xref: /openbmc/linux/block/blk-core.c (revision 81d67439)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/block.h>
34 
35 #include "blk.h"
36 
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
40 
41 static int __make_request(struct request_queue *q, struct bio *bio);
42 
43 /*
44  * For the allocated request tables
45  */
46 static struct kmem_cache *request_cachep;
47 
48 /*
49  * For queue allocation
50  */
51 struct kmem_cache *blk_requestq_cachep;
52 
53 /*
54  * Controlling structure to kblockd
55  */
56 static struct workqueue_struct *kblockd_workqueue;
57 
58 static void drive_stat_acct(struct request *rq, int new_io)
59 {
60 	struct hd_struct *part;
61 	int rw = rq_data_dir(rq);
62 	int cpu;
63 
64 	if (!blk_do_io_stat(rq))
65 		return;
66 
67 	cpu = part_stat_lock();
68 
69 	if (!new_io) {
70 		part = rq->part;
71 		part_stat_inc(cpu, part, merges[rw]);
72 	} else {
73 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
74 		if (!hd_struct_try_get(part)) {
75 			/*
76 			 * The partition is already being removed,
77 			 * the request will be accounted on the disk only
78 			 *
79 			 * We take a reference on disk->part0 although that
80 			 * partition will never be deleted, so we can treat
81 			 * it as any other partition.
82 			 */
83 			part = &rq->rq_disk->part0;
84 			hd_struct_get(part);
85 		}
86 		part_round_stats(cpu, part);
87 		part_inc_in_flight(part, rw);
88 		rq->part = part;
89 	}
90 
91 	part_stat_unlock();
92 }
93 
94 void blk_queue_congestion_threshold(struct request_queue *q)
95 {
96 	int nr;
97 
98 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 	if (nr > q->nr_requests)
100 		nr = q->nr_requests;
101 	q->nr_congestion_on = nr;
102 
103 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 	if (nr < 1)
105 		nr = 1;
106 	q->nr_congestion_off = nr;
107 }
108 
109 /**
110  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
111  * @bdev:	device
112  *
113  * Locates the passed device's request queue and returns the address of its
114  * backing_dev_info
115  *
116  * Will return NULL if the request queue cannot be located.
117  */
118 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
119 {
120 	struct backing_dev_info *ret = NULL;
121 	struct request_queue *q = bdev_get_queue(bdev);
122 
123 	if (q)
124 		ret = &q->backing_dev_info;
125 	return ret;
126 }
127 EXPORT_SYMBOL(blk_get_backing_dev_info);
128 
129 void blk_rq_init(struct request_queue *q, struct request *rq)
130 {
131 	memset(rq, 0, sizeof(*rq));
132 
133 	INIT_LIST_HEAD(&rq->queuelist);
134 	INIT_LIST_HEAD(&rq->timeout_list);
135 	rq->cpu = -1;
136 	rq->q = q;
137 	rq->__sector = (sector_t) -1;
138 	INIT_HLIST_NODE(&rq->hash);
139 	RB_CLEAR_NODE(&rq->rb_node);
140 	rq->cmd = rq->__cmd;
141 	rq->cmd_len = BLK_MAX_CDB;
142 	rq->tag = -1;
143 	rq->ref_count = 1;
144 	rq->start_time = jiffies;
145 	set_start_time_ns(rq);
146 	rq->part = NULL;
147 }
148 EXPORT_SYMBOL(blk_rq_init);
149 
150 static void req_bio_endio(struct request *rq, struct bio *bio,
151 			  unsigned int nbytes, int error)
152 {
153 	if (error)
154 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
155 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
156 		error = -EIO;
157 
158 	if (unlikely(nbytes > bio->bi_size)) {
159 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
160 		       __func__, nbytes, bio->bi_size);
161 		nbytes = bio->bi_size;
162 	}
163 
164 	if (unlikely(rq->cmd_flags & REQ_QUIET))
165 		set_bit(BIO_QUIET, &bio->bi_flags);
166 
167 	bio->bi_size -= nbytes;
168 	bio->bi_sector += (nbytes >> 9);
169 
170 	if (bio_integrity(bio))
171 		bio_integrity_advance(bio, nbytes);
172 
173 	/* don't actually finish bio if it's part of flush sequence */
174 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
175 		bio_endio(bio, error);
176 }
177 
178 void blk_dump_rq_flags(struct request *rq, char *msg)
179 {
180 	int bit;
181 
182 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
183 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 		rq->cmd_flags);
185 
186 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
187 	       (unsigned long long)blk_rq_pos(rq),
188 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
189 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
190 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
191 
192 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
193 		printk(KERN_INFO "  cdb: ");
194 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
195 			printk("%02x ", rq->cmd[bit]);
196 		printk("\n");
197 	}
198 }
199 EXPORT_SYMBOL(blk_dump_rq_flags);
200 
201 static void blk_delay_work(struct work_struct *work)
202 {
203 	struct request_queue *q;
204 
205 	q = container_of(work, struct request_queue, delay_work.work);
206 	spin_lock_irq(q->queue_lock);
207 	__blk_run_queue(q);
208 	spin_unlock_irq(q->queue_lock);
209 }
210 
211 /**
212  * blk_delay_queue - restart queueing after defined interval
213  * @q:		The &struct request_queue in question
214  * @msecs:	Delay in msecs
215  *
216  * Description:
217  *   Sometimes queueing needs to be postponed for a little while, to allow
218  *   resources to come back. This function will make sure that queueing is
219  *   restarted around the specified time.
220  */
221 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
222 {
223 	queue_delayed_work(kblockd_workqueue, &q->delay_work,
224 				msecs_to_jiffies(msecs));
225 }
226 EXPORT_SYMBOL(blk_delay_queue);
227 
228 /**
229  * blk_start_queue - restart a previously stopped queue
230  * @q:    The &struct request_queue in question
231  *
232  * Description:
233  *   blk_start_queue() will clear the stop flag on the queue, and call
234  *   the request_fn for the queue if it was in a stopped state when
235  *   entered. Also see blk_stop_queue(). Queue lock must be held.
236  **/
237 void blk_start_queue(struct request_queue *q)
238 {
239 	WARN_ON(!irqs_disabled());
240 
241 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
242 	__blk_run_queue(q);
243 }
244 EXPORT_SYMBOL(blk_start_queue);
245 
246 /**
247  * blk_stop_queue - stop a queue
248  * @q:    The &struct request_queue in question
249  *
250  * Description:
251  *   The Linux block layer assumes that a block driver will consume all
252  *   entries on the request queue when the request_fn strategy is called.
253  *   Often this will not happen, because of hardware limitations (queue
254  *   depth settings). If a device driver gets a 'queue full' response,
255  *   or if it simply chooses not to queue more I/O at one point, it can
256  *   call this function to prevent the request_fn from being called until
257  *   the driver has signalled it's ready to go again. This happens by calling
258  *   blk_start_queue() to restart queue operations. Queue lock must be held.
259  **/
260 void blk_stop_queue(struct request_queue *q)
261 {
262 	__cancel_delayed_work(&q->delay_work);
263 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
264 }
265 EXPORT_SYMBOL(blk_stop_queue);
266 
267 /**
268  * blk_sync_queue - cancel any pending callbacks on a queue
269  * @q: the queue
270  *
271  * Description:
272  *     The block layer may perform asynchronous callback activity
273  *     on a queue, such as calling the unplug function after a timeout.
274  *     A block device may call blk_sync_queue to ensure that any
275  *     such activity is cancelled, thus allowing it to release resources
276  *     that the callbacks might use. The caller must already have made sure
277  *     that its ->make_request_fn will not re-add plugging prior to calling
278  *     this function.
279  *
280  *     This function does not cancel any asynchronous activity arising
281  *     out of elevator or throttling code. That would require elevaotor_exit()
282  *     and blk_throtl_exit() to be called with queue lock initialized.
283  *
284  */
285 void blk_sync_queue(struct request_queue *q)
286 {
287 	del_timer_sync(&q->timeout);
288 	cancel_delayed_work_sync(&q->delay_work);
289 }
290 EXPORT_SYMBOL(blk_sync_queue);
291 
292 /**
293  * __blk_run_queue - run a single device queue
294  * @q:	The queue to run
295  *
296  * Description:
297  *    See @blk_run_queue. This variant must be called with the queue lock
298  *    held and interrupts disabled.
299  */
300 void __blk_run_queue(struct request_queue *q)
301 {
302 	if (unlikely(blk_queue_stopped(q)))
303 		return;
304 
305 	q->request_fn(q);
306 }
307 EXPORT_SYMBOL(__blk_run_queue);
308 
309 /**
310  * blk_run_queue_async - run a single device queue in workqueue context
311  * @q:	The queue to run
312  *
313  * Description:
314  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
315  *    of us.
316  */
317 void blk_run_queue_async(struct request_queue *q)
318 {
319 	if (likely(!blk_queue_stopped(q))) {
320 		__cancel_delayed_work(&q->delay_work);
321 		queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
322 	}
323 }
324 EXPORT_SYMBOL(blk_run_queue_async);
325 
326 /**
327  * blk_run_queue - run a single device queue
328  * @q: The queue to run
329  *
330  * Description:
331  *    Invoke request handling on this queue, if it has pending work to do.
332  *    May be used to restart queueing when a request has completed.
333  */
334 void blk_run_queue(struct request_queue *q)
335 {
336 	unsigned long flags;
337 
338 	spin_lock_irqsave(q->queue_lock, flags);
339 	__blk_run_queue(q);
340 	spin_unlock_irqrestore(q->queue_lock, flags);
341 }
342 EXPORT_SYMBOL(blk_run_queue);
343 
344 void blk_put_queue(struct request_queue *q)
345 {
346 	kobject_put(&q->kobj);
347 }
348 EXPORT_SYMBOL(blk_put_queue);
349 
350 /*
351  * Note: If a driver supplied the queue lock, it should not zap that lock
352  * unexpectedly as some queue cleanup components like elevator_exit() and
353  * blk_throtl_exit() need queue lock.
354  */
355 void blk_cleanup_queue(struct request_queue *q)
356 {
357 	/*
358 	 * We know we have process context here, so we can be a little
359 	 * cautious and ensure that pending block actions on this device
360 	 * are done before moving on. Going into this function, we should
361 	 * not have processes doing IO to this device.
362 	 */
363 	blk_sync_queue(q);
364 
365 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
366 	mutex_lock(&q->sysfs_lock);
367 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
368 	mutex_unlock(&q->sysfs_lock);
369 
370 	if (q->elevator)
371 		elevator_exit(q->elevator);
372 
373 	blk_throtl_exit(q);
374 
375 	blk_put_queue(q);
376 }
377 EXPORT_SYMBOL(blk_cleanup_queue);
378 
379 static int blk_init_free_list(struct request_queue *q)
380 {
381 	struct request_list *rl = &q->rq;
382 
383 	if (unlikely(rl->rq_pool))
384 		return 0;
385 
386 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
387 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
388 	rl->elvpriv = 0;
389 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
390 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
391 
392 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
393 				mempool_free_slab, request_cachep, q->node);
394 
395 	if (!rl->rq_pool)
396 		return -ENOMEM;
397 
398 	return 0;
399 }
400 
401 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
402 {
403 	return blk_alloc_queue_node(gfp_mask, -1);
404 }
405 EXPORT_SYMBOL(blk_alloc_queue);
406 
407 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
408 {
409 	struct request_queue *q;
410 	int err;
411 
412 	q = kmem_cache_alloc_node(blk_requestq_cachep,
413 				gfp_mask | __GFP_ZERO, node_id);
414 	if (!q)
415 		return NULL;
416 
417 	q->backing_dev_info.ra_pages =
418 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
419 	q->backing_dev_info.state = 0;
420 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
421 	q->backing_dev_info.name = "block";
422 
423 	err = bdi_init(&q->backing_dev_info);
424 	if (err) {
425 		kmem_cache_free(blk_requestq_cachep, q);
426 		return NULL;
427 	}
428 
429 	if (blk_throtl_init(q)) {
430 		kmem_cache_free(blk_requestq_cachep, q);
431 		return NULL;
432 	}
433 
434 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
435 		    laptop_mode_timer_fn, (unsigned long) q);
436 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
437 	INIT_LIST_HEAD(&q->timeout_list);
438 	INIT_LIST_HEAD(&q->flush_queue[0]);
439 	INIT_LIST_HEAD(&q->flush_queue[1]);
440 	INIT_LIST_HEAD(&q->flush_data_in_flight);
441 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
442 
443 	kobject_init(&q->kobj, &blk_queue_ktype);
444 
445 	mutex_init(&q->sysfs_lock);
446 	spin_lock_init(&q->__queue_lock);
447 
448 	/*
449 	 * By default initialize queue_lock to internal lock and driver can
450 	 * override it later if need be.
451 	 */
452 	q->queue_lock = &q->__queue_lock;
453 
454 	return q;
455 }
456 EXPORT_SYMBOL(blk_alloc_queue_node);
457 
458 /**
459  * blk_init_queue  - prepare a request queue for use with a block device
460  * @rfn:  The function to be called to process requests that have been
461  *        placed on the queue.
462  * @lock: Request queue spin lock
463  *
464  * Description:
465  *    If a block device wishes to use the standard request handling procedures,
466  *    which sorts requests and coalesces adjacent requests, then it must
467  *    call blk_init_queue().  The function @rfn will be called when there
468  *    are requests on the queue that need to be processed.  If the device
469  *    supports plugging, then @rfn may not be called immediately when requests
470  *    are available on the queue, but may be called at some time later instead.
471  *    Plugged queues are generally unplugged when a buffer belonging to one
472  *    of the requests on the queue is needed, or due to memory pressure.
473  *
474  *    @rfn is not required, or even expected, to remove all requests off the
475  *    queue, but only as many as it can handle at a time.  If it does leave
476  *    requests on the queue, it is responsible for arranging that the requests
477  *    get dealt with eventually.
478  *
479  *    The queue spin lock must be held while manipulating the requests on the
480  *    request queue; this lock will be taken also from interrupt context, so irq
481  *    disabling is needed for it.
482  *
483  *    Function returns a pointer to the initialized request queue, or %NULL if
484  *    it didn't succeed.
485  *
486  * Note:
487  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
488  *    when the block device is deactivated (such as at module unload).
489  **/
490 
491 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
492 {
493 	return blk_init_queue_node(rfn, lock, -1);
494 }
495 EXPORT_SYMBOL(blk_init_queue);
496 
497 struct request_queue *
498 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
499 {
500 	struct request_queue *uninit_q, *q;
501 
502 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
503 	if (!uninit_q)
504 		return NULL;
505 
506 	q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
507 	if (!q)
508 		blk_cleanup_queue(uninit_q);
509 
510 	return q;
511 }
512 EXPORT_SYMBOL(blk_init_queue_node);
513 
514 struct request_queue *
515 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
516 			 spinlock_t *lock)
517 {
518 	return blk_init_allocated_queue_node(q, rfn, lock, -1);
519 }
520 EXPORT_SYMBOL(blk_init_allocated_queue);
521 
522 struct request_queue *
523 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
524 			      spinlock_t *lock, int node_id)
525 {
526 	if (!q)
527 		return NULL;
528 
529 	q->node = node_id;
530 	if (blk_init_free_list(q))
531 		return NULL;
532 
533 	q->request_fn		= rfn;
534 	q->prep_rq_fn		= NULL;
535 	q->unprep_rq_fn		= NULL;
536 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
537 
538 	/* Override internal queue lock with supplied lock pointer */
539 	if (lock)
540 		q->queue_lock		= lock;
541 
542 	/*
543 	 * This also sets hw/phys segments, boundary and size
544 	 */
545 	blk_queue_make_request(q, __make_request);
546 
547 	q->sg_reserved_size = INT_MAX;
548 
549 	/*
550 	 * all done
551 	 */
552 	if (!elevator_init(q, NULL)) {
553 		blk_queue_congestion_threshold(q);
554 		return q;
555 	}
556 
557 	return NULL;
558 }
559 EXPORT_SYMBOL(blk_init_allocated_queue_node);
560 
561 int blk_get_queue(struct request_queue *q)
562 {
563 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
564 		kobject_get(&q->kobj);
565 		return 0;
566 	}
567 
568 	return 1;
569 }
570 EXPORT_SYMBOL(blk_get_queue);
571 
572 static inline void blk_free_request(struct request_queue *q, struct request *rq)
573 {
574 	if (rq->cmd_flags & REQ_ELVPRIV)
575 		elv_put_request(q, rq);
576 	mempool_free(rq, q->rq.rq_pool);
577 }
578 
579 static struct request *
580 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
581 {
582 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
583 
584 	if (!rq)
585 		return NULL;
586 
587 	blk_rq_init(q, rq);
588 
589 	rq->cmd_flags = flags | REQ_ALLOCED;
590 
591 	if (priv) {
592 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
593 			mempool_free(rq, q->rq.rq_pool);
594 			return NULL;
595 		}
596 		rq->cmd_flags |= REQ_ELVPRIV;
597 	}
598 
599 	return rq;
600 }
601 
602 /*
603  * ioc_batching returns true if the ioc is a valid batching request and
604  * should be given priority access to a request.
605  */
606 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
607 {
608 	if (!ioc)
609 		return 0;
610 
611 	/*
612 	 * Make sure the process is able to allocate at least 1 request
613 	 * even if the batch times out, otherwise we could theoretically
614 	 * lose wakeups.
615 	 */
616 	return ioc->nr_batch_requests == q->nr_batching ||
617 		(ioc->nr_batch_requests > 0
618 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
619 }
620 
621 /*
622  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
623  * will cause the process to be a "batcher" on all queues in the system. This
624  * is the behaviour we want though - once it gets a wakeup it should be given
625  * a nice run.
626  */
627 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
628 {
629 	if (!ioc || ioc_batching(q, ioc))
630 		return;
631 
632 	ioc->nr_batch_requests = q->nr_batching;
633 	ioc->last_waited = jiffies;
634 }
635 
636 static void __freed_request(struct request_queue *q, int sync)
637 {
638 	struct request_list *rl = &q->rq;
639 
640 	if (rl->count[sync] < queue_congestion_off_threshold(q))
641 		blk_clear_queue_congested(q, sync);
642 
643 	if (rl->count[sync] + 1 <= q->nr_requests) {
644 		if (waitqueue_active(&rl->wait[sync]))
645 			wake_up(&rl->wait[sync]);
646 
647 		blk_clear_queue_full(q, sync);
648 	}
649 }
650 
651 /*
652  * A request has just been released.  Account for it, update the full and
653  * congestion status, wake up any waiters.   Called under q->queue_lock.
654  */
655 static void freed_request(struct request_queue *q, int sync, int priv)
656 {
657 	struct request_list *rl = &q->rq;
658 
659 	rl->count[sync]--;
660 	if (priv)
661 		rl->elvpriv--;
662 
663 	__freed_request(q, sync);
664 
665 	if (unlikely(rl->starved[sync ^ 1]))
666 		__freed_request(q, sync ^ 1);
667 }
668 
669 /*
670  * Determine if elevator data should be initialized when allocating the
671  * request associated with @bio.
672  */
673 static bool blk_rq_should_init_elevator(struct bio *bio)
674 {
675 	if (!bio)
676 		return true;
677 
678 	/*
679 	 * Flush requests do not use the elevator so skip initialization.
680 	 * This allows a request to share the flush and elevator data.
681 	 */
682 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
683 		return false;
684 
685 	return true;
686 }
687 
688 /*
689  * Get a free request, queue_lock must be held.
690  * Returns NULL on failure, with queue_lock held.
691  * Returns !NULL on success, with queue_lock *not held*.
692  */
693 static struct request *get_request(struct request_queue *q, int rw_flags,
694 				   struct bio *bio, gfp_t gfp_mask)
695 {
696 	struct request *rq = NULL;
697 	struct request_list *rl = &q->rq;
698 	struct io_context *ioc = NULL;
699 	const bool is_sync = rw_is_sync(rw_flags) != 0;
700 	int may_queue, priv = 0;
701 
702 	may_queue = elv_may_queue(q, rw_flags);
703 	if (may_queue == ELV_MQUEUE_NO)
704 		goto rq_starved;
705 
706 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
707 		if (rl->count[is_sync]+1 >= q->nr_requests) {
708 			ioc = current_io_context(GFP_ATOMIC, q->node);
709 			/*
710 			 * The queue will fill after this allocation, so set
711 			 * it as full, and mark this process as "batching".
712 			 * This process will be allowed to complete a batch of
713 			 * requests, others will be blocked.
714 			 */
715 			if (!blk_queue_full(q, is_sync)) {
716 				ioc_set_batching(q, ioc);
717 				blk_set_queue_full(q, is_sync);
718 			} else {
719 				if (may_queue != ELV_MQUEUE_MUST
720 						&& !ioc_batching(q, ioc)) {
721 					/*
722 					 * The queue is full and the allocating
723 					 * process is not a "batcher", and not
724 					 * exempted by the IO scheduler
725 					 */
726 					goto out;
727 				}
728 			}
729 		}
730 		blk_set_queue_congested(q, is_sync);
731 	}
732 
733 	/*
734 	 * Only allow batching queuers to allocate up to 50% over the defined
735 	 * limit of requests, otherwise we could have thousands of requests
736 	 * allocated with any setting of ->nr_requests
737 	 */
738 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
739 		goto out;
740 
741 	rl->count[is_sync]++;
742 	rl->starved[is_sync] = 0;
743 
744 	if (blk_rq_should_init_elevator(bio)) {
745 		priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
746 		if (priv)
747 			rl->elvpriv++;
748 	}
749 
750 	if (blk_queue_io_stat(q))
751 		rw_flags |= REQ_IO_STAT;
752 	spin_unlock_irq(q->queue_lock);
753 
754 	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
755 	if (unlikely(!rq)) {
756 		/*
757 		 * Allocation failed presumably due to memory. Undo anything
758 		 * we might have messed up.
759 		 *
760 		 * Allocating task should really be put onto the front of the
761 		 * wait queue, but this is pretty rare.
762 		 */
763 		spin_lock_irq(q->queue_lock);
764 		freed_request(q, is_sync, priv);
765 
766 		/*
767 		 * in the very unlikely event that allocation failed and no
768 		 * requests for this direction was pending, mark us starved
769 		 * so that freeing of a request in the other direction will
770 		 * notice us. another possible fix would be to split the
771 		 * rq mempool into READ and WRITE
772 		 */
773 rq_starved:
774 		if (unlikely(rl->count[is_sync] == 0))
775 			rl->starved[is_sync] = 1;
776 
777 		goto out;
778 	}
779 
780 	/*
781 	 * ioc may be NULL here, and ioc_batching will be false. That's
782 	 * OK, if the queue is under the request limit then requests need
783 	 * not count toward the nr_batch_requests limit. There will always
784 	 * be some limit enforced by BLK_BATCH_TIME.
785 	 */
786 	if (ioc_batching(q, ioc))
787 		ioc->nr_batch_requests--;
788 
789 	trace_block_getrq(q, bio, rw_flags & 1);
790 out:
791 	return rq;
792 }
793 
794 /*
795  * No available requests for this queue, wait for some requests to become
796  * available.
797  *
798  * Called with q->queue_lock held, and returns with it unlocked.
799  */
800 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
801 					struct bio *bio)
802 {
803 	const bool is_sync = rw_is_sync(rw_flags) != 0;
804 	struct request *rq;
805 
806 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
807 	while (!rq) {
808 		DEFINE_WAIT(wait);
809 		struct io_context *ioc;
810 		struct request_list *rl = &q->rq;
811 
812 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
813 				TASK_UNINTERRUPTIBLE);
814 
815 		trace_block_sleeprq(q, bio, rw_flags & 1);
816 
817 		spin_unlock_irq(q->queue_lock);
818 		io_schedule();
819 
820 		/*
821 		 * After sleeping, we become a "batching" process and
822 		 * will be able to allocate at least one request, and
823 		 * up to a big batch of them for a small period time.
824 		 * See ioc_batching, ioc_set_batching
825 		 */
826 		ioc = current_io_context(GFP_NOIO, q->node);
827 		ioc_set_batching(q, ioc);
828 
829 		spin_lock_irq(q->queue_lock);
830 		finish_wait(&rl->wait[is_sync], &wait);
831 
832 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
833 	};
834 
835 	return rq;
836 }
837 
838 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
839 {
840 	struct request *rq;
841 
842 	if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
843 		return NULL;
844 
845 	BUG_ON(rw != READ && rw != WRITE);
846 
847 	spin_lock_irq(q->queue_lock);
848 	if (gfp_mask & __GFP_WAIT) {
849 		rq = get_request_wait(q, rw, NULL);
850 	} else {
851 		rq = get_request(q, rw, NULL, gfp_mask);
852 		if (!rq)
853 			spin_unlock_irq(q->queue_lock);
854 	}
855 	/* q->queue_lock is unlocked at this point */
856 
857 	return rq;
858 }
859 EXPORT_SYMBOL(blk_get_request);
860 
861 /**
862  * blk_make_request - given a bio, allocate a corresponding struct request.
863  * @q: target request queue
864  * @bio:  The bio describing the memory mappings that will be submitted for IO.
865  *        It may be a chained-bio properly constructed by block/bio layer.
866  * @gfp_mask: gfp flags to be used for memory allocation
867  *
868  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
869  * type commands. Where the struct request needs to be farther initialized by
870  * the caller. It is passed a &struct bio, which describes the memory info of
871  * the I/O transfer.
872  *
873  * The caller of blk_make_request must make sure that bi_io_vec
874  * are set to describe the memory buffers. That bio_data_dir() will return
875  * the needed direction of the request. (And all bio's in the passed bio-chain
876  * are properly set accordingly)
877  *
878  * If called under none-sleepable conditions, mapped bio buffers must not
879  * need bouncing, by calling the appropriate masked or flagged allocator,
880  * suitable for the target device. Otherwise the call to blk_queue_bounce will
881  * BUG.
882  *
883  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
884  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
885  * anything but the first bio in the chain. Otherwise you risk waiting for IO
886  * completion of a bio that hasn't been submitted yet, thus resulting in a
887  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
888  * of bio_alloc(), as that avoids the mempool deadlock.
889  * If possible a big IO should be split into smaller parts when allocation
890  * fails. Partial allocation should not be an error, or you risk a live-lock.
891  */
892 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
893 				 gfp_t gfp_mask)
894 {
895 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
896 
897 	if (unlikely(!rq))
898 		return ERR_PTR(-ENOMEM);
899 
900 	for_each_bio(bio) {
901 		struct bio *bounce_bio = bio;
902 		int ret;
903 
904 		blk_queue_bounce(q, &bounce_bio);
905 		ret = blk_rq_append_bio(q, rq, bounce_bio);
906 		if (unlikely(ret)) {
907 			blk_put_request(rq);
908 			return ERR_PTR(ret);
909 		}
910 	}
911 
912 	return rq;
913 }
914 EXPORT_SYMBOL(blk_make_request);
915 
916 /**
917  * blk_requeue_request - put a request back on queue
918  * @q:		request queue where request should be inserted
919  * @rq:		request to be inserted
920  *
921  * Description:
922  *    Drivers often keep queueing requests until the hardware cannot accept
923  *    more, when that condition happens we need to put the request back
924  *    on the queue. Must be called with queue lock held.
925  */
926 void blk_requeue_request(struct request_queue *q, struct request *rq)
927 {
928 	blk_delete_timer(rq);
929 	blk_clear_rq_complete(rq);
930 	trace_block_rq_requeue(q, rq);
931 
932 	if (blk_rq_tagged(rq))
933 		blk_queue_end_tag(q, rq);
934 
935 	BUG_ON(blk_queued_rq(rq));
936 
937 	elv_requeue_request(q, rq);
938 }
939 EXPORT_SYMBOL(blk_requeue_request);
940 
941 static void add_acct_request(struct request_queue *q, struct request *rq,
942 			     int where)
943 {
944 	drive_stat_acct(rq, 1);
945 	__elv_add_request(q, rq, where);
946 }
947 
948 /**
949  * blk_insert_request - insert a special request into a request queue
950  * @q:		request queue where request should be inserted
951  * @rq:		request to be inserted
952  * @at_head:	insert request at head or tail of queue
953  * @data:	private data
954  *
955  * Description:
956  *    Many block devices need to execute commands asynchronously, so they don't
957  *    block the whole kernel from preemption during request execution.  This is
958  *    accomplished normally by inserting aritficial requests tagged as
959  *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
960  *    be scheduled for actual execution by the request queue.
961  *
962  *    We have the option of inserting the head or the tail of the queue.
963  *    Typically we use the tail for new ioctls and so forth.  We use the head
964  *    of the queue for things like a QUEUE_FULL message from a device, or a
965  *    host that is unable to accept a particular command.
966  */
967 void blk_insert_request(struct request_queue *q, struct request *rq,
968 			int at_head, void *data)
969 {
970 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
971 	unsigned long flags;
972 
973 	/*
974 	 * tell I/O scheduler that this isn't a regular read/write (ie it
975 	 * must not attempt merges on this) and that it acts as a soft
976 	 * barrier
977 	 */
978 	rq->cmd_type = REQ_TYPE_SPECIAL;
979 
980 	rq->special = data;
981 
982 	spin_lock_irqsave(q->queue_lock, flags);
983 
984 	/*
985 	 * If command is tagged, release the tag
986 	 */
987 	if (blk_rq_tagged(rq))
988 		blk_queue_end_tag(q, rq);
989 
990 	add_acct_request(q, rq, where);
991 	__blk_run_queue(q);
992 	spin_unlock_irqrestore(q->queue_lock, flags);
993 }
994 EXPORT_SYMBOL(blk_insert_request);
995 
996 static void part_round_stats_single(int cpu, struct hd_struct *part,
997 				    unsigned long now)
998 {
999 	if (now == part->stamp)
1000 		return;
1001 
1002 	if (part_in_flight(part)) {
1003 		__part_stat_add(cpu, part, time_in_queue,
1004 				part_in_flight(part) * (now - part->stamp));
1005 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1006 	}
1007 	part->stamp = now;
1008 }
1009 
1010 /**
1011  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1012  * @cpu: cpu number for stats access
1013  * @part: target partition
1014  *
1015  * The average IO queue length and utilisation statistics are maintained
1016  * by observing the current state of the queue length and the amount of
1017  * time it has been in this state for.
1018  *
1019  * Normally, that accounting is done on IO completion, but that can result
1020  * in more than a second's worth of IO being accounted for within any one
1021  * second, leading to >100% utilisation.  To deal with that, we call this
1022  * function to do a round-off before returning the results when reading
1023  * /proc/diskstats.  This accounts immediately for all queue usage up to
1024  * the current jiffies and restarts the counters again.
1025  */
1026 void part_round_stats(int cpu, struct hd_struct *part)
1027 {
1028 	unsigned long now = jiffies;
1029 
1030 	if (part->partno)
1031 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1032 	part_round_stats_single(cpu, part, now);
1033 }
1034 EXPORT_SYMBOL_GPL(part_round_stats);
1035 
1036 /*
1037  * queue lock must be held
1038  */
1039 void __blk_put_request(struct request_queue *q, struct request *req)
1040 {
1041 	if (unlikely(!q))
1042 		return;
1043 	if (unlikely(--req->ref_count))
1044 		return;
1045 
1046 	elv_completed_request(q, req);
1047 
1048 	/* this is a bio leak */
1049 	WARN_ON(req->bio != NULL);
1050 
1051 	/*
1052 	 * Request may not have originated from ll_rw_blk. if not,
1053 	 * it didn't come out of our reserved rq pools
1054 	 */
1055 	if (req->cmd_flags & REQ_ALLOCED) {
1056 		int is_sync = rq_is_sync(req) != 0;
1057 		int priv = req->cmd_flags & REQ_ELVPRIV;
1058 
1059 		BUG_ON(!list_empty(&req->queuelist));
1060 		BUG_ON(!hlist_unhashed(&req->hash));
1061 
1062 		blk_free_request(q, req);
1063 		freed_request(q, is_sync, priv);
1064 	}
1065 }
1066 EXPORT_SYMBOL_GPL(__blk_put_request);
1067 
1068 void blk_put_request(struct request *req)
1069 {
1070 	unsigned long flags;
1071 	struct request_queue *q = req->q;
1072 
1073 	spin_lock_irqsave(q->queue_lock, flags);
1074 	__blk_put_request(q, req);
1075 	spin_unlock_irqrestore(q->queue_lock, flags);
1076 }
1077 EXPORT_SYMBOL(blk_put_request);
1078 
1079 /**
1080  * blk_add_request_payload - add a payload to a request
1081  * @rq: request to update
1082  * @page: page backing the payload
1083  * @len: length of the payload.
1084  *
1085  * This allows to later add a payload to an already submitted request by
1086  * a block driver.  The driver needs to take care of freeing the payload
1087  * itself.
1088  *
1089  * Note that this is a quite horrible hack and nothing but handling of
1090  * discard requests should ever use it.
1091  */
1092 void blk_add_request_payload(struct request *rq, struct page *page,
1093 		unsigned int len)
1094 {
1095 	struct bio *bio = rq->bio;
1096 
1097 	bio->bi_io_vec->bv_page = page;
1098 	bio->bi_io_vec->bv_offset = 0;
1099 	bio->bi_io_vec->bv_len = len;
1100 
1101 	bio->bi_size = len;
1102 	bio->bi_vcnt = 1;
1103 	bio->bi_phys_segments = 1;
1104 
1105 	rq->__data_len = rq->resid_len = len;
1106 	rq->nr_phys_segments = 1;
1107 	rq->buffer = bio_data(bio);
1108 }
1109 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1110 
1111 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1112 				   struct bio *bio)
1113 {
1114 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1115 
1116 	if (!ll_back_merge_fn(q, req, bio))
1117 		return false;
1118 
1119 	trace_block_bio_backmerge(q, bio);
1120 
1121 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1122 		blk_rq_set_mixed_merge(req);
1123 
1124 	req->biotail->bi_next = bio;
1125 	req->biotail = bio;
1126 	req->__data_len += bio->bi_size;
1127 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1128 
1129 	drive_stat_acct(req, 0);
1130 	elv_bio_merged(q, req, bio);
1131 	return true;
1132 }
1133 
1134 static bool bio_attempt_front_merge(struct request_queue *q,
1135 				    struct request *req, struct bio *bio)
1136 {
1137 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1138 
1139 	if (!ll_front_merge_fn(q, req, bio))
1140 		return false;
1141 
1142 	trace_block_bio_frontmerge(q, bio);
1143 
1144 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1145 		blk_rq_set_mixed_merge(req);
1146 
1147 	bio->bi_next = req->bio;
1148 	req->bio = bio;
1149 
1150 	/*
1151 	 * may not be valid. if the low level driver said
1152 	 * it didn't need a bounce buffer then it better
1153 	 * not touch req->buffer either...
1154 	 */
1155 	req->buffer = bio_data(bio);
1156 	req->__sector = bio->bi_sector;
1157 	req->__data_len += bio->bi_size;
1158 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1159 
1160 	drive_stat_acct(req, 0);
1161 	elv_bio_merged(q, req, bio);
1162 	return true;
1163 }
1164 
1165 /*
1166  * Attempts to merge with the plugged list in the current process. Returns
1167  * true if merge was successful, otherwise false.
1168  */
1169 static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1170 			       struct bio *bio)
1171 {
1172 	struct blk_plug *plug;
1173 	struct request *rq;
1174 	bool ret = false;
1175 
1176 	plug = tsk->plug;
1177 	if (!plug)
1178 		goto out;
1179 
1180 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1181 		int el_ret;
1182 
1183 		if (rq->q != q)
1184 			continue;
1185 
1186 		el_ret = elv_try_merge(rq, bio);
1187 		if (el_ret == ELEVATOR_BACK_MERGE) {
1188 			ret = bio_attempt_back_merge(q, rq, bio);
1189 			if (ret)
1190 				break;
1191 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1192 			ret = bio_attempt_front_merge(q, rq, bio);
1193 			if (ret)
1194 				break;
1195 		}
1196 	}
1197 out:
1198 	return ret;
1199 }
1200 
1201 void init_request_from_bio(struct request *req, struct bio *bio)
1202 {
1203 	req->cpu = bio->bi_comp_cpu;
1204 	req->cmd_type = REQ_TYPE_FS;
1205 
1206 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1207 	if (bio->bi_rw & REQ_RAHEAD)
1208 		req->cmd_flags |= REQ_FAILFAST_MASK;
1209 
1210 	req->errors = 0;
1211 	req->__sector = bio->bi_sector;
1212 	req->ioprio = bio_prio(bio);
1213 	blk_rq_bio_prep(req->q, req, bio);
1214 }
1215 
1216 static int __make_request(struct request_queue *q, struct bio *bio)
1217 {
1218 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1219 	struct blk_plug *plug;
1220 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1221 	struct request *req;
1222 
1223 	/*
1224 	 * low level driver can indicate that it wants pages above a
1225 	 * certain limit bounced to low memory (ie for highmem, or even
1226 	 * ISA dma in theory)
1227 	 */
1228 	blk_queue_bounce(q, &bio);
1229 
1230 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1231 		spin_lock_irq(q->queue_lock);
1232 		where = ELEVATOR_INSERT_FLUSH;
1233 		goto get_rq;
1234 	}
1235 
1236 	/*
1237 	 * Check if we can merge with the plugged list before grabbing
1238 	 * any locks.
1239 	 */
1240 	if (attempt_plug_merge(current, q, bio))
1241 		goto out;
1242 
1243 	spin_lock_irq(q->queue_lock);
1244 
1245 	el_ret = elv_merge(q, &req, bio);
1246 	if (el_ret == ELEVATOR_BACK_MERGE) {
1247 		if (bio_attempt_back_merge(q, req, bio)) {
1248 			if (!attempt_back_merge(q, req))
1249 				elv_merged_request(q, req, el_ret);
1250 			goto out_unlock;
1251 		}
1252 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1253 		if (bio_attempt_front_merge(q, req, bio)) {
1254 			if (!attempt_front_merge(q, req))
1255 				elv_merged_request(q, req, el_ret);
1256 			goto out_unlock;
1257 		}
1258 	}
1259 
1260 get_rq:
1261 	/*
1262 	 * This sync check and mask will be re-done in init_request_from_bio(),
1263 	 * but we need to set it earlier to expose the sync flag to the
1264 	 * rq allocator and io schedulers.
1265 	 */
1266 	rw_flags = bio_data_dir(bio);
1267 	if (sync)
1268 		rw_flags |= REQ_SYNC;
1269 
1270 	/*
1271 	 * Grab a free request. This is might sleep but can not fail.
1272 	 * Returns with the queue unlocked.
1273 	 */
1274 	req = get_request_wait(q, rw_flags, bio);
1275 
1276 	/*
1277 	 * After dropping the lock and possibly sleeping here, our request
1278 	 * may now be mergeable after it had proven unmergeable (above).
1279 	 * We don't worry about that case for efficiency. It won't happen
1280 	 * often, and the elevators are able to handle it.
1281 	 */
1282 	init_request_from_bio(req, bio);
1283 
1284 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1285 	    bio_flagged(bio, BIO_CPU_AFFINE)) {
1286 		req->cpu = blk_cpu_to_group(get_cpu());
1287 		put_cpu();
1288 	}
1289 
1290 	plug = current->plug;
1291 	if (plug) {
1292 		/*
1293 		 * If this is the first request added after a plug, fire
1294 		 * of a plug trace. If others have been added before, check
1295 		 * if we have multiple devices in this plug. If so, make a
1296 		 * note to sort the list before dispatch.
1297 		 */
1298 		if (list_empty(&plug->list))
1299 			trace_block_plug(q);
1300 		else if (!plug->should_sort) {
1301 			struct request *__rq;
1302 
1303 			__rq = list_entry_rq(plug->list.prev);
1304 			if (__rq->q != q)
1305 				plug->should_sort = 1;
1306 		}
1307 		list_add_tail(&req->queuelist, &plug->list);
1308 		drive_stat_acct(req, 1);
1309 	} else {
1310 		spin_lock_irq(q->queue_lock);
1311 		add_acct_request(q, req, where);
1312 		__blk_run_queue(q);
1313 out_unlock:
1314 		spin_unlock_irq(q->queue_lock);
1315 	}
1316 out:
1317 	return 0;
1318 }
1319 
1320 /*
1321  * If bio->bi_dev is a partition, remap the location
1322  */
1323 static inline void blk_partition_remap(struct bio *bio)
1324 {
1325 	struct block_device *bdev = bio->bi_bdev;
1326 
1327 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1328 		struct hd_struct *p = bdev->bd_part;
1329 
1330 		bio->bi_sector += p->start_sect;
1331 		bio->bi_bdev = bdev->bd_contains;
1332 
1333 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1334 				      bdev->bd_dev,
1335 				      bio->bi_sector - p->start_sect);
1336 	}
1337 }
1338 
1339 static void handle_bad_sector(struct bio *bio)
1340 {
1341 	char b[BDEVNAME_SIZE];
1342 
1343 	printk(KERN_INFO "attempt to access beyond end of device\n");
1344 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1345 			bdevname(bio->bi_bdev, b),
1346 			bio->bi_rw,
1347 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1348 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1349 
1350 	set_bit(BIO_EOF, &bio->bi_flags);
1351 }
1352 
1353 #ifdef CONFIG_FAIL_MAKE_REQUEST
1354 
1355 static DECLARE_FAULT_ATTR(fail_make_request);
1356 
1357 static int __init setup_fail_make_request(char *str)
1358 {
1359 	return setup_fault_attr(&fail_make_request, str);
1360 }
1361 __setup("fail_make_request=", setup_fail_make_request);
1362 
1363 static int should_fail_request(struct bio *bio)
1364 {
1365 	struct hd_struct *part = bio->bi_bdev->bd_part;
1366 
1367 	if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1368 		return should_fail(&fail_make_request, bio->bi_size);
1369 
1370 	return 0;
1371 }
1372 
1373 static int __init fail_make_request_debugfs(void)
1374 {
1375 	return init_fault_attr_dentries(&fail_make_request,
1376 					"fail_make_request");
1377 }
1378 
1379 late_initcall(fail_make_request_debugfs);
1380 
1381 #else /* CONFIG_FAIL_MAKE_REQUEST */
1382 
1383 static inline int should_fail_request(struct bio *bio)
1384 {
1385 	return 0;
1386 }
1387 
1388 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1389 
1390 /*
1391  * Check whether this bio extends beyond the end of the device.
1392  */
1393 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1394 {
1395 	sector_t maxsector;
1396 
1397 	if (!nr_sectors)
1398 		return 0;
1399 
1400 	/* Test device or partition size, when known. */
1401 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1402 	if (maxsector) {
1403 		sector_t sector = bio->bi_sector;
1404 
1405 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1406 			/*
1407 			 * This may well happen - the kernel calls bread()
1408 			 * without checking the size of the device, e.g., when
1409 			 * mounting a device.
1410 			 */
1411 			handle_bad_sector(bio);
1412 			return 1;
1413 		}
1414 	}
1415 
1416 	return 0;
1417 }
1418 
1419 /**
1420  * generic_make_request - hand a buffer to its device driver for I/O
1421  * @bio:  The bio describing the location in memory and on the device.
1422  *
1423  * generic_make_request() is used to make I/O requests of block
1424  * devices. It is passed a &struct bio, which describes the I/O that needs
1425  * to be done.
1426  *
1427  * generic_make_request() does not return any status.  The
1428  * success/failure status of the request, along with notification of
1429  * completion, is delivered asynchronously through the bio->bi_end_io
1430  * function described (one day) else where.
1431  *
1432  * The caller of generic_make_request must make sure that bi_io_vec
1433  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1434  * set to describe the device address, and the
1435  * bi_end_io and optionally bi_private are set to describe how
1436  * completion notification should be signaled.
1437  *
1438  * generic_make_request and the drivers it calls may use bi_next if this
1439  * bio happens to be merged with someone else, and may change bi_dev and
1440  * bi_sector for remaps as it sees fit.  So the values of these fields
1441  * should NOT be depended on after the call to generic_make_request.
1442  */
1443 static inline void __generic_make_request(struct bio *bio)
1444 {
1445 	struct request_queue *q;
1446 	sector_t old_sector;
1447 	int ret, nr_sectors = bio_sectors(bio);
1448 	dev_t old_dev;
1449 	int err = -EIO;
1450 
1451 	might_sleep();
1452 
1453 	if (bio_check_eod(bio, nr_sectors))
1454 		goto end_io;
1455 
1456 	/*
1457 	 * Resolve the mapping until finished. (drivers are
1458 	 * still free to implement/resolve their own stacking
1459 	 * by explicitly returning 0)
1460 	 *
1461 	 * NOTE: we don't repeat the blk_size check for each new device.
1462 	 * Stacking drivers are expected to know what they are doing.
1463 	 */
1464 	old_sector = -1;
1465 	old_dev = 0;
1466 	do {
1467 		char b[BDEVNAME_SIZE];
1468 
1469 		q = bdev_get_queue(bio->bi_bdev);
1470 		if (unlikely(!q)) {
1471 			printk(KERN_ERR
1472 			       "generic_make_request: Trying to access "
1473 				"nonexistent block-device %s (%Lu)\n",
1474 				bdevname(bio->bi_bdev, b),
1475 				(long long) bio->bi_sector);
1476 			goto end_io;
1477 		}
1478 
1479 		if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1480 			     nr_sectors > queue_max_hw_sectors(q))) {
1481 			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1482 			       bdevname(bio->bi_bdev, b),
1483 			       bio_sectors(bio),
1484 			       queue_max_hw_sectors(q));
1485 			goto end_io;
1486 		}
1487 
1488 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1489 			goto end_io;
1490 
1491 		if (should_fail_request(bio))
1492 			goto end_io;
1493 
1494 		/*
1495 		 * If this device has partitions, remap block n
1496 		 * of partition p to block n+start(p) of the disk.
1497 		 */
1498 		blk_partition_remap(bio);
1499 
1500 		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1501 			goto end_io;
1502 
1503 		if (old_sector != -1)
1504 			trace_block_bio_remap(q, bio, old_dev, old_sector);
1505 
1506 		old_sector = bio->bi_sector;
1507 		old_dev = bio->bi_bdev->bd_dev;
1508 
1509 		if (bio_check_eod(bio, nr_sectors))
1510 			goto end_io;
1511 
1512 		/*
1513 		 * Filter flush bio's early so that make_request based
1514 		 * drivers without flush support don't have to worry
1515 		 * about them.
1516 		 */
1517 		if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1518 			bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1519 			if (!nr_sectors) {
1520 				err = 0;
1521 				goto end_io;
1522 			}
1523 		}
1524 
1525 		if ((bio->bi_rw & REQ_DISCARD) &&
1526 		    (!blk_queue_discard(q) ||
1527 		     ((bio->bi_rw & REQ_SECURE) &&
1528 		      !blk_queue_secdiscard(q)))) {
1529 			err = -EOPNOTSUPP;
1530 			goto end_io;
1531 		}
1532 
1533 		if (blk_throtl_bio(q, &bio))
1534 			goto end_io;
1535 
1536 		/*
1537 		 * If bio = NULL, bio has been throttled and will be submitted
1538 		 * later.
1539 		 */
1540 		if (!bio)
1541 			break;
1542 
1543 		trace_block_bio_queue(q, bio);
1544 
1545 		ret = q->make_request_fn(q, bio);
1546 	} while (ret);
1547 
1548 	return;
1549 
1550 end_io:
1551 	bio_endio(bio, err);
1552 }
1553 
1554 /*
1555  * We only want one ->make_request_fn to be active at a time,
1556  * else stack usage with stacked devices could be a problem.
1557  * So use current->bio_list to keep a list of requests
1558  * submited by a make_request_fn function.
1559  * current->bio_list is also used as a flag to say if
1560  * generic_make_request is currently active in this task or not.
1561  * If it is NULL, then no make_request is active.  If it is non-NULL,
1562  * then a make_request is active, and new requests should be added
1563  * at the tail
1564  */
1565 void generic_make_request(struct bio *bio)
1566 {
1567 	struct bio_list bio_list_on_stack;
1568 
1569 	if (current->bio_list) {
1570 		/* make_request is active */
1571 		bio_list_add(current->bio_list, bio);
1572 		return;
1573 	}
1574 	/* following loop may be a bit non-obvious, and so deserves some
1575 	 * explanation.
1576 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1577 	 * ensure that) so we have a list with a single bio.
1578 	 * We pretend that we have just taken it off a longer list, so
1579 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1580 	 * thus initialising the bio_list of new bios to be
1581 	 * added.  __generic_make_request may indeed add some more bios
1582 	 * through a recursive call to generic_make_request.  If it
1583 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1584 	 * from the top.  In this case we really did just take the bio
1585 	 * of the top of the list (no pretending) and so remove it from
1586 	 * bio_list, and call into __generic_make_request again.
1587 	 *
1588 	 * The loop was structured like this to make only one call to
1589 	 * __generic_make_request (which is important as it is large and
1590 	 * inlined) and to keep the structure simple.
1591 	 */
1592 	BUG_ON(bio->bi_next);
1593 	bio_list_init(&bio_list_on_stack);
1594 	current->bio_list = &bio_list_on_stack;
1595 	do {
1596 		__generic_make_request(bio);
1597 		bio = bio_list_pop(current->bio_list);
1598 	} while (bio);
1599 	current->bio_list = NULL; /* deactivate */
1600 }
1601 EXPORT_SYMBOL(generic_make_request);
1602 
1603 /**
1604  * submit_bio - submit a bio to the block device layer for I/O
1605  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1606  * @bio: The &struct bio which describes the I/O
1607  *
1608  * submit_bio() is very similar in purpose to generic_make_request(), and
1609  * uses that function to do most of the work. Both are fairly rough
1610  * interfaces; @bio must be presetup and ready for I/O.
1611  *
1612  */
1613 void submit_bio(int rw, struct bio *bio)
1614 {
1615 	int count = bio_sectors(bio);
1616 
1617 	bio->bi_rw |= rw;
1618 
1619 	/*
1620 	 * If it's a regular read/write or a barrier with data attached,
1621 	 * go through the normal accounting stuff before submission.
1622 	 */
1623 	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1624 		if (rw & WRITE) {
1625 			count_vm_events(PGPGOUT, count);
1626 		} else {
1627 			task_io_account_read(bio->bi_size);
1628 			count_vm_events(PGPGIN, count);
1629 		}
1630 
1631 		if (unlikely(block_dump)) {
1632 			char b[BDEVNAME_SIZE];
1633 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1634 			current->comm, task_pid_nr(current),
1635 				(rw & WRITE) ? "WRITE" : "READ",
1636 				(unsigned long long)bio->bi_sector,
1637 				bdevname(bio->bi_bdev, b),
1638 				count);
1639 		}
1640 	}
1641 
1642 	generic_make_request(bio);
1643 }
1644 EXPORT_SYMBOL(submit_bio);
1645 
1646 /**
1647  * blk_rq_check_limits - Helper function to check a request for the queue limit
1648  * @q:  the queue
1649  * @rq: the request being checked
1650  *
1651  * Description:
1652  *    @rq may have been made based on weaker limitations of upper-level queues
1653  *    in request stacking drivers, and it may violate the limitation of @q.
1654  *    Since the block layer and the underlying device driver trust @rq
1655  *    after it is inserted to @q, it should be checked against @q before
1656  *    the insertion using this generic function.
1657  *
1658  *    This function should also be useful for request stacking drivers
1659  *    in some cases below, so export this function.
1660  *    Request stacking drivers like request-based dm may change the queue
1661  *    limits while requests are in the queue (e.g. dm's table swapping).
1662  *    Such request stacking drivers should check those requests agaist
1663  *    the new queue limits again when they dispatch those requests,
1664  *    although such checkings are also done against the old queue limits
1665  *    when submitting requests.
1666  */
1667 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1668 {
1669 	if (rq->cmd_flags & REQ_DISCARD)
1670 		return 0;
1671 
1672 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1673 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1674 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1675 		return -EIO;
1676 	}
1677 
1678 	/*
1679 	 * queue's settings related to segment counting like q->bounce_pfn
1680 	 * may differ from that of other stacking queues.
1681 	 * Recalculate it to check the request correctly on this queue's
1682 	 * limitation.
1683 	 */
1684 	blk_recalc_rq_segments(rq);
1685 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1686 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1687 		return -EIO;
1688 	}
1689 
1690 	return 0;
1691 }
1692 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1693 
1694 /**
1695  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1696  * @q:  the queue to submit the request
1697  * @rq: the request being queued
1698  */
1699 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1700 {
1701 	unsigned long flags;
1702 
1703 	if (blk_rq_check_limits(q, rq))
1704 		return -EIO;
1705 
1706 #ifdef CONFIG_FAIL_MAKE_REQUEST
1707 	if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1708 	    should_fail(&fail_make_request, blk_rq_bytes(rq)))
1709 		return -EIO;
1710 #endif
1711 
1712 	spin_lock_irqsave(q->queue_lock, flags);
1713 
1714 	/*
1715 	 * Submitting request must be dequeued before calling this function
1716 	 * because it will be linked to another request_queue
1717 	 */
1718 	BUG_ON(blk_queued_rq(rq));
1719 
1720 	add_acct_request(q, rq, ELEVATOR_INSERT_BACK);
1721 	spin_unlock_irqrestore(q->queue_lock, flags);
1722 
1723 	return 0;
1724 }
1725 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1726 
1727 /**
1728  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1729  * @rq: request to examine
1730  *
1731  * Description:
1732  *     A request could be merge of IOs which require different failure
1733  *     handling.  This function determines the number of bytes which
1734  *     can be failed from the beginning of the request without
1735  *     crossing into area which need to be retried further.
1736  *
1737  * Return:
1738  *     The number of bytes to fail.
1739  *
1740  * Context:
1741  *     queue_lock must be held.
1742  */
1743 unsigned int blk_rq_err_bytes(const struct request *rq)
1744 {
1745 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1746 	unsigned int bytes = 0;
1747 	struct bio *bio;
1748 
1749 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1750 		return blk_rq_bytes(rq);
1751 
1752 	/*
1753 	 * Currently the only 'mixing' which can happen is between
1754 	 * different fastfail types.  We can safely fail portions
1755 	 * which have all the failfast bits that the first one has -
1756 	 * the ones which are at least as eager to fail as the first
1757 	 * one.
1758 	 */
1759 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1760 		if ((bio->bi_rw & ff) != ff)
1761 			break;
1762 		bytes += bio->bi_size;
1763 	}
1764 
1765 	/* this could lead to infinite loop */
1766 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1767 	return bytes;
1768 }
1769 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1770 
1771 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1772 {
1773 	if (blk_do_io_stat(req)) {
1774 		const int rw = rq_data_dir(req);
1775 		struct hd_struct *part;
1776 		int cpu;
1777 
1778 		cpu = part_stat_lock();
1779 		part = req->part;
1780 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1781 		part_stat_unlock();
1782 	}
1783 }
1784 
1785 static void blk_account_io_done(struct request *req)
1786 {
1787 	/*
1788 	 * Account IO completion.  flush_rq isn't accounted as a
1789 	 * normal IO on queueing nor completion.  Accounting the
1790 	 * containing request is enough.
1791 	 */
1792 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1793 		unsigned long duration = jiffies - req->start_time;
1794 		const int rw = rq_data_dir(req);
1795 		struct hd_struct *part;
1796 		int cpu;
1797 
1798 		cpu = part_stat_lock();
1799 		part = req->part;
1800 
1801 		part_stat_inc(cpu, part, ios[rw]);
1802 		part_stat_add(cpu, part, ticks[rw], duration);
1803 		part_round_stats(cpu, part);
1804 		part_dec_in_flight(part, rw);
1805 
1806 		hd_struct_put(part);
1807 		part_stat_unlock();
1808 	}
1809 }
1810 
1811 /**
1812  * blk_peek_request - peek at the top of a request queue
1813  * @q: request queue to peek at
1814  *
1815  * Description:
1816  *     Return the request at the top of @q.  The returned request
1817  *     should be started using blk_start_request() before LLD starts
1818  *     processing it.
1819  *
1820  * Return:
1821  *     Pointer to the request at the top of @q if available.  Null
1822  *     otherwise.
1823  *
1824  * Context:
1825  *     queue_lock must be held.
1826  */
1827 struct request *blk_peek_request(struct request_queue *q)
1828 {
1829 	struct request *rq;
1830 	int ret;
1831 
1832 	while ((rq = __elv_next_request(q)) != NULL) {
1833 		if (!(rq->cmd_flags & REQ_STARTED)) {
1834 			/*
1835 			 * This is the first time the device driver
1836 			 * sees this request (possibly after
1837 			 * requeueing).  Notify IO scheduler.
1838 			 */
1839 			if (rq->cmd_flags & REQ_SORTED)
1840 				elv_activate_rq(q, rq);
1841 
1842 			/*
1843 			 * just mark as started even if we don't start
1844 			 * it, a request that has been delayed should
1845 			 * not be passed by new incoming requests
1846 			 */
1847 			rq->cmd_flags |= REQ_STARTED;
1848 			trace_block_rq_issue(q, rq);
1849 		}
1850 
1851 		if (!q->boundary_rq || q->boundary_rq == rq) {
1852 			q->end_sector = rq_end_sector(rq);
1853 			q->boundary_rq = NULL;
1854 		}
1855 
1856 		if (rq->cmd_flags & REQ_DONTPREP)
1857 			break;
1858 
1859 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1860 			/*
1861 			 * make sure space for the drain appears we
1862 			 * know we can do this because max_hw_segments
1863 			 * has been adjusted to be one fewer than the
1864 			 * device can handle
1865 			 */
1866 			rq->nr_phys_segments++;
1867 		}
1868 
1869 		if (!q->prep_rq_fn)
1870 			break;
1871 
1872 		ret = q->prep_rq_fn(q, rq);
1873 		if (ret == BLKPREP_OK) {
1874 			break;
1875 		} else if (ret == BLKPREP_DEFER) {
1876 			/*
1877 			 * the request may have been (partially) prepped.
1878 			 * we need to keep this request in the front to
1879 			 * avoid resource deadlock.  REQ_STARTED will
1880 			 * prevent other fs requests from passing this one.
1881 			 */
1882 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1883 			    !(rq->cmd_flags & REQ_DONTPREP)) {
1884 				/*
1885 				 * remove the space for the drain we added
1886 				 * so that we don't add it again
1887 				 */
1888 				--rq->nr_phys_segments;
1889 			}
1890 
1891 			rq = NULL;
1892 			break;
1893 		} else if (ret == BLKPREP_KILL) {
1894 			rq->cmd_flags |= REQ_QUIET;
1895 			/*
1896 			 * Mark this request as started so we don't trigger
1897 			 * any debug logic in the end I/O path.
1898 			 */
1899 			blk_start_request(rq);
1900 			__blk_end_request_all(rq, -EIO);
1901 		} else {
1902 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1903 			break;
1904 		}
1905 	}
1906 
1907 	return rq;
1908 }
1909 EXPORT_SYMBOL(blk_peek_request);
1910 
1911 void blk_dequeue_request(struct request *rq)
1912 {
1913 	struct request_queue *q = rq->q;
1914 
1915 	BUG_ON(list_empty(&rq->queuelist));
1916 	BUG_ON(ELV_ON_HASH(rq));
1917 
1918 	list_del_init(&rq->queuelist);
1919 
1920 	/*
1921 	 * the time frame between a request being removed from the lists
1922 	 * and to it is freed is accounted as io that is in progress at
1923 	 * the driver side.
1924 	 */
1925 	if (blk_account_rq(rq)) {
1926 		q->in_flight[rq_is_sync(rq)]++;
1927 		set_io_start_time_ns(rq);
1928 	}
1929 }
1930 
1931 /**
1932  * blk_start_request - start request processing on the driver
1933  * @req: request to dequeue
1934  *
1935  * Description:
1936  *     Dequeue @req and start timeout timer on it.  This hands off the
1937  *     request to the driver.
1938  *
1939  *     Block internal functions which don't want to start timer should
1940  *     call blk_dequeue_request().
1941  *
1942  * Context:
1943  *     queue_lock must be held.
1944  */
1945 void blk_start_request(struct request *req)
1946 {
1947 	blk_dequeue_request(req);
1948 
1949 	/*
1950 	 * We are now handing the request to the hardware, initialize
1951 	 * resid_len to full count and add the timeout handler.
1952 	 */
1953 	req->resid_len = blk_rq_bytes(req);
1954 	if (unlikely(blk_bidi_rq(req)))
1955 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1956 
1957 	blk_add_timer(req);
1958 }
1959 EXPORT_SYMBOL(blk_start_request);
1960 
1961 /**
1962  * blk_fetch_request - fetch a request from a request queue
1963  * @q: request queue to fetch a request from
1964  *
1965  * Description:
1966  *     Return the request at the top of @q.  The request is started on
1967  *     return and LLD can start processing it immediately.
1968  *
1969  * Return:
1970  *     Pointer to the request at the top of @q if available.  Null
1971  *     otherwise.
1972  *
1973  * Context:
1974  *     queue_lock must be held.
1975  */
1976 struct request *blk_fetch_request(struct request_queue *q)
1977 {
1978 	struct request *rq;
1979 
1980 	rq = blk_peek_request(q);
1981 	if (rq)
1982 		blk_start_request(rq);
1983 	return rq;
1984 }
1985 EXPORT_SYMBOL(blk_fetch_request);
1986 
1987 /**
1988  * blk_update_request - Special helper function for request stacking drivers
1989  * @req:      the request being processed
1990  * @error:    %0 for success, < %0 for error
1991  * @nr_bytes: number of bytes to complete @req
1992  *
1993  * Description:
1994  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1995  *     the request structure even if @req doesn't have leftover.
1996  *     If @req has leftover, sets it up for the next range of segments.
1997  *
1998  *     This special helper function is only for request stacking drivers
1999  *     (e.g. request-based dm) so that they can handle partial completion.
2000  *     Actual device drivers should use blk_end_request instead.
2001  *
2002  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2003  *     %false return from this function.
2004  *
2005  * Return:
2006  *     %false - this request doesn't have any more data
2007  *     %true  - this request has more data
2008  **/
2009 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2010 {
2011 	int total_bytes, bio_nbytes, next_idx = 0;
2012 	struct bio *bio;
2013 
2014 	if (!req->bio)
2015 		return false;
2016 
2017 	trace_block_rq_complete(req->q, req);
2018 
2019 	/*
2020 	 * For fs requests, rq is just carrier of independent bio's
2021 	 * and each partial completion should be handled separately.
2022 	 * Reset per-request error on each partial completion.
2023 	 *
2024 	 * TODO: tj: This is too subtle.  It would be better to let
2025 	 * low level drivers do what they see fit.
2026 	 */
2027 	if (req->cmd_type == REQ_TYPE_FS)
2028 		req->errors = 0;
2029 
2030 	if (error && req->cmd_type == REQ_TYPE_FS &&
2031 	    !(req->cmd_flags & REQ_QUIET)) {
2032 		char *error_type;
2033 
2034 		switch (error) {
2035 		case -ENOLINK:
2036 			error_type = "recoverable transport";
2037 			break;
2038 		case -EREMOTEIO:
2039 			error_type = "critical target";
2040 			break;
2041 		case -EBADE:
2042 			error_type = "critical nexus";
2043 			break;
2044 		case -EIO:
2045 		default:
2046 			error_type = "I/O";
2047 			break;
2048 		}
2049 		printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2050 		       error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2051 		       (unsigned long long)blk_rq_pos(req));
2052 	}
2053 
2054 	blk_account_io_completion(req, nr_bytes);
2055 
2056 	total_bytes = bio_nbytes = 0;
2057 	while ((bio = req->bio) != NULL) {
2058 		int nbytes;
2059 
2060 		if (nr_bytes >= bio->bi_size) {
2061 			req->bio = bio->bi_next;
2062 			nbytes = bio->bi_size;
2063 			req_bio_endio(req, bio, nbytes, error);
2064 			next_idx = 0;
2065 			bio_nbytes = 0;
2066 		} else {
2067 			int idx = bio->bi_idx + next_idx;
2068 
2069 			if (unlikely(idx >= bio->bi_vcnt)) {
2070 				blk_dump_rq_flags(req, "__end_that");
2071 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2072 				       __func__, idx, bio->bi_vcnt);
2073 				break;
2074 			}
2075 
2076 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2077 			BIO_BUG_ON(nbytes > bio->bi_size);
2078 
2079 			/*
2080 			 * not a complete bvec done
2081 			 */
2082 			if (unlikely(nbytes > nr_bytes)) {
2083 				bio_nbytes += nr_bytes;
2084 				total_bytes += nr_bytes;
2085 				break;
2086 			}
2087 
2088 			/*
2089 			 * advance to the next vector
2090 			 */
2091 			next_idx++;
2092 			bio_nbytes += nbytes;
2093 		}
2094 
2095 		total_bytes += nbytes;
2096 		nr_bytes -= nbytes;
2097 
2098 		bio = req->bio;
2099 		if (bio) {
2100 			/*
2101 			 * end more in this run, or just return 'not-done'
2102 			 */
2103 			if (unlikely(nr_bytes <= 0))
2104 				break;
2105 		}
2106 	}
2107 
2108 	/*
2109 	 * completely done
2110 	 */
2111 	if (!req->bio) {
2112 		/*
2113 		 * Reset counters so that the request stacking driver
2114 		 * can find how many bytes remain in the request
2115 		 * later.
2116 		 */
2117 		req->__data_len = 0;
2118 		return false;
2119 	}
2120 
2121 	/*
2122 	 * if the request wasn't completed, update state
2123 	 */
2124 	if (bio_nbytes) {
2125 		req_bio_endio(req, bio, bio_nbytes, error);
2126 		bio->bi_idx += next_idx;
2127 		bio_iovec(bio)->bv_offset += nr_bytes;
2128 		bio_iovec(bio)->bv_len -= nr_bytes;
2129 	}
2130 
2131 	req->__data_len -= total_bytes;
2132 	req->buffer = bio_data(req->bio);
2133 
2134 	/* update sector only for requests with clear definition of sector */
2135 	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2136 		req->__sector += total_bytes >> 9;
2137 
2138 	/* mixed attributes always follow the first bio */
2139 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2140 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2141 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2142 	}
2143 
2144 	/*
2145 	 * If total number of sectors is less than the first segment
2146 	 * size, something has gone terribly wrong.
2147 	 */
2148 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2149 		blk_dump_rq_flags(req, "request botched");
2150 		req->__data_len = blk_rq_cur_bytes(req);
2151 	}
2152 
2153 	/* recalculate the number of segments */
2154 	blk_recalc_rq_segments(req);
2155 
2156 	return true;
2157 }
2158 EXPORT_SYMBOL_GPL(blk_update_request);
2159 
2160 static bool blk_update_bidi_request(struct request *rq, int error,
2161 				    unsigned int nr_bytes,
2162 				    unsigned int bidi_bytes)
2163 {
2164 	if (blk_update_request(rq, error, nr_bytes))
2165 		return true;
2166 
2167 	/* Bidi request must be completed as a whole */
2168 	if (unlikely(blk_bidi_rq(rq)) &&
2169 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2170 		return true;
2171 
2172 	if (blk_queue_add_random(rq->q))
2173 		add_disk_randomness(rq->rq_disk);
2174 
2175 	return false;
2176 }
2177 
2178 /**
2179  * blk_unprep_request - unprepare a request
2180  * @req:	the request
2181  *
2182  * This function makes a request ready for complete resubmission (or
2183  * completion).  It happens only after all error handling is complete,
2184  * so represents the appropriate moment to deallocate any resources
2185  * that were allocated to the request in the prep_rq_fn.  The queue
2186  * lock is held when calling this.
2187  */
2188 void blk_unprep_request(struct request *req)
2189 {
2190 	struct request_queue *q = req->q;
2191 
2192 	req->cmd_flags &= ~REQ_DONTPREP;
2193 	if (q->unprep_rq_fn)
2194 		q->unprep_rq_fn(q, req);
2195 }
2196 EXPORT_SYMBOL_GPL(blk_unprep_request);
2197 
2198 /*
2199  * queue lock must be held
2200  */
2201 static void blk_finish_request(struct request *req, int error)
2202 {
2203 	if (blk_rq_tagged(req))
2204 		blk_queue_end_tag(req->q, req);
2205 
2206 	BUG_ON(blk_queued_rq(req));
2207 
2208 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2209 		laptop_io_completion(&req->q->backing_dev_info);
2210 
2211 	blk_delete_timer(req);
2212 
2213 	if (req->cmd_flags & REQ_DONTPREP)
2214 		blk_unprep_request(req);
2215 
2216 
2217 	blk_account_io_done(req);
2218 
2219 	if (req->end_io)
2220 		req->end_io(req, error);
2221 	else {
2222 		if (blk_bidi_rq(req))
2223 			__blk_put_request(req->next_rq->q, req->next_rq);
2224 
2225 		__blk_put_request(req->q, req);
2226 	}
2227 }
2228 
2229 /**
2230  * blk_end_bidi_request - Complete a bidi request
2231  * @rq:         the request to complete
2232  * @error:      %0 for success, < %0 for error
2233  * @nr_bytes:   number of bytes to complete @rq
2234  * @bidi_bytes: number of bytes to complete @rq->next_rq
2235  *
2236  * Description:
2237  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2238  *     Drivers that supports bidi can safely call this member for any
2239  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2240  *     just ignored.
2241  *
2242  * Return:
2243  *     %false - we are done with this request
2244  *     %true  - still buffers pending for this request
2245  **/
2246 static bool blk_end_bidi_request(struct request *rq, int error,
2247 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2248 {
2249 	struct request_queue *q = rq->q;
2250 	unsigned long flags;
2251 
2252 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2253 		return true;
2254 
2255 	spin_lock_irqsave(q->queue_lock, flags);
2256 	blk_finish_request(rq, error);
2257 	spin_unlock_irqrestore(q->queue_lock, flags);
2258 
2259 	return false;
2260 }
2261 
2262 /**
2263  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2264  * @rq:         the request to complete
2265  * @error:      %0 for success, < %0 for error
2266  * @nr_bytes:   number of bytes to complete @rq
2267  * @bidi_bytes: number of bytes to complete @rq->next_rq
2268  *
2269  * Description:
2270  *     Identical to blk_end_bidi_request() except that queue lock is
2271  *     assumed to be locked on entry and remains so on return.
2272  *
2273  * Return:
2274  *     %false - we are done with this request
2275  *     %true  - still buffers pending for this request
2276  **/
2277 static bool __blk_end_bidi_request(struct request *rq, int error,
2278 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2279 {
2280 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2281 		return true;
2282 
2283 	blk_finish_request(rq, error);
2284 
2285 	return false;
2286 }
2287 
2288 /**
2289  * blk_end_request - Helper function for drivers to complete the request.
2290  * @rq:       the request being processed
2291  * @error:    %0 for success, < %0 for error
2292  * @nr_bytes: number of bytes to complete
2293  *
2294  * Description:
2295  *     Ends I/O on a number of bytes attached to @rq.
2296  *     If @rq has leftover, sets it up for the next range of segments.
2297  *
2298  * Return:
2299  *     %false - we are done with this request
2300  *     %true  - still buffers pending for this request
2301  **/
2302 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2303 {
2304 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2305 }
2306 EXPORT_SYMBOL(blk_end_request);
2307 
2308 /**
2309  * blk_end_request_all - Helper function for drives to finish the request.
2310  * @rq: the request to finish
2311  * @error: %0 for success, < %0 for error
2312  *
2313  * Description:
2314  *     Completely finish @rq.
2315  */
2316 void blk_end_request_all(struct request *rq, int error)
2317 {
2318 	bool pending;
2319 	unsigned int bidi_bytes = 0;
2320 
2321 	if (unlikely(blk_bidi_rq(rq)))
2322 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2323 
2324 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2325 	BUG_ON(pending);
2326 }
2327 EXPORT_SYMBOL(blk_end_request_all);
2328 
2329 /**
2330  * blk_end_request_cur - Helper function to finish the current request chunk.
2331  * @rq: the request to finish the current chunk for
2332  * @error: %0 for success, < %0 for error
2333  *
2334  * Description:
2335  *     Complete the current consecutively mapped chunk from @rq.
2336  *
2337  * Return:
2338  *     %false - we are done with this request
2339  *     %true  - still buffers pending for this request
2340  */
2341 bool blk_end_request_cur(struct request *rq, int error)
2342 {
2343 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2344 }
2345 EXPORT_SYMBOL(blk_end_request_cur);
2346 
2347 /**
2348  * blk_end_request_err - Finish a request till the next failure boundary.
2349  * @rq: the request to finish till the next failure boundary for
2350  * @error: must be negative errno
2351  *
2352  * Description:
2353  *     Complete @rq till the next failure boundary.
2354  *
2355  * Return:
2356  *     %false - we are done with this request
2357  *     %true  - still buffers pending for this request
2358  */
2359 bool blk_end_request_err(struct request *rq, int error)
2360 {
2361 	WARN_ON(error >= 0);
2362 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2363 }
2364 EXPORT_SYMBOL_GPL(blk_end_request_err);
2365 
2366 /**
2367  * __blk_end_request - Helper function for drivers to complete the request.
2368  * @rq:       the request being processed
2369  * @error:    %0 for success, < %0 for error
2370  * @nr_bytes: number of bytes to complete
2371  *
2372  * Description:
2373  *     Must be called with queue lock held unlike blk_end_request().
2374  *
2375  * Return:
2376  *     %false - we are done with this request
2377  *     %true  - still buffers pending for this request
2378  **/
2379 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2380 {
2381 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2382 }
2383 EXPORT_SYMBOL(__blk_end_request);
2384 
2385 /**
2386  * __blk_end_request_all - Helper function for drives to finish the request.
2387  * @rq: the request to finish
2388  * @error: %0 for success, < %0 for error
2389  *
2390  * Description:
2391  *     Completely finish @rq.  Must be called with queue lock held.
2392  */
2393 void __blk_end_request_all(struct request *rq, int error)
2394 {
2395 	bool pending;
2396 	unsigned int bidi_bytes = 0;
2397 
2398 	if (unlikely(blk_bidi_rq(rq)))
2399 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2400 
2401 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2402 	BUG_ON(pending);
2403 }
2404 EXPORT_SYMBOL(__blk_end_request_all);
2405 
2406 /**
2407  * __blk_end_request_cur - Helper function to finish the current request chunk.
2408  * @rq: the request to finish the current chunk for
2409  * @error: %0 for success, < %0 for error
2410  *
2411  * Description:
2412  *     Complete the current consecutively mapped chunk from @rq.  Must
2413  *     be called with queue lock held.
2414  *
2415  * Return:
2416  *     %false - we are done with this request
2417  *     %true  - still buffers pending for this request
2418  */
2419 bool __blk_end_request_cur(struct request *rq, int error)
2420 {
2421 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2422 }
2423 EXPORT_SYMBOL(__blk_end_request_cur);
2424 
2425 /**
2426  * __blk_end_request_err - Finish a request till the next failure boundary.
2427  * @rq: the request to finish till the next failure boundary for
2428  * @error: must be negative errno
2429  *
2430  * Description:
2431  *     Complete @rq till the next failure boundary.  Must be called
2432  *     with queue lock held.
2433  *
2434  * Return:
2435  *     %false - we are done with this request
2436  *     %true  - still buffers pending for this request
2437  */
2438 bool __blk_end_request_err(struct request *rq, int error)
2439 {
2440 	WARN_ON(error >= 0);
2441 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2442 }
2443 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2444 
2445 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2446 		     struct bio *bio)
2447 {
2448 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2449 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2450 
2451 	if (bio_has_data(bio)) {
2452 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2453 		rq->buffer = bio_data(bio);
2454 	}
2455 	rq->__data_len = bio->bi_size;
2456 	rq->bio = rq->biotail = bio;
2457 
2458 	if (bio->bi_bdev)
2459 		rq->rq_disk = bio->bi_bdev->bd_disk;
2460 }
2461 
2462 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2463 /**
2464  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2465  * @rq: the request to be flushed
2466  *
2467  * Description:
2468  *     Flush all pages in @rq.
2469  */
2470 void rq_flush_dcache_pages(struct request *rq)
2471 {
2472 	struct req_iterator iter;
2473 	struct bio_vec *bvec;
2474 
2475 	rq_for_each_segment(bvec, rq, iter)
2476 		flush_dcache_page(bvec->bv_page);
2477 }
2478 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2479 #endif
2480 
2481 /**
2482  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2483  * @q : the queue of the device being checked
2484  *
2485  * Description:
2486  *    Check if underlying low-level drivers of a device are busy.
2487  *    If the drivers want to export their busy state, they must set own
2488  *    exporting function using blk_queue_lld_busy() first.
2489  *
2490  *    Basically, this function is used only by request stacking drivers
2491  *    to stop dispatching requests to underlying devices when underlying
2492  *    devices are busy.  This behavior helps more I/O merging on the queue
2493  *    of the request stacking driver and prevents I/O throughput regression
2494  *    on burst I/O load.
2495  *
2496  * Return:
2497  *    0 - Not busy (The request stacking driver should dispatch request)
2498  *    1 - Busy (The request stacking driver should stop dispatching request)
2499  */
2500 int blk_lld_busy(struct request_queue *q)
2501 {
2502 	if (q->lld_busy_fn)
2503 		return q->lld_busy_fn(q);
2504 
2505 	return 0;
2506 }
2507 EXPORT_SYMBOL_GPL(blk_lld_busy);
2508 
2509 /**
2510  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2511  * @rq: the clone request to be cleaned up
2512  *
2513  * Description:
2514  *     Free all bios in @rq for a cloned request.
2515  */
2516 void blk_rq_unprep_clone(struct request *rq)
2517 {
2518 	struct bio *bio;
2519 
2520 	while ((bio = rq->bio) != NULL) {
2521 		rq->bio = bio->bi_next;
2522 
2523 		bio_put(bio);
2524 	}
2525 }
2526 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2527 
2528 /*
2529  * Copy attributes of the original request to the clone request.
2530  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2531  */
2532 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2533 {
2534 	dst->cpu = src->cpu;
2535 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2536 	dst->cmd_type = src->cmd_type;
2537 	dst->__sector = blk_rq_pos(src);
2538 	dst->__data_len = blk_rq_bytes(src);
2539 	dst->nr_phys_segments = src->nr_phys_segments;
2540 	dst->ioprio = src->ioprio;
2541 	dst->extra_len = src->extra_len;
2542 }
2543 
2544 /**
2545  * blk_rq_prep_clone - Helper function to setup clone request
2546  * @rq: the request to be setup
2547  * @rq_src: original request to be cloned
2548  * @bs: bio_set that bios for clone are allocated from
2549  * @gfp_mask: memory allocation mask for bio
2550  * @bio_ctr: setup function to be called for each clone bio.
2551  *           Returns %0 for success, non %0 for failure.
2552  * @data: private data to be passed to @bio_ctr
2553  *
2554  * Description:
2555  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2556  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2557  *     are not copied, and copying such parts is the caller's responsibility.
2558  *     Also, pages which the original bios are pointing to are not copied
2559  *     and the cloned bios just point same pages.
2560  *     So cloned bios must be completed before original bios, which means
2561  *     the caller must complete @rq before @rq_src.
2562  */
2563 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2564 		      struct bio_set *bs, gfp_t gfp_mask,
2565 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2566 		      void *data)
2567 {
2568 	struct bio *bio, *bio_src;
2569 
2570 	if (!bs)
2571 		bs = fs_bio_set;
2572 
2573 	blk_rq_init(NULL, rq);
2574 
2575 	__rq_for_each_bio(bio_src, rq_src) {
2576 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2577 		if (!bio)
2578 			goto free_and_out;
2579 
2580 		__bio_clone(bio, bio_src);
2581 
2582 		if (bio_integrity(bio_src) &&
2583 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2584 			goto free_and_out;
2585 
2586 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2587 			goto free_and_out;
2588 
2589 		if (rq->bio) {
2590 			rq->biotail->bi_next = bio;
2591 			rq->biotail = bio;
2592 		} else
2593 			rq->bio = rq->biotail = bio;
2594 	}
2595 
2596 	__blk_rq_prep_clone(rq, rq_src);
2597 
2598 	return 0;
2599 
2600 free_and_out:
2601 	if (bio)
2602 		bio_free(bio, bs);
2603 	blk_rq_unprep_clone(rq);
2604 
2605 	return -ENOMEM;
2606 }
2607 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2608 
2609 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2610 {
2611 	return queue_work(kblockd_workqueue, work);
2612 }
2613 EXPORT_SYMBOL(kblockd_schedule_work);
2614 
2615 int kblockd_schedule_delayed_work(struct request_queue *q,
2616 			struct delayed_work *dwork, unsigned long delay)
2617 {
2618 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2619 }
2620 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2621 
2622 #define PLUG_MAGIC	0x91827364
2623 
2624 void blk_start_plug(struct blk_plug *plug)
2625 {
2626 	struct task_struct *tsk = current;
2627 
2628 	plug->magic = PLUG_MAGIC;
2629 	INIT_LIST_HEAD(&plug->list);
2630 	INIT_LIST_HEAD(&plug->cb_list);
2631 	plug->should_sort = 0;
2632 
2633 	/*
2634 	 * If this is a nested plug, don't actually assign it. It will be
2635 	 * flushed on its own.
2636 	 */
2637 	if (!tsk->plug) {
2638 		/*
2639 		 * Store ordering should not be needed here, since a potential
2640 		 * preempt will imply a full memory barrier
2641 		 */
2642 		tsk->plug = plug;
2643 	}
2644 }
2645 EXPORT_SYMBOL(blk_start_plug);
2646 
2647 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2648 {
2649 	struct request *rqa = container_of(a, struct request, queuelist);
2650 	struct request *rqb = container_of(b, struct request, queuelist);
2651 
2652 	return !(rqa->q <= rqb->q);
2653 }
2654 
2655 /*
2656  * If 'from_schedule' is true, then postpone the dispatch of requests
2657  * until a safe kblockd context. We due this to avoid accidental big
2658  * additional stack usage in driver dispatch, in places where the originally
2659  * plugger did not intend it.
2660  */
2661 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2662 			    bool from_schedule)
2663 	__releases(q->queue_lock)
2664 {
2665 	trace_block_unplug(q, depth, !from_schedule);
2666 
2667 	/*
2668 	 * If we are punting this to kblockd, then we can safely drop
2669 	 * the queue_lock before waking kblockd (which needs to take
2670 	 * this lock).
2671 	 */
2672 	if (from_schedule) {
2673 		spin_unlock(q->queue_lock);
2674 		blk_run_queue_async(q);
2675 	} else {
2676 		__blk_run_queue(q);
2677 		spin_unlock(q->queue_lock);
2678 	}
2679 
2680 }
2681 
2682 static void flush_plug_callbacks(struct blk_plug *plug)
2683 {
2684 	LIST_HEAD(callbacks);
2685 
2686 	if (list_empty(&plug->cb_list))
2687 		return;
2688 
2689 	list_splice_init(&plug->cb_list, &callbacks);
2690 
2691 	while (!list_empty(&callbacks)) {
2692 		struct blk_plug_cb *cb = list_first_entry(&callbacks,
2693 							  struct blk_plug_cb,
2694 							  list);
2695 		list_del(&cb->list);
2696 		cb->callback(cb);
2697 	}
2698 }
2699 
2700 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2701 {
2702 	struct request_queue *q;
2703 	unsigned long flags;
2704 	struct request *rq;
2705 	LIST_HEAD(list);
2706 	unsigned int depth;
2707 
2708 	BUG_ON(plug->magic != PLUG_MAGIC);
2709 
2710 	flush_plug_callbacks(plug);
2711 	if (list_empty(&plug->list))
2712 		return;
2713 
2714 	list_splice_init(&plug->list, &list);
2715 
2716 	if (plug->should_sort) {
2717 		list_sort(NULL, &list, plug_rq_cmp);
2718 		plug->should_sort = 0;
2719 	}
2720 
2721 	q = NULL;
2722 	depth = 0;
2723 
2724 	/*
2725 	 * Save and disable interrupts here, to avoid doing it for every
2726 	 * queue lock we have to take.
2727 	 */
2728 	local_irq_save(flags);
2729 	while (!list_empty(&list)) {
2730 		rq = list_entry_rq(list.next);
2731 		list_del_init(&rq->queuelist);
2732 		BUG_ON(!rq->q);
2733 		if (rq->q != q) {
2734 			/*
2735 			 * This drops the queue lock
2736 			 */
2737 			if (q)
2738 				queue_unplugged(q, depth, from_schedule);
2739 			q = rq->q;
2740 			depth = 0;
2741 			spin_lock(q->queue_lock);
2742 		}
2743 		/*
2744 		 * rq is already accounted, so use raw insert
2745 		 */
2746 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2747 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2748 		else
2749 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2750 
2751 		depth++;
2752 	}
2753 
2754 	/*
2755 	 * This drops the queue lock
2756 	 */
2757 	if (q)
2758 		queue_unplugged(q, depth, from_schedule);
2759 
2760 	local_irq_restore(flags);
2761 }
2762 
2763 void blk_finish_plug(struct blk_plug *plug)
2764 {
2765 	blk_flush_plug_list(plug, false);
2766 
2767 	if (plug == current->plug)
2768 		current->plug = NULL;
2769 }
2770 EXPORT_SYMBOL(blk_finish_plug);
2771 
2772 int __init blk_dev_init(void)
2773 {
2774 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2775 			sizeof(((struct request *)0)->cmd_flags));
2776 
2777 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
2778 	kblockd_workqueue = alloc_workqueue("kblockd",
2779 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2780 	if (!kblockd_workqueue)
2781 		panic("Failed to create kblockd\n");
2782 
2783 	request_cachep = kmem_cache_create("blkdev_requests",
2784 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2785 
2786 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2787 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2788 
2789 	return 0;
2790 }
2791