1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/block.h> 39 40 #include "blk.h" 41 #include "blk-mq.h" 42 43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 48 49 DEFINE_IDA(blk_queue_ida); 50 51 /* 52 * For the allocated request tables 53 */ 54 struct kmem_cache *request_cachep; 55 56 /* 57 * For queue allocation 58 */ 59 struct kmem_cache *blk_requestq_cachep; 60 61 /* 62 * Controlling structure to kblockd 63 */ 64 static struct workqueue_struct *kblockd_workqueue; 65 66 static void blk_clear_congested(struct request_list *rl, int sync) 67 { 68 #ifdef CONFIG_CGROUP_WRITEBACK 69 clear_wb_congested(rl->blkg->wb_congested, sync); 70 #else 71 /* 72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 73 * flip its congestion state for events on other blkcgs. 74 */ 75 if (rl == &rl->q->root_rl) 76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync); 77 #endif 78 } 79 80 static void blk_set_congested(struct request_list *rl, int sync) 81 { 82 #ifdef CONFIG_CGROUP_WRITEBACK 83 set_wb_congested(rl->blkg->wb_congested, sync); 84 #else 85 /* see blk_clear_congested() */ 86 if (rl == &rl->q->root_rl) 87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync); 88 #endif 89 } 90 91 void blk_queue_congestion_threshold(struct request_queue *q) 92 { 93 int nr; 94 95 nr = q->nr_requests - (q->nr_requests / 8) + 1; 96 if (nr > q->nr_requests) 97 nr = q->nr_requests; 98 q->nr_congestion_on = nr; 99 100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 101 if (nr < 1) 102 nr = 1; 103 q->nr_congestion_off = nr; 104 } 105 106 /** 107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 108 * @bdev: device 109 * 110 * Locates the passed device's request queue and returns the address of its 111 * backing_dev_info. This function can only be called if @bdev is opened 112 * and the return value is never NULL. 113 */ 114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 115 { 116 struct request_queue *q = bdev_get_queue(bdev); 117 118 return &q->backing_dev_info; 119 } 120 EXPORT_SYMBOL(blk_get_backing_dev_info); 121 122 void blk_rq_init(struct request_queue *q, struct request *rq) 123 { 124 memset(rq, 0, sizeof(*rq)); 125 126 INIT_LIST_HEAD(&rq->queuelist); 127 INIT_LIST_HEAD(&rq->timeout_list); 128 rq->cpu = -1; 129 rq->q = q; 130 rq->__sector = (sector_t) -1; 131 INIT_HLIST_NODE(&rq->hash); 132 RB_CLEAR_NODE(&rq->rb_node); 133 rq->cmd = rq->__cmd; 134 rq->cmd_len = BLK_MAX_CDB; 135 rq->tag = -1; 136 rq->start_time = jiffies; 137 set_start_time_ns(rq); 138 rq->part = NULL; 139 } 140 EXPORT_SYMBOL(blk_rq_init); 141 142 static void req_bio_endio(struct request *rq, struct bio *bio, 143 unsigned int nbytes, int error) 144 { 145 if (error) 146 bio->bi_error = error; 147 148 if (unlikely(rq->cmd_flags & REQ_QUIET)) 149 bio_set_flag(bio, BIO_QUIET); 150 151 bio_advance(bio, nbytes); 152 153 /* don't actually finish bio if it's part of flush sequence */ 154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 155 bio_endio(bio); 156 } 157 158 void blk_dump_rq_flags(struct request *rq, char *msg) 159 { 160 int bit; 161 162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg, 163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 164 (unsigned long long) rq->cmd_flags); 165 166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 167 (unsigned long long)blk_rq_pos(rq), 168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 169 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 170 rq->bio, rq->biotail, blk_rq_bytes(rq)); 171 172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 173 printk(KERN_INFO " cdb: "); 174 for (bit = 0; bit < BLK_MAX_CDB; bit++) 175 printk("%02x ", rq->cmd[bit]); 176 printk("\n"); 177 } 178 } 179 EXPORT_SYMBOL(blk_dump_rq_flags); 180 181 static void blk_delay_work(struct work_struct *work) 182 { 183 struct request_queue *q; 184 185 q = container_of(work, struct request_queue, delay_work.work); 186 spin_lock_irq(q->queue_lock); 187 __blk_run_queue(q); 188 spin_unlock_irq(q->queue_lock); 189 } 190 191 /** 192 * blk_delay_queue - restart queueing after defined interval 193 * @q: The &struct request_queue in question 194 * @msecs: Delay in msecs 195 * 196 * Description: 197 * Sometimes queueing needs to be postponed for a little while, to allow 198 * resources to come back. This function will make sure that queueing is 199 * restarted around the specified time. Queue lock must be held. 200 */ 201 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 202 { 203 if (likely(!blk_queue_dead(q))) 204 queue_delayed_work(kblockd_workqueue, &q->delay_work, 205 msecs_to_jiffies(msecs)); 206 } 207 EXPORT_SYMBOL(blk_delay_queue); 208 209 /** 210 * blk_start_queue_async - asynchronously restart a previously stopped queue 211 * @q: The &struct request_queue in question 212 * 213 * Description: 214 * blk_start_queue_async() will clear the stop flag on the queue, and 215 * ensure that the request_fn for the queue is run from an async 216 * context. 217 **/ 218 void blk_start_queue_async(struct request_queue *q) 219 { 220 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 221 blk_run_queue_async(q); 222 } 223 EXPORT_SYMBOL(blk_start_queue_async); 224 225 /** 226 * blk_start_queue - restart a previously stopped queue 227 * @q: The &struct request_queue in question 228 * 229 * Description: 230 * blk_start_queue() will clear the stop flag on the queue, and call 231 * the request_fn for the queue if it was in a stopped state when 232 * entered. Also see blk_stop_queue(). Queue lock must be held. 233 **/ 234 void blk_start_queue(struct request_queue *q) 235 { 236 WARN_ON(!irqs_disabled()); 237 238 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 239 __blk_run_queue(q); 240 } 241 EXPORT_SYMBOL(blk_start_queue); 242 243 /** 244 * blk_stop_queue - stop a queue 245 * @q: The &struct request_queue in question 246 * 247 * Description: 248 * The Linux block layer assumes that a block driver will consume all 249 * entries on the request queue when the request_fn strategy is called. 250 * Often this will not happen, because of hardware limitations (queue 251 * depth settings). If a device driver gets a 'queue full' response, 252 * or if it simply chooses not to queue more I/O at one point, it can 253 * call this function to prevent the request_fn from being called until 254 * the driver has signalled it's ready to go again. This happens by calling 255 * blk_start_queue() to restart queue operations. Queue lock must be held. 256 **/ 257 void blk_stop_queue(struct request_queue *q) 258 { 259 cancel_delayed_work(&q->delay_work); 260 queue_flag_set(QUEUE_FLAG_STOPPED, q); 261 } 262 EXPORT_SYMBOL(blk_stop_queue); 263 264 /** 265 * blk_sync_queue - cancel any pending callbacks on a queue 266 * @q: the queue 267 * 268 * Description: 269 * The block layer may perform asynchronous callback activity 270 * on a queue, such as calling the unplug function after a timeout. 271 * A block device may call blk_sync_queue to ensure that any 272 * such activity is cancelled, thus allowing it to release resources 273 * that the callbacks might use. The caller must already have made sure 274 * that its ->make_request_fn will not re-add plugging prior to calling 275 * this function. 276 * 277 * This function does not cancel any asynchronous activity arising 278 * out of elevator or throttling code. That would require elevator_exit() 279 * and blkcg_exit_queue() to be called with queue lock initialized. 280 * 281 */ 282 void blk_sync_queue(struct request_queue *q) 283 { 284 del_timer_sync(&q->timeout); 285 286 if (q->mq_ops) { 287 struct blk_mq_hw_ctx *hctx; 288 int i; 289 290 queue_for_each_hw_ctx(q, hctx, i) { 291 cancel_delayed_work_sync(&hctx->run_work); 292 cancel_delayed_work_sync(&hctx->delay_work); 293 } 294 } else { 295 cancel_delayed_work_sync(&q->delay_work); 296 } 297 } 298 EXPORT_SYMBOL(blk_sync_queue); 299 300 /** 301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 302 * @q: The queue to run 303 * 304 * Description: 305 * Invoke request handling on a queue if there are any pending requests. 306 * May be used to restart request handling after a request has completed. 307 * This variant runs the queue whether or not the queue has been 308 * stopped. Must be called with the queue lock held and interrupts 309 * disabled. See also @blk_run_queue. 310 */ 311 inline void __blk_run_queue_uncond(struct request_queue *q) 312 { 313 if (unlikely(blk_queue_dead(q))) 314 return; 315 316 /* 317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 318 * the queue lock internally. As a result multiple threads may be 319 * running such a request function concurrently. Keep track of the 320 * number of active request_fn invocations such that blk_drain_queue() 321 * can wait until all these request_fn calls have finished. 322 */ 323 q->request_fn_active++; 324 q->request_fn(q); 325 q->request_fn_active--; 326 } 327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 328 329 /** 330 * __blk_run_queue - run a single device queue 331 * @q: The queue to run 332 * 333 * Description: 334 * See @blk_run_queue. This variant must be called with the queue lock 335 * held and interrupts disabled. 336 */ 337 void __blk_run_queue(struct request_queue *q) 338 { 339 if (unlikely(blk_queue_stopped(q))) 340 return; 341 342 __blk_run_queue_uncond(q); 343 } 344 EXPORT_SYMBOL(__blk_run_queue); 345 346 /** 347 * blk_run_queue_async - run a single device queue in workqueue context 348 * @q: The queue to run 349 * 350 * Description: 351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 352 * of us. The caller must hold the queue lock. 353 */ 354 void blk_run_queue_async(struct request_queue *q) 355 { 356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 358 } 359 EXPORT_SYMBOL(blk_run_queue_async); 360 361 /** 362 * blk_run_queue - run a single device queue 363 * @q: The queue to run 364 * 365 * Description: 366 * Invoke request handling on this queue, if it has pending work to do. 367 * May be used to restart queueing when a request has completed. 368 */ 369 void blk_run_queue(struct request_queue *q) 370 { 371 unsigned long flags; 372 373 spin_lock_irqsave(q->queue_lock, flags); 374 __blk_run_queue(q); 375 spin_unlock_irqrestore(q->queue_lock, flags); 376 } 377 EXPORT_SYMBOL(blk_run_queue); 378 379 void blk_put_queue(struct request_queue *q) 380 { 381 kobject_put(&q->kobj); 382 } 383 EXPORT_SYMBOL(blk_put_queue); 384 385 /** 386 * __blk_drain_queue - drain requests from request_queue 387 * @q: queue to drain 388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 389 * 390 * Drain requests from @q. If @drain_all is set, all requests are drained. 391 * If not, only ELVPRIV requests are drained. The caller is responsible 392 * for ensuring that no new requests which need to be drained are queued. 393 */ 394 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 395 __releases(q->queue_lock) 396 __acquires(q->queue_lock) 397 { 398 int i; 399 400 lockdep_assert_held(q->queue_lock); 401 402 while (true) { 403 bool drain = false; 404 405 /* 406 * The caller might be trying to drain @q before its 407 * elevator is initialized. 408 */ 409 if (q->elevator) 410 elv_drain_elevator(q); 411 412 blkcg_drain_queue(q); 413 414 /* 415 * This function might be called on a queue which failed 416 * driver init after queue creation or is not yet fully 417 * active yet. Some drivers (e.g. fd and loop) get unhappy 418 * in such cases. Kick queue iff dispatch queue has 419 * something on it and @q has request_fn set. 420 */ 421 if (!list_empty(&q->queue_head) && q->request_fn) 422 __blk_run_queue(q); 423 424 drain |= q->nr_rqs_elvpriv; 425 drain |= q->request_fn_active; 426 427 /* 428 * Unfortunately, requests are queued at and tracked from 429 * multiple places and there's no single counter which can 430 * be drained. Check all the queues and counters. 431 */ 432 if (drain_all) { 433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 434 drain |= !list_empty(&q->queue_head); 435 for (i = 0; i < 2; i++) { 436 drain |= q->nr_rqs[i]; 437 drain |= q->in_flight[i]; 438 if (fq) 439 drain |= !list_empty(&fq->flush_queue[i]); 440 } 441 } 442 443 if (!drain) 444 break; 445 446 spin_unlock_irq(q->queue_lock); 447 448 msleep(10); 449 450 spin_lock_irq(q->queue_lock); 451 } 452 453 /* 454 * With queue marked dead, any woken up waiter will fail the 455 * allocation path, so the wakeup chaining is lost and we're 456 * left with hung waiters. We need to wake up those waiters. 457 */ 458 if (q->request_fn) { 459 struct request_list *rl; 460 461 blk_queue_for_each_rl(rl, q) 462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 463 wake_up_all(&rl->wait[i]); 464 } 465 } 466 467 /** 468 * blk_queue_bypass_start - enter queue bypass mode 469 * @q: queue of interest 470 * 471 * In bypass mode, only the dispatch FIFO queue of @q is used. This 472 * function makes @q enter bypass mode and drains all requests which were 473 * throttled or issued before. On return, it's guaranteed that no request 474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 475 * inside queue or RCU read lock. 476 */ 477 void blk_queue_bypass_start(struct request_queue *q) 478 { 479 spin_lock_irq(q->queue_lock); 480 q->bypass_depth++; 481 queue_flag_set(QUEUE_FLAG_BYPASS, q); 482 spin_unlock_irq(q->queue_lock); 483 484 /* 485 * Queues start drained. Skip actual draining till init is 486 * complete. This avoids lenghty delays during queue init which 487 * can happen many times during boot. 488 */ 489 if (blk_queue_init_done(q)) { 490 spin_lock_irq(q->queue_lock); 491 __blk_drain_queue(q, false); 492 spin_unlock_irq(q->queue_lock); 493 494 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 495 synchronize_rcu(); 496 } 497 } 498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 499 500 /** 501 * blk_queue_bypass_end - leave queue bypass mode 502 * @q: queue of interest 503 * 504 * Leave bypass mode and restore the normal queueing behavior. 505 */ 506 void blk_queue_bypass_end(struct request_queue *q) 507 { 508 spin_lock_irq(q->queue_lock); 509 if (!--q->bypass_depth) 510 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 511 WARN_ON_ONCE(q->bypass_depth < 0); 512 spin_unlock_irq(q->queue_lock); 513 } 514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 515 516 void blk_set_queue_dying(struct request_queue *q) 517 { 518 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q); 519 520 if (q->mq_ops) 521 blk_mq_wake_waiters(q); 522 else { 523 struct request_list *rl; 524 525 blk_queue_for_each_rl(rl, q) { 526 if (rl->rq_pool) { 527 wake_up(&rl->wait[BLK_RW_SYNC]); 528 wake_up(&rl->wait[BLK_RW_ASYNC]); 529 } 530 } 531 } 532 } 533 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 534 535 /** 536 * blk_cleanup_queue - shutdown a request queue 537 * @q: request queue to shutdown 538 * 539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 540 * put it. All future requests will be failed immediately with -ENODEV. 541 */ 542 void blk_cleanup_queue(struct request_queue *q) 543 { 544 spinlock_t *lock = q->queue_lock; 545 546 /* mark @q DYING, no new request or merges will be allowed afterwards */ 547 mutex_lock(&q->sysfs_lock); 548 blk_set_queue_dying(q); 549 spin_lock_irq(lock); 550 551 /* 552 * A dying queue is permanently in bypass mode till released. Note 553 * that, unlike blk_queue_bypass_start(), we aren't performing 554 * synchronize_rcu() after entering bypass mode to avoid the delay 555 * as some drivers create and destroy a lot of queues while 556 * probing. This is still safe because blk_release_queue() will be 557 * called only after the queue refcnt drops to zero and nothing, 558 * RCU or not, would be traversing the queue by then. 559 */ 560 q->bypass_depth++; 561 queue_flag_set(QUEUE_FLAG_BYPASS, q); 562 563 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 564 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 565 queue_flag_set(QUEUE_FLAG_DYING, q); 566 spin_unlock_irq(lock); 567 mutex_unlock(&q->sysfs_lock); 568 569 /* 570 * Drain all requests queued before DYING marking. Set DEAD flag to 571 * prevent that q->request_fn() gets invoked after draining finished. 572 */ 573 blk_freeze_queue(q); 574 spin_lock_irq(lock); 575 if (!q->mq_ops) 576 __blk_drain_queue(q, true); 577 queue_flag_set(QUEUE_FLAG_DEAD, q); 578 spin_unlock_irq(lock); 579 580 /* for synchronous bio-based driver finish in-flight integrity i/o */ 581 blk_flush_integrity(); 582 583 /* @q won't process any more request, flush async actions */ 584 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 585 blk_sync_queue(q); 586 587 if (q->mq_ops) 588 blk_mq_free_queue(q); 589 percpu_ref_exit(&q->q_usage_counter); 590 591 spin_lock_irq(lock); 592 if (q->queue_lock != &q->__queue_lock) 593 q->queue_lock = &q->__queue_lock; 594 spin_unlock_irq(lock); 595 596 bdi_unregister(&q->backing_dev_info); 597 598 /* @q is and will stay empty, shutdown and put */ 599 blk_put_queue(q); 600 } 601 EXPORT_SYMBOL(blk_cleanup_queue); 602 603 /* Allocate memory local to the request queue */ 604 static void *alloc_request_struct(gfp_t gfp_mask, void *data) 605 { 606 int nid = (int)(long)data; 607 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid); 608 } 609 610 static void free_request_struct(void *element, void *unused) 611 { 612 kmem_cache_free(request_cachep, element); 613 } 614 615 int blk_init_rl(struct request_list *rl, struct request_queue *q, 616 gfp_t gfp_mask) 617 { 618 if (unlikely(rl->rq_pool)) 619 return 0; 620 621 rl->q = q; 622 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 623 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 624 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 625 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 626 627 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct, 628 free_request_struct, 629 (void *)(long)q->node, gfp_mask, 630 q->node); 631 if (!rl->rq_pool) 632 return -ENOMEM; 633 634 return 0; 635 } 636 637 void blk_exit_rl(struct request_list *rl) 638 { 639 if (rl->rq_pool) 640 mempool_destroy(rl->rq_pool); 641 } 642 643 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 644 { 645 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 646 } 647 EXPORT_SYMBOL(blk_alloc_queue); 648 649 int blk_queue_enter(struct request_queue *q, bool nowait) 650 { 651 while (true) { 652 int ret; 653 654 if (percpu_ref_tryget_live(&q->q_usage_counter)) 655 return 0; 656 657 if (nowait) 658 return -EBUSY; 659 660 ret = wait_event_interruptible(q->mq_freeze_wq, 661 !atomic_read(&q->mq_freeze_depth) || 662 blk_queue_dying(q)); 663 if (blk_queue_dying(q)) 664 return -ENODEV; 665 if (ret) 666 return ret; 667 } 668 } 669 670 void blk_queue_exit(struct request_queue *q) 671 { 672 percpu_ref_put(&q->q_usage_counter); 673 } 674 675 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 676 { 677 struct request_queue *q = 678 container_of(ref, struct request_queue, q_usage_counter); 679 680 wake_up_all(&q->mq_freeze_wq); 681 } 682 683 static void blk_rq_timed_out_timer(unsigned long data) 684 { 685 struct request_queue *q = (struct request_queue *)data; 686 687 kblockd_schedule_work(&q->timeout_work); 688 } 689 690 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 691 { 692 struct request_queue *q; 693 int err; 694 695 q = kmem_cache_alloc_node(blk_requestq_cachep, 696 gfp_mask | __GFP_ZERO, node_id); 697 if (!q) 698 return NULL; 699 700 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 701 if (q->id < 0) 702 goto fail_q; 703 704 q->bio_split = bioset_create(BIO_POOL_SIZE, 0); 705 if (!q->bio_split) 706 goto fail_id; 707 708 q->backing_dev_info.ra_pages = 709 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 710 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK; 711 q->backing_dev_info.name = "block"; 712 q->node = node_id; 713 714 err = bdi_init(&q->backing_dev_info); 715 if (err) 716 goto fail_split; 717 718 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 719 laptop_mode_timer_fn, (unsigned long) q); 720 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 721 INIT_LIST_HEAD(&q->queue_head); 722 INIT_LIST_HEAD(&q->timeout_list); 723 INIT_LIST_HEAD(&q->icq_list); 724 #ifdef CONFIG_BLK_CGROUP 725 INIT_LIST_HEAD(&q->blkg_list); 726 #endif 727 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 728 729 kobject_init(&q->kobj, &blk_queue_ktype); 730 731 mutex_init(&q->sysfs_lock); 732 spin_lock_init(&q->__queue_lock); 733 734 /* 735 * By default initialize queue_lock to internal lock and driver can 736 * override it later if need be. 737 */ 738 q->queue_lock = &q->__queue_lock; 739 740 /* 741 * A queue starts its life with bypass turned on to avoid 742 * unnecessary bypass on/off overhead and nasty surprises during 743 * init. The initial bypass will be finished when the queue is 744 * registered by blk_register_queue(). 745 */ 746 q->bypass_depth = 1; 747 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 748 749 init_waitqueue_head(&q->mq_freeze_wq); 750 751 /* 752 * Init percpu_ref in atomic mode so that it's faster to shutdown. 753 * See blk_register_queue() for details. 754 */ 755 if (percpu_ref_init(&q->q_usage_counter, 756 blk_queue_usage_counter_release, 757 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 758 goto fail_bdi; 759 760 if (blkcg_init_queue(q)) 761 goto fail_ref; 762 763 return q; 764 765 fail_ref: 766 percpu_ref_exit(&q->q_usage_counter); 767 fail_bdi: 768 bdi_destroy(&q->backing_dev_info); 769 fail_split: 770 bioset_free(q->bio_split); 771 fail_id: 772 ida_simple_remove(&blk_queue_ida, q->id); 773 fail_q: 774 kmem_cache_free(blk_requestq_cachep, q); 775 return NULL; 776 } 777 EXPORT_SYMBOL(blk_alloc_queue_node); 778 779 /** 780 * blk_init_queue - prepare a request queue for use with a block device 781 * @rfn: The function to be called to process requests that have been 782 * placed on the queue. 783 * @lock: Request queue spin lock 784 * 785 * Description: 786 * If a block device wishes to use the standard request handling procedures, 787 * which sorts requests and coalesces adjacent requests, then it must 788 * call blk_init_queue(). The function @rfn will be called when there 789 * are requests on the queue that need to be processed. If the device 790 * supports plugging, then @rfn may not be called immediately when requests 791 * are available on the queue, but may be called at some time later instead. 792 * Plugged queues are generally unplugged when a buffer belonging to one 793 * of the requests on the queue is needed, or due to memory pressure. 794 * 795 * @rfn is not required, or even expected, to remove all requests off the 796 * queue, but only as many as it can handle at a time. If it does leave 797 * requests on the queue, it is responsible for arranging that the requests 798 * get dealt with eventually. 799 * 800 * The queue spin lock must be held while manipulating the requests on the 801 * request queue; this lock will be taken also from interrupt context, so irq 802 * disabling is needed for it. 803 * 804 * Function returns a pointer to the initialized request queue, or %NULL if 805 * it didn't succeed. 806 * 807 * Note: 808 * blk_init_queue() must be paired with a blk_cleanup_queue() call 809 * when the block device is deactivated (such as at module unload). 810 **/ 811 812 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 813 { 814 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 815 } 816 EXPORT_SYMBOL(blk_init_queue); 817 818 struct request_queue * 819 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 820 { 821 struct request_queue *uninit_q, *q; 822 823 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 824 if (!uninit_q) 825 return NULL; 826 827 q = blk_init_allocated_queue(uninit_q, rfn, lock); 828 if (!q) 829 blk_cleanup_queue(uninit_q); 830 831 return q; 832 } 833 EXPORT_SYMBOL(blk_init_queue_node); 834 835 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 836 837 struct request_queue * 838 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 839 spinlock_t *lock) 840 { 841 if (!q) 842 return NULL; 843 844 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0); 845 if (!q->fq) 846 return NULL; 847 848 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 849 goto fail; 850 851 INIT_WORK(&q->timeout_work, blk_timeout_work); 852 q->request_fn = rfn; 853 q->prep_rq_fn = NULL; 854 q->unprep_rq_fn = NULL; 855 q->queue_flags |= QUEUE_FLAG_DEFAULT; 856 857 /* Override internal queue lock with supplied lock pointer */ 858 if (lock) 859 q->queue_lock = lock; 860 861 /* 862 * This also sets hw/phys segments, boundary and size 863 */ 864 blk_queue_make_request(q, blk_queue_bio); 865 866 q->sg_reserved_size = INT_MAX; 867 868 /* Protect q->elevator from elevator_change */ 869 mutex_lock(&q->sysfs_lock); 870 871 /* init elevator */ 872 if (elevator_init(q, NULL)) { 873 mutex_unlock(&q->sysfs_lock); 874 goto fail; 875 } 876 877 mutex_unlock(&q->sysfs_lock); 878 879 return q; 880 881 fail: 882 blk_free_flush_queue(q->fq); 883 return NULL; 884 } 885 EXPORT_SYMBOL(blk_init_allocated_queue); 886 887 bool blk_get_queue(struct request_queue *q) 888 { 889 if (likely(!blk_queue_dying(q))) { 890 __blk_get_queue(q); 891 return true; 892 } 893 894 return false; 895 } 896 EXPORT_SYMBOL(blk_get_queue); 897 898 static inline void blk_free_request(struct request_list *rl, struct request *rq) 899 { 900 if (rq->cmd_flags & REQ_ELVPRIV) { 901 elv_put_request(rl->q, rq); 902 if (rq->elv.icq) 903 put_io_context(rq->elv.icq->ioc); 904 } 905 906 mempool_free(rq, rl->rq_pool); 907 } 908 909 /* 910 * ioc_batching returns true if the ioc is a valid batching request and 911 * should be given priority access to a request. 912 */ 913 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 914 { 915 if (!ioc) 916 return 0; 917 918 /* 919 * Make sure the process is able to allocate at least 1 request 920 * even if the batch times out, otherwise we could theoretically 921 * lose wakeups. 922 */ 923 return ioc->nr_batch_requests == q->nr_batching || 924 (ioc->nr_batch_requests > 0 925 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 926 } 927 928 /* 929 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 930 * will cause the process to be a "batcher" on all queues in the system. This 931 * is the behaviour we want though - once it gets a wakeup it should be given 932 * a nice run. 933 */ 934 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 935 { 936 if (!ioc || ioc_batching(q, ioc)) 937 return; 938 939 ioc->nr_batch_requests = q->nr_batching; 940 ioc->last_waited = jiffies; 941 } 942 943 static void __freed_request(struct request_list *rl, int sync) 944 { 945 struct request_queue *q = rl->q; 946 947 if (rl->count[sync] < queue_congestion_off_threshold(q)) 948 blk_clear_congested(rl, sync); 949 950 if (rl->count[sync] + 1 <= q->nr_requests) { 951 if (waitqueue_active(&rl->wait[sync])) 952 wake_up(&rl->wait[sync]); 953 954 blk_clear_rl_full(rl, sync); 955 } 956 } 957 958 /* 959 * A request has just been released. Account for it, update the full and 960 * congestion status, wake up any waiters. Called under q->queue_lock. 961 */ 962 static void freed_request(struct request_list *rl, int op, unsigned int flags) 963 { 964 struct request_queue *q = rl->q; 965 int sync = rw_is_sync(op, flags); 966 967 q->nr_rqs[sync]--; 968 rl->count[sync]--; 969 if (flags & REQ_ELVPRIV) 970 q->nr_rqs_elvpriv--; 971 972 __freed_request(rl, sync); 973 974 if (unlikely(rl->starved[sync ^ 1])) 975 __freed_request(rl, sync ^ 1); 976 } 977 978 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 979 { 980 struct request_list *rl; 981 int on_thresh, off_thresh; 982 983 spin_lock_irq(q->queue_lock); 984 q->nr_requests = nr; 985 blk_queue_congestion_threshold(q); 986 on_thresh = queue_congestion_on_threshold(q); 987 off_thresh = queue_congestion_off_threshold(q); 988 989 blk_queue_for_each_rl(rl, q) { 990 if (rl->count[BLK_RW_SYNC] >= on_thresh) 991 blk_set_congested(rl, BLK_RW_SYNC); 992 else if (rl->count[BLK_RW_SYNC] < off_thresh) 993 blk_clear_congested(rl, BLK_RW_SYNC); 994 995 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 996 blk_set_congested(rl, BLK_RW_ASYNC); 997 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 998 blk_clear_congested(rl, BLK_RW_ASYNC); 999 1000 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1001 blk_set_rl_full(rl, BLK_RW_SYNC); 1002 } else { 1003 blk_clear_rl_full(rl, BLK_RW_SYNC); 1004 wake_up(&rl->wait[BLK_RW_SYNC]); 1005 } 1006 1007 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1008 blk_set_rl_full(rl, BLK_RW_ASYNC); 1009 } else { 1010 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1011 wake_up(&rl->wait[BLK_RW_ASYNC]); 1012 } 1013 } 1014 1015 spin_unlock_irq(q->queue_lock); 1016 return 0; 1017 } 1018 1019 /* 1020 * Determine if elevator data should be initialized when allocating the 1021 * request associated with @bio. 1022 */ 1023 static bool blk_rq_should_init_elevator(struct bio *bio) 1024 { 1025 if (!bio) 1026 return true; 1027 1028 /* 1029 * Flush requests do not use the elevator so skip initialization. 1030 * This allows a request to share the flush and elevator data. 1031 */ 1032 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) 1033 return false; 1034 1035 return true; 1036 } 1037 1038 /** 1039 * rq_ioc - determine io_context for request allocation 1040 * @bio: request being allocated is for this bio (can be %NULL) 1041 * 1042 * Determine io_context to use for request allocation for @bio. May return 1043 * %NULL if %current->io_context doesn't exist. 1044 */ 1045 static struct io_context *rq_ioc(struct bio *bio) 1046 { 1047 #ifdef CONFIG_BLK_CGROUP 1048 if (bio && bio->bi_ioc) 1049 return bio->bi_ioc; 1050 #endif 1051 return current->io_context; 1052 } 1053 1054 /** 1055 * __get_request - get a free request 1056 * @rl: request list to allocate from 1057 * @op: REQ_OP_READ/REQ_OP_WRITE 1058 * @op_flags: rq_flag_bits 1059 * @bio: bio to allocate request for (can be %NULL) 1060 * @gfp_mask: allocation mask 1061 * 1062 * Get a free request from @q. This function may fail under memory 1063 * pressure or if @q is dead. 1064 * 1065 * Must be called with @q->queue_lock held and, 1066 * Returns ERR_PTR on failure, with @q->queue_lock held. 1067 * Returns request pointer on success, with @q->queue_lock *not held*. 1068 */ 1069 static struct request *__get_request(struct request_list *rl, int op, 1070 int op_flags, struct bio *bio, 1071 gfp_t gfp_mask) 1072 { 1073 struct request_queue *q = rl->q; 1074 struct request *rq; 1075 struct elevator_type *et = q->elevator->type; 1076 struct io_context *ioc = rq_ioc(bio); 1077 struct io_cq *icq = NULL; 1078 const bool is_sync = rw_is_sync(op, op_flags) != 0; 1079 int may_queue; 1080 1081 if (unlikely(blk_queue_dying(q))) 1082 return ERR_PTR(-ENODEV); 1083 1084 may_queue = elv_may_queue(q, op, op_flags); 1085 if (may_queue == ELV_MQUEUE_NO) 1086 goto rq_starved; 1087 1088 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1089 if (rl->count[is_sync]+1 >= q->nr_requests) { 1090 /* 1091 * The queue will fill after this allocation, so set 1092 * it as full, and mark this process as "batching". 1093 * This process will be allowed to complete a batch of 1094 * requests, others will be blocked. 1095 */ 1096 if (!blk_rl_full(rl, is_sync)) { 1097 ioc_set_batching(q, ioc); 1098 blk_set_rl_full(rl, is_sync); 1099 } else { 1100 if (may_queue != ELV_MQUEUE_MUST 1101 && !ioc_batching(q, ioc)) { 1102 /* 1103 * The queue is full and the allocating 1104 * process is not a "batcher", and not 1105 * exempted by the IO scheduler 1106 */ 1107 return ERR_PTR(-ENOMEM); 1108 } 1109 } 1110 } 1111 blk_set_congested(rl, is_sync); 1112 } 1113 1114 /* 1115 * Only allow batching queuers to allocate up to 50% over the defined 1116 * limit of requests, otherwise we could have thousands of requests 1117 * allocated with any setting of ->nr_requests 1118 */ 1119 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1120 return ERR_PTR(-ENOMEM); 1121 1122 q->nr_rqs[is_sync]++; 1123 rl->count[is_sync]++; 1124 rl->starved[is_sync] = 0; 1125 1126 /* 1127 * Decide whether the new request will be managed by elevator. If 1128 * so, mark @op_flags and increment elvpriv. Non-zero elvpriv will 1129 * prevent the current elevator from being destroyed until the new 1130 * request is freed. This guarantees icq's won't be destroyed and 1131 * makes creating new ones safe. 1132 * 1133 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1134 * it will be created after releasing queue_lock. 1135 */ 1136 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 1137 op_flags |= REQ_ELVPRIV; 1138 q->nr_rqs_elvpriv++; 1139 if (et->icq_cache && ioc) 1140 icq = ioc_lookup_icq(ioc, q); 1141 } 1142 1143 if (blk_queue_io_stat(q)) 1144 op_flags |= REQ_IO_STAT; 1145 spin_unlock_irq(q->queue_lock); 1146 1147 /* allocate and init request */ 1148 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1149 if (!rq) 1150 goto fail_alloc; 1151 1152 blk_rq_init(q, rq); 1153 blk_rq_set_rl(rq, rl); 1154 req_set_op_attrs(rq, op, op_flags | REQ_ALLOCED); 1155 1156 /* init elvpriv */ 1157 if (op_flags & REQ_ELVPRIV) { 1158 if (unlikely(et->icq_cache && !icq)) { 1159 if (ioc) 1160 icq = ioc_create_icq(ioc, q, gfp_mask); 1161 if (!icq) 1162 goto fail_elvpriv; 1163 } 1164 1165 rq->elv.icq = icq; 1166 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1167 goto fail_elvpriv; 1168 1169 /* @rq->elv.icq holds io_context until @rq is freed */ 1170 if (icq) 1171 get_io_context(icq->ioc); 1172 } 1173 out: 1174 /* 1175 * ioc may be NULL here, and ioc_batching will be false. That's 1176 * OK, if the queue is under the request limit then requests need 1177 * not count toward the nr_batch_requests limit. There will always 1178 * be some limit enforced by BLK_BATCH_TIME. 1179 */ 1180 if (ioc_batching(q, ioc)) 1181 ioc->nr_batch_requests--; 1182 1183 trace_block_getrq(q, bio, op); 1184 return rq; 1185 1186 fail_elvpriv: 1187 /* 1188 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1189 * and may fail indefinitely under memory pressure and thus 1190 * shouldn't stall IO. Treat this request as !elvpriv. This will 1191 * disturb iosched and blkcg but weird is bettern than dead. 1192 */ 1193 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1194 __func__, dev_name(q->backing_dev_info.dev)); 1195 1196 rq->cmd_flags &= ~REQ_ELVPRIV; 1197 rq->elv.icq = NULL; 1198 1199 spin_lock_irq(q->queue_lock); 1200 q->nr_rqs_elvpriv--; 1201 spin_unlock_irq(q->queue_lock); 1202 goto out; 1203 1204 fail_alloc: 1205 /* 1206 * Allocation failed presumably due to memory. Undo anything we 1207 * might have messed up. 1208 * 1209 * Allocating task should really be put onto the front of the wait 1210 * queue, but this is pretty rare. 1211 */ 1212 spin_lock_irq(q->queue_lock); 1213 freed_request(rl, op, op_flags); 1214 1215 /* 1216 * in the very unlikely event that allocation failed and no 1217 * requests for this direction was pending, mark us starved so that 1218 * freeing of a request in the other direction will notice 1219 * us. another possible fix would be to split the rq mempool into 1220 * READ and WRITE 1221 */ 1222 rq_starved: 1223 if (unlikely(rl->count[is_sync] == 0)) 1224 rl->starved[is_sync] = 1; 1225 return ERR_PTR(-ENOMEM); 1226 } 1227 1228 /** 1229 * get_request - get a free request 1230 * @q: request_queue to allocate request from 1231 * @op: REQ_OP_READ/REQ_OP_WRITE 1232 * @op_flags: rq_flag_bits 1233 * @bio: bio to allocate request for (can be %NULL) 1234 * @gfp_mask: allocation mask 1235 * 1236 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1237 * this function keeps retrying under memory pressure and fails iff @q is dead. 1238 * 1239 * Must be called with @q->queue_lock held and, 1240 * Returns ERR_PTR on failure, with @q->queue_lock held. 1241 * Returns request pointer on success, with @q->queue_lock *not held*. 1242 */ 1243 static struct request *get_request(struct request_queue *q, int op, 1244 int op_flags, struct bio *bio, 1245 gfp_t gfp_mask) 1246 { 1247 const bool is_sync = rw_is_sync(op, op_flags) != 0; 1248 DEFINE_WAIT(wait); 1249 struct request_list *rl; 1250 struct request *rq; 1251 1252 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1253 retry: 1254 rq = __get_request(rl, op, op_flags, bio, gfp_mask); 1255 if (!IS_ERR(rq)) 1256 return rq; 1257 1258 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) { 1259 blk_put_rl(rl); 1260 return rq; 1261 } 1262 1263 /* wait on @rl and retry */ 1264 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1265 TASK_UNINTERRUPTIBLE); 1266 1267 trace_block_sleeprq(q, bio, op); 1268 1269 spin_unlock_irq(q->queue_lock); 1270 io_schedule(); 1271 1272 /* 1273 * After sleeping, we become a "batching" process and will be able 1274 * to allocate at least one request, and up to a big batch of them 1275 * for a small period time. See ioc_batching, ioc_set_batching 1276 */ 1277 ioc_set_batching(q, current->io_context); 1278 1279 spin_lock_irq(q->queue_lock); 1280 finish_wait(&rl->wait[is_sync], &wait); 1281 1282 goto retry; 1283 } 1284 1285 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1286 gfp_t gfp_mask) 1287 { 1288 struct request *rq; 1289 1290 BUG_ON(rw != READ && rw != WRITE); 1291 1292 /* create ioc upfront */ 1293 create_io_context(gfp_mask, q->node); 1294 1295 spin_lock_irq(q->queue_lock); 1296 rq = get_request(q, rw, 0, NULL, gfp_mask); 1297 if (IS_ERR(rq)) { 1298 spin_unlock_irq(q->queue_lock); 1299 return rq; 1300 } 1301 1302 /* q->queue_lock is unlocked at this point */ 1303 rq->__data_len = 0; 1304 rq->__sector = (sector_t) -1; 1305 rq->bio = rq->biotail = NULL; 1306 return rq; 1307 } 1308 1309 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1310 { 1311 if (q->mq_ops) 1312 return blk_mq_alloc_request(q, rw, 1313 (gfp_mask & __GFP_DIRECT_RECLAIM) ? 1314 0 : BLK_MQ_REQ_NOWAIT); 1315 else 1316 return blk_old_get_request(q, rw, gfp_mask); 1317 } 1318 EXPORT_SYMBOL(blk_get_request); 1319 1320 /** 1321 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC 1322 * @rq: request to be initialized 1323 * 1324 */ 1325 void blk_rq_set_block_pc(struct request *rq) 1326 { 1327 rq->cmd_type = REQ_TYPE_BLOCK_PC; 1328 memset(rq->__cmd, 0, sizeof(rq->__cmd)); 1329 } 1330 EXPORT_SYMBOL(blk_rq_set_block_pc); 1331 1332 /** 1333 * blk_requeue_request - put a request back on queue 1334 * @q: request queue where request should be inserted 1335 * @rq: request to be inserted 1336 * 1337 * Description: 1338 * Drivers often keep queueing requests until the hardware cannot accept 1339 * more, when that condition happens we need to put the request back 1340 * on the queue. Must be called with queue lock held. 1341 */ 1342 void blk_requeue_request(struct request_queue *q, struct request *rq) 1343 { 1344 blk_delete_timer(rq); 1345 blk_clear_rq_complete(rq); 1346 trace_block_rq_requeue(q, rq); 1347 1348 if (rq->cmd_flags & REQ_QUEUED) 1349 blk_queue_end_tag(q, rq); 1350 1351 BUG_ON(blk_queued_rq(rq)); 1352 1353 elv_requeue_request(q, rq); 1354 } 1355 EXPORT_SYMBOL(blk_requeue_request); 1356 1357 static void add_acct_request(struct request_queue *q, struct request *rq, 1358 int where) 1359 { 1360 blk_account_io_start(rq, true); 1361 __elv_add_request(q, rq, where); 1362 } 1363 1364 static void part_round_stats_single(int cpu, struct hd_struct *part, 1365 unsigned long now) 1366 { 1367 int inflight; 1368 1369 if (now == part->stamp) 1370 return; 1371 1372 inflight = part_in_flight(part); 1373 if (inflight) { 1374 __part_stat_add(cpu, part, time_in_queue, 1375 inflight * (now - part->stamp)); 1376 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1377 } 1378 part->stamp = now; 1379 } 1380 1381 /** 1382 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1383 * @cpu: cpu number for stats access 1384 * @part: target partition 1385 * 1386 * The average IO queue length and utilisation statistics are maintained 1387 * by observing the current state of the queue length and the amount of 1388 * time it has been in this state for. 1389 * 1390 * Normally, that accounting is done on IO completion, but that can result 1391 * in more than a second's worth of IO being accounted for within any one 1392 * second, leading to >100% utilisation. To deal with that, we call this 1393 * function to do a round-off before returning the results when reading 1394 * /proc/diskstats. This accounts immediately for all queue usage up to 1395 * the current jiffies and restarts the counters again. 1396 */ 1397 void part_round_stats(int cpu, struct hd_struct *part) 1398 { 1399 unsigned long now = jiffies; 1400 1401 if (part->partno) 1402 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1403 part_round_stats_single(cpu, part, now); 1404 } 1405 EXPORT_SYMBOL_GPL(part_round_stats); 1406 1407 #ifdef CONFIG_PM 1408 static void blk_pm_put_request(struct request *rq) 1409 { 1410 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending) 1411 pm_runtime_mark_last_busy(rq->q->dev); 1412 } 1413 #else 1414 static inline void blk_pm_put_request(struct request *rq) {} 1415 #endif 1416 1417 /* 1418 * queue lock must be held 1419 */ 1420 void __blk_put_request(struct request_queue *q, struct request *req) 1421 { 1422 if (unlikely(!q)) 1423 return; 1424 1425 if (q->mq_ops) { 1426 blk_mq_free_request(req); 1427 return; 1428 } 1429 1430 blk_pm_put_request(req); 1431 1432 elv_completed_request(q, req); 1433 1434 /* this is a bio leak */ 1435 WARN_ON(req->bio != NULL); 1436 1437 /* 1438 * Request may not have originated from ll_rw_blk. if not, 1439 * it didn't come out of our reserved rq pools 1440 */ 1441 if (req->cmd_flags & REQ_ALLOCED) { 1442 unsigned int flags = req->cmd_flags; 1443 int op = req_op(req); 1444 struct request_list *rl = blk_rq_rl(req); 1445 1446 BUG_ON(!list_empty(&req->queuelist)); 1447 BUG_ON(ELV_ON_HASH(req)); 1448 1449 blk_free_request(rl, req); 1450 freed_request(rl, op, flags); 1451 blk_put_rl(rl); 1452 } 1453 } 1454 EXPORT_SYMBOL_GPL(__blk_put_request); 1455 1456 void blk_put_request(struct request *req) 1457 { 1458 struct request_queue *q = req->q; 1459 1460 if (q->mq_ops) 1461 blk_mq_free_request(req); 1462 else { 1463 unsigned long flags; 1464 1465 spin_lock_irqsave(q->queue_lock, flags); 1466 __blk_put_request(q, req); 1467 spin_unlock_irqrestore(q->queue_lock, flags); 1468 } 1469 } 1470 EXPORT_SYMBOL(blk_put_request); 1471 1472 /** 1473 * blk_add_request_payload - add a payload to a request 1474 * @rq: request to update 1475 * @page: page backing the payload 1476 * @offset: offset in page 1477 * @len: length of the payload. 1478 * 1479 * This allows to later add a payload to an already submitted request by 1480 * a block driver. The driver needs to take care of freeing the payload 1481 * itself. 1482 * 1483 * Note that this is a quite horrible hack and nothing but handling of 1484 * discard requests should ever use it. 1485 */ 1486 void blk_add_request_payload(struct request *rq, struct page *page, 1487 int offset, unsigned int len) 1488 { 1489 struct bio *bio = rq->bio; 1490 1491 bio->bi_io_vec->bv_page = page; 1492 bio->bi_io_vec->bv_offset = offset; 1493 bio->bi_io_vec->bv_len = len; 1494 1495 bio->bi_iter.bi_size = len; 1496 bio->bi_vcnt = 1; 1497 bio->bi_phys_segments = 1; 1498 1499 rq->__data_len = rq->resid_len = len; 1500 rq->nr_phys_segments = 1; 1501 } 1502 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1503 1504 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1505 struct bio *bio) 1506 { 1507 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1508 1509 if (!ll_back_merge_fn(q, req, bio)) 1510 return false; 1511 1512 trace_block_bio_backmerge(q, req, bio); 1513 1514 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1515 blk_rq_set_mixed_merge(req); 1516 1517 req->biotail->bi_next = bio; 1518 req->biotail = bio; 1519 req->__data_len += bio->bi_iter.bi_size; 1520 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1521 1522 blk_account_io_start(req, false); 1523 return true; 1524 } 1525 1526 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1527 struct bio *bio) 1528 { 1529 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1530 1531 if (!ll_front_merge_fn(q, req, bio)) 1532 return false; 1533 1534 trace_block_bio_frontmerge(q, req, bio); 1535 1536 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1537 blk_rq_set_mixed_merge(req); 1538 1539 bio->bi_next = req->bio; 1540 req->bio = bio; 1541 1542 req->__sector = bio->bi_iter.bi_sector; 1543 req->__data_len += bio->bi_iter.bi_size; 1544 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1545 1546 blk_account_io_start(req, false); 1547 return true; 1548 } 1549 1550 /** 1551 * blk_attempt_plug_merge - try to merge with %current's plugged list 1552 * @q: request_queue new bio is being queued at 1553 * @bio: new bio being queued 1554 * @request_count: out parameter for number of traversed plugged requests 1555 * @same_queue_rq: pointer to &struct request that gets filled in when 1556 * another request associated with @q is found on the plug list 1557 * (optional, may be %NULL) 1558 * 1559 * Determine whether @bio being queued on @q can be merged with a request 1560 * on %current's plugged list. Returns %true if merge was successful, 1561 * otherwise %false. 1562 * 1563 * Plugging coalesces IOs from the same issuer for the same purpose without 1564 * going through @q->queue_lock. As such it's more of an issuing mechanism 1565 * than scheduling, and the request, while may have elvpriv data, is not 1566 * added on the elevator at this point. In addition, we don't have 1567 * reliable access to the elevator outside queue lock. Only check basic 1568 * merging parameters without querying the elevator. 1569 * 1570 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1571 */ 1572 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1573 unsigned int *request_count, 1574 struct request **same_queue_rq) 1575 { 1576 struct blk_plug *plug; 1577 struct request *rq; 1578 bool ret = false; 1579 struct list_head *plug_list; 1580 1581 plug = current->plug; 1582 if (!plug) 1583 goto out; 1584 *request_count = 0; 1585 1586 if (q->mq_ops) 1587 plug_list = &plug->mq_list; 1588 else 1589 plug_list = &plug->list; 1590 1591 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1592 int el_ret; 1593 1594 if (rq->q == q) { 1595 (*request_count)++; 1596 /* 1597 * Only blk-mq multiple hardware queues case checks the 1598 * rq in the same queue, there should be only one such 1599 * rq in a queue 1600 **/ 1601 if (same_queue_rq) 1602 *same_queue_rq = rq; 1603 } 1604 1605 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1606 continue; 1607 1608 el_ret = blk_try_merge(rq, bio); 1609 if (el_ret == ELEVATOR_BACK_MERGE) { 1610 ret = bio_attempt_back_merge(q, rq, bio); 1611 if (ret) 1612 break; 1613 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1614 ret = bio_attempt_front_merge(q, rq, bio); 1615 if (ret) 1616 break; 1617 } 1618 } 1619 out: 1620 return ret; 1621 } 1622 1623 unsigned int blk_plug_queued_count(struct request_queue *q) 1624 { 1625 struct blk_plug *plug; 1626 struct request *rq; 1627 struct list_head *plug_list; 1628 unsigned int ret = 0; 1629 1630 plug = current->plug; 1631 if (!plug) 1632 goto out; 1633 1634 if (q->mq_ops) 1635 plug_list = &plug->mq_list; 1636 else 1637 plug_list = &plug->list; 1638 1639 list_for_each_entry(rq, plug_list, queuelist) { 1640 if (rq->q == q) 1641 ret++; 1642 } 1643 out: 1644 return ret; 1645 } 1646 1647 void init_request_from_bio(struct request *req, struct bio *bio) 1648 { 1649 req->cmd_type = REQ_TYPE_FS; 1650 1651 req->cmd_flags |= bio->bi_opf & REQ_COMMON_MASK; 1652 if (bio->bi_opf & REQ_RAHEAD) 1653 req->cmd_flags |= REQ_FAILFAST_MASK; 1654 1655 req->errors = 0; 1656 req->__sector = bio->bi_iter.bi_sector; 1657 req->ioprio = bio_prio(bio); 1658 blk_rq_bio_prep(req->q, req, bio); 1659 } 1660 1661 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1662 { 1663 const bool sync = !!(bio->bi_opf & REQ_SYNC); 1664 struct blk_plug *plug; 1665 int el_ret, rw_flags = 0, where = ELEVATOR_INSERT_SORT; 1666 struct request *req; 1667 unsigned int request_count = 0; 1668 1669 /* 1670 * low level driver can indicate that it wants pages above a 1671 * certain limit bounced to low memory (ie for highmem, or even 1672 * ISA dma in theory) 1673 */ 1674 blk_queue_bounce(q, &bio); 1675 1676 blk_queue_split(q, &bio, q->bio_split); 1677 1678 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1679 bio->bi_error = -EIO; 1680 bio_endio(bio); 1681 return BLK_QC_T_NONE; 1682 } 1683 1684 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) { 1685 spin_lock_irq(q->queue_lock); 1686 where = ELEVATOR_INSERT_FLUSH; 1687 goto get_rq; 1688 } 1689 1690 /* 1691 * Check if we can merge with the plugged list before grabbing 1692 * any locks. 1693 */ 1694 if (!blk_queue_nomerges(q)) { 1695 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1696 return BLK_QC_T_NONE; 1697 } else 1698 request_count = blk_plug_queued_count(q); 1699 1700 spin_lock_irq(q->queue_lock); 1701 1702 el_ret = elv_merge(q, &req, bio); 1703 if (el_ret == ELEVATOR_BACK_MERGE) { 1704 if (bio_attempt_back_merge(q, req, bio)) { 1705 elv_bio_merged(q, req, bio); 1706 if (!attempt_back_merge(q, req)) 1707 elv_merged_request(q, req, el_ret); 1708 goto out_unlock; 1709 } 1710 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1711 if (bio_attempt_front_merge(q, req, bio)) { 1712 elv_bio_merged(q, req, bio); 1713 if (!attempt_front_merge(q, req)) 1714 elv_merged_request(q, req, el_ret); 1715 goto out_unlock; 1716 } 1717 } 1718 1719 get_rq: 1720 /* 1721 * This sync check and mask will be re-done in init_request_from_bio(), 1722 * but we need to set it earlier to expose the sync flag to the 1723 * rq allocator and io schedulers. 1724 */ 1725 if (sync) 1726 rw_flags |= REQ_SYNC; 1727 1728 /* 1729 * Add in META/PRIO flags, if set, before we get to the IO scheduler 1730 */ 1731 rw_flags |= (bio->bi_opf & (REQ_META | REQ_PRIO)); 1732 1733 /* 1734 * Grab a free request. This is might sleep but can not fail. 1735 * Returns with the queue unlocked. 1736 */ 1737 req = get_request(q, bio_data_dir(bio), rw_flags, bio, GFP_NOIO); 1738 if (IS_ERR(req)) { 1739 bio->bi_error = PTR_ERR(req); 1740 bio_endio(bio); 1741 goto out_unlock; 1742 } 1743 1744 /* 1745 * After dropping the lock and possibly sleeping here, our request 1746 * may now be mergeable after it had proven unmergeable (above). 1747 * We don't worry about that case for efficiency. It won't happen 1748 * often, and the elevators are able to handle it. 1749 */ 1750 init_request_from_bio(req, bio); 1751 1752 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1753 req->cpu = raw_smp_processor_id(); 1754 1755 plug = current->plug; 1756 if (plug) { 1757 /* 1758 * If this is the first request added after a plug, fire 1759 * of a plug trace. 1760 */ 1761 if (!request_count) 1762 trace_block_plug(q); 1763 else { 1764 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1765 blk_flush_plug_list(plug, false); 1766 trace_block_plug(q); 1767 } 1768 } 1769 list_add_tail(&req->queuelist, &plug->list); 1770 blk_account_io_start(req, true); 1771 } else { 1772 spin_lock_irq(q->queue_lock); 1773 add_acct_request(q, req, where); 1774 __blk_run_queue(q); 1775 out_unlock: 1776 spin_unlock_irq(q->queue_lock); 1777 } 1778 1779 return BLK_QC_T_NONE; 1780 } 1781 1782 /* 1783 * If bio->bi_dev is a partition, remap the location 1784 */ 1785 static inline void blk_partition_remap(struct bio *bio) 1786 { 1787 struct block_device *bdev = bio->bi_bdev; 1788 1789 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1790 struct hd_struct *p = bdev->bd_part; 1791 1792 bio->bi_iter.bi_sector += p->start_sect; 1793 bio->bi_bdev = bdev->bd_contains; 1794 1795 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1796 bdev->bd_dev, 1797 bio->bi_iter.bi_sector - p->start_sect); 1798 } 1799 } 1800 1801 static void handle_bad_sector(struct bio *bio) 1802 { 1803 char b[BDEVNAME_SIZE]; 1804 1805 printk(KERN_INFO "attempt to access beyond end of device\n"); 1806 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 1807 bdevname(bio->bi_bdev, b), 1808 bio->bi_opf, 1809 (unsigned long long)bio_end_sector(bio), 1810 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1811 } 1812 1813 #ifdef CONFIG_FAIL_MAKE_REQUEST 1814 1815 static DECLARE_FAULT_ATTR(fail_make_request); 1816 1817 static int __init setup_fail_make_request(char *str) 1818 { 1819 return setup_fault_attr(&fail_make_request, str); 1820 } 1821 __setup("fail_make_request=", setup_fail_make_request); 1822 1823 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1824 { 1825 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1826 } 1827 1828 static int __init fail_make_request_debugfs(void) 1829 { 1830 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1831 NULL, &fail_make_request); 1832 1833 return PTR_ERR_OR_ZERO(dir); 1834 } 1835 1836 late_initcall(fail_make_request_debugfs); 1837 1838 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1839 1840 static inline bool should_fail_request(struct hd_struct *part, 1841 unsigned int bytes) 1842 { 1843 return false; 1844 } 1845 1846 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1847 1848 /* 1849 * Check whether this bio extends beyond the end of the device. 1850 */ 1851 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1852 { 1853 sector_t maxsector; 1854 1855 if (!nr_sectors) 1856 return 0; 1857 1858 /* Test device or partition size, when known. */ 1859 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1860 if (maxsector) { 1861 sector_t sector = bio->bi_iter.bi_sector; 1862 1863 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1864 /* 1865 * This may well happen - the kernel calls bread() 1866 * without checking the size of the device, e.g., when 1867 * mounting a device. 1868 */ 1869 handle_bad_sector(bio); 1870 return 1; 1871 } 1872 } 1873 1874 return 0; 1875 } 1876 1877 static noinline_for_stack bool 1878 generic_make_request_checks(struct bio *bio) 1879 { 1880 struct request_queue *q; 1881 int nr_sectors = bio_sectors(bio); 1882 int err = -EIO; 1883 char b[BDEVNAME_SIZE]; 1884 struct hd_struct *part; 1885 1886 might_sleep(); 1887 1888 if (bio_check_eod(bio, nr_sectors)) 1889 goto end_io; 1890 1891 q = bdev_get_queue(bio->bi_bdev); 1892 if (unlikely(!q)) { 1893 printk(KERN_ERR 1894 "generic_make_request: Trying to access " 1895 "nonexistent block-device %s (%Lu)\n", 1896 bdevname(bio->bi_bdev, b), 1897 (long long) bio->bi_iter.bi_sector); 1898 goto end_io; 1899 } 1900 1901 part = bio->bi_bdev->bd_part; 1902 if (should_fail_request(part, bio->bi_iter.bi_size) || 1903 should_fail_request(&part_to_disk(part)->part0, 1904 bio->bi_iter.bi_size)) 1905 goto end_io; 1906 1907 /* 1908 * If this device has partitions, remap block n 1909 * of partition p to block n+start(p) of the disk. 1910 */ 1911 blk_partition_remap(bio); 1912 1913 if (bio_check_eod(bio, nr_sectors)) 1914 goto end_io; 1915 1916 /* 1917 * Filter flush bio's early so that make_request based 1918 * drivers without flush support don't have to worry 1919 * about them. 1920 */ 1921 if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) && 1922 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 1923 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 1924 if (!nr_sectors) { 1925 err = 0; 1926 goto end_io; 1927 } 1928 } 1929 1930 switch (bio_op(bio)) { 1931 case REQ_OP_DISCARD: 1932 if (!blk_queue_discard(q)) 1933 goto not_supported; 1934 break; 1935 case REQ_OP_SECURE_ERASE: 1936 if (!blk_queue_secure_erase(q)) 1937 goto not_supported; 1938 break; 1939 case REQ_OP_WRITE_SAME: 1940 if (!bdev_write_same(bio->bi_bdev)) 1941 goto not_supported; 1942 break; 1943 default: 1944 break; 1945 } 1946 1947 /* 1948 * Various block parts want %current->io_context and lazy ioc 1949 * allocation ends up trading a lot of pain for a small amount of 1950 * memory. Just allocate it upfront. This may fail and block 1951 * layer knows how to live with it. 1952 */ 1953 create_io_context(GFP_ATOMIC, q->node); 1954 1955 if (!blkcg_bio_issue_check(q, bio)) 1956 return false; 1957 1958 trace_block_bio_queue(q, bio); 1959 return true; 1960 1961 not_supported: 1962 err = -EOPNOTSUPP; 1963 end_io: 1964 bio->bi_error = err; 1965 bio_endio(bio); 1966 return false; 1967 } 1968 1969 /** 1970 * generic_make_request - hand a buffer to its device driver for I/O 1971 * @bio: The bio describing the location in memory and on the device. 1972 * 1973 * generic_make_request() is used to make I/O requests of block 1974 * devices. It is passed a &struct bio, which describes the I/O that needs 1975 * to be done. 1976 * 1977 * generic_make_request() does not return any status. The 1978 * success/failure status of the request, along with notification of 1979 * completion, is delivered asynchronously through the bio->bi_end_io 1980 * function described (one day) else where. 1981 * 1982 * The caller of generic_make_request must make sure that bi_io_vec 1983 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1984 * set to describe the device address, and the 1985 * bi_end_io and optionally bi_private are set to describe how 1986 * completion notification should be signaled. 1987 * 1988 * generic_make_request and the drivers it calls may use bi_next if this 1989 * bio happens to be merged with someone else, and may resubmit the bio to 1990 * a lower device by calling into generic_make_request recursively, which 1991 * means the bio should NOT be touched after the call to ->make_request_fn. 1992 */ 1993 blk_qc_t generic_make_request(struct bio *bio) 1994 { 1995 struct bio_list bio_list_on_stack; 1996 blk_qc_t ret = BLK_QC_T_NONE; 1997 1998 if (!generic_make_request_checks(bio)) 1999 goto out; 2000 2001 /* 2002 * We only want one ->make_request_fn to be active at a time, else 2003 * stack usage with stacked devices could be a problem. So use 2004 * current->bio_list to keep a list of requests submited by a 2005 * make_request_fn function. current->bio_list is also used as a 2006 * flag to say if generic_make_request is currently active in this 2007 * task or not. If it is NULL, then no make_request is active. If 2008 * it is non-NULL, then a make_request is active, and new requests 2009 * should be added at the tail 2010 */ 2011 if (current->bio_list) { 2012 bio_list_add(current->bio_list, bio); 2013 goto out; 2014 } 2015 2016 /* following loop may be a bit non-obvious, and so deserves some 2017 * explanation. 2018 * Before entering the loop, bio->bi_next is NULL (as all callers 2019 * ensure that) so we have a list with a single bio. 2020 * We pretend that we have just taken it off a longer list, so 2021 * we assign bio_list to a pointer to the bio_list_on_stack, 2022 * thus initialising the bio_list of new bios to be 2023 * added. ->make_request() may indeed add some more bios 2024 * through a recursive call to generic_make_request. If it 2025 * did, we find a non-NULL value in bio_list and re-enter the loop 2026 * from the top. In this case we really did just take the bio 2027 * of the top of the list (no pretending) and so remove it from 2028 * bio_list, and call into ->make_request() again. 2029 */ 2030 BUG_ON(bio->bi_next); 2031 bio_list_init(&bio_list_on_stack); 2032 current->bio_list = &bio_list_on_stack; 2033 do { 2034 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2035 2036 if (likely(blk_queue_enter(q, false) == 0)) { 2037 ret = q->make_request_fn(q, bio); 2038 2039 blk_queue_exit(q); 2040 2041 bio = bio_list_pop(current->bio_list); 2042 } else { 2043 struct bio *bio_next = bio_list_pop(current->bio_list); 2044 2045 bio_io_error(bio); 2046 bio = bio_next; 2047 } 2048 } while (bio); 2049 current->bio_list = NULL; /* deactivate */ 2050 2051 out: 2052 return ret; 2053 } 2054 EXPORT_SYMBOL(generic_make_request); 2055 2056 /** 2057 * submit_bio - submit a bio to the block device layer for I/O 2058 * @bio: The &struct bio which describes the I/O 2059 * 2060 * submit_bio() is very similar in purpose to generic_make_request(), and 2061 * uses that function to do most of the work. Both are fairly rough 2062 * interfaces; @bio must be presetup and ready for I/O. 2063 * 2064 */ 2065 blk_qc_t submit_bio(struct bio *bio) 2066 { 2067 /* 2068 * If it's a regular read/write or a barrier with data attached, 2069 * go through the normal accounting stuff before submission. 2070 */ 2071 if (bio_has_data(bio)) { 2072 unsigned int count; 2073 2074 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2075 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 2076 else 2077 count = bio_sectors(bio); 2078 2079 if (op_is_write(bio_op(bio))) { 2080 count_vm_events(PGPGOUT, count); 2081 } else { 2082 task_io_account_read(bio->bi_iter.bi_size); 2083 count_vm_events(PGPGIN, count); 2084 } 2085 2086 if (unlikely(block_dump)) { 2087 char b[BDEVNAME_SIZE]; 2088 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2089 current->comm, task_pid_nr(current), 2090 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2091 (unsigned long long)bio->bi_iter.bi_sector, 2092 bdevname(bio->bi_bdev, b), 2093 count); 2094 } 2095 } 2096 2097 return generic_make_request(bio); 2098 } 2099 EXPORT_SYMBOL(submit_bio); 2100 2101 /** 2102 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2103 * for new the queue limits 2104 * @q: the queue 2105 * @rq: the request being checked 2106 * 2107 * Description: 2108 * @rq may have been made based on weaker limitations of upper-level queues 2109 * in request stacking drivers, and it may violate the limitation of @q. 2110 * Since the block layer and the underlying device driver trust @rq 2111 * after it is inserted to @q, it should be checked against @q before 2112 * the insertion using this generic function. 2113 * 2114 * Request stacking drivers like request-based dm may change the queue 2115 * limits when retrying requests on other queues. Those requests need 2116 * to be checked against the new queue limits again during dispatch. 2117 */ 2118 static int blk_cloned_rq_check_limits(struct request_queue *q, 2119 struct request *rq) 2120 { 2121 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2122 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2123 return -EIO; 2124 } 2125 2126 /* 2127 * queue's settings related to segment counting like q->bounce_pfn 2128 * may differ from that of other stacking queues. 2129 * Recalculate it to check the request correctly on this queue's 2130 * limitation. 2131 */ 2132 blk_recalc_rq_segments(rq); 2133 if (rq->nr_phys_segments > queue_max_segments(q)) { 2134 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2135 return -EIO; 2136 } 2137 2138 return 0; 2139 } 2140 2141 /** 2142 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2143 * @q: the queue to submit the request 2144 * @rq: the request being queued 2145 */ 2146 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2147 { 2148 unsigned long flags; 2149 int where = ELEVATOR_INSERT_BACK; 2150 2151 if (blk_cloned_rq_check_limits(q, rq)) 2152 return -EIO; 2153 2154 if (rq->rq_disk && 2155 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2156 return -EIO; 2157 2158 if (q->mq_ops) { 2159 if (blk_queue_io_stat(q)) 2160 blk_account_io_start(rq, true); 2161 blk_mq_insert_request(rq, false, true, false); 2162 return 0; 2163 } 2164 2165 spin_lock_irqsave(q->queue_lock, flags); 2166 if (unlikely(blk_queue_dying(q))) { 2167 spin_unlock_irqrestore(q->queue_lock, flags); 2168 return -ENODEV; 2169 } 2170 2171 /* 2172 * Submitting request must be dequeued before calling this function 2173 * because it will be linked to another request_queue 2174 */ 2175 BUG_ON(blk_queued_rq(rq)); 2176 2177 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA)) 2178 where = ELEVATOR_INSERT_FLUSH; 2179 2180 add_acct_request(q, rq, where); 2181 if (where == ELEVATOR_INSERT_FLUSH) 2182 __blk_run_queue(q); 2183 spin_unlock_irqrestore(q->queue_lock, flags); 2184 2185 return 0; 2186 } 2187 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2188 2189 /** 2190 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2191 * @rq: request to examine 2192 * 2193 * Description: 2194 * A request could be merge of IOs which require different failure 2195 * handling. This function determines the number of bytes which 2196 * can be failed from the beginning of the request without 2197 * crossing into area which need to be retried further. 2198 * 2199 * Return: 2200 * The number of bytes to fail. 2201 * 2202 * Context: 2203 * queue_lock must be held. 2204 */ 2205 unsigned int blk_rq_err_bytes(const struct request *rq) 2206 { 2207 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2208 unsigned int bytes = 0; 2209 struct bio *bio; 2210 2211 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 2212 return blk_rq_bytes(rq); 2213 2214 /* 2215 * Currently the only 'mixing' which can happen is between 2216 * different fastfail types. We can safely fail portions 2217 * which have all the failfast bits that the first one has - 2218 * the ones which are at least as eager to fail as the first 2219 * one. 2220 */ 2221 for (bio = rq->bio; bio; bio = bio->bi_next) { 2222 if ((bio->bi_opf & ff) != ff) 2223 break; 2224 bytes += bio->bi_iter.bi_size; 2225 } 2226 2227 /* this could lead to infinite loop */ 2228 BUG_ON(blk_rq_bytes(rq) && !bytes); 2229 return bytes; 2230 } 2231 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2232 2233 void blk_account_io_completion(struct request *req, unsigned int bytes) 2234 { 2235 if (blk_do_io_stat(req)) { 2236 const int rw = rq_data_dir(req); 2237 struct hd_struct *part; 2238 int cpu; 2239 2240 cpu = part_stat_lock(); 2241 part = req->part; 2242 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2243 part_stat_unlock(); 2244 } 2245 } 2246 2247 void blk_account_io_done(struct request *req) 2248 { 2249 /* 2250 * Account IO completion. flush_rq isn't accounted as a 2251 * normal IO on queueing nor completion. Accounting the 2252 * containing request is enough. 2253 */ 2254 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2255 unsigned long duration = jiffies - req->start_time; 2256 const int rw = rq_data_dir(req); 2257 struct hd_struct *part; 2258 int cpu; 2259 2260 cpu = part_stat_lock(); 2261 part = req->part; 2262 2263 part_stat_inc(cpu, part, ios[rw]); 2264 part_stat_add(cpu, part, ticks[rw], duration); 2265 part_round_stats(cpu, part); 2266 part_dec_in_flight(part, rw); 2267 2268 hd_struct_put(part); 2269 part_stat_unlock(); 2270 } 2271 } 2272 2273 #ifdef CONFIG_PM 2274 /* 2275 * Don't process normal requests when queue is suspended 2276 * or in the process of suspending/resuming 2277 */ 2278 static struct request *blk_pm_peek_request(struct request_queue *q, 2279 struct request *rq) 2280 { 2281 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2282 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM)))) 2283 return NULL; 2284 else 2285 return rq; 2286 } 2287 #else 2288 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2289 struct request *rq) 2290 { 2291 return rq; 2292 } 2293 #endif 2294 2295 void blk_account_io_start(struct request *rq, bool new_io) 2296 { 2297 struct hd_struct *part; 2298 int rw = rq_data_dir(rq); 2299 int cpu; 2300 2301 if (!blk_do_io_stat(rq)) 2302 return; 2303 2304 cpu = part_stat_lock(); 2305 2306 if (!new_io) { 2307 part = rq->part; 2308 part_stat_inc(cpu, part, merges[rw]); 2309 } else { 2310 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2311 if (!hd_struct_try_get(part)) { 2312 /* 2313 * The partition is already being removed, 2314 * the request will be accounted on the disk only 2315 * 2316 * We take a reference on disk->part0 although that 2317 * partition will never be deleted, so we can treat 2318 * it as any other partition. 2319 */ 2320 part = &rq->rq_disk->part0; 2321 hd_struct_get(part); 2322 } 2323 part_round_stats(cpu, part); 2324 part_inc_in_flight(part, rw); 2325 rq->part = part; 2326 } 2327 2328 part_stat_unlock(); 2329 } 2330 2331 /** 2332 * blk_peek_request - peek at the top of a request queue 2333 * @q: request queue to peek at 2334 * 2335 * Description: 2336 * Return the request at the top of @q. The returned request 2337 * should be started using blk_start_request() before LLD starts 2338 * processing it. 2339 * 2340 * Return: 2341 * Pointer to the request at the top of @q if available. Null 2342 * otherwise. 2343 * 2344 * Context: 2345 * queue_lock must be held. 2346 */ 2347 struct request *blk_peek_request(struct request_queue *q) 2348 { 2349 struct request *rq; 2350 int ret; 2351 2352 while ((rq = __elv_next_request(q)) != NULL) { 2353 2354 rq = blk_pm_peek_request(q, rq); 2355 if (!rq) 2356 break; 2357 2358 if (!(rq->cmd_flags & REQ_STARTED)) { 2359 /* 2360 * This is the first time the device driver 2361 * sees this request (possibly after 2362 * requeueing). Notify IO scheduler. 2363 */ 2364 if (rq->cmd_flags & REQ_SORTED) 2365 elv_activate_rq(q, rq); 2366 2367 /* 2368 * just mark as started even if we don't start 2369 * it, a request that has been delayed should 2370 * not be passed by new incoming requests 2371 */ 2372 rq->cmd_flags |= REQ_STARTED; 2373 trace_block_rq_issue(q, rq); 2374 } 2375 2376 if (!q->boundary_rq || q->boundary_rq == rq) { 2377 q->end_sector = rq_end_sector(rq); 2378 q->boundary_rq = NULL; 2379 } 2380 2381 if (rq->cmd_flags & REQ_DONTPREP) 2382 break; 2383 2384 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2385 /* 2386 * make sure space for the drain appears we 2387 * know we can do this because max_hw_segments 2388 * has been adjusted to be one fewer than the 2389 * device can handle 2390 */ 2391 rq->nr_phys_segments++; 2392 } 2393 2394 if (!q->prep_rq_fn) 2395 break; 2396 2397 ret = q->prep_rq_fn(q, rq); 2398 if (ret == BLKPREP_OK) { 2399 break; 2400 } else if (ret == BLKPREP_DEFER) { 2401 /* 2402 * the request may have been (partially) prepped. 2403 * we need to keep this request in the front to 2404 * avoid resource deadlock. REQ_STARTED will 2405 * prevent other fs requests from passing this one. 2406 */ 2407 if (q->dma_drain_size && blk_rq_bytes(rq) && 2408 !(rq->cmd_flags & REQ_DONTPREP)) { 2409 /* 2410 * remove the space for the drain we added 2411 * so that we don't add it again 2412 */ 2413 --rq->nr_phys_segments; 2414 } 2415 2416 rq = NULL; 2417 break; 2418 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2419 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO; 2420 2421 rq->cmd_flags |= REQ_QUIET; 2422 /* 2423 * Mark this request as started so we don't trigger 2424 * any debug logic in the end I/O path. 2425 */ 2426 blk_start_request(rq); 2427 __blk_end_request_all(rq, err); 2428 } else { 2429 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2430 break; 2431 } 2432 } 2433 2434 return rq; 2435 } 2436 EXPORT_SYMBOL(blk_peek_request); 2437 2438 void blk_dequeue_request(struct request *rq) 2439 { 2440 struct request_queue *q = rq->q; 2441 2442 BUG_ON(list_empty(&rq->queuelist)); 2443 BUG_ON(ELV_ON_HASH(rq)); 2444 2445 list_del_init(&rq->queuelist); 2446 2447 /* 2448 * the time frame between a request being removed from the lists 2449 * and to it is freed is accounted as io that is in progress at 2450 * the driver side. 2451 */ 2452 if (blk_account_rq(rq)) { 2453 q->in_flight[rq_is_sync(rq)]++; 2454 set_io_start_time_ns(rq); 2455 } 2456 } 2457 2458 /** 2459 * blk_start_request - start request processing on the driver 2460 * @req: request to dequeue 2461 * 2462 * Description: 2463 * Dequeue @req and start timeout timer on it. This hands off the 2464 * request to the driver. 2465 * 2466 * Block internal functions which don't want to start timer should 2467 * call blk_dequeue_request(). 2468 * 2469 * Context: 2470 * queue_lock must be held. 2471 */ 2472 void blk_start_request(struct request *req) 2473 { 2474 blk_dequeue_request(req); 2475 2476 /* 2477 * We are now handing the request to the hardware, initialize 2478 * resid_len to full count and add the timeout handler. 2479 */ 2480 req->resid_len = blk_rq_bytes(req); 2481 if (unlikely(blk_bidi_rq(req))) 2482 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2483 2484 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2485 blk_add_timer(req); 2486 } 2487 EXPORT_SYMBOL(blk_start_request); 2488 2489 /** 2490 * blk_fetch_request - fetch a request from a request queue 2491 * @q: request queue to fetch a request from 2492 * 2493 * Description: 2494 * Return the request at the top of @q. The request is started on 2495 * return and LLD can start processing it immediately. 2496 * 2497 * Return: 2498 * Pointer to the request at the top of @q if available. Null 2499 * otherwise. 2500 * 2501 * Context: 2502 * queue_lock must be held. 2503 */ 2504 struct request *blk_fetch_request(struct request_queue *q) 2505 { 2506 struct request *rq; 2507 2508 rq = blk_peek_request(q); 2509 if (rq) 2510 blk_start_request(rq); 2511 return rq; 2512 } 2513 EXPORT_SYMBOL(blk_fetch_request); 2514 2515 /** 2516 * blk_update_request - Special helper function for request stacking drivers 2517 * @req: the request being processed 2518 * @error: %0 for success, < %0 for error 2519 * @nr_bytes: number of bytes to complete @req 2520 * 2521 * Description: 2522 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2523 * the request structure even if @req doesn't have leftover. 2524 * If @req has leftover, sets it up for the next range of segments. 2525 * 2526 * This special helper function is only for request stacking drivers 2527 * (e.g. request-based dm) so that they can handle partial completion. 2528 * Actual device drivers should use blk_end_request instead. 2529 * 2530 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2531 * %false return from this function. 2532 * 2533 * Return: 2534 * %false - this request doesn't have any more data 2535 * %true - this request has more data 2536 **/ 2537 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2538 { 2539 int total_bytes; 2540 2541 trace_block_rq_complete(req->q, req, nr_bytes); 2542 2543 if (!req->bio) 2544 return false; 2545 2546 /* 2547 * For fs requests, rq is just carrier of independent bio's 2548 * and each partial completion should be handled separately. 2549 * Reset per-request error on each partial completion. 2550 * 2551 * TODO: tj: This is too subtle. It would be better to let 2552 * low level drivers do what they see fit. 2553 */ 2554 if (req->cmd_type == REQ_TYPE_FS) 2555 req->errors = 0; 2556 2557 if (error && req->cmd_type == REQ_TYPE_FS && 2558 !(req->cmd_flags & REQ_QUIET)) { 2559 char *error_type; 2560 2561 switch (error) { 2562 case -ENOLINK: 2563 error_type = "recoverable transport"; 2564 break; 2565 case -EREMOTEIO: 2566 error_type = "critical target"; 2567 break; 2568 case -EBADE: 2569 error_type = "critical nexus"; 2570 break; 2571 case -ETIMEDOUT: 2572 error_type = "timeout"; 2573 break; 2574 case -ENOSPC: 2575 error_type = "critical space allocation"; 2576 break; 2577 case -ENODATA: 2578 error_type = "critical medium"; 2579 break; 2580 case -EIO: 2581 default: 2582 error_type = "I/O"; 2583 break; 2584 } 2585 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 2586 __func__, error_type, req->rq_disk ? 2587 req->rq_disk->disk_name : "?", 2588 (unsigned long long)blk_rq_pos(req)); 2589 2590 } 2591 2592 blk_account_io_completion(req, nr_bytes); 2593 2594 total_bytes = 0; 2595 while (req->bio) { 2596 struct bio *bio = req->bio; 2597 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2598 2599 if (bio_bytes == bio->bi_iter.bi_size) 2600 req->bio = bio->bi_next; 2601 2602 req_bio_endio(req, bio, bio_bytes, error); 2603 2604 total_bytes += bio_bytes; 2605 nr_bytes -= bio_bytes; 2606 2607 if (!nr_bytes) 2608 break; 2609 } 2610 2611 /* 2612 * completely done 2613 */ 2614 if (!req->bio) { 2615 /* 2616 * Reset counters so that the request stacking driver 2617 * can find how many bytes remain in the request 2618 * later. 2619 */ 2620 req->__data_len = 0; 2621 return false; 2622 } 2623 2624 req->__data_len -= total_bytes; 2625 2626 /* update sector only for requests with clear definition of sector */ 2627 if (req->cmd_type == REQ_TYPE_FS) 2628 req->__sector += total_bytes >> 9; 2629 2630 /* mixed attributes always follow the first bio */ 2631 if (req->cmd_flags & REQ_MIXED_MERGE) { 2632 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2633 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 2634 } 2635 2636 /* 2637 * If total number of sectors is less than the first segment 2638 * size, something has gone terribly wrong. 2639 */ 2640 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2641 blk_dump_rq_flags(req, "request botched"); 2642 req->__data_len = blk_rq_cur_bytes(req); 2643 } 2644 2645 /* recalculate the number of segments */ 2646 blk_recalc_rq_segments(req); 2647 2648 return true; 2649 } 2650 EXPORT_SYMBOL_GPL(blk_update_request); 2651 2652 static bool blk_update_bidi_request(struct request *rq, int error, 2653 unsigned int nr_bytes, 2654 unsigned int bidi_bytes) 2655 { 2656 if (blk_update_request(rq, error, nr_bytes)) 2657 return true; 2658 2659 /* Bidi request must be completed as a whole */ 2660 if (unlikely(blk_bidi_rq(rq)) && 2661 blk_update_request(rq->next_rq, error, bidi_bytes)) 2662 return true; 2663 2664 if (blk_queue_add_random(rq->q)) 2665 add_disk_randomness(rq->rq_disk); 2666 2667 return false; 2668 } 2669 2670 /** 2671 * blk_unprep_request - unprepare a request 2672 * @req: the request 2673 * 2674 * This function makes a request ready for complete resubmission (or 2675 * completion). It happens only after all error handling is complete, 2676 * so represents the appropriate moment to deallocate any resources 2677 * that were allocated to the request in the prep_rq_fn. The queue 2678 * lock is held when calling this. 2679 */ 2680 void blk_unprep_request(struct request *req) 2681 { 2682 struct request_queue *q = req->q; 2683 2684 req->cmd_flags &= ~REQ_DONTPREP; 2685 if (q->unprep_rq_fn) 2686 q->unprep_rq_fn(q, req); 2687 } 2688 EXPORT_SYMBOL_GPL(blk_unprep_request); 2689 2690 /* 2691 * queue lock must be held 2692 */ 2693 void blk_finish_request(struct request *req, int error) 2694 { 2695 if (req->cmd_flags & REQ_QUEUED) 2696 blk_queue_end_tag(req->q, req); 2697 2698 BUG_ON(blk_queued_rq(req)); 2699 2700 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2701 laptop_io_completion(&req->q->backing_dev_info); 2702 2703 blk_delete_timer(req); 2704 2705 if (req->cmd_flags & REQ_DONTPREP) 2706 blk_unprep_request(req); 2707 2708 blk_account_io_done(req); 2709 2710 if (req->end_io) 2711 req->end_io(req, error); 2712 else { 2713 if (blk_bidi_rq(req)) 2714 __blk_put_request(req->next_rq->q, req->next_rq); 2715 2716 __blk_put_request(req->q, req); 2717 } 2718 } 2719 EXPORT_SYMBOL(blk_finish_request); 2720 2721 /** 2722 * blk_end_bidi_request - Complete a bidi request 2723 * @rq: the request to complete 2724 * @error: %0 for success, < %0 for error 2725 * @nr_bytes: number of bytes to complete @rq 2726 * @bidi_bytes: number of bytes to complete @rq->next_rq 2727 * 2728 * Description: 2729 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2730 * Drivers that supports bidi can safely call this member for any 2731 * type of request, bidi or uni. In the later case @bidi_bytes is 2732 * just ignored. 2733 * 2734 * Return: 2735 * %false - we are done with this request 2736 * %true - still buffers pending for this request 2737 **/ 2738 static bool blk_end_bidi_request(struct request *rq, int error, 2739 unsigned int nr_bytes, unsigned int bidi_bytes) 2740 { 2741 struct request_queue *q = rq->q; 2742 unsigned long flags; 2743 2744 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2745 return true; 2746 2747 spin_lock_irqsave(q->queue_lock, flags); 2748 blk_finish_request(rq, error); 2749 spin_unlock_irqrestore(q->queue_lock, flags); 2750 2751 return false; 2752 } 2753 2754 /** 2755 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2756 * @rq: the request to complete 2757 * @error: %0 for success, < %0 for error 2758 * @nr_bytes: number of bytes to complete @rq 2759 * @bidi_bytes: number of bytes to complete @rq->next_rq 2760 * 2761 * Description: 2762 * Identical to blk_end_bidi_request() except that queue lock is 2763 * assumed to be locked on entry and remains so on return. 2764 * 2765 * Return: 2766 * %false - we are done with this request 2767 * %true - still buffers pending for this request 2768 **/ 2769 bool __blk_end_bidi_request(struct request *rq, int error, 2770 unsigned int nr_bytes, unsigned int bidi_bytes) 2771 { 2772 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2773 return true; 2774 2775 blk_finish_request(rq, error); 2776 2777 return false; 2778 } 2779 2780 /** 2781 * blk_end_request - Helper function for drivers to complete the request. 2782 * @rq: the request being processed 2783 * @error: %0 for success, < %0 for error 2784 * @nr_bytes: number of bytes to complete 2785 * 2786 * Description: 2787 * Ends I/O on a number of bytes attached to @rq. 2788 * If @rq has leftover, sets it up for the next range of segments. 2789 * 2790 * Return: 2791 * %false - we are done with this request 2792 * %true - still buffers pending for this request 2793 **/ 2794 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2795 { 2796 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2797 } 2798 EXPORT_SYMBOL(blk_end_request); 2799 2800 /** 2801 * blk_end_request_all - Helper function for drives to finish the request. 2802 * @rq: the request to finish 2803 * @error: %0 for success, < %0 for error 2804 * 2805 * Description: 2806 * Completely finish @rq. 2807 */ 2808 void blk_end_request_all(struct request *rq, int error) 2809 { 2810 bool pending; 2811 unsigned int bidi_bytes = 0; 2812 2813 if (unlikely(blk_bidi_rq(rq))) 2814 bidi_bytes = blk_rq_bytes(rq->next_rq); 2815 2816 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2817 BUG_ON(pending); 2818 } 2819 EXPORT_SYMBOL(blk_end_request_all); 2820 2821 /** 2822 * blk_end_request_cur - Helper function to finish the current request chunk. 2823 * @rq: the request to finish the current chunk for 2824 * @error: %0 for success, < %0 for error 2825 * 2826 * Description: 2827 * Complete the current consecutively mapped chunk from @rq. 2828 * 2829 * Return: 2830 * %false - we are done with this request 2831 * %true - still buffers pending for this request 2832 */ 2833 bool blk_end_request_cur(struct request *rq, int error) 2834 { 2835 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2836 } 2837 EXPORT_SYMBOL(blk_end_request_cur); 2838 2839 /** 2840 * blk_end_request_err - Finish a request till the next failure boundary. 2841 * @rq: the request to finish till the next failure boundary for 2842 * @error: must be negative errno 2843 * 2844 * Description: 2845 * Complete @rq till the next failure boundary. 2846 * 2847 * Return: 2848 * %false - we are done with this request 2849 * %true - still buffers pending for this request 2850 */ 2851 bool blk_end_request_err(struct request *rq, int error) 2852 { 2853 WARN_ON(error >= 0); 2854 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2855 } 2856 EXPORT_SYMBOL_GPL(blk_end_request_err); 2857 2858 /** 2859 * __blk_end_request - Helper function for drivers to complete the request. 2860 * @rq: the request being processed 2861 * @error: %0 for success, < %0 for error 2862 * @nr_bytes: number of bytes to complete 2863 * 2864 * Description: 2865 * Must be called with queue lock held unlike blk_end_request(). 2866 * 2867 * Return: 2868 * %false - we are done with this request 2869 * %true - still buffers pending for this request 2870 **/ 2871 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2872 { 2873 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2874 } 2875 EXPORT_SYMBOL(__blk_end_request); 2876 2877 /** 2878 * __blk_end_request_all - Helper function for drives to finish the request. 2879 * @rq: the request to finish 2880 * @error: %0 for success, < %0 for error 2881 * 2882 * Description: 2883 * Completely finish @rq. Must be called with queue lock held. 2884 */ 2885 void __blk_end_request_all(struct request *rq, int error) 2886 { 2887 bool pending; 2888 unsigned int bidi_bytes = 0; 2889 2890 if (unlikely(blk_bidi_rq(rq))) 2891 bidi_bytes = blk_rq_bytes(rq->next_rq); 2892 2893 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2894 BUG_ON(pending); 2895 } 2896 EXPORT_SYMBOL(__blk_end_request_all); 2897 2898 /** 2899 * __blk_end_request_cur - Helper function to finish the current request chunk. 2900 * @rq: the request to finish the current chunk for 2901 * @error: %0 for success, < %0 for error 2902 * 2903 * Description: 2904 * Complete the current consecutively mapped chunk from @rq. Must 2905 * be called with queue lock held. 2906 * 2907 * Return: 2908 * %false - we are done with this request 2909 * %true - still buffers pending for this request 2910 */ 2911 bool __blk_end_request_cur(struct request *rq, int error) 2912 { 2913 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2914 } 2915 EXPORT_SYMBOL(__blk_end_request_cur); 2916 2917 /** 2918 * __blk_end_request_err - Finish a request till the next failure boundary. 2919 * @rq: the request to finish till the next failure boundary for 2920 * @error: must be negative errno 2921 * 2922 * Description: 2923 * Complete @rq till the next failure boundary. Must be called 2924 * with queue lock held. 2925 * 2926 * Return: 2927 * %false - we are done with this request 2928 * %true - still buffers pending for this request 2929 */ 2930 bool __blk_end_request_err(struct request *rq, int error) 2931 { 2932 WARN_ON(error >= 0); 2933 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2934 } 2935 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2936 2937 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2938 struct bio *bio) 2939 { 2940 req_set_op(rq, bio_op(bio)); 2941 2942 if (bio_has_data(bio)) 2943 rq->nr_phys_segments = bio_phys_segments(q, bio); 2944 2945 rq->__data_len = bio->bi_iter.bi_size; 2946 rq->bio = rq->biotail = bio; 2947 2948 if (bio->bi_bdev) 2949 rq->rq_disk = bio->bi_bdev->bd_disk; 2950 } 2951 2952 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2953 /** 2954 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2955 * @rq: the request to be flushed 2956 * 2957 * Description: 2958 * Flush all pages in @rq. 2959 */ 2960 void rq_flush_dcache_pages(struct request *rq) 2961 { 2962 struct req_iterator iter; 2963 struct bio_vec bvec; 2964 2965 rq_for_each_segment(bvec, rq, iter) 2966 flush_dcache_page(bvec.bv_page); 2967 } 2968 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2969 #endif 2970 2971 /** 2972 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2973 * @q : the queue of the device being checked 2974 * 2975 * Description: 2976 * Check if underlying low-level drivers of a device are busy. 2977 * If the drivers want to export their busy state, they must set own 2978 * exporting function using blk_queue_lld_busy() first. 2979 * 2980 * Basically, this function is used only by request stacking drivers 2981 * to stop dispatching requests to underlying devices when underlying 2982 * devices are busy. This behavior helps more I/O merging on the queue 2983 * of the request stacking driver and prevents I/O throughput regression 2984 * on burst I/O load. 2985 * 2986 * Return: 2987 * 0 - Not busy (The request stacking driver should dispatch request) 2988 * 1 - Busy (The request stacking driver should stop dispatching request) 2989 */ 2990 int blk_lld_busy(struct request_queue *q) 2991 { 2992 if (q->lld_busy_fn) 2993 return q->lld_busy_fn(q); 2994 2995 return 0; 2996 } 2997 EXPORT_SYMBOL_GPL(blk_lld_busy); 2998 2999 /** 3000 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3001 * @rq: the clone request to be cleaned up 3002 * 3003 * Description: 3004 * Free all bios in @rq for a cloned request. 3005 */ 3006 void blk_rq_unprep_clone(struct request *rq) 3007 { 3008 struct bio *bio; 3009 3010 while ((bio = rq->bio) != NULL) { 3011 rq->bio = bio->bi_next; 3012 3013 bio_put(bio); 3014 } 3015 } 3016 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3017 3018 /* 3019 * Copy attributes of the original request to the clone request. 3020 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3021 */ 3022 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3023 { 3024 dst->cpu = src->cpu; 3025 req_set_op_attrs(dst, req_op(src), 3026 (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE); 3027 dst->cmd_type = src->cmd_type; 3028 dst->__sector = blk_rq_pos(src); 3029 dst->__data_len = blk_rq_bytes(src); 3030 dst->nr_phys_segments = src->nr_phys_segments; 3031 dst->ioprio = src->ioprio; 3032 dst->extra_len = src->extra_len; 3033 } 3034 3035 /** 3036 * blk_rq_prep_clone - Helper function to setup clone request 3037 * @rq: the request to be setup 3038 * @rq_src: original request to be cloned 3039 * @bs: bio_set that bios for clone are allocated from 3040 * @gfp_mask: memory allocation mask for bio 3041 * @bio_ctr: setup function to be called for each clone bio. 3042 * Returns %0 for success, non %0 for failure. 3043 * @data: private data to be passed to @bio_ctr 3044 * 3045 * Description: 3046 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3047 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3048 * are not copied, and copying such parts is the caller's responsibility. 3049 * Also, pages which the original bios are pointing to are not copied 3050 * and the cloned bios just point same pages. 3051 * So cloned bios must be completed before original bios, which means 3052 * the caller must complete @rq before @rq_src. 3053 */ 3054 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3055 struct bio_set *bs, gfp_t gfp_mask, 3056 int (*bio_ctr)(struct bio *, struct bio *, void *), 3057 void *data) 3058 { 3059 struct bio *bio, *bio_src; 3060 3061 if (!bs) 3062 bs = fs_bio_set; 3063 3064 __rq_for_each_bio(bio_src, rq_src) { 3065 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3066 if (!bio) 3067 goto free_and_out; 3068 3069 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3070 goto free_and_out; 3071 3072 if (rq->bio) { 3073 rq->biotail->bi_next = bio; 3074 rq->biotail = bio; 3075 } else 3076 rq->bio = rq->biotail = bio; 3077 } 3078 3079 __blk_rq_prep_clone(rq, rq_src); 3080 3081 return 0; 3082 3083 free_and_out: 3084 if (bio) 3085 bio_put(bio); 3086 blk_rq_unprep_clone(rq); 3087 3088 return -ENOMEM; 3089 } 3090 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3091 3092 int kblockd_schedule_work(struct work_struct *work) 3093 { 3094 return queue_work(kblockd_workqueue, work); 3095 } 3096 EXPORT_SYMBOL(kblockd_schedule_work); 3097 3098 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 3099 unsigned long delay) 3100 { 3101 return queue_delayed_work(kblockd_workqueue, dwork, delay); 3102 } 3103 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 3104 3105 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3106 unsigned long delay) 3107 { 3108 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3109 } 3110 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 3111 3112 /** 3113 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3114 * @plug: The &struct blk_plug that needs to be initialized 3115 * 3116 * Description: 3117 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3118 * pending I/O should the task end up blocking between blk_start_plug() and 3119 * blk_finish_plug(). This is important from a performance perspective, but 3120 * also ensures that we don't deadlock. For instance, if the task is blocking 3121 * for a memory allocation, memory reclaim could end up wanting to free a 3122 * page belonging to that request that is currently residing in our private 3123 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3124 * this kind of deadlock. 3125 */ 3126 void blk_start_plug(struct blk_plug *plug) 3127 { 3128 struct task_struct *tsk = current; 3129 3130 /* 3131 * If this is a nested plug, don't actually assign it. 3132 */ 3133 if (tsk->plug) 3134 return; 3135 3136 INIT_LIST_HEAD(&plug->list); 3137 INIT_LIST_HEAD(&plug->mq_list); 3138 INIT_LIST_HEAD(&plug->cb_list); 3139 /* 3140 * Store ordering should not be needed here, since a potential 3141 * preempt will imply a full memory barrier 3142 */ 3143 tsk->plug = plug; 3144 } 3145 EXPORT_SYMBOL(blk_start_plug); 3146 3147 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3148 { 3149 struct request *rqa = container_of(a, struct request, queuelist); 3150 struct request *rqb = container_of(b, struct request, queuelist); 3151 3152 return !(rqa->q < rqb->q || 3153 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3154 } 3155 3156 /* 3157 * If 'from_schedule' is true, then postpone the dispatch of requests 3158 * until a safe kblockd context. We due this to avoid accidental big 3159 * additional stack usage in driver dispatch, in places where the originally 3160 * plugger did not intend it. 3161 */ 3162 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3163 bool from_schedule) 3164 __releases(q->queue_lock) 3165 { 3166 trace_block_unplug(q, depth, !from_schedule); 3167 3168 if (from_schedule) 3169 blk_run_queue_async(q); 3170 else 3171 __blk_run_queue(q); 3172 spin_unlock(q->queue_lock); 3173 } 3174 3175 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3176 { 3177 LIST_HEAD(callbacks); 3178 3179 while (!list_empty(&plug->cb_list)) { 3180 list_splice_init(&plug->cb_list, &callbacks); 3181 3182 while (!list_empty(&callbacks)) { 3183 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3184 struct blk_plug_cb, 3185 list); 3186 list_del(&cb->list); 3187 cb->callback(cb, from_schedule); 3188 } 3189 } 3190 } 3191 3192 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3193 int size) 3194 { 3195 struct blk_plug *plug = current->plug; 3196 struct blk_plug_cb *cb; 3197 3198 if (!plug) 3199 return NULL; 3200 3201 list_for_each_entry(cb, &plug->cb_list, list) 3202 if (cb->callback == unplug && cb->data == data) 3203 return cb; 3204 3205 /* Not currently on the callback list */ 3206 BUG_ON(size < sizeof(*cb)); 3207 cb = kzalloc(size, GFP_ATOMIC); 3208 if (cb) { 3209 cb->data = data; 3210 cb->callback = unplug; 3211 list_add(&cb->list, &plug->cb_list); 3212 } 3213 return cb; 3214 } 3215 EXPORT_SYMBOL(blk_check_plugged); 3216 3217 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3218 { 3219 struct request_queue *q; 3220 unsigned long flags; 3221 struct request *rq; 3222 LIST_HEAD(list); 3223 unsigned int depth; 3224 3225 flush_plug_callbacks(plug, from_schedule); 3226 3227 if (!list_empty(&plug->mq_list)) 3228 blk_mq_flush_plug_list(plug, from_schedule); 3229 3230 if (list_empty(&plug->list)) 3231 return; 3232 3233 list_splice_init(&plug->list, &list); 3234 3235 list_sort(NULL, &list, plug_rq_cmp); 3236 3237 q = NULL; 3238 depth = 0; 3239 3240 /* 3241 * Save and disable interrupts here, to avoid doing it for every 3242 * queue lock we have to take. 3243 */ 3244 local_irq_save(flags); 3245 while (!list_empty(&list)) { 3246 rq = list_entry_rq(list.next); 3247 list_del_init(&rq->queuelist); 3248 BUG_ON(!rq->q); 3249 if (rq->q != q) { 3250 /* 3251 * This drops the queue lock 3252 */ 3253 if (q) 3254 queue_unplugged(q, depth, from_schedule); 3255 q = rq->q; 3256 depth = 0; 3257 spin_lock(q->queue_lock); 3258 } 3259 3260 /* 3261 * Short-circuit if @q is dead 3262 */ 3263 if (unlikely(blk_queue_dying(q))) { 3264 __blk_end_request_all(rq, -ENODEV); 3265 continue; 3266 } 3267 3268 /* 3269 * rq is already accounted, so use raw insert 3270 */ 3271 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA)) 3272 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3273 else 3274 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3275 3276 depth++; 3277 } 3278 3279 /* 3280 * This drops the queue lock 3281 */ 3282 if (q) 3283 queue_unplugged(q, depth, from_schedule); 3284 3285 local_irq_restore(flags); 3286 } 3287 3288 void blk_finish_plug(struct blk_plug *plug) 3289 { 3290 if (plug != current->plug) 3291 return; 3292 blk_flush_plug_list(plug, false); 3293 3294 current->plug = NULL; 3295 } 3296 EXPORT_SYMBOL(blk_finish_plug); 3297 3298 bool blk_poll(struct request_queue *q, blk_qc_t cookie) 3299 { 3300 struct blk_plug *plug; 3301 long state; 3302 3303 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) || 3304 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3305 return false; 3306 3307 plug = current->plug; 3308 if (plug) 3309 blk_flush_plug_list(plug, false); 3310 3311 state = current->state; 3312 while (!need_resched()) { 3313 unsigned int queue_num = blk_qc_t_to_queue_num(cookie); 3314 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num]; 3315 int ret; 3316 3317 hctx->poll_invoked++; 3318 3319 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie)); 3320 if (ret > 0) { 3321 hctx->poll_success++; 3322 set_current_state(TASK_RUNNING); 3323 return true; 3324 } 3325 3326 if (signal_pending_state(state, current)) 3327 set_current_state(TASK_RUNNING); 3328 3329 if (current->state == TASK_RUNNING) 3330 return true; 3331 if (ret < 0) 3332 break; 3333 cpu_relax(); 3334 } 3335 3336 return false; 3337 } 3338 EXPORT_SYMBOL_GPL(blk_poll); 3339 3340 #ifdef CONFIG_PM 3341 /** 3342 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3343 * @q: the queue of the device 3344 * @dev: the device the queue belongs to 3345 * 3346 * Description: 3347 * Initialize runtime-PM-related fields for @q and start auto suspend for 3348 * @dev. Drivers that want to take advantage of request-based runtime PM 3349 * should call this function after @dev has been initialized, and its 3350 * request queue @q has been allocated, and runtime PM for it can not happen 3351 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3352 * cases, driver should call this function before any I/O has taken place. 3353 * 3354 * This function takes care of setting up using auto suspend for the device, 3355 * the autosuspend delay is set to -1 to make runtime suspend impossible 3356 * until an updated value is either set by user or by driver. Drivers do 3357 * not need to touch other autosuspend settings. 3358 * 3359 * The block layer runtime PM is request based, so only works for drivers 3360 * that use request as their IO unit instead of those directly use bio's. 3361 */ 3362 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3363 { 3364 q->dev = dev; 3365 q->rpm_status = RPM_ACTIVE; 3366 pm_runtime_set_autosuspend_delay(q->dev, -1); 3367 pm_runtime_use_autosuspend(q->dev); 3368 } 3369 EXPORT_SYMBOL(blk_pm_runtime_init); 3370 3371 /** 3372 * blk_pre_runtime_suspend - Pre runtime suspend check 3373 * @q: the queue of the device 3374 * 3375 * Description: 3376 * This function will check if runtime suspend is allowed for the device 3377 * by examining if there are any requests pending in the queue. If there 3378 * are requests pending, the device can not be runtime suspended; otherwise, 3379 * the queue's status will be updated to SUSPENDING and the driver can 3380 * proceed to suspend the device. 3381 * 3382 * For the not allowed case, we mark last busy for the device so that 3383 * runtime PM core will try to autosuspend it some time later. 3384 * 3385 * This function should be called near the start of the device's 3386 * runtime_suspend callback. 3387 * 3388 * Return: 3389 * 0 - OK to runtime suspend the device 3390 * -EBUSY - Device should not be runtime suspended 3391 */ 3392 int blk_pre_runtime_suspend(struct request_queue *q) 3393 { 3394 int ret = 0; 3395 3396 if (!q->dev) 3397 return ret; 3398 3399 spin_lock_irq(q->queue_lock); 3400 if (q->nr_pending) { 3401 ret = -EBUSY; 3402 pm_runtime_mark_last_busy(q->dev); 3403 } else { 3404 q->rpm_status = RPM_SUSPENDING; 3405 } 3406 spin_unlock_irq(q->queue_lock); 3407 return ret; 3408 } 3409 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3410 3411 /** 3412 * blk_post_runtime_suspend - Post runtime suspend processing 3413 * @q: the queue of the device 3414 * @err: return value of the device's runtime_suspend function 3415 * 3416 * Description: 3417 * Update the queue's runtime status according to the return value of the 3418 * device's runtime suspend function and mark last busy for the device so 3419 * that PM core will try to auto suspend the device at a later time. 3420 * 3421 * This function should be called near the end of the device's 3422 * runtime_suspend callback. 3423 */ 3424 void blk_post_runtime_suspend(struct request_queue *q, int err) 3425 { 3426 if (!q->dev) 3427 return; 3428 3429 spin_lock_irq(q->queue_lock); 3430 if (!err) { 3431 q->rpm_status = RPM_SUSPENDED; 3432 } else { 3433 q->rpm_status = RPM_ACTIVE; 3434 pm_runtime_mark_last_busy(q->dev); 3435 } 3436 spin_unlock_irq(q->queue_lock); 3437 } 3438 EXPORT_SYMBOL(blk_post_runtime_suspend); 3439 3440 /** 3441 * blk_pre_runtime_resume - Pre runtime resume processing 3442 * @q: the queue of the device 3443 * 3444 * Description: 3445 * Update the queue's runtime status to RESUMING in preparation for the 3446 * runtime resume of the device. 3447 * 3448 * This function should be called near the start of the device's 3449 * runtime_resume callback. 3450 */ 3451 void blk_pre_runtime_resume(struct request_queue *q) 3452 { 3453 if (!q->dev) 3454 return; 3455 3456 spin_lock_irq(q->queue_lock); 3457 q->rpm_status = RPM_RESUMING; 3458 spin_unlock_irq(q->queue_lock); 3459 } 3460 EXPORT_SYMBOL(blk_pre_runtime_resume); 3461 3462 /** 3463 * blk_post_runtime_resume - Post runtime resume processing 3464 * @q: the queue of the device 3465 * @err: return value of the device's runtime_resume function 3466 * 3467 * Description: 3468 * Update the queue's runtime status according to the return value of the 3469 * device's runtime_resume function. If it is successfully resumed, process 3470 * the requests that are queued into the device's queue when it is resuming 3471 * and then mark last busy and initiate autosuspend for it. 3472 * 3473 * This function should be called near the end of the device's 3474 * runtime_resume callback. 3475 */ 3476 void blk_post_runtime_resume(struct request_queue *q, int err) 3477 { 3478 if (!q->dev) 3479 return; 3480 3481 spin_lock_irq(q->queue_lock); 3482 if (!err) { 3483 q->rpm_status = RPM_ACTIVE; 3484 __blk_run_queue(q); 3485 pm_runtime_mark_last_busy(q->dev); 3486 pm_request_autosuspend(q->dev); 3487 } else { 3488 q->rpm_status = RPM_SUSPENDED; 3489 } 3490 spin_unlock_irq(q->queue_lock); 3491 } 3492 EXPORT_SYMBOL(blk_post_runtime_resume); 3493 3494 /** 3495 * blk_set_runtime_active - Force runtime status of the queue to be active 3496 * @q: the queue of the device 3497 * 3498 * If the device is left runtime suspended during system suspend the resume 3499 * hook typically resumes the device and corrects runtime status 3500 * accordingly. However, that does not affect the queue runtime PM status 3501 * which is still "suspended". This prevents processing requests from the 3502 * queue. 3503 * 3504 * This function can be used in driver's resume hook to correct queue 3505 * runtime PM status and re-enable peeking requests from the queue. It 3506 * should be called before first request is added to the queue. 3507 */ 3508 void blk_set_runtime_active(struct request_queue *q) 3509 { 3510 spin_lock_irq(q->queue_lock); 3511 q->rpm_status = RPM_ACTIVE; 3512 pm_runtime_mark_last_busy(q->dev); 3513 pm_request_autosuspend(q->dev); 3514 spin_unlock_irq(q->queue_lock); 3515 } 3516 EXPORT_SYMBOL(blk_set_runtime_active); 3517 #endif 3518 3519 int __init blk_dev_init(void) 3520 { 3521 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3522 FIELD_SIZEOF(struct request, cmd_flags)); 3523 3524 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3525 kblockd_workqueue = alloc_workqueue("kblockd", 3526 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3527 if (!kblockd_workqueue) 3528 panic("Failed to create kblockd\n"); 3529 3530 request_cachep = kmem_cache_create("blkdev_requests", 3531 sizeof(struct request), 0, SLAB_PANIC, NULL); 3532 3533 blk_requestq_cachep = kmem_cache_create("request_queue", 3534 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3535 3536 return 0; 3537 } 3538