1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/bio.h> 19 #include <linux/blkdev.h> 20 #include <linux/blk-mq.h> 21 #include <linux/highmem.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kernel_stat.h> 25 #include <linux/string.h> 26 #include <linux/init.h> 27 #include <linux/completion.h> 28 #include <linux/slab.h> 29 #include <linux/swap.h> 30 #include <linux/writeback.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/fault-inject.h> 33 #include <linux/list_sort.h> 34 #include <linux/delay.h> 35 #include <linux/ratelimit.h> 36 #include <linux/pm_runtime.h> 37 #include <linux/blk-cgroup.h> 38 #include <linux/t10-pi.h> 39 #include <linux/debugfs.h> 40 #include <linux/bpf.h> 41 #include <linux/psi.h> 42 #include <linux/sched/sysctl.h> 43 #include <linux/blk-crypto.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/block.h> 47 48 #include "blk.h" 49 #include "blk-mq.h" 50 #include "blk-mq-sched.h" 51 #include "blk-pm.h" 52 #include "blk-rq-qos.h" 53 54 #ifdef CONFIG_DEBUG_FS 55 struct dentry *blk_debugfs_root; 56 #endif 57 58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 63 64 DEFINE_IDA(blk_queue_ida); 65 66 /* 67 * For queue allocation 68 */ 69 struct kmem_cache *blk_requestq_cachep; 70 71 /* 72 * Controlling structure to kblockd 73 */ 74 static struct workqueue_struct *kblockd_workqueue; 75 76 /** 77 * blk_queue_flag_set - atomically set a queue flag 78 * @flag: flag to be set 79 * @q: request queue 80 */ 81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 82 { 83 set_bit(flag, &q->queue_flags); 84 } 85 EXPORT_SYMBOL(blk_queue_flag_set); 86 87 /** 88 * blk_queue_flag_clear - atomically clear a queue flag 89 * @flag: flag to be cleared 90 * @q: request queue 91 */ 92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 93 { 94 clear_bit(flag, &q->queue_flags); 95 } 96 EXPORT_SYMBOL(blk_queue_flag_clear); 97 98 /** 99 * blk_queue_flag_test_and_set - atomically test and set a queue flag 100 * @flag: flag to be set 101 * @q: request queue 102 * 103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 104 * the flag was already set. 105 */ 106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 107 { 108 return test_and_set_bit(flag, &q->queue_flags); 109 } 110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 111 112 void blk_rq_init(struct request_queue *q, struct request *rq) 113 { 114 memset(rq, 0, sizeof(*rq)); 115 116 INIT_LIST_HEAD(&rq->queuelist); 117 rq->q = q; 118 rq->__sector = (sector_t) -1; 119 INIT_HLIST_NODE(&rq->hash); 120 RB_CLEAR_NODE(&rq->rb_node); 121 rq->tag = -1; 122 rq->internal_tag = -1; 123 rq->start_time_ns = ktime_get_ns(); 124 rq->part = NULL; 125 refcount_set(&rq->ref, 1); 126 blk_crypto_rq_set_defaults(rq); 127 } 128 EXPORT_SYMBOL(blk_rq_init); 129 130 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 131 static const char *const blk_op_name[] = { 132 REQ_OP_NAME(READ), 133 REQ_OP_NAME(WRITE), 134 REQ_OP_NAME(FLUSH), 135 REQ_OP_NAME(DISCARD), 136 REQ_OP_NAME(SECURE_ERASE), 137 REQ_OP_NAME(ZONE_RESET), 138 REQ_OP_NAME(ZONE_RESET_ALL), 139 REQ_OP_NAME(ZONE_OPEN), 140 REQ_OP_NAME(ZONE_CLOSE), 141 REQ_OP_NAME(ZONE_FINISH), 142 REQ_OP_NAME(ZONE_APPEND), 143 REQ_OP_NAME(WRITE_SAME), 144 REQ_OP_NAME(WRITE_ZEROES), 145 REQ_OP_NAME(SCSI_IN), 146 REQ_OP_NAME(SCSI_OUT), 147 REQ_OP_NAME(DRV_IN), 148 REQ_OP_NAME(DRV_OUT), 149 }; 150 #undef REQ_OP_NAME 151 152 /** 153 * blk_op_str - Return string XXX in the REQ_OP_XXX. 154 * @op: REQ_OP_XXX. 155 * 156 * Description: Centralize block layer function to convert REQ_OP_XXX into 157 * string format. Useful in the debugging and tracing bio or request. For 158 * invalid REQ_OP_XXX it returns string "UNKNOWN". 159 */ 160 inline const char *blk_op_str(unsigned int op) 161 { 162 const char *op_str = "UNKNOWN"; 163 164 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 165 op_str = blk_op_name[op]; 166 167 return op_str; 168 } 169 EXPORT_SYMBOL_GPL(blk_op_str); 170 171 static const struct { 172 int errno; 173 const char *name; 174 } blk_errors[] = { 175 [BLK_STS_OK] = { 0, "" }, 176 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 177 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 178 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 179 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 180 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 181 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 182 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 183 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 184 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 185 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 186 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 187 188 /* device mapper special case, should not leak out: */ 189 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 190 191 /* everything else not covered above: */ 192 [BLK_STS_IOERR] = { -EIO, "I/O" }, 193 }; 194 195 blk_status_t errno_to_blk_status(int errno) 196 { 197 int i; 198 199 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 200 if (blk_errors[i].errno == errno) 201 return (__force blk_status_t)i; 202 } 203 204 return BLK_STS_IOERR; 205 } 206 EXPORT_SYMBOL_GPL(errno_to_blk_status); 207 208 int blk_status_to_errno(blk_status_t status) 209 { 210 int idx = (__force int)status; 211 212 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 213 return -EIO; 214 return blk_errors[idx].errno; 215 } 216 EXPORT_SYMBOL_GPL(blk_status_to_errno); 217 218 static void print_req_error(struct request *req, blk_status_t status, 219 const char *caller) 220 { 221 int idx = (__force int)status; 222 223 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 224 return; 225 226 printk_ratelimited(KERN_ERR 227 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 228 "phys_seg %u prio class %u\n", 229 caller, blk_errors[idx].name, 230 req->rq_disk ? req->rq_disk->disk_name : "?", 231 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 232 req->cmd_flags & ~REQ_OP_MASK, 233 req->nr_phys_segments, 234 IOPRIO_PRIO_CLASS(req->ioprio)); 235 } 236 237 static void req_bio_endio(struct request *rq, struct bio *bio, 238 unsigned int nbytes, blk_status_t error) 239 { 240 if (error) 241 bio->bi_status = error; 242 243 if (unlikely(rq->rq_flags & RQF_QUIET)) 244 bio_set_flag(bio, BIO_QUIET); 245 246 bio_advance(bio, nbytes); 247 248 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) { 249 /* 250 * Partial zone append completions cannot be supported as the 251 * BIO fragments may end up not being written sequentially. 252 */ 253 if (bio->bi_iter.bi_size) 254 bio->bi_status = BLK_STS_IOERR; 255 else 256 bio->bi_iter.bi_sector = rq->__sector; 257 } 258 259 /* don't actually finish bio if it's part of flush sequence */ 260 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 261 bio_endio(bio); 262 } 263 264 void blk_dump_rq_flags(struct request *rq, char *msg) 265 { 266 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 267 rq->rq_disk ? rq->rq_disk->disk_name : "?", 268 (unsigned long long) rq->cmd_flags); 269 270 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 271 (unsigned long long)blk_rq_pos(rq), 272 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 273 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 274 rq->bio, rq->biotail, blk_rq_bytes(rq)); 275 } 276 EXPORT_SYMBOL(blk_dump_rq_flags); 277 278 /** 279 * blk_sync_queue - cancel any pending callbacks on a queue 280 * @q: the queue 281 * 282 * Description: 283 * The block layer may perform asynchronous callback activity 284 * on a queue, such as calling the unplug function after a timeout. 285 * A block device may call blk_sync_queue to ensure that any 286 * such activity is cancelled, thus allowing it to release resources 287 * that the callbacks might use. The caller must already have made sure 288 * that its ->make_request_fn will not re-add plugging prior to calling 289 * this function. 290 * 291 * This function does not cancel any asynchronous activity arising 292 * out of elevator or throttling code. That would require elevator_exit() 293 * and blkcg_exit_queue() to be called with queue lock initialized. 294 * 295 */ 296 void blk_sync_queue(struct request_queue *q) 297 { 298 del_timer_sync(&q->timeout); 299 cancel_work_sync(&q->timeout_work); 300 } 301 EXPORT_SYMBOL(blk_sync_queue); 302 303 /** 304 * blk_set_pm_only - increment pm_only counter 305 * @q: request queue pointer 306 */ 307 void blk_set_pm_only(struct request_queue *q) 308 { 309 atomic_inc(&q->pm_only); 310 } 311 EXPORT_SYMBOL_GPL(blk_set_pm_only); 312 313 void blk_clear_pm_only(struct request_queue *q) 314 { 315 int pm_only; 316 317 pm_only = atomic_dec_return(&q->pm_only); 318 WARN_ON_ONCE(pm_only < 0); 319 if (pm_only == 0) 320 wake_up_all(&q->mq_freeze_wq); 321 } 322 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 323 324 void blk_put_queue(struct request_queue *q) 325 { 326 kobject_put(&q->kobj); 327 } 328 EXPORT_SYMBOL(blk_put_queue); 329 330 void blk_set_queue_dying(struct request_queue *q) 331 { 332 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 333 334 /* 335 * When queue DYING flag is set, we need to block new req 336 * entering queue, so we call blk_freeze_queue_start() to 337 * prevent I/O from crossing blk_queue_enter(). 338 */ 339 blk_freeze_queue_start(q); 340 341 if (queue_is_mq(q)) 342 blk_mq_wake_waiters(q); 343 344 /* Make blk_queue_enter() reexamine the DYING flag. */ 345 wake_up_all(&q->mq_freeze_wq); 346 } 347 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 348 349 /** 350 * blk_cleanup_queue - shutdown a request queue 351 * @q: request queue to shutdown 352 * 353 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 354 * put it. All future requests will be failed immediately with -ENODEV. 355 */ 356 void blk_cleanup_queue(struct request_queue *q) 357 { 358 WARN_ON_ONCE(blk_queue_registered(q)); 359 360 /* mark @q DYING, no new request or merges will be allowed afterwards */ 361 blk_set_queue_dying(q); 362 363 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 364 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 365 366 /* 367 * Drain all requests queued before DYING marking. Set DEAD flag to 368 * prevent that blk_mq_run_hw_queues() accesses the hardware queues 369 * after draining finished. 370 */ 371 blk_freeze_queue(q); 372 373 rq_qos_exit(q); 374 375 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 376 377 /* for synchronous bio-based driver finish in-flight integrity i/o */ 378 blk_flush_integrity(); 379 380 /* @q won't process any more request, flush async actions */ 381 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 382 blk_sync_queue(q); 383 384 if (queue_is_mq(q)) 385 blk_mq_exit_queue(q); 386 387 /* 388 * In theory, request pool of sched_tags belongs to request queue. 389 * However, the current implementation requires tag_set for freeing 390 * requests, so free the pool now. 391 * 392 * Queue has become frozen, there can't be any in-queue requests, so 393 * it is safe to free requests now. 394 */ 395 mutex_lock(&q->sysfs_lock); 396 if (q->elevator) 397 blk_mq_sched_free_requests(q); 398 mutex_unlock(&q->sysfs_lock); 399 400 percpu_ref_exit(&q->q_usage_counter); 401 402 /* @q is and will stay empty, shutdown and put */ 403 blk_put_queue(q); 404 } 405 EXPORT_SYMBOL(blk_cleanup_queue); 406 407 /** 408 * blk_queue_enter() - try to increase q->q_usage_counter 409 * @q: request queue pointer 410 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 411 */ 412 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 413 { 414 const bool pm = flags & BLK_MQ_REQ_PREEMPT; 415 416 while (true) { 417 bool success = false; 418 419 rcu_read_lock(); 420 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 421 /* 422 * The code that increments the pm_only counter is 423 * responsible for ensuring that that counter is 424 * globally visible before the queue is unfrozen. 425 */ 426 if (pm || !blk_queue_pm_only(q)) { 427 success = true; 428 } else { 429 percpu_ref_put(&q->q_usage_counter); 430 } 431 } 432 rcu_read_unlock(); 433 434 if (success) 435 return 0; 436 437 if (flags & BLK_MQ_REQ_NOWAIT) 438 return -EBUSY; 439 440 /* 441 * read pair of barrier in blk_freeze_queue_start(), 442 * we need to order reading __PERCPU_REF_DEAD flag of 443 * .q_usage_counter and reading .mq_freeze_depth or 444 * queue dying flag, otherwise the following wait may 445 * never return if the two reads are reordered. 446 */ 447 smp_rmb(); 448 449 wait_event(q->mq_freeze_wq, 450 (!q->mq_freeze_depth && 451 (pm || (blk_pm_request_resume(q), 452 !blk_queue_pm_only(q)))) || 453 blk_queue_dying(q)); 454 if (blk_queue_dying(q)) 455 return -ENODEV; 456 } 457 } 458 459 static inline int bio_queue_enter(struct bio *bio) 460 { 461 struct request_queue *q = bio->bi_disk->queue; 462 bool nowait = bio->bi_opf & REQ_NOWAIT; 463 int ret; 464 465 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0); 466 if (unlikely(ret)) { 467 if (nowait && !blk_queue_dying(q)) 468 bio_wouldblock_error(bio); 469 else 470 bio_io_error(bio); 471 } 472 473 return ret; 474 } 475 476 void blk_queue_exit(struct request_queue *q) 477 { 478 percpu_ref_put(&q->q_usage_counter); 479 } 480 481 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 482 { 483 struct request_queue *q = 484 container_of(ref, struct request_queue, q_usage_counter); 485 486 wake_up_all(&q->mq_freeze_wq); 487 } 488 489 static void blk_rq_timed_out_timer(struct timer_list *t) 490 { 491 struct request_queue *q = from_timer(q, t, timeout); 492 493 kblockd_schedule_work(&q->timeout_work); 494 } 495 496 static void blk_timeout_work(struct work_struct *work) 497 { 498 } 499 500 struct request_queue *__blk_alloc_queue(int node_id) 501 { 502 struct request_queue *q; 503 int ret; 504 505 q = kmem_cache_alloc_node(blk_requestq_cachep, 506 GFP_KERNEL | __GFP_ZERO, node_id); 507 if (!q) 508 return NULL; 509 510 q->last_merge = NULL; 511 512 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL); 513 if (q->id < 0) 514 goto fail_q; 515 516 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 517 if (ret) 518 goto fail_id; 519 520 q->backing_dev_info = bdi_alloc(node_id); 521 if (!q->backing_dev_info) 522 goto fail_split; 523 524 q->stats = blk_alloc_queue_stats(); 525 if (!q->stats) 526 goto fail_stats; 527 528 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES; 529 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 530 q->node = node_id; 531 532 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 533 laptop_mode_timer_fn, 0); 534 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 535 INIT_WORK(&q->timeout_work, blk_timeout_work); 536 INIT_LIST_HEAD(&q->icq_list); 537 #ifdef CONFIG_BLK_CGROUP 538 INIT_LIST_HEAD(&q->blkg_list); 539 #endif 540 541 kobject_init(&q->kobj, &blk_queue_ktype); 542 543 #ifdef CONFIG_BLK_DEV_IO_TRACE 544 mutex_init(&q->blk_trace_mutex); 545 #endif 546 mutex_init(&q->sysfs_lock); 547 mutex_init(&q->sysfs_dir_lock); 548 spin_lock_init(&q->queue_lock); 549 550 init_waitqueue_head(&q->mq_freeze_wq); 551 mutex_init(&q->mq_freeze_lock); 552 553 /* 554 * Init percpu_ref in atomic mode so that it's faster to shutdown. 555 * See blk_register_queue() for details. 556 */ 557 if (percpu_ref_init(&q->q_usage_counter, 558 blk_queue_usage_counter_release, 559 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 560 goto fail_bdi; 561 562 if (blkcg_init_queue(q)) 563 goto fail_ref; 564 565 blk_queue_dma_alignment(q, 511); 566 blk_set_default_limits(&q->limits); 567 568 return q; 569 570 fail_ref: 571 percpu_ref_exit(&q->q_usage_counter); 572 fail_bdi: 573 blk_free_queue_stats(q->stats); 574 fail_stats: 575 bdi_put(q->backing_dev_info); 576 fail_split: 577 bioset_exit(&q->bio_split); 578 fail_id: 579 ida_simple_remove(&blk_queue_ida, q->id); 580 fail_q: 581 kmem_cache_free(blk_requestq_cachep, q); 582 return NULL; 583 } 584 585 struct request_queue *blk_alloc_queue(make_request_fn make_request, int node_id) 586 { 587 struct request_queue *q; 588 589 if (WARN_ON_ONCE(!make_request)) 590 return NULL; 591 592 q = __blk_alloc_queue(node_id); 593 if (!q) 594 return NULL; 595 q->make_request_fn = make_request; 596 q->nr_requests = BLKDEV_MAX_RQ; 597 return q; 598 } 599 EXPORT_SYMBOL(blk_alloc_queue); 600 601 bool blk_get_queue(struct request_queue *q) 602 { 603 if (likely(!blk_queue_dying(q))) { 604 __blk_get_queue(q); 605 return true; 606 } 607 608 return false; 609 } 610 EXPORT_SYMBOL(blk_get_queue); 611 612 /** 613 * blk_get_request - allocate a request 614 * @q: request queue to allocate a request for 615 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 616 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 617 */ 618 struct request *blk_get_request(struct request_queue *q, unsigned int op, 619 blk_mq_req_flags_t flags) 620 { 621 struct request *req; 622 623 WARN_ON_ONCE(op & REQ_NOWAIT); 624 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 625 626 req = blk_mq_alloc_request(q, op, flags); 627 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 628 q->mq_ops->initialize_rq_fn(req); 629 630 return req; 631 } 632 EXPORT_SYMBOL(blk_get_request); 633 634 void blk_put_request(struct request *req) 635 { 636 blk_mq_free_request(req); 637 } 638 EXPORT_SYMBOL(blk_put_request); 639 640 static void blk_account_io_merge_bio(struct request *req) 641 { 642 if (!blk_do_io_stat(req)) 643 return; 644 645 part_stat_lock(); 646 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]); 647 part_stat_unlock(); 648 } 649 650 bool bio_attempt_back_merge(struct request *req, struct bio *bio, 651 unsigned int nr_segs) 652 { 653 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 654 655 if (!ll_back_merge_fn(req, bio, nr_segs)) 656 return false; 657 658 trace_block_bio_backmerge(req->q, req, bio); 659 rq_qos_merge(req->q, req, bio); 660 661 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 662 blk_rq_set_mixed_merge(req); 663 664 req->biotail->bi_next = bio; 665 req->biotail = bio; 666 req->__data_len += bio->bi_iter.bi_size; 667 668 bio_crypt_free_ctx(bio); 669 670 blk_account_io_merge_bio(req); 671 return true; 672 } 673 674 bool bio_attempt_front_merge(struct request *req, struct bio *bio, 675 unsigned int nr_segs) 676 { 677 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 678 679 if (!ll_front_merge_fn(req, bio, nr_segs)) 680 return false; 681 682 trace_block_bio_frontmerge(req->q, req, bio); 683 rq_qos_merge(req->q, req, bio); 684 685 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 686 blk_rq_set_mixed_merge(req); 687 688 bio->bi_next = req->bio; 689 req->bio = bio; 690 691 req->__sector = bio->bi_iter.bi_sector; 692 req->__data_len += bio->bi_iter.bi_size; 693 694 bio_crypt_do_front_merge(req, bio); 695 696 blk_account_io_merge_bio(req); 697 return true; 698 } 699 700 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 701 struct bio *bio) 702 { 703 unsigned short segments = blk_rq_nr_discard_segments(req); 704 705 if (segments >= queue_max_discard_segments(q)) 706 goto no_merge; 707 if (blk_rq_sectors(req) + bio_sectors(bio) > 708 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 709 goto no_merge; 710 711 rq_qos_merge(q, req, bio); 712 713 req->biotail->bi_next = bio; 714 req->biotail = bio; 715 req->__data_len += bio->bi_iter.bi_size; 716 req->nr_phys_segments = segments + 1; 717 718 blk_account_io_merge_bio(req); 719 return true; 720 no_merge: 721 req_set_nomerge(q, req); 722 return false; 723 } 724 725 /** 726 * blk_attempt_plug_merge - try to merge with %current's plugged list 727 * @q: request_queue new bio is being queued at 728 * @bio: new bio being queued 729 * @nr_segs: number of segments in @bio 730 * @same_queue_rq: pointer to &struct request that gets filled in when 731 * another request associated with @q is found on the plug list 732 * (optional, may be %NULL) 733 * 734 * Determine whether @bio being queued on @q can be merged with a request 735 * on %current's plugged list. Returns %true if merge was successful, 736 * otherwise %false. 737 * 738 * Plugging coalesces IOs from the same issuer for the same purpose without 739 * going through @q->queue_lock. As such it's more of an issuing mechanism 740 * than scheduling, and the request, while may have elvpriv data, is not 741 * added on the elevator at this point. In addition, we don't have 742 * reliable access to the elevator outside queue lock. Only check basic 743 * merging parameters without querying the elevator. 744 * 745 * Caller must ensure !blk_queue_nomerges(q) beforehand. 746 */ 747 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 748 unsigned int nr_segs, struct request **same_queue_rq) 749 { 750 struct blk_plug *plug; 751 struct request *rq; 752 struct list_head *plug_list; 753 754 plug = blk_mq_plug(q, bio); 755 if (!plug) 756 return false; 757 758 plug_list = &plug->mq_list; 759 760 list_for_each_entry_reverse(rq, plug_list, queuelist) { 761 bool merged = false; 762 763 if (rq->q == q && same_queue_rq) { 764 /* 765 * Only blk-mq multiple hardware queues case checks the 766 * rq in the same queue, there should be only one such 767 * rq in a queue 768 **/ 769 *same_queue_rq = rq; 770 } 771 772 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 773 continue; 774 775 switch (blk_try_merge(rq, bio)) { 776 case ELEVATOR_BACK_MERGE: 777 merged = bio_attempt_back_merge(rq, bio, nr_segs); 778 break; 779 case ELEVATOR_FRONT_MERGE: 780 merged = bio_attempt_front_merge(rq, bio, nr_segs); 781 break; 782 case ELEVATOR_DISCARD_MERGE: 783 merged = bio_attempt_discard_merge(q, rq, bio); 784 break; 785 default: 786 break; 787 } 788 789 if (merged) 790 return true; 791 } 792 793 return false; 794 } 795 796 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 797 { 798 char b[BDEVNAME_SIZE]; 799 800 printk(KERN_INFO "attempt to access beyond end of device\n"); 801 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 802 bio_devname(bio, b), bio->bi_opf, 803 (unsigned long long)bio_end_sector(bio), 804 (long long)maxsector); 805 } 806 807 #ifdef CONFIG_FAIL_MAKE_REQUEST 808 809 static DECLARE_FAULT_ATTR(fail_make_request); 810 811 static int __init setup_fail_make_request(char *str) 812 { 813 return setup_fault_attr(&fail_make_request, str); 814 } 815 __setup("fail_make_request=", setup_fail_make_request); 816 817 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 818 { 819 return part->make_it_fail && should_fail(&fail_make_request, bytes); 820 } 821 822 static int __init fail_make_request_debugfs(void) 823 { 824 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 825 NULL, &fail_make_request); 826 827 return PTR_ERR_OR_ZERO(dir); 828 } 829 830 late_initcall(fail_make_request_debugfs); 831 832 #else /* CONFIG_FAIL_MAKE_REQUEST */ 833 834 static inline bool should_fail_request(struct hd_struct *part, 835 unsigned int bytes) 836 { 837 return false; 838 } 839 840 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 841 842 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 843 { 844 const int op = bio_op(bio); 845 846 if (part->policy && op_is_write(op)) { 847 char b[BDEVNAME_SIZE]; 848 849 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 850 return false; 851 852 WARN_ONCE(1, 853 "generic_make_request: Trying to write " 854 "to read-only block-device %s (partno %d)\n", 855 bio_devname(bio, b), part->partno); 856 /* Older lvm-tools actually trigger this */ 857 return false; 858 } 859 860 return false; 861 } 862 863 static noinline int should_fail_bio(struct bio *bio) 864 { 865 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 866 return -EIO; 867 return 0; 868 } 869 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 870 871 /* 872 * Check whether this bio extends beyond the end of the device or partition. 873 * This may well happen - the kernel calls bread() without checking the size of 874 * the device, e.g., when mounting a file system. 875 */ 876 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 877 { 878 unsigned int nr_sectors = bio_sectors(bio); 879 880 if (nr_sectors && maxsector && 881 (nr_sectors > maxsector || 882 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 883 handle_bad_sector(bio, maxsector); 884 return -EIO; 885 } 886 return 0; 887 } 888 889 /* 890 * Remap block n of partition p to block n+start(p) of the disk. 891 */ 892 static inline int blk_partition_remap(struct bio *bio) 893 { 894 struct hd_struct *p; 895 int ret = -EIO; 896 897 rcu_read_lock(); 898 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 899 if (unlikely(!p)) 900 goto out; 901 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 902 goto out; 903 if (unlikely(bio_check_ro(bio, p))) 904 goto out; 905 906 if (bio_sectors(bio)) { 907 if (bio_check_eod(bio, part_nr_sects_read(p))) 908 goto out; 909 bio->bi_iter.bi_sector += p->start_sect; 910 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 911 bio->bi_iter.bi_sector - p->start_sect); 912 } 913 bio->bi_partno = 0; 914 ret = 0; 915 out: 916 rcu_read_unlock(); 917 return ret; 918 } 919 920 /* 921 * Check write append to a zoned block device. 922 */ 923 static inline blk_status_t blk_check_zone_append(struct request_queue *q, 924 struct bio *bio) 925 { 926 sector_t pos = bio->bi_iter.bi_sector; 927 int nr_sectors = bio_sectors(bio); 928 929 /* Only applicable to zoned block devices */ 930 if (!blk_queue_is_zoned(q)) 931 return BLK_STS_NOTSUPP; 932 933 /* The bio sector must point to the start of a sequential zone */ 934 if (pos & (blk_queue_zone_sectors(q) - 1) || 935 !blk_queue_zone_is_seq(q, pos)) 936 return BLK_STS_IOERR; 937 938 /* 939 * Not allowed to cross zone boundaries. Otherwise, the BIO will be 940 * split and could result in non-contiguous sectors being written in 941 * different zones. 942 */ 943 if (nr_sectors > q->limits.chunk_sectors) 944 return BLK_STS_IOERR; 945 946 /* Make sure the BIO is small enough and will not get split */ 947 if (nr_sectors > q->limits.max_zone_append_sectors) 948 return BLK_STS_IOERR; 949 950 bio->bi_opf |= REQ_NOMERGE; 951 952 return BLK_STS_OK; 953 } 954 955 static noinline_for_stack bool 956 generic_make_request_checks(struct bio *bio) 957 { 958 struct request_queue *q; 959 int nr_sectors = bio_sectors(bio); 960 blk_status_t status = BLK_STS_IOERR; 961 char b[BDEVNAME_SIZE]; 962 963 might_sleep(); 964 965 q = bio->bi_disk->queue; 966 if (unlikely(!q)) { 967 printk(KERN_ERR 968 "generic_make_request: Trying to access " 969 "nonexistent block-device %s (%Lu)\n", 970 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 971 goto end_io; 972 } 973 974 /* 975 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 976 * if queue is not a request based queue. 977 */ 978 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q)) 979 goto not_supported; 980 981 if (should_fail_bio(bio)) 982 goto end_io; 983 984 if (bio->bi_partno) { 985 if (unlikely(blk_partition_remap(bio))) 986 goto end_io; 987 } else { 988 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 989 goto end_io; 990 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 991 goto end_io; 992 } 993 994 /* 995 * Filter flush bio's early so that make_request based 996 * drivers without flush support don't have to worry 997 * about them. 998 */ 999 if (op_is_flush(bio->bi_opf) && 1000 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 1001 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 1002 if (!nr_sectors) { 1003 status = BLK_STS_OK; 1004 goto end_io; 1005 } 1006 } 1007 1008 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 1009 bio->bi_opf &= ~REQ_HIPRI; 1010 1011 switch (bio_op(bio)) { 1012 case REQ_OP_DISCARD: 1013 if (!blk_queue_discard(q)) 1014 goto not_supported; 1015 break; 1016 case REQ_OP_SECURE_ERASE: 1017 if (!blk_queue_secure_erase(q)) 1018 goto not_supported; 1019 break; 1020 case REQ_OP_WRITE_SAME: 1021 if (!q->limits.max_write_same_sectors) 1022 goto not_supported; 1023 break; 1024 case REQ_OP_ZONE_APPEND: 1025 status = blk_check_zone_append(q, bio); 1026 if (status != BLK_STS_OK) 1027 goto end_io; 1028 break; 1029 case REQ_OP_ZONE_RESET: 1030 case REQ_OP_ZONE_OPEN: 1031 case REQ_OP_ZONE_CLOSE: 1032 case REQ_OP_ZONE_FINISH: 1033 if (!blk_queue_is_zoned(q)) 1034 goto not_supported; 1035 break; 1036 case REQ_OP_ZONE_RESET_ALL: 1037 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q)) 1038 goto not_supported; 1039 break; 1040 case REQ_OP_WRITE_ZEROES: 1041 if (!q->limits.max_write_zeroes_sectors) 1042 goto not_supported; 1043 break; 1044 default: 1045 break; 1046 } 1047 1048 /* 1049 * Various block parts want %current->io_context, so allocate it up 1050 * front rather than dealing with lots of pain to allocate it only 1051 * where needed. This may fail and the block layer knows how to live 1052 * with it. 1053 */ 1054 if (unlikely(!current->io_context)) 1055 create_task_io_context(current, GFP_ATOMIC, q->node); 1056 1057 if (!blkcg_bio_issue_check(q, bio)) 1058 return false; 1059 1060 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1061 trace_block_bio_queue(q, bio); 1062 /* Now that enqueuing has been traced, we need to trace 1063 * completion as well. 1064 */ 1065 bio_set_flag(bio, BIO_TRACE_COMPLETION); 1066 } 1067 return true; 1068 1069 not_supported: 1070 status = BLK_STS_NOTSUPP; 1071 end_io: 1072 bio->bi_status = status; 1073 bio_endio(bio); 1074 return false; 1075 } 1076 1077 static blk_qc_t do_make_request(struct bio *bio) 1078 { 1079 struct request_queue *q = bio->bi_disk->queue; 1080 blk_qc_t ret = BLK_QC_T_NONE; 1081 1082 if (blk_crypto_bio_prep(&bio)) { 1083 if (!q->make_request_fn) 1084 return blk_mq_make_request(q, bio); 1085 ret = q->make_request_fn(q, bio); 1086 } 1087 blk_queue_exit(q); 1088 return ret; 1089 } 1090 1091 /** 1092 * generic_make_request - re-submit a bio to the block device layer for I/O 1093 * @bio: The bio describing the location in memory and on the device. 1094 * 1095 * This is a version of submit_bio() that shall only be used for I/O that is 1096 * resubmitted to lower level drivers by stacking block drivers. All file 1097 * systems and other upper level users of the block layer should use 1098 * submit_bio() instead. 1099 */ 1100 blk_qc_t generic_make_request(struct bio *bio) 1101 { 1102 /* 1103 * bio_list_on_stack[0] contains bios submitted by the current 1104 * make_request_fn. 1105 * bio_list_on_stack[1] contains bios that were submitted before 1106 * the current make_request_fn, but that haven't been processed 1107 * yet. 1108 */ 1109 struct bio_list bio_list_on_stack[2]; 1110 blk_qc_t ret = BLK_QC_T_NONE; 1111 1112 if (!generic_make_request_checks(bio)) 1113 goto out; 1114 1115 /* 1116 * We only want one ->make_request_fn to be active at a time, else 1117 * stack usage with stacked devices could be a problem. So use 1118 * current->bio_list to keep a list of requests submited by a 1119 * make_request_fn function. current->bio_list is also used as a 1120 * flag to say if generic_make_request is currently active in this 1121 * task or not. If it is NULL, then no make_request is active. If 1122 * it is non-NULL, then a make_request is active, and new requests 1123 * should be added at the tail 1124 */ 1125 if (current->bio_list) { 1126 bio_list_add(¤t->bio_list[0], bio); 1127 goto out; 1128 } 1129 1130 /* following loop may be a bit non-obvious, and so deserves some 1131 * explanation. 1132 * Before entering the loop, bio->bi_next is NULL (as all callers 1133 * ensure that) so we have a list with a single bio. 1134 * We pretend that we have just taken it off a longer list, so 1135 * we assign bio_list to a pointer to the bio_list_on_stack, 1136 * thus initialising the bio_list of new bios to be 1137 * added. ->make_request() may indeed add some more bios 1138 * through a recursive call to generic_make_request. If it 1139 * did, we find a non-NULL value in bio_list and re-enter the loop 1140 * from the top. In this case we really did just take the bio 1141 * of the top of the list (no pretending) and so remove it from 1142 * bio_list, and call into ->make_request() again. 1143 */ 1144 BUG_ON(bio->bi_next); 1145 bio_list_init(&bio_list_on_stack[0]); 1146 current->bio_list = bio_list_on_stack; 1147 do { 1148 struct request_queue *q = bio->bi_disk->queue; 1149 1150 if (likely(bio_queue_enter(bio) == 0)) { 1151 struct bio_list lower, same; 1152 1153 /* Create a fresh bio_list for all subordinate requests */ 1154 bio_list_on_stack[1] = bio_list_on_stack[0]; 1155 bio_list_init(&bio_list_on_stack[0]); 1156 ret = do_make_request(bio); 1157 1158 /* sort new bios into those for a lower level 1159 * and those for the same level 1160 */ 1161 bio_list_init(&lower); 1162 bio_list_init(&same); 1163 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 1164 if (q == bio->bi_disk->queue) 1165 bio_list_add(&same, bio); 1166 else 1167 bio_list_add(&lower, bio); 1168 /* now assemble so we handle the lowest level first */ 1169 bio_list_merge(&bio_list_on_stack[0], &lower); 1170 bio_list_merge(&bio_list_on_stack[0], &same); 1171 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 1172 } 1173 bio = bio_list_pop(&bio_list_on_stack[0]); 1174 } while (bio); 1175 current->bio_list = NULL; /* deactivate */ 1176 1177 out: 1178 return ret; 1179 } 1180 EXPORT_SYMBOL(generic_make_request); 1181 1182 /** 1183 * direct_make_request - hand a buffer directly to its device driver for I/O 1184 * @bio: The bio describing the location in memory and on the device. 1185 * 1186 * This function behaves like generic_make_request(), but does not protect 1187 * against recursion. Must only be used if the called driver is known 1188 * to be blk-mq based. 1189 */ 1190 blk_qc_t direct_make_request(struct bio *bio) 1191 { 1192 struct request_queue *q = bio->bi_disk->queue; 1193 1194 if (WARN_ON_ONCE(q->make_request_fn)) { 1195 bio_io_error(bio); 1196 return BLK_QC_T_NONE; 1197 } 1198 if (!generic_make_request_checks(bio)) 1199 return BLK_QC_T_NONE; 1200 if (unlikely(bio_queue_enter(bio))) 1201 return BLK_QC_T_NONE; 1202 if (!blk_crypto_bio_prep(&bio)) { 1203 blk_queue_exit(q); 1204 return BLK_QC_T_NONE; 1205 } 1206 return blk_mq_make_request(q, bio); 1207 } 1208 EXPORT_SYMBOL_GPL(direct_make_request); 1209 1210 /** 1211 * submit_bio - submit a bio to the block device layer for I/O 1212 * @bio: The &struct bio which describes the I/O 1213 * 1214 * submit_bio() is used to submit I/O requests to block devices. It is passed a 1215 * fully set up &struct bio that describes the I/O that needs to be done. The 1216 * bio will be send to the device described by the bi_disk and bi_partno fields. 1217 * 1218 * The success/failure status of the request, along with notification of 1219 * completion, is delivered asynchronously through the ->bi_end_io() callback 1220 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has 1221 * been called. 1222 */ 1223 blk_qc_t submit_bio(struct bio *bio) 1224 { 1225 if (blkcg_punt_bio_submit(bio)) 1226 return BLK_QC_T_NONE; 1227 1228 /* 1229 * If it's a regular read/write or a barrier with data attached, 1230 * go through the normal accounting stuff before submission. 1231 */ 1232 if (bio_has_data(bio)) { 1233 unsigned int count; 1234 1235 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1236 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 1237 else 1238 count = bio_sectors(bio); 1239 1240 if (op_is_write(bio_op(bio))) { 1241 count_vm_events(PGPGOUT, count); 1242 } else { 1243 task_io_account_read(bio->bi_iter.bi_size); 1244 count_vm_events(PGPGIN, count); 1245 } 1246 1247 if (unlikely(block_dump)) { 1248 char b[BDEVNAME_SIZE]; 1249 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1250 current->comm, task_pid_nr(current), 1251 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 1252 (unsigned long long)bio->bi_iter.bi_sector, 1253 bio_devname(bio, b), count); 1254 } 1255 } 1256 1257 /* 1258 * If we're reading data that is part of the userspace workingset, count 1259 * submission time as memory stall. When the device is congested, or 1260 * the submitting cgroup IO-throttled, submission can be a significant 1261 * part of overall IO time. 1262 */ 1263 if (unlikely(bio_op(bio) == REQ_OP_READ && 1264 bio_flagged(bio, BIO_WORKINGSET))) { 1265 unsigned long pflags; 1266 blk_qc_t ret; 1267 1268 psi_memstall_enter(&pflags); 1269 ret = generic_make_request(bio); 1270 psi_memstall_leave(&pflags); 1271 1272 return ret; 1273 } 1274 1275 return generic_make_request(bio); 1276 } 1277 EXPORT_SYMBOL(submit_bio); 1278 1279 /** 1280 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1281 * for the new queue limits 1282 * @q: the queue 1283 * @rq: the request being checked 1284 * 1285 * Description: 1286 * @rq may have been made based on weaker limitations of upper-level queues 1287 * in request stacking drivers, and it may violate the limitation of @q. 1288 * Since the block layer and the underlying device driver trust @rq 1289 * after it is inserted to @q, it should be checked against @q before 1290 * the insertion using this generic function. 1291 * 1292 * Request stacking drivers like request-based dm may change the queue 1293 * limits when retrying requests on other queues. Those requests need 1294 * to be checked against the new queue limits again during dispatch. 1295 */ 1296 static int blk_cloned_rq_check_limits(struct request_queue *q, 1297 struct request *rq) 1298 { 1299 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 1300 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 1301 __func__, blk_rq_sectors(rq), 1302 blk_queue_get_max_sectors(q, req_op(rq))); 1303 return -EIO; 1304 } 1305 1306 /* 1307 * queue's settings related to segment counting like q->bounce_pfn 1308 * may differ from that of other stacking queues. 1309 * Recalculate it to check the request correctly on this queue's 1310 * limitation. 1311 */ 1312 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 1313 if (rq->nr_phys_segments > queue_max_segments(q)) { 1314 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 1315 __func__, rq->nr_phys_segments, queue_max_segments(q)); 1316 return -EIO; 1317 } 1318 1319 return 0; 1320 } 1321 1322 /** 1323 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1324 * @q: the queue to submit the request 1325 * @rq: the request being queued 1326 */ 1327 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1328 { 1329 if (blk_cloned_rq_check_limits(q, rq)) 1330 return BLK_STS_IOERR; 1331 1332 if (rq->rq_disk && 1333 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1334 return BLK_STS_IOERR; 1335 1336 if (blk_crypto_insert_cloned_request(rq)) 1337 return BLK_STS_IOERR; 1338 1339 if (blk_queue_io_stat(q)) 1340 blk_account_io_start(rq); 1341 1342 /* 1343 * Since we have a scheduler attached on the top device, 1344 * bypass a potential scheduler on the bottom device for 1345 * insert. 1346 */ 1347 return blk_mq_request_issue_directly(rq, true); 1348 } 1349 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1350 1351 /** 1352 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1353 * @rq: request to examine 1354 * 1355 * Description: 1356 * A request could be merge of IOs which require different failure 1357 * handling. This function determines the number of bytes which 1358 * can be failed from the beginning of the request without 1359 * crossing into area which need to be retried further. 1360 * 1361 * Return: 1362 * The number of bytes to fail. 1363 */ 1364 unsigned int blk_rq_err_bytes(const struct request *rq) 1365 { 1366 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1367 unsigned int bytes = 0; 1368 struct bio *bio; 1369 1370 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1371 return blk_rq_bytes(rq); 1372 1373 /* 1374 * Currently the only 'mixing' which can happen is between 1375 * different fastfail types. We can safely fail portions 1376 * which have all the failfast bits that the first one has - 1377 * the ones which are at least as eager to fail as the first 1378 * one. 1379 */ 1380 for (bio = rq->bio; bio; bio = bio->bi_next) { 1381 if ((bio->bi_opf & ff) != ff) 1382 break; 1383 bytes += bio->bi_iter.bi_size; 1384 } 1385 1386 /* this could lead to infinite loop */ 1387 BUG_ON(blk_rq_bytes(rq) && !bytes); 1388 return bytes; 1389 } 1390 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1391 1392 static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end) 1393 { 1394 unsigned long stamp; 1395 again: 1396 stamp = READ_ONCE(part->stamp); 1397 if (unlikely(stamp != now)) { 1398 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) 1399 __part_stat_add(part, io_ticks, end ? now - stamp : 1); 1400 } 1401 if (part->partno) { 1402 part = &part_to_disk(part)->part0; 1403 goto again; 1404 } 1405 } 1406 1407 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1408 { 1409 if (req->part && blk_do_io_stat(req)) { 1410 const int sgrp = op_stat_group(req_op(req)); 1411 struct hd_struct *part; 1412 1413 part_stat_lock(); 1414 part = req->part; 1415 part_stat_add(part, sectors[sgrp], bytes >> 9); 1416 part_stat_unlock(); 1417 } 1418 } 1419 1420 void blk_account_io_done(struct request *req, u64 now) 1421 { 1422 /* 1423 * Account IO completion. flush_rq isn't accounted as a 1424 * normal IO on queueing nor completion. Accounting the 1425 * containing request is enough. 1426 */ 1427 if (req->part && blk_do_io_stat(req) && 1428 !(req->rq_flags & RQF_FLUSH_SEQ)) { 1429 const int sgrp = op_stat_group(req_op(req)); 1430 struct hd_struct *part; 1431 1432 part_stat_lock(); 1433 part = req->part; 1434 1435 update_io_ticks(part, jiffies, true); 1436 part_stat_inc(part, ios[sgrp]); 1437 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns); 1438 part_stat_unlock(); 1439 1440 hd_struct_put(part); 1441 } 1442 } 1443 1444 void blk_account_io_start(struct request *rq) 1445 { 1446 if (!blk_do_io_stat(rq)) 1447 return; 1448 1449 rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 1450 1451 part_stat_lock(); 1452 update_io_ticks(rq->part, jiffies, false); 1453 part_stat_unlock(); 1454 } 1455 1456 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1457 unsigned int op) 1458 { 1459 struct hd_struct *part = &disk->part0; 1460 const int sgrp = op_stat_group(op); 1461 unsigned long now = READ_ONCE(jiffies); 1462 1463 part_stat_lock(); 1464 update_io_ticks(part, now, false); 1465 part_stat_inc(part, ios[sgrp]); 1466 part_stat_add(part, sectors[sgrp], sectors); 1467 part_stat_local_inc(part, in_flight[op_is_write(op)]); 1468 part_stat_unlock(); 1469 1470 return now; 1471 } 1472 EXPORT_SYMBOL(disk_start_io_acct); 1473 1474 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1475 unsigned long start_time) 1476 { 1477 struct hd_struct *part = &disk->part0; 1478 const int sgrp = op_stat_group(op); 1479 unsigned long now = READ_ONCE(jiffies); 1480 unsigned long duration = now - start_time; 1481 1482 part_stat_lock(); 1483 update_io_ticks(part, now, true); 1484 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1485 part_stat_local_dec(part, in_flight[op_is_write(op)]); 1486 part_stat_unlock(); 1487 } 1488 EXPORT_SYMBOL(disk_end_io_acct); 1489 1490 /* 1491 * Steal bios from a request and add them to a bio list. 1492 * The request must not have been partially completed before. 1493 */ 1494 void blk_steal_bios(struct bio_list *list, struct request *rq) 1495 { 1496 if (rq->bio) { 1497 if (list->tail) 1498 list->tail->bi_next = rq->bio; 1499 else 1500 list->head = rq->bio; 1501 list->tail = rq->biotail; 1502 1503 rq->bio = NULL; 1504 rq->biotail = NULL; 1505 } 1506 1507 rq->__data_len = 0; 1508 } 1509 EXPORT_SYMBOL_GPL(blk_steal_bios); 1510 1511 /** 1512 * blk_update_request - Special helper function for request stacking drivers 1513 * @req: the request being processed 1514 * @error: block status code 1515 * @nr_bytes: number of bytes to complete @req 1516 * 1517 * Description: 1518 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1519 * the request structure even if @req doesn't have leftover. 1520 * If @req has leftover, sets it up for the next range of segments. 1521 * 1522 * This special helper function is only for request stacking drivers 1523 * (e.g. request-based dm) so that they can handle partial completion. 1524 * Actual device drivers should use blk_mq_end_request instead. 1525 * 1526 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1527 * %false return from this function. 1528 * 1529 * Note: 1530 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both 1531 * blk_rq_bytes() and in blk_update_request(). 1532 * 1533 * Return: 1534 * %false - this request doesn't have any more data 1535 * %true - this request has more data 1536 **/ 1537 bool blk_update_request(struct request *req, blk_status_t error, 1538 unsigned int nr_bytes) 1539 { 1540 int total_bytes; 1541 1542 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 1543 1544 if (!req->bio) 1545 return false; 1546 1547 #ifdef CONFIG_BLK_DEV_INTEGRITY 1548 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 1549 error == BLK_STS_OK) 1550 req->q->integrity.profile->complete_fn(req, nr_bytes); 1551 #endif 1552 1553 if (unlikely(error && !blk_rq_is_passthrough(req) && 1554 !(req->rq_flags & RQF_QUIET))) 1555 print_req_error(req, error, __func__); 1556 1557 blk_account_io_completion(req, nr_bytes); 1558 1559 total_bytes = 0; 1560 while (req->bio) { 1561 struct bio *bio = req->bio; 1562 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 1563 1564 if (bio_bytes == bio->bi_iter.bi_size) 1565 req->bio = bio->bi_next; 1566 1567 /* Completion has already been traced */ 1568 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1569 req_bio_endio(req, bio, bio_bytes, error); 1570 1571 total_bytes += bio_bytes; 1572 nr_bytes -= bio_bytes; 1573 1574 if (!nr_bytes) 1575 break; 1576 } 1577 1578 /* 1579 * completely done 1580 */ 1581 if (!req->bio) { 1582 /* 1583 * Reset counters so that the request stacking driver 1584 * can find how many bytes remain in the request 1585 * later. 1586 */ 1587 req->__data_len = 0; 1588 return false; 1589 } 1590 1591 req->__data_len -= total_bytes; 1592 1593 /* update sector only for requests with clear definition of sector */ 1594 if (!blk_rq_is_passthrough(req)) 1595 req->__sector += total_bytes >> 9; 1596 1597 /* mixed attributes always follow the first bio */ 1598 if (req->rq_flags & RQF_MIXED_MERGE) { 1599 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1600 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1601 } 1602 1603 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1604 /* 1605 * If total number of sectors is less than the first segment 1606 * size, something has gone terribly wrong. 1607 */ 1608 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1609 blk_dump_rq_flags(req, "request botched"); 1610 req->__data_len = blk_rq_cur_bytes(req); 1611 } 1612 1613 /* recalculate the number of segments */ 1614 req->nr_phys_segments = blk_recalc_rq_segments(req); 1615 } 1616 1617 return true; 1618 } 1619 EXPORT_SYMBOL_GPL(blk_update_request); 1620 1621 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1622 /** 1623 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1624 * @rq: the request to be flushed 1625 * 1626 * Description: 1627 * Flush all pages in @rq. 1628 */ 1629 void rq_flush_dcache_pages(struct request *rq) 1630 { 1631 struct req_iterator iter; 1632 struct bio_vec bvec; 1633 1634 rq_for_each_segment(bvec, rq, iter) 1635 flush_dcache_page(bvec.bv_page); 1636 } 1637 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1638 #endif 1639 1640 /** 1641 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1642 * @q : the queue of the device being checked 1643 * 1644 * Description: 1645 * Check if underlying low-level drivers of a device are busy. 1646 * If the drivers want to export their busy state, they must set own 1647 * exporting function using blk_queue_lld_busy() first. 1648 * 1649 * Basically, this function is used only by request stacking drivers 1650 * to stop dispatching requests to underlying devices when underlying 1651 * devices are busy. This behavior helps more I/O merging on the queue 1652 * of the request stacking driver and prevents I/O throughput regression 1653 * on burst I/O load. 1654 * 1655 * Return: 1656 * 0 - Not busy (The request stacking driver should dispatch request) 1657 * 1 - Busy (The request stacking driver should stop dispatching request) 1658 */ 1659 int blk_lld_busy(struct request_queue *q) 1660 { 1661 if (queue_is_mq(q) && q->mq_ops->busy) 1662 return q->mq_ops->busy(q); 1663 1664 return 0; 1665 } 1666 EXPORT_SYMBOL_GPL(blk_lld_busy); 1667 1668 /** 1669 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1670 * @rq: the clone request to be cleaned up 1671 * 1672 * Description: 1673 * Free all bios in @rq for a cloned request. 1674 */ 1675 void blk_rq_unprep_clone(struct request *rq) 1676 { 1677 struct bio *bio; 1678 1679 while ((bio = rq->bio) != NULL) { 1680 rq->bio = bio->bi_next; 1681 1682 bio_put(bio); 1683 } 1684 } 1685 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1686 1687 /** 1688 * blk_rq_prep_clone - Helper function to setup clone request 1689 * @rq: the request to be setup 1690 * @rq_src: original request to be cloned 1691 * @bs: bio_set that bios for clone are allocated from 1692 * @gfp_mask: memory allocation mask for bio 1693 * @bio_ctr: setup function to be called for each clone bio. 1694 * Returns %0 for success, non %0 for failure. 1695 * @data: private data to be passed to @bio_ctr 1696 * 1697 * Description: 1698 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1699 * Also, pages which the original bios are pointing to are not copied 1700 * and the cloned bios just point same pages. 1701 * So cloned bios must be completed before original bios, which means 1702 * the caller must complete @rq before @rq_src. 1703 */ 1704 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1705 struct bio_set *bs, gfp_t gfp_mask, 1706 int (*bio_ctr)(struct bio *, struct bio *, void *), 1707 void *data) 1708 { 1709 struct bio *bio, *bio_src; 1710 1711 if (!bs) 1712 bs = &fs_bio_set; 1713 1714 __rq_for_each_bio(bio_src, rq_src) { 1715 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1716 if (!bio) 1717 goto free_and_out; 1718 1719 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1720 goto free_and_out; 1721 1722 if (rq->bio) { 1723 rq->biotail->bi_next = bio; 1724 rq->biotail = bio; 1725 } else 1726 rq->bio = rq->biotail = bio; 1727 } 1728 1729 /* Copy attributes of the original request to the clone request. */ 1730 rq->__sector = blk_rq_pos(rq_src); 1731 rq->__data_len = blk_rq_bytes(rq_src); 1732 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1733 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 1734 rq->special_vec = rq_src->special_vec; 1735 } 1736 rq->nr_phys_segments = rq_src->nr_phys_segments; 1737 rq->ioprio = rq_src->ioprio; 1738 1739 if (rq->bio) 1740 blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask); 1741 1742 return 0; 1743 1744 free_and_out: 1745 if (bio) 1746 bio_put(bio); 1747 blk_rq_unprep_clone(rq); 1748 1749 return -ENOMEM; 1750 } 1751 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1752 1753 int kblockd_schedule_work(struct work_struct *work) 1754 { 1755 return queue_work(kblockd_workqueue, work); 1756 } 1757 EXPORT_SYMBOL(kblockd_schedule_work); 1758 1759 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1760 unsigned long delay) 1761 { 1762 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1763 } 1764 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1765 1766 /** 1767 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1768 * @plug: The &struct blk_plug that needs to be initialized 1769 * 1770 * Description: 1771 * blk_start_plug() indicates to the block layer an intent by the caller 1772 * to submit multiple I/O requests in a batch. The block layer may use 1773 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1774 * is called. However, the block layer may choose to submit requests 1775 * before a call to blk_finish_plug() if the number of queued I/Os 1776 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1777 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1778 * the task schedules (see below). 1779 * 1780 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1781 * pending I/O should the task end up blocking between blk_start_plug() and 1782 * blk_finish_plug(). This is important from a performance perspective, but 1783 * also ensures that we don't deadlock. For instance, if the task is blocking 1784 * for a memory allocation, memory reclaim could end up wanting to free a 1785 * page belonging to that request that is currently residing in our private 1786 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1787 * this kind of deadlock. 1788 */ 1789 void blk_start_plug(struct blk_plug *plug) 1790 { 1791 struct task_struct *tsk = current; 1792 1793 /* 1794 * If this is a nested plug, don't actually assign it. 1795 */ 1796 if (tsk->plug) 1797 return; 1798 1799 INIT_LIST_HEAD(&plug->mq_list); 1800 INIT_LIST_HEAD(&plug->cb_list); 1801 plug->rq_count = 0; 1802 plug->multiple_queues = false; 1803 1804 /* 1805 * Store ordering should not be needed here, since a potential 1806 * preempt will imply a full memory barrier 1807 */ 1808 tsk->plug = plug; 1809 } 1810 EXPORT_SYMBOL(blk_start_plug); 1811 1812 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1813 { 1814 LIST_HEAD(callbacks); 1815 1816 while (!list_empty(&plug->cb_list)) { 1817 list_splice_init(&plug->cb_list, &callbacks); 1818 1819 while (!list_empty(&callbacks)) { 1820 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1821 struct blk_plug_cb, 1822 list); 1823 list_del(&cb->list); 1824 cb->callback(cb, from_schedule); 1825 } 1826 } 1827 } 1828 1829 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1830 int size) 1831 { 1832 struct blk_plug *plug = current->plug; 1833 struct blk_plug_cb *cb; 1834 1835 if (!plug) 1836 return NULL; 1837 1838 list_for_each_entry(cb, &plug->cb_list, list) 1839 if (cb->callback == unplug && cb->data == data) 1840 return cb; 1841 1842 /* Not currently on the callback list */ 1843 BUG_ON(size < sizeof(*cb)); 1844 cb = kzalloc(size, GFP_ATOMIC); 1845 if (cb) { 1846 cb->data = data; 1847 cb->callback = unplug; 1848 list_add(&cb->list, &plug->cb_list); 1849 } 1850 return cb; 1851 } 1852 EXPORT_SYMBOL(blk_check_plugged); 1853 1854 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1855 { 1856 flush_plug_callbacks(plug, from_schedule); 1857 1858 if (!list_empty(&plug->mq_list)) 1859 blk_mq_flush_plug_list(plug, from_schedule); 1860 } 1861 1862 /** 1863 * blk_finish_plug - mark the end of a batch of submitted I/O 1864 * @plug: The &struct blk_plug passed to blk_start_plug() 1865 * 1866 * Description: 1867 * Indicate that a batch of I/O submissions is complete. This function 1868 * must be paired with an initial call to blk_start_plug(). The intent 1869 * is to allow the block layer to optimize I/O submission. See the 1870 * documentation for blk_start_plug() for more information. 1871 */ 1872 void blk_finish_plug(struct blk_plug *plug) 1873 { 1874 if (plug != current->plug) 1875 return; 1876 blk_flush_plug_list(plug, false); 1877 1878 current->plug = NULL; 1879 } 1880 EXPORT_SYMBOL(blk_finish_plug); 1881 1882 void blk_io_schedule(void) 1883 { 1884 /* Prevent hang_check timer from firing at us during very long I/O */ 1885 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 1886 1887 if (timeout) 1888 io_schedule_timeout(timeout); 1889 else 1890 io_schedule(); 1891 } 1892 EXPORT_SYMBOL_GPL(blk_io_schedule); 1893 1894 int __init blk_dev_init(void) 1895 { 1896 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1897 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1898 sizeof_field(struct request, cmd_flags)); 1899 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1900 sizeof_field(struct bio, bi_opf)); 1901 1902 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1903 kblockd_workqueue = alloc_workqueue("kblockd", 1904 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1905 if (!kblockd_workqueue) 1906 panic("Failed to create kblockd\n"); 1907 1908 blk_requestq_cachep = kmem_cache_create("request_queue", 1909 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1910 1911 #ifdef CONFIG_DEBUG_FS 1912 blk_debugfs_root = debugfs_create_dir("block", NULL); 1913 #endif 1914 1915 return 0; 1916 } 1917