
2325 			break;
2326 		} else if (ret == BLKPREP_KILL) {
2327 			rq->cmd_flags |= REQ_QUIET;
2328 			/*
2329 			 * Mark this request as started so we don't trigger
2330 			 * any debug logic in the end I/O path.
2331 			 */
2332 			blk_start_request(rq);
2333 			__blk_end_request_all(rq, -EIO);
2334 		} else {
2335 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2336 			break;
2337 		}
2338 	}
2339 
2340 	return rq;
2341 }
2342 EXPORT_SYMBOL(blk_peek_request);
2343 
2344 void blk_dequeue_request(struct request *rq)
2345 {
2346 	struct request_queue *q = rq->q;
2347 
2348 	BUG_ON(list_empty(&rq->queuelist));
2349 	BUG_ON(ELV_ON_HASH(rq));
2350 
2351 	list_del_init(&rq->queuelist);
2352 
2353 	/*
2354 	 * the time frame between a request being removed from the lists
2355 	 * and to it is freed is accounted as io that is in progress at
2356 	 * the driver side.
2357 	 */
2358 	if (blk_account_rq(rq)) {
2359 		q->in_flight[rq_is_sync(rq)]++;
2360 		set_io_start_time_ns(rq);
2361 	}
2362 }
2363 
2364 /**
2365  * blk_start_request - start request processing on the driver
2366  * @req: request to dequeue
2367  *
2368  * Description:
2369  *     Dequeue @req and start timeout timer on it.  This hands off the
2370  *     request to the driver.
2371  *
2372  *     Block internal functions which don't want to start timer should
2373  *     call blk_dequeue_request().
2374  *
2375  * Context:
2376  *     queue_lock must be held.
2377  */
2378 void blk_start_request(struct request *req)
2379 {
2380 	blk_dequeue_request(req);
2381 
2382 	/*
2383 	 * We are now handing the request to the hardware, initialize
2384 	 * resid_len to full count and add the timeout handler.
2385 	 */
2386 	req->resid_len = blk_rq_bytes(req);
2387 	if (unlikely(blk_bidi_rq(req)))
2388 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2389 
2390 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2391 	blk_add_timer(req);
2392 }
2393 EXPORT_SYMBOL(blk_start_request);
2394 
2395 /**
2396  * blk_fetch_request - fetch a request from a request queue
2397  * @q: request queue to fetch a request from
2398  *
2399  * Description:
2400  *     Return the request at the top of @q.  The request is started on
2401  *     return and LLD can start processing it immediately.
2402  *
2403  * Return:
2404  *     Pointer to the request at the top of @q if available.  Null
2405  *     otherwise.
2406  *
2407  * Context:
2408  *     queue_lock must be held.
2409  */
2410 struct request *blk_fetch_request(struct request_queue *q)
2411 {
2412 	struct request *rq;
2413 
2414 	rq = blk_peek_request(q);
2415 	if (rq)
2416 		blk_start_request(rq);
2417 	return rq;
2418 }
2419 EXPORT_SYMBOL(blk_fetch_request);
2420 
2421 /**
2422  * blk_update_request - Special helper function for request stacking drivers
2423  * @req:      the request being processed
2424  * @error:    %0 for success, < %0 for error
2425  * @nr_bytes: number of bytes to complete @req
2426  *
2427  * Description:
2428  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2429  *     the request structure even if @req doesn't have leftover.
2430  *     If @req has leftover, sets it up for the next range of segments.
2431  *
2432  *     This special helper function is only for request stacking drivers
2433  *     (e.g. request-based dm) so that they can handle partial completion.
2434  *     Actual device drivers should use blk_end_request instead.
2435  *
2436  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2437  *     %false return from this function.
2438  *
2439  * Return:
2440  *     %false - this request doesn't have any more data
2441  *     %true  - this request has more data
2442  **/
2443 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2444 {
2445 	int total_bytes;
2446 
2447 	trace_block_rq_complete(req->q, req, nr_bytes);
2448 
2449 	if (!req->bio)
2450 		return false;
2451 
2452 	/*
2453 	 * For fs requests, rq is just carrier of independent bio's
2454 	 * and each partial completion should be handled separately.
2455 	 * Reset per-request error on each partial completion.
2456 	 *
2457 	 * TODO: tj: This is too subtle.  It would be better to let
2458 	 * low level drivers do what they see fit.
2459 	 */
2460 	if (req->cmd_type == REQ_TYPE_FS)
2461 		req->errors = 0;
2462 
2463 	if (error && req->cmd_type == REQ_TYPE_FS &&
2464 	    !(req->cmd_flags & REQ_QUIET)) {
2465 		char *error_type;
2466 
2467 		switch (error) {
2468 		case -ENOLINK:
2469 			error_type = "recoverable transport";
2470 			break;
2471 		case -EREMOTEIO:
2472 			error_type = "critical target";
2473 			break;
2474 		case -EBADE:
2475 			error_type = "critical nexus";
2476 			break;
2477 		case -ETIMEDOUT:
2478 			error_type = "timeout";
2479 			break;
2480 		case -ENOSPC:
2481 			error_type = "critical space allocation";
2482 			break;
2483 		case -ENODATA:
2484 			error_type = "critical medium";
2485 			break;
2486 		case -EIO:
2487 		default:
2488 			error_type = "I/O";
2489 			break;
2490 		}
2491 		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2492 				   __func__, error_type, req->rq_disk ?
2493 				   req->rq_disk->disk_name : "?",
2494 				   (unsigned long long)blk_rq_pos(req));
2495 
2496 	}
2497 
2498 	blk_account_io_completion(req, nr_bytes);
2499 
2500 	total_bytes = 0;
2501 	while (req->bio) {
2502 		struct bio *bio = req->bio;
2503 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2504 
2505 		if (bio_bytes == bio->bi_iter.bi_size)
2506 			req->bio = bio->bi_next;
2507 
2508 		req_bio_endio(req, bio, bio_bytes, error);
2509 
2510 		total_bytes += bio_bytes;
2511 		nr_bytes -= bio_bytes;
2512 
2513 		if (!nr_bytes)
2514 			break;
2515 	}
2516 
2517 	/*
2518 	 * completely done
2519 	 */
2520 	if (!req->bio) {
2521 		/*
2522 		 * Reset counters so that the request stacking driver
2523 		 * can find how many bytes remain in the request
2524 		 * later.
2525 		 */
2526 		req->__data_len = 0;
2527 		return false;
2528 	}
2529 
2530 	req->__data_len -= total_bytes;
2531 
2532 	/* update sector only for requests with clear definition of sector */
2533 	if (req->cmd_type == REQ_TYPE_FS)
2534 		req->__sector += total_bytes >> 9;
2535 
2536 	/* mixed attributes always follow the first bio */
2537 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2538 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2539 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2540 	}
2541 
2542 	/*
2543 	 * If total number of sectors is less than the first segment
2544 	 * size, something has gone terribly wrong.
2545 	 */
2546 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2547 		blk_dump_rq_flags(req, "request botched");
2548 		req->__data_len = blk_rq_cur_bytes(req);
2549 	}
2550 
2551 	/* recalculate the number of segments */
2552 	blk_recalc_rq_segments(req);
2553 
2554 	return true;
2555 }
2556 EXPORT_SYMBOL_GPL(blk_update_request);
2557 
2558 static bool blk_update_bidi_request(struct request *rq, int error,
2559 				    unsigned int nr_bytes,
2560 				    unsigned int bidi_bytes)
2561 {
2562 	if (blk_update_request(rq, error, nr_bytes))
2563 		return true;
2564 
2565 	/* Bidi request must be completed as a whole */
2566 	if (unlikely(blk_bidi_rq(rq)) &&
2567 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2568 		return true;
2569 
2570 	if (blk_queue_add_random(rq->q))
2571 		add_disk_randomness(rq->rq_disk);
2572 
2573 	return false;
2574 }
2575 
2576 /**
2577  * blk_unprep_request - unprepare a request
2578  * @req:	the request
2579  *
2580  * This function makes a request ready for complete resubmission (or
2581  * completion).  It happens only after all error handling is complete,
2582  * so represents the appropriate moment to deallocate any resources
2583  * that were allocated to the request in the prep_rq_fn.  The queue
2584  * lock is held when calling this.
2585  */
2586 void blk_unprep_request(struct request *req)
2587 {
2588 	struct request_queue *q = req->q;
2589 
2590 	req->cmd_flags &= ~REQ_DONTPREP;
2591 	if (q->unprep_rq_fn)
2592 		q->unprep_rq_fn(q, req);
2593 }
2594 EXPORT_SYMBOL_GPL(blk_unprep_request);
2595 
2596 /*
2597  * queue lock must be held
2598  */
2599 void blk_finish_request(struct request *req, int error)
2600 {
2601 	if (req->cmd_flags & REQ_QUEUED)
2602 		blk_queue_end_tag(req->q, req);
2603 
2604 	BUG_ON(blk_queued_rq(req));
2605 
2606 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2607 		laptop_io_completion(&req->q->backing_dev_info);
2608 
2609 	blk_delete_timer(req);
2610 
2611 	if (req->cmd_flags & REQ_DONTPREP)
2612 		blk_unprep_request(req);
2613 
2614 	blk_account_io_done(req);
2615 
2616 	if (req->end_io)
2617 		req->end_io(req, error);
2618 	else {
2619 		if (blk_bidi_rq(req))
2620 			__blk_put_request(req->next_rq->q, req->next_rq);
2621 
2622 		__blk_put_request(req->q, req);
2623 	}
2624 }
2625 EXPORT_SYMBOL(blk_finish_request);
2626 
2627 /**
2628  * blk_end_bidi_request - Complete a bidi request
2629  * @rq:         the request to complete
2630  * @error:      %0 for success, < %0 for error
2631  * @nr_bytes:   number of bytes to complete @rq
2632  * @bidi_bytes: number of bytes to complete @rq->next_rq
2633  *
2634  * Description:
2635  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2636  *     Drivers that supports bidi can safely call this member for any
2637  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2638  *     just ignored.
2639  *
2640  * Return:
2641  *     %false - we are done with this request
2642  *     %true  - still buffers pending for this request
2643  **/
2644 static bool blk_end_bidi_request(struct request *rq, int error,
2645 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2646 {
2647 	struct request_queue *q = rq->q;
2648 	unsigned long flags;
2649 
2650 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2651 		return true;
2652 
2653 	spin_lock_irqsave(q->queue_lock, flags);
2654 	blk_finish_request(rq, error);
2655 	spin_unlock_irqrestore(q->queue_lock, flags);
2656 
2657 	return false;
2658 }
2659 
2660 /**
2661  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2662  * @rq:         the request to complete
2663  * @error:      %0 for success, < %0 for error
2664  * @nr_bytes:   number of bytes to complete @rq
2665  * @bidi_bytes: number of bytes to complete @rq->next_rq
2666  *
2667  * Description:
2668  *     Identical to blk_end_bidi_request() except that queue lock is
2669  *     assumed to be locked on entry and remains so on return.
2670  *
2671  * Return:
2672  *     %false - we are done with this request
2673  *     %true  - still buffers pending for this request
2674  **/
2675 bool __blk_end_bidi_request(struct request *rq, int error,
2676 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2677 {
2678 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2679 		return true;
2680 
2681 	blk_finish_request(rq, error);
2682 
2683 	return false;
2684 }
2685 
2686 /**
2687  * blk_end_request - Helper function for drivers to complete the request.
2688  * @rq:       the request being processed
2689  * @error:    %0 for success, < %0 for error
2690  * @nr_bytes: number of bytes to complete
2691  *
2692  * Description:
2693  *     Ends I/O on a number of bytes attached to @rq.
2694  *     If @rq has leftover, sets it up for the next range of segments.
2695  *
2696  * Return:
2697  *     %false - we are done with this request
2698  *     %true  - still buffers pending for this request
2699  **/
2700 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2701 {
2702 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2703 }
2704 EXPORT_SYMBOL(blk_end_request);
2705 
2706 /**
2707  * blk_end_request_all - Helper function for drives to finish the request.
2708  * @rq: the request to finish
2709  * @error: %0 for success, < %0 for error
2710  *
2711  * Description:
2712  *     Completely finish @rq.
2713  */
2714 void blk_end_request_all(struct request *rq, int error)
2715 {
2716 	bool pending;
2717 	unsigned int bidi_bytes = 0;
2718 
2719 	if (unlikely(blk_bidi_rq(rq)))
2720 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2721 
2722 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2723 	BUG_ON(pending);
2724 }
2725 EXPORT_SYMBOL(blk_end_request_all);
2726 
2727 /**
2728  * blk_end_request_cur - Helper function to finish the current request chunk.
2729  * @rq: the request to finish the current chunk for
2730  * @error: %0 for success, < %0 for error
2731  *
2732  * Description:
2733  *     Complete the current consecutively mapped chunk from @rq.
2734  *
2735  * Return:
2736  *     %false - we are done with this request
2737  *     %true  - still buffers pending for this request
2738  */
2739 bool blk_end_request_cur(struct request *rq, int error)
2740 {
2741 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2742 }
2743 EXPORT_SYMBOL(blk_end_request_cur);
2744 
2745 /**
2746  * blk_end_request_err - Finish a request till the next failure boundary.
2747  * @rq: the request to finish till the next failure boundary for
2748  * @error: must be negative errno
2749  *
2750  * Description:
2751  *     Complete @rq till the next failure boundary.
2752  *
2753  * Return:
2754  *     %false - we are done with this request
2755  *     %true  - still buffers pending for this request
2756  */
2757 bool blk_end_request_err(struct request *rq, int error)
2758 {
2759 	WARN_ON(error >= 0);
2760 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2761 }
2762 EXPORT_SYMBOL_GPL(blk_end_request_err);
2763 
2764 /**
2765  * __blk_end_request - Helper function for drivers to complete the request.
2766  * @rq:       the request being processed
2767  * @error:    %0 for success, < %0 for error
2768  * @nr_bytes: number of bytes to complete
2769  *
2770  * Description:
2771  *     Must be called with queue lock held unlike blk_end_request().
2772  *
2773  * Return:
2774  *     %false - we are done with this request
2775  *     %true  - still buffers pending for this request
2776  **/
2777 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2778 {
2779 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2780 }
2781 EXPORT_SYMBOL(__blk_end_request);
2782 
2783 /**
2784  * __blk_end_request_all - Helper function for drives to finish the request.
2785  * @rq: the request to finish
2786  * @error: %0 for success, < %0 for error
2787  *
2788  * Description:
2789  *     Completely finish @rq.  Must be called with queue lock held.
2790  */
2791 void __blk_end_request_all(struct request *rq, int error)
2792 {
2793 	bool pending;
2794 	unsigned int bidi_bytes = 0;
2795 
2796 	if (unlikely(blk_bidi_rq(rq)))
2797 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2798 
2799 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2800 	BUG_ON(pending);
2801 }
2802 EXPORT_SYMBOL(__blk_end_request_all);
2803 
2804 /**
2805  * __blk_end_request_cur - Helper function to finish the current request chunk.
2806  * @rq: the request to finish the current chunk for
2807  * @error: %0 for success, < %0 for error
2808  *
2809  * Description:
2810  *     Complete the current consecutively mapped chunk from @rq.  Must
2811  *     be called with queue lock held.
2812  *
2813  * Return:
2814  *     %false - we are done with this request
2815  *     %true  - still buffers pending for this request
2816  */
2817 bool __blk_end_request_cur(struct request *rq, int error)
2818 {
2819 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2820 }
2821 EXPORT_SYMBOL(__blk_end_request_cur);
2822 
2823 /**
2824  * __blk_end_request_err - Finish a request till the next failure boundary.
2825  * @rq: the request to finish till the next failure boundary for
2826  * @error: must be negative errno
2827  *
2828  * Description:
2829  *     Complete @rq till the next failure boundary.  Must be called
2830  *     with queue lock held.
2831  *
2832  * Return:
2833  *     %false - we are done with this request
2834  *     %true  - still buffers pending for this request
2835  */
2836 bool __blk_end_request_err(struct request *rq, int error)
2837 {
2838 	WARN_ON(error >= 0);
2839 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2840 }
2841 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2842 
2843 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2844 		     struct bio *bio)
2845 {
2846 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2847 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2848 
2849 	if (bio_has_data(bio))
2850 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2851 
2852 	rq->__data_len = bio->bi_iter.bi_size;
2853 	rq->bio = rq->biotail = bio;
2854 
2855 	if (bio->bi_bdev)
2856 		rq->rq_disk = bio->bi_bdev->bd_disk;
2857 }
2858 
2859 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2860 /**
2861  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2862  * @rq: the request to be flushed
2863  *
2864  * Description:
2865  *     Flush all pages in @rq.
2866  */
2867 void rq_flush_dcache_pages(struct request *rq)
2868 {
2869 	struct req_iterator iter;
2870 	struct bio_vec bvec;
2871 
2872 	rq_for_each_segment(bvec, rq, iter)
2873 		flush_dcache_page(bvec.bv_page);
2874 }
2875 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2876 #endif
2877 
2878 /**
2879  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2880  * @q : the queue of the device being checked
2881  *
2882  * Description:
2883  *    Check if underlying low-level drivers of a device are busy.
2884  *    If the drivers want to export their busy state, they must set own
2885  *    exporting function using blk_queue_lld_busy() first.
2886  *
2887  *    Basically, this function is used only by request stacking drivers
2888  *    to stop dispatching requests to underlying devices when underlying
2889  *    devices are busy.  This behavior helps more I/O merging on the queue
2890  *    of the request stacking driver and prevents I/O throughput regression
2891  *    on burst I/O load.
2892  *
2893  * Return:
2894  *    0 - Not busy (The request stacking driver should dispatch request)
2895  *    1 - Busy (The request stacking driver should stop dispatching request)
2896  */
2897 int blk_lld_busy(struct request_queue *q)
2898 {
2899 	if (q->lld_busy_fn)
2900 		return q->lld_busy_fn(q);
2901 
2902 	return 0;
2903 }
2904 EXPORT_SYMBOL_GPL(blk_lld_busy);
2905 
2906 /**
2907  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2908  * @rq: the clone request to be cleaned up
2909  *
2910  * Description:
2911  *     Free all bios in @rq for a cloned request.
2912  */
2913 void blk_rq_unprep_clone(struct request *rq)
2914 {
2915 	struct bio *bio;
2916 
2917 	while ((bio = rq->bio) != NULL) {
2918 		rq->bio = bio->bi_next;
2919 
2920 		bio_put(bio);
2921 	}
2922 }
2923 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2924 
2925 /*
2926  * Copy attributes of the original request to the clone request.
2927  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2928  */
2929 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2930 {
2931 	dst->cpu = src->cpu;
2932 	dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2933 	dst->cmd_type = src->cmd_type;
2934 	dst->__sector = blk_rq_pos(src);
2935 	dst->__data_len = blk_rq_bytes(src);
2936 	dst->nr_phys_segments = src->nr_phys_segments;
2937 	dst->ioprio = src->ioprio;
2938 	dst->extra_len = src->extra_len;
2939 }
2940 
2941 /**
2942  * blk_rq_prep_clone - Helper function to setup clone request
2943  * @rq: the request to be setup
2944  * @rq_src: original request to be cloned
2945  * @bs: bio_set that bios for clone are allocated from
2946  * @gfp_mask: memory allocation mask for bio
2947  * @bio_ctr: setup function to be called for each clone bio.
2948  *           Returns %0 for success, non %0 for failure.
2949  * @data: private data to be passed to @bio_ctr
2950  *
2951  * Description:
2952  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2953  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2954  *     are not copied, and copying such parts is the caller's responsibility.
2955  *     Also, pages which the original bios are pointing to are not copied
2956  *     and the cloned bios just point same pages.
2957  *     So cloned bios must be completed before original bios, which means
2958  *     the caller must complete @rq before @rq_src.
2959  */
2960 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2961 		      struct bio_set *bs, gfp_t gfp_mask,
2962 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2963 		      void *data)
2964 {
2965 	struct bio *bio, *bio_src;
2966 
2967 	if (!bs)
2968 		bs = fs_bio_set;
2969 
2970 	__rq_for_each_bio(bio_src, rq_src) {
2971 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
2972 		if (!bio)
2973 			goto free_and_out;
2974 
2975 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2976 			goto free_and_out;
2977 
2978 		if (rq->bio) {
2979 			rq->biotail->bi_next = bio;
2980 			rq->biotail = bio;
2981 		} else
2982 			rq->bio = rq->biotail = bio;
2983 	}
2984 
2985 	__blk_rq_prep_clone(rq, rq_src);
2986 
2987 	return 0;
2988 
2989 free_and_out:
2990 	if (bio)
2991 		bio_put(bio);
2992 	blk_rq_unprep_clone(rq);
2993 
2994 	return -ENOMEM;
2995 }
2996 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2997 
2998 int kblockd_schedule_work(struct work_struct *work)
2999 {
3000 	return queue_work(kblockd_workqueue, work);
3001 }
3002 EXPORT_SYMBOL(kblockd_schedule_work);
3003 
3004 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3005 				  unsigned long delay)
3006 {
3007 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3008 }
3009 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3010 
3011 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3012 				     unsigned long delay)
3013 {
3014 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3015 }
3016 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3017 
3018 /**
3019  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3020  * @plug:	The &struct blk_plug that needs to be initialized
3021  *
3022  * Description:
3023  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3024  *   pending I/O should the task end up blocking between blk_start_plug() and
3025  *   blk_finish_plug(). This is important from a performance perspective, but
3026  *   also ensures that we don't deadlock. For instance, if the task is blocking
3027  *   for a memory allocation, memory reclaim could end up wanting to free a
3028  *   page belonging to that request that is currently residing in our private
3029  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3030  *   this kind of deadlock.
3031  */
3032 void blk_start_plug(struct blk_plug *plug)
3033 {
3034 	struct task_struct *tsk = current;
3035 
3036 	INIT_LIST_HEAD(&plug->list);
3037 	INIT_LIST_HEAD(&plug->mq_list);
3038 	INIT_LIST_HEAD(&plug->cb_list);
3039 
3040 	/*
3041 	 * If this is a nested plug, don't actually assign it. It will be
3042 	 * flushed on its own.
3043 	 */
3044 	if (!tsk->plug) {
3045 		/*
3046 		 * Store ordering should not be needed here, since a potential
3047 		 * preempt will imply a full memory barrier
3048 		 */
3049 		tsk->plug = plug;
3050 	}
3051 }
3052 EXPORT_SYMBOL(blk_start_plug);
3053 
3054 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3055 {
3056 	struct request *rqa = container_of(a, struct request, queuelist);
3057 	struct request *rqb = container_of(b, struct request, queuelist);
3058 
3059 	return !(rqa->q < rqb->q ||
3060 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3061 }
3062 
3063 /*
3064  * If 'from_schedule' is true, then postpone the dispatch of requests
3065  * until a safe kblockd context. We due this to avoid accidental big
3066  * additional stack usage in driver dispatch, in places where the originally
3067  * plugger did not intend it.
3068  */
3069 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3070 			    bool from_schedule)
3071 	__releases(q->queue_lock)
3072 {
3073 	trace_block_unplug(q, depth, !from_schedule);
3074 
3075 	if (from_schedule)
3076 		blk_run_queue_async(q);
3077 	else
3078 		__blk_run_queue(q);
3079 	spin_unlock(q->queue_lock);
3080 }
3081 
3082 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3083 {
3084 	LIST_HEAD(callbacks);
3085 
3086 	while (!list_empty(&plug->cb_list)) {
3087 		list_splice_init(&plug->cb_list, &callbacks);
3088 
3089 		while (!list_empty(&callbacks)) {
3090 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3091 							  struct blk_plug_cb,
3092 							  list);
3093 			list_del(&cb->list);
3094 			cb->callback(cb, from_schedule);
3095 		}
3096 	}
3097 }
3098 
3099 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3100 				      int size)
3101 {
3102 	struct blk_plug *plug = current->plug;
3103 	struct blk_plug_cb *cb;
3104 
3105 	if (!plug)
3106 		return NULL;
3107 
3108 	list_for_each_entry(cb, &plug->cb_list, list)
3109 		if (cb->callback == unplug && cb->data == data)
3110 			return cb;
3111 
3112 	/* Not currently on the callback list */
3113 	BUG_ON(size < sizeof(*cb));
3114 	cb = kzalloc(size, GFP_ATOMIC);
3115 	if (cb) {
3116 		cb->data = data;
3117 		cb->callback = unplug;
3118 		list_add(&cb->list, &plug->cb_list);
3119 	}
3120 	return cb;
3121 }
3122 EXPORT_SYMBOL(blk_check_plugged);
3123 
3124 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3125 {
3126 	struct request_queue *q;
3127 	unsigned long flags;
3128 	struct request *rq;
3129 	LIST_HEAD(list);
3130 	unsigned int depth;
3131 
3132 	flush_plug_callbacks(plug, from_schedule);
3133 
3134 	if (!list_empty(&plug->mq_list))
3135 		blk_mq_flush_plug_list(plug, from_schedule);
3136 
3137 	if (list_empty(&plug->list))
3138 		return;
3139 
3140 	list_splice_init(&plug->list, &list);
3141 
3142 	list_sort(NULL, &list, plug_rq_cmp);
3143 
3144 	q = NULL;
3145 	depth = 0;
3146 
3147 	/*
3148 	 * Save and disable interrupts here, to avoid doing it for every
3149 	 * queue lock we have to take.
3150 	 */
3151 	local_irq_save(flags);
3152 	while (!list_empty(&list)) {
3153 		rq = list_entry_rq(list.next);
3154 		list_del_init(&rq->queuelist);
3155 		BUG_ON(!rq->q);
3156 		if (rq->q != q) {
3157 			/*
3158 			 * This drops the queue lock
3159 			 */
3160 			if (q)
3161 				queue_unplugged(q, depth, from_schedule);
3162 			q = rq->q;
3163 			depth = 0;
3164 			spin_lock(q->queue_lock);
3165 		}
3166 
3167 		/*
3168 		 * Short-circuit if @q is dead
3169 		 */
3170 		if (unlikely(blk_queue_dying(q))) {
3171 			__blk_end_request_all(rq, -ENODEV);
3172 			continue;
3173 		}
3174 
3175 		/*
3176 		 * rq is already accounted, so use raw insert
3177 		 */
3178 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3179 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3180 		else
3181 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3182 
3183 		depth++;
3184 	}
3185 
3186 	/*
3187 	 * This drops the queue lock
3188 	 */
3189 	if (q)
3190 		queue_unplugged(q, depth, from_schedule);
3191 
3192 	local_irq_restore(flags);
3193 }
3194 
3195 void blk_finish_plug(struct blk_plug *plug)
3196 {
3197 	blk_flush_plug_list(plug, false);
3198 
3199 	if (plug == current->plug)
3200 		current->plug = NULL;
3201 }
3202 EXPORT_SYMBOL(blk_finish_plug);
3203 
3204 #ifdef CONFIG_PM
3205 /**
3206  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3207  * @q: the queue of the device
3208  * @dev: the device the queue belongs to
3209  *
3210  * Description:
3211  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3212  *    @dev. Drivers that want to take advantage of request-based runtime PM
3213  *    should call this function after @dev has been initialized, and its
3214  *    request queue @q has been allocated, and runtime PM for it can not happen
3215  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3216  *    cases, driver should call this function before any I/O has taken place.
3217  *
3218  *    This function takes care of setting up using auto suspend for the device,
3219  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3220  *    until an updated value is either set by user or by driver. Drivers do
3221  *    not need to touch other autosuspend settings.
3222  *
3223  *    The block layer runtime PM is request based, so only works for drivers
3224  *    that use request as their IO unit instead of those directly use bio's.
3225  */
3226 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3227 {
3228 	q->dev = dev;
3229 	q->rpm_status = RPM_ACTIVE;
3230 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3231 	pm_runtime_use_autosuspend(q->dev);
3232 }
3233 EXPORT_SYMBOL(blk_pm_runtime_init);
3234 
3235 /**
3236  * blk_pre_runtime_suspend - Pre runtime suspend check
3237  * @q: the queue of the device
3238  *
3239  * Description:
3240  *    This function will check if runtime suspend is allowed for the device
3241  *    by examining if there are any requests pending in the queue. If there
3242  *    are requests pending, the device can not be runtime suspended; otherwise,
3243  *    the queue's status will be updated to SUSPENDING and the driver can
3244  *    proceed to suspend the device.
3245  *
3246  *    For the not allowed case, we mark last busy for the device so that
3247  *    runtime PM core will try to autosuspend it some time later.
3248  *
3249  *    This function should be called near the start of the device's
3250  *    runtime_suspend callback.
3251  *
3252  * Return:
3253  *    0		- OK to runtime suspend the device
3254  *    -EBUSY	- Device should not be runtime suspended
3255  */
3256 int blk_pre_runtime_suspend(struct request_queue *q)
3257 {
3258 	int ret = 0;
3259 
3260 	spin_lock_irq(q->queue_lock);
3261 	if (q->nr_pending) {
3262 		ret = -EBUSY;
3263 		pm_runtime_mark_last_busy(q->dev);
3264 	} else {
3265 		q->rpm_status = RPM_SUSPENDING;
3266 	}
3267 	spin_unlock_irq(q->queue_lock);
3268 	return ret;
3269 }
3270 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3271 
3272 /**
3273  * blk_post_runtime_suspend - Post runtime suspend processing
3274  * @q: the queue of the device
3275  * @err: return value of the device's runtime_suspend function
3276  *
3277  * Description:
3278  *    Update the queue's runtime status according to the return value of the
3279  *    device's runtime suspend function and mark last busy for the device so
3280  *    that PM core will try to auto suspend the device at a later time.
3281  *
3282  *    This function should be called near the end of the device's
3283  *    runtime_suspend callback.
3284  */
3285 void blk_post_runtime_suspend(struct request_queue *q, int err)
3286 {
3287 	spin_lock_irq(q->queue_lock);
3288 	if (!err) {
3289 		q->rpm_status = RPM_SUSPENDED;
3290 	} else {
3291 		q->rpm_status = RPM_ACTIVE;
3292 		pm_runtime_mark_last_busy(q->dev);
3293 	}
3294 	spin_unlock_irq(q->queue_lock);
3295 }
3296 EXPORT_SYMBOL(blk_post_runtime_suspend);
3297 
3298 /**
3299  * blk_pre_runtime_resume - Pre runtime resume processing
3300  * @q: the queue of the device
3301  *
3302  * Description:
3303  *    Update the queue's runtime status to RESUMING in preparation for the
3304  *    runtime resume of the device.
3305  *
3306  *    This function should be called near the start of the device's
3307  *    runtime_resume callback.
3308  */
3309 void blk_pre_runtime_resume(struct request_queue *q)
3310 {
3311 	spin_lock_irq(q->queue_lock);
3312 	q->rpm_status = RPM_RESUMING;
3313 	spin_unlock_irq(q->queue_lock);
3314 }
3315 EXPORT_SYMBOL(blk_pre_runtime_resume);
3316 
3317 /**
3318  * blk_post_runtime_resume - Post runtime resume processing
3319  * @q: the queue of the device
3320  * @err: return value of the device's runtime_resume function
3321  *
3322  * Description:
3323  *    Update the queue's runtime status according to the return value of the
3324  *    device's runtime_resume function. If it is successfully resumed, process
3325  *    the requests that are queued into the device's queue when it is resuming
3326  *    and then mark last busy and initiate autosuspend for it.
3327  *
3328  *    This function should be called near the end of the device's
3329  *    runtime_resume callback.
3330  */
3331 void blk_post_runtime_resume(struct request_queue *q, int err)
3332 {
3333 	spin_lock_irq(q->queue_lock);
3334 	if (!err) {
3335 		q->rpm_status = RPM_ACTIVE;
3336 		__blk_run_queue(q);
3337 		pm_runtime_mark_last_busy(q->dev);
3338 		pm_request_autosuspend(q->dev);
3339 	} else {
3340 		q->rpm_status = RPM_SUSPENDED;
3341 	}
3342 	spin_unlock_irq(q->queue_lock);
3343 }
3344 EXPORT_SYMBOL(blk_post_runtime_resume);
3345 #endif
3346 
3347 int __init blk_dev_init(void)
3348 {
3349 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3350 			sizeof(((struct request *)0)->cmd_flags));
3351 
3352 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3353 	kblockd_workqueue = alloc_workqueue("kblockd",
3354 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3355 	if (!kblockd_workqueue)
3356 		panic("Failed to create kblockd\n");
3357 
3358 	request_cachep = kmem_cache_create("blkdev_requests",
3359 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3360 
3361 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3362 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3363 
3364 	return 0;
3365 }
3366