xref: /openbmc/linux/block/blk-core.c (revision 93dc544c)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33 
34 #include "blk.h"
35 
36 static int __make_request(struct request_queue *q, struct bio *bio);
37 
38 /*
39  * For the allocated request tables
40  */
41 static struct kmem_cache *request_cachep;
42 
43 /*
44  * For queue allocation
45  */
46 struct kmem_cache *blk_requestq_cachep;
47 
48 /*
49  * Controlling structure to kblockd
50  */
51 static struct workqueue_struct *kblockd_workqueue;
52 
53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
54 
55 static void drive_stat_acct(struct request *rq, int new_io)
56 {
57 	struct hd_struct *part;
58 	int rw = rq_data_dir(rq);
59 
60 	if (!blk_fs_request(rq) || !rq->rq_disk)
61 		return;
62 
63 	part = get_part(rq->rq_disk, rq->sector);
64 	if (!new_io)
65 		__all_stat_inc(rq->rq_disk, part, merges[rw], rq->sector);
66 	else {
67 		disk_round_stats(rq->rq_disk);
68 		rq->rq_disk->in_flight++;
69 		if (part) {
70 			part_round_stats(part);
71 			part->in_flight++;
72 		}
73 	}
74 }
75 
76 void blk_queue_congestion_threshold(struct request_queue *q)
77 {
78 	int nr;
79 
80 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
81 	if (nr > q->nr_requests)
82 		nr = q->nr_requests;
83 	q->nr_congestion_on = nr;
84 
85 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
86 	if (nr < 1)
87 		nr = 1;
88 	q->nr_congestion_off = nr;
89 }
90 
91 /**
92  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
93  * @bdev:	device
94  *
95  * Locates the passed device's request queue and returns the address of its
96  * backing_dev_info
97  *
98  * Will return NULL if the request queue cannot be located.
99  */
100 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
101 {
102 	struct backing_dev_info *ret = NULL;
103 	struct request_queue *q = bdev_get_queue(bdev);
104 
105 	if (q)
106 		ret = &q->backing_dev_info;
107 	return ret;
108 }
109 EXPORT_SYMBOL(blk_get_backing_dev_info);
110 
111 void blk_rq_init(struct request_queue *q, struct request *rq)
112 {
113 	memset(rq, 0, sizeof(*rq));
114 
115 	INIT_LIST_HEAD(&rq->queuelist);
116 	INIT_LIST_HEAD(&rq->donelist);
117 	rq->q = q;
118 	rq->sector = rq->hard_sector = (sector_t) -1;
119 	INIT_HLIST_NODE(&rq->hash);
120 	RB_CLEAR_NODE(&rq->rb_node);
121 	rq->cmd = rq->__cmd;
122 	rq->tag = -1;
123 	rq->ref_count = 1;
124 }
125 EXPORT_SYMBOL(blk_rq_init);
126 
127 static void req_bio_endio(struct request *rq, struct bio *bio,
128 			  unsigned int nbytes, int error)
129 {
130 	struct request_queue *q = rq->q;
131 
132 	if (&q->bar_rq != rq) {
133 		if (error)
134 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
135 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
136 			error = -EIO;
137 
138 		if (unlikely(nbytes > bio->bi_size)) {
139 			printk(KERN_ERR "%s: want %u bytes done, %u left\n",
140 			       __func__, nbytes, bio->bi_size);
141 			nbytes = bio->bi_size;
142 		}
143 
144 		bio->bi_size -= nbytes;
145 		bio->bi_sector += (nbytes >> 9);
146 
147 		if (bio_integrity(bio))
148 			bio_integrity_advance(bio, nbytes);
149 
150 		if (bio->bi_size == 0)
151 			bio_endio(bio, error);
152 	} else {
153 
154 		/*
155 		 * Okay, this is the barrier request in progress, just
156 		 * record the error;
157 		 */
158 		if (error && !q->orderr)
159 			q->orderr = error;
160 	}
161 }
162 
163 void blk_dump_rq_flags(struct request *rq, char *msg)
164 {
165 	int bit;
166 
167 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
168 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
169 		rq->cmd_flags);
170 
171 	printk(KERN_INFO "  sector %llu, nr/cnr %lu/%u\n",
172 						(unsigned long long)rq->sector,
173 						rq->nr_sectors,
174 						rq->current_nr_sectors);
175 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, data %p, len %u\n",
176 						rq->bio, rq->biotail,
177 						rq->buffer, rq->data,
178 						rq->data_len);
179 
180 	if (blk_pc_request(rq)) {
181 		printk(KERN_INFO "  cdb: ");
182 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
183 			printk("%02x ", rq->cmd[bit]);
184 		printk("\n");
185 	}
186 }
187 EXPORT_SYMBOL(blk_dump_rq_flags);
188 
189 /*
190  * "plug" the device if there are no outstanding requests: this will
191  * force the transfer to start only after we have put all the requests
192  * on the list.
193  *
194  * This is called with interrupts off and no requests on the queue and
195  * with the queue lock held.
196  */
197 void blk_plug_device(struct request_queue *q)
198 {
199 	WARN_ON(!irqs_disabled());
200 
201 	/*
202 	 * don't plug a stopped queue, it must be paired with blk_start_queue()
203 	 * which will restart the queueing
204 	 */
205 	if (blk_queue_stopped(q))
206 		return;
207 
208 	if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
209 		mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
210 		blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
211 	}
212 }
213 EXPORT_SYMBOL(blk_plug_device);
214 
215 /*
216  * remove the queue from the plugged list, if present. called with
217  * queue lock held and interrupts disabled.
218  */
219 int blk_remove_plug(struct request_queue *q)
220 {
221 	WARN_ON(!irqs_disabled());
222 
223 	if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
224 		return 0;
225 
226 	del_timer(&q->unplug_timer);
227 	return 1;
228 }
229 EXPORT_SYMBOL(blk_remove_plug);
230 
231 /*
232  * remove the plug and let it rip..
233  */
234 void __generic_unplug_device(struct request_queue *q)
235 {
236 	if (unlikely(blk_queue_stopped(q)))
237 		return;
238 
239 	if (!blk_remove_plug(q))
240 		return;
241 
242 	q->request_fn(q);
243 }
244 EXPORT_SYMBOL(__generic_unplug_device);
245 
246 /**
247  * generic_unplug_device - fire a request queue
248  * @q:    The &struct request_queue in question
249  *
250  * Description:
251  *   Linux uses plugging to build bigger requests queues before letting
252  *   the device have at them. If a queue is plugged, the I/O scheduler
253  *   is still adding and merging requests on the queue. Once the queue
254  *   gets unplugged, the request_fn defined for the queue is invoked and
255  *   transfers started.
256  **/
257 void generic_unplug_device(struct request_queue *q)
258 {
259 	if (blk_queue_plugged(q)) {
260 		spin_lock_irq(q->queue_lock);
261 		__generic_unplug_device(q);
262 		spin_unlock_irq(q->queue_lock);
263 	}
264 }
265 EXPORT_SYMBOL(generic_unplug_device);
266 
267 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
268 				   struct page *page)
269 {
270 	struct request_queue *q = bdi->unplug_io_data;
271 
272 	blk_unplug(q);
273 }
274 
275 void blk_unplug_work(struct work_struct *work)
276 {
277 	struct request_queue *q =
278 		container_of(work, struct request_queue, unplug_work);
279 
280 	blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
281 				q->rq.count[READ] + q->rq.count[WRITE]);
282 
283 	q->unplug_fn(q);
284 }
285 
286 void blk_unplug_timeout(unsigned long data)
287 {
288 	struct request_queue *q = (struct request_queue *)data;
289 
290 	blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
291 				q->rq.count[READ] + q->rq.count[WRITE]);
292 
293 	kblockd_schedule_work(&q->unplug_work);
294 }
295 
296 void blk_unplug(struct request_queue *q)
297 {
298 	/*
299 	 * devices don't necessarily have an ->unplug_fn defined
300 	 */
301 	if (q->unplug_fn) {
302 		blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
303 					q->rq.count[READ] + q->rq.count[WRITE]);
304 
305 		q->unplug_fn(q);
306 	}
307 }
308 EXPORT_SYMBOL(blk_unplug);
309 
310 /**
311  * blk_start_queue - restart a previously stopped queue
312  * @q:    The &struct request_queue in question
313  *
314  * Description:
315  *   blk_start_queue() will clear the stop flag on the queue, and call
316  *   the request_fn for the queue if it was in a stopped state when
317  *   entered. Also see blk_stop_queue(). Queue lock must be held.
318  **/
319 void blk_start_queue(struct request_queue *q)
320 {
321 	WARN_ON(!irqs_disabled());
322 
323 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
324 
325 	/*
326 	 * one level of recursion is ok and is much faster than kicking
327 	 * the unplug handling
328 	 */
329 	if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
330 		q->request_fn(q);
331 		queue_flag_clear(QUEUE_FLAG_REENTER, q);
332 	} else {
333 		blk_plug_device(q);
334 		kblockd_schedule_work(&q->unplug_work);
335 	}
336 }
337 EXPORT_SYMBOL(blk_start_queue);
338 
339 /**
340  * blk_stop_queue - stop a queue
341  * @q:    The &struct request_queue in question
342  *
343  * Description:
344  *   The Linux block layer assumes that a block driver will consume all
345  *   entries on the request queue when the request_fn strategy is called.
346  *   Often this will not happen, because of hardware limitations (queue
347  *   depth settings). If a device driver gets a 'queue full' response,
348  *   or if it simply chooses not to queue more I/O at one point, it can
349  *   call this function to prevent the request_fn from being called until
350  *   the driver has signalled it's ready to go again. This happens by calling
351  *   blk_start_queue() to restart queue operations. Queue lock must be held.
352  **/
353 void blk_stop_queue(struct request_queue *q)
354 {
355 	blk_remove_plug(q);
356 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
357 }
358 EXPORT_SYMBOL(blk_stop_queue);
359 
360 /**
361  * blk_sync_queue - cancel any pending callbacks on a queue
362  * @q: the queue
363  *
364  * Description:
365  *     The block layer may perform asynchronous callback activity
366  *     on a queue, such as calling the unplug function after a timeout.
367  *     A block device may call blk_sync_queue to ensure that any
368  *     such activity is cancelled, thus allowing it to release resources
369  *     that the callbacks might use. The caller must already have made sure
370  *     that its ->make_request_fn will not re-add plugging prior to calling
371  *     this function.
372  *
373  */
374 void blk_sync_queue(struct request_queue *q)
375 {
376 	del_timer_sync(&q->unplug_timer);
377 	kblockd_flush_work(&q->unplug_work);
378 }
379 EXPORT_SYMBOL(blk_sync_queue);
380 
381 /**
382  * blk_run_queue - run a single device queue
383  * @q:	The queue to run
384  */
385 void __blk_run_queue(struct request_queue *q)
386 {
387 	blk_remove_plug(q);
388 
389 	/*
390 	 * Only recurse once to avoid overrunning the stack, let the unplug
391 	 * handling reinvoke the handler shortly if we already got there.
392 	 */
393 	if (!elv_queue_empty(q)) {
394 		if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
395 			q->request_fn(q);
396 			queue_flag_clear(QUEUE_FLAG_REENTER, q);
397 		} else {
398 			blk_plug_device(q);
399 			kblockd_schedule_work(&q->unplug_work);
400 		}
401 	}
402 }
403 EXPORT_SYMBOL(__blk_run_queue);
404 
405 /**
406  * blk_run_queue - run a single device queue
407  * @q: The queue to run
408  */
409 void blk_run_queue(struct request_queue *q)
410 {
411 	unsigned long flags;
412 
413 	spin_lock_irqsave(q->queue_lock, flags);
414 	__blk_run_queue(q);
415 	spin_unlock_irqrestore(q->queue_lock, flags);
416 }
417 EXPORT_SYMBOL(blk_run_queue);
418 
419 void blk_put_queue(struct request_queue *q)
420 {
421 	kobject_put(&q->kobj);
422 }
423 
424 void blk_cleanup_queue(struct request_queue *q)
425 {
426 	mutex_lock(&q->sysfs_lock);
427 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
428 	mutex_unlock(&q->sysfs_lock);
429 
430 	if (q->elevator)
431 		elevator_exit(q->elevator);
432 
433 	blk_put_queue(q);
434 }
435 EXPORT_SYMBOL(blk_cleanup_queue);
436 
437 static int blk_init_free_list(struct request_queue *q)
438 {
439 	struct request_list *rl = &q->rq;
440 
441 	rl->count[READ] = rl->count[WRITE] = 0;
442 	rl->starved[READ] = rl->starved[WRITE] = 0;
443 	rl->elvpriv = 0;
444 	init_waitqueue_head(&rl->wait[READ]);
445 	init_waitqueue_head(&rl->wait[WRITE]);
446 
447 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
448 				mempool_free_slab, request_cachep, q->node);
449 
450 	if (!rl->rq_pool)
451 		return -ENOMEM;
452 
453 	return 0;
454 }
455 
456 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
457 {
458 	return blk_alloc_queue_node(gfp_mask, -1);
459 }
460 EXPORT_SYMBOL(blk_alloc_queue);
461 
462 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
463 {
464 	struct request_queue *q;
465 	int err;
466 
467 	q = kmem_cache_alloc_node(blk_requestq_cachep,
468 				gfp_mask | __GFP_ZERO, node_id);
469 	if (!q)
470 		return NULL;
471 
472 	q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
473 	q->backing_dev_info.unplug_io_data = q;
474 	err = bdi_init(&q->backing_dev_info);
475 	if (err) {
476 		kmem_cache_free(blk_requestq_cachep, q);
477 		return NULL;
478 	}
479 
480 	init_timer(&q->unplug_timer);
481 
482 	kobject_init(&q->kobj, &blk_queue_ktype);
483 
484 	mutex_init(&q->sysfs_lock);
485 	spin_lock_init(&q->__queue_lock);
486 
487 	return q;
488 }
489 EXPORT_SYMBOL(blk_alloc_queue_node);
490 
491 /**
492  * blk_init_queue  - prepare a request queue for use with a block device
493  * @rfn:  The function to be called to process requests that have been
494  *        placed on the queue.
495  * @lock: Request queue spin lock
496  *
497  * Description:
498  *    If a block device wishes to use the standard request handling procedures,
499  *    which sorts requests and coalesces adjacent requests, then it must
500  *    call blk_init_queue().  The function @rfn will be called when there
501  *    are requests on the queue that need to be processed.  If the device
502  *    supports plugging, then @rfn may not be called immediately when requests
503  *    are available on the queue, but may be called at some time later instead.
504  *    Plugged queues are generally unplugged when a buffer belonging to one
505  *    of the requests on the queue is needed, or due to memory pressure.
506  *
507  *    @rfn is not required, or even expected, to remove all requests off the
508  *    queue, but only as many as it can handle at a time.  If it does leave
509  *    requests on the queue, it is responsible for arranging that the requests
510  *    get dealt with eventually.
511  *
512  *    The queue spin lock must be held while manipulating the requests on the
513  *    request queue; this lock will be taken also from interrupt context, so irq
514  *    disabling is needed for it.
515  *
516  *    Function returns a pointer to the initialized request queue, or NULL if
517  *    it didn't succeed.
518  *
519  * Note:
520  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
521  *    when the block device is deactivated (such as at module unload).
522  **/
523 
524 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
525 {
526 	return blk_init_queue_node(rfn, lock, -1);
527 }
528 EXPORT_SYMBOL(blk_init_queue);
529 
530 struct request_queue *
531 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
532 {
533 	struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
534 
535 	if (!q)
536 		return NULL;
537 
538 	q->node = node_id;
539 	if (blk_init_free_list(q)) {
540 		kmem_cache_free(blk_requestq_cachep, q);
541 		return NULL;
542 	}
543 
544 	/*
545 	 * if caller didn't supply a lock, they get per-queue locking with
546 	 * our embedded lock
547 	 */
548 	if (!lock)
549 		lock = &q->__queue_lock;
550 
551 	q->request_fn		= rfn;
552 	q->prep_rq_fn		= NULL;
553 	q->unplug_fn		= generic_unplug_device;
554 	q->queue_flags		= (1 << QUEUE_FLAG_CLUSTER);
555 	q->queue_lock		= lock;
556 
557 	blk_queue_segment_boundary(q, 0xffffffff);
558 
559 	blk_queue_make_request(q, __make_request);
560 	blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
561 
562 	blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
563 	blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
564 
565 	q->sg_reserved_size = INT_MAX;
566 
567 	/*
568 	 * all done
569 	 */
570 	if (!elevator_init(q, NULL)) {
571 		blk_queue_congestion_threshold(q);
572 		return q;
573 	}
574 
575 	blk_put_queue(q);
576 	return NULL;
577 }
578 EXPORT_SYMBOL(blk_init_queue_node);
579 
580 int blk_get_queue(struct request_queue *q)
581 {
582 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
583 		kobject_get(&q->kobj);
584 		return 0;
585 	}
586 
587 	return 1;
588 }
589 
590 static inline void blk_free_request(struct request_queue *q, struct request *rq)
591 {
592 	if (rq->cmd_flags & REQ_ELVPRIV)
593 		elv_put_request(q, rq);
594 	mempool_free(rq, q->rq.rq_pool);
595 }
596 
597 static struct request *
598 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
599 {
600 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
601 
602 	if (!rq)
603 		return NULL;
604 
605 	blk_rq_init(q, rq);
606 
607 	/*
608 	 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
609 	 * see bio.h and blkdev.h
610 	 */
611 	rq->cmd_flags = rw | REQ_ALLOCED;
612 
613 	if (priv) {
614 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
615 			mempool_free(rq, q->rq.rq_pool);
616 			return NULL;
617 		}
618 		rq->cmd_flags |= REQ_ELVPRIV;
619 	}
620 
621 	return rq;
622 }
623 
624 /*
625  * ioc_batching returns true if the ioc is a valid batching request and
626  * should be given priority access to a request.
627  */
628 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
629 {
630 	if (!ioc)
631 		return 0;
632 
633 	/*
634 	 * Make sure the process is able to allocate at least 1 request
635 	 * even if the batch times out, otherwise we could theoretically
636 	 * lose wakeups.
637 	 */
638 	return ioc->nr_batch_requests == q->nr_batching ||
639 		(ioc->nr_batch_requests > 0
640 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
641 }
642 
643 /*
644  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
645  * will cause the process to be a "batcher" on all queues in the system. This
646  * is the behaviour we want though - once it gets a wakeup it should be given
647  * a nice run.
648  */
649 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
650 {
651 	if (!ioc || ioc_batching(q, ioc))
652 		return;
653 
654 	ioc->nr_batch_requests = q->nr_batching;
655 	ioc->last_waited = jiffies;
656 }
657 
658 static void __freed_request(struct request_queue *q, int rw)
659 {
660 	struct request_list *rl = &q->rq;
661 
662 	if (rl->count[rw] < queue_congestion_off_threshold(q))
663 		blk_clear_queue_congested(q, rw);
664 
665 	if (rl->count[rw] + 1 <= q->nr_requests) {
666 		if (waitqueue_active(&rl->wait[rw]))
667 			wake_up(&rl->wait[rw]);
668 
669 		blk_clear_queue_full(q, rw);
670 	}
671 }
672 
673 /*
674  * A request has just been released.  Account for it, update the full and
675  * congestion status, wake up any waiters.   Called under q->queue_lock.
676  */
677 static void freed_request(struct request_queue *q, int rw, int priv)
678 {
679 	struct request_list *rl = &q->rq;
680 
681 	rl->count[rw]--;
682 	if (priv)
683 		rl->elvpriv--;
684 
685 	__freed_request(q, rw);
686 
687 	if (unlikely(rl->starved[rw ^ 1]))
688 		__freed_request(q, rw ^ 1);
689 }
690 
691 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
692 /*
693  * Get a free request, queue_lock must be held.
694  * Returns NULL on failure, with queue_lock held.
695  * Returns !NULL on success, with queue_lock *not held*.
696  */
697 static struct request *get_request(struct request_queue *q, int rw_flags,
698 				   struct bio *bio, gfp_t gfp_mask)
699 {
700 	struct request *rq = NULL;
701 	struct request_list *rl = &q->rq;
702 	struct io_context *ioc = NULL;
703 	const int rw = rw_flags & 0x01;
704 	int may_queue, priv;
705 
706 	may_queue = elv_may_queue(q, rw_flags);
707 	if (may_queue == ELV_MQUEUE_NO)
708 		goto rq_starved;
709 
710 	if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
711 		if (rl->count[rw]+1 >= q->nr_requests) {
712 			ioc = current_io_context(GFP_ATOMIC, q->node);
713 			/*
714 			 * The queue will fill after this allocation, so set
715 			 * it as full, and mark this process as "batching".
716 			 * This process will be allowed to complete a batch of
717 			 * requests, others will be blocked.
718 			 */
719 			if (!blk_queue_full(q, rw)) {
720 				ioc_set_batching(q, ioc);
721 				blk_set_queue_full(q, rw);
722 			} else {
723 				if (may_queue != ELV_MQUEUE_MUST
724 						&& !ioc_batching(q, ioc)) {
725 					/*
726 					 * The queue is full and the allocating
727 					 * process is not a "batcher", and not
728 					 * exempted by the IO scheduler
729 					 */
730 					goto out;
731 				}
732 			}
733 		}
734 		blk_set_queue_congested(q, rw);
735 	}
736 
737 	/*
738 	 * Only allow batching queuers to allocate up to 50% over the defined
739 	 * limit of requests, otherwise we could have thousands of requests
740 	 * allocated with any setting of ->nr_requests
741 	 */
742 	if (rl->count[rw] >= (3 * q->nr_requests / 2))
743 		goto out;
744 
745 	rl->count[rw]++;
746 	rl->starved[rw] = 0;
747 
748 	priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
749 	if (priv)
750 		rl->elvpriv++;
751 
752 	spin_unlock_irq(q->queue_lock);
753 
754 	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
755 	if (unlikely(!rq)) {
756 		/*
757 		 * Allocation failed presumably due to memory. Undo anything
758 		 * we might have messed up.
759 		 *
760 		 * Allocating task should really be put onto the front of the
761 		 * wait queue, but this is pretty rare.
762 		 */
763 		spin_lock_irq(q->queue_lock);
764 		freed_request(q, rw, priv);
765 
766 		/*
767 		 * in the very unlikely event that allocation failed and no
768 		 * requests for this direction was pending, mark us starved
769 		 * so that freeing of a request in the other direction will
770 		 * notice us. another possible fix would be to split the
771 		 * rq mempool into READ and WRITE
772 		 */
773 rq_starved:
774 		if (unlikely(rl->count[rw] == 0))
775 			rl->starved[rw] = 1;
776 
777 		goto out;
778 	}
779 
780 	/*
781 	 * ioc may be NULL here, and ioc_batching will be false. That's
782 	 * OK, if the queue is under the request limit then requests need
783 	 * not count toward the nr_batch_requests limit. There will always
784 	 * be some limit enforced by BLK_BATCH_TIME.
785 	 */
786 	if (ioc_batching(q, ioc))
787 		ioc->nr_batch_requests--;
788 
789 	blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
790 out:
791 	return rq;
792 }
793 
794 /*
795  * No available requests for this queue, unplug the device and wait for some
796  * requests to become available.
797  *
798  * Called with q->queue_lock held, and returns with it unlocked.
799  */
800 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
801 					struct bio *bio)
802 {
803 	const int rw = rw_flags & 0x01;
804 	struct request *rq;
805 
806 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
807 	while (!rq) {
808 		DEFINE_WAIT(wait);
809 		struct io_context *ioc;
810 		struct request_list *rl = &q->rq;
811 
812 		prepare_to_wait_exclusive(&rl->wait[rw], &wait,
813 				TASK_UNINTERRUPTIBLE);
814 
815 		blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
816 
817 		__generic_unplug_device(q);
818 		spin_unlock_irq(q->queue_lock);
819 		io_schedule();
820 
821 		/*
822 		 * After sleeping, we become a "batching" process and
823 		 * will be able to allocate at least one request, and
824 		 * up to a big batch of them for a small period time.
825 		 * See ioc_batching, ioc_set_batching
826 		 */
827 		ioc = current_io_context(GFP_NOIO, q->node);
828 		ioc_set_batching(q, ioc);
829 
830 		spin_lock_irq(q->queue_lock);
831 		finish_wait(&rl->wait[rw], &wait);
832 
833 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
834 	};
835 
836 	return rq;
837 }
838 
839 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
840 {
841 	struct request *rq;
842 
843 	BUG_ON(rw != READ && rw != WRITE);
844 
845 	spin_lock_irq(q->queue_lock);
846 	if (gfp_mask & __GFP_WAIT) {
847 		rq = get_request_wait(q, rw, NULL);
848 	} else {
849 		rq = get_request(q, rw, NULL, gfp_mask);
850 		if (!rq)
851 			spin_unlock_irq(q->queue_lock);
852 	}
853 	/* q->queue_lock is unlocked at this point */
854 
855 	return rq;
856 }
857 EXPORT_SYMBOL(blk_get_request);
858 
859 /**
860  * blk_start_queueing - initiate dispatch of requests to device
861  * @q:		request queue to kick into gear
862  *
863  * This is basically a helper to remove the need to know whether a queue
864  * is plugged or not if someone just wants to initiate dispatch of requests
865  * for this queue.
866  *
867  * The queue lock must be held with interrupts disabled.
868  */
869 void blk_start_queueing(struct request_queue *q)
870 {
871 	if (!blk_queue_plugged(q))
872 		q->request_fn(q);
873 	else
874 		__generic_unplug_device(q);
875 }
876 EXPORT_SYMBOL(blk_start_queueing);
877 
878 /**
879  * blk_requeue_request - put a request back on queue
880  * @q:		request queue where request should be inserted
881  * @rq:		request to be inserted
882  *
883  * Description:
884  *    Drivers often keep queueing requests until the hardware cannot accept
885  *    more, when that condition happens we need to put the request back
886  *    on the queue. Must be called with queue lock held.
887  */
888 void blk_requeue_request(struct request_queue *q, struct request *rq)
889 {
890 	blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
891 
892 	if (blk_rq_tagged(rq))
893 		blk_queue_end_tag(q, rq);
894 
895 	elv_requeue_request(q, rq);
896 }
897 EXPORT_SYMBOL(blk_requeue_request);
898 
899 /**
900  * blk_insert_request - insert a special request in to a request queue
901  * @q:		request queue where request should be inserted
902  * @rq:		request to be inserted
903  * @at_head:	insert request at head or tail of queue
904  * @data:	private data
905  *
906  * Description:
907  *    Many block devices need to execute commands asynchronously, so they don't
908  *    block the whole kernel from preemption during request execution.  This is
909  *    accomplished normally by inserting aritficial requests tagged as
910  *    REQ_SPECIAL in to the corresponding request queue, and letting them be
911  *    scheduled for actual execution by the request queue.
912  *
913  *    We have the option of inserting the head or the tail of the queue.
914  *    Typically we use the tail for new ioctls and so forth.  We use the head
915  *    of the queue for things like a QUEUE_FULL message from a device, or a
916  *    host that is unable to accept a particular command.
917  */
918 void blk_insert_request(struct request_queue *q, struct request *rq,
919 			int at_head, void *data)
920 {
921 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
922 	unsigned long flags;
923 
924 	/*
925 	 * tell I/O scheduler that this isn't a regular read/write (ie it
926 	 * must not attempt merges on this) and that it acts as a soft
927 	 * barrier
928 	 */
929 	rq->cmd_type = REQ_TYPE_SPECIAL;
930 	rq->cmd_flags |= REQ_SOFTBARRIER;
931 
932 	rq->special = data;
933 
934 	spin_lock_irqsave(q->queue_lock, flags);
935 
936 	/*
937 	 * If command is tagged, release the tag
938 	 */
939 	if (blk_rq_tagged(rq))
940 		blk_queue_end_tag(q, rq);
941 
942 	drive_stat_acct(rq, 1);
943 	__elv_add_request(q, rq, where, 0);
944 	blk_start_queueing(q);
945 	spin_unlock_irqrestore(q->queue_lock, flags);
946 }
947 EXPORT_SYMBOL(blk_insert_request);
948 
949 /*
950  * add-request adds a request to the linked list.
951  * queue lock is held and interrupts disabled, as we muck with the
952  * request queue list.
953  */
954 static inline void add_request(struct request_queue *q, struct request *req)
955 {
956 	drive_stat_acct(req, 1);
957 
958 	/*
959 	 * elevator indicated where it wants this request to be
960 	 * inserted at elevator_merge time
961 	 */
962 	__elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
963 }
964 
965 /*
966  * disk_round_stats()	- Round off the performance stats on a struct
967  * disk_stats.
968  *
969  * The average IO queue length and utilisation statistics are maintained
970  * by observing the current state of the queue length and the amount of
971  * time it has been in this state for.
972  *
973  * Normally, that accounting is done on IO completion, but that can result
974  * in more than a second's worth of IO being accounted for within any one
975  * second, leading to >100% utilisation.  To deal with that, we call this
976  * function to do a round-off before returning the results when reading
977  * /proc/diskstats.  This accounts immediately for all queue usage up to
978  * the current jiffies and restarts the counters again.
979  */
980 void disk_round_stats(struct gendisk *disk)
981 {
982 	unsigned long now = jiffies;
983 
984 	if (now == disk->stamp)
985 		return;
986 
987 	if (disk->in_flight) {
988 		__disk_stat_add(disk, time_in_queue,
989 				disk->in_flight * (now - disk->stamp));
990 		__disk_stat_add(disk, io_ticks, (now - disk->stamp));
991 	}
992 	disk->stamp = now;
993 }
994 EXPORT_SYMBOL_GPL(disk_round_stats);
995 
996 void part_round_stats(struct hd_struct *part)
997 {
998 	unsigned long now = jiffies;
999 
1000 	if (now == part->stamp)
1001 		return;
1002 
1003 	if (part->in_flight) {
1004 		__part_stat_add(part, time_in_queue,
1005 				part->in_flight * (now - part->stamp));
1006 		__part_stat_add(part, io_ticks, (now - part->stamp));
1007 	}
1008 	part->stamp = now;
1009 }
1010 
1011 /*
1012  * queue lock must be held
1013  */
1014 void __blk_put_request(struct request_queue *q, struct request *req)
1015 {
1016 	if (unlikely(!q))
1017 		return;
1018 	if (unlikely(--req->ref_count))
1019 		return;
1020 
1021 	elv_completed_request(q, req);
1022 
1023 	/*
1024 	 * Request may not have originated from ll_rw_blk. if not,
1025 	 * it didn't come out of our reserved rq pools
1026 	 */
1027 	if (req->cmd_flags & REQ_ALLOCED) {
1028 		int rw = rq_data_dir(req);
1029 		int priv = req->cmd_flags & REQ_ELVPRIV;
1030 
1031 		BUG_ON(!list_empty(&req->queuelist));
1032 		BUG_ON(!hlist_unhashed(&req->hash));
1033 
1034 		blk_free_request(q, req);
1035 		freed_request(q, rw, priv);
1036 	}
1037 }
1038 EXPORT_SYMBOL_GPL(__blk_put_request);
1039 
1040 void blk_put_request(struct request *req)
1041 {
1042 	unsigned long flags;
1043 	struct request_queue *q = req->q;
1044 
1045 	spin_lock_irqsave(q->queue_lock, flags);
1046 	__blk_put_request(q, req);
1047 	spin_unlock_irqrestore(q->queue_lock, flags);
1048 }
1049 EXPORT_SYMBOL(blk_put_request);
1050 
1051 void init_request_from_bio(struct request *req, struct bio *bio)
1052 {
1053 	req->cmd_type = REQ_TYPE_FS;
1054 
1055 	/*
1056 	 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1057 	 */
1058 	if (bio_rw_ahead(bio) || bio_failfast(bio))
1059 		req->cmd_flags |= REQ_FAILFAST;
1060 
1061 	/*
1062 	 * REQ_BARRIER implies no merging, but lets make it explicit
1063 	 */
1064 	if (unlikely(bio_barrier(bio)))
1065 		req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1066 
1067 	if (bio_sync(bio))
1068 		req->cmd_flags |= REQ_RW_SYNC;
1069 	if (bio_rw_meta(bio))
1070 		req->cmd_flags |= REQ_RW_META;
1071 
1072 	req->errors = 0;
1073 	req->hard_sector = req->sector = bio->bi_sector;
1074 	req->ioprio = bio_prio(bio);
1075 	req->start_time = jiffies;
1076 	blk_rq_bio_prep(req->q, req, bio);
1077 }
1078 
1079 static int __make_request(struct request_queue *q, struct bio *bio)
1080 {
1081 	struct request *req;
1082 	int el_ret, nr_sectors, barrier, err;
1083 	const unsigned short prio = bio_prio(bio);
1084 	const int sync = bio_sync(bio);
1085 	int rw_flags;
1086 
1087 	nr_sectors = bio_sectors(bio);
1088 
1089 	/*
1090 	 * low level driver can indicate that it wants pages above a
1091 	 * certain limit bounced to low memory (ie for highmem, or even
1092 	 * ISA dma in theory)
1093 	 */
1094 	blk_queue_bounce(q, &bio);
1095 
1096 	barrier = bio_barrier(bio);
1097 	if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1098 		err = -EOPNOTSUPP;
1099 		goto end_io;
1100 	}
1101 
1102 	spin_lock_irq(q->queue_lock);
1103 
1104 	if (unlikely(barrier) || elv_queue_empty(q))
1105 		goto get_rq;
1106 
1107 	el_ret = elv_merge(q, &req, bio);
1108 	switch (el_ret) {
1109 	case ELEVATOR_BACK_MERGE:
1110 		BUG_ON(!rq_mergeable(req));
1111 
1112 		if (!ll_back_merge_fn(q, req, bio))
1113 			break;
1114 
1115 		blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1116 
1117 		req->biotail->bi_next = bio;
1118 		req->biotail = bio;
1119 		req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1120 		req->ioprio = ioprio_best(req->ioprio, prio);
1121 		drive_stat_acct(req, 0);
1122 		if (!attempt_back_merge(q, req))
1123 			elv_merged_request(q, req, el_ret);
1124 		goto out;
1125 
1126 	case ELEVATOR_FRONT_MERGE:
1127 		BUG_ON(!rq_mergeable(req));
1128 
1129 		if (!ll_front_merge_fn(q, req, bio))
1130 			break;
1131 
1132 		blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1133 
1134 		bio->bi_next = req->bio;
1135 		req->bio = bio;
1136 
1137 		/*
1138 		 * may not be valid. if the low level driver said
1139 		 * it didn't need a bounce buffer then it better
1140 		 * not touch req->buffer either...
1141 		 */
1142 		req->buffer = bio_data(bio);
1143 		req->current_nr_sectors = bio_cur_sectors(bio);
1144 		req->hard_cur_sectors = req->current_nr_sectors;
1145 		req->sector = req->hard_sector = bio->bi_sector;
1146 		req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1147 		req->ioprio = ioprio_best(req->ioprio, prio);
1148 		drive_stat_acct(req, 0);
1149 		if (!attempt_front_merge(q, req))
1150 			elv_merged_request(q, req, el_ret);
1151 		goto out;
1152 
1153 	/* ELV_NO_MERGE: elevator says don't/can't merge. */
1154 	default:
1155 		;
1156 	}
1157 
1158 get_rq:
1159 	/*
1160 	 * This sync check and mask will be re-done in init_request_from_bio(),
1161 	 * but we need to set it earlier to expose the sync flag to the
1162 	 * rq allocator and io schedulers.
1163 	 */
1164 	rw_flags = bio_data_dir(bio);
1165 	if (sync)
1166 		rw_flags |= REQ_RW_SYNC;
1167 
1168 	/*
1169 	 * Grab a free request. This is might sleep but can not fail.
1170 	 * Returns with the queue unlocked.
1171 	 */
1172 	req = get_request_wait(q, rw_flags, bio);
1173 
1174 	/*
1175 	 * After dropping the lock and possibly sleeping here, our request
1176 	 * may now be mergeable after it had proven unmergeable (above).
1177 	 * We don't worry about that case for efficiency. It won't happen
1178 	 * often, and the elevators are able to handle it.
1179 	 */
1180 	init_request_from_bio(req, bio);
1181 
1182 	spin_lock_irq(q->queue_lock);
1183 	if (elv_queue_empty(q))
1184 		blk_plug_device(q);
1185 	add_request(q, req);
1186 out:
1187 	if (sync)
1188 		__generic_unplug_device(q);
1189 
1190 	spin_unlock_irq(q->queue_lock);
1191 	return 0;
1192 
1193 end_io:
1194 	bio_endio(bio, err);
1195 	return 0;
1196 }
1197 
1198 /*
1199  * If bio->bi_dev is a partition, remap the location
1200  */
1201 static inline void blk_partition_remap(struct bio *bio)
1202 {
1203 	struct block_device *bdev = bio->bi_bdev;
1204 
1205 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1206 		struct hd_struct *p = bdev->bd_part;
1207 
1208 		bio->bi_sector += p->start_sect;
1209 		bio->bi_bdev = bdev->bd_contains;
1210 
1211 		blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1212 				    bdev->bd_dev, bio->bi_sector,
1213 				    bio->bi_sector - p->start_sect);
1214 	}
1215 }
1216 
1217 static void handle_bad_sector(struct bio *bio)
1218 {
1219 	char b[BDEVNAME_SIZE];
1220 
1221 	printk(KERN_INFO "attempt to access beyond end of device\n");
1222 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1223 			bdevname(bio->bi_bdev, b),
1224 			bio->bi_rw,
1225 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1226 			(long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1227 
1228 	set_bit(BIO_EOF, &bio->bi_flags);
1229 }
1230 
1231 #ifdef CONFIG_FAIL_MAKE_REQUEST
1232 
1233 static DECLARE_FAULT_ATTR(fail_make_request);
1234 
1235 static int __init setup_fail_make_request(char *str)
1236 {
1237 	return setup_fault_attr(&fail_make_request, str);
1238 }
1239 __setup("fail_make_request=", setup_fail_make_request);
1240 
1241 static int should_fail_request(struct bio *bio)
1242 {
1243 	if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1244 	    (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1245 		return should_fail(&fail_make_request, bio->bi_size);
1246 
1247 	return 0;
1248 }
1249 
1250 static int __init fail_make_request_debugfs(void)
1251 {
1252 	return init_fault_attr_dentries(&fail_make_request,
1253 					"fail_make_request");
1254 }
1255 
1256 late_initcall(fail_make_request_debugfs);
1257 
1258 #else /* CONFIG_FAIL_MAKE_REQUEST */
1259 
1260 static inline int should_fail_request(struct bio *bio)
1261 {
1262 	return 0;
1263 }
1264 
1265 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1266 
1267 /*
1268  * Check whether this bio extends beyond the end of the device.
1269  */
1270 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1271 {
1272 	sector_t maxsector;
1273 
1274 	if (!nr_sectors)
1275 		return 0;
1276 
1277 	/* Test device or partition size, when known. */
1278 	maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1279 	if (maxsector) {
1280 		sector_t sector = bio->bi_sector;
1281 
1282 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1283 			/*
1284 			 * This may well happen - the kernel calls bread()
1285 			 * without checking the size of the device, e.g., when
1286 			 * mounting a device.
1287 			 */
1288 			handle_bad_sector(bio);
1289 			return 1;
1290 		}
1291 	}
1292 
1293 	return 0;
1294 }
1295 
1296 /**
1297  * generic_make_request: hand a buffer to its device driver for I/O
1298  * @bio:  The bio describing the location in memory and on the device.
1299  *
1300  * generic_make_request() is used to make I/O requests of block
1301  * devices. It is passed a &struct bio, which describes the I/O that needs
1302  * to be done.
1303  *
1304  * generic_make_request() does not return any status.  The
1305  * success/failure status of the request, along with notification of
1306  * completion, is delivered asynchronously through the bio->bi_end_io
1307  * function described (one day) else where.
1308  *
1309  * The caller of generic_make_request must make sure that bi_io_vec
1310  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1311  * set to describe the device address, and the
1312  * bi_end_io and optionally bi_private are set to describe how
1313  * completion notification should be signaled.
1314  *
1315  * generic_make_request and the drivers it calls may use bi_next if this
1316  * bio happens to be merged with someone else, and may change bi_dev and
1317  * bi_sector for remaps as it sees fit.  So the values of these fields
1318  * should NOT be depended on after the call to generic_make_request.
1319  */
1320 static inline void __generic_make_request(struct bio *bio)
1321 {
1322 	struct request_queue *q;
1323 	sector_t old_sector;
1324 	int ret, nr_sectors = bio_sectors(bio);
1325 	dev_t old_dev;
1326 	int err = -EIO;
1327 
1328 	might_sleep();
1329 
1330 	if (bio_check_eod(bio, nr_sectors))
1331 		goto end_io;
1332 
1333 	/*
1334 	 * Resolve the mapping until finished. (drivers are
1335 	 * still free to implement/resolve their own stacking
1336 	 * by explicitly returning 0)
1337 	 *
1338 	 * NOTE: we don't repeat the blk_size check for each new device.
1339 	 * Stacking drivers are expected to know what they are doing.
1340 	 */
1341 	old_sector = -1;
1342 	old_dev = 0;
1343 	do {
1344 		char b[BDEVNAME_SIZE];
1345 
1346 		q = bdev_get_queue(bio->bi_bdev);
1347 		if (!q) {
1348 			printk(KERN_ERR
1349 			       "generic_make_request: Trying to access "
1350 				"nonexistent block-device %s (%Lu)\n",
1351 				bdevname(bio->bi_bdev, b),
1352 				(long long) bio->bi_sector);
1353 end_io:
1354 			bio_endio(bio, err);
1355 			break;
1356 		}
1357 
1358 		if (unlikely(nr_sectors > q->max_hw_sectors)) {
1359 			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1360 				bdevname(bio->bi_bdev, b),
1361 				bio_sectors(bio),
1362 				q->max_hw_sectors);
1363 			goto end_io;
1364 		}
1365 
1366 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1367 			goto end_io;
1368 
1369 		if (should_fail_request(bio))
1370 			goto end_io;
1371 
1372 		/*
1373 		 * If this device has partitions, remap block n
1374 		 * of partition p to block n+start(p) of the disk.
1375 		 */
1376 		blk_partition_remap(bio);
1377 
1378 		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1379 			goto end_io;
1380 
1381 		if (old_sector != -1)
1382 			blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1383 					    old_sector);
1384 
1385 		blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1386 
1387 		old_sector = bio->bi_sector;
1388 		old_dev = bio->bi_bdev->bd_dev;
1389 
1390 		if (bio_check_eod(bio, nr_sectors))
1391 			goto end_io;
1392 		if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
1393 			err = -EOPNOTSUPP;
1394 			goto end_io;
1395 		}
1396 
1397 		ret = q->make_request_fn(q, bio);
1398 	} while (ret);
1399 }
1400 
1401 /*
1402  * We only want one ->make_request_fn to be active at a time,
1403  * else stack usage with stacked devices could be a problem.
1404  * So use current->bio_{list,tail} to keep a list of requests
1405  * submited by a make_request_fn function.
1406  * current->bio_tail is also used as a flag to say if
1407  * generic_make_request is currently active in this task or not.
1408  * If it is NULL, then no make_request is active.  If it is non-NULL,
1409  * then a make_request is active, and new requests should be added
1410  * at the tail
1411  */
1412 void generic_make_request(struct bio *bio)
1413 {
1414 	if (current->bio_tail) {
1415 		/* make_request is active */
1416 		*(current->bio_tail) = bio;
1417 		bio->bi_next = NULL;
1418 		current->bio_tail = &bio->bi_next;
1419 		return;
1420 	}
1421 	/* following loop may be a bit non-obvious, and so deserves some
1422 	 * explanation.
1423 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1424 	 * ensure that) so we have a list with a single bio.
1425 	 * We pretend that we have just taken it off a longer list, so
1426 	 * we assign bio_list to the next (which is NULL) and bio_tail
1427 	 * to &bio_list, thus initialising the bio_list of new bios to be
1428 	 * added.  __generic_make_request may indeed add some more bios
1429 	 * through a recursive call to generic_make_request.  If it
1430 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1431 	 * from the top.  In this case we really did just take the bio
1432 	 * of the top of the list (no pretending) and so fixup bio_list and
1433 	 * bio_tail or bi_next, and call into __generic_make_request again.
1434 	 *
1435 	 * The loop was structured like this to make only one call to
1436 	 * __generic_make_request (which is important as it is large and
1437 	 * inlined) and to keep the structure simple.
1438 	 */
1439 	BUG_ON(bio->bi_next);
1440 	do {
1441 		current->bio_list = bio->bi_next;
1442 		if (bio->bi_next == NULL)
1443 			current->bio_tail = &current->bio_list;
1444 		else
1445 			bio->bi_next = NULL;
1446 		__generic_make_request(bio);
1447 		bio = current->bio_list;
1448 	} while (bio);
1449 	current->bio_tail = NULL; /* deactivate */
1450 }
1451 EXPORT_SYMBOL(generic_make_request);
1452 
1453 /**
1454  * submit_bio: submit a bio to the block device layer for I/O
1455  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1456  * @bio: The &struct bio which describes the I/O
1457  *
1458  * submit_bio() is very similar in purpose to generic_make_request(), and
1459  * uses that function to do most of the work. Both are fairly rough
1460  * interfaces, @bio must be presetup and ready for I/O.
1461  *
1462  */
1463 void submit_bio(int rw, struct bio *bio)
1464 {
1465 	int count = bio_sectors(bio);
1466 
1467 	bio->bi_rw |= rw;
1468 
1469 	/*
1470 	 * If it's a regular read/write or a barrier with data attached,
1471 	 * go through the normal accounting stuff before submission.
1472 	 */
1473 	if (!bio_empty_barrier(bio)) {
1474 
1475 		BIO_BUG_ON(!bio->bi_size);
1476 		BIO_BUG_ON(!bio->bi_io_vec);
1477 
1478 		if (rw & WRITE) {
1479 			count_vm_events(PGPGOUT, count);
1480 		} else {
1481 			task_io_account_read(bio->bi_size);
1482 			count_vm_events(PGPGIN, count);
1483 		}
1484 
1485 		if (unlikely(block_dump)) {
1486 			char b[BDEVNAME_SIZE];
1487 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1488 			current->comm, task_pid_nr(current),
1489 				(rw & WRITE) ? "WRITE" : "READ",
1490 				(unsigned long long)bio->bi_sector,
1491 				bdevname(bio->bi_bdev, b));
1492 		}
1493 	}
1494 
1495 	generic_make_request(bio);
1496 }
1497 EXPORT_SYMBOL(submit_bio);
1498 
1499 /**
1500  * __end_that_request_first - end I/O on a request
1501  * @req:      the request being processed
1502  * @error:    0 for success, < 0 for error
1503  * @nr_bytes: number of bytes to complete
1504  *
1505  * Description:
1506  *     Ends I/O on a number of bytes attached to @req, and sets it up
1507  *     for the next range of segments (if any) in the cluster.
1508  *
1509  * Return:
1510  *     0 - we are done with this request, call end_that_request_last()
1511  *     1 - still buffers pending for this request
1512  **/
1513 static int __end_that_request_first(struct request *req, int error,
1514 				    int nr_bytes)
1515 {
1516 	int total_bytes, bio_nbytes, next_idx = 0;
1517 	struct bio *bio;
1518 
1519 	blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1520 
1521 	/*
1522 	 * for a REQ_BLOCK_PC request, we want to carry any eventual
1523 	 * sense key with us all the way through
1524 	 */
1525 	if (!blk_pc_request(req))
1526 		req->errors = 0;
1527 
1528 	if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1529 		printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1530 				req->rq_disk ? req->rq_disk->disk_name : "?",
1531 				(unsigned long long)req->sector);
1532 	}
1533 
1534 	if (blk_fs_request(req) && req->rq_disk) {
1535 		struct hd_struct *part = get_part(req->rq_disk, req->sector);
1536 		const int rw = rq_data_dir(req);
1537 
1538 		all_stat_add(req->rq_disk, part, sectors[rw],
1539 				nr_bytes >> 9, req->sector);
1540 	}
1541 
1542 	total_bytes = bio_nbytes = 0;
1543 	while ((bio = req->bio) != NULL) {
1544 		int nbytes;
1545 
1546 		/*
1547 		 * For an empty barrier request, the low level driver must
1548 		 * store a potential error location in ->sector. We pass
1549 		 * that back up in ->bi_sector.
1550 		 */
1551 		if (blk_empty_barrier(req))
1552 			bio->bi_sector = req->sector;
1553 
1554 		if (nr_bytes >= bio->bi_size) {
1555 			req->bio = bio->bi_next;
1556 			nbytes = bio->bi_size;
1557 			req_bio_endio(req, bio, nbytes, error);
1558 			next_idx = 0;
1559 			bio_nbytes = 0;
1560 		} else {
1561 			int idx = bio->bi_idx + next_idx;
1562 
1563 			if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1564 				blk_dump_rq_flags(req, "__end_that");
1565 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1566 				       __func__, bio->bi_idx, bio->bi_vcnt);
1567 				break;
1568 			}
1569 
1570 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
1571 			BIO_BUG_ON(nbytes > bio->bi_size);
1572 
1573 			/*
1574 			 * not a complete bvec done
1575 			 */
1576 			if (unlikely(nbytes > nr_bytes)) {
1577 				bio_nbytes += nr_bytes;
1578 				total_bytes += nr_bytes;
1579 				break;
1580 			}
1581 
1582 			/*
1583 			 * advance to the next vector
1584 			 */
1585 			next_idx++;
1586 			bio_nbytes += nbytes;
1587 		}
1588 
1589 		total_bytes += nbytes;
1590 		nr_bytes -= nbytes;
1591 
1592 		bio = req->bio;
1593 		if (bio) {
1594 			/*
1595 			 * end more in this run, or just return 'not-done'
1596 			 */
1597 			if (unlikely(nr_bytes <= 0))
1598 				break;
1599 		}
1600 	}
1601 
1602 	/*
1603 	 * completely done
1604 	 */
1605 	if (!req->bio)
1606 		return 0;
1607 
1608 	/*
1609 	 * if the request wasn't completed, update state
1610 	 */
1611 	if (bio_nbytes) {
1612 		req_bio_endio(req, bio, bio_nbytes, error);
1613 		bio->bi_idx += next_idx;
1614 		bio_iovec(bio)->bv_offset += nr_bytes;
1615 		bio_iovec(bio)->bv_len -= nr_bytes;
1616 	}
1617 
1618 	blk_recalc_rq_sectors(req, total_bytes >> 9);
1619 	blk_recalc_rq_segments(req);
1620 	return 1;
1621 }
1622 
1623 /*
1624  * splice the completion data to a local structure and hand off to
1625  * process_completion_queue() to complete the requests
1626  */
1627 static void blk_done_softirq(struct softirq_action *h)
1628 {
1629 	struct list_head *cpu_list, local_list;
1630 
1631 	local_irq_disable();
1632 	cpu_list = &__get_cpu_var(blk_cpu_done);
1633 	list_replace_init(cpu_list, &local_list);
1634 	local_irq_enable();
1635 
1636 	while (!list_empty(&local_list)) {
1637 		struct request *rq;
1638 
1639 		rq = list_entry(local_list.next, struct request, donelist);
1640 		list_del_init(&rq->donelist);
1641 		rq->q->softirq_done_fn(rq);
1642 	}
1643 }
1644 
1645 static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1646 				    unsigned long action, void *hcpu)
1647 {
1648 	/*
1649 	 * If a CPU goes away, splice its entries to the current CPU
1650 	 * and trigger a run of the softirq
1651 	 */
1652 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1653 		int cpu = (unsigned long) hcpu;
1654 
1655 		local_irq_disable();
1656 		list_splice_init(&per_cpu(blk_cpu_done, cpu),
1657 				 &__get_cpu_var(blk_cpu_done));
1658 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
1659 		local_irq_enable();
1660 	}
1661 
1662 	return NOTIFY_OK;
1663 }
1664 
1665 
1666 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
1667 	.notifier_call	= blk_cpu_notify,
1668 };
1669 
1670 /**
1671  * blk_complete_request - end I/O on a request
1672  * @req:      the request being processed
1673  *
1674  * Description:
1675  *     Ends all I/O on a request. It does not handle partial completions,
1676  *     unless the driver actually implements this in its completion callback
1677  *     through requeueing. The actual completion happens out-of-order,
1678  *     through a softirq handler. The user must have registered a completion
1679  *     callback through blk_queue_softirq_done().
1680  **/
1681 
1682 void blk_complete_request(struct request *req)
1683 {
1684 	struct list_head *cpu_list;
1685 	unsigned long flags;
1686 
1687 	BUG_ON(!req->q->softirq_done_fn);
1688 
1689 	local_irq_save(flags);
1690 
1691 	cpu_list = &__get_cpu_var(blk_cpu_done);
1692 	list_add_tail(&req->donelist, cpu_list);
1693 	raise_softirq_irqoff(BLOCK_SOFTIRQ);
1694 
1695 	local_irq_restore(flags);
1696 }
1697 EXPORT_SYMBOL(blk_complete_request);
1698 
1699 /*
1700  * queue lock must be held
1701  */
1702 static void end_that_request_last(struct request *req, int error)
1703 {
1704 	struct gendisk *disk = req->rq_disk;
1705 
1706 	if (blk_rq_tagged(req))
1707 		blk_queue_end_tag(req->q, req);
1708 
1709 	if (blk_queued_rq(req))
1710 		blkdev_dequeue_request(req);
1711 
1712 	if (unlikely(laptop_mode) && blk_fs_request(req))
1713 		laptop_io_completion();
1714 
1715 	/*
1716 	 * Account IO completion.  bar_rq isn't accounted as a normal
1717 	 * IO on queueing nor completion.  Accounting the containing
1718 	 * request is enough.
1719 	 */
1720 	if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1721 		unsigned long duration = jiffies - req->start_time;
1722 		const int rw = rq_data_dir(req);
1723 		struct hd_struct *part = get_part(disk, req->sector);
1724 
1725 		__all_stat_inc(disk, part, ios[rw], req->sector);
1726 		__all_stat_add(disk, part, ticks[rw], duration, req->sector);
1727 		disk_round_stats(disk);
1728 		disk->in_flight--;
1729 		if (part) {
1730 			part_round_stats(part);
1731 			part->in_flight--;
1732 		}
1733 	}
1734 
1735 	if (req->end_io)
1736 		req->end_io(req, error);
1737 	else {
1738 		if (blk_bidi_rq(req))
1739 			__blk_put_request(req->next_rq->q, req->next_rq);
1740 
1741 		__blk_put_request(req->q, req);
1742 	}
1743 }
1744 
1745 static inline void __end_request(struct request *rq, int uptodate,
1746 				 unsigned int nr_bytes)
1747 {
1748 	int error = 0;
1749 
1750 	if (uptodate <= 0)
1751 		error = uptodate ? uptodate : -EIO;
1752 
1753 	__blk_end_request(rq, error, nr_bytes);
1754 }
1755 
1756 /**
1757  * blk_rq_bytes - Returns bytes left to complete in the entire request
1758  * @rq: the request being processed
1759  **/
1760 unsigned int blk_rq_bytes(struct request *rq)
1761 {
1762 	if (blk_fs_request(rq))
1763 		return rq->hard_nr_sectors << 9;
1764 
1765 	return rq->data_len;
1766 }
1767 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1768 
1769 /**
1770  * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1771  * @rq: the request being processed
1772  **/
1773 unsigned int blk_rq_cur_bytes(struct request *rq)
1774 {
1775 	if (blk_fs_request(rq))
1776 		return rq->current_nr_sectors << 9;
1777 
1778 	if (rq->bio)
1779 		return rq->bio->bi_size;
1780 
1781 	return rq->data_len;
1782 }
1783 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1784 
1785 /**
1786  * end_queued_request - end all I/O on a queued request
1787  * @rq:		the request being processed
1788  * @uptodate:	error value or 0/1 uptodate flag
1789  *
1790  * Description:
1791  *     Ends all I/O on a request, and removes it from the block layer queues.
1792  *     Not suitable for normal IO completion, unless the driver still has
1793  *     the request attached to the block layer.
1794  *
1795  **/
1796 void end_queued_request(struct request *rq, int uptodate)
1797 {
1798 	__end_request(rq, uptodate, blk_rq_bytes(rq));
1799 }
1800 EXPORT_SYMBOL(end_queued_request);
1801 
1802 /**
1803  * end_dequeued_request - end all I/O on a dequeued request
1804  * @rq:		the request being processed
1805  * @uptodate:	error value or 0/1 uptodate flag
1806  *
1807  * Description:
1808  *     Ends all I/O on a request. The request must already have been
1809  *     dequeued using blkdev_dequeue_request(), as is normally the case
1810  *     for most drivers.
1811  *
1812  **/
1813 void end_dequeued_request(struct request *rq, int uptodate)
1814 {
1815 	__end_request(rq, uptodate, blk_rq_bytes(rq));
1816 }
1817 EXPORT_SYMBOL(end_dequeued_request);
1818 
1819 
1820 /**
1821  * end_request - end I/O on the current segment of the request
1822  * @req:	the request being processed
1823  * @uptodate:	error value or 0/1 uptodate flag
1824  *
1825  * Description:
1826  *     Ends I/O on the current segment of a request. If that is the only
1827  *     remaining segment, the request is also completed and freed.
1828  *
1829  *     This is a remnant of how older block drivers handled IO completions.
1830  *     Modern drivers typically end IO on the full request in one go, unless
1831  *     they have a residual value to account for. For that case this function
1832  *     isn't really useful, unless the residual just happens to be the
1833  *     full current segment. In other words, don't use this function in new
1834  *     code. Either use end_request_completely(), or the
1835  *     end_that_request_chunk() (along with end_that_request_last()) for
1836  *     partial completions.
1837  *
1838  **/
1839 void end_request(struct request *req, int uptodate)
1840 {
1841 	__end_request(req, uptodate, req->hard_cur_sectors << 9);
1842 }
1843 EXPORT_SYMBOL(end_request);
1844 
1845 /**
1846  * blk_end_io - Generic end_io function to complete a request.
1847  * @rq:           the request being processed
1848  * @error:        0 for success, < 0 for error
1849  * @nr_bytes:     number of bytes to complete @rq
1850  * @bidi_bytes:   number of bytes to complete @rq->next_rq
1851  * @drv_callback: function called between completion of bios in the request
1852  *                and completion of the request.
1853  *                If the callback returns non 0, this helper returns without
1854  *                completion of the request.
1855  *
1856  * Description:
1857  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1858  *     If @rq has leftover, sets it up for the next range of segments.
1859  *
1860  * Return:
1861  *     0 - we are done with this request
1862  *     1 - this request is not freed yet, it still has pending buffers.
1863  **/
1864 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1865 		      unsigned int bidi_bytes,
1866 		      int (drv_callback)(struct request *))
1867 {
1868 	struct request_queue *q = rq->q;
1869 	unsigned long flags = 0UL;
1870 
1871 	if (blk_fs_request(rq) || blk_pc_request(rq)) {
1872 		if (__end_that_request_first(rq, error, nr_bytes))
1873 			return 1;
1874 
1875 		/* Bidi request must be completed as a whole */
1876 		if (blk_bidi_rq(rq) &&
1877 		    __end_that_request_first(rq->next_rq, error, bidi_bytes))
1878 			return 1;
1879 	}
1880 
1881 	/* Special feature for tricky drivers */
1882 	if (drv_callback && drv_callback(rq))
1883 		return 1;
1884 
1885 	add_disk_randomness(rq->rq_disk);
1886 
1887 	spin_lock_irqsave(q->queue_lock, flags);
1888 	end_that_request_last(rq, error);
1889 	spin_unlock_irqrestore(q->queue_lock, flags);
1890 
1891 	return 0;
1892 }
1893 
1894 /**
1895  * blk_end_request - Helper function for drivers to complete the request.
1896  * @rq:       the request being processed
1897  * @error:    0 for success, < 0 for error
1898  * @nr_bytes: number of bytes to complete
1899  *
1900  * Description:
1901  *     Ends I/O on a number of bytes attached to @rq.
1902  *     If @rq has leftover, sets it up for the next range of segments.
1903  *
1904  * Return:
1905  *     0 - we are done with this request
1906  *     1 - still buffers pending for this request
1907  **/
1908 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1909 {
1910 	return blk_end_io(rq, error, nr_bytes, 0, NULL);
1911 }
1912 EXPORT_SYMBOL_GPL(blk_end_request);
1913 
1914 /**
1915  * __blk_end_request - Helper function for drivers to complete the request.
1916  * @rq:       the request being processed
1917  * @error:    0 for success, < 0 for error
1918  * @nr_bytes: number of bytes to complete
1919  *
1920  * Description:
1921  *     Must be called with queue lock held unlike blk_end_request().
1922  *
1923  * Return:
1924  *     0 - we are done with this request
1925  *     1 - still buffers pending for this request
1926  **/
1927 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1928 {
1929 	if (blk_fs_request(rq) || blk_pc_request(rq)) {
1930 		if (__end_that_request_first(rq, error, nr_bytes))
1931 			return 1;
1932 	}
1933 
1934 	add_disk_randomness(rq->rq_disk);
1935 
1936 	end_that_request_last(rq, error);
1937 
1938 	return 0;
1939 }
1940 EXPORT_SYMBOL_GPL(__blk_end_request);
1941 
1942 /**
1943  * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1944  * @rq:         the bidi request being processed
1945  * @error:      0 for success, < 0 for error
1946  * @nr_bytes:   number of bytes to complete @rq
1947  * @bidi_bytes: number of bytes to complete @rq->next_rq
1948  *
1949  * Description:
1950  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1951  *
1952  * Return:
1953  *     0 - we are done with this request
1954  *     1 - still buffers pending for this request
1955  **/
1956 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1957 			 unsigned int bidi_bytes)
1958 {
1959 	return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1960 }
1961 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1962 
1963 /**
1964  * blk_end_request_callback - Special helper function for tricky drivers
1965  * @rq:           the request being processed
1966  * @error:        0 for success, < 0 for error
1967  * @nr_bytes:     number of bytes to complete
1968  * @drv_callback: function called between completion of bios in the request
1969  *                and completion of the request.
1970  *                If the callback returns non 0, this helper returns without
1971  *                completion of the request.
1972  *
1973  * Description:
1974  *     Ends I/O on a number of bytes attached to @rq.
1975  *     If @rq has leftover, sets it up for the next range of segments.
1976  *
1977  *     This special helper function is used only for existing tricky drivers.
1978  *     (e.g. cdrom_newpc_intr() of ide-cd)
1979  *     This interface will be removed when such drivers are rewritten.
1980  *     Don't use this interface in other places anymore.
1981  *
1982  * Return:
1983  *     0 - we are done with this request
1984  *     1 - this request is not freed yet.
1985  *         this request still has pending buffers or
1986  *         the driver doesn't want to finish this request yet.
1987  **/
1988 int blk_end_request_callback(struct request *rq, int error,
1989 			     unsigned int nr_bytes,
1990 			     int (drv_callback)(struct request *))
1991 {
1992 	return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
1993 }
1994 EXPORT_SYMBOL_GPL(blk_end_request_callback);
1995 
1996 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1997 		     struct bio *bio)
1998 {
1999 	/* first two bits are identical in rq->cmd_flags and bio->bi_rw */
2000 	rq->cmd_flags |= (bio->bi_rw & 3);
2001 
2002 	rq->nr_phys_segments = bio_phys_segments(q, bio);
2003 	rq->nr_hw_segments = bio_hw_segments(q, bio);
2004 	rq->current_nr_sectors = bio_cur_sectors(bio);
2005 	rq->hard_cur_sectors = rq->current_nr_sectors;
2006 	rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2007 	rq->buffer = bio_data(bio);
2008 	rq->data_len = bio->bi_size;
2009 
2010 	rq->bio = rq->biotail = bio;
2011 
2012 	if (bio->bi_bdev)
2013 		rq->rq_disk = bio->bi_bdev->bd_disk;
2014 }
2015 
2016 int kblockd_schedule_work(struct work_struct *work)
2017 {
2018 	return queue_work(kblockd_workqueue, work);
2019 }
2020 EXPORT_SYMBOL(kblockd_schedule_work);
2021 
2022 void kblockd_flush_work(struct work_struct *work)
2023 {
2024 	cancel_work_sync(work);
2025 }
2026 EXPORT_SYMBOL(kblockd_flush_work);
2027 
2028 int __init blk_dev_init(void)
2029 {
2030 	int i;
2031 
2032 	kblockd_workqueue = create_workqueue("kblockd");
2033 	if (!kblockd_workqueue)
2034 		panic("Failed to create kblockd\n");
2035 
2036 	request_cachep = kmem_cache_create("blkdev_requests",
2037 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2038 
2039 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2040 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2041 
2042 	for_each_possible_cpu(i)
2043 		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2044 
2045 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
2046 	register_hotcpu_notifier(&blk_cpu_notifier);
2047 
2048 	return 0;
2049 }
2050 
2051