xref: /openbmc/linux/block/blk-core.c (revision 83268fa6)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41 
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-pm.h"
46 #include "blk-rq-qos.h"
47 
48 #ifdef CONFIG_DEBUG_FS
49 struct dentry *blk_debugfs_root;
50 #endif
51 
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
57 
58 DEFINE_IDA(blk_queue_ida);
59 
60 /*
61  * For the allocated request tables
62  */
63 struct kmem_cache *request_cachep;
64 
65 /*
66  * For queue allocation
67  */
68 struct kmem_cache *blk_requestq_cachep;
69 
70 /*
71  * Controlling structure to kblockd
72  */
73 static struct workqueue_struct *kblockd_workqueue;
74 
75 /**
76  * blk_queue_flag_set - atomically set a queue flag
77  * @flag: flag to be set
78  * @q: request queue
79  */
80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 {
82 	unsigned long flags;
83 
84 	spin_lock_irqsave(q->queue_lock, flags);
85 	queue_flag_set(flag, q);
86 	spin_unlock_irqrestore(q->queue_lock, flags);
87 }
88 EXPORT_SYMBOL(blk_queue_flag_set);
89 
90 /**
91  * blk_queue_flag_clear - atomically clear a queue flag
92  * @flag: flag to be cleared
93  * @q: request queue
94  */
95 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
96 {
97 	unsigned long flags;
98 
99 	spin_lock_irqsave(q->queue_lock, flags);
100 	queue_flag_clear(flag, q);
101 	spin_unlock_irqrestore(q->queue_lock, flags);
102 }
103 EXPORT_SYMBOL(blk_queue_flag_clear);
104 
105 /**
106  * blk_queue_flag_test_and_set - atomically test and set a queue flag
107  * @flag: flag to be set
108  * @q: request queue
109  *
110  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
111  * the flag was already set.
112  */
113 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
114 {
115 	unsigned long flags;
116 	bool res;
117 
118 	spin_lock_irqsave(q->queue_lock, flags);
119 	res = queue_flag_test_and_set(flag, q);
120 	spin_unlock_irqrestore(q->queue_lock, flags);
121 
122 	return res;
123 }
124 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
125 
126 /**
127  * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
128  * @flag: flag to be cleared
129  * @q: request queue
130  *
131  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
132  * the flag was set.
133  */
134 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
135 {
136 	unsigned long flags;
137 	bool res;
138 
139 	spin_lock_irqsave(q->queue_lock, flags);
140 	res = queue_flag_test_and_clear(flag, q);
141 	spin_unlock_irqrestore(q->queue_lock, flags);
142 
143 	return res;
144 }
145 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
146 
147 static void blk_clear_congested(struct request_list *rl, int sync)
148 {
149 #ifdef CONFIG_CGROUP_WRITEBACK
150 	clear_wb_congested(rl->blkg->wb_congested, sync);
151 #else
152 	/*
153 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
154 	 * flip its congestion state for events on other blkcgs.
155 	 */
156 	if (rl == &rl->q->root_rl)
157 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
158 #endif
159 }
160 
161 static void blk_set_congested(struct request_list *rl, int sync)
162 {
163 #ifdef CONFIG_CGROUP_WRITEBACK
164 	set_wb_congested(rl->blkg->wb_congested, sync);
165 #else
166 	/* see blk_clear_congested() */
167 	if (rl == &rl->q->root_rl)
168 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
169 #endif
170 }
171 
172 void blk_queue_congestion_threshold(struct request_queue *q)
173 {
174 	int nr;
175 
176 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
177 	if (nr > q->nr_requests)
178 		nr = q->nr_requests;
179 	q->nr_congestion_on = nr;
180 
181 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
182 	if (nr < 1)
183 		nr = 1;
184 	q->nr_congestion_off = nr;
185 }
186 
187 void blk_rq_init(struct request_queue *q, struct request *rq)
188 {
189 	memset(rq, 0, sizeof(*rq));
190 
191 	INIT_LIST_HEAD(&rq->queuelist);
192 	INIT_LIST_HEAD(&rq->timeout_list);
193 	rq->cpu = -1;
194 	rq->q = q;
195 	rq->__sector = (sector_t) -1;
196 	INIT_HLIST_NODE(&rq->hash);
197 	RB_CLEAR_NODE(&rq->rb_node);
198 	rq->tag = -1;
199 	rq->internal_tag = -1;
200 	rq->start_time_ns = ktime_get_ns();
201 	rq->part = NULL;
202 }
203 EXPORT_SYMBOL(blk_rq_init);
204 
205 static const struct {
206 	int		errno;
207 	const char	*name;
208 } blk_errors[] = {
209 	[BLK_STS_OK]		= { 0,		"" },
210 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
211 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
212 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
213 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
214 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
215 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
216 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
217 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
218 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
219 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
220 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
221 
222 	/* device mapper special case, should not leak out: */
223 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
224 
225 	/* everything else not covered above: */
226 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
227 };
228 
229 blk_status_t errno_to_blk_status(int errno)
230 {
231 	int i;
232 
233 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
234 		if (blk_errors[i].errno == errno)
235 			return (__force blk_status_t)i;
236 	}
237 
238 	return BLK_STS_IOERR;
239 }
240 EXPORT_SYMBOL_GPL(errno_to_blk_status);
241 
242 int blk_status_to_errno(blk_status_t status)
243 {
244 	int idx = (__force int)status;
245 
246 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
247 		return -EIO;
248 	return blk_errors[idx].errno;
249 }
250 EXPORT_SYMBOL_GPL(blk_status_to_errno);
251 
252 static void print_req_error(struct request *req, blk_status_t status)
253 {
254 	int idx = (__force int)status;
255 
256 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
257 		return;
258 
259 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
260 			   __func__, blk_errors[idx].name, req->rq_disk ?
261 			   req->rq_disk->disk_name : "?",
262 			   (unsigned long long)blk_rq_pos(req));
263 }
264 
265 static void req_bio_endio(struct request *rq, struct bio *bio,
266 			  unsigned int nbytes, blk_status_t error)
267 {
268 	if (error)
269 		bio->bi_status = error;
270 
271 	if (unlikely(rq->rq_flags & RQF_QUIET))
272 		bio_set_flag(bio, BIO_QUIET);
273 
274 	bio_advance(bio, nbytes);
275 
276 	/* don't actually finish bio if it's part of flush sequence */
277 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
278 		bio_endio(bio);
279 }
280 
281 void blk_dump_rq_flags(struct request *rq, char *msg)
282 {
283 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
284 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
285 		(unsigned long long) rq->cmd_flags);
286 
287 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
288 	       (unsigned long long)blk_rq_pos(rq),
289 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
290 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
291 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
292 }
293 EXPORT_SYMBOL(blk_dump_rq_flags);
294 
295 static void blk_delay_work(struct work_struct *work)
296 {
297 	struct request_queue *q;
298 
299 	q = container_of(work, struct request_queue, delay_work.work);
300 	spin_lock_irq(q->queue_lock);
301 	__blk_run_queue(q);
302 	spin_unlock_irq(q->queue_lock);
303 }
304 
305 /**
306  * blk_delay_queue - restart queueing after defined interval
307  * @q:		The &struct request_queue in question
308  * @msecs:	Delay in msecs
309  *
310  * Description:
311  *   Sometimes queueing needs to be postponed for a little while, to allow
312  *   resources to come back. This function will make sure that queueing is
313  *   restarted around the specified time.
314  */
315 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
316 {
317 	lockdep_assert_held(q->queue_lock);
318 	WARN_ON_ONCE(q->mq_ops);
319 
320 	if (likely(!blk_queue_dead(q)))
321 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
322 				   msecs_to_jiffies(msecs));
323 }
324 EXPORT_SYMBOL(blk_delay_queue);
325 
326 /**
327  * blk_start_queue_async - asynchronously restart a previously stopped queue
328  * @q:    The &struct request_queue in question
329  *
330  * Description:
331  *   blk_start_queue_async() will clear the stop flag on the queue, and
332  *   ensure that the request_fn for the queue is run from an async
333  *   context.
334  **/
335 void blk_start_queue_async(struct request_queue *q)
336 {
337 	lockdep_assert_held(q->queue_lock);
338 	WARN_ON_ONCE(q->mq_ops);
339 
340 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
341 	blk_run_queue_async(q);
342 }
343 EXPORT_SYMBOL(blk_start_queue_async);
344 
345 /**
346  * blk_start_queue - restart a previously stopped queue
347  * @q:    The &struct request_queue in question
348  *
349  * Description:
350  *   blk_start_queue() will clear the stop flag on the queue, and call
351  *   the request_fn for the queue if it was in a stopped state when
352  *   entered. Also see blk_stop_queue().
353  **/
354 void blk_start_queue(struct request_queue *q)
355 {
356 	lockdep_assert_held(q->queue_lock);
357 	WARN_ON_ONCE(q->mq_ops);
358 
359 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
360 	__blk_run_queue(q);
361 }
362 EXPORT_SYMBOL(blk_start_queue);
363 
364 /**
365  * blk_stop_queue - stop a queue
366  * @q:    The &struct request_queue in question
367  *
368  * Description:
369  *   The Linux block layer assumes that a block driver will consume all
370  *   entries on the request queue when the request_fn strategy is called.
371  *   Often this will not happen, because of hardware limitations (queue
372  *   depth settings). If a device driver gets a 'queue full' response,
373  *   or if it simply chooses not to queue more I/O at one point, it can
374  *   call this function to prevent the request_fn from being called until
375  *   the driver has signalled it's ready to go again. This happens by calling
376  *   blk_start_queue() to restart queue operations.
377  **/
378 void blk_stop_queue(struct request_queue *q)
379 {
380 	lockdep_assert_held(q->queue_lock);
381 	WARN_ON_ONCE(q->mq_ops);
382 
383 	cancel_delayed_work(&q->delay_work);
384 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
385 }
386 EXPORT_SYMBOL(blk_stop_queue);
387 
388 /**
389  * blk_sync_queue - cancel any pending callbacks on a queue
390  * @q: the queue
391  *
392  * Description:
393  *     The block layer may perform asynchronous callback activity
394  *     on a queue, such as calling the unplug function after a timeout.
395  *     A block device may call blk_sync_queue to ensure that any
396  *     such activity is cancelled, thus allowing it to release resources
397  *     that the callbacks might use. The caller must already have made sure
398  *     that its ->make_request_fn will not re-add plugging prior to calling
399  *     this function.
400  *
401  *     This function does not cancel any asynchronous activity arising
402  *     out of elevator or throttling code. That would require elevator_exit()
403  *     and blkcg_exit_queue() to be called with queue lock initialized.
404  *
405  */
406 void blk_sync_queue(struct request_queue *q)
407 {
408 	del_timer_sync(&q->timeout);
409 	cancel_work_sync(&q->timeout_work);
410 
411 	if (q->mq_ops) {
412 		struct blk_mq_hw_ctx *hctx;
413 		int i;
414 
415 		cancel_delayed_work_sync(&q->requeue_work);
416 		queue_for_each_hw_ctx(q, hctx, i)
417 			cancel_delayed_work_sync(&hctx->run_work);
418 	} else {
419 		cancel_delayed_work_sync(&q->delay_work);
420 	}
421 }
422 EXPORT_SYMBOL(blk_sync_queue);
423 
424 /**
425  * blk_set_pm_only - increment pm_only counter
426  * @q: request queue pointer
427  */
428 void blk_set_pm_only(struct request_queue *q)
429 {
430 	atomic_inc(&q->pm_only);
431 }
432 EXPORT_SYMBOL_GPL(blk_set_pm_only);
433 
434 void blk_clear_pm_only(struct request_queue *q)
435 {
436 	int pm_only;
437 
438 	pm_only = atomic_dec_return(&q->pm_only);
439 	WARN_ON_ONCE(pm_only < 0);
440 	if (pm_only == 0)
441 		wake_up_all(&q->mq_freeze_wq);
442 }
443 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
444 
445 /**
446  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
447  * @q:	The queue to run
448  *
449  * Description:
450  *    Invoke request handling on a queue if there are any pending requests.
451  *    May be used to restart request handling after a request has completed.
452  *    This variant runs the queue whether or not the queue has been
453  *    stopped. Must be called with the queue lock held and interrupts
454  *    disabled. See also @blk_run_queue.
455  */
456 inline void __blk_run_queue_uncond(struct request_queue *q)
457 {
458 	lockdep_assert_held(q->queue_lock);
459 	WARN_ON_ONCE(q->mq_ops);
460 
461 	if (unlikely(blk_queue_dead(q)))
462 		return;
463 
464 	/*
465 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
466 	 * the queue lock internally. As a result multiple threads may be
467 	 * running such a request function concurrently. Keep track of the
468 	 * number of active request_fn invocations such that blk_drain_queue()
469 	 * can wait until all these request_fn calls have finished.
470 	 */
471 	q->request_fn_active++;
472 	q->request_fn(q);
473 	q->request_fn_active--;
474 }
475 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
476 
477 /**
478  * __blk_run_queue - run a single device queue
479  * @q:	The queue to run
480  *
481  * Description:
482  *    See @blk_run_queue.
483  */
484 void __blk_run_queue(struct request_queue *q)
485 {
486 	lockdep_assert_held(q->queue_lock);
487 	WARN_ON_ONCE(q->mq_ops);
488 
489 	if (unlikely(blk_queue_stopped(q)))
490 		return;
491 
492 	__blk_run_queue_uncond(q);
493 }
494 EXPORT_SYMBOL(__blk_run_queue);
495 
496 /**
497  * blk_run_queue_async - run a single device queue in workqueue context
498  * @q:	The queue to run
499  *
500  * Description:
501  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
502  *    of us.
503  *
504  * Note:
505  *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
506  *    has canceled q->delay_work, callers must hold the queue lock to avoid
507  *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
508  */
509 void blk_run_queue_async(struct request_queue *q)
510 {
511 	lockdep_assert_held(q->queue_lock);
512 	WARN_ON_ONCE(q->mq_ops);
513 
514 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
515 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
516 }
517 EXPORT_SYMBOL(blk_run_queue_async);
518 
519 /**
520  * blk_run_queue - run a single device queue
521  * @q: The queue to run
522  *
523  * Description:
524  *    Invoke request handling on this queue, if it has pending work to do.
525  *    May be used to restart queueing when a request has completed.
526  */
527 void blk_run_queue(struct request_queue *q)
528 {
529 	unsigned long flags;
530 
531 	WARN_ON_ONCE(q->mq_ops);
532 
533 	spin_lock_irqsave(q->queue_lock, flags);
534 	__blk_run_queue(q);
535 	spin_unlock_irqrestore(q->queue_lock, flags);
536 }
537 EXPORT_SYMBOL(blk_run_queue);
538 
539 void blk_put_queue(struct request_queue *q)
540 {
541 	kobject_put(&q->kobj);
542 }
543 EXPORT_SYMBOL(blk_put_queue);
544 
545 /**
546  * __blk_drain_queue - drain requests from request_queue
547  * @q: queue to drain
548  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
549  *
550  * Drain requests from @q.  If @drain_all is set, all requests are drained.
551  * If not, only ELVPRIV requests are drained.  The caller is responsible
552  * for ensuring that no new requests which need to be drained are queued.
553  */
554 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
555 	__releases(q->queue_lock)
556 	__acquires(q->queue_lock)
557 {
558 	int i;
559 
560 	lockdep_assert_held(q->queue_lock);
561 	WARN_ON_ONCE(q->mq_ops);
562 
563 	while (true) {
564 		bool drain = false;
565 
566 		/*
567 		 * The caller might be trying to drain @q before its
568 		 * elevator is initialized.
569 		 */
570 		if (q->elevator)
571 			elv_drain_elevator(q);
572 
573 		blkcg_drain_queue(q);
574 
575 		/*
576 		 * This function might be called on a queue which failed
577 		 * driver init after queue creation or is not yet fully
578 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
579 		 * in such cases.  Kick queue iff dispatch queue has
580 		 * something on it and @q has request_fn set.
581 		 */
582 		if (!list_empty(&q->queue_head) && q->request_fn)
583 			__blk_run_queue(q);
584 
585 		drain |= q->nr_rqs_elvpriv;
586 		drain |= q->request_fn_active;
587 
588 		/*
589 		 * Unfortunately, requests are queued at and tracked from
590 		 * multiple places and there's no single counter which can
591 		 * be drained.  Check all the queues and counters.
592 		 */
593 		if (drain_all) {
594 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
595 			drain |= !list_empty(&q->queue_head);
596 			for (i = 0; i < 2; i++) {
597 				drain |= q->nr_rqs[i];
598 				drain |= q->in_flight[i];
599 				if (fq)
600 				    drain |= !list_empty(&fq->flush_queue[i]);
601 			}
602 		}
603 
604 		if (!drain)
605 			break;
606 
607 		spin_unlock_irq(q->queue_lock);
608 
609 		msleep(10);
610 
611 		spin_lock_irq(q->queue_lock);
612 	}
613 
614 	/*
615 	 * With queue marked dead, any woken up waiter will fail the
616 	 * allocation path, so the wakeup chaining is lost and we're
617 	 * left with hung waiters. We need to wake up those waiters.
618 	 */
619 	if (q->request_fn) {
620 		struct request_list *rl;
621 
622 		blk_queue_for_each_rl(rl, q)
623 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
624 				wake_up_all(&rl->wait[i]);
625 	}
626 }
627 
628 void blk_drain_queue(struct request_queue *q)
629 {
630 	spin_lock_irq(q->queue_lock);
631 	__blk_drain_queue(q, true);
632 	spin_unlock_irq(q->queue_lock);
633 }
634 
635 /**
636  * blk_queue_bypass_start - enter queue bypass mode
637  * @q: queue of interest
638  *
639  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
640  * function makes @q enter bypass mode and drains all requests which were
641  * throttled or issued before.  On return, it's guaranteed that no request
642  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
643  * inside queue or RCU read lock.
644  */
645 void blk_queue_bypass_start(struct request_queue *q)
646 {
647 	WARN_ON_ONCE(q->mq_ops);
648 
649 	spin_lock_irq(q->queue_lock);
650 	q->bypass_depth++;
651 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
652 	spin_unlock_irq(q->queue_lock);
653 
654 	/*
655 	 * Queues start drained.  Skip actual draining till init is
656 	 * complete.  This avoids lenghty delays during queue init which
657 	 * can happen many times during boot.
658 	 */
659 	if (blk_queue_init_done(q)) {
660 		spin_lock_irq(q->queue_lock);
661 		__blk_drain_queue(q, false);
662 		spin_unlock_irq(q->queue_lock);
663 
664 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
665 		synchronize_rcu();
666 	}
667 }
668 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
669 
670 /**
671  * blk_queue_bypass_end - leave queue bypass mode
672  * @q: queue of interest
673  *
674  * Leave bypass mode and restore the normal queueing behavior.
675  *
676  * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
677  * this function is called for both blk-sq and blk-mq queues.
678  */
679 void blk_queue_bypass_end(struct request_queue *q)
680 {
681 	spin_lock_irq(q->queue_lock);
682 	if (!--q->bypass_depth)
683 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
684 	WARN_ON_ONCE(q->bypass_depth < 0);
685 	spin_unlock_irq(q->queue_lock);
686 }
687 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
688 
689 void blk_set_queue_dying(struct request_queue *q)
690 {
691 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
692 
693 	/*
694 	 * When queue DYING flag is set, we need to block new req
695 	 * entering queue, so we call blk_freeze_queue_start() to
696 	 * prevent I/O from crossing blk_queue_enter().
697 	 */
698 	blk_freeze_queue_start(q);
699 
700 	if (q->mq_ops)
701 		blk_mq_wake_waiters(q);
702 	else {
703 		struct request_list *rl;
704 
705 		spin_lock_irq(q->queue_lock);
706 		blk_queue_for_each_rl(rl, q) {
707 			if (rl->rq_pool) {
708 				wake_up_all(&rl->wait[BLK_RW_SYNC]);
709 				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
710 			}
711 		}
712 		spin_unlock_irq(q->queue_lock);
713 	}
714 
715 	/* Make blk_queue_enter() reexamine the DYING flag. */
716 	wake_up_all(&q->mq_freeze_wq);
717 }
718 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
719 
720 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
721 void blk_exit_queue(struct request_queue *q)
722 {
723 	/*
724 	 * Since the I/O scheduler exit code may access cgroup information,
725 	 * perform I/O scheduler exit before disassociating from the block
726 	 * cgroup controller.
727 	 */
728 	if (q->elevator) {
729 		ioc_clear_queue(q);
730 		elevator_exit(q, q->elevator);
731 		q->elevator = NULL;
732 	}
733 
734 	/*
735 	 * Remove all references to @q from the block cgroup controller before
736 	 * restoring @q->queue_lock to avoid that restoring this pointer causes
737 	 * e.g. blkcg_print_blkgs() to crash.
738 	 */
739 	blkcg_exit_queue(q);
740 
741 	/*
742 	 * Since the cgroup code may dereference the @q->backing_dev_info
743 	 * pointer, only decrease its reference count after having removed the
744 	 * association with the block cgroup controller.
745 	 */
746 	bdi_put(q->backing_dev_info);
747 }
748 
749 /**
750  * blk_cleanup_queue - shutdown a request queue
751  * @q: request queue to shutdown
752  *
753  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
754  * put it.  All future requests will be failed immediately with -ENODEV.
755  */
756 void blk_cleanup_queue(struct request_queue *q)
757 {
758 	spinlock_t *lock = q->queue_lock;
759 
760 	/* mark @q DYING, no new request or merges will be allowed afterwards */
761 	mutex_lock(&q->sysfs_lock);
762 	blk_set_queue_dying(q);
763 	spin_lock_irq(lock);
764 
765 	/*
766 	 * A dying queue is permanently in bypass mode till released.  Note
767 	 * that, unlike blk_queue_bypass_start(), we aren't performing
768 	 * synchronize_rcu() after entering bypass mode to avoid the delay
769 	 * as some drivers create and destroy a lot of queues while
770 	 * probing.  This is still safe because blk_release_queue() will be
771 	 * called only after the queue refcnt drops to zero and nothing,
772 	 * RCU or not, would be traversing the queue by then.
773 	 */
774 	q->bypass_depth++;
775 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
776 
777 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
778 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
779 	queue_flag_set(QUEUE_FLAG_DYING, q);
780 	spin_unlock_irq(lock);
781 	mutex_unlock(&q->sysfs_lock);
782 
783 	/*
784 	 * Drain all requests queued before DYING marking. Set DEAD flag to
785 	 * prevent that q->request_fn() gets invoked after draining finished.
786 	 */
787 	blk_freeze_queue(q);
788 
789 	rq_qos_exit(q);
790 
791 	spin_lock_irq(lock);
792 	queue_flag_set(QUEUE_FLAG_DEAD, q);
793 	spin_unlock_irq(lock);
794 
795 	/*
796 	 * make sure all in-progress dispatch are completed because
797 	 * blk_freeze_queue() can only complete all requests, and
798 	 * dispatch may still be in-progress since we dispatch requests
799 	 * from more than one contexts.
800 	 *
801 	 * No need to quiesce queue if it isn't initialized yet since
802 	 * blk_freeze_queue() should be enough for cases of passthrough
803 	 * request.
804 	 */
805 	if (q->mq_ops && blk_queue_init_done(q))
806 		blk_mq_quiesce_queue(q);
807 
808 	/* for synchronous bio-based driver finish in-flight integrity i/o */
809 	blk_flush_integrity();
810 
811 	/* @q won't process any more request, flush async actions */
812 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
813 	blk_sync_queue(q);
814 
815 	/*
816 	 * I/O scheduler exit is only safe after the sysfs scheduler attribute
817 	 * has been removed.
818 	 */
819 	WARN_ON_ONCE(q->kobj.state_in_sysfs);
820 
821 	blk_exit_queue(q);
822 
823 	if (q->mq_ops)
824 		blk_mq_free_queue(q);
825 	percpu_ref_exit(&q->q_usage_counter);
826 
827 	spin_lock_irq(lock);
828 	if (q->queue_lock != &q->__queue_lock)
829 		q->queue_lock = &q->__queue_lock;
830 	spin_unlock_irq(lock);
831 
832 	/* @q is and will stay empty, shutdown and put */
833 	blk_put_queue(q);
834 }
835 EXPORT_SYMBOL(blk_cleanup_queue);
836 
837 /* Allocate memory local to the request queue */
838 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
839 {
840 	struct request_queue *q = data;
841 
842 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
843 }
844 
845 static void free_request_simple(void *element, void *data)
846 {
847 	kmem_cache_free(request_cachep, element);
848 }
849 
850 static void *alloc_request_size(gfp_t gfp_mask, void *data)
851 {
852 	struct request_queue *q = data;
853 	struct request *rq;
854 
855 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
856 			q->node);
857 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
858 		kfree(rq);
859 		rq = NULL;
860 	}
861 	return rq;
862 }
863 
864 static void free_request_size(void *element, void *data)
865 {
866 	struct request_queue *q = data;
867 
868 	if (q->exit_rq_fn)
869 		q->exit_rq_fn(q, element);
870 	kfree(element);
871 }
872 
873 int blk_init_rl(struct request_list *rl, struct request_queue *q,
874 		gfp_t gfp_mask)
875 {
876 	if (unlikely(rl->rq_pool) || q->mq_ops)
877 		return 0;
878 
879 	rl->q = q;
880 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
881 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
882 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
883 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
884 
885 	if (q->cmd_size) {
886 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
887 				alloc_request_size, free_request_size,
888 				q, gfp_mask, q->node);
889 	} else {
890 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
891 				alloc_request_simple, free_request_simple,
892 				q, gfp_mask, q->node);
893 	}
894 	if (!rl->rq_pool)
895 		return -ENOMEM;
896 
897 	if (rl != &q->root_rl)
898 		WARN_ON_ONCE(!blk_get_queue(q));
899 
900 	return 0;
901 }
902 
903 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
904 {
905 	if (rl->rq_pool) {
906 		mempool_destroy(rl->rq_pool);
907 		if (rl != &q->root_rl)
908 			blk_put_queue(q);
909 	}
910 }
911 
912 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
913 {
914 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
915 }
916 EXPORT_SYMBOL(blk_alloc_queue);
917 
918 /**
919  * blk_queue_enter() - try to increase q->q_usage_counter
920  * @q: request queue pointer
921  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
922  */
923 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
924 {
925 	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
926 
927 	while (true) {
928 		bool success = false;
929 
930 		rcu_read_lock();
931 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
932 			/*
933 			 * The code that increments the pm_only counter is
934 			 * responsible for ensuring that that counter is
935 			 * globally visible before the queue is unfrozen.
936 			 */
937 			if (pm || !blk_queue_pm_only(q)) {
938 				success = true;
939 			} else {
940 				percpu_ref_put(&q->q_usage_counter);
941 			}
942 		}
943 		rcu_read_unlock();
944 
945 		if (success)
946 			return 0;
947 
948 		if (flags & BLK_MQ_REQ_NOWAIT)
949 			return -EBUSY;
950 
951 		/*
952 		 * read pair of barrier in blk_freeze_queue_start(),
953 		 * we need to order reading __PERCPU_REF_DEAD flag of
954 		 * .q_usage_counter and reading .mq_freeze_depth or
955 		 * queue dying flag, otherwise the following wait may
956 		 * never return if the two reads are reordered.
957 		 */
958 		smp_rmb();
959 
960 		wait_event(q->mq_freeze_wq,
961 			   (atomic_read(&q->mq_freeze_depth) == 0 &&
962 			    (pm || (blk_pm_request_resume(q),
963 				    !blk_queue_pm_only(q)))) ||
964 			   blk_queue_dying(q));
965 		if (blk_queue_dying(q))
966 			return -ENODEV;
967 	}
968 }
969 
970 void blk_queue_exit(struct request_queue *q)
971 {
972 	percpu_ref_put(&q->q_usage_counter);
973 }
974 
975 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
976 {
977 	struct request_queue *q =
978 		container_of(ref, struct request_queue, q_usage_counter);
979 
980 	wake_up_all(&q->mq_freeze_wq);
981 }
982 
983 static void blk_rq_timed_out_timer(struct timer_list *t)
984 {
985 	struct request_queue *q = from_timer(q, t, timeout);
986 
987 	kblockd_schedule_work(&q->timeout_work);
988 }
989 
990 /**
991  * blk_alloc_queue_node - allocate a request queue
992  * @gfp_mask: memory allocation flags
993  * @node_id: NUMA node to allocate memory from
994  * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
995  *        serialize calls to the legacy .request_fn() callback. Ignored for
996  *	  blk-mq request queues.
997  *
998  * Note: pass the queue lock as the third argument to this function instead of
999  * setting the queue lock pointer explicitly to avoid triggering a sporadic
1000  * crash in the blkcg code. This function namely calls blkcg_init_queue() and
1001  * the queue lock pointer must be set before blkcg_init_queue() is called.
1002  */
1003 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
1004 					   spinlock_t *lock)
1005 {
1006 	struct request_queue *q;
1007 	int ret;
1008 
1009 	q = kmem_cache_alloc_node(blk_requestq_cachep,
1010 				gfp_mask | __GFP_ZERO, node_id);
1011 	if (!q)
1012 		return NULL;
1013 
1014 	INIT_LIST_HEAD(&q->queue_head);
1015 	q->last_merge = NULL;
1016 	q->end_sector = 0;
1017 	q->boundary_rq = NULL;
1018 
1019 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1020 	if (q->id < 0)
1021 		goto fail_q;
1022 
1023 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1024 	if (ret)
1025 		goto fail_id;
1026 
1027 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1028 	if (!q->backing_dev_info)
1029 		goto fail_split;
1030 
1031 	q->stats = blk_alloc_queue_stats();
1032 	if (!q->stats)
1033 		goto fail_stats;
1034 
1035 	q->backing_dev_info->ra_pages =
1036 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1037 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1038 	q->backing_dev_info->name = "block";
1039 	q->node = node_id;
1040 
1041 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1042 		    laptop_mode_timer_fn, 0);
1043 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1044 	INIT_WORK(&q->timeout_work, NULL);
1045 	INIT_LIST_HEAD(&q->timeout_list);
1046 	INIT_LIST_HEAD(&q->icq_list);
1047 #ifdef CONFIG_BLK_CGROUP
1048 	INIT_LIST_HEAD(&q->blkg_list);
1049 #endif
1050 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1051 
1052 	kobject_init(&q->kobj, &blk_queue_ktype);
1053 
1054 #ifdef CONFIG_BLK_DEV_IO_TRACE
1055 	mutex_init(&q->blk_trace_mutex);
1056 #endif
1057 	mutex_init(&q->sysfs_lock);
1058 	spin_lock_init(&q->__queue_lock);
1059 
1060 	q->queue_lock = lock ? : &q->__queue_lock;
1061 
1062 	/*
1063 	 * A queue starts its life with bypass turned on to avoid
1064 	 * unnecessary bypass on/off overhead and nasty surprises during
1065 	 * init.  The initial bypass will be finished when the queue is
1066 	 * registered by blk_register_queue().
1067 	 */
1068 	q->bypass_depth = 1;
1069 	queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1070 
1071 	init_waitqueue_head(&q->mq_freeze_wq);
1072 
1073 	/*
1074 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1075 	 * See blk_register_queue() for details.
1076 	 */
1077 	if (percpu_ref_init(&q->q_usage_counter,
1078 				blk_queue_usage_counter_release,
1079 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1080 		goto fail_bdi;
1081 
1082 	if (blkcg_init_queue(q))
1083 		goto fail_ref;
1084 
1085 	return q;
1086 
1087 fail_ref:
1088 	percpu_ref_exit(&q->q_usage_counter);
1089 fail_bdi:
1090 	blk_free_queue_stats(q->stats);
1091 fail_stats:
1092 	bdi_put(q->backing_dev_info);
1093 fail_split:
1094 	bioset_exit(&q->bio_split);
1095 fail_id:
1096 	ida_simple_remove(&blk_queue_ida, q->id);
1097 fail_q:
1098 	kmem_cache_free(blk_requestq_cachep, q);
1099 	return NULL;
1100 }
1101 EXPORT_SYMBOL(blk_alloc_queue_node);
1102 
1103 /**
1104  * blk_init_queue  - prepare a request queue for use with a block device
1105  * @rfn:  The function to be called to process requests that have been
1106  *        placed on the queue.
1107  * @lock: Request queue spin lock
1108  *
1109  * Description:
1110  *    If a block device wishes to use the standard request handling procedures,
1111  *    which sorts requests and coalesces adjacent requests, then it must
1112  *    call blk_init_queue().  The function @rfn will be called when there
1113  *    are requests on the queue that need to be processed.  If the device
1114  *    supports plugging, then @rfn may not be called immediately when requests
1115  *    are available on the queue, but may be called at some time later instead.
1116  *    Plugged queues are generally unplugged when a buffer belonging to one
1117  *    of the requests on the queue is needed, or due to memory pressure.
1118  *
1119  *    @rfn is not required, or even expected, to remove all requests off the
1120  *    queue, but only as many as it can handle at a time.  If it does leave
1121  *    requests on the queue, it is responsible for arranging that the requests
1122  *    get dealt with eventually.
1123  *
1124  *    The queue spin lock must be held while manipulating the requests on the
1125  *    request queue; this lock will be taken also from interrupt context, so irq
1126  *    disabling is needed for it.
1127  *
1128  *    Function returns a pointer to the initialized request queue, or %NULL if
1129  *    it didn't succeed.
1130  *
1131  * Note:
1132  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1133  *    when the block device is deactivated (such as at module unload).
1134  **/
1135 
1136 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1137 {
1138 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1139 }
1140 EXPORT_SYMBOL(blk_init_queue);
1141 
1142 struct request_queue *
1143 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1144 {
1145 	struct request_queue *q;
1146 
1147 	q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1148 	if (!q)
1149 		return NULL;
1150 
1151 	q->request_fn = rfn;
1152 	if (blk_init_allocated_queue(q) < 0) {
1153 		blk_cleanup_queue(q);
1154 		return NULL;
1155 	}
1156 
1157 	return q;
1158 }
1159 EXPORT_SYMBOL(blk_init_queue_node);
1160 
1161 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1162 
1163 
1164 int blk_init_allocated_queue(struct request_queue *q)
1165 {
1166 	WARN_ON_ONCE(q->mq_ops);
1167 
1168 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size, GFP_KERNEL);
1169 	if (!q->fq)
1170 		return -ENOMEM;
1171 
1172 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1173 		goto out_free_flush_queue;
1174 
1175 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1176 		goto out_exit_flush_rq;
1177 
1178 	INIT_WORK(&q->timeout_work, blk_timeout_work);
1179 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
1180 
1181 	/*
1182 	 * This also sets hw/phys segments, boundary and size
1183 	 */
1184 	blk_queue_make_request(q, blk_queue_bio);
1185 
1186 	q->sg_reserved_size = INT_MAX;
1187 
1188 	if (elevator_init(q))
1189 		goto out_exit_flush_rq;
1190 	return 0;
1191 
1192 out_exit_flush_rq:
1193 	if (q->exit_rq_fn)
1194 		q->exit_rq_fn(q, q->fq->flush_rq);
1195 out_free_flush_queue:
1196 	blk_free_flush_queue(q->fq);
1197 	q->fq = NULL;
1198 	return -ENOMEM;
1199 }
1200 EXPORT_SYMBOL(blk_init_allocated_queue);
1201 
1202 bool blk_get_queue(struct request_queue *q)
1203 {
1204 	if (likely(!blk_queue_dying(q))) {
1205 		__blk_get_queue(q);
1206 		return true;
1207 	}
1208 
1209 	return false;
1210 }
1211 EXPORT_SYMBOL(blk_get_queue);
1212 
1213 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1214 {
1215 	if (rq->rq_flags & RQF_ELVPRIV) {
1216 		elv_put_request(rl->q, rq);
1217 		if (rq->elv.icq)
1218 			put_io_context(rq->elv.icq->ioc);
1219 	}
1220 
1221 	mempool_free(rq, rl->rq_pool);
1222 }
1223 
1224 /*
1225  * ioc_batching returns true if the ioc is a valid batching request and
1226  * should be given priority access to a request.
1227  */
1228 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1229 {
1230 	if (!ioc)
1231 		return 0;
1232 
1233 	/*
1234 	 * Make sure the process is able to allocate at least 1 request
1235 	 * even if the batch times out, otherwise we could theoretically
1236 	 * lose wakeups.
1237 	 */
1238 	return ioc->nr_batch_requests == q->nr_batching ||
1239 		(ioc->nr_batch_requests > 0
1240 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1241 }
1242 
1243 /*
1244  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1245  * will cause the process to be a "batcher" on all queues in the system. This
1246  * is the behaviour we want though - once it gets a wakeup it should be given
1247  * a nice run.
1248  */
1249 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1250 {
1251 	if (!ioc || ioc_batching(q, ioc))
1252 		return;
1253 
1254 	ioc->nr_batch_requests = q->nr_batching;
1255 	ioc->last_waited = jiffies;
1256 }
1257 
1258 static void __freed_request(struct request_list *rl, int sync)
1259 {
1260 	struct request_queue *q = rl->q;
1261 
1262 	if (rl->count[sync] < queue_congestion_off_threshold(q))
1263 		blk_clear_congested(rl, sync);
1264 
1265 	if (rl->count[sync] + 1 <= q->nr_requests) {
1266 		if (waitqueue_active(&rl->wait[sync]))
1267 			wake_up(&rl->wait[sync]);
1268 
1269 		blk_clear_rl_full(rl, sync);
1270 	}
1271 }
1272 
1273 /*
1274  * A request has just been released.  Account for it, update the full and
1275  * congestion status, wake up any waiters.   Called under q->queue_lock.
1276  */
1277 static void freed_request(struct request_list *rl, bool sync,
1278 		req_flags_t rq_flags)
1279 {
1280 	struct request_queue *q = rl->q;
1281 
1282 	q->nr_rqs[sync]--;
1283 	rl->count[sync]--;
1284 	if (rq_flags & RQF_ELVPRIV)
1285 		q->nr_rqs_elvpriv--;
1286 
1287 	__freed_request(rl, sync);
1288 
1289 	if (unlikely(rl->starved[sync ^ 1]))
1290 		__freed_request(rl, sync ^ 1);
1291 }
1292 
1293 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1294 {
1295 	struct request_list *rl;
1296 	int on_thresh, off_thresh;
1297 
1298 	WARN_ON_ONCE(q->mq_ops);
1299 
1300 	spin_lock_irq(q->queue_lock);
1301 	q->nr_requests = nr;
1302 	blk_queue_congestion_threshold(q);
1303 	on_thresh = queue_congestion_on_threshold(q);
1304 	off_thresh = queue_congestion_off_threshold(q);
1305 
1306 	blk_queue_for_each_rl(rl, q) {
1307 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1308 			blk_set_congested(rl, BLK_RW_SYNC);
1309 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1310 			blk_clear_congested(rl, BLK_RW_SYNC);
1311 
1312 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1313 			blk_set_congested(rl, BLK_RW_ASYNC);
1314 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1315 			blk_clear_congested(rl, BLK_RW_ASYNC);
1316 
1317 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1318 			blk_set_rl_full(rl, BLK_RW_SYNC);
1319 		} else {
1320 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1321 			wake_up(&rl->wait[BLK_RW_SYNC]);
1322 		}
1323 
1324 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1325 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1326 		} else {
1327 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1328 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1329 		}
1330 	}
1331 
1332 	spin_unlock_irq(q->queue_lock);
1333 	return 0;
1334 }
1335 
1336 /**
1337  * __get_request - get a free request
1338  * @rl: request list to allocate from
1339  * @op: operation and flags
1340  * @bio: bio to allocate request for (can be %NULL)
1341  * @flags: BLQ_MQ_REQ_* flags
1342  * @gfp_mask: allocator flags
1343  *
1344  * Get a free request from @q.  This function may fail under memory
1345  * pressure or if @q is dead.
1346  *
1347  * Must be called with @q->queue_lock held and,
1348  * Returns ERR_PTR on failure, with @q->queue_lock held.
1349  * Returns request pointer on success, with @q->queue_lock *not held*.
1350  */
1351 static struct request *__get_request(struct request_list *rl, unsigned int op,
1352 		struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1353 {
1354 	struct request_queue *q = rl->q;
1355 	struct request *rq;
1356 	struct elevator_type *et = q->elevator->type;
1357 	struct io_context *ioc = rq_ioc(bio);
1358 	struct io_cq *icq = NULL;
1359 	const bool is_sync = op_is_sync(op);
1360 	int may_queue;
1361 	req_flags_t rq_flags = RQF_ALLOCED;
1362 
1363 	lockdep_assert_held(q->queue_lock);
1364 
1365 	if (unlikely(blk_queue_dying(q)))
1366 		return ERR_PTR(-ENODEV);
1367 
1368 	may_queue = elv_may_queue(q, op);
1369 	if (may_queue == ELV_MQUEUE_NO)
1370 		goto rq_starved;
1371 
1372 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1373 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1374 			/*
1375 			 * The queue will fill after this allocation, so set
1376 			 * it as full, and mark this process as "batching".
1377 			 * This process will be allowed to complete a batch of
1378 			 * requests, others will be blocked.
1379 			 */
1380 			if (!blk_rl_full(rl, is_sync)) {
1381 				ioc_set_batching(q, ioc);
1382 				blk_set_rl_full(rl, is_sync);
1383 			} else {
1384 				if (may_queue != ELV_MQUEUE_MUST
1385 						&& !ioc_batching(q, ioc)) {
1386 					/*
1387 					 * The queue is full and the allocating
1388 					 * process is not a "batcher", and not
1389 					 * exempted by the IO scheduler
1390 					 */
1391 					return ERR_PTR(-ENOMEM);
1392 				}
1393 			}
1394 		}
1395 		blk_set_congested(rl, is_sync);
1396 	}
1397 
1398 	/*
1399 	 * Only allow batching queuers to allocate up to 50% over the defined
1400 	 * limit of requests, otherwise we could have thousands of requests
1401 	 * allocated with any setting of ->nr_requests
1402 	 */
1403 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1404 		return ERR_PTR(-ENOMEM);
1405 
1406 	q->nr_rqs[is_sync]++;
1407 	rl->count[is_sync]++;
1408 	rl->starved[is_sync] = 0;
1409 
1410 	/*
1411 	 * Decide whether the new request will be managed by elevator.  If
1412 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1413 	 * prevent the current elevator from being destroyed until the new
1414 	 * request is freed.  This guarantees icq's won't be destroyed and
1415 	 * makes creating new ones safe.
1416 	 *
1417 	 * Flush requests do not use the elevator so skip initialization.
1418 	 * This allows a request to share the flush and elevator data.
1419 	 *
1420 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1421 	 * it will be created after releasing queue_lock.
1422 	 */
1423 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1424 		rq_flags |= RQF_ELVPRIV;
1425 		q->nr_rqs_elvpriv++;
1426 		if (et->icq_cache && ioc)
1427 			icq = ioc_lookup_icq(ioc, q);
1428 	}
1429 
1430 	if (blk_queue_io_stat(q))
1431 		rq_flags |= RQF_IO_STAT;
1432 	spin_unlock_irq(q->queue_lock);
1433 
1434 	/* allocate and init request */
1435 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1436 	if (!rq)
1437 		goto fail_alloc;
1438 
1439 	blk_rq_init(q, rq);
1440 	blk_rq_set_rl(rq, rl);
1441 	rq->cmd_flags = op;
1442 	rq->rq_flags = rq_flags;
1443 	if (flags & BLK_MQ_REQ_PREEMPT)
1444 		rq->rq_flags |= RQF_PREEMPT;
1445 
1446 	/* init elvpriv */
1447 	if (rq_flags & RQF_ELVPRIV) {
1448 		if (unlikely(et->icq_cache && !icq)) {
1449 			if (ioc)
1450 				icq = ioc_create_icq(ioc, q, gfp_mask);
1451 			if (!icq)
1452 				goto fail_elvpriv;
1453 		}
1454 
1455 		rq->elv.icq = icq;
1456 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1457 			goto fail_elvpriv;
1458 
1459 		/* @rq->elv.icq holds io_context until @rq is freed */
1460 		if (icq)
1461 			get_io_context(icq->ioc);
1462 	}
1463 out:
1464 	/*
1465 	 * ioc may be NULL here, and ioc_batching will be false. That's
1466 	 * OK, if the queue is under the request limit then requests need
1467 	 * not count toward the nr_batch_requests limit. There will always
1468 	 * be some limit enforced by BLK_BATCH_TIME.
1469 	 */
1470 	if (ioc_batching(q, ioc))
1471 		ioc->nr_batch_requests--;
1472 
1473 	trace_block_getrq(q, bio, op);
1474 	return rq;
1475 
1476 fail_elvpriv:
1477 	/*
1478 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1479 	 * and may fail indefinitely under memory pressure and thus
1480 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1481 	 * disturb iosched and blkcg but weird is bettern than dead.
1482 	 */
1483 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1484 			   __func__, dev_name(q->backing_dev_info->dev));
1485 
1486 	rq->rq_flags &= ~RQF_ELVPRIV;
1487 	rq->elv.icq = NULL;
1488 
1489 	spin_lock_irq(q->queue_lock);
1490 	q->nr_rqs_elvpriv--;
1491 	spin_unlock_irq(q->queue_lock);
1492 	goto out;
1493 
1494 fail_alloc:
1495 	/*
1496 	 * Allocation failed presumably due to memory. Undo anything we
1497 	 * might have messed up.
1498 	 *
1499 	 * Allocating task should really be put onto the front of the wait
1500 	 * queue, but this is pretty rare.
1501 	 */
1502 	spin_lock_irq(q->queue_lock);
1503 	freed_request(rl, is_sync, rq_flags);
1504 
1505 	/*
1506 	 * in the very unlikely event that allocation failed and no
1507 	 * requests for this direction was pending, mark us starved so that
1508 	 * freeing of a request in the other direction will notice
1509 	 * us. another possible fix would be to split the rq mempool into
1510 	 * READ and WRITE
1511 	 */
1512 rq_starved:
1513 	if (unlikely(rl->count[is_sync] == 0))
1514 		rl->starved[is_sync] = 1;
1515 	return ERR_PTR(-ENOMEM);
1516 }
1517 
1518 /**
1519  * get_request - get a free request
1520  * @q: request_queue to allocate request from
1521  * @op: operation and flags
1522  * @bio: bio to allocate request for (can be %NULL)
1523  * @flags: BLK_MQ_REQ_* flags.
1524  * @gfp: allocator flags
1525  *
1526  * Get a free request from @q.  If %BLK_MQ_REQ_NOWAIT is set in @flags,
1527  * this function keeps retrying under memory pressure and fails iff @q is dead.
1528  *
1529  * Must be called with @q->queue_lock held and,
1530  * Returns ERR_PTR on failure, with @q->queue_lock held.
1531  * Returns request pointer on success, with @q->queue_lock *not held*.
1532  */
1533 static struct request *get_request(struct request_queue *q, unsigned int op,
1534 		struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1535 {
1536 	const bool is_sync = op_is_sync(op);
1537 	DEFINE_WAIT(wait);
1538 	struct request_list *rl;
1539 	struct request *rq;
1540 
1541 	lockdep_assert_held(q->queue_lock);
1542 	WARN_ON_ONCE(q->mq_ops);
1543 
1544 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1545 retry:
1546 	rq = __get_request(rl, op, bio, flags, gfp);
1547 	if (!IS_ERR(rq))
1548 		return rq;
1549 
1550 	if (op & REQ_NOWAIT) {
1551 		blk_put_rl(rl);
1552 		return ERR_PTR(-EAGAIN);
1553 	}
1554 
1555 	if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1556 		blk_put_rl(rl);
1557 		return rq;
1558 	}
1559 
1560 	/* wait on @rl and retry */
1561 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1562 				  TASK_UNINTERRUPTIBLE);
1563 
1564 	trace_block_sleeprq(q, bio, op);
1565 
1566 	spin_unlock_irq(q->queue_lock);
1567 	io_schedule();
1568 
1569 	/*
1570 	 * After sleeping, we become a "batching" process and will be able
1571 	 * to allocate at least one request, and up to a big batch of them
1572 	 * for a small period time.  See ioc_batching, ioc_set_batching
1573 	 */
1574 	ioc_set_batching(q, current->io_context);
1575 
1576 	spin_lock_irq(q->queue_lock);
1577 	finish_wait(&rl->wait[is_sync], &wait);
1578 
1579 	goto retry;
1580 }
1581 
1582 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1583 static struct request *blk_old_get_request(struct request_queue *q,
1584 				unsigned int op, blk_mq_req_flags_t flags)
1585 {
1586 	struct request *rq;
1587 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
1588 	int ret = 0;
1589 
1590 	WARN_ON_ONCE(q->mq_ops);
1591 
1592 	/* create ioc upfront */
1593 	create_io_context(gfp_mask, q->node);
1594 
1595 	ret = blk_queue_enter(q, flags);
1596 	if (ret)
1597 		return ERR_PTR(ret);
1598 	spin_lock_irq(q->queue_lock);
1599 	rq = get_request(q, op, NULL, flags, gfp_mask);
1600 	if (IS_ERR(rq)) {
1601 		spin_unlock_irq(q->queue_lock);
1602 		blk_queue_exit(q);
1603 		return rq;
1604 	}
1605 
1606 	/* q->queue_lock is unlocked at this point */
1607 	rq->__data_len = 0;
1608 	rq->__sector = (sector_t) -1;
1609 	rq->bio = rq->biotail = NULL;
1610 	return rq;
1611 }
1612 
1613 /**
1614  * blk_get_request - allocate a request
1615  * @q: request queue to allocate a request for
1616  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1617  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1618  */
1619 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1620 				blk_mq_req_flags_t flags)
1621 {
1622 	struct request *req;
1623 
1624 	WARN_ON_ONCE(op & REQ_NOWAIT);
1625 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1626 
1627 	if (q->mq_ops) {
1628 		req = blk_mq_alloc_request(q, op, flags);
1629 		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1630 			q->mq_ops->initialize_rq_fn(req);
1631 	} else {
1632 		req = blk_old_get_request(q, op, flags);
1633 		if (!IS_ERR(req) && q->initialize_rq_fn)
1634 			q->initialize_rq_fn(req);
1635 	}
1636 
1637 	return req;
1638 }
1639 EXPORT_SYMBOL(blk_get_request);
1640 
1641 /**
1642  * blk_requeue_request - put a request back on queue
1643  * @q:		request queue where request should be inserted
1644  * @rq:		request to be inserted
1645  *
1646  * Description:
1647  *    Drivers often keep queueing requests until the hardware cannot accept
1648  *    more, when that condition happens we need to put the request back
1649  *    on the queue. Must be called with queue lock held.
1650  */
1651 void blk_requeue_request(struct request_queue *q, struct request *rq)
1652 {
1653 	lockdep_assert_held(q->queue_lock);
1654 	WARN_ON_ONCE(q->mq_ops);
1655 
1656 	blk_delete_timer(rq);
1657 	blk_clear_rq_complete(rq);
1658 	trace_block_rq_requeue(q, rq);
1659 	rq_qos_requeue(q, rq);
1660 
1661 	if (rq->rq_flags & RQF_QUEUED)
1662 		blk_queue_end_tag(q, rq);
1663 
1664 	BUG_ON(blk_queued_rq(rq));
1665 
1666 	elv_requeue_request(q, rq);
1667 }
1668 EXPORT_SYMBOL(blk_requeue_request);
1669 
1670 static void add_acct_request(struct request_queue *q, struct request *rq,
1671 			     int where)
1672 {
1673 	blk_account_io_start(rq, true);
1674 	__elv_add_request(q, rq, where);
1675 }
1676 
1677 static void part_round_stats_single(struct request_queue *q, int cpu,
1678 				    struct hd_struct *part, unsigned long now,
1679 				    unsigned int inflight)
1680 {
1681 	if (inflight) {
1682 		__part_stat_add(cpu, part, time_in_queue,
1683 				inflight * (now - part->stamp));
1684 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1685 	}
1686 	part->stamp = now;
1687 }
1688 
1689 /**
1690  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1691  * @q: target block queue
1692  * @cpu: cpu number for stats access
1693  * @part: target partition
1694  *
1695  * The average IO queue length and utilisation statistics are maintained
1696  * by observing the current state of the queue length and the amount of
1697  * time it has been in this state for.
1698  *
1699  * Normally, that accounting is done on IO completion, but that can result
1700  * in more than a second's worth of IO being accounted for within any one
1701  * second, leading to >100% utilisation.  To deal with that, we call this
1702  * function to do a round-off before returning the results when reading
1703  * /proc/diskstats.  This accounts immediately for all queue usage up to
1704  * the current jiffies and restarts the counters again.
1705  */
1706 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1707 {
1708 	struct hd_struct *part2 = NULL;
1709 	unsigned long now = jiffies;
1710 	unsigned int inflight[2];
1711 	int stats = 0;
1712 
1713 	if (part->stamp != now)
1714 		stats |= 1;
1715 
1716 	if (part->partno) {
1717 		part2 = &part_to_disk(part)->part0;
1718 		if (part2->stamp != now)
1719 			stats |= 2;
1720 	}
1721 
1722 	if (!stats)
1723 		return;
1724 
1725 	part_in_flight(q, part, inflight);
1726 
1727 	if (stats & 2)
1728 		part_round_stats_single(q, cpu, part2, now, inflight[1]);
1729 	if (stats & 1)
1730 		part_round_stats_single(q, cpu, part, now, inflight[0]);
1731 }
1732 EXPORT_SYMBOL_GPL(part_round_stats);
1733 
1734 void __blk_put_request(struct request_queue *q, struct request *req)
1735 {
1736 	req_flags_t rq_flags = req->rq_flags;
1737 
1738 	if (unlikely(!q))
1739 		return;
1740 
1741 	if (q->mq_ops) {
1742 		blk_mq_free_request(req);
1743 		return;
1744 	}
1745 
1746 	lockdep_assert_held(q->queue_lock);
1747 
1748 	blk_req_zone_write_unlock(req);
1749 	blk_pm_put_request(req);
1750 	blk_pm_mark_last_busy(req);
1751 
1752 	elv_completed_request(q, req);
1753 
1754 	/* this is a bio leak */
1755 	WARN_ON(req->bio != NULL);
1756 
1757 	rq_qos_done(q, req);
1758 
1759 	/*
1760 	 * Request may not have originated from ll_rw_blk. if not,
1761 	 * it didn't come out of our reserved rq pools
1762 	 */
1763 	if (rq_flags & RQF_ALLOCED) {
1764 		struct request_list *rl = blk_rq_rl(req);
1765 		bool sync = op_is_sync(req->cmd_flags);
1766 
1767 		BUG_ON(!list_empty(&req->queuelist));
1768 		BUG_ON(ELV_ON_HASH(req));
1769 
1770 		blk_free_request(rl, req);
1771 		freed_request(rl, sync, rq_flags);
1772 		blk_put_rl(rl);
1773 		blk_queue_exit(q);
1774 	}
1775 }
1776 EXPORT_SYMBOL_GPL(__blk_put_request);
1777 
1778 void blk_put_request(struct request *req)
1779 {
1780 	struct request_queue *q = req->q;
1781 
1782 	if (q->mq_ops)
1783 		blk_mq_free_request(req);
1784 	else {
1785 		unsigned long flags;
1786 
1787 		spin_lock_irqsave(q->queue_lock, flags);
1788 		__blk_put_request(q, req);
1789 		spin_unlock_irqrestore(q->queue_lock, flags);
1790 	}
1791 }
1792 EXPORT_SYMBOL(blk_put_request);
1793 
1794 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1795 			    struct bio *bio)
1796 {
1797 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1798 
1799 	if (!ll_back_merge_fn(q, req, bio))
1800 		return false;
1801 
1802 	trace_block_bio_backmerge(q, req, bio);
1803 
1804 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1805 		blk_rq_set_mixed_merge(req);
1806 
1807 	req->biotail->bi_next = bio;
1808 	req->biotail = bio;
1809 	req->__data_len += bio->bi_iter.bi_size;
1810 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1811 
1812 	blk_account_io_start(req, false);
1813 	return true;
1814 }
1815 
1816 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1817 			     struct bio *bio)
1818 {
1819 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1820 
1821 	if (!ll_front_merge_fn(q, req, bio))
1822 		return false;
1823 
1824 	trace_block_bio_frontmerge(q, req, bio);
1825 
1826 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1827 		blk_rq_set_mixed_merge(req);
1828 
1829 	bio->bi_next = req->bio;
1830 	req->bio = bio;
1831 
1832 	req->__sector = bio->bi_iter.bi_sector;
1833 	req->__data_len += bio->bi_iter.bi_size;
1834 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1835 
1836 	blk_account_io_start(req, false);
1837 	return true;
1838 }
1839 
1840 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1841 		struct bio *bio)
1842 {
1843 	unsigned short segments = blk_rq_nr_discard_segments(req);
1844 
1845 	if (segments >= queue_max_discard_segments(q))
1846 		goto no_merge;
1847 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1848 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1849 		goto no_merge;
1850 
1851 	req->biotail->bi_next = bio;
1852 	req->biotail = bio;
1853 	req->__data_len += bio->bi_iter.bi_size;
1854 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1855 	req->nr_phys_segments = segments + 1;
1856 
1857 	blk_account_io_start(req, false);
1858 	return true;
1859 no_merge:
1860 	req_set_nomerge(q, req);
1861 	return false;
1862 }
1863 
1864 /**
1865  * blk_attempt_plug_merge - try to merge with %current's plugged list
1866  * @q: request_queue new bio is being queued at
1867  * @bio: new bio being queued
1868  * @request_count: out parameter for number of traversed plugged requests
1869  * @same_queue_rq: pointer to &struct request that gets filled in when
1870  * another request associated with @q is found on the plug list
1871  * (optional, may be %NULL)
1872  *
1873  * Determine whether @bio being queued on @q can be merged with a request
1874  * on %current's plugged list.  Returns %true if merge was successful,
1875  * otherwise %false.
1876  *
1877  * Plugging coalesces IOs from the same issuer for the same purpose without
1878  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1879  * than scheduling, and the request, while may have elvpriv data, is not
1880  * added on the elevator at this point.  In addition, we don't have
1881  * reliable access to the elevator outside queue lock.  Only check basic
1882  * merging parameters without querying the elevator.
1883  *
1884  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1885  */
1886 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1887 			    unsigned int *request_count,
1888 			    struct request **same_queue_rq)
1889 {
1890 	struct blk_plug *plug;
1891 	struct request *rq;
1892 	struct list_head *plug_list;
1893 
1894 	plug = current->plug;
1895 	if (!plug)
1896 		return false;
1897 	*request_count = 0;
1898 
1899 	if (q->mq_ops)
1900 		plug_list = &plug->mq_list;
1901 	else
1902 		plug_list = &plug->list;
1903 
1904 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1905 		bool merged = false;
1906 
1907 		if (rq->q == q) {
1908 			(*request_count)++;
1909 			/*
1910 			 * Only blk-mq multiple hardware queues case checks the
1911 			 * rq in the same queue, there should be only one such
1912 			 * rq in a queue
1913 			 **/
1914 			if (same_queue_rq)
1915 				*same_queue_rq = rq;
1916 		}
1917 
1918 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1919 			continue;
1920 
1921 		switch (blk_try_merge(rq, bio)) {
1922 		case ELEVATOR_BACK_MERGE:
1923 			merged = bio_attempt_back_merge(q, rq, bio);
1924 			break;
1925 		case ELEVATOR_FRONT_MERGE:
1926 			merged = bio_attempt_front_merge(q, rq, bio);
1927 			break;
1928 		case ELEVATOR_DISCARD_MERGE:
1929 			merged = bio_attempt_discard_merge(q, rq, bio);
1930 			break;
1931 		default:
1932 			break;
1933 		}
1934 
1935 		if (merged)
1936 			return true;
1937 	}
1938 
1939 	return false;
1940 }
1941 
1942 unsigned int blk_plug_queued_count(struct request_queue *q)
1943 {
1944 	struct blk_plug *plug;
1945 	struct request *rq;
1946 	struct list_head *plug_list;
1947 	unsigned int ret = 0;
1948 
1949 	plug = current->plug;
1950 	if (!plug)
1951 		goto out;
1952 
1953 	if (q->mq_ops)
1954 		plug_list = &plug->mq_list;
1955 	else
1956 		plug_list = &plug->list;
1957 
1958 	list_for_each_entry(rq, plug_list, queuelist) {
1959 		if (rq->q == q)
1960 			ret++;
1961 	}
1962 out:
1963 	return ret;
1964 }
1965 
1966 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1967 {
1968 	struct io_context *ioc = rq_ioc(bio);
1969 
1970 	if (bio->bi_opf & REQ_RAHEAD)
1971 		req->cmd_flags |= REQ_FAILFAST_MASK;
1972 
1973 	req->__sector = bio->bi_iter.bi_sector;
1974 	if (ioprio_valid(bio_prio(bio)))
1975 		req->ioprio = bio_prio(bio);
1976 	else if (ioc)
1977 		req->ioprio = ioc->ioprio;
1978 	else
1979 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1980 	req->write_hint = bio->bi_write_hint;
1981 	blk_rq_bio_prep(req->q, req, bio);
1982 }
1983 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1984 
1985 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1986 {
1987 	struct blk_plug *plug;
1988 	int where = ELEVATOR_INSERT_SORT;
1989 	struct request *req, *free;
1990 	unsigned int request_count = 0;
1991 
1992 	/*
1993 	 * low level driver can indicate that it wants pages above a
1994 	 * certain limit bounced to low memory (ie for highmem, or even
1995 	 * ISA dma in theory)
1996 	 */
1997 	blk_queue_bounce(q, &bio);
1998 
1999 	blk_queue_split(q, &bio);
2000 
2001 	if (!bio_integrity_prep(bio))
2002 		return BLK_QC_T_NONE;
2003 
2004 	if (op_is_flush(bio->bi_opf)) {
2005 		spin_lock_irq(q->queue_lock);
2006 		where = ELEVATOR_INSERT_FLUSH;
2007 		goto get_rq;
2008 	}
2009 
2010 	/*
2011 	 * Check if we can merge with the plugged list before grabbing
2012 	 * any locks.
2013 	 */
2014 	if (!blk_queue_nomerges(q)) {
2015 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2016 			return BLK_QC_T_NONE;
2017 	} else
2018 		request_count = blk_plug_queued_count(q);
2019 
2020 	spin_lock_irq(q->queue_lock);
2021 
2022 	switch (elv_merge(q, &req, bio)) {
2023 	case ELEVATOR_BACK_MERGE:
2024 		if (!bio_attempt_back_merge(q, req, bio))
2025 			break;
2026 		elv_bio_merged(q, req, bio);
2027 		free = attempt_back_merge(q, req);
2028 		if (free)
2029 			__blk_put_request(q, free);
2030 		else
2031 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2032 		goto out_unlock;
2033 	case ELEVATOR_FRONT_MERGE:
2034 		if (!bio_attempt_front_merge(q, req, bio))
2035 			break;
2036 		elv_bio_merged(q, req, bio);
2037 		free = attempt_front_merge(q, req);
2038 		if (free)
2039 			__blk_put_request(q, free);
2040 		else
2041 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2042 		goto out_unlock;
2043 	default:
2044 		break;
2045 	}
2046 
2047 get_rq:
2048 	rq_qos_throttle(q, bio, q->queue_lock);
2049 
2050 	/*
2051 	 * Grab a free request. This is might sleep but can not fail.
2052 	 * Returns with the queue unlocked.
2053 	 */
2054 	blk_queue_enter_live(q);
2055 	req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
2056 	if (IS_ERR(req)) {
2057 		blk_queue_exit(q);
2058 		rq_qos_cleanup(q, bio);
2059 		if (PTR_ERR(req) == -ENOMEM)
2060 			bio->bi_status = BLK_STS_RESOURCE;
2061 		else
2062 			bio->bi_status = BLK_STS_IOERR;
2063 		bio_endio(bio);
2064 		goto out_unlock;
2065 	}
2066 
2067 	rq_qos_track(q, req, bio);
2068 
2069 	/*
2070 	 * After dropping the lock and possibly sleeping here, our request
2071 	 * may now be mergeable after it had proven unmergeable (above).
2072 	 * We don't worry about that case for efficiency. It won't happen
2073 	 * often, and the elevators are able to handle it.
2074 	 */
2075 	blk_init_request_from_bio(req, bio);
2076 
2077 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2078 		req->cpu = raw_smp_processor_id();
2079 
2080 	plug = current->plug;
2081 	if (plug) {
2082 		/*
2083 		 * If this is the first request added after a plug, fire
2084 		 * of a plug trace.
2085 		 *
2086 		 * @request_count may become stale because of schedule
2087 		 * out, so check plug list again.
2088 		 */
2089 		if (!request_count || list_empty(&plug->list))
2090 			trace_block_plug(q);
2091 		else {
2092 			struct request *last = list_entry_rq(plug->list.prev);
2093 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
2094 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2095 				blk_flush_plug_list(plug, false);
2096 				trace_block_plug(q);
2097 			}
2098 		}
2099 		list_add_tail(&req->queuelist, &plug->list);
2100 		blk_account_io_start(req, true);
2101 	} else {
2102 		spin_lock_irq(q->queue_lock);
2103 		add_acct_request(q, req, where);
2104 		__blk_run_queue(q);
2105 out_unlock:
2106 		spin_unlock_irq(q->queue_lock);
2107 	}
2108 
2109 	return BLK_QC_T_NONE;
2110 }
2111 
2112 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2113 {
2114 	char b[BDEVNAME_SIZE];
2115 
2116 	printk(KERN_INFO "attempt to access beyond end of device\n");
2117 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2118 			bio_devname(bio, b), bio->bi_opf,
2119 			(unsigned long long)bio_end_sector(bio),
2120 			(long long)maxsector);
2121 }
2122 
2123 #ifdef CONFIG_FAIL_MAKE_REQUEST
2124 
2125 static DECLARE_FAULT_ATTR(fail_make_request);
2126 
2127 static int __init setup_fail_make_request(char *str)
2128 {
2129 	return setup_fault_attr(&fail_make_request, str);
2130 }
2131 __setup("fail_make_request=", setup_fail_make_request);
2132 
2133 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2134 {
2135 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
2136 }
2137 
2138 static int __init fail_make_request_debugfs(void)
2139 {
2140 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2141 						NULL, &fail_make_request);
2142 
2143 	return PTR_ERR_OR_ZERO(dir);
2144 }
2145 
2146 late_initcall(fail_make_request_debugfs);
2147 
2148 #else /* CONFIG_FAIL_MAKE_REQUEST */
2149 
2150 static inline bool should_fail_request(struct hd_struct *part,
2151 					unsigned int bytes)
2152 {
2153 	return false;
2154 }
2155 
2156 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2157 
2158 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2159 {
2160 	const int op = bio_op(bio);
2161 
2162 	if (part->policy && op_is_write(op)) {
2163 		char b[BDEVNAME_SIZE];
2164 
2165 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
2166 			return false;
2167 
2168 		WARN_ONCE(1,
2169 		       "generic_make_request: Trying to write "
2170 			"to read-only block-device %s (partno %d)\n",
2171 			bio_devname(bio, b), part->partno);
2172 		/* Older lvm-tools actually trigger this */
2173 		return false;
2174 	}
2175 
2176 	return false;
2177 }
2178 
2179 static noinline int should_fail_bio(struct bio *bio)
2180 {
2181 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2182 		return -EIO;
2183 	return 0;
2184 }
2185 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2186 
2187 /*
2188  * Check whether this bio extends beyond the end of the device or partition.
2189  * This may well happen - the kernel calls bread() without checking the size of
2190  * the device, e.g., when mounting a file system.
2191  */
2192 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2193 {
2194 	unsigned int nr_sectors = bio_sectors(bio);
2195 
2196 	if (nr_sectors && maxsector &&
2197 	    (nr_sectors > maxsector ||
2198 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2199 		handle_bad_sector(bio, maxsector);
2200 		return -EIO;
2201 	}
2202 	return 0;
2203 }
2204 
2205 /*
2206  * Remap block n of partition p to block n+start(p) of the disk.
2207  */
2208 static inline int blk_partition_remap(struct bio *bio)
2209 {
2210 	struct hd_struct *p;
2211 	int ret = -EIO;
2212 
2213 	rcu_read_lock();
2214 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2215 	if (unlikely(!p))
2216 		goto out;
2217 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2218 		goto out;
2219 	if (unlikely(bio_check_ro(bio, p)))
2220 		goto out;
2221 
2222 	/*
2223 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
2224 	 * Include a test for the reset op code and perform the remap if needed.
2225 	 */
2226 	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2227 		if (bio_check_eod(bio, part_nr_sects_read(p)))
2228 			goto out;
2229 		bio->bi_iter.bi_sector += p->start_sect;
2230 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2231 				      bio->bi_iter.bi_sector - p->start_sect);
2232 	}
2233 	bio->bi_partno = 0;
2234 	ret = 0;
2235 out:
2236 	rcu_read_unlock();
2237 	return ret;
2238 }
2239 
2240 static noinline_for_stack bool
2241 generic_make_request_checks(struct bio *bio)
2242 {
2243 	struct request_queue *q;
2244 	int nr_sectors = bio_sectors(bio);
2245 	blk_status_t status = BLK_STS_IOERR;
2246 	char b[BDEVNAME_SIZE];
2247 
2248 	might_sleep();
2249 
2250 	q = bio->bi_disk->queue;
2251 	if (unlikely(!q)) {
2252 		printk(KERN_ERR
2253 		       "generic_make_request: Trying to access "
2254 			"nonexistent block-device %s (%Lu)\n",
2255 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2256 		goto end_io;
2257 	}
2258 
2259 	/*
2260 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2261 	 * if queue is not a request based queue.
2262 	 */
2263 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2264 		goto not_supported;
2265 
2266 	if (should_fail_bio(bio))
2267 		goto end_io;
2268 
2269 	if (bio->bi_partno) {
2270 		if (unlikely(blk_partition_remap(bio)))
2271 			goto end_io;
2272 	} else {
2273 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2274 			goto end_io;
2275 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2276 			goto end_io;
2277 	}
2278 
2279 	/*
2280 	 * Filter flush bio's early so that make_request based
2281 	 * drivers without flush support don't have to worry
2282 	 * about them.
2283 	 */
2284 	if (op_is_flush(bio->bi_opf) &&
2285 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2286 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2287 		if (!nr_sectors) {
2288 			status = BLK_STS_OK;
2289 			goto end_io;
2290 		}
2291 	}
2292 
2293 	switch (bio_op(bio)) {
2294 	case REQ_OP_DISCARD:
2295 		if (!blk_queue_discard(q))
2296 			goto not_supported;
2297 		break;
2298 	case REQ_OP_SECURE_ERASE:
2299 		if (!blk_queue_secure_erase(q))
2300 			goto not_supported;
2301 		break;
2302 	case REQ_OP_WRITE_SAME:
2303 		if (!q->limits.max_write_same_sectors)
2304 			goto not_supported;
2305 		break;
2306 	case REQ_OP_ZONE_RESET:
2307 		if (!blk_queue_is_zoned(q))
2308 			goto not_supported;
2309 		break;
2310 	case REQ_OP_WRITE_ZEROES:
2311 		if (!q->limits.max_write_zeroes_sectors)
2312 			goto not_supported;
2313 		break;
2314 	default:
2315 		break;
2316 	}
2317 
2318 	/*
2319 	 * Various block parts want %current->io_context and lazy ioc
2320 	 * allocation ends up trading a lot of pain for a small amount of
2321 	 * memory.  Just allocate it upfront.  This may fail and block
2322 	 * layer knows how to live with it.
2323 	 */
2324 	create_io_context(GFP_ATOMIC, q->node);
2325 
2326 	if (!blkcg_bio_issue_check(q, bio))
2327 		return false;
2328 
2329 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2330 		trace_block_bio_queue(q, bio);
2331 		/* Now that enqueuing has been traced, we need to trace
2332 		 * completion as well.
2333 		 */
2334 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2335 	}
2336 	return true;
2337 
2338 not_supported:
2339 	status = BLK_STS_NOTSUPP;
2340 end_io:
2341 	bio->bi_status = status;
2342 	bio_endio(bio);
2343 	return false;
2344 }
2345 
2346 /**
2347  * generic_make_request - hand a buffer to its device driver for I/O
2348  * @bio:  The bio describing the location in memory and on the device.
2349  *
2350  * generic_make_request() is used to make I/O requests of block
2351  * devices. It is passed a &struct bio, which describes the I/O that needs
2352  * to be done.
2353  *
2354  * generic_make_request() does not return any status.  The
2355  * success/failure status of the request, along with notification of
2356  * completion, is delivered asynchronously through the bio->bi_end_io
2357  * function described (one day) else where.
2358  *
2359  * The caller of generic_make_request must make sure that bi_io_vec
2360  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2361  * set to describe the device address, and the
2362  * bi_end_io and optionally bi_private are set to describe how
2363  * completion notification should be signaled.
2364  *
2365  * generic_make_request and the drivers it calls may use bi_next if this
2366  * bio happens to be merged with someone else, and may resubmit the bio to
2367  * a lower device by calling into generic_make_request recursively, which
2368  * means the bio should NOT be touched after the call to ->make_request_fn.
2369  */
2370 blk_qc_t generic_make_request(struct bio *bio)
2371 {
2372 	/*
2373 	 * bio_list_on_stack[0] contains bios submitted by the current
2374 	 * make_request_fn.
2375 	 * bio_list_on_stack[1] contains bios that were submitted before
2376 	 * the current make_request_fn, but that haven't been processed
2377 	 * yet.
2378 	 */
2379 	struct bio_list bio_list_on_stack[2];
2380 	blk_mq_req_flags_t flags = 0;
2381 	struct request_queue *q = bio->bi_disk->queue;
2382 	blk_qc_t ret = BLK_QC_T_NONE;
2383 
2384 	if (bio->bi_opf & REQ_NOWAIT)
2385 		flags = BLK_MQ_REQ_NOWAIT;
2386 	if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2387 		blk_queue_enter_live(q);
2388 	else if (blk_queue_enter(q, flags) < 0) {
2389 		if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2390 			bio_wouldblock_error(bio);
2391 		else
2392 			bio_io_error(bio);
2393 		return ret;
2394 	}
2395 
2396 	if (!generic_make_request_checks(bio))
2397 		goto out;
2398 
2399 	/*
2400 	 * We only want one ->make_request_fn to be active at a time, else
2401 	 * stack usage with stacked devices could be a problem.  So use
2402 	 * current->bio_list to keep a list of requests submited by a
2403 	 * make_request_fn function.  current->bio_list is also used as a
2404 	 * flag to say if generic_make_request is currently active in this
2405 	 * task or not.  If it is NULL, then no make_request is active.  If
2406 	 * it is non-NULL, then a make_request is active, and new requests
2407 	 * should be added at the tail
2408 	 */
2409 	if (current->bio_list) {
2410 		bio_list_add(&current->bio_list[0], bio);
2411 		goto out;
2412 	}
2413 
2414 	/* following loop may be a bit non-obvious, and so deserves some
2415 	 * explanation.
2416 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2417 	 * ensure that) so we have a list with a single bio.
2418 	 * We pretend that we have just taken it off a longer list, so
2419 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2420 	 * thus initialising the bio_list of new bios to be
2421 	 * added.  ->make_request() may indeed add some more bios
2422 	 * through a recursive call to generic_make_request.  If it
2423 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2424 	 * from the top.  In this case we really did just take the bio
2425 	 * of the top of the list (no pretending) and so remove it from
2426 	 * bio_list, and call into ->make_request() again.
2427 	 */
2428 	BUG_ON(bio->bi_next);
2429 	bio_list_init(&bio_list_on_stack[0]);
2430 	current->bio_list = bio_list_on_stack;
2431 	do {
2432 		bool enter_succeeded = true;
2433 
2434 		if (unlikely(q != bio->bi_disk->queue)) {
2435 			if (q)
2436 				blk_queue_exit(q);
2437 			q = bio->bi_disk->queue;
2438 			flags = 0;
2439 			if (bio->bi_opf & REQ_NOWAIT)
2440 				flags = BLK_MQ_REQ_NOWAIT;
2441 			if (blk_queue_enter(q, flags) < 0) {
2442 				enter_succeeded = false;
2443 				q = NULL;
2444 			}
2445 		}
2446 
2447 		if (enter_succeeded) {
2448 			struct bio_list lower, same;
2449 
2450 			/* Create a fresh bio_list for all subordinate requests */
2451 			bio_list_on_stack[1] = bio_list_on_stack[0];
2452 			bio_list_init(&bio_list_on_stack[0]);
2453 			ret = q->make_request_fn(q, bio);
2454 
2455 			/* sort new bios into those for a lower level
2456 			 * and those for the same level
2457 			 */
2458 			bio_list_init(&lower);
2459 			bio_list_init(&same);
2460 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2461 				if (q == bio->bi_disk->queue)
2462 					bio_list_add(&same, bio);
2463 				else
2464 					bio_list_add(&lower, bio);
2465 			/* now assemble so we handle the lowest level first */
2466 			bio_list_merge(&bio_list_on_stack[0], &lower);
2467 			bio_list_merge(&bio_list_on_stack[0], &same);
2468 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2469 		} else {
2470 			if (unlikely(!blk_queue_dying(q) &&
2471 					(bio->bi_opf & REQ_NOWAIT)))
2472 				bio_wouldblock_error(bio);
2473 			else
2474 				bio_io_error(bio);
2475 		}
2476 		bio = bio_list_pop(&bio_list_on_stack[0]);
2477 	} while (bio);
2478 	current->bio_list = NULL; /* deactivate */
2479 
2480 out:
2481 	if (q)
2482 		blk_queue_exit(q);
2483 	return ret;
2484 }
2485 EXPORT_SYMBOL(generic_make_request);
2486 
2487 /**
2488  * direct_make_request - hand a buffer directly to its device driver for I/O
2489  * @bio:  The bio describing the location in memory and on the device.
2490  *
2491  * This function behaves like generic_make_request(), but does not protect
2492  * against recursion.  Must only be used if the called driver is known
2493  * to not call generic_make_request (or direct_make_request) again from
2494  * its make_request function.  (Calling direct_make_request again from
2495  * a workqueue is perfectly fine as that doesn't recurse).
2496  */
2497 blk_qc_t direct_make_request(struct bio *bio)
2498 {
2499 	struct request_queue *q = bio->bi_disk->queue;
2500 	bool nowait = bio->bi_opf & REQ_NOWAIT;
2501 	blk_qc_t ret;
2502 
2503 	if (!generic_make_request_checks(bio))
2504 		return BLK_QC_T_NONE;
2505 
2506 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2507 		if (nowait && !blk_queue_dying(q))
2508 			bio->bi_status = BLK_STS_AGAIN;
2509 		else
2510 			bio->bi_status = BLK_STS_IOERR;
2511 		bio_endio(bio);
2512 		return BLK_QC_T_NONE;
2513 	}
2514 
2515 	ret = q->make_request_fn(q, bio);
2516 	blk_queue_exit(q);
2517 	return ret;
2518 }
2519 EXPORT_SYMBOL_GPL(direct_make_request);
2520 
2521 /**
2522  * submit_bio - submit a bio to the block device layer for I/O
2523  * @bio: The &struct bio which describes the I/O
2524  *
2525  * submit_bio() is very similar in purpose to generic_make_request(), and
2526  * uses that function to do most of the work. Both are fairly rough
2527  * interfaces; @bio must be presetup and ready for I/O.
2528  *
2529  */
2530 blk_qc_t submit_bio(struct bio *bio)
2531 {
2532 	/*
2533 	 * If it's a regular read/write or a barrier with data attached,
2534 	 * go through the normal accounting stuff before submission.
2535 	 */
2536 	if (bio_has_data(bio)) {
2537 		unsigned int count;
2538 
2539 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2540 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2541 		else
2542 			count = bio_sectors(bio);
2543 
2544 		if (op_is_write(bio_op(bio))) {
2545 			count_vm_events(PGPGOUT, count);
2546 		} else {
2547 			task_io_account_read(bio->bi_iter.bi_size);
2548 			count_vm_events(PGPGIN, count);
2549 		}
2550 
2551 		if (unlikely(block_dump)) {
2552 			char b[BDEVNAME_SIZE];
2553 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2554 			current->comm, task_pid_nr(current),
2555 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2556 				(unsigned long long)bio->bi_iter.bi_sector,
2557 				bio_devname(bio, b), count);
2558 		}
2559 	}
2560 
2561 	return generic_make_request(bio);
2562 }
2563 EXPORT_SYMBOL(submit_bio);
2564 
2565 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2566 {
2567 	if (!q->poll_fn || !blk_qc_t_valid(cookie))
2568 		return false;
2569 
2570 	if (current->plug)
2571 		blk_flush_plug_list(current->plug, false);
2572 	return q->poll_fn(q, cookie);
2573 }
2574 EXPORT_SYMBOL_GPL(blk_poll);
2575 
2576 /**
2577  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2578  *                              for new the queue limits
2579  * @q:  the queue
2580  * @rq: the request being checked
2581  *
2582  * Description:
2583  *    @rq may have been made based on weaker limitations of upper-level queues
2584  *    in request stacking drivers, and it may violate the limitation of @q.
2585  *    Since the block layer and the underlying device driver trust @rq
2586  *    after it is inserted to @q, it should be checked against @q before
2587  *    the insertion using this generic function.
2588  *
2589  *    Request stacking drivers like request-based dm may change the queue
2590  *    limits when retrying requests on other queues. Those requests need
2591  *    to be checked against the new queue limits again during dispatch.
2592  */
2593 static int blk_cloned_rq_check_limits(struct request_queue *q,
2594 				      struct request *rq)
2595 {
2596 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2597 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2598 		return -EIO;
2599 	}
2600 
2601 	/*
2602 	 * queue's settings related to segment counting like q->bounce_pfn
2603 	 * may differ from that of other stacking queues.
2604 	 * Recalculate it to check the request correctly on this queue's
2605 	 * limitation.
2606 	 */
2607 	blk_recalc_rq_segments(rq);
2608 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2609 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2610 		return -EIO;
2611 	}
2612 
2613 	return 0;
2614 }
2615 
2616 /**
2617  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2618  * @q:  the queue to submit the request
2619  * @rq: the request being queued
2620  */
2621 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2622 {
2623 	unsigned long flags;
2624 	int where = ELEVATOR_INSERT_BACK;
2625 
2626 	if (blk_cloned_rq_check_limits(q, rq))
2627 		return BLK_STS_IOERR;
2628 
2629 	if (rq->rq_disk &&
2630 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2631 		return BLK_STS_IOERR;
2632 
2633 	if (q->mq_ops) {
2634 		if (blk_queue_io_stat(q))
2635 			blk_account_io_start(rq, true);
2636 		/*
2637 		 * Since we have a scheduler attached on the top device,
2638 		 * bypass a potential scheduler on the bottom device for
2639 		 * insert.
2640 		 */
2641 		return blk_mq_request_issue_directly(rq);
2642 	}
2643 
2644 	spin_lock_irqsave(q->queue_lock, flags);
2645 	if (unlikely(blk_queue_dying(q))) {
2646 		spin_unlock_irqrestore(q->queue_lock, flags);
2647 		return BLK_STS_IOERR;
2648 	}
2649 
2650 	/*
2651 	 * Submitting request must be dequeued before calling this function
2652 	 * because it will be linked to another request_queue
2653 	 */
2654 	BUG_ON(blk_queued_rq(rq));
2655 
2656 	if (op_is_flush(rq->cmd_flags))
2657 		where = ELEVATOR_INSERT_FLUSH;
2658 
2659 	add_acct_request(q, rq, where);
2660 	if (where == ELEVATOR_INSERT_FLUSH)
2661 		__blk_run_queue(q);
2662 	spin_unlock_irqrestore(q->queue_lock, flags);
2663 
2664 	return BLK_STS_OK;
2665 }
2666 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2667 
2668 /**
2669  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2670  * @rq: request to examine
2671  *
2672  * Description:
2673  *     A request could be merge of IOs which require different failure
2674  *     handling.  This function determines the number of bytes which
2675  *     can be failed from the beginning of the request without
2676  *     crossing into area which need to be retried further.
2677  *
2678  * Return:
2679  *     The number of bytes to fail.
2680  */
2681 unsigned int blk_rq_err_bytes(const struct request *rq)
2682 {
2683 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2684 	unsigned int bytes = 0;
2685 	struct bio *bio;
2686 
2687 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2688 		return blk_rq_bytes(rq);
2689 
2690 	/*
2691 	 * Currently the only 'mixing' which can happen is between
2692 	 * different fastfail types.  We can safely fail portions
2693 	 * which have all the failfast bits that the first one has -
2694 	 * the ones which are at least as eager to fail as the first
2695 	 * one.
2696 	 */
2697 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2698 		if ((bio->bi_opf & ff) != ff)
2699 			break;
2700 		bytes += bio->bi_iter.bi_size;
2701 	}
2702 
2703 	/* this could lead to infinite loop */
2704 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2705 	return bytes;
2706 }
2707 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2708 
2709 void blk_account_io_completion(struct request *req, unsigned int bytes)
2710 {
2711 	if (blk_do_io_stat(req)) {
2712 		const int sgrp = op_stat_group(req_op(req));
2713 		struct hd_struct *part;
2714 		int cpu;
2715 
2716 		cpu = part_stat_lock();
2717 		part = req->part;
2718 		part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
2719 		part_stat_unlock();
2720 	}
2721 }
2722 
2723 void blk_account_io_done(struct request *req, u64 now)
2724 {
2725 	/*
2726 	 * Account IO completion.  flush_rq isn't accounted as a
2727 	 * normal IO on queueing nor completion.  Accounting the
2728 	 * containing request is enough.
2729 	 */
2730 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2731 		const int sgrp = op_stat_group(req_op(req));
2732 		struct hd_struct *part;
2733 		int cpu;
2734 
2735 		cpu = part_stat_lock();
2736 		part = req->part;
2737 
2738 		part_stat_inc(cpu, part, ios[sgrp]);
2739 		part_stat_add(cpu, part, nsecs[sgrp], now - req->start_time_ns);
2740 		part_round_stats(req->q, cpu, part);
2741 		part_dec_in_flight(req->q, part, rq_data_dir(req));
2742 
2743 		hd_struct_put(part);
2744 		part_stat_unlock();
2745 	}
2746 }
2747 
2748 void blk_account_io_start(struct request *rq, bool new_io)
2749 {
2750 	struct hd_struct *part;
2751 	int rw = rq_data_dir(rq);
2752 	int cpu;
2753 
2754 	if (!blk_do_io_stat(rq))
2755 		return;
2756 
2757 	cpu = part_stat_lock();
2758 
2759 	if (!new_io) {
2760 		part = rq->part;
2761 		part_stat_inc(cpu, part, merges[rw]);
2762 	} else {
2763 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2764 		if (!hd_struct_try_get(part)) {
2765 			/*
2766 			 * The partition is already being removed,
2767 			 * the request will be accounted on the disk only
2768 			 *
2769 			 * We take a reference on disk->part0 although that
2770 			 * partition will never be deleted, so we can treat
2771 			 * it as any other partition.
2772 			 */
2773 			part = &rq->rq_disk->part0;
2774 			hd_struct_get(part);
2775 		}
2776 		part_round_stats(rq->q, cpu, part);
2777 		part_inc_in_flight(rq->q, part, rw);
2778 		rq->part = part;
2779 	}
2780 
2781 	part_stat_unlock();
2782 }
2783 
2784 static struct request *elv_next_request(struct request_queue *q)
2785 {
2786 	struct request *rq;
2787 	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2788 
2789 	WARN_ON_ONCE(q->mq_ops);
2790 
2791 	while (1) {
2792 		list_for_each_entry(rq, &q->queue_head, queuelist) {
2793 #ifdef CONFIG_PM
2794 			/*
2795 			 * If a request gets queued in state RPM_SUSPENDED
2796 			 * then that's a kernel bug.
2797 			 */
2798 			WARN_ON_ONCE(q->rpm_status == RPM_SUSPENDED);
2799 #endif
2800 			return rq;
2801 		}
2802 
2803 		/*
2804 		 * Flush request is running and flush request isn't queueable
2805 		 * in the drive, we can hold the queue till flush request is
2806 		 * finished. Even we don't do this, driver can't dispatch next
2807 		 * requests and will requeue them. And this can improve
2808 		 * throughput too. For example, we have request flush1, write1,
2809 		 * flush 2. flush1 is dispatched, then queue is hold, write1
2810 		 * isn't inserted to queue. After flush1 is finished, flush2
2811 		 * will be dispatched. Since disk cache is already clean,
2812 		 * flush2 will be finished very soon, so looks like flush2 is
2813 		 * folded to flush1.
2814 		 * Since the queue is hold, a flag is set to indicate the queue
2815 		 * should be restarted later. Please see flush_end_io() for
2816 		 * details.
2817 		 */
2818 		if (fq->flush_pending_idx != fq->flush_running_idx &&
2819 				!queue_flush_queueable(q)) {
2820 			fq->flush_queue_delayed = 1;
2821 			return NULL;
2822 		}
2823 		if (unlikely(blk_queue_bypass(q)) ||
2824 		    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2825 			return NULL;
2826 	}
2827 }
2828 
2829 /**
2830  * blk_peek_request - peek at the top of a request queue
2831  * @q: request queue to peek at
2832  *
2833  * Description:
2834  *     Return the request at the top of @q.  The returned request
2835  *     should be started using blk_start_request() before LLD starts
2836  *     processing it.
2837  *
2838  * Return:
2839  *     Pointer to the request at the top of @q if available.  Null
2840  *     otherwise.
2841  */
2842 struct request *blk_peek_request(struct request_queue *q)
2843 {
2844 	struct request *rq;
2845 	int ret;
2846 
2847 	lockdep_assert_held(q->queue_lock);
2848 	WARN_ON_ONCE(q->mq_ops);
2849 
2850 	while ((rq = elv_next_request(q)) != NULL) {
2851 		if (!(rq->rq_flags & RQF_STARTED)) {
2852 			/*
2853 			 * This is the first time the device driver
2854 			 * sees this request (possibly after
2855 			 * requeueing).  Notify IO scheduler.
2856 			 */
2857 			if (rq->rq_flags & RQF_SORTED)
2858 				elv_activate_rq(q, rq);
2859 
2860 			/*
2861 			 * just mark as started even if we don't start
2862 			 * it, a request that has been delayed should
2863 			 * not be passed by new incoming requests
2864 			 */
2865 			rq->rq_flags |= RQF_STARTED;
2866 			trace_block_rq_issue(q, rq);
2867 		}
2868 
2869 		if (!q->boundary_rq || q->boundary_rq == rq) {
2870 			q->end_sector = rq_end_sector(rq);
2871 			q->boundary_rq = NULL;
2872 		}
2873 
2874 		if (rq->rq_flags & RQF_DONTPREP)
2875 			break;
2876 
2877 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2878 			/*
2879 			 * make sure space for the drain appears we
2880 			 * know we can do this because max_hw_segments
2881 			 * has been adjusted to be one fewer than the
2882 			 * device can handle
2883 			 */
2884 			rq->nr_phys_segments++;
2885 		}
2886 
2887 		if (!q->prep_rq_fn)
2888 			break;
2889 
2890 		ret = q->prep_rq_fn(q, rq);
2891 		if (ret == BLKPREP_OK) {
2892 			break;
2893 		} else if (ret == BLKPREP_DEFER) {
2894 			/*
2895 			 * the request may have been (partially) prepped.
2896 			 * we need to keep this request in the front to
2897 			 * avoid resource deadlock.  RQF_STARTED will
2898 			 * prevent other fs requests from passing this one.
2899 			 */
2900 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2901 			    !(rq->rq_flags & RQF_DONTPREP)) {
2902 				/*
2903 				 * remove the space for the drain we added
2904 				 * so that we don't add it again
2905 				 */
2906 				--rq->nr_phys_segments;
2907 			}
2908 
2909 			rq = NULL;
2910 			break;
2911 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2912 			rq->rq_flags |= RQF_QUIET;
2913 			/*
2914 			 * Mark this request as started so we don't trigger
2915 			 * any debug logic in the end I/O path.
2916 			 */
2917 			blk_start_request(rq);
2918 			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2919 					BLK_STS_TARGET : BLK_STS_IOERR);
2920 		} else {
2921 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2922 			break;
2923 		}
2924 	}
2925 
2926 	return rq;
2927 }
2928 EXPORT_SYMBOL(blk_peek_request);
2929 
2930 static void blk_dequeue_request(struct request *rq)
2931 {
2932 	struct request_queue *q = rq->q;
2933 
2934 	BUG_ON(list_empty(&rq->queuelist));
2935 	BUG_ON(ELV_ON_HASH(rq));
2936 
2937 	list_del_init(&rq->queuelist);
2938 
2939 	/*
2940 	 * the time frame between a request being removed from the lists
2941 	 * and to it is freed is accounted as io that is in progress at
2942 	 * the driver side.
2943 	 */
2944 	if (blk_account_rq(rq))
2945 		q->in_flight[rq_is_sync(rq)]++;
2946 }
2947 
2948 /**
2949  * blk_start_request - start request processing on the driver
2950  * @req: request to dequeue
2951  *
2952  * Description:
2953  *     Dequeue @req and start timeout timer on it.  This hands off the
2954  *     request to the driver.
2955  */
2956 void blk_start_request(struct request *req)
2957 {
2958 	lockdep_assert_held(req->q->queue_lock);
2959 	WARN_ON_ONCE(req->q->mq_ops);
2960 
2961 	blk_dequeue_request(req);
2962 
2963 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2964 		req->io_start_time_ns = ktime_get_ns();
2965 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2966 		req->throtl_size = blk_rq_sectors(req);
2967 #endif
2968 		req->rq_flags |= RQF_STATS;
2969 		rq_qos_issue(req->q, req);
2970 	}
2971 
2972 	BUG_ON(blk_rq_is_complete(req));
2973 	blk_add_timer(req);
2974 }
2975 EXPORT_SYMBOL(blk_start_request);
2976 
2977 /**
2978  * blk_fetch_request - fetch a request from a request queue
2979  * @q: request queue to fetch a request from
2980  *
2981  * Description:
2982  *     Return the request at the top of @q.  The request is started on
2983  *     return and LLD can start processing it immediately.
2984  *
2985  * Return:
2986  *     Pointer to the request at the top of @q if available.  Null
2987  *     otherwise.
2988  */
2989 struct request *blk_fetch_request(struct request_queue *q)
2990 {
2991 	struct request *rq;
2992 
2993 	lockdep_assert_held(q->queue_lock);
2994 	WARN_ON_ONCE(q->mq_ops);
2995 
2996 	rq = blk_peek_request(q);
2997 	if (rq)
2998 		blk_start_request(rq);
2999 	return rq;
3000 }
3001 EXPORT_SYMBOL(blk_fetch_request);
3002 
3003 /*
3004  * Steal bios from a request and add them to a bio list.
3005  * The request must not have been partially completed before.
3006  */
3007 void blk_steal_bios(struct bio_list *list, struct request *rq)
3008 {
3009 	if (rq->bio) {
3010 		if (list->tail)
3011 			list->tail->bi_next = rq->bio;
3012 		else
3013 			list->head = rq->bio;
3014 		list->tail = rq->biotail;
3015 
3016 		rq->bio = NULL;
3017 		rq->biotail = NULL;
3018 	}
3019 
3020 	rq->__data_len = 0;
3021 }
3022 EXPORT_SYMBOL_GPL(blk_steal_bios);
3023 
3024 /**
3025  * blk_update_request - Special helper function for request stacking drivers
3026  * @req:      the request being processed
3027  * @error:    block status code
3028  * @nr_bytes: number of bytes to complete @req
3029  *
3030  * Description:
3031  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
3032  *     the request structure even if @req doesn't have leftover.
3033  *     If @req has leftover, sets it up for the next range of segments.
3034  *
3035  *     This special helper function is only for request stacking drivers
3036  *     (e.g. request-based dm) so that they can handle partial completion.
3037  *     Actual device drivers should use blk_end_request instead.
3038  *
3039  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3040  *     %false return from this function.
3041  *
3042  * Note:
3043  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3044  *	blk_rq_bytes() and in blk_update_request().
3045  *
3046  * Return:
3047  *     %false - this request doesn't have any more data
3048  *     %true  - this request has more data
3049  **/
3050 bool blk_update_request(struct request *req, blk_status_t error,
3051 		unsigned int nr_bytes)
3052 {
3053 	int total_bytes;
3054 
3055 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3056 
3057 	if (!req->bio)
3058 		return false;
3059 
3060 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
3061 		     !(req->rq_flags & RQF_QUIET)))
3062 		print_req_error(req, error);
3063 
3064 	blk_account_io_completion(req, nr_bytes);
3065 
3066 	total_bytes = 0;
3067 	while (req->bio) {
3068 		struct bio *bio = req->bio;
3069 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3070 
3071 		if (bio_bytes == bio->bi_iter.bi_size)
3072 			req->bio = bio->bi_next;
3073 
3074 		/* Completion has already been traced */
3075 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3076 		req_bio_endio(req, bio, bio_bytes, error);
3077 
3078 		total_bytes += bio_bytes;
3079 		nr_bytes -= bio_bytes;
3080 
3081 		if (!nr_bytes)
3082 			break;
3083 	}
3084 
3085 	/*
3086 	 * completely done
3087 	 */
3088 	if (!req->bio) {
3089 		/*
3090 		 * Reset counters so that the request stacking driver
3091 		 * can find how many bytes remain in the request
3092 		 * later.
3093 		 */
3094 		req->__data_len = 0;
3095 		return false;
3096 	}
3097 
3098 	req->__data_len -= total_bytes;
3099 
3100 	/* update sector only for requests with clear definition of sector */
3101 	if (!blk_rq_is_passthrough(req))
3102 		req->__sector += total_bytes >> 9;
3103 
3104 	/* mixed attributes always follow the first bio */
3105 	if (req->rq_flags & RQF_MIXED_MERGE) {
3106 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
3107 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3108 	}
3109 
3110 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3111 		/*
3112 		 * If total number of sectors is less than the first segment
3113 		 * size, something has gone terribly wrong.
3114 		 */
3115 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3116 			blk_dump_rq_flags(req, "request botched");
3117 			req->__data_len = blk_rq_cur_bytes(req);
3118 		}
3119 
3120 		/* recalculate the number of segments */
3121 		blk_recalc_rq_segments(req);
3122 	}
3123 
3124 	return true;
3125 }
3126 EXPORT_SYMBOL_GPL(blk_update_request);
3127 
3128 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3129 				    unsigned int nr_bytes,
3130 				    unsigned int bidi_bytes)
3131 {
3132 	if (blk_update_request(rq, error, nr_bytes))
3133 		return true;
3134 
3135 	/* Bidi request must be completed as a whole */
3136 	if (unlikely(blk_bidi_rq(rq)) &&
3137 	    blk_update_request(rq->next_rq, error, bidi_bytes))
3138 		return true;
3139 
3140 	if (blk_queue_add_random(rq->q))
3141 		add_disk_randomness(rq->rq_disk);
3142 
3143 	return false;
3144 }
3145 
3146 /**
3147  * blk_unprep_request - unprepare a request
3148  * @req:	the request
3149  *
3150  * This function makes a request ready for complete resubmission (or
3151  * completion).  It happens only after all error handling is complete,
3152  * so represents the appropriate moment to deallocate any resources
3153  * that were allocated to the request in the prep_rq_fn.  The queue
3154  * lock is held when calling this.
3155  */
3156 void blk_unprep_request(struct request *req)
3157 {
3158 	struct request_queue *q = req->q;
3159 
3160 	req->rq_flags &= ~RQF_DONTPREP;
3161 	if (q->unprep_rq_fn)
3162 		q->unprep_rq_fn(q, req);
3163 }
3164 EXPORT_SYMBOL_GPL(blk_unprep_request);
3165 
3166 void blk_finish_request(struct request *req, blk_status_t error)
3167 {
3168 	struct request_queue *q = req->q;
3169 	u64 now = ktime_get_ns();
3170 
3171 	lockdep_assert_held(req->q->queue_lock);
3172 	WARN_ON_ONCE(q->mq_ops);
3173 
3174 	if (req->rq_flags & RQF_STATS)
3175 		blk_stat_add(req, now);
3176 
3177 	if (req->rq_flags & RQF_QUEUED)
3178 		blk_queue_end_tag(q, req);
3179 
3180 	BUG_ON(blk_queued_rq(req));
3181 
3182 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3183 		laptop_io_completion(req->q->backing_dev_info);
3184 
3185 	blk_delete_timer(req);
3186 
3187 	if (req->rq_flags & RQF_DONTPREP)
3188 		blk_unprep_request(req);
3189 
3190 	blk_account_io_done(req, now);
3191 
3192 	if (req->end_io) {
3193 		rq_qos_done(q, req);
3194 		req->end_io(req, error);
3195 	} else {
3196 		if (blk_bidi_rq(req))
3197 			__blk_put_request(req->next_rq->q, req->next_rq);
3198 
3199 		__blk_put_request(q, req);
3200 	}
3201 }
3202 EXPORT_SYMBOL(blk_finish_request);
3203 
3204 /**
3205  * blk_end_bidi_request - Complete a bidi request
3206  * @rq:         the request to complete
3207  * @error:      block status code
3208  * @nr_bytes:   number of bytes to complete @rq
3209  * @bidi_bytes: number of bytes to complete @rq->next_rq
3210  *
3211  * Description:
3212  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3213  *     Drivers that supports bidi can safely call this member for any
3214  *     type of request, bidi or uni.  In the later case @bidi_bytes is
3215  *     just ignored.
3216  *
3217  * Return:
3218  *     %false - we are done with this request
3219  *     %true  - still buffers pending for this request
3220  **/
3221 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3222 				 unsigned int nr_bytes, unsigned int bidi_bytes)
3223 {
3224 	struct request_queue *q = rq->q;
3225 	unsigned long flags;
3226 
3227 	WARN_ON_ONCE(q->mq_ops);
3228 
3229 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3230 		return true;
3231 
3232 	spin_lock_irqsave(q->queue_lock, flags);
3233 	blk_finish_request(rq, error);
3234 	spin_unlock_irqrestore(q->queue_lock, flags);
3235 
3236 	return false;
3237 }
3238 
3239 /**
3240  * __blk_end_bidi_request - Complete a bidi request with queue lock held
3241  * @rq:         the request to complete
3242  * @error:      block status code
3243  * @nr_bytes:   number of bytes to complete @rq
3244  * @bidi_bytes: number of bytes to complete @rq->next_rq
3245  *
3246  * Description:
3247  *     Identical to blk_end_bidi_request() except that queue lock is
3248  *     assumed to be locked on entry and remains so on return.
3249  *
3250  * Return:
3251  *     %false - we are done with this request
3252  *     %true  - still buffers pending for this request
3253  **/
3254 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3255 				   unsigned int nr_bytes, unsigned int bidi_bytes)
3256 {
3257 	lockdep_assert_held(rq->q->queue_lock);
3258 	WARN_ON_ONCE(rq->q->mq_ops);
3259 
3260 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3261 		return true;
3262 
3263 	blk_finish_request(rq, error);
3264 
3265 	return false;
3266 }
3267 
3268 /**
3269  * blk_end_request - Helper function for drivers to complete the request.
3270  * @rq:       the request being processed
3271  * @error:    block status code
3272  * @nr_bytes: number of bytes to complete
3273  *
3274  * Description:
3275  *     Ends I/O on a number of bytes attached to @rq.
3276  *     If @rq has leftover, sets it up for the next range of segments.
3277  *
3278  * Return:
3279  *     %false - we are done with this request
3280  *     %true  - still buffers pending for this request
3281  **/
3282 bool blk_end_request(struct request *rq, blk_status_t error,
3283 		unsigned int nr_bytes)
3284 {
3285 	WARN_ON_ONCE(rq->q->mq_ops);
3286 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
3287 }
3288 EXPORT_SYMBOL(blk_end_request);
3289 
3290 /**
3291  * blk_end_request_all - Helper function for drives to finish the request.
3292  * @rq: the request to finish
3293  * @error: block status code
3294  *
3295  * Description:
3296  *     Completely finish @rq.
3297  */
3298 void blk_end_request_all(struct request *rq, blk_status_t error)
3299 {
3300 	bool pending;
3301 	unsigned int bidi_bytes = 0;
3302 
3303 	if (unlikely(blk_bidi_rq(rq)))
3304 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3305 
3306 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3307 	BUG_ON(pending);
3308 }
3309 EXPORT_SYMBOL(blk_end_request_all);
3310 
3311 /**
3312  * __blk_end_request - Helper function for drivers to complete the request.
3313  * @rq:       the request being processed
3314  * @error:    block status code
3315  * @nr_bytes: number of bytes to complete
3316  *
3317  * Description:
3318  *     Must be called with queue lock held unlike blk_end_request().
3319  *
3320  * Return:
3321  *     %false - we are done with this request
3322  *     %true  - still buffers pending for this request
3323  **/
3324 bool __blk_end_request(struct request *rq, blk_status_t error,
3325 		unsigned int nr_bytes)
3326 {
3327 	lockdep_assert_held(rq->q->queue_lock);
3328 	WARN_ON_ONCE(rq->q->mq_ops);
3329 
3330 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3331 }
3332 EXPORT_SYMBOL(__blk_end_request);
3333 
3334 /**
3335  * __blk_end_request_all - Helper function for drives to finish the request.
3336  * @rq: the request to finish
3337  * @error:    block status code
3338  *
3339  * Description:
3340  *     Completely finish @rq.  Must be called with queue lock held.
3341  */
3342 void __blk_end_request_all(struct request *rq, blk_status_t error)
3343 {
3344 	bool pending;
3345 	unsigned int bidi_bytes = 0;
3346 
3347 	lockdep_assert_held(rq->q->queue_lock);
3348 	WARN_ON_ONCE(rq->q->mq_ops);
3349 
3350 	if (unlikely(blk_bidi_rq(rq)))
3351 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3352 
3353 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3354 	BUG_ON(pending);
3355 }
3356 EXPORT_SYMBOL(__blk_end_request_all);
3357 
3358 /**
3359  * __blk_end_request_cur - Helper function to finish the current request chunk.
3360  * @rq: the request to finish the current chunk for
3361  * @error:    block status code
3362  *
3363  * Description:
3364  *     Complete the current consecutively mapped chunk from @rq.  Must
3365  *     be called with queue lock held.
3366  *
3367  * Return:
3368  *     %false - we are done with this request
3369  *     %true  - still buffers pending for this request
3370  */
3371 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3372 {
3373 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3374 }
3375 EXPORT_SYMBOL(__blk_end_request_cur);
3376 
3377 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3378 		     struct bio *bio)
3379 {
3380 	if (bio_has_data(bio))
3381 		rq->nr_phys_segments = bio_phys_segments(q, bio);
3382 	else if (bio_op(bio) == REQ_OP_DISCARD)
3383 		rq->nr_phys_segments = 1;
3384 
3385 	rq->__data_len = bio->bi_iter.bi_size;
3386 	rq->bio = rq->biotail = bio;
3387 
3388 	if (bio->bi_disk)
3389 		rq->rq_disk = bio->bi_disk;
3390 }
3391 
3392 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3393 /**
3394  * rq_flush_dcache_pages - Helper function to flush all pages in a request
3395  * @rq: the request to be flushed
3396  *
3397  * Description:
3398  *     Flush all pages in @rq.
3399  */
3400 void rq_flush_dcache_pages(struct request *rq)
3401 {
3402 	struct req_iterator iter;
3403 	struct bio_vec bvec;
3404 
3405 	rq_for_each_segment(bvec, rq, iter)
3406 		flush_dcache_page(bvec.bv_page);
3407 }
3408 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3409 #endif
3410 
3411 /**
3412  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3413  * @q : the queue of the device being checked
3414  *
3415  * Description:
3416  *    Check if underlying low-level drivers of a device are busy.
3417  *    If the drivers want to export their busy state, they must set own
3418  *    exporting function using blk_queue_lld_busy() first.
3419  *
3420  *    Basically, this function is used only by request stacking drivers
3421  *    to stop dispatching requests to underlying devices when underlying
3422  *    devices are busy.  This behavior helps more I/O merging on the queue
3423  *    of the request stacking driver and prevents I/O throughput regression
3424  *    on burst I/O load.
3425  *
3426  * Return:
3427  *    0 - Not busy (The request stacking driver should dispatch request)
3428  *    1 - Busy (The request stacking driver should stop dispatching request)
3429  */
3430 int blk_lld_busy(struct request_queue *q)
3431 {
3432 	if (q->lld_busy_fn)
3433 		return q->lld_busy_fn(q);
3434 
3435 	return 0;
3436 }
3437 EXPORT_SYMBOL_GPL(blk_lld_busy);
3438 
3439 /**
3440  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3441  * @rq: the clone request to be cleaned up
3442  *
3443  * Description:
3444  *     Free all bios in @rq for a cloned request.
3445  */
3446 void blk_rq_unprep_clone(struct request *rq)
3447 {
3448 	struct bio *bio;
3449 
3450 	while ((bio = rq->bio) != NULL) {
3451 		rq->bio = bio->bi_next;
3452 
3453 		bio_put(bio);
3454 	}
3455 }
3456 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3457 
3458 /*
3459  * Copy attributes of the original request to the clone request.
3460  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3461  */
3462 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3463 {
3464 	dst->cpu = src->cpu;
3465 	dst->__sector = blk_rq_pos(src);
3466 	dst->__data_len = blk_rq_bytes(src);
3467 	if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3468 		dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3469 		dst->special_vec = src->special_vec;
3470 	}
3471 	dst->nr_phys_segments = src->nr_phys_segments;
3472 	dst->ioprio = src->ioprio;
3473 	dst->extra_len = src->extra_len;
3474 }
3475 
3476 /**
3477  * blk_rq_prep_clone - Helper function to setup clone request
3478  * @rq: the request to be setup
3479  * @rq_src: original request to be cloned
3480  * @bs: bio_set that bios for clone are allocated from
3481  * @gfp_mask: memory allocation mask for bio
3482  * @bio_ctr: setup function to be called for each clone bio.
3483  *           Returns %0 for success, non %0 for failure.
3484  * @data: private data to be passed to @bio_ctr
3485  *
3486  * Description:
3487  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3488  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3489  *     are not copied, and copying such parts is the caller's responsibility.
3490  *     Also, pages which the original bios are pointing to are not copied
3491  *     and the cloned bios just point same pages.
3492  *     So cloned bios must be completed before original bios, which means
3493  *     the caller must complete @rq before @rq_src.
3494  */
3495 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3496 		      struct bio_set *bs, gfp_t gfp_mask,
3497 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3498 		      void *data)
3499 {
3500 	struct bio *bio, *bio_src;
3501 
3502 	if (!bs)
3503 		bs = &fs_bio_set;
3504 
3505 	__rq_for_each_bio(bio_src, rq_src) {
3506 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3507 		if (!bio)
3508 			goto free_and_out;
3509 
3510 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3511 			goto free_and_out;
3512 
3513 		if (rq->bio) {
3514 			rq->biotail->bi_next = bio;
3515 			rq->biotail = bio;
3516 		} else
3517 			rq->bio = rq->biotail = bio;
3518 	}
3519 
3520 	__blk_rq_prep_clone(rq, rq_src);
3521 
3522 	return 0;
3523 
3524 free_and_out:
3525 	if (bio)
3526 		bio_put(bio);
3527 	blk_rq_unprep_clone(rq);
3528 
3529 	return -ENOMEM;
3530 }
3531 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3532 
3533 int kblockd_schedule_work(struct work_struct *work)
3534 {
3535 	return queue_work(kblockd_workqueue, work);
3536 }
3537 EXPORT_SYMBOL(kblockd_schedule_work);
3538 
3539 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3540 {
3541 	return queue_work_on(cpu, kblockd_workqueue, work);
3542 }
3543 EXPORT_SYMBOL(kblockd_schedule_work_on);
3544 
3545 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3546 				unsigned long delay)
3547 {
3548 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3549 }
3550 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3551 
3552 /**
3553  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3554  * @plug:	The &struct blk_plug that needs to be initialized
3555  *
3556  * Description:
3557  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3558  *   pending I/O should the task end up blocking between blk_start_plug() and
3559  *   blk_finish_plug(). This is important from a performance perspective, but
3560  *   also ensures that we don't deadlock. For instance, if the task is blocking
3561  *   for a memory allocation, memory reclaim could end up wanting to free a
3562  *   page belonging to that request that is currently residing in our private
3563  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3564  *   this kind of deadlock.
3565  */
3566 void blk_start_plug(struct blk_plug *plug)
3567 {
3568 	struct task_struct *tsk = current;
3569 
3570 	/*
3571 	 * If this is a nested plug, don't actually assign it.
3572 	 */
3573 	if (tsk->plug)
3574 		return;
3575 
3576 	INIT_LIST_HEAD(&plug->list);
3577 	INIT_LIST_HEAD(&plug->mq_list);
3578 	INIT_LIST_HEAD(&plug->cb_list);
3579 	/*
3580 	 * Store ordering should not be needed here, since a potential
3581 	 * preempt will imply a full memory barrier
3582 	 */
3583 	tsk->plug = plug;
3584 }
3585 EXPORT_SYMBOL(blk_start_plug);
3586 
3587 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3588 {
3589 	struct request *rqa = container_of(a, struct request, queuelist);
3590 	struct request *rqb = container_of(b, struct request, queuelist);
3591 
3592 	return !(rqa->q < rqb->q ||
3593 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3594 }
3595 
3596 /*
3597  * If 'from_schedule' is true, then postpone the dispatch of requests
3598  * until a safe kblockd context. We due this to avoid accidental big
3599  * additional stack usage in driver dispatch, in places where the originally
3600  * plugger did not intend it.
3601  */
3602 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3603 			    bool from_schedule)
3604 	__releases(q->queue_lock)
3605 {
3606 	lockdep_assert_held(q->queue_lock);
3607 
3608 	trace_block_unplug(q, depth, !from_schedule);
3609 
3610 	if (from_schedule)
3611 		blk_run_queue_async(q);
3612 	else
3613 		__blk_run_queue(q);
3614 	spin_unlock_irq(q->queue_lock);
3615 }
3616 
3617 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3618 {
3619 	LIST_HEAD(callbacks);
3620 
3621 	while (!list_empty(&plug->cb_list)) {
3622 		list_splice_init(&plug->cb_list, &callbacks);
3623 
3624 		while (!list_empty(&callbacks)) {
3625 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3626 							  struct blk_plug_cb,
3627 							  list);
3628 			list_del(&cb->list);
3629 			cb->callback(cb, from_schedule);
3630 		}
3631 	}
3632 }
3633 
3634 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3635 				      int size)
3636 {
3637 	struct blk_plug *plug = current->plug;
3638 	struct blk_plug_cb *cb;
3639 
3640 	if (!plug)
3641 		return NULL;
3642 
3643 	list_for_each_entry(cb, &plug->cb_list, list)
3644 		if (cb->callback == unplug && cb->data == data)
3645 			return cb;
3646 
3647 	/* Not currently on the callback list */
3648 	BUG_ON(size < sizeof(*cb));
3649 	cb = kzalloc(size, GFP_ATOMIC);
3650 	if (cb) {
3651 		cb->data = data;
3652 		cb->callback = unplug;
3653 		list_add(&cb->list, &plug->cb_list);
3654 	}
3655 	return cb;
3656 }
3657 EXPORT_SYMBOL(blk_check_plugged);
3658 
3659 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3660 {
3661 	struct request_queue *q;
3662 	struct request *rq;
3663 	LIST_HEAD(list);
3664 	unsigned int depth;
3665 
3666 	flush_plug_callbacks(plug, from_schedule);
3667 
3668 	if (!list_empty(&plug->mq_list))
3669 		blk_mq_flush_plug_list(plug, from_schedule);
3670 
3671 	if (list_empty(&plug->list))
3672 		return;
3673 
3674 	list_splice_init(&plug->list, &list);
3675 
3676 	list_sort(NULL, &list, plug_rq_cmp);
3677 
3678 	q = NULL;
3679 	depth = 0;
3680 
3681 	while (!list_empty(&list)) {
3682 		rq = list_entry_rq(list.next);
3683 		list_del_init(&rq->queuelist);
3684 		BUG_ON(!rq->q);
3685 		if (rq->q != q) {
3686 			/*
3687 			 * This drops the queue lock
3688 			 */
3689 			if (q)
3690 				queue_unplugged(q, depth, from_schedule);
3691 			q = rq->q;
3692 			depth = 0;
3693 			spin_lock_irq(q->queue_lock);
3694 		}
3695 
3696 		/*
3697 		 * Short-circuit if @q is dead
3698 		 */
3699 		if (unlikely(blk_queue_dying(q))) {
3700 			__blk_end_request_all(rq, BLK_STS_IOERR);
3701 			continue;
3702 		}
3703 
3704 		/*
3705 		 * rq is already accounted, so use raw insert
3706 		 */
3707 		if (op_is_flush(rq->cmd_flags))
3708 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3709 		else
3710 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3711 
3712 		depth++;
3713 	}
3714 
3715 	/*
3716 	 * This drops the queue lock
3717 	 */
3718 	if (q)
3719 		queue_unplugged(q, depth, from_schedule);
3720 }
3721 
3722 void blk_finish_plug(struct blk_plug *plug)
3723 {
3724 	if (plug != current->plug)
3725 		return;
3726 	blk_flush_plug_list(plug, false);
3727 
3728 	current->plug = NULL;
3729 }
3730 EXPORT_SYMBOL(blk_finish_plug);
3731 
3732 int __init blk_dev_init(void)
3733 {
3734 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3735 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3736 			FIELD_SIZEOF(struct request, cmd_flags));
3737 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3738 			FIELD_SIZEOF(struct bio, bi_opf));
3739 
3740 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3741 	kblockd_workqueue = alloc_workqueue("kblockd",
3742 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3743 	if (!kblockd_workqueue)
3744 		panic("Failed to create kblockd\n");
3745 
3746 	request_cachep = kmem_cache_create("blkdev_requests",
3747 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3748 
3749 	blk_requestq_cachep = kmem_cache_create("request_queue",
3750 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3751 
3752 #ifdef CONFIG_DEBUG_FS
3753 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3754 #endif
3755 
3756 	return 0;
3757 }
3758