xref: /openbmc/linux/block/blk-core.c (revision 80483c3a)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39 
40 #include "blk.h"
41 #include "blk-mq.h"
42 
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48 
49 DEFINE_IDA(blk_queue_ida);
50 
51 /*
52  * For the allocated request tables
53  */
54 struct kmem_cache *request_cachep;
55 
56 /*
57  * For queue allocation
58  */
59 struct kmem_cache *blk_requestq_cachep;
60 
61 /*
62  * Controlling structure to kblockd
63  */
64 static struct workqueue_struct *kblockd_workqueue;
65 
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 	clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 	/*
72 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 	 * flip its congestion state for events on other blkcgs.
74 	 */
75 	if (rl == &rl->q->root_rl)
76 		clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79 
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 	set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 	/* see blk_clear_congested() */
86 	if (rl == &rl->q->root_rl)
87 		set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90 
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 	int nr;
94 
95 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 	if (nr > q->nr_requests)
97 		nr = q->nr_requests;
98 	q->nr_congestion_on = nr;
99 
100 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 	if (nr < 1)
102 		nr = 1;
103 	q->nr_congestion_off = nr;
104 }
105 
106 /**
107  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108  * @bdev:	device
109  *
110  * Locates the passed device's request queue and returns the address of its
111  * backing_dev_info.  This function can only be called if @bdev is opened
112  * and the return value is never NULL.
113  */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 	struct request_queue *q = bdev_get_queue(bdev);
117 
118 	return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121 
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 	memset(rq, 0, sizeof(*rq));
125 
126 	INIT_LIST_HEAD(&rq->queuelist);
127 	INIT_LIST_HEAD(&rq->timeout_list);
128 	rq->cpu = -1;
129 	rq->q = q;
130 	rq->__sector = (sector_t) -1;
131 	INIT_HLIST_NODE(&rq->hash);
132 	RB_CLEAR_NODE(&rq->rb_node);
133 	rq->cmd = rq->__cmd;
134 	rq->cmd_len = BLK_MAX_CDB;
135 	rq->tag = -1;
136 	rq->start_time = jiffies;
137 	set_start_time_ns(rq);
138 	rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141 
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 			  unsigned int nbytes, int error)
144 {
145 	if (error)
146 		bio->bi_error = error;
147 
148 	if (unlikely(rq->cmd_flags & REQ_QUIET))
149 		bio_set_flag(bio, BIO_QUIET);
150 
151 	bio_advance(bio, nbytes);
152 
153 	/* don't actually finish bio if it's part of flush sequence */
154 	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 		bio_endio(bio);
156 }
157 
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 	int bit;
161 
162 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 		(unsigned long long) rq->cmd_flags);
165 
166 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
167 	       (unsigned long long)blk_rq_pos(rq),
168 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
170 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
171 
172 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 		printk(KERN_INFO "  cdb: ");
174 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 			printk("%02x ", rq->cmd[bit]);
176 		printk("\n");
177 	}
178 }
179 EXPORT_SYMBOL(blk_dump_rq_flags);
180 
181 static void blk_delay_work(struct work_struct *work)
182 {
183 	struct request_queue *q;
184 
185 	q = container_of(work, struct request_queue, delay_work.work);
186 	spin_lock_irq(q->queue_lock);
187 	__blk_run_queue(q);
188 	spin_unlock_irq(q->queue_lock);
189 }
190 
191 /**
192  * blk_delay_queue - restart queueing after defined interval
193  * @q:		The &struct request_queue in question
194  * @msecs:	Delay in msecs
195  *
196  * Description:
197  *   Sometimes queueing needs to be postponed for a little while, to allow
198  *   resources to come back. This function will make sure that queueing is
199  *   restarted around the specified time. Queue lock must be held.
200  */
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
202 {
203 	if (likely(!blk_queue_dead(q)))
204 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 				   msecs_to_jiffies(msecs));
206 }
207 EXPORT_SYMBOL(blk_delay_queue);
208 
209 /**
210  * blk_start_queue_async - asynchronously restart a previously stopped queue
211  * @q:    The &struct request_queue in question
212  *
213  * Description:
214  *   blk_start_queue_async() will clear the stop flag on the queue, and
215  *   ensure that the request_fn for the queue is run from an async
216  *   context.
217  **/
218 void blk_start_queue_async(struct request_queue *q)
219 {
220 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 	blk_run_queue_async(q);
222 }
223 EXPORT_SYMBOL(blk_start_queue_async);
224 
225 /**
226  * blk_start_queue - restart a previously stopped queue
227  * @q:    The &struct request_queue in question
228  *
229  * Description:
230  *   blk_start_queue() will clear the stop flag on the queue, and call
231  *   the request_fn for the queue if it was in a stopped state when
232  *   entered. Also see blk_stop_queue(). Queue lock must be held.
233  **/
234 void blk_start_queue(struct request_queue *q)
235 {
236 	WARN_ON(!irqs_disabled());
237 
238 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
239 	__blk_run_queue(q);
240 }
241 EXPORT_SYMBOL(blk_start_queue);
242 
243 /**
244  * blk_stop_queue - stop a queue
245  * @q:    The &struct request_queue in question
246  *
247  * Description:
248  *   The Linux block layer assumes that a block driver will consume all
249  *   entries on the request queue when the request_fn strategy is called.
250  *   Often this will not happen, because of hardware limitations (queue
251  *   depth settings). If a device driver gets a 'queue full' response,
252  *   or if it simply chooses not to queue more I/O at one point, it can
253  *   call this function to prevent the request_fn from being called until
254  *   the driver has signalled it's ready to go again. This happens by calling
255  *   blk_start_queue() to restart queue operations. Queue lock must be held.
256  **/
257 void blk_stop_queue(struct request_queue *q)
258 {
259 	cancel_delayed_work(&q->delay_work);
260 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
261 }
262 EXPORT_SYMBOL(blk_stop_queue);
263 
264 /**
265  * blk_sync_queue - cancel any pending callbacks on a queue
266  * @q: the queue
267  *
268  * Description:
269  *     The block layer may perform asynchronous callback activity
270  *     on a queue, such as calling the unplug function after a timeout.
271  *     A block device may call blk_sync_queue to ensure that any
272  *     such activity is cancelled, thus allowing it to release resources
273  *     that the callbacks might use. The caller must already have made sure
274  *     that its ->make_request_fn will not re-add plugging prior to calling
275  *     this function.
276  *
277  *     This function does not cancel any asynchronous activity arising
278  *     out of elevator or throttling code. That would require elevator_exit()
279  *     and blkcg_exit_queue() to be called with queue lock initialized.
280  *
281  */
282 void blk_sync_queue(struct request_queue *q)
283 {
284 	del_timer_sync(&q->timeout);
285 
286 	if (q->mq_ops) {
287 		struct blk_mq_hw_ctx *hctx;
288 		int i;
289 
290 		queue_for_each_hw_ctx(q, hctx, i) {
291 			cancel_delayed_work_sync(&hctx->run_work);
292 			cancel_delayed_work_sync(&hctx->delay_work);
293 		}
294 	} else {
295 		cancel_delayed_work_sync(&q->delay_work);
296 	}
297 }
298 EXPORT_SYMBOL(blk_sync_queue);
299 
300 /**
301  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302  * @q:	The queue to run
303  *
304  * Description:
305  *    Invoke request handling on a queue if there are any pending requests.
306  *    May be used to restart request handling after a request has completed.
307  *    This variant runs the queue whether or not the queue has been
308  *    stopped. Must be called with the queue lock held and interrupts
309  *    disabled. See also @blk_run_queue.
310  */
311 inline void __blk_run_queue_uncond(struct request_queue *q)
312 {
313 	if (unlikely(blk_queue_dead(q)))
314 		return;
315 
316 	/*
317 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 	 * the queue lock internally. As a result multiple threads may be
319 	 * running such a request function concurrently. Keep track of the
320 	 * number of active request_fn invocations such that blk_drain_queue()
321 	 * can wait until all these request_fn calls have finished.
322 	 */
323 	q->request_fn_active++;
324 	q->request_fn(q);
325 	q->request_fn_active--;
326 }
327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
328 
329 /**
330  * __blk_run_queue - run a single device queue
331  * @q:	The queue to run
332  *
333  * Description:
334  *    See @blk_run_queue. This variant must be called with the queue lock
335  *    held and interrupts disabled.
336  */
337 void __blk_run_queue(struct request_queue *q)
338 {
339 	if (unlikely(blk_queue_stopped(q)))
340 		return;
341 
342 	__blk_run_queue_uncond(q);
343 }
344 EXPORT_SYMBOL(__blk_run_queue);
345 
346 /**
347  * blk_run_queue_async - run a single device queue in workqueue context
348  * @q:	The queue to run
349  *
350  * Description:
351  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
352  *    of us. The caller must hold the queue lock.
353  */
354 void blk_run_queue_async(struct request_queue *q)
355 {
356 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
357 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
358 }
359 EXPORT_SYMBOL(blk_run_queue_async);
360 
361 /**
362  * blk_run_queue - run a single device queue
363  * @q: The queue to run
364  *
365  * Description:
366  *    Invoke request handling on this queue, if it has pending work to do.
367  *    May be used to restart queueing when a request has completed.
368  */
369 void blk_run_queue(struct request_queue *q)
370 {
371 	unsigned long flags;
372 
373 	spin_lock_irqsave(q->queue_lock, flags);
374 	__blk_run_queue(q);
375 	spin_unlock_irqrestore(q->queue_lock, flags);
376 }
377 EXPORT_SYMBOL(blk_run_queue);
378 
379 void blk_put_queue(struct request_queue *q)
380 {
381 	kobject_put(&q->kobj);
382 }
383 EXPORT_SYMBOL(blk_put_queue);
384 
385 /**
386  * __blk_drain_queue - drain requests from request_queue
387  * @q: queue to drain
388  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
389  *
390  * Drain requests from @q.  If @drain_all is set, all requests are drained.
391  * If not, only ELVPRIV requests are drained.  The caller is responsible
392  * for ensuring that no new requests which need to be drained are queued.
393  */
394 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 	__releases(q->queue_lock)
396 	__acquires(q->queue_lock)
397 {
398 	int i;
399 
400 	lockdep_assert_held(q->queue_lock);
401 
402 	while (true) {
403 		bool drain = false;
404 
405 		/*
406 		 * The caller might be trying to drain @q before its
407 		 * elevator is initialized.
408 		 */
409 		if (q->elevator)
410 			elv_drain_elevator(q);
411 
412 		blkcg_drain_queue(q);
413 
414 		/*
415 		 * This function might be called on a queue which failed
416 		 * driver init after queue creation or is not yet fully
417 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
418 		 * in such cases.  Kick queue iff dispatch queue has
419 		 * something on it and @q has request_fn set.
420 		 */
421 		if (!list_empty(&q->queue_head) && q->request_fn)
422 			__blk_run_queue(q);
423 
424 		drain |= q->nr_rqs_elvpriv;
425 		drain |= q->request_fn_active;
426 
427 		/*
428 		 * Unfortunately, requests are queued at and tracked from
429 		 * multiple places and there's no single counter which can
430 		 * be drained.  Check all the queues and counters.
431 		 */
432 		if (drain_all) {
433 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
434 			drain |= !list_empty(&q->queue_head);
435 			for (i = 0; i < 2; i++) {
436 				drain |= q->nr_rqs[i];
437 				drain |= q->in_flight[i];
438 				if (fq)
439 				    drain |= !list_empty(&fq->flush_queue[i]);
440 			}
441 		}
442 
443 		if (!drain)
444 			break;
445 
446 		spin_unlock_irq(q->queue_lock);
447 
448 		msleep(10);
449 
450 		spin_lock_irq(q->queue_lock);
451 	}
452 
453 	/*
454 	 * With queue marked dead, any woken up waiter will fail the
455 	 * allocation path, so the wakeup chaining is lost and we're
456 	 * left with hung waiters. We need to wake up those waiters.
457 	 */
458 	if (q->request_fn) {
459 		struct request_list *rl;
460 
461 		blk_queue_for_each_rl(rl, q)
462 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 				wake_up_all(&rl->wait[i]);
464 	}
465 }
466 
467 /**
468  * blk_queue_bypass_start - enter queue bypass mode
469  * @q: queue of interest
470  *
471  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
472  * function makes @q enter bypass mode and drains all requests which were
473  * throttled or issued before.  On return, it's guaranteed that no request
474  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475  * inside queue or RCU read lock.
476  */
477 void blk_queue_bypass_start(struct request_queue *q)
478 {
479 	spin_lock_irq(q->queue_lock);
480 	q->bypass_depth++;
481 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 	spin_unlock_irq(q->queue_lock);
483 
484 	/*
485 	 * Queues start drained.  Skip actual draining till init is
486 	 * complete.  This avoids lenghty delays during queue init which
487 	 * can happen many times during boot.
488 	 */
489 	if (blk_queue_init_done(q)) {
490 		spin_lock_irq(q->queue_lock);
491 		__blk_drain_queue(q, false);
492 		spin_unlock_irq(q->queue_lock);
493 
494 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
495 		synchronize_rcu();
496 	}
497 }
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499 
500 /**
501  * blk_queue_bypass_end - leave queue bypass mode
502  * @q: queue of interest
503  *
504  * Leave bypass mode and restore the normal queueing behavior.
505  */
506 void blk_queue_bypass_end(struct request_queue *q)
507 {
508 	spin_lock_irq(q->queue_lock);
509 	if (!--q->bypass_depth)
510 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 	WARN_ON_ONCE(q->bypass_depth < 0);
512 	spin_unlock_irq(q->queue_lock);
513 }
514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515 
516 void blk_set_queue_dying(struct request_queue *q)
517 {
518 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
519 
520 	if (q->mq_ops)
521 		blk_mq_wake_waiters(q);
522 	else {
523 		struct request_list *rl;
524 
525 		blk_queue_for_each_rl(rl, q) {
526 			if (rl->rq_pool) {
527 				wake_up(&rl->wait[BLK_RW_SYNC]);
528 				wake_up(&rl->wait[BLK_RW_ASYNC]);
529 			}
530 		}
531 	}
532 }
533 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
534 
535 /**
536  * blk_cleanup_queue - shutdown a request queue
537  * @q: request queue to shutdown
538  *
539  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
540  * put it.  All future requests will be failed immediately with -ENODEV.
541  */
542 void blk_cleanup_queue(struct request_queue *q)
543 {
544 	spinlock_t *lock = q->queue_lock;
545 
546 	/* mark @q DYING, no new request or merges will be allowed afterwards */
547 	mutex_lock(&q->sysfs_lock);
548 	blk_set_queue_dying(q);
549 	spin_lock_irq(lock);
550 
551 	/*
552 	 * A dying queue is permanently in bypass mode till released.  Note
553 	 * that, unlike blk_queue_bypass_start(), we aren't performing
554 	 * synchronize_rcu() after entering bypass mode to avoid the delay
555 	 * as some drivers create and destroy a lot of queues while
556 	 * probing.  This is still safe because blk_release_queue() will be
557 	 * called only after the queue refcnt drops to zero and nothing,
558 	 * RCU or not, would be traversing the queue by then.
559 	 */
560 	q->bypass_depth++;
561 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
562 
563 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
564 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
565 	queue_flag_set(QUEUE_FLAG_DYING, q);
566 	spin_unlock_irq(lock);
567 	mutex_unlock(&q->sysfs_lock);
568 
569 	/*
570 	 * Drain all requests queued before DYING marking. Set DEAD flag to
571 	 * prevent that q->request_fn() gets invoked after draining finished.
572 	 */
573 	blk_freeze_queue(q);
574 	spin_lock_irq(lock);
575 	if (!q->mq_ops)
576 		__blk_drain_queue(q, true);
577 	queue_flag_set(QUEUE_FLAG_DEAD, q);
578 	spin_unlock_irq(lock);
579 
580 	/* for synchronous bio-based driver finish in-flight integrity i/o */
581 	blk_flush_integrity();
582 
583 	/* @q won't process any more request, flush async actions */
584 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
585 	blk_sync_queue(q);
586 
587 	if (q->mq_ops)
588 		blk_mq_free_queue(q);
589 	percpu_ref_exit(&q->q_usage_counter);
590 
591 	spin_lock_irq(lock);
592 	if (q->queue_lock != &q->__queue_lock)
593 		q->queue_lock = &q->__queue_lock;
594 	spin_unlock_irq(lock);
595 
596 	bdi_unregister(&q->backing_dev_info);
597 
598 	/* @q is and will stay empty, shutdown and put */
599 	blk_put_queue(q);
600 }
601 EXPORT_SYMBOL(blk_cleanup_queue);
602 
603 /* Allocate memory local to the request queue */
604 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
605 {
606 	int nid = (int)(long)data;
607 	return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
608 }
609 
610 static void free_request_struct(void *element, void *unused)
611 {
612 	kmem_cache_free(request_cachep, element);
613 }
614 
615 int blk_init_rl(struct request_list *rl, struct request_queue *q,
616 		gfp_t gfp_mask)
617 {
618 	if (unlikely(rl->rq_pool))
619 		return 0;
620 
621 	rl->q = q;
622 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
623 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
624 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
625 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
626 
627 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
628 					  free_request_struct,
629 					  (void *)(long)q->node, gfp_mask,
630 					  q->node);
631 	if (!rl->rq_pool)
632 		return -ENOMEM;
633 
634 	return 0;
635 }
636 
637 void blk_exit_rl(struct request_list *rl)
638 {
639 	if (rl->rq_pool)
640 		mempool_destroy(rl->rq_pool);
641 }
642 
643 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
644 {
645 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
646 }
647 EXPORT_SYMBOL(blk_alloc_queue);
648 
649 int blk_queue_enter(struct request_queue *q, bool nowait)
650 {
651 	while (true) {
652 		int ret;
653 
654 		if (percpu_ref_tryget_live(&q->q_usage_counter))
655 			return 0;
656 
657 		if (nowait)
658 			return -EBUSY;
659 
660 		ret = wait_event_interruptible(q->mq_freeze_wq,
661 				!atomic_read(&q->mq_freeze_depth) ||
662 				blk_queue_dying(q));
663 		if (blk_queue_dying(q))
664 			return -ENODEV;
665 		if (ret)
666 			return ret;
667 	}
668 }
669 
670 void blk_queue_exit(struct request_queue *q)
671 {
672 	percpu_ref_put(&q->q_usage_counter);
673 }
674 
675 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676 {
677 	struct request_queue *q =
678 		container_of(ref, struct request_queue, q_usage_counter);
679 
680 	wake_up_all(&q->mq_freeze_wq);
681 }
682 
683 static void blk_rq_timed_out_timer(unsigned long data)
684 {
685 	struct request_queue *q = (struct request_queue *)data;
686 
687 	kblockd_schedule_work(&q->timeout_work);
688 }
689 
690 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
691 {
692 	struct request_queue *q;
693 	int err;
694 
695 	q = kmem_cache_alloc_node(blk_requestq_cachep,
696 				gfp_mask | __GFP_ZERO, node_id);
697 	if (!q)
698 		return NULL;
699 
700 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
701 	if (q->id < 0)
702 		goto fail_q;
703 
704 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
705 	if (!q->bio_split)
706 		goto fail_id;
707 
708 	q->backing_dev_info.ra_pages =
709 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
710 	q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
711 	q->backing_dev_info.name = "block";
712 	q->node = node_id;
713 
714 	err = bdi_init(&q->backing_dev_info);
715 	if (err)
716 		goto fail_split;
717 
718 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
719 		    laptop_mode_timer_fn, (unsigned long) q);
720 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
721 	INIT_LIST_HEAD(&q->queue_head);
722 	INIT_LIST_HEAD(&q->timeout_list);
723 	INIT_LIST_HEAD(&q->icq_list);
724 #ifdef CONFIG_BLK_CGROUP
725 	INIT_LIST_HEAD(&q->blkg_list);
726 #endif
727 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
728 
729 	kobject_init(&q->kobj, &blk_queue_ktype);
730 
731 	mutex_init(&q->sysfs_lock);
732 	spin_lock_init(&q->__queue_lock);
733 
734 	/*
735 	 * By default initialize queue_lock to internal lock and driver can
736 	 * override it later if need be.
737 	 */
738 	q->queue_lock = &q->__queue_lock;
739 
740 	/*
741 	 * A queue starts its life with bypass turned on to avoid
742 	 * unnecessary bypass on/off overhead and nasty surprises during
743 	 * init.  The initial bypass will be finished when the queue is
744 	 * registered by blk_register_queue().
745 	 */
746 	q->bypass_depth = 1;
747 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
748 
749 	init_waitqueue_head(&q->mq_freeze_wq);
750 
751 	/*
752 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
753 	 * See blk_register_queue() for details.
754 	 */
755 	if (percpu_ref_init(&q->q_usage_counter,
756 				blk_queue_usage_counter_release,
757 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
758 		goto fail_bdi;
759 
760 	if (blkcg_init_queue(q))
761 		goto fail_ref;
762 
763 	return q;
764 
765 fail_ref:
766 	percpu_ref_exit(&q->q_usage_counter);
767 fail_bdi:
768 	bdi_destroy(&q->backing_dev_info);
769 fail_split:
770 	bioset_free(q->bio_split);
771 fail_id:
772 	ida_simple_remove(&blk_queue_ida, q->id);
773 fail_q:
774 	kmem_cache_free(blk_requestq_cachep, q);
775 	return NULL;
776 }
777 EXPORT_SYMBOL(blk_alloc_queue_node);
778 
779 /**
780  * blk_init_queue  - prepare a request queue for use with a block device
781  * @rfn:  The function to be called to process requests that have been
782  *        placed on the queue.
783  * @lock: Request queue spin lock
784  *
785  * Description:
786  *    If a block device wishes to use the standard request handling procedures,
787  *    which sorts requests and coalesces adjacent requests, then it must
788  *    call blk_init_queue().  The function @rfn will be called when there
789  *    are requests on the queue that need to be processed.  If the device
790  *    supports plugging, then @rfn may not be called immediately when requests
791  *    are available on the queue, but may be called at some time later instead.
792  *    Plugged queues are generally unplugged when a buffer belonging to one
793  *    of the requests on the queue is needed, or due to memory pressure.
794  *
795  *    @rfn is not required, or even expected, to remove all requests off the
796  *    queue, but only as many as it can handle at a time.  If it does leave
797  *    requests on the queue, it is responsible for arranging that the requests
798  *    get dealt with eventually.
799  *
800  *    The queue spin lock must be held while manipulating the requests on the
801  *    request queue; this lock will be taken also from interrupt context, so irq
802  *    disabling is needed for it.
803  *
804  *    Function returns a pointer to the initialized request queue, or %NULL if
805  *    it didn't succeed.
806  *
807  * Note:
808  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
809  *    when the block device is deactivated (such as at module unload).
810  **/
811 
812 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
813 {
814 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
815 }
816 EXPORT_SYMBOL(blk_init_queue);
817 
818 struct request_queue *
819 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
820 {
821 	struct request_queue *uninit_q, *q;
822 
823 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
824 	if (!uninit_q)
825 		return NULL;
826 
827 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
828 	if (!q)
829 		blk_cleanup_queue(uninit_q);
830 
831 	return q;
832 }
833 EXPORT_SYMBOL(blk_init_queue_node);
834 
835 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
836 
837 struct request_queue *
838 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
839 			 spinlock_t *lock)
840 {
841 	if (!q)
842 		return NULL;
843 
844 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
845 	if (!q->fq)
846 		return NULL;
847 
848 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
849 		goto fail;
850 
851 	INIT_WORK(&q->timeout_work, blk_timeout_work);
852 	q->request_fn		= rfn;
853 	q->prep_rq_fn		= NULL;
854 	q->unprep_rq_fn		= NULL;
855 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
856 
857 	/* Override internal queue lock with supplied lock pointer */
858 	if (lock)
859 		q->queue_lock		= lock;
860 
861 	/*
862 	 * This also sets hw/phys segments, boundary and size
863 	 */
864 	blk_queue_make_request(q, blk_queue_bio);
865 
866 	q->sg_reserved_size = INT_MAX;
867 
868 	/* Protect q->elevator from elevator_change */
869 	mutex_lock(&q->sysfs_lock);
870 
871 	/* init elevator */
872 	if (elevator_init(q, NULL)) {
873 		mutex_unlock(&q->sysfs_lock);
874 		goto fail;
875 	}
876 
877 	mutex_unlock(&q->sysfs_lock);
878 
879 	return q;
880 
881 fail:
882 	blk_free_flush_queue(q->fq);
883 	return NULL;
884 }
885 EXPORT_SYMBOL(blk_init_allocated_queue);
886 
887 bool blk_get_queue(struct request_queue *q)
888 {
889 	if (likely(!blk_queue_dying(q))) {
890 		__blk_get_queue(q);
891 		return true;
892 	}
893 
894 	return false;
895 }
896 EXPORT_SYMBOL(blk_get_queue);
897 
898 static inline void blk_free_request(struct request_list *rl, struct request *rq)
899 {
900 	if (rq->cmd_flags & REQ_ELVPRIV) {
901 		elv_put_request(rl->q, rq);
902 		if (rq->elv.icq)
903 			put_io_context(rq->elv.icq->ioc);
904 	}
905 
906 	mempool_free(rq, rl->rq_pool);
907 }
908 
909 /*
910  * ioc_batching returns true if the ioc is a valid batching request and
911  * should be given priority access to a request.
912  */
913 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
914 {
915 	if (!ioc)
916 		return 0;
917 
918 	/*
919 	 * Make sure the process is able to allocate at least 1 request
920 	 * even if the batch times out, otherwise we could theoretically
921 	 * lose wakeups.
922 	 */
923 	return ioc->nr_batch_requests == q->nr_batching ||
924 		(ioc->nr_batch_requests > 0
925 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
926 }
927 
928 /*
929  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
930  * will cause the process to be a "batcher" on all queues in the system. This
931  * is the behaviour we want though - once it gets a wakeup it should be given
932  * a nice run.
933  */
934 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
935 {
936 	if (!ioc || ioc_batching(q, ioc))
937 		return;
938 
939 	ioc->nr_batch_requests = q->nr_batching;
940 	ioc->last_waited = jiffies;
941 }
942 
943 static void __freed_request(struct request_list *rl, int sync)
944 {
945 	struct request_queue *q = rl->q;
946 
947 	if (rl->count[sync] < queue_congestion_off_threshold(q))
948 		blk_clear_congested(rl, sync);
949 
950 	if (rl->count[sync] + 1 <= q->nr_requests) {
951 		if (waitqueue_active(&rl->wait[sync]))
952 			wake_up(&rl->wait[sync]);
953 
954 		blk_clear_rl_full(rl, sync);
955 	}
956 }
957 
958 /*
959  * A request has just been released.  Account for it, update the full and
960  * congestion status, wake up any waiters.   Called under q->queue_lock.
961  */
962 static void freed_request(struct request_list *rl, int op, unsigned int flags)
963 {
964 	struct request_queue *q = rl->q;
965 	int sync = rw_is_sync(op, flags);
966 
967 	q->nr_rqs[sync]--;
968 	rl->count[sync]--;
969 	if (flags & REQ_ELVPRIV)
970 		q->nr_rqs_elvpriv--;
971 
972 	__freed_request(rl, sync);
973 
974 	if (unlikely(rl->starved[sync ^ 1]))
975 		__freed_request(rl, sync ^ 1);
976 }
977 
978 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
979 {
980 	struct request_list *rl;
981 	int on_thresh, off_thresh;
982 
983 	spin_lock_irq(q->queue_lock);
984 	q->nr_requests = nr;
985 	blk_queue_congestion_threshold(q);
986 	on_thresh = queue_congestion_on_threshold(q);
987 	off_thresh = queue_congestion_off_threshold(q);
988 
989 	blk_queue_for_each_rl(rl, q) {
990 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
991 			blk_set_congested(rl, BLK_RW_SYNC);
992 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
993 			blk_clear_congested(rl, BLK_RW_SYNC);
994 
995 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
996 			blk_set_congested(rl, BLK_RW_ASYNC);
997 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
998 			blk_clear_congested(rl, BLK_RW_ASYNC);
999 
1000 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1001 			blk_set_rl_full(rl, BLK_RW_SYNC);
1002 		} else {
1003 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1004 			wake_up(&rl->wait[BLK_RW_SYNC]);
1005 		}
1006 
1007 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1008 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1009 		} else {
1010 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1011 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1012 		}
1013 	}
1014 
1015 	spin_unlock_irq(q->queue_lock);
1016 	return 0;
1017 }
1018 
1019 /*
1020  * Determine if elevator data should be initialized when allocating the
1021  * request associated with @bio.
1022  */
1023 static bool blk_rq_should_init_elevator(struct bio *bio)
1024 {
1025 	if (!bio)
1026 		return true;
1027 
1028 	/*
1029 	 * Flush requests do not use the elevator so skip initialization.
1030 	 * This allows a request to share the flush and elevator data.
1031 	 */
1032 	if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA))
1033 		return false;
1034 
1035 	return true;
1036 }
1037 
1038 /**
1039  * rq_ioc - determine io_context for request allocation
1040  * @bio: request being allocated is for this bio (can be %NULL)
1041  *
1042  * Determine io_context to use for request allocation for @bio.  May return
1043  * %NULL if %current->io_context doesn't exist.
1044  */
1045 static struct io_context *rq_ioc(struct bio *bio)
1046 {
1047 #ifdef CONFIG_BLK_CGROUP
1048 	if (bio && bio->bi_ioc)
1049 		return bio->bi_ioc;
1050 #endif
1051 	return current->io_context;
1052 }
1053 
1054 /**
1055  * __get_request - get a free request
1056  * @rl: request list to allocate from
1057  * @op: REQ_OP_READ/REQ_OP_WRITE
1058  * @op_flags: rq_flag_bits
1059  * @bio: bio to allocate request for (can be %NULL)
1060  * @gfp_mask: allocation mask
1061  *
1062  * Get a free request from @q.  This function may fail under memory
1063  * pressure or if @q is dead.
1064  *
1065  * Must be called with @q->queue_lock held and,
1066  * Returns ERR_PTR on failure, with @q->queue_lock held.
1067  * Returns request pointer on success, with @q->queue_lock *not held*.
1068  */
1069 static struct request *__get_request(struct request_list *rl, int op,
1070 				     int op_flags, struct bio *bio,
1071 				     gfp_t gfp_mask)
1072 {
1073 	struct request_queue *q = rl->q;
1074 	struct request *rq;
1075 	struct elevator_type *et = q->elevator->type;
1076 	struct io_context *ioc = rq_ioc(bio);
1077 	struct io_cq *icq = NULL;
1078 	const bool is_sync = rw_is_sync(op, op_flags) != 0;
1079 	int may_queue;
1080 
1081 	if (unlikely(blk_queue_dying(q)))
1082 		return ERR_PTR(-ENODEV);
1083 
1084 	may_queue = elv_may_queue(q, op, op_flags);
1085 	if (may_queue == ELV_MQUEUE_NO)
1086 		goto rq_starved;
1087 
1088 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1089 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1090 			/*
1091 			 * The queue will fill after this allocation, so set
1092 			 * it as full, and mark this process as "batching".
1093 			 * This process will be allowed to complete a batch of
1094 			 * requests, others will be blocked.
1095 			 */
1096 			if (!blk_rl_full(rl, is_sync)) {
1097 				ioc_set_batching(q, ioc);
1098 				blk_set_rl_full(rl, is_sync);
1099 			} else {
1100 				if (may_queue != ELV_MQUEUE_MUST
1101 						&& !ioc_batching(q, ioc)) {
1102 					/*
1103 					 * The queue is full and the allocating
1104 					 * process is not a "batcher", and not
1105 					 * exempted by the IO scheduler
1106 					 */
1107 					return ERR_PTR(-ENOMEM);
1108 				}
1109 			}
1110 		}
1111 		blk_set_congested(rl, is_sync);
1112 	}
1113 
1114 	/*
1115 	 * Only allow batching queuers to allocate up to 50% over the defined
1116 	 * limit of requests, otherwise we could have thousands of requests
1117 	 * allocated with any setting of ->nr_requests
1118 	 */
1119 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1120 		return ERR_PTR(-ENOMEM);
1121 
1122 	q->nr_rqs[is_sync]++;
1123 	rl->count[is_sync]++;
1124 	rl->starved[is_sync] = 0;
1125 
1126 	/*
1127 	 * Decide whether the new request will be managed by elevator.  If
1128 	 * so, mark @op_flags and increment elvpriv.  Non-zero elvpriv will
1129 	 * prevent the current elevator from being destroyed until the new
1130 	 * request is freed.  This guarantees icq's won't be destroyed and
1131 	 * makes creating new ones safe.
1132 	 *
1133 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1134 	 * it will be created after releasing queue_lock.
1135 	 */
1136 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1137 		op_flags |= REQ_ELVPRIV;
1138 		q->nr_rqs_elvpriv++;
1139 		if (et->icq_cache && ioc)
1140 			icq = ioc_lookup_icq(ioc, q);
1141 	}
1142 
1143 	if (blk_queue_io_stat(q))
1144 		op_flags |= REQ_IO_STAT;
1145 	spin_unlock_irq(q->queue_lock);
1146 
1147 	/* allocate and init request */
1148 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1149 	if (!rq)
1150 		goto fail_alloc;
1151 
1152 	blk_rq_init(q, rq);
1153 	blk_rq_set_rl(rq, rl);
1154 	req_set_op_attrs(rq, op, op_flags | REQ_ALLOCED);
1155 
1156 	/* init elvpriv */
1157 	if (op_flags & REQ_ELVPRIV) {
1158 		if (unlikely(et->icq_cache && !icq)) {
1159 			if (ioc)
1160 				icq = ioc_create_icq(ioc, q, gfp_mask);
1161 			if (!icq)
1162 				goto fail_elvpriv;
1163 		}
1164 
1165 		rq->elv.icq = icq;
1166 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1167 			goto fail_elvpriv;
1168 
1169 		/* @rq->elv.icq holds io_context until @rq is freed */
1170 		if (icq)
1171 			get_io_context(icq->ioc);
1172 	}
1173 out:
1174 	/*
1175 	 * ioc may be NULL here, and ioc_batching will be false. That's
1176 	 * OK, if the queue is under the request limit then requests need
1177 	 * not count toward the nr_batch_requests limit. There will always
1178 	 * be some limit enforced by BLK_BATCH_TIME.
1179 	 */
1180 	if (ioc_batching(q, ioc))
1181 		ioc->nr_batch_requests--;
1182 
1183 	trace_block_getrq(q, bio, op);
1184 	return rq;
1185 
1186 fail_elvpriv:
1187 	/*
1188 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1189 	 * and may fail indefinitely under memory pressure and thus
1190 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1191 	 * disturb iosched and blkcg but weird is bettern than dead.
1192 	 */
1193 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1194 			   __func__, dev_name(q->backing_dev_info.dev));
1195 
1196 	rq->cmd_flags &= ~REQ_ELVPRIV;
1197 	rq->elv.icq = NULL;
1198 
1199 	spin_lock_irq(q->queue_lock);
1200 	q->nr_rqs_elvpriv--;
1201 	spin_unlock_irq(q->queue_lock);
1202 	goto out;
1203 
1204 fail_alloc:
1205 	/*
1206 	 * Allocation failed presumably due to memory. Undo anything we
1207 	 * might have messed up.
1208 	 *
1209 	 * Allocating task should really be put onto the front of the wait
1210 	 * queue, but this is pretty rare.
1211 	 */
1212 	spin_lock_irq(q->queue_lock);
1213 	freed_request(rl, op, op_flags);
1214 
1215 	/*
1216 	 * in the very unlikely event that allocation failed and no
1217 	 * requests for this direction was pending, mark us starved so that
1218 	 * freeing of a request in the other direction will notice
1219 	 * us. another possible fix would be to split the rq mempool into
1220 	 * READ and WRITE
1221 	 */
1222 rq_starved:
1223 	if (unlikely(rl->count[is_sync] == 0))
1224 		rl->starved[is_sync] = 1;
1225 	return ERR_PTR(-ENOMEM);
1226 }
1227 
1228 /**
1229  * get_request - get a free request
1230  * @q: request_queue to allocate request from
1231  * @op: REQ_OP_READ/REQ_OP_WRITE
1232  * @op_flags: rq_flag_bits
1233  * @bio: bio to allocate request for (can be %NULL)
1234  * @gfp_mask: allocation mask
1235  *
1236  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1237  * this function keeps retrying under memory pressure and fails iff @q is dead.
1238  *
1239  * Must be called with @q->queue_lock held and,
1240  * Returns ERR_PTR on failure, with @q->queue_lock held.
1241  * Returns request pointer on success, with @q->queue_lock *not held*.
1242  */
1243 static struct request *get_request(struct request_queue *q, int op,
1244 				   int op_flags, struct bio *bio,
1245 				   gfp_t gfp_mask)
1246 {
1247 	const bool is_sync = rw_is_sync(op, op_flags) != 0;
1248 	DEFINE_WAIT(wait);
1249 	struct request_list *rl;
1250 	struct request *rq;
1251 
1252 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1253 retry:
1254 	rq = __get_request(rl, op, op_flags, bio, gfp_mask);
1255 	if (!IS_ERR(rq))
1256 		return rq;
1257 
1258 	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1259 		blk_put_rl(rl);
1260 		return rq;
1261 	}
1262 
1263 	/* wait on @rl and retry */
1264 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1265 				  TASK_UNINTERRUPTIBLE);
1266 
1267 	trace_block_sleeprq(q, bio, op);
1268 
1269 	spin_unlock_irq(q->queue_lock);
1270 	io_schedule();
1271 
1272 	/*
1273 	 * After sleeping, we become a "batching" process and will be able
1274 	 * to allocate at least one request, and up to a big batch of them
1275 	 * for a small period time.  See ioc_batching, ioc_set_batching
1276 	 */
1277 	ioc_set_batching(q, current->io_context);
1278 
1279 	spin_lock_irq(q->queue_lock);
1280 	finish_wait(&rl->wait[is_sync], &wait);
1281 
1282 	goto retry;
1283 }
1284 
1285 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1286 		gfp_t gfp_mask)
1287 {
1288 	struct request *rq;
1289 
1290 	BUG_ON(rw != READ && rw != WRITE);
1291 
1292 	/* create ioc upfront */
1293 	create_io_context(gfp_mask, q->node);
1294 
1295 	spin_lock_irq(q->queue_lock);
1296 	rq = get_request(q, rw, 0, NULL, gfp_mask);
1297 	if (IS_ERR(rq)) {
1298 		spin_unlock_irq(q->queue_lock);
1299 		return rq;
1300 	}
1301 
1302 	/* q->queue_lock is unlocked at this point */
1303 	rq->__data_len = 0;
1304 	rq->__sector = (sector_t) -1;
1305 	rq->bio = rq->biotail = NULL;
1306 	return rq;
1307 }
1308 
1309 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1310 {
1311 	if (q->mq_ops)
1312 		return blk_mq_alloc_request(q, rw,
1313 			(gfp_mask & __GFP_DIRECT_RECLAIM) ?
1314 				0 : BLK_MQ_REQ_NOWAIT);
1315 	else
1316 		return blk_old_get_request(q, rw, gfp_mask);
1317 }
1318 EXPORT_SYMBOL(blk_get_request);
1319 
1320 /**
1321  * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1322  * @rq:		request to be initialized
1323  *
1324  */
1325 void blk_rq_set_block_pc(struct request *rq)
1326 {
1327 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1328 	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1329 }
1330 EXPORT_SYMBOL(blk_rq_set_block_pc);
1331 
1332 /**
1333  * blk_requeue_request - put a request back on queue
1334  * @q:		request queue where request should be inserted
1335  * @rq:		request to be inserted
1336  *
1337  * Description:
1338  *    Drivers often keep queueing requests until the hardware cannot accept
1339  *    more, when that condition happens we need to put the request back
1340  *    on the queue. Must be called with queue lock held.
1341  */
1342 void blk_requeue_request(struct request_queue *q, struct request *rq)
1343 {
1344 	blk_delete_timer(rq);
1345 	blk_clear_rq_complete(rq);
1346 	trace_block_rq_requeue(q, rq);
1347 
1348 	if (rq->cmd_flags & REQ_QUEUED)
1349 		blk_queue_end_tag(q, rq);
1350 
1351 	BUG_ON(blk_queued_rq(rq));
1352 
1353 	elv_requeue_request(q, rq);
1354 }
1355 EXPORT_SYMBOL(blk_requeue_request);
1356 
1357 static void add_acct_request(struct request_queue *q, struct request *rq,
1358 			     int where)
1359 {
1360 	blk_account_io_start(rq, true);
1361 	__elv_add_request(q, rq, where);
1362 }
1363 
1364 static void part_round_stats_single(int cpu, struct hd_struct *part,
1365 				    unsigned long now)
1366 {
1367 	int inflight;
1368 
1369 	if (now == part->stamp)
1370 		return;
1371 
1372 	inflight = part_in_flight(part);
1373 	if (inflight) {
1374 		__part_stat_add(cpu, part, time_in_queue,
1375 				inflight * (now - part->stamp));
1376 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1377 	}
1378 	part->stamp = now;
1379 }
1380 
1381 /**
1382  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1383  * @cpu: cpu number for stats access
1384  * @part: target partition
1385  *
1386  * The average IO queue length and utilisation statistics are maintained
1387  * by observing the current state of the queue length and the amount of
1388  * time it has been in this state for.
1389  *
1390  * Normally, that accounting is done on IO completion, but that can result
1391  * in more than a second's worth of IO being accounted for within any one
1392  * second, leading to >100% utilisation.  To deal with that, we call this
1393  * function to do a round-off before returning the results when reading
1394  * /proc/diskstats.  This accounts immediately for all queue usage up to
1395  * the current jiffies and restarts the counters again.
1396  */
1397 void part_round_stats(int cpu, struct hd_struct *part)
1398 {
1399 	unsigned long now = jiffies;
1400 
1401 	if (part->partno)
1402 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1403 	part_round_stats_single(cpu, part, now);
1404 }
1405 EXPORT_SYMBOL_GPL(part_round_stats);
1406 
1407 #ifdef CONFIG_PM
1408 static void blk_pm_put_request(struct request *rq)
1409 {
1410 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1411 		pm_runtime_mark_last_busy(rq->q->dev);
1412 }
1413 #else
1414 static inline void blk_pm_put_request(struct request *rq) {}
1415 #endif
1416 
1417 /*
1418  * queue lock must be held
1419  */
1420 void __blk_put_request(struct request_queue *q, struct request *req)
1421 {
1422 	if (unlikely(!q))
1423 		return;
1424 
1425 	if (q->mq_ops) {
1426 		blk_mq_free_request(req);
1427 		return;
1428 	}
1429 
1430 	blk_pm_put_request(req);
1431 
1432 	elv_completed_request(q, req);
1433 
1434 	/* this is a bio leak */
1435 	WARN_ON(req->bio != NULL);
1436 
1437 	/*
1438 	 * Request may not have originated from ll_rw_blk. if not,
1439 	 * it didn't come out of our reserved rq pools
1440 	 */
1441 	if (req->cmd_flags & REQ_ALLOCED) {
1442 		unsigned int flags = req->cmd_flags;
1443 		int op = req_op(req);
1444 		struct request_list *rl = blk_rq_rl(req);
1445 
1446 		BUG_ON(!list_empty(&req->queuelist));
1447 		BUG_ON(ELV_ON_HASH(req));
1448 
1449 		blk_free_request(rl, req);
1450 		freed_request(rl, op, flags);
1451 		blk_put_rl(rl);
1452 	}
1453 }
1454 EXPORT_SYMBOL_GPL(__blk_put_request);
1455 
1456 void blk_put_request(struct request *req)
1457 {
1458 	struct request_queue *q = req->q;
1459 
1460 	if (q->mq_ops)
1461 		blk_mq_free_request(req);
1462 	else {
1463 		unsigned long flags;
1464 
1465 		spin_lock_irqsave(q->queue_lock, flags);
1466 		__blk_put_request(q, req);
1467 		spin_unlock_irqrestore(q->queue_lock, flags);
1468 	}
1469 }
1470 EXPORT_SYMBOL(blk_put_request);
1471 
1472 /**
1473  * blk_add_request_payload - add a payload to a request
1474  * @rq: request to update
1475  * @page: page backing the payload
1476  * @offset: offset in page
1477  * @len: length of the payload.
1478  *
1479  * This allows to later add a payload to an already submitted request by
1480  * a block driver.  The driver needs to take care of freeing the payload
1481  * itself.
1482  *
1483  * Note that this is a quite horrible hack and nothing but handling of
1484  * discard requests should ever use it.
1485  */
1486 void blk_add_request_payload(struct request *rq, struct page *page,
1487 		int offset, unsigned int len)
1488 {
1489 	struct bio *bio = rq->bio;
1490 
1491 	bio->bi_io_vec->bv_page = page;
1492 	bio->bi_io_vec->bv_offset = offset;
1493 	bio->bi_io_vec->bv_len = len;
1494 
1495 	bio->bi_iter.bi_size = len;
1496 	bio->bi_vcnt = 1;
1497 	bio->bi_phys_segments = 1;
1498 
1499 	rq->__data_len = rq->resid_len = len;
1500 	rq->nr_phys_segments = 1;
1501 }
1502 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1503 
1504 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1505 			    struct bio *bio)
1506 {
1507 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1508 
1509 	if (!ll_back_merge_fn(q, req, bio))
1510 		return false;
1511 
1512 	trace_block_bio_backmerge(q, req, bio);
1513 
1514 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1515 		blk_rq_set_mixed_merge(req);
1516 
1517 	req->biotail->bi_next = bio;
1518 	req->biotail = bio;
1519 	req->__data_len += bio->bi_iter.bi_size;
1520 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1521 
1522 	blk_account_io_start(req, false);
1523 	return true;
1524 }
1525 
1526 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1527 			     struct bio *bio)
1528 {
1529 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1530 
1531 	if (!ll_front_merge_fn(q, req, bio))
1532 		return false;
1533 
1534 	trace_block_bio_frontmerge(q, req, bio);
1535 
1536 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1537 		blk_rq_set_mixed_merge(req);
1538 
1539 	bio->bi_next = req->bio;
1540 	req->bio = bio;
1541 
1542 	req->__sector = bio->bi_iter.bi_sector;
1543 	req->__data_len += bio->bi_iter.bi_size;
1544 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1545 
1546 	blk_account_io_start(req, false);
1547 	return true;
1548 }
1549 
1550 /**
1551  * blk_attempt_plug_merge - try to merge with %current's plugged list
1552  * @q: request_queue new bio is being queued at
1553  * @bio: new bio being queued
1554  * @request_count: out parameter for number of traversed plugged requests
1555  * @same_queue_rq: pointer to &struct request that gets filled in when
1556  * another request associated with @q is found on the plug list
1557  * (optional, may be %NULL)
1558  *
1559  * Determine whether @bio being queued on @q can be merged with a request
1560  * on %current's plugged list.  Returns %true if merge was successful,
1561  * otherwise %false.
1562  *
1563  * Plugging coalesces IOs from the same issuer for the same purpose without
1564  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1565  * than scheduling, and the request, while may have elvpriv data, is not
1566  * added on the elevator at this point.  In addition, we don't have
1567  * reliable access to the elevator outside queue lock.  Only check basic
1568  * merging parameters without querying the elevator.
1569  *
1570  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1571  */
1572 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1573 			    unsigned int *request_count,
1574 			    struct request **same_queue_rq)
1575 {
1576 	struct blk_plug *plug;
1577 	struct request *rq;
1578 	bool ret = false;
1579 	struct list_head *plug_list;
1580 
1581 	plug = current->plug;
1582 	if (!plug)
1583 		goto out;
1584 	*request_count = 0;
1585 
1586 	if (q->mq_ops)
1587 		plug_list = &plug->mq_list;
1588 	else
1589 		plug_list = &plug->list;
1590 
1591 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1592 		int el_ret;
1593 
1594 		if (rq->q == q) {
1595 			(*request_count)++;
1596 			/*
1597 			 * Only blk-mq multiple hardware queues case checks the
1598 			 * rq in the same queue, there should be only one such
1599 			 * rq in a queue
1600 			 **/
1601 			if (same_queue_rq)
1602 				*same_queue_rq = rq;
1603 		}
1604 
1605 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1606 			continue;
1607 
1608 		el_ret = blk_try_merge(rq, bio);
1609 		if (el_ret == ELEVATOR_BACK_MERGE) {
1610 			ret = bio_attempt_back_merge(q, rq, bio);
1611 			if (ret)
1612 				break;
1613 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1614 			ret = bio_attempt_front_merge(q, rq, bio);
1615 			if (ret)
1616 				break;
1617 		}
1618 	}
1619 out:
1620 	return ret;
1621 }
1622 
1623 unsigned int blk_plug_queued_count(struct request_queue *q)
1624 {
1625 	struct blk_plug *plug;
1626 	struct request *rq;
1627 	struct list_head *plug_list;
1628 	unsigned int ret = 0;
1629 
1630 	plug = current->plug;
1631 	if (!plug)
1632 		goto out;
1633 
1634 	if (q->mq_ops)
1635 		plug_list = &plug->mq_list;
1636 	else
1637 		plug_list = &plug->list;
1638 
1639 	list_for_each_entry(rq, plug_list, queuelist) {
1640 		if (rq->q == q)
1641 			ret++;
1642 	}
1643 out:
1644 	return ret;
1645 }
1646 
1647 void init_request_from_bio(struct request *req, struct bio *bio)
1648 {
1649 	req->cmd_type = REQ_TYPE_FS;
1650 
1651 	req->cmd_flags |= bio->bi_opf & REQ_COMMON_MASK;
1652 	if (bio->bi_opf & REQ_RAHEAD)
1653 		req->cmd_flags |= REQ_FAILFAST_MASK;
1654 
1655 	req->errors = 0;
1656 	req->__sector = bio->bi_iter.bi_sector;
1657 	req->ioprio = bio_prio(bio);
1658 	blk_rq_bio_prep(req->q, req, bio);
1659 }
1660 
1661 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1662 {
1663 	const bool sync = !!(bio->bi_opf & REQ_SYNC);
1664 	struct blk_plug *plug;
1665 	int el_ret, rw_flags = 0, where = ELEVATOR_INSERT_SORT;
1666 	struct request *req;
1667 	unsigned int request_count = 0;
1668 
1669 	/*
1670 	 * low level driver can indicate that it wants pages above a
1671 	 * certain limit bounced to low memory (ie for highmem, or even
1672 	 * ISA dma in theory)
1673 	 */
1674 	blk_queue_bounce(q, &bio);
1675 
1676 	blk_queue_split(q, &bio, q->bio_split);
1677 
1678 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1679 		bio->bi_error = -EIO;
1680 		bio_endio(bio);
1681 		return BLK_QC_T_NONE;
1682 	}
1683 
1684 	if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) {
1685 		spin_lock_irq(q->queue_lock);
1686 		where = ELEVATOR_INSERT_FLUSH;
1687 		goto get_rq;
1688 	}
1689 
1690 	/*
1691 	 * Check if we can merge with the plugged list before grabbing
1692 	 * any locks.
1693 	 */
1694 	if (!blk_queue_nomerges(q)) {
1695 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1696 			return BLK_QC_T_NONE;
1697 	} else
1698 		request_count = blk_plug_queued_count(q);
1699 
1700 	spin_lock_irq(q->queue_lock);
1701 
1702 	el_ret = elv_merge(q, &req, bio);
1703 	if (el_ret == ELEVATOR_BACK_MERGE) {
1704 		if (bio_attempt_back_merge(q, req, bio)) {
1705 			elv_bio_merged(q, req, bio);
1706 			if (!attempt_back_merge(q, req))
1707 				elv_merged_request(q, req, el_ret);
1708 			goto out_unlock;
1709 		}
1710 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1711 		if (bio_attempt_front_merge(q, req, bio)) {
1712 			elv_bio_merged(q, req, bio);
1713 			if (!attempt_front_merge(q, req))
1714 				elv_merged_request(q, req, el_ret);
1715 			goto out_unlock;
1716 		}
1717 	}
1718 
1719 get_rq:
1720 	/*
1721 	 * This sync check and mask will be re-done in init_request_from_bio(),
1722 	 * but we need to set it earlier to expose the sync flag to the
1723 	 * rq allocator and io schedulers.
1724 	 */
1725 	if (sync)
1726 		rw_flags |= REQ_SYNC;
1727 
1728 	/*
1729 	 * Add in META/PRIO flags, if set, before we get to the IO scheduler
1730 	 */
1731 	rw_flags |= (bio->bi_opf & (REQ_META | REQ_PRIO));
1732 
1733 	/*
1734 	 * Grab a free request. This is might sleep but can not fail.
1735 	 * Returns with the queue unlocked.
1736 	 */
1737 	req = get_request(q, bio_data_dir(bio), rw_flags, bio, GFP_NOIO);
1738 	if (IS_ERR(req)) {
1739 		bio->bi_error = PTR_ERR(req);
1740 		bio_endio(bio);
1741 		goto out_unlock;
1742 	}
1743 
1744 	/*
1745 	 * After dropping the lock and possibly sleeping here, our request
1746 	 * may now be mergeable after it had proven unmergeable (above).
1747 	 * We don't worry about that case for efficiency. It won't happen
1748 	 * often, and the elevators are able to handle it.
1749 	 */
1750 	init_request_from_bio(req, bio);
1751 
1752 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1753 		req->cpu = raw_smp_processor_id();
1754 
1755 	plug = current->plug;
1756 	if (plug) {
1757 		/*
1758 		 * If this is the first request added after a plug, fire
1759 		 * of a plug trace.
1760 		 */
1761 		if (!request_count)
1762 			trace_block_plug(q);
1763 		else {
1764 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1765 				blk_flush_plug_list(plug, false);
1766 				trace_block_plug(q);
1767 			}
1768 		}
1769 		list_add_tail(&req->queuelist, &plug->list);
1770 		blk_account_io_start(req, true);
1771 	} else {
1772 		spin_lock_irq(q->queue_lock);
1773 		add_acct_request(q, req, where);
1774 		__blk_run_queue(q);
1775 out_unlock:
1776 		spin_unlock_irq(q->queue_lock);
1777 	}
1778 
1779 	return BLK_QC_T_NONE;
1780 }
1781 
1782 /*
1783  * If bio->bi_dev is a partition, remap the location
1784  */
1785 static inline void blk_partition_remap(struct bio *bio)
1786 {
1787 	struct block_device *bdev = bio->bi_bdev;
1788 
1789 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1790 		struct hd_struct *p = bdev->bd_part;
1791 
1792 		bio->bi_iter.bi_sector += p->start_sect;
1793 		bio->bi_bdev = bdev->bd_contains;
1794 
1795 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1796 				      bdev->bd_dev,
1797 				      bio->bi_iter.bi_sector - p->start_sect);
1798 	}
1799 }
1800 
1801 static void handle_bad_sector(struct bio *bio)
1802 {
1803 	char b[BDEVNAME_SIZE];
1804 
1805 	printk(KERN_INFO "attempt to access beyond end of device\n");
1806 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1807 			bdevname(bio->bi_bdev, b),
1808 			bio->bi_opf,
1809 			(unsigned long long)bio_end_sector(bio),
1810 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1811 }
1812 
1813 #ifdef CONFIG_FAIL_MAKE_REQUEST
1814 
1815 static DECLARE_FAULT_ATTR(fail_make_request);
1816 
1817 static int __init setup_fail_make_request(char *str)
1818 {
1819 	return setup_fault_attr(&fail_make_request, str);
1820 }
1821 __setup("fail_make_request=", setup_fail_make_request);
1822 
1823 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1824 {
1825 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1826 }
1827 
1828 static int __init fail_make_request_debugfs(void)
1829 {
1830 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1831 						NULL, &fail_make_request);
1832 
1833 	return PTR_ERR_OR_ZERO(dir);
1834 }
1835 
1836 late_initcall(fail_make_request_debugfs);
1837 
1838 #else /* CONFIG_FAIL_MAKE_REQUEST */
1839 
1840 static inline bool should_fail_request(struct hd_struct *part,
1841 					unsigned int bytes)
1842 {
1843 	return false;
1844 }
1845 
1846 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1847 
1848 /*
1849  * Check whether this bio extends beyond the end of the device.
1850  */
1851 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1852 {
1853 	sector_t maxsector;
1854 
1855 	if (!nr_sectors)
1856 		return 0;
1857 
1858 	/* Test device or partition size, when known. */
1859 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1860 	if (maxsector) {
1861 		sector_t sector = bio->bi_iter.bi_sector;
1862 
1863 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1864 			/*
1865 			 * This may well happen - the kernel calls bread()
1866 			 * without checking the size of the device, e.g., when
1867 			 * mounting a device.
1868 			 */
1869 			handle_bad_sector(bio);
1870 			return 1;
1871 		}
1872 	}
1873 
1874 	return 0;
1875 }
1876 
1877 static noinline_for_stack bool
1878 generic_make_request_checks(struct bio *bio)
1879 {
1880 	struct request_queue *q;
1881 	int nr_sectors = bio_sectors(bio);
1882 	int err = -EIO;
1883 	char b[BDEVNAME_SIZE];
1884 	struct hd_struct *part;
1885 
1886 	might_sleep();
1887 
1888 	if (bio_check_eod(bio, nr_sectors))
1889 		goto end_io;
1890 
1891 	q = bdev_get_queue(bio->bi_bdev);
1892 	if (unlikely(!q)) {
1893 		printk(KERN_ERR
1894 		       "generic_make_request: Trying to access "
1895 			"nonexistent block-device %s (%Lu)\n",
1896 			bdevname(bio->bi_bdev, b),
1897 			(long long) bio->bi_iter.bi_sector);
1898 		goto end_io;
1899 	}
1900 
1901 	part = bio->bi_bdev->bd_part;
1902 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1903 	    should_fail_request(&part_to_disk(part)->part0,
1904 				bio->bi_iter.bi_size))
1905 		goto end_io;
1906 
1907 	/*
1908 	 * If this device has partitions, remap block n
1909 	 * of partition p to block n+start(p) of the disk.
1910 	 */
1911 	blk_partition_remap(bio);
1912 
1913 	if (bio_check_eod(bio, nr_sectors))
1914 		goto end_io;
1915 
1916 	/*
1917 	 * Filter flush bio's early so that make_request based
1918 	 * drivers without flush support don't have to worry
1919 	 * about them.
1920 	 */
1921 	if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
1922 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1923 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1924 		if (!nr_sectors) {
1925 			err = 0;
1926 			goto end_io;
1927 		}
1928 	}
1929 
1930 	switch (bio_op(bio)) {
1931 	case REQ_OP_DISCARD:
1932 		if (!blk_queue_discard(q))
1933 			goto not_supported;
1934 		break;
1935 	case REQ_OP_SECURE_ERASE:
1936 		if (!blk_queue_secure_erase(q))
1937 			goto not_supported;
1938 		break;
1939 	case REQ_OP_WRITE_SAME:
1940 		if (!bdev_write_same(bio->bi_bdev))
1941 			goto not_supported;
1942 		break;
1943 	default:
1944 		break;
1945 	}
1946 
1947 	/*
1948 	 * Various block parts want %current->io_context and lazy ioc
1949 	 * allocation ends up trading a lot of pain for a small amount of
1950 	 * memory.  Just allocate it upfront.  This may fail and block
1951 	 * layer knows how to live with it.
1952 	 */
1953 	create_io_context(GFP_ATOMIC, q->node);
1954 
1955 	if (!blkcg_bio_issue_check(q, bio))
1956 		return false;
1957 
1958 	trace_block_bio_queue(q, bio);
1959 	return true;
1960 
1961 not_supported:
1962 	err = -EOPNOTSUPP;
1963 end_io:
1964 	bio->bi_error = err;
1965 	bio_endio(bio);
1966 	return false;
1967 }
1968 
1969 /**
1970  * generic_make_request - hand a buffer to its device driver for I/O
1971  * @bio:  The bio describing the location in memory and on the device.
1972  *
1973  * generic_make_request() is used to make I/O requests of block
1974  * devices. It is passed a &struct bio, which describes the I/O that needs
1975  * to be done.
1976  *
1977  * generic_make_request() does not return any status.  The
1978  * success/failure status of the request, along with notification of
1979  * completion, is delivered asynchronously through the bio->bi_end_io
1980  * function described (one day) else where.
1981  *
1982  * The caller of generic_make_request must make sure that bi_io_vec
1983  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1984  * set to describe the device address, and the
1985  * bi_end_io and optionally bi_private are set to describe how
1986  * completion notification should be signaled.
1987  *
1988  * generic_make_request and the drivers it calls may use bi_next if this
1989  * bio happens to be merged with someone else, and may resubmit the bio to
1990  * a lower device by calling into generic_make_request recursively, which
1991  * means the bio should NOT be touched after the call to ->make_request_fn.
1992  */
1993 blk_qc_t generic_make_request(struct bio *bio)
1994 {
1995 	struct bio_list bio_list_on_stack;
1996 	blk_qc_t ret = BLK_QC_T_NONE;
1997 
1998 	if (!generic_make_request_checks(bio))
1999 		goto out;
2000 
2001 	/*
2002 	 * We only want one ->make_request_fn to be active at a time, else
2003 	 * stack usage with stacked devices could be a problem.  So use
2004 	 * current->bio_list to keep a list of requests submited by a
2005 	 * make_request_fn function.  current->bio_list is also used as a
2006 	 * flag to say if generic_make_request is currently active in this
2007 	 * task or not.  If it is NULL, then no make_request is active.  If
2008 	 * it is non-NULL, then a make_request is active, and new requests
2009 	 * should be added at the tail
2010 	 */
2011 	if (current->bio_list) {
2012 		bio_list_add(current->bio_list, bio);
2013 		goto out;
2014 	}
2015 
2016 	/* following loop may be a bit non-obvious, and so deserves some
2017 	 * explanation.
2018 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2019 	 * ensure that) so we have a list with a single bio.
2020 	 * We pretend that we have just taken it off a longer list, so
2021 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2022 	 * thus initialising the bio_list of new bios to be
2023 	 * added.  ->make_request() may indeed add some more bios
2024 	 * through a recursive call to generic_make_request.  If it
2025 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2026 	 * from the top.  In this case we really did just take the bio
2027 	 * of the top of the list (no pretending) and so remove it from
2028 	 * bio_list, and call into ->make_request() again.
2029 	 */
2030 	BUG_ON(bio->bi_next);
2031 	bio_list_init(&bio_list_on_stack);
2032 	current->bio_list = &bio_list_on_stack;
2033 	do {
2034 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2035 
2036 		if (likely(blk_queue_enter(q, false) == 0)) {
2037 			ret = q->make_request_fn(q, bio);
2038 
2039 			blk_queue_exit(q);
2040 
2041 			bio = bio_list_pop(current->bio_list);
2042 		} else {
2043 			struct bio *bio_next = bio_list_pop(current->bio_list);
2044 
2045 			bio_io_error(bio);
2046 			bio = bio_next;
2047 		}
2048 	} while (bio);
2049 	current->bio_list = NULL; /* deactivate */
2050 
2051 out:
2052 	return ret;
2053 }
2054 EXPORT_SYMBOL(generic_make_request);
2055 
2056 /**
2057  * submit_bio - submit a bio to the block device layer for I/O
2058  * @bio: The &struct bio which describes the I/O
2059  *
2060  * submit_bio() is very similar in purpose to generic_make_request(), and
2061  * uses that function to do most of the work. Both are fairly rough
2062  * interfaces; @bio must be presetup and ready for I/O.
2063  *
2064  */
2065 blk_qc_t submit_bio(struct bio *bio)
2066 {
2067 	/*
2068 	 * If it's a regular read/write or a barrier with data attached,
2069 	 * go through the normal accounting stuff before submission.
2070 	 */
2071 	if (bio_has_data(bio)) {
2072 		unsigned int count;
2073 
2074 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2075 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2076 		else
2077 			count = bio_sectors(bio);
2078 
2079 		if (op_is_write(bio_op(bio))) {
2080 			count_vm_events(PGPGOUT, count);
2081 		} else {
2082 			task_io_account_read(bio->bi_iter.bi_size);
2083 			count_vm_events(PGPGIN, count);
2084 		}
2085 
2086 		if (unlikely(block_dump)) {
2087 			char b[BDEVNAME_SIZE];
2088 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2089 			current->comm, task_pid_nr(current),
2090 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2091 				(unsigned long long)bio->bi_iter.bi_sector,
2092 				bdevname(bio->bi_bdev, b),
2093 				count);
2094 		}
2095 	}
2096 
2097 	return generic_make_request(bio);
2098 }
2099 EXPORT_SYMBOL(submit_bio);
2100 
2101 /**
2102  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2103  *                              for new the queue limits
2104  * @q:  the queue
2105  * @rq: the request being checked
2106  *
2107  * Description:
2108  *    @rq may have been made based on weaker limitations of upper-level queues
2109  *    in request stacking drivers, and it may violate the limitation of @q.
2110  *    Since the block layer and the underlying device driver trust @rq
2111  *    after it is inserted to @q, it should be checked against @q before
2112  *    the insertion using this generic function.
2113  *
2114  *    Request stacking drivers like request-based dm may change the queue
2115  *    limits when retrying requests on other queues. Those requests need
2116  *    to be checked against the new queue limits again during dispatch.
2117  */
2118 static int blk_cloned_rq_check_limits(struct request_queue *q,
2119 				      struct request *rq)
2120 {
2121 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2122 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2123 		return -EIO;
2124 	}
2125 
2126 	/*
2127 	 * queue's settings related to segment counting like q->bounce_pfn
2128 	 * may differ from that of other stacking queues.
2129 	 * Recalculate it to check the request correctly on this queue's
2130 	 * limitation.
2131 	 */
2132 	blk_recalc_rq_segments(rq);
2133 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2134 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2135 		return -EIO;
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 /**
2142  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2143  * @q:  the queue to submit the request
2144  * @rq: the request being queued
2145  */
2146 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2147 {
2148 	unsigned long flags;
2149 	int where = ELEVATOR_INSERT_BACK;
2150 
2151 	if (blk_cloned_rq_check_limits(q, rq))
2152 		return -EIO;
2153 
2154 	if (rq->rq_disk &&
2155 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2156 		return -EIO;
2157 
2158 	if (q->mq_ops) {
2159 		if (blk_queue_io_stat(q))
2160 			blk_account_io_start(rq, true);
2161 		blk_mq_insert_request(rq, false, true, false);
2162 		return 0;
2163 	}
2164 
2165 	spin_lock_irqsave(q->queue_lock, flags);
2166 	if (unlikely(blk_queue_dying(q))) {
2167 		spin_unlock_irqrestore(q->queue_lock, flags);
2168 		return -ENODEV;
2169 	}
2170 
2171 	/*
2172 	 * Submitting request must be dequeued before calling this function
2173 	 * because it will be linked to another request_queue
2174 	 */
2175 	BUG_ON(blk_queued_rq(rq));
2176 
2177 	if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
2178 		where = ELEVATOR_INSERT_FLUSH;
2179 
2180 	add_acct_request(q, rq, where);
2181 	if (where == ELEVATOR_INSERT_FLUSH)
2182 		__blk_run_queue(q);
2183 	spin_unlock_irqrestore(q->queue_lock, flags);
2184 
2185 	return 0;
2186 }
2187 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2188 
2189 /**
2190  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2191  * @rq: request to examine
2192  *
2193  * Description:
2194  *     A request could be merge of IOs which require different failure
2195  *     handling.  This function determines the number of bytes which
2196  *     can be failed from the beginning of the request without
2197  *     crossing into area which need to be retried further.
2198  *
2199  * Return:
2200  *     The number of bytes to fail.
2201  *
2202  * Context:
2203  *     queue_lock must be held.
2204  */
2205 unsigned int blk_rq_err_bytes(const struct request *rq)
2206 {
2207 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2208 	unsigned int bytes = 0;
2209 	struct bio *bio;
2210 
2211 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2212 		return blk_rq_bytes(rq);
2213 
2214 	/*
2215 	 * Currently the only 'mixing' which can happen is between
2216 	 * different fastfail types.  We can safely fail portions
2217 	 * which have all the failfast bits that the first one has -
2218 	 * the ones which are at least as eager to fail as the first
2219 	 * one.
2220 	 */
2221 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2222 		if ((bio->bi_opf & ff) != ff)
2223 			break;
2224 		bytes += bio->bi_iter.bi_size;
2225 	}
2226 
2227 	/* this could lead to infinite loop */
2228 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2229 	return bytes;
2230 }
2231 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2232 
2233 void blk_account_io_completion(struct request *req, unsigned int bytes)
2234 {
2235 	if (blk_do_io_stat(req)) {
2236 		const int rw = rq_data_dir(req);
2237 		struct hd_struct *part;
2238 		int cpu;
2239 
2240 		cpu = part_stat_lock();
2241 		part = req->part;
2242 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2243 		part_stat_unlock();
2244 	}
2245 }
2246 
2247 void blk_account_io_done(struct request *req)
2248 {
2249 	/*
2250 	 * Account IO completion.  flush_rq isn't accounted as a
2251 	 * normal IO on queueing nor completion.  Accounting the
2252 	 * containing request is enough.
2253 	 */
2254 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2255 		unsigned long duration = jiffies - req->start_time;
2256 		const int rw = rq_data_dir(req);
2257 		struct hd_struct *part;
2258 		int cpu;
2259 
2260 		cpu = part_stat_lock();
2261 		part = req->part;
2262 
2263 		part_stat_inc(cpu, part, ios[rw]);
2264 		part_stat_add(cpu, part, ticks[rw], duration);
2265 		part_round_stats(cpu, part);
2266 		part_dec_in_flight(part, rw);
2267 
2268 		hd_struct_put(part);
2269 		part_stat_unlock();
2270 	}
2271 }
2272 
2273 #ifdef CONFIG_PM
2274 /*
2275  * Don't process normal requests when queue is suspended
2276  * or in the process of suspending/resuming
2277  */
2278 static struct request *blk_pm_peek_request(struct request_queue *q,
2279 					   struct request *rq)
2280 {
2281 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2282 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2283 		return NULL;
2284 	else
2285 		return rq;
2286 }
2287 #else
2288 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2289 						  struct request *rq)
2290 {
2291 	return rq;
2292 }
2293 #endif
2294 
2295 void blk_account_io_start(struct request *rq, bool new_io)
2296 {
2297 	struct hd_struct *part;
2298 	int rw = rq_data_dir(rq);
2299 	int cpu;
2300 
2301 	if (!blk_do_io_stat(rq))
2302 		return;
2303 
2304 	cpu = part_stat_lock();
2305 
2306 	if (!new_io) {
2307 		part = rq->part;
2308 		part_stat_inc(cpu, part, merges[rw]);
2309 	} else {
2310 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2311 		if (!hd_struct_try_get(part)) {
2312 			/*
2313 			 * The partition is already being removed,
2314 			 * the request will be accounted on the disk only
2315 			 *
2316 			 * We take a reference on disk->part0 although that
2317 			 * partition will never be deleted, so we can treat
2318 			 * it as any other partition.
2319 			 */
2320 			part = &rq->rq_disk->part0;
2321 			hd_struct_get(part);
2322 		}
2323 		part_round_stats(cpu, part);
2324 		part_inc_in_flight(part, rw);
2325 		rq->part = part;
2326 	}
2327 
2328 	part_stat_unlock();
2329 }
2330 
2331 /**
2332  * blk_peek_request - peek at the top of a request queue
2333  * @q: request queue to peek at
2334  *
2335  * Description:
2336  *     Return the request at the top of @q.  The returned request
2337  *     should be started using blk_start_request() before LLD starts
2338  *     processing it.
2339  *
2340  * Return:
2341  *     Pointer to the request at the top of @q if available.  Null
2342  *     otherwise.
2343  *
2344  * Context:
2345  *     queue_lock must be held.
2346  */
2347 struct request *blk_peek_request(struct request_queue *q)
2348 {
2349 	struct request *rq;
2350 	int ret;
2351 
2352 	while ((rq = __elv_next_request(q)) != NULL) {
2353 
2354 		rq = blk_pm_peek_request(q, rq);
2355 		if (!rq)
2356 			break;
2357 
2358 		if (!(rq->cmd_flags & REQ_STARTED)) {
2359 			/*
2360 			 * This is the first time the device driver
2361 			 * sees this request (possibly after
2362 			 * requeueing).  Notify IO scheduler.
2363 			 */
2364 			if (rq->cmd_flags & REQ_SORTED)
2365 				elv_activate_rq(q, rq);
2366 
2367 			/*
2368 			 * just mark as started even if we don't start
2369 			 * it, a request that has been delayed should
2370 			 * not be passed by new incoming requests
2371 			 */
2372 			rq->cmd_flags |= REQ_STARTED;
2373 			trace_block_rq_issue(q, rq);
2374 		}
2375 
2376 		if (!q->boundary_rq || q->boundary_rq == rq) {
2377 			q->end_sector = rq_end_sector(rq);
2378 			q->boundary_rq = NULL;
2379 		}
2380 
2381 		if (rq->cmd_flags & REQ_DONTPREP)
2382 			break;
2383 
2384 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2385 			/*
2386 			 * make sure space for the drain appears we
2387 			 * know we can do this because max_hw_segments
2388 			 * has been adjusted to be one fewer than the
2389 			 * device can handle
2390 			 */
2391 			rq->nr_phys_segments++;
2392 		}
2393 
2394 		if (!q->prep_rq_fn)
2395 			break;
2396 
2397 		ret = q->prep_rq_fn(q, rq);
2398 		if (ret == BLKPREP_OK) {
2399 			break;
2400 		} else if (ret == BLKPREP_DEFER) {
2401 			/*
2402 			 * the request may have been (partially) prepped.
2403 			 * we need to keep this request in the front to
2404 			 * avoid resource deadlock.  REQ_STARTED will
2405 			 * prevent other fs requests from passing this one.
2406 			 */
2407 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2408 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2409 				/*
2410 				 * remove the space for the drain we added
2411 				 * so that we don't add it again
2412 				 */
2413 				--rq->nr_phys_segments;
2414 			}
2415 
2416 			rq = NULL;
2417 			break;
2418 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2419 			int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2420 
2421 			rq->cmd_flags |= REQ_QUIET;
2422 			/*
2423 			 * Mark this request as started so we don't trigger
2424 			 * any debug logic in the end I/O path.
2425 			 */
2426 			blk_start_request(rq);
2427 			__blk_end_request_all(rq, err);
2428 		} else {
2429 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2430 			break;
2431 		}
2432 	}
2433 
2434 	return rq;
2435 }
2436 EXPORT_SYMBOL(blk_peek_request);
2437 
2438 void blk_dequeue_request(struct request *rq)
2439 {
2440 	struct request_queue *q = rq->q;
2441 
2442 	BUG_ON(list_empty(&rq->queuelist));
2443 	BUG_ON(ELV_ON_HASH(rq));
2444 
2445 	list_del_init(&rq->queuelist);
2446 
2447 	/*
2448 	 * the time frame between a request being removed from the lists
2449 	 * and to it is freed is accounted as io that is in progress at
2450 	 * the driver side.
2451 	 */
2452 	if (blk_account_rq(rq)) {
2453 		q->in_flight[rq_is_sync(rq)]++;
2454 		set_io_start_time_ns(rq);
2455 	}
2456 }
2457 
2458 /**
2459  * blk_start_request - start request processing on the driver
2460  * @req: request to dequeue
2461  *
2462  * Description:
2463  *     Dequeue @req and start timeout timer on it.  This hands off the
2464  *     request to the driver.
2465  *
2466  *     Block internal functions which don't want to start timer should
2467  *     call blk_dequeue_request().
2468  *
2469  * Context:
2470  *     queue_lock must be held.
2471  */
2472 void blk_start_request(struct request *req)
2473 {
2474 	blk_dequeue_request(req);
2475 
2476 	/*
2477 	 * We are now handing the request to the hardware, initialize
2478 	 * resid_len to full count and add the timeout handler.
2479 	 */
2480 	req->resid_len = blk_rq_bytes(req);
2481 	if (unlikely(blk_bidi_rq(req)))
2482 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2483 
2484 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2485 	blk_add_timer(req);
2486 }
2487 EXPORT_SYMBOL(blk_start_request);
2488 
2489 /**
2490  * blk_fetch_request - fetch a request from a request queue
2491  * @q: request queue to fetch a request from
2492  *
2493  * Description:
2494  *     Return the request at the top of @q.  The request is started on
2495  *     return and LLD can start processing it immediately.
2496  *
2497  * Return:
2498  *     Pointer to the request at the top of @q if available.  Null
2499  *     otherwise.
2500  *
2501  * Context:
2502  *     queue_lock must be held.
2503  */
2504 struct request *blk_fetch_request(struct request_queue *q)
2505 {
2506 	struct request *rq;
2507 
2508 	rq = blk_peek_request(q);
2509 	if (rq)
2510 		blk_start_request(rq);
2511 	return rq;
2512 }
2513 EXPORT_SYMBOL(blk_fetch_request);
2514 
2515 /**
2516  * blk_update_request - Special helper function for request stacking drivers
2517  * @req:      the request being processed
2518  * @error:    %0 for success, < %0 for error
2519  * @nr_bytes: number of bytes to complete @req
2520  *
2521  * Description:
2522  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2523  *     the request structure even if @req doesn't have leftover.
2524  *     If @req has leftover, sets it up for the next range of segments.
2525  *
2526  *     This special helper function is only for request stacking drivers
2527  *     (e.g. request-based dm) so that they can handle partial completion.
2528  *     Actual device drivers should use blk_end_request instead.
2529  *
2530  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2531  *     %false return from this function.
2532  *
2533  * Return:
2534  *     %false - this request doesn't have any more data
2535  *     %true  - this request has more data
2536  **/
2537 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2538 {
2539 	int total_bytes;
2540 
2541 	trace_block_rq_complete(req->q, req, nr_bytes);
2542 
2543 	if (!req->bio)
2544 		return false;
2545 
2546 	/*
2547 	 * For fs requests, rq is just carrier of independent bio's
2548 	 * and each partial completion should be handled separately.
2549 	 * Reset per-request error on each partial completion.
2550 	 *
2551 	 * TODO: tj: This is too subtle.  It would be better to let
2552 	 * low level drivers do what they see fit.
2553 	 */
2554 	if (req->cmd_type == REQ_TYPE_FS)
2555 		req->errors = 0;
2556 
2557 	if (error && req->cmd_type == REQ_TYPE_FS &&
2558 	    !(req->cmd_flags & REQ_QUIET)) {
2559 		char *error_type;
2560 
2561 		switch (error) {
2562 		case -ENOLINK:
2563 			error_type = "recoverable transport";
2564 			break;
2565 		case -EREMOTEIO:
2566 			error_type = "critical target";
2567 			break;
2568 		case -EBADE:
2569 			error_type = "critical nexus";
2570 			break;
2571 		case -ETIMEDOUT:
2572 			error_type = "timeout";
2573 			break;
2574 		case -ENOSPC:
2575 			error_type = "critical space allocation";
2576 			break;
2577 		case -ENODATA:
2578 			error_type = "critical medium";
2579 			break;
2580 		case -EIO:
2581 		default:
2582 			error_type = "I/O";
2583 			break;
2584 		}
2585 		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2586 				   __func__, error_type, req->rq_disk ?
2587 				   req->rq_disk->disk_name : "?",
2588 				   (unsigned long long)blk_rq_pos(req));
2589 
2590 	}
2591 
2592 	blk_account_io_completion(req, nr_bytes);
2593 
2594 	total_bytes = 0;
2595 	while (req->bio) {
2596 		struct bio *bio = req->bio;
2597 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2598 
2599 		if (bio_bytes == bio->bi_iter.bi_size)
2600 			req->bio = bio->bi_next;
2601 
2602 		req_bio_endio(req, bio, bio_bytes, error);
2603 
2604 		total_bytes += bio_bytes;
2605 		nr_bytes -= bio_bytes;
2606 
2607 		if (!nr_bytes)
2608 			break;
2609 	}
2610 
2611 	/*
2612 	 * completely done
2613 	 */
2614 	if (!req->bio) {
2615 		/*
2616 		 * Reset counters so that the request stacking driver
2617 		 * can find how many bytes remain in the request
2618 		 * later.
2619 		 */
2620 		req->__data_len = 0;
2621 		return false;
2622 	}
2623 
2624 	req->__data_len -= total_bytes;
2625 
2626 	/* update sector only for requests with clear definition of sector */
2627 	if (req->cmd_type == REQ_TYPE_FS)
2628 		req->__sector += total_bytes >> 9;
2629 
2630 	/* mixed attributes always follow the first bio */
2631 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2632 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2633 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2634 	}
2635 
2636 	/*
2637 	 * If total number of sectors is less than the first segment
2638 	 * size, something has gone terribly wrong.
2639 	 */
2640 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2641 		blk_dump_rq_flags(req, "request botched");
2642 		req->__data_len = blk_rq_cur_bytes(req);
2643 	}
2644 
2645 	/* recalculate the number of segments */
2646 	blk_recalc_rq_segments(req);
2647 
2648 	return true;
2649 }
2650 EXPORT_SYMBOL_GPL(blk_update_request);
2651 
2652 static bool blk_update_bidi_request(struct request *rq, int error,
2653 				    unsigned int nr_bytes,
2654 				    unsigned int bidi_bytes)
2655 {
2656 	if (blk_update_request(rq, error, nr_bytes))
2657 		return true;
2658 
2659 	/* Bidi request must be completed as a whole */
2660 	if (unlikely(blk_bidi_rq(rq)) &&
2661 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2662 		return true;
2663 
2664 	if (blk_queue_add_random(rq->q))
2665 		add_disk_randomness(rq->rq_disk);
2666 
2667 	return false;
2668 }
2669 
2670 /**
2671  * blk_unprep_request - unprepare a request
2672  * @req:	the request
2673  *
2674  * This function makes a request ready for complete resubmission (or
2675  * completion).  It happens only after all error handling is complete,
2676  * so represents the appropriate moment to deallocate any resources
2677  * that were allocated to the request in the prep_rq_fn.  The queue
2678  * lock is held when calling this.
2679  */
2680 void blk_unprep_request(struct request *req)
2681 {
2682 	struct request_queue *q = req->q;
2683 
2684 	req->cmd_flags &= ~REQ_DONTPREP;
2685 	if (q->unprep_rq_fn)
2686 		q->unprep_rq_fn(q, req);
2687 }
2688 EXPORT_SYMBOL_GPL(blk_unprep_request);
2689 
2690 /*
2691  * queue lock must be held
2692  */
2693 void blk_finish_request(struct request *req, int error)
2694 {
2695 	if (req->cmd_flags & REQ_QUEUED)
2696 		blk_queue_end_tag(req->q, req);
2697 
2698 	BUG_ON(blk_queued_rq(req));
2699 
2700 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2701 		laptop_io_completion(&req->q->backing_dev_info);
2702 
2703 	blk_delete_timer(req);
2704 
2705 	if (req->cmd_flags & REQ_DONTPREP)
2706 		blk_unprep_request(req);
2707 
2708 	blk_account_io_done(req);
2709 
2710 	if (req->end_io)
2711 		req->end_io(req, error);
2712 	else {
2713 		if (blk_bidi_rq(req))
2714 			__blk_put_request(req->next_rq->q, req->next_rq);
2715 
2716 		__blk_put_request(req->q, req);
2717 	}
2718 }
2719 EXPORT_SYMBOL(blk_finish_request);
2720 
2721 /**
2722  * blk_end_bidi_request - Complete a bidi request
2723  * @rq:         the request to complete
2724  * @error:      %0 for success, < %0 for error
2725  * @nr_bytes:   number of bytes to complete @rq
2726  * @bidi_bytes: number of bytes to complete @rq->next_rq
2727  *
2728  * Description:
2729  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2730  *     Drivers that supports bidi can safely call this member for any
2731  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2732  *     just ignored.
2733  *
2734  * Return:
2735  *     %false - we are done with this request
2736  *     %true  - still buffers pending for this request
2737  **/
2738 static bool blk_end_bidi_request(struct request *rq, int error,
2739 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2740 {
2741 	struct request_queue *q = rq->q;
2742 	unsigned long flags;
2743 
2744 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2745 		return true;
2746 
2747 	spin_lock_irqsave(q->queue_lock, flags);
2748 	blk_finish_request(rq, error);
2749 	spin_unlock_irqrestore(q->queue_lock, flags);
2750 
2751 	return false;
2752 }
2753 
2754 /**
2755  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2756  * @rq:         the request to complete
2757  * @error:      %0 for success, < %0 for error
2758  * @nr_bytes:   number of bytes to complete @rq
2759  * @bidi_bytes: number of bytes to complete @rq->next_rq
2760  *
2761  * Description:
2762  *     Identical to blk_end_bidi_request() except that queue lock is
2763  *     assumed to be locked on entry and remains so on return.
2764  *
2765  * Return:
2766  *     %false - we are done with this request
2767  *     %true  - still buffers pending for this request
2768  **/
2769 bool __blk_end_bidi_request(struct request *rq, int error,
2770 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2771 {
2772 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2773 		return true;
2774 
2775 	blk_finish_request(rq, error);
2776 
2777 	return false;
2778 }
2779 
2780 /**
2781  * blk_end_request - Helper function for drivers to complete the request.
2782  * @rq:       the request being processed
2783  * @error:    %0 for success, < %0 for error
2784  * @nr_bytes: number of bytes to complete
2785  *
2786  * Description:
2787  *     Ends I/O on a number of bytes attached to @rq.
2788  *     If @rq has leftover, sets it up for the next range of segments.
2789  *
2790  * Return:
2791  *     %false - we are done with this request
2792  *     %true  - still buffers pending for this request
2793  **/
2794 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2795 {
2796 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2797 }
2798 EXPORT_SYMBOL(blk_end_request);
2799 
2800 /**
2801  * blk_end_request_all - Helper function for drives to finish the request.
2802  * @rq: the request to finish
2803  * @error: %0 for success, < %0 for error
2804  *
2805  * Description:
2806  *     Completely finish @rq.
2807  */
2808 void blk_end_request_all(struct request *rq, int error)
2809 {
2810 	bool pending;
2811 	unsigned int bidi_bytes = 0;
2812 
2813 	if (unlikely(blk_bidi_rq(rq)))
2814 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2815 
2816 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2817 	BUG_ON(pending);
2818 }
2819 EXPORT_SYMBOL(blk_end_request_all);
2820 
2821 /**
2822  * blk_end_request_cur - Helper function to finish the current request chunk.
2823  * @rq: the request to finish the current chunk for
2824  * @error: %0 for success, < %0 for error
2825  *
2826  * Description:
2827  *     Complete the current consecutively mapped chunk from @rq.
2828  *
2829  * Return:
2830  *     %false - we are done with this request
2831  *     %true  - still buffers pending for this request
2832  */
2833 bool blk_end_request_cur(struct request *rq, int error)
2834 {
2835 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2836 }
2837 EXPORT_SYMBOL(blk_end_request_cur);
2838 
2839 /**
2840  * blk_end_request_err - Finish a request till the next failure boundary.
2841  * @rq: the request to finish till the next failure boundary for
2842  * @error: must be negative errno
2843  *
2844  * Description:
2845  *     Complete @rq till the next failure boundary.
2846  *
2847  * Return:
2848  *     %false - we are done with this request
2849  *     %true  - still buffers pending for this request
2850  */
2851 bool blk_end_request_err(struct request *rq, int error)
2852 {
2853 	WARN_ON(error >= 0);
2854 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2855 }
2856 EXPORT_SYMBOL_GPL(blk_end_request_err);
2857 
2858 /**
2859  * __blk_end_request - Helper function for drivers to complete the request.
2860  * @rq:       the request being processed
2861  * @error:    %0 for success, < %0 for error
2862  * @nr_bytes: number of bytes to complete
2863  *
2864  * Description:
2865  *     Must be called with queue lock held unlike blk_end_request().
2866  *
2867  * Return:
2868  *     %false - we are done with this request
2869  *     %true  - still buffers pending for this request
2870  **/
2871 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2872 {
2873 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2874 }
2875 EXPORT_SYMBOL(__blk_end_request);
2876 
2877 /**
2878  * __blk_end_request_all - Helper function for drives to finish the request.
2879  * @rq: the request to finish
2880  * @error: %0 for success, < %0 for error
2881  *
2882  * Description:
2883  *     Completely finish @rq.  Must be called with queue lock held.
2884  */
2885 void __blk_end_request_all(struct request *rq, int error)
2886 {
2887 	bool pending;
2888 	unsigned int bidi_bytes = 0;
2889 
2890 	if (unlikely(blk_bidi_rq(rq)))
2891 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2892 
2893 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2894 	BUG_ON(pending);
2895 }
2896 EXPORT_SYMBOL(__blk_end_request_all);
2897 
2898 /**
2899  * __blk_end_request_cur - Helper function to finish the current request chunk.
2900  * @rq: the request to finish the current chunk for
2901  * @error: %0 for success, < %0 for error
2902  *
2903  * Description:
2904  *     Complete the current consecutively mapped chunk from @rq.  Must
2905  *     be called with queue lock held.
2906  *
2907  * Return:
2908  *     %false - we are done with this request
2909  *     %true  - still buffers pending for this request
2910  */
2911 bool __blk_end_request_cur(struct request *rq, int error)
2912 {
2913 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2914 }
2915 EXPORT_SYMBOL(__blk_end_request_cur);
2916 
2917 /**
2918  * __blk_end_request_err - Finish a request till the next failure boundary.
2919  * @rq: the request to finish till the next failure boundary for
2920  * @error: must be negative errno
2921  *
2922  * Description:
2923  *     Complete @rq till the next failure boundary.  Must be called
2924  *     with queue lock held.
2925  *
2926  * Return:
2927  *     %false - we are done with this request
2928  *     %true  - still buffers pending for this request
2929  */
2930 bool __blk_end_request_err(struct request *rq, int error)
2931 {
2932 	WARN_ON(error >= 0);
2933 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2934 }
2935 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2936 
2937 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2938 		     struct bio *bio)
2939 {
2940 	req_set_op(rq, bio_op(bio));
2941 
2942 	if (bio_has_data(bio))
2943 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2944 
2945 	rq->__data_len = bio->bi_iter.bi_size;
2946 	rq->bio = rq->biotail = bio;
2947 
2948 	if (bio->bi_bdev)
2949 		rq->rq_disk = bio->bi_bdev->bd_disk;
2950 }
2951 
2952 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2953 /**
2954  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2955  * @rq: the request to be flushed
2956  *
2957  * Description:
2958  *     Flush all pages in @rq.
2959  */
2960 void rq_flush_dcache_pages(struct request *rq)
2961 {
2962 	struct req_iterator iter;
2963 	struct bio_vec bvec;
2964 
2965 	rq_for_each_segment(bvec, rq, iter)
2966 		flush_dcache_page(bvec.bv_page);
2967 }
2968 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2969 #endif
2970 
2971 /**
2972  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2973  * @q : the queue of the device being checked
2974  *
2975  * Description:
2976  *    Check if underlying low-level drivers of a device are busy.
2977  *    If the drivers want to export their busy state, they must set own
2978  *    exporting function using blk_queue_lld_busy() first.
2979  *
2980  *    Basically, this function is used only by request stacking drivers
2981  *    to stop dispatching requests to underlying devices when underlying
2982  *    devices are busy.  This behavior helps more I/O merging on the queue
2983  *    of the request stacking driver and prevents I/O throughput regression
2984  *    on burst I/O load.
2985  *
2986  * Return:
2987  *    0 - Not busy (The request stacking driver should dispatch request)
2988  *    1 - Busy (The request stacking driver should stop dispatching request)
2989  */
2990 int blk_lld_busy(struct request_queue *q)
2991 {
2992 	if (q->lld_busy_fn)
2993 		return q->lld_busy_fn(q);
2994 
2995 	return 0;
2996 }
2997 EXPORT_SYMBOL_GPL(blk_lld_busy);
2998 
2999 /**
3000  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3001  * @rq: the clone request to be cleaned up
3002  *
3003  * Description:
3004  *     Free all bios in @rq for a cloned request.
3005  */
3006 void blk_rq_unprep_clone(struct request *rq)
3007 {
3008 	struct bio *bio;
3009 
3010 	while ((bio = rq->bio) != NULL) {
3011 		rq->bio = bio->bi_next;
3012 
3013 		bio_put(bio);
3014 	}
3015 }
3016 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3017 
3018 /*
3019  * Copy attributes of the original request to the clone request.
3020  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3021  */
3022 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3023 {
3024 	dst->cpu = src->cpu;
3025 	req_set_op_attrs(dst, req_op(src),
3026 			 (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE);
3027 	dst->cmd_type = src->cmd_type;
3028 	dst->__sector = blk_rq_pos(src);
3029 	dst->__data_len = blk_rq_bytes(src);
3030 	dst->nr_phys_segments = src->nr_phys_segments;
3031 	dst->ioprio = src->ioprio;
3032 	dst->extra_len = src->extra_len;
3033 }
3034 
3035 /**
3036  * blk_rq_prep_clone - Helper function to setup clone request
3037  * @rq: the request to be setup
3038  * @rq_src: original request to be cloned
3039  * @bs: bio_set that bios for clone are allocated from
3040  * @gfp_mask: memory allocation mask for bio
3041  * @bio_ctr: setup function to be called for each clone bio.
3042  *           Returns %0 for success, non %0 for failure.
3043  * @data: private data to be passed to @bio_ctr
3044  *
3045  * Description:
3046  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3047  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3048  *     are not copied, and copying such parts is the caller's responsibility.
3049  *     Also, pages which the original bios are pointing to are not copied
3050  *     and the cloned bios just point same pages.
3051  *     So cloned bios must be completed before original bios, which means
3052  *     the caller must complete @rq before @rq_src.
3053  */
3054 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3055 		      struct bio_set *bs, gfp_t gfp_mask,
3056 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3057 		      void *data)
3058 {
3059 	struct bio *bio, *bio_src;
3060 
3061 	if (!bs)
3062 		bs = fs_bio_set;
3063 
3064 	__rq_for_each_bio(bio_src, rq_src) {
3065 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3066 		if (!bio)
3067 			goto free_and_out;
3068 
3069 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3070 			goto free_and_out;
3071 
3072 		if (rq->bio) {
3073 			rq->biotail->bi_next = bio;
3074 			rq->biotail = bio;
3075 		} else
3076 			rq->bio = rq->biotail = bio;
3077 	}
3078 
3079 	__blk_rq_prep_clone(rq, rq_src);
3080 
3081 	return 0;
3082 
3083 free_and_out:
3084 	if (bio)
3085 		bio_put(bio);
3086 	blk_rq_unprep_clone(rq);
3087 
3088 	return -ENOMEM;
3089 }
3090 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3091 
3092 int kblockd_schedule_work(struct work_struct *work)
3093 {
3094 	return queue_work(kblockd_workqueue, work);
3095 }
3096 EXPORT_SYMBOL(kblockd_schedule_work);
3097 
3098 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3099 				  unsigned long delay)
3100 {
3101 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3102 }
3103 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3104 
3105 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3106 				     unsigned long delay)
3107 {
3108 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3109 }
3110 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3111 
3112 /**
3113  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3114  * @plug:	The &struct blk_plug that needs to be initialized
3115  *
3116  * Description:
3117  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3118  *   pending I/O should the task end up blocking between blk_start_plug() and
3119  *   blk_finish_plug(). This is important from a performance perspective, but
3120  *   also ensures that we don't deadlock. For instance, if the task is blocking
3121  *   for a memory allocation, memory reclaim could end up wanting to free a
3122  *   page belonging to that request that is currently residing in our private
3123  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3124  *   this kind of deadlock.
3125  */
3126 void blk_start_plug(struct blk_plug *plug)
3127 {
3128 	struct task_struct *tsk = current;
3129 
3130 	/*
3131 	 * If this is a nested plug, don't actually assign it.
3132 	 */
3133 	if (tsk->plug)
3134 		return;
3135 
3136 	INIT_LIST_HEAD(&plug->list);
3137 	INIT_LIST_HEAD(&plug->mq_list);
3138 	INIT_LIST_HEAD(&plug->cb_list);
3139 	/*
3140 	 * Store ordering should not be needed here, since a potential
3141 	 * preempt will imply a full memory barrier
3142 	 */
3143 	tsk->plug = plug;
3144 }
3145 EXPORT_SYMBOL(blk_start_plug);
3146 
3147 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3148 {
3149 	struct request *rqa = container_of(a, struct request, queuelist);
3150 	struct request *rqb = container_of(b, struct request, queuelist);
3151 
3152 	return !(rqa->q < rqb->q ||
3153 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3154 }
3155 
3156 /*
3157  * If 'from_schedule' is true, then postpone the dispatch of requests
3158  * until a safe kblockd context. We due this to avoid accidental big
3159  * additional stack usage in driver dispatch, in places where the originally
3160  * plugger did not intend it.
3161  */
3162 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3163 			    bool from_schedule)
3164 	__releases(q->queue_lock)
3165 {
3166 	trace_block_unplug(q, depth, !from_schedule);
3167 
3168 	if (from_schedule)
3169 		blk_run_queue_async(q);
3170 	else
3171 		__blk_run_queue(q);
3172 	spin_unlock(q->queue_lock);
3173 }
3174 
3175 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3176 {
3177 	LIST_HEAD(callbacks);
3178 
3179 	while (!list_empty(&plug->cb_list)) {
3180 		list_splice_init(&plug->cb_list, &callbacks);
3181 
3182 		while (!list_empty(&callbacks)) {
3183 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3184 							  struct blk_plug_cb,
3185 							  list);
3186 			list_del(&cb->list);
3187 			cb->callback(cb, from_schedule);
3188 		}
3189 	}
3190 }
3191 
3192 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3193 				      int size)
3194 {
3195 	struct blk_plug *plug = current->plug;
3196 	struct blk_plug_cb *cb;
3197 
3198 	if (!plug)
3199 		return NULL;
3200 
3201 	list_for_each_entry(cb, &plug->cb_list, list)
3202 		if (cb->callback == unplug && cb->data == data)
3203 			return cb;
3204 
3205 	/* Not currently on the callback list */
3206 	BUG_ON(size < sizeof(*cb));
3207 	cb = kzalloc(size, GFP_ATOMIC);
3208 	if (cb) {
3209 		cb->data = data;
3210 		cb->callback = unplug;
3211 		list_add(&cb->list, &plug->cb_list);
3212 	}
3213 	return cb;
3214 }
3215 EXPORT_SYMBOL(blk_check_plugged);
3216 
3217 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3218 {
3219 	struct request_queue *q;
3220 	unsigned long flags;
3221 	struct request *rq;
3222 	LIST_HEAD(list);
3223 	unsigned int depth;
3224 
3225 	flush_plug_callbacks(plug, from_schedule);
3226 
3227 	if (!list_empty(&plug->mq_list))
3228 		blk_mq_flush_plug_list(plug, from_schedule);
3229 
3230 	if (list_empty(&plug->list))
3231 		return;
3232 
3233 	list_splice_init(&plug->list, &list);
3234 
3235 	list_sort(NULL, &list, plug_rq_cmp);
3236 
3237 	q = NULL;
3238 	depth = 0;
3239 
3240 	/*
3241 	 * Save and disable interrupts here, to avoid doing it for every
3242 	 * queue lock we have to take.
3243 	 */
3244 	local_irq_save(flags);
3245 	while (!list_empty(&list)) {
3246 		rq = list_entry_rq(list.next);
3247 		list_del_init(&rq->queuelist);
3248 		BUG_ON(!rq->q);
3249 		if (rq->q != q) {
3250 			/*
3251 			 * This drops the queue lock
3252 			 */
3253 			if (q)
3254 				queue_unplugged(q, depth, from_schedule);
3255 			q = rq->q;
3256 			depth = 0;
3257 			spin_lock(q->queue_lock);
3258 		}
3259 
3260 		/*
3261 		 * Short-circuit if @q is dead
3262 		 */
3263 		if (unlikely(blk_queue_dying(q))) {
3264 			__blk_end_request_all(rq, -ENODEV);
3265 			continue;
3266 		}
3267 
3268 		/*
3269 		 * rq is already accounted, so use raw insert
3270 		 */
3271 		if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
3272 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3273 		else
3274 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3275 
3276 		depth++;
3277 	}
3278 
3279 	/*
3280 	 * This drops the queue lock
3281 	 */
3282 	if (q)
3283 		queue_unplugged(q, depth, from_schedule);
3284 
3285 	local_irq_restore(flags);
3286 }
3287 
3288 void blk_finish_plug(struct blk_plug *plug)
3289 {
3290 	if (plug != current->plug)
3291 		return;
3292 	blk_flush_plug_list(plug, false);
3293 
3294 	current->plug = NULL;
3295 }
3296 EXPORT_SYMBOL(blk_finish_plug);
3297 
3298 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3299 {
3300 	struct blk_plug *plug;
3301 	long state;
3302 
3303 	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3304 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3305 		return false;
3306 
3307 	plug = current->plug;
3308 	if (plug)
3309 		blk_flush_plug_list(plug, false);
3310 
3311 	state = current->state;
3312 	while (!need_resched()) {
3313 		unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3314 		struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3315 		int ret;
3316 
3317 		hctx->poll_invoked++;
3318 
3319 		ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3320 		if (ret > 0) {
3321 			hctx->poll_success++;
3322 			set_current_state(TASK_RUNNING);
3323 			return true;
3324 		}
3325 
3326 		if (signal_pending_state(state, current))
3327 			set_current_state(TASK_RUNNING);
3328 
3329 		if (current->state == TASK_RUNNING)
3330 			return true;
3331 		if (ret < 0)
3332 			break;
3333 		cpu_relax();
3334 	}
3335 
3336 	return false;
3337 }
3338 EXPORT_SYMBOL_GPL(blk_poll);
3339 
3340 #ifdef CONFIG_PM
3341 /**
3342  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3343  * @q: the queue of the device
3344  * @dev: the device the queue belongs to
3345  *
3346  * Description:
3347  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3348  *    @dev. Drivers that want to take advantage of request-based runtime PM
3349  *    should call this function after @dev has been initialized, and its
3350  *    request queue @q has been allocated, and runtime PM for it can not happen
3351  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3352  *    cases, driver should call this function before any I/O has taken place.
3353  *
3354  *    This function takes care of setting up using auto suspend for the device,
3355  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3356  *    until an updated value is either set by user or by driver. Drivers do
3357  *    not need to touch other autosuspend settings.
3358  *
3359  *    The block layer runtime PM is request based, so only works for drivers
3360  *    that use request as their IO unit instead of those directly use bio's.
3361  */
3362 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3363 {
3364 	q->dev = dev;
3365 	q->rpm_status = RPM_ACTIVE;
3366 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3367 	pm_runtime_use_autosuspend(q->dev);
3368 }
3369 EXPORT_SYMBOL(blk_pm_runtime_init);
3370 
3371 /**
3372  * blk_pre_runtime_suspend - Pre runtime suspend check
3373  * @q: the queue of the device
3374  *
3375  * Description:
3376  *    This function will check if runtime suspend is allowed for the device
3377  *    by examining if there are any requests pending in the queue. If there
3378  *    are requests pending, the device can not be runtime suspended; otherwise,
3379  *    the queue's status will be updated to SUSPENDING and the driver can
3380  *    proceed to suspend the device.
3381  *
3382  *    For the not allowed case, we mark last busy for the device so that
3383  *    runtime PM core will try to autosuspend it some time later.
3384  *
3385  *    This function should be called near the start of the device's
3386  *    runtime_suspend callback.
3387  *
3388  * Return:
3389  *    0		- OK to runtime suspend the device
3390  *    -EBUSY	- Device should not be runtime suspended
3391  */
3392 int blk_pre_runtime_suspend(struct request_queue *q)
3393 {
3394 	int ret = 0;
3395 
3396 	if (!q->dev)
3397 		return ret;
3398 
3399 	spin_lock_irq(q->queue_lock);
3400 	if (q->nr_pending) {
3401 		ret = -EBUSY;
3402 		pm_runtime_mark_last_busy(q->dev);
3403 	} else {
3404 		q->rpm_status = RPM_SUSPENDING;
3405 	}
3406 	spin_unlock_irq(q->queue_lock);
3407 	return ret;
3408 }
3409 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3410 
3411 /**
3412  * blk_post_runtime_suspend - Post runtime suspend processing
3413  * @q: the queue of the device
3414  * @err: return value of the device's runtime_suspend function
3415  *
3416  * Description:
3417  *    Update the queue's runtime status according to the return value of the
3418  *    device's runtime suspend function and mark last busy for the device so
3419  *    that PM core will try to auto suspend the device at a later time.
3420  *
3421  *    This function should be called near the end of the device's
3422  *    runtime_suspend callback.
3423  */
3424 void blk_post_runtime_suspend(struct request_queue *q, int err)
3425 {
3426 	if (!q->dev)
3427 		return;
3428 
3429 	spin_lock_irq(q->queue_lock);
3430 	if (!err) {
3431 		q->rpm_status = RPM_SUSPENDED;
3432 	} else {
3433 		q->rpm_status = RPM_ACTIVE;
3434 		pm_runtime_mark_last_busy(q->dev);
3435 	}
3436 	spin_unlock_irq(q->queue_lock);
3437 }
3438 EXPORT_SYMBOL(blk_post_runtime_suspend);
3439 
3440 /**
3441  * blk_pre_runtime_resume - Pre runtime resume processing
3442  * @q: the queue of the device
3443  *
3444  * Description:
3445  *    Update the queue's runtime status to RESUMING in preparation for the
3446  *    runtime resume of the device.
3447  *
3448  *    This function should be called near the start of the device's
3449  *    runtime_resume callback.
3450  */
3451 void blk_pre_runtime_resume(struct request_queue *q)
3452 {
3453 	if (!q->dev)
3454 		return;
3455 
3456 	spin_lock_irq(q->queue_lock);
3457 	q->rpm_status = RPM_RESUMING;
3458 	spin_unlock_irq(q->queue_lock);
3459 }
3460 EXPORT_SYMBOL(blk_pre_runtime_resume);
3461 
3462 /**
3463  * blk_post_runtime_resume - Post runtime resume processing
3464  * @q: the queue of the device
3465  * @err: return value of the device's runtime_resume function
3466  *
3467  * Description:
3468  *    Update the queue's runtime status according to the return value of the
3469  *    device's runtime_resume function. If it is successfully resumed, process
3470  *    the requests that are queued into the device's queue when it is resuming
3471  *    and then mark last busy and initiate autosuspend for it.
3472  *
3473  *    This function should be called near the end of the device's
3474  *    runtime_resume callback.
3475  */
3476 void blk_post_runtime_resume(struct request_queue *q, int err)
3477 {
3478 	if (!q->dev)
3479 		return;
3480 
3481 	spin_lock_irq(q->queue_lock);
3482 	if (!err) {
3483 		q->rpm_status = RPM_ACTIVE;
3484 		__blk_run_queue(q);
3485 		pm_runtime_mark_last_busy(q->dev);
3486 		pm_request_autosuspend(q->dev);
3487 	} else {
3488 		q->rpm_status = RPM_SUSPENDED;
3489 	}
3490 	spin_unlock_irq(q->queue_lock);
3491 }
3492 EXPORT_SYMBOL(blk_post_runtime_resume);
3493 
3494 /**
3495  * blk_set_runtime_active - Force runtime status of the queue to be active
3496  * @q: the queue of the device
3497  *
3498  * If the device is left runtime suspended during system suspend the resume
3499  * hook typically resumes the device and corrects runtime status
3500  * accordingly. However, that does not affect the queue runtime PM status
3501  * which is still "suspended". This prevents processing requests from the
3502  * queue.
3503  *
3504  * This function can be used in driver's resume hook to correct queue
3505  * runtime PM status and re-enable peeking requests from the queue. It
3506  * should be called before first request is added to the queue.
3507  */
3508 void blk_set_runtime_active(struct request_queue *q)
3509 {
3510 	spin_lock_irq(q->queue_lock);
3511 	q->rpm_status = RPM_ACTIVE;
3512 	pm_runtime_mark_last_busy(q->dev);
3513 	pm_request_autosuspend(q->dev);
3514 	spin_unlock_irq(q->queue_lock);
3515 }
3516 EXPORT_SYMBOL(blk_set_runtime_active);
3517 #endif
3518 
3519 int __init blk_dev_init(void)
3520 {
3521 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3522 			FIELD_SIZEOF(struct request, cmd_flags));
3523 
3524 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3525 	kblockd_workqueue = alloc_workqueue("kblockd",
3526 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3527 	if (!kblockd_workqueue)
3528 		panic("Failed to create kblockd\n");
3529 
3530 	request_cachep = kmem_cache_create("blkdev_requests",
3531 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3532 
3533 	blk_requestq_cachep = kmem_cache_create("request_queue",
3534 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3535 
3536 	return 0;
3537 }
3538