xref: /openbmc/linux/block/blk-core.c (revision 861e10be)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
36 
37 #include "blk.h"
38 #include "blk-cgroup.h"
39 
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
44 
45 DEFINE_IDA(blk_queue_ida);
46 
47 /*
48  * For the allocated request tables
49  */
50 static struct kmem_cache *request_cachep;
51 
52 /*
53  * For queue allocation
54  */
55 struct kmem_cache *blk_requestq_cachep;
56 
57 /*
58  * Controlling structure to kblockd
59  */
60 static struct workqueue_struct *kblockd_workqueue;
61 
62 static void drive_stat_acct(struct request *rq, int new_io)
63 {
64 	struct hd_struct *part;
65 	int rw = rq_data_dir(rq);
66 	int cpu;
67 
68 	if (!blk_do_io_stat(rq))
69 		return;
70 
71 	cpu = part_stat_lock();
72 
73 	if (!new_io) {
74 		part = rq->part;
75 		part_stat_inc(cpu, part, merges[rw]);
76 	} else {
77 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
78 		if (!hd_struct_try_get(part)) {
79 			/*
80 			 * The partition is already being removed,
81 			 * the request will be accounted on the disk only
82 			 *
83 			 * We take a reference on disk->part0 although that
84 			 * partition will never be deleted, so we can treat
85 			 * it as any other partition.
86 			 */
87 			part = &rq->rq_disk->part0;
88 			hd_struct_get(part);
89 		}
90 		part_round_stats(cpu, part);
91 		part_inc_in_flight(part, rw);
92 		rq->part = part;
93 	}
94 
95 	part_stat_unlock();
96 }
97 
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 	int nr;
101 
102 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 	if (nr > q->nr_requests)
104 		nr = q->nr_requests;
105 	q->nr_congestion_on = nr;
106 
107 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 	if (nr < 1)
109 		nr = 1;
110 	q->nr_congestion_off = nr;
111 }
112 
113 /**
114  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
115  * @bdev:	device
116  *
117  * Locates the passed device's request queue and returns the address of its
118  * backing_dev_info
119  *
120  * Will return NULL if the request queue cannot be located.
121  */
122 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
123 {
124 	struct backing_dev_info *ret = NULL;
125 	struct request_queue *q = bdev_get_queue(bdev);
126 
127 	if (q)
128 		ret = &q->backing_dev_info;
129 	return ret;
130 }
131 EXPORT_SYMBOL(blk_get_backing_dev_info);
132 
133 void blk_rq_init(struct request_queue *q, struct request *rq)
134 {
135 	memset(rq, 0, sizeof(*rq));
136 
137 	INIT_LIST_HEAD(&rq->queuelist);
138 	INIT_LIST_HEAD(&rq->timeout_list);
139 	rq->cpu = -1;
140 	rq->q = q;
141 	rq->__sector = (sector_t) -1;
142 	INIT_HLIST_NODE(&rq->hash);
143 	RB_CLEAR_NODE(&rq->rb_node);
144 	rq->cmd = rq->__cmd;
145 	rq->cmd_len = BLK_MAX_CDB;
146 	rq->tag = -1;
147 	rq->ref_count = 1;
148 	rq->start_time = jiffies;
149 	set_start_time_ns(rq);
150 	rq->part = NULL;
151 }
152 EXPORT_SYMBOL(blk_rq_init);
153 
154 static void req_bio_endio(struct request *rq, struct bio *bio,
155 			  unsigned int nbytes, int error)
156 {
157 	if (error)
158 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
159 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
160 		error = -EIO;
161 
162 	if (unlikely(nbytes > bio->bi_size)) {
163 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
164 		       __func__, nbytes, bio->bi_size);
165 		nbytes = bio->bi_size;
166 	}
167 
168 	if (unlikely(rq->cmd_flags & REQ_QUIET))
169 		set_bit(BIO_QUIET, &bio->bi_flags);
170 
171 	bio->bi_size -= nbytes;
172 	bio->bi_sector += (nbytes >> 9);
173 
174 	if (bio_integrity(bio))
175 		bio_integrity_advance(bio, nbytes);
176 
177 	/* don't actually finish bio if it's part of flush sequence */
178 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
179 		bio_endio(bio, error);
180 }
181 
182 void blk_dump_rq_flags(struct request *rq, char *msg)
183 {
184 	int bit;
185 
186 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
187 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
188 		rq->cmd_flags);
189 
190 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
191 	       (unsigned long long)blk_rq_pos(rq),
192 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
193 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
194 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
195 
196 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
197 		printk(KERN_INFO "  cdb: ");
198 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
199 			printk("%02x ", rq->cmd[bit]);
200 		printk("\n");
201 	}
202 }
203 EXPORT_SYMBOL(blk_dump_rq_flags);
204 
205 static void blk_delay_work(struct work_struct *work)
206 {
207 	struct request_queue *q;
208 
209 	q = container_of(work, struct request_queue, delay_work.work);
210 	spin_lock_irq(q->queue_lock);
211 	__blk_run_queue(q);
212 	spin_unlock_irq(q->queue_lock);
213 }
214 
215 /**
216  * blk_delay_queue - restart queueing after defined interval
217  * @q:		The &struct request_queue in question
218  * @msecs:	Delay in msecs
219  *
220  * Description:
221  *   Sometimes queueing needs to be postponed for a little while, to allow
222  *   resources to come back. This function will make sure that queueing is
223  *   restarted around the specified time. Queue lock must be held.
224  */
225 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
226 {
227 	if (likely(!blk_queue_dead(q)))
228 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
229 				   msecs_to_jiffies(msecs));
230 }
231 EXPORT_SYMBOL(blk_delay_queue);
232 
233 /**
234  * blk_start_queue - restart a previously stopped queue
235  * @q:    The &struct request_queue in question
236  *
237  * Description:
238  *   blk_start_queue() will clear the stop flag on the queue, and call
239  *   the request_fn for the queue if it was in a stopped state when
240  *   entered. Also see blk_stop_queue(). Queue lock must be held.
241  **/
242 void blk_start_queue(struct request_queue *q)
243 {
244 	WARN_ON(!irqs_disabled());
245 
246 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
247 	__blk_run_queue(q);
248 }
249 EXPORT_SYMBOL(blk_start_queue);
250 
251 /**
252  * blk_stop_queue - stop a queue
253  * @q:    The &struct request_queue in question
254  *
255  * Description:
256  *   The Linux block layer assumes that a block driver will consume all
257  *   entries on the request queue when the request_fn strategy is called.
258  *   Often this will not happen, because of hardware limitations (queue
259  *   depth settings). If a device driver gets a 'queue full' response,
260  *   or if it simply chooses not to queue more I/O at one point, it can
261  *   call this function to prevent the request_fn from being called until
262  *   the driver has signalled it's ready to go again. This happens by calling
263  *   blk_start_queue() to restart queue operations. Queue lock must be held.
264  **/
265 void blk_stop_queue(struct request_queue *q)
266 {
267 	cancel_delayed_work(&q->delay_work);
268 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
269 }
270 EXPORT_SYMBOL(blk_stop_queue);
271 
272 /**
273  * blk_sync_queue - cancel any pending callbacks on a queue
274  * @q: the queue
275  *
276  * Description:
277  *     The block layer may perform asynchronous callback activity
278  *     on a queue, such as calling the unplug function after a timeout.
279  *     A block device may call blk_sync_queue to ensure that any
280  *     such activity is cancelled, thus allowing it to release resources
281  *     that the callbacks might use. The caller must already have made sure
282  *     that its ->make_request_fn will not re-add plugging prior to calling
283  *     this function.
284  *
285  *     This function does not cancel any asynchronous activity arising
286  *     out of elevator or throttling code. That would require elevaotor_exit()
287  *     and blkcg_exit_queue() to be called with queue lock initialized.
288  *
289  */
290 void blk_sync_queue(struct request_queue *q)
291 {
292 	del_timer_sync(&q->timeout);
293 	cancel_delayed_work_sync(&q->delay_work);
294 }
295 EXPORT_SYMBOL(blk_sync_queue);
296 
297 /**
298  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
299  * @q:	The queue to run
300  *
301  * Description:
302  *    Invoke request handling on a queue if there are any pending requests.
303  *    May be used to restart request handling after a request has completed.
304  *    This variant runs the queue whether or not the queue has been
305  *    stopped. Must be called with the queue lock held and interrupts
306  *    disabled. See also @blk_run_queue.
307  */
308 inline void __blk_run_queue_uncond(struct request_queue *q)
309 {
310 	if (unlikely(blk_queue_dead(q)))
311 		return;
312 
313 	/*
314 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
315 	 * the queue lock internally. As a result multiple threads may be
316 	 * running such a request function concurrently. Keep track of the
317 	 * number of active request_fn invocations such that blk_drain_queue()
318 	 * can wait until all these request_fn calls have finished.
319 	 */
320 	q->request_fn_active++;
321 	q->request_fn(q);
322 	q->request_fn_active--;
323 }
324 
325 /**
326  * __blk_run_queue - run a single device queue
327  * @q:	The queue to run
328  *
329  * Description:
330  *    See @blk_run_queue. This variant must be called with the queue lock
331  *    held and interrupts disabled.
332  */
333 void __blk_run_queue(struct request_queue *q)
334 {
335 	if (unlikely(blk_queue_stopped(q)))
336 		return;
337 
338 	__blk_run_queue_uncond(q);
339 }
340 EXPORT_SYMBOL(__blk_run_queue);
341 
342 /**
343  * blk_run_queue_async - run a single device queue in workqueue context
344  * @q:	The queue to run
345  *
346  * Description:
347  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
348  *    of us. The caller must hold the queue lock.
349  */
350 void blk_run_queue_async(struct request_queue *q)
351 {
352 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
353 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
354 }
355 EXPORT_SYMBOL(blk_run_queue_async);
356 
357 /**
358  * blk_run_queue - run a single device queue
359  * @q: The queue to run
360  *
361  * Description:
362  *    Invoke request handling on this queue, if it has pending work to do.
363  *    May be used to restart queueing when a request has completed.
364  */
365 void blk_run_queue(struct request_queue *q)
366 {
367 	unsigned long flags;
368 
369 	spin_lock_irqsave(q->queue_lock, flags);
370 	__blk_run_queue(q);
371 	spin_unlock_irqrestore(q->queue_lock, flags);
372 }
373 EXPORT_SYMBOL(blk_run_queue);
374 
375 void blk_put_queue(struct request_queue *q)
376 {
377 	kobject_put(&q->kobj);
378 }
379 EXPORT_SYMBOL(blk_put_queue);
380 
381 /**
382  * __blk_drain_queue - drain requests from request_queue
383  * @q: queue to drain
384  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
385  *
386  * Drain requests from @q.  If @drain_all is set, all requests are drained.
387  * If not, only ELVPRIV requests are drained.  The caller is responsible
388  * for ensuring that no new requests which need to be drained are queued.
389  */
390 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
391 	__releases(q->queue_lock)
392 	__acquires(q->queue_lock)
393 {
394 	int i;
395 
396 	lockdep_assert_held(q->queue_lock);
397 
398 	while (true) {
399 		bool drain = false;
400 
401 		/*
402 		 * The caller might be trying to drain @q before its
403 		 * elevator is initialized.
404 		 */
405 		if (q->elevator)
406 			elv_drain_elevator(q);
407 
408 		blkcg_drain_queue(q);
409 
410 		/*
411 		 * This function might be called on a queue which failed
412 		 * driver init after queue creation or is not yet fully
413 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
414 		 * in such cases.  Kick queue iff dispatch queue has
415 		 * something on it and @q has request_fn set.
416 		 */
417 		if (!list_empty(&q->queue_head) && q->request_fn)
418 			__blk_run_queue(q);
419 
420 		drain |= q->nr_rqs_elvpriv;
421 		drain |= q->request_fn_active;
422 
423 		/*
424 		 * Unfortunately, requests are queued at and tracked from
425 		 * multiple places and there's no single counter which can
426 		 * be drained.  Check all the queues and counters.
427 		 */
428 		if (drain_all) {
429 			drain |= !list_empty(&q->queue_head);
430 			for (i = 0; i < 2; i++) {
431 				drain |= q->nr_rqs[i];
432 				drain |= q->in_flight[i];
433 				drain |= !list_empty(&q->flush_queue[i]);
434 			}
435 		}
436 
437 		if (!drain)
438 			break;
439 
440 		spin_unlock_irq(q->queue_lock);
441 
442 		msleep(10);
443 
444 		spin_lock_irq(q->queue_lock);
445 	}
446 
447 	/*
448 	 * With queue marked dead, any woken up waiter will fail the
449 	 * allocation path, so the wakeup chaining is lost and we're
450 	 * left with hung waiters. We need to wake up those waiters.
451 	 */
452 	if (q->request_fn) {
453 		struct request_list *rl;
454 
455 		blk_queue_for_each_rl(rl, q)
456 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
457 				wake_up_all(&rl->wait[i]);
458 	}
459 }
460 
461 /**
462  * blk_queue_bypass_start - enter queue bypass mode
463  * @q: queue of interest
464  *
465  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
466  * function makes @q enter bypass mode and drains all requests which were
467  * throttled or issued before.  On return, it's guaranteed that no request
468  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
469  * inside queue or RCU read lock.
470  */
471 void blk_queue_bypass_start(struct request_queue *q)
472 {
473 	bool drain;
474 
475 	spin_lock_irq(q->queue_lock);
476 	drain = !q->bypass_depth++;
477 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
478 	spin_unlock_irq(q->queue_lock);
479 
480 	if (drain) {
481 		spin_lock_irq(q->queue_lock);
482 		__blk_drain_queue(q, false);
483 		spin_unlock_irq(q->queue_lock);
484 
485 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
486 		synchronize_rcu();
487 	}
488 }
489 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
490 
491 /**
492  * blk_queue_bypass_end - leave queue bypass mode
493  * @q: queue of interest
494  *
495  * Leave bypass mode and restore the normal queueing behavior.
496  */
497 void blk_queue_bypass_end(struct request_queue *q)
498 {
499 	spin_lock_irq(q->queue_lock);
500 	if (!--q->bypass_depth)
501 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
502 	WARN_ON_ONCE(q->bypass_depth < 0);
503 	spin_unlock_irq(q->queue_lock);
504 }
505 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
506 
507 /**
508  * blk_cleanup_queue - shutdown a request queue
509  * @q: request queue to shutdown
510  *
511  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
512  * put it.  All future requests will be failed immediately with -ENODEV.
513  */
514 void blk_cleanup_queue(struct request_queue *q)
515 {
516 	spinlock_t *lock = q->queue_lock;
517 
518 	/* mark @q DYING, no new request or merges will be allowed afterwards */
519 	mutex_lock(&q->sysfs_lock);
520 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
521 	spin_lock_irq(lock);
522 
523 	/*
524 	 * A dying queue is permanently in bypass mode till released.  Note
525 	 * that, unlike blk_queue_bypass_start(), we aren't performing
526 	 * synchronize_rcu() after entering bypass mode to avoid the delay
527 	 * as some drivers create and destroy a lot of queues while
528 	 * probing.  This is still safe because blk_release_queue() will be
529 	 * called only after the queue refcnt drops to zero and nothing,
530 	 * RCU or not, would be traversing the queue by then.
531 	 */
532 	q->bypass_depth++;
533 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
534 
535 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
536 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
537 	queue_flag_set(QUEUE_FLAG_DYING, q);
538 	spin_unlock_irq(lock);
539 	mutex_unlock(&q->sysfs_lock);
540 
541 	/*
542 	 * Drain all requests queued before DYING marking. Set DEAD flag to
543 	 * prevent that q->request_fn() gets invoked after draining finished.
544 	 */
545 	spin_lock_irq(lock);
546 	__blk_drain_queue(q, true);
547 	queue_flag_set(QUEUE_FLAG_DEAD, q);
548 	spin_unlock_irq(lock);
549 
550 	/* @q won't process any more request, flush async actions */
551 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
552 	blk_sync_queue(q);
553 
554 	spin_lock_irq(lock);
555 	if (q->queue_lock != &q->__queue_lock)
556 		q->queue_lock = &q->__queue_lock;
557 	spin_unlock_irq(lock);
558 
559 	/* @q is and will stay empty, shutdown and put */
560 	blk_put_queue(q);
561 }
562 EXPORT_SYMBOL(blk_cleanup_queue);
563 
564 int blk_init_rl(struct request_list *rl, struct request_queue *q,
565 		gfp_t gfp_mask)
566 {
567 	if (unlikely(rl->rq_pool))
568 		return 0;
569 
570 	rl->q = q;
571 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
572 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
573 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
574 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
575 
576 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
577 					  mempool_free_slab, request_cachep,
578 					  gfp_mask, q->node);
579 	if (!rl->rq_pool)
580 		return -ENOMEM;
581 
582 	return 0;
583 }
584 
585 void blk_exit_rl(struct request_list *rl)
586 {
587 	if (rl->rq_pool)
588 		mempool_destroy(rl->rq_pool);
589 }
590 
591 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
592 {
593 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
594 }
595 EXPORT_SYMBOL(blk_alloc_queue);
596 
597 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
598 {
599 	struct request_queue *q;
600 	int err;
601 
602 	q = kmem_cache_alloc_node(blk_requestq_cachep,
603 				gfp_mask | __GFP_ZERO, node_id);
604 	if (!q)
605 		return NULL;
606 
607 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
608 	if (q->id < 0)
609 		goto fail_q;
610 
611 	q->backing_dev_info.ra_pages =
612 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
613 	q->backing_dev_info.state = 0;
614 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
615 	q->backing_dev_info.name = "block";
616 	q->node = node_id;
617 
618 	err = bdi_init(&q->backing_dev_info);
619 	if (err)
620 		goto fail_id;
621 
622 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
623 		    laptop_mode_timer_fn, (unsigned long) q);
624 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
625 	INIT_LIST_HEAD(&q->queue_head);
626 	INIT_LIST_HEAD(&q->timeout_list);
627 	INIT_LIST_HEAD(&q->icq_list);
628 #ifdef CONFIG_BLK_CGROUP
629 	INIT_LIST_HEAD(&q->blkg_list);
630 #endif
631 	INIT_LIST_HEAD(&q->flush_queue[0]);
632 	INIT_LIST_HEAD(&q->flush_queue[1]);
633 	INIT_LIST_HEAD(&q->flush_data_in_flight);
634 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
635 
636 	kobject_init(&q->kobj, &blk_queue_ktype);
637 
638 	mutex_init(&q->sysfs_lock);
639 	spin_lock_init(&q->__queue_lock);
640 
641 	/*
642 	 * By default initialize queue_lock to internal lock and driver can
643 	 * override it later if need be.
644 	 */
645 	q->queue_lock = &q->__queue_lock;
646 
647 	/*
648 	 * A queue starts its life with bypass turned on to avoid
649 	 * unnecessary bypass on/off overhead and nasty surprises during
650 	 * init.  The initial bypass will be finished when the queue is
651 	 * registered by blk_register_queue().
652 	 */
653 	q->bypass_depth = 1;
654 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
655 
656 	if (blkcg_init_queue(q))
657 		goto fail_id;
658 
659 	return q;
660 
661 fail_id:
662 	ida_simple_remove(&blk_queue_ida, q->id);
663 fail_q:
664 	kmem_cache_free(blk_requestq_cachep, q);
665 	return NULL;
666 }
667 EXPORT_SYMBOL(blk_alloc_queue_node);
668 
669 /**
670  * blk_init_queue  - prepare a request queue for use with a block device
671  * @rfn:  The function to be called to process requests that have been
672  *        placed on the queue.
673  * @lock: Request queue spin lock
674  *
675  * Description:
676  *    If a block device wishes to use the standard request handling procedures,
677  *    which sorts requests and coalesces adjacent requests, then it must
678  *    call blk_init_queue().  The function @rfn will be called when there
679  *    are requests on the queue that need to be processed.  If the device
680  *    supports plugging, then @rfn may not be called immediately when requests
681  *    are available on the queue, but may be called at some time later instead.
682  *    Plugged queues are generally unplugged when a buffer belonging to one
683  *    of the requests on the queue is needed, or due to memory pressure.
684  *
685  *    @rfn is not required, or even expected, to remove all requests off the
686  *    queue, but only as many as it can handle at a time.  If it does leave
687  *    requests on the queue, it is responsible for arranging that the requests
688  *    get dealt with eventually.
689  *
690  *    The queue spin lock must be held while manipulating the requests on the
691  *    request queue; this lock will be taken also from interrupt context, so irq
692  *    disabling is needed for it.
693  *
694  *    Function returns a pointer to the initialized request queue, or %NULL if
695  *    it didn't succeed.
696  *
697  * Note:
698  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
699  *    when the block device is deactivated (such as at module unload).
700  **/
701 
702 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
703 {
704 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
705 }
706 EXPORT_SYMBOL(blk_init_queue);
707 
708 struct request_queue *
709 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
710 {
711 	struct request_queue *uninit_q, *q;
712 
713 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
714 	if (!uninit_q)
715 		return NULL;
716 
717 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
718 	if (!q)
719 		blk_cleanup_queue(uninit_q);
720 
721 	return q;
722 }
723 EXPORT_SYMBOL(blk_init_queue_node);
724 
725 struct request_queue *
726 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
727 			 spinlock_t *lock)
728 {
729 	if (!q)
730 		return NULL;
731 
732 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
733 		return NULL;
734 
735 	q->request_fn		= rfn;
736 	q->prep_rq_fn		= NULL;
737 	q->unprep_rq_fn		= NULL;
738 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
739 
740 	/* Override internal queue lock with supplied lock pointer */
741 	if (lock)
742 		q->queue_lock		= lock;
743 
744 	/*
745 	 * This also sets hw/phys segments, boundary and size
746 	 */
747 	blk_queue_make_request(q, blk_queue_bio);
748 
749 	q->sg_reserved_size = INT_MAX;
750 
751 	/* init elevator */
752 	if (elevator_init(q, NULL))
753 		return NULL;
754 	return q;
755 }
756 EXPORT_SYMBOL(blk_init_allocated_queue);
757 
758 bool blk_get_queue(struct request_queue *q)
759 {
760 	if (likely(!blk_queue_dying(q))) {
761 		__blk_get_queue(q);
762 		return true;
763 	}
764 
765 	return false;
766 }
767 EXPORT_SYMBOL(blk_get_queue);
768 
769 static inline void blk_free_request(struct request_list *rl, struct request *rq)
770 {
771 	if (rq->cmd_flags & REQ_ELVPRIV) {
772 		elv_put_request(rl->q, rq);
773 		if (rq->elv.icq)
774 			put_io_context(rq->elv.icq->ioc);
775 	}
776 
777 	mempool_free(rq, rl->rq_pool);
778 }
779 
780 /*
781  * ioc_batching returns true if the ioc is a valid batching request and
782  * should be given priority access to a request.
783  */
784 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
785 {
786 	if (!ioc)
787 		return 0;
788 
789 	/*
790 	 * Make sure the process is able to allocate at least 1 request
791 	 * even if the batch times out, otherwise we could theoretically
792 	 * lose wakeups.
793 	 */
794 	return ioc->nr_batch_requests == q->nr_batching ||
795 		(ioc->nr_batch_requests > 0
796 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
797 }
798 
799 /*
800  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
801  * will cause the process to be a "batcher" on all queues in the system. This
802  * is the behaviour we want though - once it gets a wakeup it should be given
803  * a nice run.
804  */
805 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
806 {
807 	if (!ioc || ioc_batching(q, ioc))
808 		return;
809 
810 	ioc->nr_batch_requests = q->nr_batching;
811 	ioc->last_waited = jiffies;
812 }
813 
814 static void __freed_request(struct request_list *rl, int sync)
815 {
816 	struct request_queue *q = rl->q;
817 
818 	/*
819 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
820 	 * blkcg anyway, just use root blkcg state.
821 	 */
822 	if (rl == &q->root_rl &&
823 	    rl->count[sync] < queue_congestion_off_threshold(q))
824 		blk_clear_queue_congested(q, sync);
825 
826 	if (rl->count[sync] + 1 <= q->nr_requests) {
827 		if (waitqueue_active(&rl->wait[sync]))
828 			wake_up(&rl->wait[sync]);
829 
830 		blk_clear_rl_full(rl, sync);
831 	}
832 }
833 
834 /*
835  * A request has just been released.  Account for it, update the full and
836  * congestion status, wake up any waiters.   Called under q->queue_lock.
837  */
838 static void freed_request(struct request_list *rl, unsigned int flags)
839 {
840 	struct request_queue *q = rl->q;
841 	int sync = rw_is_sync(flags);
842 
843 	q->nr_rqs[sync]--;
844 	rl->count[sync]--;
845 	if (flags & REQ_ELVPRIV)
846 		q->nr_rqs_elvpriv--;
847 
848 	__freed_request(rl, sync);
849 
850 	if (unlikely(rl->starved[sync ^ 1]))
851 		__freed_request(rl, sync ^ 1);
852 }
853 
854 /*
855  * Determine if elevator data should be initialized when allocating the
856  * request associated with @bio.
857  */
858 static bool blk_rq_should_init_elevator(struct bio *bio)
859 {
860 	if (!bio)
861 		return true;
862 
863 	/*
864 	 * Flush requests do not use the elevator so skip initialization.
865 	 * This allows a request to share the flush and elevator data.
866 	 */
867 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
868 		return false;
869 
870 	return true;
871 }
872 
873 /**
874  * rq_ioc - determine io_context for request allocation
875  * @bio: request being allocated is for this bio (can be %NULL)
876  *
877  * Determine io_context to use for request allocation for @bio.  May return
878  * %NULL if %current->io_context doesn't exist.
879  */
880 static struct io_context *rq_ioc(struct bio *bio)
881 {
882 #ifdef CONFIG_BLK_CGROUP
883 	if (bio && bio->bi_ioc)
884 		return bio->bi_ioc;
885 #endif
886 	return current->io_context;
887 }
888 
889 /**
890  * __get_request - get a free request
891  * @rl: request list to allocate from
892  * @rw_flags: RW and SYNC flags
893  * @bio: bio to allocate request for (can be %NULL)
894  * @gfp_mask: allocation mask
895  *
896  * Get a free request from @q.  This function may fail under memory
897  * pressure or if @q is dead.
898  *
899  * Must be callled with @q->queue_lock held and,
900  * Returns %NULL on failure, with @q->queue_lock held.
901  * Returns !%NULL on success, with @q->queue_lock *not held*.
902  */
903 static struct request *__get_request(struct request_list *rl, int rw_flags,
904 				     struct bio *bio, gfp_t gfp_mask)
905 {
906 	struct request_queue *q = rl->q;
907 	struct request *rq;
908 	struct elevator_type *et = q->elevator->type;
909 	struct io_context *ioc = rq_ioc(bio);
910 	struct io_cq *icq = NULL;
911 	const bool is_sync = rw_is_sync(rw_flags) != 0;
912 	int may_queue;
913 
914 	if (unlikely(blk_queue_dying(q)))
915 		return NULL;
916 
917 	may_queue = elv_may_queue(q, rw_flags);
918 	if (may_queue == ELV_MQUEUE_NO)
919 		goto rq_starved;
920 
921 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
922 		if (rl->count[is_sync]+1 >= q->nr_requests) {
923 			/*
924 			 * The queue will fill after this allocation, so set
925 			 * it as full, and mark this process as "batching".
926 			 * This process will be allowed to complete a batch of
927 			 * requests, others will be blocked.
928 			 */
929 			if (!blk_rl_full(rl, is_sync)) {
930 				ioc_set_batching(q, ioc);
931 				blk_set_rl_full(rl, is_sync);
932 			} else {
933 				if (may_queue != ELV_MQUEUE_MUST
934 						&& !ioc_batching(q, ioc)) {
935 					/*
936 					 * The queue is full and the allocating
937 					 * process is not a "batcher", and not
938 					 * exempted by the IO scheduler
939 					 */
940 					return NULL;
941 				}
942 			}
943 		}
944 		/*
945 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
946 		 * root blkcg anyway, just use root blkcg state.
947 		 */
948 		if (rl == &q->root_rl)
949 			blk_set_queue_congested(q, is_sync);
950 	}
951 
952 	/*
953 	 * Only allow batching queuers to allocate up to 50% over the defined
954 	 * limit of requests, otherwise we could have thousands of requests
955 	 * allocated with any setting of ->nr_requests
956 	 */
957 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
958 		return NULL;
959 
960 	q->nr_rqs[is_sync]++;
961 	rl->count[is_sync]++;
962 	rl->starved[is_sync] = 0;
963 
964 	/*
965 	 * Decide whether the new request will be managed by elevator.  If
966 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
967 	 * prevent the current elevator from being destroyed until the new
968 	 * request is freed.  This guarantees icq's won't be destroyed and
969 	 * makes creating new ones safe.
970 	 *
971 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
972 	 * it will be created after releasing queue_lock.
973 	 */
974 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
975 		rw_flags |= REQ_ELVPRIV;
976 		q->nr_rqs_elvpriv++;
977 		if (et->icq_cache && ioc)
978 			icq = ioc_lookup_icq(ioc, q);
979 	}
980 
981 	if (blk_queue_io_stat(q))
982 		rw_flags |= REQ_IO_STAT;
983 	spin_unlock_irq(q->queue_lock);
984 
985 	/* allocate and init request */
986 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
987 	if (!rq)
988 		goto fail_alloc;
989 
990 	blk_rq_init(q, rq);
991 	blk_rq_set_rl(rq, rl);
992 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
993 
994 	/* init elvpriv */
995 	if (rw_flags & REQ_ELVPRIV) {
996 		if (unlikely(et->icq_cache && !icq)) {
997 			if (ioc)
998 				icq = ioc_create_icq(ioc, q, gfp_mask);
999 			if (!icq)
1000 				goto fail_elvpriv;
1001 		}
1002 
1003 		rq->elv.icq = icq;
1004 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1005 			goto fail_elvpriv;
1006 
1007 		/* @rq->elv.icq holds io_context until @rq is freed */
1008 		if (icq)
1009 			get_io_context(icq->ioc);
1010 	}
1011 out:
1012 	/*
1013 	 * ioc may be NULL here, and ioc_batching will be false. That's
1014 	 * OK, if the queue is under the request limit then requests need
1015 	 * not count toward the nr_batch_requests limit. There will always
1016 	 * be some limit enforced by BLK_BATCH_TIME.
1017 	 */
1018 	if (ioc_batching(q, ioc))
1019 		ioc->nr_batch_requests--;
1020 
1021 	trace_block_getrq(q, bio, rw_flags & 1);
1022 	return rq;
1023 
1024 fail_elvpriv:
1025 	/*
1026 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1027 	 * and may fail indefinitely under memory pressure and thus
1028 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1029 	 * disturb iosched and blkcg but weird is bettern than dead.
1030 	 */
1031 	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1032 			   dev_name(q->backing_dev_info.dev));
1033 
1034 	rq->cmd_flags &= ~REQ_ELVPRIV;
1035 	rq->elv.icq = NULL;
1036 
1037 	spin_lock_irq(q->queue_lock);
1038 	q->nr_rqs_elvpriv--;
1039 	spin_unlock_irq(q->queue_lock);
1040 	goto out;
1041 
1042 fail_alloc:
1043 	/*
1044 	 * Allocation failed presumably due to memory. Undo anything we
1045 	 * might have messed up.
1046 	 *
1047 	 * Allocating task should really be put onto the front of the wait
1048 	 * queue, but this is pretty rare.
1049 	 */
1050 	spin_lock_irq(q->queue_lock);
1051 	freed_request(rl, rw_flags);
1052 
1053 	/*
1054 	 * in the very unlikely event that allocation failed and no
1055 	 * requests for this direction was pending, mark us starved so that
1056 	 * freeing of a request in the other direction will notice
1057 	 * us. another possible fix would be to split the rq mempool into
1058 	 * READ and WRITE
1059 	 */
1060 rq_starved:
1061 	if (unlikely(rl->count[is_sync] == 0))
1062 		rl->starved[is_sync] = 1;
1063 	return NULL;
1064 }
1065 
1066 /**
1067  * get_request - get a free request
1068  * @q: request_queue to allocate request from
1069  * @rw_flags: RW and SYNC flags
1070  * @bio: bio to allocate request for (can be %NULL)
1071  * @gfp_mask: allocation mask
1072  *
1073  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1074  * function keeps retrying under memory pressure and fails iff @q is dead.
1075  *
1076  * Must be callled with @q->queue_lock held and,
1077  * Returns %NULL on failure, with @q->queue_lock held.
1078  * Returns !%NULL on success, with @q->queue_lock *not held*.
1079  */
1080 static struct request *get_request(struct request_queue *q, int rw_flags,
1081 				   struct bio *bio, gfp_t gfp_mask)
1082 {
1083 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1084 	DEFINE_WAIT(wait);
1085 	struct request_list *rl;
1086 	struct request *rq;
1087 
1088 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1089 retry:
1090 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1091 	if (rq)
1092 		return rq;
1093 
1094 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1095 		blk_put_rl(rl);
1096 		return NULL;
1097 	}
1098 
1099 	/* wait on @rl and retry */
1100 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1101 				  TASK_UNINTERRUPTIBLE);
1102 
1103 	trace_block_sleeprq(q, bio, rw_flags & 1);
1104 
1105 	spin_unlock_irq(q->queue_lock);
1106 	io_schedule();
1107 
1108 	/*
1109 	 * After sleeping, we become a "batching" process and will be able
1110 	 * to allocate at least one request, and up to a big batch of them
1111 	 * for a small period time.  See ioc_batching, ioc_set_batching
1112 	 */
1113 	ioc_set_batching(q, current->io_context);
1114 
1115 	spin_lock_irq(q->queue_lock);
1116 	finish_wait(&rl->wait[is_sync], &wait);
1117 
1118 	goto retry;
1119 }
1120 
1121 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1122 {
1123 	struct request *rq;
1124 
1125 	BUG_ON(rw != READ && rw != WRITE);
1126 
1127 	/* create ioc upfront */
1128 	create_io_context(gfp_mask, q->node);
1129 
1130 	spin_lock_irq(q->queue_lock);
1131 	rq = get_request(q, rw, NULL, gfp_mask);
1132 	if (!rq)
1133 		spin_unlock_irq(q->queue_lock);
1134 	/* q->queue_lock is unlocked at this point */
1135 
1136 	return rq;
1137 }
1138 EXPORT_SYMBOL(blk_get_request);
1139 
1140 /**
1141  * blk_make_request - given a bio, allocate a corresponding struct request.
1142  * @q: target request queue
1143  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1144  *        It may be a chained-bio properly constructed by block/bio layer.
1145  * @gfp_mask: gfp flags to be used for memory allocation
1146  *
1147  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1148  * type commands. Where the struct request needs to be farther initialized by
1149  * the caller. It is passed a &struct bio, which describes the memory info of
1150  * the I/O transfer.
1151  *
1152  * The caller of blk_make_request must make sure that bi_io_vec
1153  * are set to describe the memory buffers. That bio_data_dir() will return
1154  * the needed direction of the request. (And all bio's in the passed bio-chain
1155  * are properly set accordingly)
1156  *
1157  * If called under none-sleepable conditions, mapped bio buffers must not
1158  * need bouncing, by calling the appropriate masked or flagged allocator,
1159  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1160  * BUG.
1161  *
1162  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1163  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1164  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1165  * completion of a bio that hasn't been submitted yet, thus resulting in a
1166  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1167  * of bio_alloc(), as that avoids the mempool deadlock.
1168  * If possible a big IO should be split into smaller parts when allocation
1169  * fails. Partial allocation should not be an error, or you risk a live-lock.
1170  */
1171 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1172 				 gfp_t gfp_mask)
1173 {
1174 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1175 
1176 	if (unlikely(!rq))
1177 		return ERR_PTR(-ENOMEM);
1178 
1179 	for_each_bio(bio) {
1180 		struct bio *bounce_bio = bio;
1181 		int ret;
1182 
1183 		blk_queue_bounce(q, &bounce_bio);
1184 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1185 		if (unlikely(ret)) {
1186 			blk_put_request(rq);
1187 			return ERR_PTR(ret);
1188 		}
1189 	}
1190 
1191 	return rq;
1192 }
1193 EXPORT_SYMBOL(blk_make_request);
1194 
1195 /**
1196  * blk_requeue_request - put a request back on queue
1197  * @q:		request queue where request should be inserted
1198  * @rq:		request to be inserted
1199  *
1200  * Description:
1201  *    Drivers often keep queueing requests until the hardware cannot accept
1202  *    more, when that condition happens we need to put the request back
1203  *    on the queue. Must be called with queue lock held.
1204  */
1205 void blk_requeue_request(struct request_queue *q, struct request *rq)
1206 {
1207 	blk_delete_timer(rq);
1208 	blk_clear_rq_complete(rq);
1209 	trace_block_rq_requeue(q, rq);
1210 
1211 	if (blk_rq_tagged(rq))
1212 		blk_queue_end_tag(q, rq);
1213 
1214 	BUG_ON(blk_queued_rq(rq));
1215 
1216 	elv_requeue_request(q, rq);
1217 }
1218 EXPORT_SYMBOL(blk_requeue_request);
1219 
1220 static void add_acct_request(struct request_queue *q, struct request *rq,
1221 			     int where)
1222 {
1223 	drive_stat_acct(rq, 1);
1224 	__elv_add_request(q, rq, where);
1225 }
1226 
1227 static void part_round_stats_single(int cpu, struct hd_struct *part,
1228 				    unsigned long now)
1229 {
1230 	if (now == part->stamp)
1231 		return;
1232 
1233 	if (part_in_flight(part)) {
1234 		__part_stat_add(cpu, part, time_in_queue,
1235 				part_in_flight(part) * (now - part->stamp));
1236 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1237 	}
1238 	part->stamp = now;
1239 }
1240 
1241 /**
1242  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1243  * @cpu: cpu number for stats access
1244  * @part: target partition
1245  *
1246  * The average IO queue length and utilisation statistics are maintained
1247  * by observing the current state of the queue length and the amount of
1248  * time it has been in this state for.
1249  *
1250  * Normally, that accounting is done on IO completion, but that can result
1251  * in more than a second's worth of IO being accounted for within any one
1252  * second, leading to >100% utilisation.  To deal with that, we call this
1253  * function to do a round-off before returning the results when reading
1254  * /proc/diskstats.  This accounts immediately for all queue usage up to
1255  * the current jiffies and restarts the counters again.
1256  */
1257 void part_round_stats(int cpu, struct hd_struct *part)
1258 {
1259 	unsigned long now = jiffies;
1260 
1261 	if (part->partno)
1262 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1263 	part_round_stats_single(cpu, part, now);
1264 }
1265 EXPORT_SYMBOL_GPL(part_round_stats);
1266 
1267 /*
1268  * queue lock must be held
1269  */
1270 void __blk_put_request(struct request_queue *q, struct request *req)
1271 {
1272 	if (unlikely(!q))
1273 		return;
1274 	if (unlikely(--req->ref_count))
1275 		return;
1276 
1277 	elv_completed_request(q, req);
1278 
1279 	/* this is a bio leak */
1280 	WARN_ON(req->bio != NULL);
1281 
1282 	/*
1283 	 * Request may not have originated from ll_rw_blk. if not,
1284 	 * it didn't come out of our reserved rq pools
1285 	 */
1286 	if (req->cmd_flags & REQ_ALLOCED) {
1287 		unsigned int flags = req->cmd_flags;
1288 		struct request_list *rl = blk_rq_rl(req);
1289 
1290 		BUG_ON(!list_empty(&req->queuelist));
1291 		BUG_ON(!hlist_unhashed(&req->hash));
1292 
1293 		blk_free_request(rl, req);
1294 		freed_request(rl, flags);
1295 		blk_put_rl(rl);
1296 	}
1297 }
1298 EXPORT_SYMBOL_GPL(__blk_put_request);
1299 
1300 void blk_put_request(struct request *req)
1301 {
1302 	unsigned long flags;
1303 	struct request_queue *q = req->q;
1304 
1305 	spin_lock_irqsave(q->queue_lock, flags);
1306 	__blk_put_request(q, req);
1307 	spin_unlock_irqrestore(q->queue_lock, flags);
1308 }
1309 EXPORT_SYMBOL(blk_put_request);
1310 
1311 /**
1312  * blk_add_request_payload - add a payload to a request
1313  * @rq: request to update
1314  * @page: page backing the payload
1315  * @len: length of the payload.
1316  *
1317  * This allows to later add a payload to an already submitted request by
1318  * a block driver.  The driver needs to take care of freeing the payload
1319  * itself.
1320  *
1321  * Note that this is a quite horrible hack and nothing but handling of
1322  * discard requests should ever use it.
1323  */
1324 void blk_add_request_payload(struct request *rq, struct page *page,
1325 		unsigned int len)
1326 {
1327 	struct bio *bio = rq->bio;
1328 
1329 	bio->bi_io_vec->bv_page = page;
1330 	bio->bi_io_vec->bv_offset = 0;
1331 	bio->bi_io_vec->bv_len = len;
1332 
1333 	bio->bi_size = len;
1334 	bio->bi_vcnt = 1;
1335 	bio->bi_phys_segments = 1;
1336 
1337 	rq->__data_len = rq->resid_len = len;
1338 	rq->nr_phys_segments = 1;
1339 	rq->buffer = bio_data(bio);
1340 }
1341 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1342 
1343 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1344 				   struct bio *bio)
1345 {
1346 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1347 
1348 	if (!ll_back_merge_fn(q, req, bio))
1349 		return false;
1350 
1351 	trace_block_bio_backmerge(q, bio);
1352 
1353 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1354 		blk_rq_set_mixed_merge(req);
1355 
1356 	req->biotail->bi_next = bio;
1357 	req->biotail = bio;
1358 	req->__data_len += bio->bi_size;
1359 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1360 
1361 	drive_stat_acct(req, 0);
1362 	return true;
1363 }
1364 
1365 static bool bio_attempt_front_merge(struct request_queue *q,
1366 				    struct request *req, struct bio *bio)
1367 {
1368 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1369 
1370 	if (!ll_front_merge_fn(q, req, bio))
1371 		return false;
1372 
1373 	trace_block_bio_frontmerge(q, bio);
1374 
1375 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1376 		blk_rq_set_mixed_merge(req);
1377 
1378 	bio->bi_next = req->bio;
1379 	req->bio = bio;
1380 
1381 	/*
1382 	 * may not be valid. if the low level driver said
1383 	 * it didn't need a bounce buffer then it better
1384 	 * not touch req->buffer either...
1385 	 */
1386 	req->buffer = bio_data(bio);
1387 	req->__sector = bio->bi_sector;
1388 	req->__data_len += bio->bi_size;
1389 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1390 
1391 	drive_stat_acct(req, 0);
1392 	return true;
1393 }
1394 
1395 /**
1396  * attempt_plug_merge - try to merge with %current's plugged list
1397  * @q: request_queue new bio is being queued at
1398  * @bio: new bio being queued
1399  * @request_count: out parameter for number of traversed plugged requests
1400  *
1401  * Determine whether @bio being queued on @q can be merged with a request
1402  * on %current's plugged list.  Returns %true if merge was successful,
1403  * otherwise %false.
1404  *
1405  * Plugging coalesces IOs from the same issuer for the same purpose without
1406  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1407  * than scheduling, and the request, while may have elvpriv data, is not
1408  * added on the elevator at this point.  In addition, we don't have
1409  * reliable access to the elevator outside queue lock.  Only check basic
1410  * merging parameters without querying the elevator.
1411  */
1412 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1413 			       unsigned int *request_count)
1414 {
1415 	struct blk_plug *plug;
1416 	struct request *rq;
1417 	bool ret = false;
1418 
1419 	plug = current->plug;
1420 	if (!plug)
1421 		goto out;
1422 	*request_count = 0;
1423 
1424 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1425 		int el_ret;
1426 
1427 		if (rq->q == q)
1428 			(*request_count)++;
1429 
1430 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1431 			continue;
1432 
1433 		el_ret = blk_try_merge(rq, bio);
1434 		if (el_ret == ELEVATOR_BACK_MERGE) {
1435 			ret = bio_attempt_back_merge(q, rq, bio);
1436 			if (ret)
1437 				break;
1438 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1439 			ret = bio_attempt_front_merge(q, rq, bio);
1440 			if (ret)
1441 				break;
1442 		}
1443 	}
1444 out:
1445 	return ret;
1446 }
1447 
1448 void init_request_from_bio(struct request *req, struct bio *bio)
1449 {
1450 	req->cmd_type = REQ_TYPE_FS;
1451 
1452 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1453 	if (bio->bi_rw & REQ_RAHEAD)
1454 		req->cmd_flags |= REQ_FAILFAST_MASK;
1455 
1456 	req->errors = 0;
1457 	req->__sector = bio->bi_sector;
1458 	req->ioprio = bio_prio(bio);
1459 	blk_rq_bio_prep(req->q, req, bio);
1460 }
1461 
1462 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1463 {
1464 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1465 	struct blk_plug *plug;
1466 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1467 	struct request *req;
1468 	unsigned int request_count = 0;
1469 
1470 	/*
1471 	 * low level driver can indicate that it wants pages above a
1472 	 * certain limit bounced to low memory (ie for highmem, or even
1473 	 * ISA dma in theory)
1474 	 */
1475 	blk_queue_bounce(q, &bio);
1476 
1477 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1478 		spin_lock_irq(q->queue_lock);
1479 		where = ELEVATOR_INSERT_FLUSH;
1480 		goto get_rq;
1481 	}
1482 
1483 	/*
1484 	 * Check if we can merge with the plugged list before grabbing
1485 	 * any locks.
1486 	 */
1487 	if (attempt_plug_merge(q, bio, &request_count))
1488 		return;
1489 
1490 	spin_lock_irq(q->queue_lock);
1491 
1492 	el_ret = elv_merge(q, &req, bio);
1493 	if (el_ret == ELEVATOR_BACK_MERGE) {
1494 		if (bio_attempt_back_merge(q, req, bio)) {
1495 			elv_bio_merged(q, req, bio);
1496 			if (!attempt_back_merge(q, req))
1497 				elv_merged_request(q, req, el_ret);
1498 			goto out_unlock;
1499 		}
1500 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1501 		if (bio_attempt_front_merge(q, req, bio)) {
1502 			elv_bio_merged(q, req, bio);
1503 			if (!attempt_front_merge(q, req))
1504 				elv_merged_request(q, req, el_ret);
1505 			goto out_unlock;
1506 		}
1507 	}
1508 
1509 get_rq:
1510 	/*
1511 	 * This sync check and mask will be re-done in init_request_from_bio(),
1512 	 * but we need to set it earlier to expose the sync flag to the
1513 	 * rq allocator and io schedulers.
1514 	 */
1515 	rw_flags = bio_data_dir(bio);
1516 	if (sync)
1517 		rw_flags |= REQ_SYNC;
1518 
1519 	/*
1520 	 * Grab a free request. This is might sleep but can not fail.
1521 	 * Returns with the queue unlocked.
1522 	 */
1523 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1524 	if (unlikely(!req)) {
1525 		bio_endio(bio, -ENODEV);	/* @q is dead */
1526 		goto out_unlock;
1527 	}
1528 
1529 	/*
1530 	 * After dropping the lock and possibly sleeping here, our request
1531 	 * may now be mergeable after it had proven unmergeable (above).
1532 	 * We don't worry about that case for efficiency. It won't happen
1533 	 * often, and the elevators are able to handle it.
1534 	 */
1535 	init_request_from_bio(req, bio);
1536 
1537 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1538 		req->cpu = raw_smp_processor_id();
1539 
1540 	plug = current->plug;
1541 	if (plug) {
1542 		/*
1543 		 * If this is the first request added after a plug, fire
1544 		 * of a plug trace. If others have been added before, check
1545 		 * if we have multiple devices in this plug. If so, make a
1546 		 * note to sort the list before dispatch.
1547 		 */
1548 		if (list_empty(&plug->list))
1549 			trace_block_plug(q);
1550 		else {
1551 			if (!plug->should_sort) {
1552 				struct request *__rq;
1553 
1554 				__rq = list_entry_rq(plug->list.prev);
1555 				if (__rq->q != q)
1556 					plug->should_sort = 1;
1557 			}
1558 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1559 				blk_flush_plug_list(plug, false);
1560 				trace_block_plug(q);
1561 			}
1562 		}
1563 		list_add_tail(&req->queuelist, &plug->list);
1564 		drive_stat_acct(req, 1);
1565 	} else {
1566 		spin_lock_irq(q->queue_lock);
1567 		add_acct_request(q, req, where);
1568 		__blk_run_queue(q);
1569 out_unlock:
1570 		spin_unlock_irq(q->queue_lock);
1571 	}
1572 }
1573 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1574 
1575 /*
1576  * If bio->bi_dev is a partition, remap the location
1577  */
1578 static inline void blk_partition_remap(struct bio *bio)
1579 {
1580 	struct block_device *bdev = bio->bi_bdev;
1581 
1582 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1583 		struct hd_struct *p = bdev->bd_part;
1584 
1585 		bio->bi_sector += p->start_sect;
1586 		bio->bi_bdev = bdev->bd_contains;
1587 
1588 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1589 				      bdev->bd_dev,
1590 				      bio->bi_sector - p->start_sect);
1591 	}
1592 }
1593 
1594 static void handle_bad_sector(struct bio *bio)
1595 {
1596 	char b[BDEVNAME_SIZE];
1597 
1598 	printk(KERN_INFO "attempt to access beyond end of device\n");
1599 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1600 			bdevname(bio->bi_bdev, b),
1601 			bio->bi_rw,
1602 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1603 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1604 
1605 	set_bit(BIO_EOF, &bio->bi_flags);
1606 }
1607 
1608 #ifdef CONFIG_FAIL_MAKE_REQUEST
1609 
1610 static DECLARE_FAULT_ATTR(fail_make_request);
1611 
1612 static int __init setup_fail_make_request(char *str)
1613 {
1614 	return setup_fault_attr(&fail_make_request, str);
1615 }
1616 __setup("fail_make_request=", setup_fail_make_request);
1617 
1618 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1619 {
1620 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1621 }
1622 
1623 static int __init fail_make_request_debugfs(void)
1624 {
1625 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1626 						NULL, &fail_make_request);
1627 
1628 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1629 }
1630 
1631 late_initcall(fail_make_request_debugfs);
1632 
1633 #else /* CONFIG_FAIL_MAKE_REQUEST */
1634 
1635 static inline bool should_fail_request(struct hd_struct *part,
1636 					unsigned int bytes)
1637 {
1638 	return false;
1639 }
1640 
1641 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1642 
1643 /*
1644  * Check whether this bio extends beyond the end of the device.
1645  */
1646 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1647 {
1648 	sector_t maxsector;
1649 
1650 	if (!nr_sectors)
1651 		return 0;
1652 
1653 	/* Test device or partition size, when known. */
1654 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1655 	if (maxsector) {
1656 		sector_t sector = bio->bi_sector;
1657 
1658 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1659 			/*
1660 			 * This may well happen - the kernel calls bread()
1661 			 * without checking the size of the device, e.g., when
1662 			 * mounting a device.
1663 			 */
1664 			handle_bad_sector(bio);
1665 			return 1;
1666 		}
1667 	}
1668 
1669 	return 0;
1670 }
1671 
1672 static noinline_for_stack bool
1673 generic_make_request_checks(struct bio *bio)
1674 {
1675 	struct request_queue *q;
1676 	int nr_sectors = bio_sectors(bio);
1677 	int err = -EIO;
1678 	char b[BDEVNAME_SIZE];
1679 	struct hd_struct *part;
1680 
1681 	might_sleep();
1682 
1683 	if (bio_check_eod(bio, nr_sectors))
1684 		goto end_io;
1685 
1686 	q = bdev_get_queue(bio->bi_bdev);
1687 	if (unlikely(!q)) {
1688 		printk(KERN_ERR
1689 		       "generic_make_request: Trying to access "
1690 			"nonexistent block-device %s (%Lu)\n",
1691 			bdevname(bio->bi_bdev, b),
1692 			(long long) bio->bi_sector);
1693 		goto end_io;
1694 	}
1695 
1696 	if (likely(bio_is_rw(bio) &&
1697 		   nr_sectors > queue_max_hw_sectors(q))) {
1698 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1699 		       bdevname(bio->bi_bdev, b),
1700 		       bio_sectors(bio),
1701 		       queue_max_hw_sectors(q));
1702 		goto end_io;
1703 	}
1704 
1705 	part = bio->bi_bdev->bd_part;
1706 	if (should_fail_request(part, bio->bi_size) ||
1707 	    should_fail_request(&part_to_disk(part)->part0,
1708 				bio->bi_size))
1709 		goto end_io;
1710 
1711 	/*
1712 	 * If this device has partitions, remap block n
1713 	 * of partition p to block n+start(p) of the disk.
1714 	 */
1715 	blk_partition_remap(bio);
1716 
1717 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1718 		goto end_io;
1719 
1720 	if (bio_check_eod(bio, nr_sectors))
1721 		goto end_io;
1722 
1723 	/*
1724 	 * Filter flush bio's early so that make_request based
1725 	 * drivers without flush support don't have to worry
1726 	 * about them.
1727 	 */
1728 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1729 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1730 		if (!nr_sectors) {
1731 			err = 0;
1732 			goto end_io;
1733 		}
1734 	}
1735 
1736 	if ((bio->bi_rw & REQ_DISCARD) &&
1737 	    (!blk_queue_discard(q) ||
1738 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1739 		err = -EOPNOTSUPP;
1740 		goto end_io;
1741 	}
1742 
1743 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1744 		err = -EOPNOTSUPP;
1745 		goto end_io;
1746 	}
1747 
1748 	/*
1749 	 * Various block parts want %current->io_context and lazy ioc
1750 	 * allocation ends up trading a lot of pain for a small amount of
1751 	 * memory.  Just allocate it upfront.  This may fail and block
1752 	 * layer knows how to live with it.
1753 	 */
1754 	create_io_context(GFP_ATOMIC, q->node);
1755 
1756 	if (blk_throtl_bio(q, bio))
1757 		return false;	/* throttled, will be resubmitted later */
1758 
1759 	trace_block_bio_queue(q, bio);
1760 	return true;
1761 
1762 end_io:
1763 	bio_endio(bio, err);
1764 	return false;
1765 }
1766 
1767 /**
1768  * generic_make_request - hand a buffer to its device driver for I/O
1769  * @bio:  The bio describing the location in memory and on the device.
1770  *
1771  * generic_make_request() is used to make I/O requests of block
1772  * devices. It is passed a &struct bio, which describes the I/O that needs
1773  * to be done.
1774  *
1775  * generic_make_request() does not return any status.  The
1776  * success/failure status of the request, along with notification of
1777  * completion, is delivered asynchronously through the bio->bi_end_io
1778  * function described (one day) else where.
1779  *
1780  * The caller of generic_make_request must make sure that bi_io_vec
1781  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1782  * set to describe the device address, and the
1783  * bi_end_io and optionally bi_private are set to describe how
1784  * completion notification should be signaled.
1785  *
1786  * generic_make_request and the drivers it calls may use bi_next if this
1787  * bio happens to be merged with someone else, and may resubmit the bio to
1788  * a lower device by calling into generic_make_request recursively, which
1789  * means the bio should NOT be touched after the call to ->make_request_fn.
1790  */
1791 void generic_make_request(struct bio *bio)
1792 {
1793 	struct bio_list bio_list_on_stack;
1794 
1795 	if (!generic_make_request_checks(bio))
1796 		return;
1797 
1798 	/*
1799 	 * We only want one ->make_request_fn to be active at a time, else
1800 	 * stack usage with stacked devices could be a problem.  So use
1801 	 * current->bio_list to keep a list of requests submited by a
1802 	 * make_request_fn function.  current->bio_list is also used as a
1803 	 * flag to say if generic_make_request is currently active in this
1804 	 * task or not.  If it is NULL, then no make_request is active.  If
1805 	 * it is non-NULL, then a make_request is active, and new requests
1806 	 * should be added at the tail
1807 	 */
1808 	if (current->bio_list) {
1809 		bio_list_add(current->bio_list, bio);
1810 		return;
1811 	}
1812 
1813 	/* following loop may be a bit non-obvious, and so deserves some
1814 	 * explanation.
1815 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1816 	 * ensure that) so we have a list with a single bio.
1817 	 * We pretend that we have just taken it off a longer list, so
1818 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1819 	 * thus initialising the bio_list of new bios to be
1820 	 * added.  ->make_request() may indeed add some more bios
1821 	 * through a recursive call to generic_make_request.  If it
1822 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1823 	 * from the top.  In this case we really did just take the bio
1824 	 * of the top of the list (no pretending) and so remove it from
1825 	 * bio_list, and call into ->make_request() again.
1826 	 */
1827 	BUG_ON(bio->bi_next);
1828 	bio_list_init(&bio_list_on_stack);
1829 	current->bio_list = &bio_list_on_stack;
1830 	do {
1831 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1832 
1833 		q->make_request_fn(q, bio);
1834 
1835 		bio = bio_list_pop(current->bio_list);
1836 	} while (bio);
1837 	current->bio_list = NULL; /* deactivate */
1838 }
1839 EXPORT_SYMBOL(generic_make_request);
1840 
1841 /**
1842  * submit_bio - submit a bio to the block device layer for I/O
1843  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1844  * @bio: The &struct bio which describes the I/O
1845  *
1846  * submit_bio() is very similar in purpose to generic_make_request(), and
1847  * uses that function to do most of the work. Both are fairly rough
1848  * interfaces; @bio must be presetup and ready for I/O.
1849  *
1850  */
1851 void submit_bio(int rw, struct bio *bio)
1852 {
1853 	bio->bi_rw |= rw;
1854 
1855 	/*
1856 	 * If it's a regular read/write or a barrier with data attached,
1857 	 * go through the normal accounting stuff before submission.
1858 	 */
1859 	if (bio_has_data(bio)) {
1860 		unsigned int count;
1861 
1862 		if (unlikely(rw & REQ_WRITE_SAME))
1863 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1864 		else
1865 			count = bio_sectors(bio);
1866 
1867 		if (rw & WRITE) {
1868 			count_vm_events(PGPGOUT, count);
1869 		} else {
1870 			task_io_account_read(bio->bi_size);
1871 			count_vm_events(PGPGIN, count);
1872 		}
1873 
1874 		if (unlikely(block_dump)) {
1875 			char b[BDEVNAME_SIZE];
1876 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1877 			current->comm, task_pid_nr(current),
1878 				(rw & WRITE) ? "WRITE" : "READ",
1879 				(unsigned long long)bio->bi_sector,
1880 				bdevname(bio->bi_bdev, b),
1881 				count);
1882 		}
1883 	}
1884 
1885 	generic_make_request(bio);
1886 }
1887 EXPORT_SYMBOL(submit_bio);
1888 
1889 /**
1890  * blk_rq_check_limits - Helper function to check a request for the queue limit
1891  * @q:  the queue
1892  * @rq: the request being checked
1893  *
1894  * Description:
1895  *    @rq may have been made based on weaker limitations of upper-level queues
1896  *    in request stacking drivers, and it may violate the limitation of @q.
1897  *    Since the block layer and the underlying device driver trust @rq
1898  *    after it is inserted to @q, it should be checked against @q before
1899  *    the insertion using this generic function.
1900  *
1901  *    This function should also be useful for request stacking drivers
1902  *    in some cases below, so export this function.
1903  *    Request stacking drivers like request-based dm may change the queue
1904  *    limits while requests are in the queue (e.g. dm's table swapping).
1905  *    Such request stacking drivers should check those requests agaist
1906  *    the new queue limits again when they dispatch those requests,
1907  *    although such checkings are also done against the old queue limits
1908  *    when submitting requests.
1909  */
1910 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1911 {
1912 	if (!rq_mergeable(rq))
1913 		return 0;
1914 
1915 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1916 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1917 		return -EIO;
1918 	}
1919 
1920 	/*
1921 	 * queue's settings related to segment counting like q->bounce_pfn
1922 	 * may differ from that of other stacking queues.
1923 	 * Recalculate it to check the request correctly on this queue's
1924 	 * limitation.
1925 	 */
1926 	blk_recalc_rq_segments(rq);
1927 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1928 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1929 		return -EIO;
1930 	}
1931 
1932 	return 0;
1933 }
1934 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1935 
1936 /**
1937  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1938  * @q:  the queue to submit the request
1939  * @rq: the request being queued
1940  */
1941 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1942 {
1943 	unsigned long flags;
1944 	int where = ELEVATOR_INSERT_BACK;
1945 
1946 	if (blk_rq_check_limits(q, rq))
1947 		return -EIO;
1948 
1949 	if (rq->rq_disk &&
1950 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1951 		return -EIO;
1952 
1953 	spin_lock_irqsave(q->queue_lock, flags);
1954 	if (unlikely(blk_queue_dying(q))) {
1955 		spin_unlock_irqrestore(q->queue_lock, flags);
1956 		return -ENODEV;
1957 	}
1958 
1959 	/*
1960 	 * Submitting request must be dequeued before calling this function
1961 	 * because it will be linked to another request_queue
1962 	 */
1963 	BUG_ON(blk_queued_rq(rq));
1964 
1965 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1966 		where = ELEVATOR_INSERT_FLUSH;
1967 
1968 	add_acct_request(q, rq, where);
1969 	if (where == ELEVATOR_INSERT_FLUSH)
1970 		__blk_run_queue(q);
1971 	spin_unlock_irqrestore(q->queue_lock, flags);
1972 
1973 	return 0;
1974 }
1975 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1976 
1977 /**
1978  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1979  * @rq: request to examine
1980  *
1981  * Description:
1982  *     A request could be merge of IOs which require different failure
1983  *     handling.  This function determines the number of bytes which
1984  *     can be failed from the beginning of the request without
1985  *     crossing into area which need to be retried further.
1986  *
1987  * Return:
1988  *     The number of bytes to fail.
1989  *
1990  * Context:
1991  *     queue_lock must be held.
1992  */
1993 unsigned int blk_rq_err_bytes(const struct request *rq)
1994 {
1995 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1996 	unsigned int bytes = 0;
1997 	struct bio *bio;
1998 
1999 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2000 		return blk_rq_bytes(rq);
2001 
2002 	/*
2003 	 * Currently the only 'mixing' which can happen is between
2004 	 * different fastfail types.  We can safely fail portions
2005 	 * which have all the failfast bits that the first one has -
2006 	 * the ones which are at least as eager to fail as the first
2007 	 * one.
2008 	 */
2009 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2010 		if ((bio->bi_rw & ff) != ff)
2011 			break;
2012 		bytes += bio->bi_size;
2013 	}
2014 
2015 	/* this could lead to infinite loop */
2016 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2017 	return bytes;
2018 }
2019 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2020 
2021 static void blk_account_io_completion(struct request *req, unsigned int bytes)
2022 {
2023 	if (blk_do_io_stat(req)) {
2024 		const int rw = rq_data_dir(req);
2025 		struct hd_struct *part;
2026 		int cpu;
2027 
2028 		cpu = part_stat_lock();
2029 		part = req->part;
2030 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2031 		part_stat_unlock();
2032 	}
2033 }
2034 
2035 static void blk_account_io_done(struct request *req)
2036 {
2037 	/*
2038 	 * Account IO completion.  flush_rq isn't accounted as a
2039 	 * normal IO on queueing nor completion.  Accounting the
2040 	 * containing request is enough.
2041 	 */
2042 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2043 		unsigned long duration = jiffies - req->start_time;
2044 		const int rw = rq_data_dir(req);
2045 		struct hd_struct *part;
2046 		int cpu;
2047 
2048 		cpu = part_stat_lock();
2049 		part = req->part;
2050 
2051 		part_stat_inc(cpu, part, ios[rw]);
2052 		part_stat_add(cpu, part, ticks[rw], duration);
2053 		part_round_stats(cpu, part);
2054 		part_dec_in_flight(part, rw);
2055 
2056 		hd_struct_put(part);
2057 		part_stat_unlock();
2058 	}
2059 }
2060 
2061 /**
2062  * blk_peek_request - peek at the top of a request queue
2063  * @q: request queue to peek at
2064  *
2065  * Description:
2066  *     Return the request at the top of @q.  The returned request
2067  *     should be started using blk_start_request() before LLD starts
2068  *     processing it.
2069  *
2070  * Return:
2071  *     Pointer to the request at the top of @q if available.  Null
2072  *     otherwise.
2073  *
2074  * Context:
2075  *     queue_lock must be held.
2076  */
2077 struct request *blk_peek_request(struct request_queue *q)
2078 {
2079 	struct request *rq;
2080 	int ret;
2081 
2082 	while ((rq = __elv_next_request(q)) != NULL) {
2083 		if (!(rq->cmd_flags & REQ_STARTED)) {
2084 			/*
2085 			 * This is the first time the device driver
2086 			 * sees this request (possibly after
2087 			 * requeueing).  Notify IO scheduler.
2088 			 */
2089 			if (rq->cmd_flags & REQ_SORTED)
2090 				elv_activate_rq(q, rq);
2091 
2092 			/*
2093 			 * just mark as started even if we don't start
2094 			 * it, a request that has been delayed should
2095 			 * not be passed by new incoming requests
2096 			 */
2097 			rq->cmd_flags |= REQ_STARTED;
2098 			trace_block_rq_issue(q, rq);
2099 		}
2100 
2101 		if (!q->boundary_rq || q->boundary_rq == rq) {
2102 			q->end_sector = rq_end_sector(rq);
2103 			q->boundary_rq = NULL;
2104 		}
2105 
2106 		if (rq->cmd_flags & REQ_DONTPREP)
2107 			break;
2108 
2109 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2110 			/*
2111 			 * make sure space for the drain appears we
2112 			 * know we can do this because max_hw_segments
2113 			 * has been adjusted to be one fewer than the
2114 			 * device can handle
2115 			 */
2116 			rq->nr_phys_segments++;
2117 		}
2118 
2119 		if (!q->prep_rq_fn)
2120 			break;
2121 
2122 		ret = q->prep_rq_fn(q, rq);
2123 		if (ret == BLKPREP_OK) {
2124 			break;
2125 		} else if (ret == BLKPREP_DEFER) {
2126 			/*
2127 			 * the request may have been (partially) prepped.
2128 			 * we need to keep this request in the front to
2129 			 * avoid resource deadlock.  REQ_STARTED will
2130 			 * prevent other fs requests from passing this one.
2131 			 */
2132 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2133 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2134 				/*
2135 				 * remove the space for the drain we added
2136 				 * so that we don't add it again
2137 				 */
2138 				--rq->nr_phys_segments;
2139 			}
2140 
2141 			rq = NULL;
2142 			break;
2143 		} else if (ret == BLKPREP_KILL) {
2144 			rq->cmd_flags |= REQ_QUIET;
2145 			/*
2146 			 * Mark this request as started so we don't trigger
2147 			 * any debug logic in the end I/O path.
2148 			 */
2149 			blk_start_request(rq);
2150 			__blk_end_request_all(rq, -EIO);
2151 		} else {
2152 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2153 			break;
2154 		}
2155 	}
2156 
2157 	return rq;
2158 }
2159 EXPORT_SYMBOL(blk_peek_request);
2160 
2161 void blk_dequeue_request(struct request *rq)
2162 {
2163 	struct request_queue *q = rq->q;
2164 
2165 	BUG_ON(list_empty(&rq->queuelist));
2166 	BUG_ON(ELV_ON_HASH(rq));
2167 
2168 	list_del_init(&rq->queuelist);
2169 
2170 	/*
2171 	 * the time frame between a request being removed from the lists
2172 	 * and to it is freed is accounted as io that is in progress at
2173 	 * the driver side.
2174 	 */
2175 	if (blk_account_rq(rq)) {
2176 		q->in_flight[rq_is_sync(rq)]++;
2177 		set_io_start_time_ns(rq);
2178 	}
2179 }
2180 
2181 /**
2182  * blk_start_request - start request processing on the driver
2183  * @req: request to dequeue
2184  *
2185  * Description:
2186  *     Dequeue @req and start timeout timer on it.  This hands off the
2187  *     request to the driver.
2188  *
2189  *     Block internal functions which don't want to start timer should
2190  *     call blk_dequeue_request().
2191  *
2192  * Context:
2193  *     queue_lock must be held.
2194  */
2195 void blk_start_request(struct request *req)
2196 {
2197 	blk_dequeue_request(req);
2198 
2199 	/*
2200 	 * We are now handing the request to the hardware, initialize
2201 	 * resid_len to full count and add the timeout handler.
2202 	 */
2203 	req->resid_len = blk_rq_bytes(req);
2204 	if (unlikely(blk_bidi_rq(req)))
2205 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2206 
2207 	blk_add_timer(req);
2208 }
2209 EXPORT_SYMBOL(blk_start_request);
2210 
2211 /**
2212  * blk_fetch_request - fetch a request from a request queue
2213  * @q: request queue to fetch a request from
2214  *
2215  * Description:
2216  *     Return the request at the top of @q.  The request is started on
2217  *     return and LLD can start processing it immediately.
2218  *
2219  * Return:
2220  *     Pointer to the request at the top of @q if available.  Null
2221  *     otherwise.
2222  *
2223  * Context:
2224  *     queue_lock must be held.
2225  */
2226 struct request *blk_fetch_request(struct request_queue *q)
2227 {
2228 	struct request *rq;
2229 
2230 	rq = blk_peek_request(q);
2231 	if (rq)
2232 		blk_start_request(rq);
2233 	return rq;
2234 }
2235 EXPORT_SYMBOL(blk_fetch_request);
2236 
2237 /**
2238  * blk_update_request - Special helper function for request stacking drivers
2239  * @req:      the request being processed
2240  * @error:    %0 for success, < %0 for error
2241  * @nr_bytes: number of bytes to complete @req
2242  *
2243  * Description:
2244  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2245  *     the request structure even if @req doesn't have leftover.
2246  *     If @req has leftover, sets it up for the next range of segments.
2247  *
2248  *     This special helper function is only for request stacking drivers
2249  *     (e.g. request-based dm) so that they can handle partial completion.
2250  *     Actual device drivers should use blk_end_request instead.
2251  *
2252  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2253  *     %false return from this function.
2254  *
2255  * Return:
2256  *     %false - this request doesn't have any more data
2257  *     %true  - this request has more data
2258  **/
2259 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2260 {
2261 	int total_bytes, bio_nbytes, next_idx = 0;
2262 	struct bio *bio;
2263 
2264 	if (!req->bio)
2265 		return false;
2266 
2267 	trace_block_rq_complete(req->q, req);
2268 
2269 	/*
2270 	 * For fs requests, rq is just carrier of independent bio's
2271 	 * and each partial completion should be handled separately.
2272 	 * Reset per-request error on each partial completion.
2273 	 *
2274 	 * TODO: tj: This is too subtle.  It would be better to let
2275 	 * low level drivers do what they see fit.
2276 	 */
2277 	if (req->cmd_type == REQ_TYPE_FS)
2278 		req->errors = 0;
2279 
2280 	if (error && req->cmd_type == REQ_TYPE_FS &&
2281 	    !(req->cmd_flags & REQ_QUIET)) {
2282 		char *error_type;
2283 
2284 		switch (error) {
2285 		case -ENOLINK:
2286 			error_type = "recoverable transport";
2287 			break;
2288 		case -EREMOTEIO:
2289 			error_type = "critical target";
2290 			break;
2291 		case -EBADE:
2292 			error_type = "critical nexus";
2293 			break;
2294 		case -EIO:
2295 		default:
2296 			error_type = "I/O";
2297 			break;
2298 		}
2299 		printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2300 				   error_type, req->rq_disk ?
2301 				   req->rq_disk->disk_name : "?",
2302 				   (unsigned long long)blk_rq_pos(req));
2303 
2304 	}
2305 
2306 	blk_account_io_completion(req, nr_bytes);
2307 
2308 	total_bytes = bio_nbytes = 0;
2309 	while ((bio = req->bio) != NULL) {
2310 		int nbytes;
2311 
2312 		if (nr_bytes >= bio->bi_size) {
2313 			req->bio = bio->bi_next;
2314 			nbytes = bio->bi_size;
2315 			req_bio_endio(req, bio, nbytes, error);
2316 			next_idx = 0;
2317 			bio_nbytes = 0;
2318 		} else {
2319 			int idx = bio->bi_idx + next_idx;
2320 
2321 			if (unlikely(idx >= bio->bi_vcnt)) {
2322 				blk_dump_rq_flags(req, "__end_that");
2323 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2324 				       __func__, idx, bio->bi_vcnt);
2325 				break;
2326 			}
2327 
2328 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2329 			BIO_BUG_ON(nbytes > bio->bi_size);
2330 
2331 			/*
2332 			 * not a complete bvec done
2333 			 */
2334 			if (unlikely(nbytes > nr_bytes)) {
2335 				bio_nbytes += nr_bytes;
2336 				total_bytes += nr_bytes;
2337 				break;
2338 			}
2339 
2340 			/*
2341 			 * advance to the next vector
2342 			 */
2343 			next_idx++;
2344 			bio_nbytes += nbytes;
2345 		}
2346 
2347 		total_bytes += nbytes;
2348 		nr_bytes -= nbytes;
2349 
2350 		bio = req->bio;
2351 		if (bio) {
2352 			/*
2353 			 * end more in this run, or just return 'not-done'
2354 			 */
2355 			if (unlikely(nr_bytes <= 0))
2356 				break;
2357 		}
2358 	}
2359 
2360 	/*
2361 	 * completely done
2362 	 */
2363 	if (!req->bio) {
2364 		/*
2365 		 * Reset counters so that the request stacking driver
2366 		 * can find how many bytes remain in the request
2367 		 * later.
2368 		 */
2369 		req->__data_len = 0;
2370 		return false;
2371 	}
2372 
2373 	/*
2374 	 * if the request wasn't completed, update state
2375 	 */
2376 	if (bio_nbytes) {
2377 		req_bio_endio(req, bio, bio_nbytes, error);
2378 		bio->bi_idx += next_idx;
2379 		bio_iovec(bio)->bv_offset += nr_bytes;
2380 		bio_iovec(bio)->bv_len -= nr_bytes;
2381 	}
2382 
2383 	req->__data_len -= total_bytes;
2384 	req->buffer = bio_data(req->bio);
2385 
2386 	/* update sector only for requests with clear definition of sector */
2387 	if (req->cmd_type == REQ_TYPE_FS)
2388 		req->__sector += total_bytes >> 9;
2389 
2390 	/* mixed attributes always follow the first bio */
2391 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2392 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2393 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2394 	}
2395 
2396 	/*
2397 	 * If total number of sectors is less than the first segment
2398 	 * size, something has gone terribly wrong.
2399 	 */
2400 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2401 		blk_dump_rq_flags(req, "request botched");
2402 		req->__data_len = blk_rq_cur_bytes(req);
2403 	}
2404 
2405 	/* recalculate the number of segments */
2406 	blk_recalc_rq_segments(req);
2407 
2408 	return true;
2409 }
2410 EXPORT_SYMBOL_GPL(blk_update_request);
2411 
2412 static bool blk_update_bidi_request(struct request *rq, int error,
2413 				    unsigned int nr_bytes,
2414 				    unsigned int bidi_bytes)
2415 {
2416 	if (blk_update_request(rq, error, nr_bytes))
2417 		return true;
2418 
2419 	/* Bidi request must be completed as a whole */
2420 	if (unlikely(blk_bidi_rq(rq)) &&
2421 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2422 		return true;
2423 
2424 	if (blk_queue_add_random(rq->q))
2425 		add_disk_randomness(rq->rq_disk);
2426 
2427 	return false;
2428 }
2429 
2430 /**
2431  * blk_unprep_request - unprepare a request
2432  * @req:	the request
2433  *
2434  * This function makes a request ready for complete resubmission (or
2435  * completion).  It happens only after all error handling is complete,
2436  * so represents the appropriate moment to deallocate any resources
2437  * that were allocated to the request in the prep_rq_fn.  The queue
2438  * lock is held when calling this.
2439  */
2440 void blk_unprep_request(struct request *req)
2441 {
2442 	struct request_queue *q = req->q;
2443 
2444 	req->cmd_flags &= ~REQ_DONTPREP;
2445 	if (q->unprep_rq_fn)
2446 		q->unprep_rq_fn(q, req);
2447 }
2448 EXPORT_SYMBOL_GPL(blk_unprep_request);
2449 
2450 /*
2451  * queue lock must be held
2452  */
2453 static void blk_finish_request(struct request *req, int error)
2454 {
2455 	if (blk_rq_tagged(req))
2456 		blk_queue_end_tag(req->q, req);
2457 
2458 	BUG_ON(blk_queued_rq(req));
2459 
2460 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2461 		laptop_io_completion(&req->q->backing_dev_info);
2462 
2463 	blk_delete_timer(req);
2464 
2465 	if (req->cmd_flags & REQ_DONTPREP)
2466 		blk_unprep_request(req);
2467 
2468 
2469 	blk_account_io_done(req);
2470 
2471 	if (req->end_io)
2472 		req->end_io(req, error);
2473 	else {
2474 		if (blk_bidi_rq(req))
2475 			__blk_put_request(req->next_rq->q, req->next_rq);
2476 
2477 		__blk_put_request(req->q, req);
2478 	}
2479 }
2480 
2481 /**
2482  * blk_end_bidi_request - Complete a bidi request
2483  * @rq:         the request to complete
2484  * @error:      %0 for success, < %0 for error
2485  * @nr_bytes:   number of bytes to complete @rq
2486  * @bidi_bytes: number of bytes to complete @rq->next_rq
2487  *
2488  * Description:
2489  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2490  *     Drivers that supports bidi can safely call this member for any
2491  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2492  *     just ignored.
2493  *
2494  * Return:
2495  *     %false - we are done with this request
2496  *     %true  - still buffers pending for this request
2497  **/
2498 static bool blk_end_bidi_request(struct request *rq, int error,
2499 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2500 {
2501 	struct request_queue *q = rq->q;
2502 	unsigned long flags;
2503 
2504 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2505 		return true;
2506 
2507 	spin_lock_irqsave(q->queue_lock, flags);
2508 	blk_finish_request(rq, error);
2509 	spin_unlock_irqrestore(q->queue_lock, flags);
2510 
2511 	return false;
2512 }
2513 
2514 /**
2515  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2516  * @rq:         the request to complete
2517  * @error:      %0 for success, < %0 for error
2518  * @nr_bytes:   number of bytes to complete @rq
2519  * @bidi_bytes: number of bytes to complete @rq->next_rq
2520  *
2521  * Description:
2522  *     Identical to blk_end_bidi_request() except that queue lock is
2523  *     assumed to be locked on entry and remains so on return.
2524  *
2525  * Return:
2526  *     %false - we are done with this request
2527  *     %true  - still buffers pending for this request
2528  **/
2529 bool __blk_end_bidi_request(struct request *rq, int error,
2530 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2531 {
2532 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2533 		return true;
2534 
2535 	blk_finish_request(rq, error);
2536 
2537 	return false;
2538 }
2539 
2540 /**
2541  * blk_end_request - Helper function for drivers to complete the request.
2542  * @rq:       the request being processed
2543  * @error:    %0 for success, < %0 for error
2544  * @nr_bytes: number of bytes to complete
2545  *
2546  * Description:
2547  *     Ends I/O on a number of bytes attached to @rq.
2548  *     If @rq has leftover, sets it up for the next range of segments.
2549  *
2550  * Return:
2551  *     %false - we are done with this request
2552  *     %true  - still buffers pending for this request
2553  **/
2554 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2555 {
2556 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2557 }
2558 EXPORT_SYMBOL(blk_end_request);
2559 
2560 /**
2561  * blk_end_request_all - Helper function for drives to finish the request.
2562  * @rq: the request to finish
2563  * @error: %0 for success, < %0 for error
2564  *
2565  * Description:
2566  *     Completely finish @rq.
2567  */
2568 void blk_end_request_all(struct request *rq, int error)
2569 {
2570 	bool pending;
2571 	unsigned int bidi_bytes = 0;
2572 
2573 	if (unlikely(blk_bidi_rq(rq)))
2574 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2575 
2576 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2577 	BUG_ON(pending);
2578 }
2579 EXPORT_SYMBOL(blk_end_request_all);
2580 
2581 /**
2582  * blk_end_request_cur - Helper function to finish the current request chunk.
2583  * @rq: the request to finish the current chunk for
2584  * @error: %0 for success, < %0 for error
2585  *
2586  * Description:
2587  *     Complete the current consecutively mapped chunk from @rq.
2588  *
2589  * Return:
2590  *     %false - we are done with this request
2591  *     %true  - still buffers pending for this request
2592  */
2593 bool blk_end_request_cur(struct request *rq, int error)
2594 {
2595 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2596 }
2597 EXPORT_SYMBOL(blk_end_request_cur);
2598 
2599 /**
2600  * blk_end_request_err - Finish a request till the next failure boundary.
2601  * @rq: the request to finish till the next failure boundary for
2602  * @error: must be negative errno
2603  *
2604  * Description:
2605  *     Complete @rq till the next failure boundary.
2606  *
2607  * Return:
2608  *     %false - we are done with this request
2609  *     %true  - still buffers pending for this request
2610  */
2611 bool blk_end_request_err(struct request *rq, int error)
2612 {
2613 	WARN_ON(error >= 0);
2614 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2615 }
2616 EXPORT_SYMBOL_GPL(blk_end_request_err);
2617 
2618 /**
2619  * __blk_end_request - Helper function for drivers to complete the request.
2620  * @rq:       the request being processed
2621  * @error:    %0 for success, < %0 for error
2622  * @nr_bytes: number of bytes to complete
2623  *
2624  * Description:
2625  *     Must be called with queue lock held unlike blk_end_request().
2626  *
2627  * Return:
2628  *     %false - we are done with this request
2629  *     %true  - still buffers pending for this request
2630  **/
2631 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2632 {
2633 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2634 }
2635 EXPORT_SYMBOL(__blk_end_request);
2636 
2637 /**
2638  * __blk_end_request_all - Helper function for drives to finish the request.
2639  * @rq: the request to finish
2640  * @error: %0 for success, < %0 for error
2641  *
2642  * Description:
2643  *     Completely finish @rq.  Must be called with queue lock held.
2644  */
2645 void __blk_end_request_all(struct request *rq, int error)
2646 {
2647 	bool pending;
2648 	unsigned int bidi_bytes = 0;
2649 
2650 	if (unlikely(blk_bidi_rq(rq)))
2651 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2652 
2653 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2654 	BUG_ON(pending);
2655 }
2656 EXPORT_SYMBOL(__blk_end_request_all);
2657 
2658 /**
2659  * __blk_end_request_cur - Helper function to finish the current request chunk.
2660  * @rq: the request to finish the current chunk for
2661  * @error: %0 for success, < %0 for error
2662  *
2663  * Description:
2664  *     Complete the current consecutively mapped chunk from @rq.  Must
2665  *     be called with queue lock held.
2666  *
2667  * Return:
2668  *     %false - we are done with this request
2669  *     %true  - still buffers pending for this request
2670  */
2671 bool __blk_end_request_cur(struct request *rq, int error)
2672 {
2673 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2674 }
2675 EXPORT_SYMBOL(__blk_end_request_cur);
2676 
2677 /**
2678  * __blk_end_request_err - Finish a request till the next failure boundary.
2679  * @rq: the request to finish till the next failure boundary for
2680  * @error: must be negative errno
2681  *
2682  * Description:
2683  *     Complete @rq till the next failure boundary.  Must be called
2684  *     with queue lock held.
2685  *
2686  * Return:
2687  *     %false - we are done with this request
2688  *     %true  - still buffers pending for this request
2689  */
2690 bool __blk_end_request_err(struct request *rq, int error)
2691 {
2692 	WARN_ON(error >= 0);
2693 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2694 }
2695 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2696 
2697 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2698 		     struct bio *bio)
2699 {
2700 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2701 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2702 
2703 	if (bio_has_data(bio)) {
2704 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2705 		rq->buffer = bio_data(bio);
2706 	}
2707 	rq->__data_len = bio->bi_size;
2708 	rq->bio = rq->biotail = bio;
2709 
2710 	if (bio->bi_bdev)
2711 		rq->rq_disk = bio->bi_bdev->bd_disk;
2712 }
2713 
2714 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2715 /**
2716  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2717  * @rq: the request to be flushed
2718  *
2719  * Description:
2720  *     Flush all pages in @rq.
2721  */
2722 void rq_flush_dcache_pages(struct request *rq)
2723 {
2724 	struct req_iterator iter;
2725 	struct bio_vec *bvec;
2726 
2727 	rq_for_each_segment(bvec, rq, iter)
2728 		flush_dcache_page(bvec->bv_page);
2729 }
2730 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2731 #endif
2732 
2733 /**
2734  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2735  * @q : the queue of the device being checked
2736  *
2737  * Description:
2738  *    Check if underlying low-level drivers of a device are busy.
2739  *    If the drivers want to export their busy state, they must set own
2740  *    exporting function using blk_queue_lld_busy() first.
2741  *
2742  *    Basically, this function is used only by request stacking drivers
2743  *    to stop dispatching requests to underlying devices when underlying
2744  *    devices are busy.  This behavior helps more I/O merging on the queue
2745  *    of the request stacking driver and prevents I/O throughput regression
2746  *    on burst I/O load.
2747  *
2748  * Return:
2749  *    0 - Not busy (The request stacking driver should dispatch request)
2750  *    1 - Busy (The request stacking driver should stop dispatching request)
2751  */
2752 int blk_lld_busy(struct request_queue *q)
2753 {
2754 	if (q->lld_busy_fn)
2755 		return q->lld_busy_fn(q);
2756 
2757 	return 0;
2758 }
2759 EXPORT_SYMBOL_GPL(blk_lld_busy);
2760 
2761 /**
2762  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2763  * @rq: the clone request to be cleaned up
2764  *
2765  * Description:
2766  *     Free all bios in @rq for a cloned request.
2767  */
2768 void blk_rq_unprep_clone(struct request *rq)
2769 {
2770 	struct bio *bio;
2771 
2772 	while ((bio = rq->bio) != NULL) {
2773 		rq->bio = bio->bi_next;
2774 
2775 		bio_put(bio);
2776 	}
2777 }
2778 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2779 
2780 /*
2781  * Copy attributes of the original request to the clone request.
2782  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2783  */
2784 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2785 {
2786 	dst->cpu = src->cpu;
2787 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2788 	dst->cmd_type = src->cmd_type;
2789 	dst->__sector = blk_rq_pos(src);
2790 	dst->__data_len = blk_rq_bytes(src);
2791 	dst->nr_phys_segments = src->nr_phys_segments;
2792 	dst->ioprio = src->ioprio;
2793 	dst->extra_len = src->extra_len;
2794 }
2795 
2796 /**
2797  * blk_rq_prep_clone - Helper function to setup clone request
2798  * @rq: the request to be setup
2799  * @rq_src: original request to be cloned
2800  * @bs: bio_set that bios for clone are allocated from
2801  * @gfp_mask: memory allocation mask for bio
2802  * @bio_ctr: setup function to be called for each clone bio.
2803  *           Returns %0 for success, non %0 for failure.
2804  * @data: private data to be passed to @bio_ctr
2805  *
2806  * Description:
2807  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2808  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2809  *     are not copied, and copying such parts is the caller's responsibility.
2810  *     Also, pages which the original bios are pointing to are not copied
2811  *     and the cloned bios just point same pages.
2812  *     So cloned bios must be completed before original bios, which means
2813  *     the caller must complete @rq before @rq_src.
2814  */
2815 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2816 		      struct bio_set *bs, gfp_t gfp_mask,
2817 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2818 		      void *data)
2819 {
2820 	struct bio *bio, *bio_src;
2821 
2822 	if (!bs)
2823 		bs = fs_bio_set;
2824 
2825 	blk_rq_init(NULL, rq);
2826 
2827 	__rq_for_each_bio(bio_src, rq_src) {
2828 		bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2829 		if (!bio)
2830 			goto free_and_out;
2831 
2832 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2833 			goto free_and_out;
2834 
2835 		if (rq->bio) {
2836 			rq->biotail->bi_next = bio;
2837 			rq->biotail = bio;
2838 		} else
2839 			rq->bio = rq->biotail = bio;
2840 	}
2841 
2842 	__blk_rq_prep_clone(rq, rq_src);
2843 
2844 	return 0;
2845 
2846 free_and_out:
2847 	if (bio)
2848 		bio_put(bio);
2849 	blk_rq_unprep_clone(rq);
2850 
2851 	return -ENOMEM;
2852 }
2853 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2854 
2855 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2856 {
2857 	return queue_work(kblockd_workqueue, work);
2858 }
2859 EXPORT_SYMBOL(kblockd_schedule_work);
2860 
2861 int kblockd_schedule_delayed_work(struct request_queue *q,
2862 			struct delayed_work *dwork, unsigned long delay)
2863 {
2864 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2865 }
2866 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2867 
2868 #define PLUG_MAGIC	0x91827364
2869 
2870 /**
2871  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2872  * @plug:	The &struct blk_plug that needs to be initialized
2873  *
2874  * Description:
2875  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2876  *   pending I/O should the task end up blocking between blk_start_plug() and
2877  *   blk_finish_plug(). This is important from a performance perspective, but
2878  *   also ensures that we don't deadlock. For instance, if the task is blocking
2879  *   for a memory allocation, memory reclaim could end up wanting to free a
2880  *   page belonging to that request that is currently residing in our private
2881  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2882  *   this kind of deadlock.
2883  */
2884 void blk_start_plug(struct blk_plug *plug)
2885 {
2886 	struct task_struct *tsk = current;
2887 
2888 	plug->magic = PLUG_MAGIC;
2889 	INIT_LIST_HEAD(&plug->list);
2890 	INIT_LIST_HEAD(&plug->cb_list);
2891 	plug->should_sort = 0;
2892 
2893 	/*
2894 	 * If this is a nested plug, don't actually assign it. It will be
2895 	 * flushed on its own.
2896 	 */
2897 	if (!tsk->plug) {
2898 		/*
2899 		 * Store ordering should not be needed here, since a potential
2900 		 * preempt will imply a full memory barrier
2901 		 */
2902 		tsk->plug = plug;
2903 	}
2904 }
2905 EXPORT_SYMBOL(blk_start_plug);
2906 
2907 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2908 {
2909 	struct request *rqa = container_of(a, struct request, queuelist);
2910 	struct request *rqb = container_of(b, struct request, queuelist);
2911 
2912 	return !(rqa->q < rqb->q ||
2913 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2914 }
2915 
2916 /*
2917  * If 'from_schedule' is true, then postpone the dispatch of requests
2918  * until a safe kblockd context. We due this to avoid accidental big
2919  * additional stack usage in driver dispatch, in places where the originally
2920  * plugger did not intend it.
2921  */
2922 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2923 			    bool from_schedule)
2924 	__releases(q->queue_lock)
2925 {
2926 	trace_block_unplug(q, depth, !from_schedule);
2927 
2928 	if (from_schedule)
2929 		blk_run_queue_async(q);
2930 	else
2931 		__blk_run_queue(q);
2932 	spin_unlock(q->queue_lock);
2933 }
2934 
2935 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2936 {
2937 	LIST_HEAD(callbacks);
2938 
2939 	while (!list_empty(&plug->cb_list)) {
2940 		list_splice_init(&plug->cb_list, &callbacks);
2941 
2942 		while (!list_empty(&callbacks)) {
2943 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
2944 							  struct blk_plug_cb,
2945 							  list);
2946 			list_del(&cb->list);
2947 			cb->callback(cb, from_schedule);
2948 		}
2949 	}
2950 }
2951 
2952 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2953 				      int size)
2954 {
2955 	struct blk_plug *plug = current->plug;
2956 	struct blk_plug_cb *cb;
2957 
2958 	if (!plug)
2959 		return NULL;
2960 
2961 	list_for_each_entry(cb, &plug->cb_list, list)
2962 		if (cb->callback == unplug && cb->data == data)
2963 			return cb;
2964 
2965 	/* Not currently on the callback list */
2966 	BUG_ON(size < sizeof(*cb));
2967 	cb = kzalloc(size, GFP_ATOMIC);
2968 	if (cb) {
2969 		cb->data = data;
2970 		cb->callback = unplug;
2971 		list_add(&cb->list, &plug->cb_list);
2972 	}
2973 	return cb;
2974 }
2975 EXPORT_SYMBOL(blk_check_plugged);
2976 
2977 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2978 {
2979 	struct request_queue *q;
2980 	unsigned long flags;
2981 	struct request *rq;
2982 	LIST_HEAD(list);
2983 	unsigned int depth;
2984 
2985 	BUG_ON(plug->magic != PLUG_MAGIC);
2986 
2987 	flush_plug_callbacks(plug, from_schedule);
2988 	if (list_empty(&plug->list))
2989 		return;
2990 
2991 	list_splice_init(&plug->list, &list);
2992 
2993 	if (plug->should_sort) {
2994 		list_sort(NULL, &list, plug_rq_cmp);
2995 		plug->should_sort = 0;
2996 	}
2997 
2998 	q = NULL;
2999 	depth = 0;
3000 
3001 	/*
3002 	 * Save and disable interrupts here, to avoid doing it for every
3003 	 * queue lock we have to take.
3004 	 */
3005 	local_irq_save(flags);
3006 	while (!list_empty(&list)) {
3007 		rq = list_entry_rq(list.next);
3008 		list_del_init(&rq->queuelist);
3009 		BUG_ON(!rq->q);
3010 		if (rq->q != q) {
3011 			/*
3012 			 * This drops the queue lock
3013 			 */
3014 			if (q)
3015 				queue_unplugged(q, depth, from_schedule);
3016 			q = rq->q;
3017 			depth = 0;
3018 			spin_lock(q->queue_lock);
3019 		}
3020 
3021 		/*
3022 		 * Short-circuit if @q is dead
3023 		 */
3024 		if (unlikely(blk_queue_dying(q))) {
3025 			__blk_end_request_all(rq, -ENODEV);
3026 			continue;
3027 		}
3028 
3029 		/*
3030 		 * rq is already accounted, so use raw insert
3031 		 */
3032 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3033 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3034 		else
3035 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3036 
3037 		depth++;
3038 	}
3039 
3040 	/*
3041 	 * This drops the queue lock
3042 	 */
3043 	if (q)
3044 		queue_unplugged(q, depth, from_schedule);
3045 
3046 	local_irq_restore(flags);
3047 }
3048 
3049 void blk_finish_plug(struct blk_plug *plug)
3050 {
3051 	blk_flush_plug_list(plug, false);
3052 
3053 	if (plug == current->plug)
3054 		current->plug = NULL;
3055 }
3056 EXPORT_SYMBOL(blk_finish_plug);
3057 
3058 int __init blk_dev_init(void)
3059 {
3060 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3061 			sizeof(((struct request *)0)->cmd_flags));
3062 
3063 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3064 	kblockd_workqueue = alloc_workqueue("kblockd",
3065 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3066 	if (!kblockd_workqueue)
3067 		panic("Failed to create kblockd\n");
3068 
3069 	request_cachep = kmem_cache_create("blkdev_requests",
3070 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3071 
3072 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3073 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3074 
3075 	return 0;
3076 }
3077