xref: /openbmc/linux/block/blk-core.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41 
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-wbt.h"
46 
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry *blk_debugfs_root;
49 #endif
50 
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
56 
57 DEFINE_IDA(blk_queue_ida);
58 
59 /*
60  * For the allocated request tables
61  */
62 struct kmem_cache *request_cachep;
63 
64 /*
65  * For queue allocation
66  */
67 struct kmem_cache *blk_requestq_cachep;
68 
69 /*
70  * Controlling structure to kblockd
71  */
72 static struct workqueue_struct *kblockd_workqueue;
73 
74 static void blk_clear_congested(struct request_list *rl, int sync)
75 {
76 #ifdef CONFIG_CGROUP_WRITEBACK
77 	clear_wb_congested(rl->blkg->wb_congested, sync);
78 #else
79 	/*
80 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
81 	 * flip its congestion state for events on other blkcgs.
82 	 */
83 	if (rl == &rl->q->root_rl)
84 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
85 #endif
86 }
87 
88 static void blk_set_congested(struct request_list *rl, int sync)
89 {
90 #ifdef CONFIG_CGROUP_WRITEBACK
91 	set_wb_congested(rl->blkg->wb_congested, sync);
92 #else
93 	/* see blk_clear_congested() */
94 	if (rl == &rl->q->root_rl)
95 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
96 #endif
97 }
98 
99 void blk_queue_congestion_threshold(struct request_queue *q)
100 {
101 	int nr;
102 
103 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 	if (nr > q->nr_requests)
105 		nr = q->nr_requests;
106 	q->nr_congestion_on = nr;
107 
108 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 	if (nr < 1)
110 		nr = 1;
111 	q->nr_congestion_off = nr;
112 }
113 
114 void blk_rq_init(struct request_queue *q, struct request *rq)
115 {
116 	memset(rq, 0, sizeof(*rq));
117 
118 	INIT_LIST_HEAD(&rq->queuelist);
119 	INIT_LIST_HEAD(&rq->timeout_list);
120 	rq->cpu = -1;
121 	rq->q = q;
122 	rq->__sector = (sector_t) -1;
123 	INIT_HLIST_NODE(&rq->hash);
124 	RB_CLEAR_NODE(&rq->rb_node);
125 	rq->tag = -1;
126 	rq->internal_tag = -1;
127 	rq->start_time = jiffies;
128 	set_start_time_ns(rq);
129 	rq->part = NULL;
130 	seqcount_init(&rq->gstate_seq);
131 	u64_stats_init(&rq->aborted_gstate_sync);
132 }
133 EXPORT_SYMBOL(blk_rq_init);
134 
135 static const struct {
136 	int		errno;
137 	const char	*name;
138 } blk_errors[] = {
139 	[BLK_STS_OK]		= { 0,		"" },
140 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
141 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
142 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
143 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
144 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
145 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
146 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
147 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
148 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
149 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
150 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
151 
152 	/* device mapper special case, should not leak out: */
153 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
154 
155 	/* everything else not covered above: */
156 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
157 };
158 
159 blk_status_t errno_to_blk_status(int errno)
160 {
161 	int i;
162 
163 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
164 		if (blk_errors[i].errno == errno)
165 			return (__force blk_status_t)i;
166 	}
167 
168 	return BLK_STS_IOERR;
169 }
170 EXPORT_SYMBOL_GPL(errno_to_blk_status);
171 
172 int blk_status_to_errno(blk_status_t status)
173 {
174 	int idx = (__force int)status;
175 
176 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
177 		return -EIO;
178 	return blk_errors[idx].errno;
179 }
180 EXPORT_SYMBOL_GPL(blk_status_to_errno);
181 
182 static void print_req_error(struct request *req, blk_status_t status)
183 {
184 	int idx = (__force int)status;
185 
186 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
187 		return;
188 
189 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
190 			   __func__, blk_errors[idx].name, req->rq_disk ?
191 			   req->rq_disk->disk_name : "?",
192 			   (unsigned long long)blk_rq_pos(req));
193 }
194 
195 static void req_bio_endio(struct request *rq, struct bio *bio,
196 			  unsigned int nbytes, blk_status_t error)
197 {
198 	if (error)
199 		bio->bi_status = error;
200 
201 	if (unlikely(rq->rq_flags & RQF_QUIET))
202 		bio_set_flag(bio, BIO_QUIET);
203 
204 	bio_advance(bio, nbytes);
205 
206 	/* don't actually finish bio if it's part of flush sequence */
207 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
208 		bio_endio(bio);
209 }
210 
211 void blk_dump_rq_flags(struct request *rq, char *msg)
212 {
213 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
214 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
215 		(unsigned long long) rq->cmd_flags);
216 
217 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
218 	       (unsigned long long)blk_rq_pos(rq),
219 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
220 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
221 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
222 }
223 EXPORT_SYMBOL(blk_dump_rq_flags);
224 
225 static void blk_delay_work(struct work_struct *work)
226 {
227 	struct request_queue *q;
228 
229 	q = container_of(work, struct request_queue, delay_work.work);
230 	spin_lock_irq(q->queue_lock);
231 	__blk_run_queue(q);
232 	spin_unlock_irq(q->queue_lock);
233 }
234 
235 /**
236  * blk_delay_queue - restart queueing after defined interval
237  * @q:		The &struct request_queue in question
238  * @msecs:	Delay in msecs
239  *
240  * Description:
241  *   Sometimes queueing needs to be postponed for a little while, to allow
242  *   resources to come back. This function will make sure that queueing is
243  *   restarted around the specified time.
244  */
245 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
246 {
247 	lockdep_assert_held(q->queue_lock);
248 	WARN_ON_ONCE(q->mq_ops);
249 
250 	if (likely(!blk_queue_dead(q)))
251 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
252 				   msecs_to_jiffies(msecs));
253 }
254 EXPORT_SYMBOL(blk_delay_queue);
255 
256 /**
257  * blk_start_queue_async - asynchronously restart a previously stopped queue
258  * @q:    The &struct request_queue in question
259  *
260  * Description:
261  *   blk_start_queue_async() will clear the stop flag on the queue, and
262  *   ensure that the request_fn for the queue is run from an async
263  *   context.
264  **/
265 void blk_start_queue_async(struct request_queue *q)
266 {
267 	lockdep_assert_held(q->queue_lock);
268 	WARN_ON_ONCE(q->mq_ops);
269 
270 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
271 	blk_run_queue_async(q);
272 }
273 EXPORT_SYMBOL(blk_start_queue_async);
274 
275 /**
276  * blk_start_queue - restart a previously stopped queue
277  * @q:    The &struct request_queue in question
278  *
279  * Description:
280  *   blk_start_queue() will clear the stop flag on the queue, and call
281  *   the request_fn for the queue if it was in a stopped state when
282  *   entered. Also see blk_stop_queue().
283  **/
284 void blk_start_queue(struct request_queue *q)
285 {
286 	lockdep_assert_held(q->queue_lock);
287 	WARN_ON(!in_interrupt() && !irqs_disabled());
288 	WARN_ON_ONCE(q->mq_ops);
289 
290 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
291 	__blk_run_queue(q);
292 }
293 EXPORT_SYMBOL(blk_start_queue);
294 
295 /**
296  * blk_stop_queue - stop a queue
297  * @q:    The &struct request_queue in question
298  *
299  * Description:
300  *   The Linux block layer assumes that a block driver will consume all
301  *   entries on the request queue when the request_fn strategy is called.
302  *   Often this will not happen, because of hardware limitations (queue
303  *   depth settings). If a device driver gets a 'queue full' response,
304  *   or if it simply chooses not to queue more I/O at one point, it can
305  *   call this function to prevent the request_fn from being called until
306  *   the driver has signalled it's ready to go again. This happens by calling
307  *   blk_start_queue() to restart queue operations.
308  **/
309 void blk_stop_queue(struct request_queue *q)
310 {
311 	lockdep_assert_held(q->queue_lock);
312 	WARN_ON_ONCE(q->mq_ops);
313 
314 	cancel_delayed_work(&q->delay_work);
315 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
316 }
317 EXPORT_SYMBOL(blk_stop_queue);
318 
319 /**
320  * blk_sync_queue - cancel any pending callbacks on a queue
321  * @q: the queue
322  *
323  * Description:
324  *     The block layer may perform asynchronous callback activity
325  *     on a queue, such as calling the unplug function after a timeout.
326  *     A block device may call blk_sync_queue to ensure that any
327  *     such activity is cancelled, thus allowing it to release resources
328  *     that the callbacks might use. The caller must already have made sure
329  *     that its ->make_request_fn will not re-add plugging prior to calling
330  *     this function.
331  *
332  *     This function does not cancel any asynchronous activity arising
333  *     out of elevator or throttling code. That would require elevator_exit()
334  *     and blkcg_exit_queue() to be called with queue lock initialized.
335  *
336  */
337 void blk_sync_queue(struct request_queue *q)
338 {
339 	del_timer_sync(&q->timeout);
340 	cancel_work_sync(&q->timeout_work);
341 
342 	if (q->mq_ops) {
343 		struct blk_mq_hw_ctx *hctx;
344 		int i;
345 
346 		cancel_delayed_work_sync(&q->requeue_work);
347 		queue_for_each_hw_ctx(q, hctx, i)
348 			cancel_delayed_work_sync(&hctx->run_work);
349 	} else {
350 		cancel_delayed_work_sync(&q->delay_work);
351 	}
352 }
353 EXPORT_SYMBOL(blk_sync_queue);
354 
355 /**
356  * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
357  * @q: request queue pointer
358  *
359  * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
360  * set and 1 if the flag was already set.
361  */
362 int blk_set_preempt_only(struct request_queue *q)
363 {
364 	unsigned long flags;
365 	int res;
366 
367 	spin_lock_irqsave(q->queue_lock, flags);
368 	res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
369 	spin_unlock_irqrestore(q->queue_lock, flags);
370 
371 	return res;
372 }
373 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
374 
375 void blk_clear_preempt_only(struct request_queue *q)
376 {
377 	unsigned long flags;
378 
379 	spin_lock_irqsave(q->queue_lock, flags);
380 	queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
381 	wake_up_all(&q->mq_freeze_wq);
382 	spin_unlock_irqrestore(q->queue_lock, flags);
383 }
384 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
385 
386 /**
387  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
388  * @q:	The queue to run
389  *
390  * Description:
391  *    Invoke request handling on a queue if there are any pending requests.
392  *    May be used to restart request handling after a request has completed.
393  *    This variant runs the queue whether or not the queue has been
394  *    stopped. Must be called with the queue lock held and interrupts
395  *    disabled. See also @blk_run_queue.
396  */
397 inline void __blk_run_queue_uncond(struct request_queue *q)
398 {
399 	lockdep_assert_held(q->queue_lock);
400 	WARN_ON_ONCE(q->mq_ops);
401 
402 	if (unlikely(blk_queue_dead(q)))
403 		return;
404 
405 	/*
406 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
407 	 * the queue lock internally. As a result multiple threads may be
408 	 * running such a request function concurrently. Keep track of the
409 	 * number of active request_fn invocations such that blk_drain_queue()
410 	 * can wait until all these request_fn calls have finished.
411 	 */
412 	q->request_fn_active++;
413 	q->request_fn(q);
414 	q->request_fn_active--;
415 }
416 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
417 
418 /**
419  * __blk_run_queue - run a single device queue
420  * @q:	The queue to run
421  *
422  * Description:
423  *    See @blk_run_queue.
424  */
425 void __blk_run_queue(struct request_queue *q)
426 {
427 	lockdep_assert_held(q->queue_lock);
428 	WARN_ON_ONCE(q->mq_ops);
429 
430 	if (unlikely(blk_queue_stopped(q)))
431 		return;
432 
433 	__blk_run_queue_uncond(q);
434 }
435 EXPORT_SYMBOL(__blk_run_queue);
436 
437 /**
438  * blk_run_queue_async - run a single device queue in workqueue context
439  * @q:	The queue to run
440  *
441  * Description:
442  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
443  *    of us.
444  *
445  * Note:
446  *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
447  *    has canceled q->delay_work, callers must hold the queue lock to avoid
448  *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
449  */
450 void blk_run_queue_async(struct request_queue *q)
451 {
452 	lockdep_assert_held(q->queue_lock);
453 	WARN_ON_ONCE(q->mq_ops);
454 
455 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
456 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
457 }
458 EXPORT_SYMBOL(blk_run_queue_async);
459 
460 /**
461  * blk_run_queue - run a single device queue
462  * @q: The queue to run
463  *
464  * Description:
465  *    Invoke request handling on this queue, if it has pending work to do.
466  *    May be used to restart queueing when a request has completed.
467  */
468 void blk_run_queue(struct request_queue *q)
469 {
470 	unsigned long flags;
471 
472 	WARN_ON_ONCE(q->mq_ops);
473 
474 	spin_lock_irqsave(q->queue_lock, flags);
475 	__blk_run_queue(q);
476 	spin_unlock_irqrestore(q->queue_lock, flags);
477 }
478 EXPORT_SYMBOL(blk_run_queue);
479 
480 void blk_put_queue(struct request_queue *q)
481 {
482 	kobject_put(&q->kobj);
483 }
484 EXPORT_SYMBOL(blk_put_queue);
485 
486 /**
487  * __blk_drain_queue - drain requests from request_queue
488  * @q: queue to drain
489  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
490  *
491  * Drain requests from @q.  If @drain_all is set, all requests are drained.
492  * If not, only ELVPRIV requests are drained.  The caller is responsible
493  * for ensuring that no new requests which need to be drained are queued.
494  */
495 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
496 	__releases(q->queue_lock)
497 	__acquires(q->queue_lock)
498 {
499 	int i;
500 
501 	lockdep_assert_held(q->queue_lock);
502 	WARN_ON_ONCE(q->mq_ops);
503 
504 	while (true) {
505 		bool drain = false;
506 
507 		/*
508 		 * The caller might be trying to drain @q before its
509 		 * elevator is initialized.
510 		 */
511 		if (q->elevator)
512 			elv_drain_elevator(q);
513 
514 		blkcg_drain_queue(q);
515 
516 		/*
517 		 * This function might be called on a queue which failed
518 		 * driver init after queue creation or is not yet fully
519 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
520 		 * in such cases.  Kick queue iff dispatch queue has
521 		 * something on it and @q has request_fn set.
522 		 */
523 		if (!list_empty(&q->queue_head) && q->request_fn)
524 			__blk_run_queue(q);
525 
526 		drain |= q->nr_rqs_elvpriv;
527 		drain |= q->request_fn_active;
528 
529 		/*
530 		 * Unfortunately, requests are queued at and tracked from
531 		 * multiple places and there's no single counter which can
532 		 * be drained.  Check all the queues and counters.
533 		 */
534 		if (drain_all) {
535 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
536 			drain |= !list_empty(&q->queue_head);
537 			for (i = 0; i < 2; i++) {
538 				drain |= q->nr_rqs[i];
539 				drain |= q->in_flight[i];
540 				if (fq)
541 				    drain |= !list_empty(&fq->flush_queue[i]);
542 			}
543 		}
544 
545 		if (!drain)
546 			break;
547 
548 		spin_unlock_irq(q->queue_lock);
549 
550 		msleep(10);
551 
552 		spin_lock_irq(q->queue_lock);
553 	}
554 
555 	/*
556 	 * With queue marked dead, any woken up waiter will fail the
557 	 * allocation path, so the wakeup chaining is lost and we're
558 	 * left with hung waiters. We need to wake up those waiters.
559 	 */
560 	if (q->request_fn) {
561 		struct request_list *rl;
562 
563 		blk_queue_for_each_rl(rl, q)
564 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
565 				wake_up_all(&rl->wait[i]);
566 	}
567 }
568 
569 void blk_drain_queue(struct request_queue *q)
570 {
571 	spin_lock_irq(q->queue_lock);
572 	__blk_drain_queue(q, true);
573 	spin_unlock_irq(q->queue_lock);
574 }
575 
576 /**
577  * blk_queue_bypass_start - enter queue bypass mode
578  * @q: queue of interest
579  *
580  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
581  * function makes @q enter bypass mode and drains all requests which were
582  * throttled or issued before.  On return, it's guaranteed that no request
583  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
584  * inside queue or RCU read lock.
585  */
586 void blk_queue_bypass_start(struct request_queue *q)
587 {
588 	WARN_ON_ONCE(q->mq_ops);
589 
590 	spin_lock_irq(q->queue_lock);
591 	q->bypass_depth++;
592 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
593 	spin_unlock_irq(q->queue_lock);
594 
595 	/*
596 	 * Queues start drained.  Skip actual draining till init is
597 	 * complete.  This avoids lenghty delays during queue init which
598 	 * can happen many times during boot.
599 	 */
600 	if (blk_queue_init_done(q)) {
601 		spin_lock_irq(q->queue_lock);
602 		__blk_drain_queue(q, false);
603 		spin_unlock_irq(q->queue_lock);
604 
605 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
606 		synchronize_rcu();
607 	}
608 }
609 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
610 
611 /**
612  * blk_queue_bypass_end - leave queue bypass mode
613  * @q: queue of interest
614  *
615  * Leave bypass mode and restore the normal queueing behavior.
616  *
617  * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
618  * this function is called for both blk-sq and blk-mq queues.
619  */
620 void blk_queue_bypass_end(struct request_queue *q)
621 {
622 	spin_lock_irq(q->queue_lock);
623 	if (!--q->bypass_depth)
624 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
625 	WARN_ON_ONCE(q->bypass_depth < 0);
626 	spin_unlock_irq(q->queue_lock);
627 }
628 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
629 
630 void blk_set_queue_dying(struct request_queue *q)
631 {
632 	spin_lock_irq(q->queue_lock);
633 	queue_flag_set(QUEUE_FLAG_DYING, q);
634 	spin_unlock_irq(q->queue_lock);
635 
636 	/*
637 	 * When queue DYING flag is set, we need to block new req
638 	 * entering queue, so we call blk_freeze_queue_start() to
639 	 * prevent I/O from crossing blk_queue_enter().
640 	 */
641 	blk_freeze_queue_start(q);
642 
643 	if (q->mq_ops)
644 		blk_mq_wake_waiters(q);
645 	else {
646 		struct request_list *rl;
647 
648 		spin_lock_irq(q->queue_lock);
649 		blk_queue_for_each_rl(rl, q) {
650 			if (rl->rq_pool) {
651 				wake_up_all(&rl->wait[BLK_RW_SYNC]);
652 				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
653 			}
654 		}
655 		spin_unlock_irq(q->queue_lock);
656 	}
657 
658 	/* Make blk_queue_enter() reexamine the DYING flag. */
659 	wake_up_all(&q->mq_freeze_wq);
660 }
661 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
662 
663 /**
664  * blk_cleanup_queue - shutdown a request queue
665  * @q: request queue to shutdown
666  *
667  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
668  * put it.  All future requests will be failed immediately with -ENODEV.
669  */
670 void blk_cleanup_queue(struct request_queue *q)
671 {
672 	spinlock_t *lock = q->queue_lock;
673 
674 	/* mark @q DYING, no new request or merges will be allowed afterwards */
675 	mutex_lock(&q->sysfs_lock);
676 	blk_set_queue_dying(q);
677 	spin_lock_irq(lock);
678 
679 	/*
680 	 * A dying queue is permanently in bypass mode till released.  Note
681 	 * that, unlike blk_queue_bypass_start(), we aren't performing
682 	 * synchronize_rcu() after entering bypass mode to avoid the delay
683 	 * as some drivers create and destroy a lot of queues while
684 	 * probing.  This is still safe because blk_release_queue() will be
685 	 * called only after the queue refcnt drops to zero and nothing,
686 	 * RCU or not, would be traversing the queue by then.
687 	 */
688 	q->bypass_depth++;
689 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
690 
691 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
692 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
693 	queue_flag_set(QUEUE_FLAG_DYING, q);
694 	spin_unlock_irq(lock);
695 	mutex_unlock(&q->sysfs_lock);
696 
697 	/*
698 	 * Drain all requests queued before DYING marking. Set DEAD flag to
699 	 * prevent that q->request_fn() gets invoked after draining finished.
700 	 */
701 	blk_freeze_queue(q);
702 	spin_lock_irq(lock);
703 	queue_flag_set(QUEUE_FLAG_DEAD, q);
704 	spin_unlock_irq(lock);
705 
706 	/*
707 	 * make sure all in-progress dispatch are completed because
708 	 * blk_freeze_queue() can only complete all requests, and
709 	 * dispatch may still be in-progress since we dispatch requests
710 	 * from more than one contexts
711 	 */
712 	if (q->mq_ops)
713 		blk_mq_quiesce_queue(q);
714 
715 	/* for synchronous bio-based driver finish in-flight integrity i/o */
716 	blk_flush_integrity();
717 
718 	/* @q won't process any more request, flush async actions */
719 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
720 	blk_sync_queue(q);
721 
722 	if (q->mq_ops)
723 		blk_mq_free_queue(q);
724 	percpu_ref_exit(&q->q_usage_counter);
725 
726 	spin_lock_irq(lock);
727 	if (q->queue_lock != &q->__queue_lock)
728 		q->queue_lock = &q->__queue_lock;
729 	spin_unlock_irq(lock);
730 
731 	/* @q is and will stay empty, shutdown and put */
732 	blk_put_queue(q);
733 }
734 EXPORT_SYMBOL(blk_cleanup_queue);
735 
736 /* Allocate memory local to the request queue */
737 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
738 {
739 	struct request_queue *q = data;
740 
741 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
742 }
743 
744 static void free_request_simple(void *element, void *data)
745 {
746 	kmem_cache_free(request_cachep, element);
747 }
748 
749 static void *alloc_request_size(gfp_t gfp_mask, void *data)
750 {
751 	struct request_queue *q = data;
752 	struct request *rq;
753 
754 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
755 			q->node);
756 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
757 		kfree(rq);
758 		rq = NULL;
759 	}
760 	return rq;
761 }
762 
763 static void free_request_size(void *element, void *data)
764 {
765 	struct request_queue *q = data;
766 
767 	if (q->exit_rq_fn)
768 		q->exit_rq_fn(q, element);
769 	kfree(element);
770 }
771 
772 int blk_init_rl(struct request_list *rl, struct request_queue *q,
773 		gfp_t gfp_mask)
774 {
775 	if (unlikely(rl->rq_pool) || q->mq_ops)
776 		return 0;
777 
778 	rl->q = q;
779 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
780 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
781 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
782 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
783 
784 	if (q->cmd_size) {
785 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
786 				alloc_request_size, free_request_size,
787 				q, gfp_mask, q->node);
788 	} else {
789 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
790 				alloc_request_simple, free_request_simple,
791 				q, gfp_mask, q->node);
792 	}
793 	if (!rl->rq_pool)
794 		return -ENOMEM;
795 
796 	if (rl != &q->root_rl)
797 		WARN_ON_ONCE(!blk_get_queue(q));
798 
799 	return 0;
800 }
801 
802 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
803 {
804 	if (rl->rq_pool) {
805 		mempool_destroy(rl->rq_pool);
806 		if (rl != &q->root_rl)
807 			blk_put_queue(q);
808 	}
809 }
810 
811 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
812 {
813 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
814 }
815 EXPORT_SYMBOL(blk_alloc_queue);
816 
817 /**
818  * blk_queue_enter() - try to increase q->q_usage_counter
819  * @q: request queue pointer
820  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
821  */
822 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
823 {
824 	const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
825 
826 	while (true) {
827 		bool success = false;
828 		int ret;
829 
830 		rcu_read_lock_sched();
831 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
832 			/*
833 			 * The code that sets the PREEMPT_ONLY flag is
834 			 * responsible for ensuring that that flag is globally
835 			 * visible before the queue is unfrozen.
836 			 */
837 			if (preempt || !blk_queue_preempt_only(q)) {
838 				success = true;
839 			} else {
840 				percpu_ref_put(&q->q_usage_counter);
841 			}
842 		}
843 		rcu_read_unlock_sched();
844 
845 		if (success)
846 			return 0;
847 
848 		if (flags & BLK_MQ_REQ_NOWAIT)
849 			return -EBUSY;
850 
851 		/*
852 		 * read pair of barrier in blk_freeze_queue_start(),
853 		 * we need to order reading __PERCPU_REF_DEAD flag of
854 		 * .q_usage_counter and reading .mq_freeze_depth or
855 		 * queue dying flag, otherwise the following wait may
856 		 * never return if the two reads are reordered.
857 		 */
858 		smp_rmb();
859 
860 		ret = wait_event_interruptible(q->mq_freeze_wq,
861 				(atomic_read(&q->mq_freeze_depth) == 0 &&
862 				 (preempt || !blk_queue_preempt_only(q))) ||
863 				blk_queue_dying(q));
864 		if (blk_queue_dying(q))
865 			return -ENODEV;
866 		if (ret)
867 			return ret;
868 	}
869 }
870 
871 void blk_queue_exit(struct request_queue *q)
872 {
873 	percpu_ref_put(&q->q_usage_counter);
874 }
875 
876 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
877 {
878 	struct request_queue *q =
879 		container_of(ref, struct request_queue, q_usage_counter);
880 
881 	wake_up_all(&q->mq_freeze_wq);
882 }
883 
884 static void blk_rq_timed_out_timer(struct timer_list *t)
885 {
886 	struct request_queue *q = from_timer(q, t, timeout);
887 
888 	kblockd_schedule_work(&q->timeout_work);
889 }
890 
891 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
892 {
893 	struct request_queue *q;
894 
895 	q = kmem_cache_alloc_node(blk_requestq_cachep,
896 				gfp_mask | __GFP_ZERO, node_id);
897 	if (!q)
898 		return NULL;
899 
900 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
901 	if (q->id < 0)
902 		goto fail_q;
903 
904 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
905 	if (!q->bio_split)
906 		goto fail_id;
907 
908 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
909 	if (!q->backing_dev_info)
910 		goto fail_split;
911 
912 	q->stats = blk_alloc_queue_stats();
913 	if (!q->stats)
914 		goto fail_stats;
915 
916 	q->backing_dev_info->ra_pages =
917 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
918 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
919 	q->backing_dev_info->name = "block";
920 	q->node = node_id;
921 
922 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
923 		    laptop_mode_timer_fn, 0);
924 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
925 	INIT_WORK(&q->timeout_work, NULL);
926 	INIT_LIST_HEAD(&q->queue_head);
927 	INIT_LIST_HEAD(&q->timeout_list);
928 	INIT_LIST_HEAD(&q->icq_list);
929 #ifdef CONFIG_BLK_CGROUP
930 	INIT_LIST_HEAD(&q->blkg_list);
931 #endif
932 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
933 
934 	kobject_init(&q->kobj, &blk_queue_ktype);
935 
936 #ifdef CONFIG_BLK_DEV_IO_TRACE
937 	mutex_init(&q->blk_trace_mutex);
938 #endif
939 	mutex_init(&q->sysfs_lock);
940 	spin_lock_init(&q->__queue_lock);
941 
942 	/*
943 	 * By default initialize queue_lock to internal lock and driver can
944 	 * override it later if need be.
945 	 */
946 	q->queue_lock = &q->__queue_lock;
947 
948 	/*
949 	 * A queue starts its life with bypass turned on to avoid
950 	 * unnecessary bypass on/off overhead and nasty surprises during
951 	 * init.  The initial bypass will be finished when the queue is
952 	 * registered by blk_register_queue().
953 	 */
954 	q->bypass_depth = 1;
955 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
956 
957 	init_waitqueue_head(&q->mq_freeze_wq);
958 
959 	/*
960 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
961 	 * See blk_register_queue() for details.
962 	 */
963 	if (percpu_ref_init(&q->q_usage_counter,
964 				blk_queue_usage_counter_release,
965 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
966 		goto fail_bdi;
967 
968 	if (blkcg_init_queue(q))
969 		goto fail_ref;
970 
971 	return q;
972 
973 fail_ref:
974 	percpu_ref_exit(&q->q_usage_counter);
975 fail_bdi:
976 	blk_free_queue_stats(q->stats);
977 fail_stats:
978 	bdi_put(q->backing_dev_info);
979 fail_split:
980 	bioset_free(q->bio_split);
981 fail_id:
982 	ida_simple_remove(&blk_queue_ida, q->id);
983 fail_q:
984 	kmem_cache_free(blk_requestq_cachep, q);
985 	return NULL;
986 }
987 EXPORT_SYMBOL(blk_alloc_queue_node);
988 
989 /**
990  * blk_init_queue  - prepare a request queue for use with a block device
991  * @rfn:  The function to be called to process requests that have been
992  *        placed on the queue.
993  * @lock: Request queue spin lock
994  *
995  * Description:
996  *    If a block device wishes to use the standard request handling procedures,
997  *    which sorts requests and coalesces adjacent requests, then it must
998  *    call blk_init_queue().  The function @rfn will be called when there
999  *    are requests on the queue that need to be processed.  If the device
1000  *    supports plugging, then @rfn may not be called immediately when requests
1001  *    are available on the queue, but may be called at some time later instead.
1002  *    Plugged queues are generally unplugged when a buffer belonging to one
1003  *    of the requests on the queue is needed, or due to memory pressure.
1004  *
1005  *    @rfn is not required, or even expected, to remove all requests off the
1006  *    queue, but only as many as it can handle at a time.  If it does leave
1007  *    requests on the queue, it is responsible for arranging that the requests
1008  *    get dealt with eventually.
1009  *
1010  *    The queue spin lock must be held while manipulating the requests on the
1011  *    request queue; this lock will be taken also from interrupt context, so irq
1012  *    disabling is needed for it.
1013  *
1014  *    Function returns a pointer to the initialized request queue, or %NULL if
1015  *    it didn't succeed.
1016  *
1017  * Note:
1018  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1019  *    when the block device is deactivated (such as at module unload).
1020  **/
1021 
1022 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1023 {
1024 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1025 }
1026 EXPORT_SYMBOL(blk_init_queue);
1027 
1028 struct request_queue *
1029 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1030 {
1031 	struct request_queue *q;
1032 
1033 	q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1034 	if (!q)
1035 		return NULL;
1036 
1037 	q->request_fn = rfn;
1038 	if (lock)
1039 		q->queue_lock = lock;
1040 	if (blk_init_allocated_queue(q) < 0) {
1041 		blk_cleanup_queue(q);
1042 		return NULL;
1043 	}
1044 
1045 	return q;
1046 }
1047 EXPORT_SYMBOL(blk_init_queue_node);
1048 
1049 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1050 
1051 
1052 int blk_init_allocated_queue(struct request_queue *q)
1053 {
1054 	WARN_ON_ONCE(q->mq_ops);
1055 
1056 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1057 	if (!q->fq)
1058 		return -ENOMEM;
1059 
1060 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1061 		goto out_free_flush_queue;
1062 
1063 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1064 		goto out_exit_flush_rq;
1065 
1066 	INIT_WORK(&q->timeout_work, blk_timeout_work);
1067 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
1068 
1069 	/*
1070 	 * This also sets hw/phys segments, boundary and size
1071 	 */
1072 	blk_queue_make_request(q, blk_queue_bio);
1073 
1074 	q->sg_reserved_size = INT_MAX;
1075 
1076 	/* Protect q->elevator from elevator_change */
1077 	mutex_lock(&q->sysfs_lock);
1078 
1079 	/* init elevator */
1080 	if (elevator_init(q, NULL)) {
1081 		mutex_unlock(&q->sysfs_lock);
1082 		goto out_exit_flush_rq;
1083 	}
1084 
1085 	mutex_unlock(&q->sysfs_lock);
1086 	return 0;
1087 
1088 out_exit_flush_rq:
1089 	if (q->exit_rq_fn)
1090 		q->exit_rq_fn(q, q->fq->flush_rq);
1091 out_free_flush_queue:
1092 	blk_free_flush_queue(q->fq);
1093 	return -ENOMEM;
1094 }
1095 EXPORT_SYMBOL(blk_init_allocated_queue);
1096 
1097 bool blk_get_queue(struct request_queue *q)
1098 {
1099 	if (likely(!blk_queue_dying(q))) {
1100 		__blk_get_queue(q);
1101 		return true;
1102 	}
1103 
1104 	return false;
1105 }
1106 EXPORT_SYMBOL(blk_get_queue);
1107 
1108 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1109 {
1110 	if (rq->rq_flags & RQF_ELVPRIV) {
1111 		elv_put_request(rl->q, rq);
1112 		if (rq->elv.icq)
1113 			put_io_context(rq->elv.icq->ioc);
1114 	}
1115 
1116 	mempool_free(rq, rl->rq_pool);
1117 }
1118 
1119 /*
1120  * ioc_batching returns true if the ioc is a valid batching request and
1121  * should be given priority access to a request.
1122  */
1123 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1124 {
1125 	if (!ioc)
1126 		return 0;
1127 
1128 	/*
1129 	 * Make sure the process is able to allocate at least 1 request
1130 	 * even if the batch times out, otherwise we could theoretically
1131 	 * lose wakeups.
1132 	 */
1133 	return ioc->nr_batch_requests == q->nr_batching ||
1134 		(ioc->nr_batch_requests > 0
1135 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1136 }
1137 
1138 /*
1139  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1140  * will cause the process to be a "batcher" on all queues in the system. This
1141  * is the behaviour we want though - once it gets a wakeup it should be given
1142  * a nice run.
1143  */
1144 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1145 {
1146 	if (!ioc || ioc_batching(q, ioc))
1147 		return;
1148 
1149 	ioc->nr_batch_requests = q->nr_batching;
1150 	ioc->last_waited = jiffies;
1151 }
1152 
1153 static void __freed_request(struct request_list *rl, int sync)
1154 {
1155 	struct request_queue *q = rl->q;
1156 
1157 	if (rl->count[sync] < queue_congestion_off_threshold(q))
1158 		blk_clear_congested(rl, sync);
1159 
1160 	if (rl->count[sync] + 1 <= q->nr_requests) {
1161 		if (waitqueue_active(&rl->wait[sync]))
1162 			wake_up(&rl->wait[sync]);
1163 
1164 		blk_clear_rl_full(rl, sync);
1165 	}
1166 }
1167 
1168 /*
1169  * A request has just been released.  Account for it, update the full and
1170  * congestion status, wake up any waiters.   Called under q->queue_lock.
1171  */
1172 static void freed_request(struct request_list *rl, bool sync,
1173 		req_flags_t rq_flags)
1174 {
1175 	struct request_queue *q = rl->q;
1176 
1177 	q->nr_rqs[sync]--;
1178 	rl->count[sync]--;
1179 	if (rq_flags & RQF_ELVPRIV)
1180 		q->nr_rqs_elvpriv--;
1181 
1182 	__freed_request(rl, sync);
1183 
1184 	if (unlikely(rl->starved[sync ^ 1]))
1185 		__freed_request(rl, sync ^ 1);
1186 }
1187 
1188 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1189 {
1190 	struct request_list *rl;
1191 	int on_thresh, off_thresh;
1192 
1193 	WARN_ON_ONCE(q->mq_ops);
1194 
1195 	spin_lock_irq(q->queue_lock);
1196 	q->nr_requests = nr;
1197 	blk_queue_congestion_threshold(q);
1198 	on_thresh = queue_congestion_on_threshold(q);
1199 	off_thresh = queue_congestion_off_threshold(q);
1200 
1201 	blk_queue_for_each_rl(rl, q) {
1202 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1203 			blk_set_congested(rl, BLK_RW_SYNC);
1204 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1205 			blk_clear_congested(rl, BLK_RW_SYNC);
1206 
1207 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1208 			blk_set_congested(rl, BLK_RW_ASYNC);
1209 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1210 			blk_clear_congested(rl, BLK_RW_ASYNC);
1211 
1212 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1213 			blk_set_rl_full(rl, BLK_RW_SYNC);
1214 		} else {
1215 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1216 			wake_up(&rl->wait[BLK_RW_SYNC]);
1217 		}
1218 
1219 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1220 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1221 		} else {
1222 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1223 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1224 		}
1225 	}
1226 
1227 	spin_unlock_irq(q->queue_lock);
1228 	return 0;
1229 }
1230 
1231 /**
1232  * __get_request - get a free request
1233  * @rl: request list to allocate from
1234  * @op: operation and flags
1235  * @bio: bio to allocate request for (can be %NULL)
1236  * @flags: BLQ_MQ_REQ_* flags
1237  *
1238  * Get a free request from @q.  This function may fail under memory
1239  * pressure or if @q is dead.
1240  *
1241  * Must be called with @q->queue_lock held and,
1242  * Returns ERR_PTR on failure, with @q->queue_lock held.
1243  * Returns request pointer on success, with @q->queue_lock *not held*.
1244  */
1245 static struct request *__get_request(struct request_list *rl, unsigned int op,
1246 				     struct bio *bio, blk_mq_req_flags_t flags)
1247 {
1248 	struct request_queue *q = rl->q;
1249 	struct request *rq;
1250 	struct elevator_type *et = q->elevator->type;
1251 	struct io_context *ioc = rq_ioc(bio);
1252 	struct io_cq *icq = NULL;
1253 	const bool is_sync = op_is_sync(op);
1254 	int may_queue;
1255 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1256 			 __GFP_DIRECT_RECLAIM;
1257 	req_flags_t rq_flags = RQF_ALLOCED;
1258 
1259 	lockdep_assert_held(q->queue_lock);
1260 
1261 	if (unlikely(blk_queue_dying(q)))
1262 		return ERR_PTR(-ENODEV);
1263 
1264 	may_queue = elv_may_queue(q, op);
1265 	if (may_queue == ELV_MQUEUE_NO)
1266 		goto rq_starved;
1267 
1268 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1269 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1270 			/*
1271 			 * The queue will fill after this allocation, so set
1272 			 * it as full, and mark this process as "batching".
1273 			 * This process will be allowed to complete a batch of
1274 			 * requests, others will be blocked.
1275 			 */
1276 			if (!blk_rl_full(rl, is_sync)) {
1277 				ioc_set_batching(q, ioc);
1278 				blk_set_rl_full(rl, is_sync);
1279 			} else {
1280 				if (may_queue != ELV_MQUEUE_MUST
1281 						&& !ioc_batching(q, ioc)) {
1282 					/*
1283 					 * The queue is full and the allocating
1284 					 * process is not a "batcher", and not
1285 					 * exempted by the IO scheduler
1286 					 */
1287 					return ERR_PTR(-ENOMEM);
1288 				}
1289 			}
1290 		}
1291 		blk_set_congested(rl, is_sync);
1292 	}
1293 
1294 	/*
1295 	 * Only allow batching queuers to allocate up to 50% over the defined
1296 	 * limit of requests, otherwise we could have thousands of requests
1297 	 * allocated with any setting of ->nr_requests
1298 	 */
1299 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1300 		return ERR_PTR(-ENOMEM);
1301 
1302 	q->nr_rqs[is_sync]++;
1303 	rl->count[is_sync]++;
1304 	rl->starved[is_sync] = 0;
1305 
1306 	/*
1307 	 * Decide whether the new request will be managed by elevator.  If
1308 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1309 	 * prevent the current elevator from being destroyed until the new
1310 	 * request is freed.  This guarantees icq's won't be destroyed and
1311 	 * makes creating new ones safe.
1312 	 *
1313 	 * Flush requests do not use the elevator so skip initialization.
1314 	 * This allows a request to share the flush and elevator data.
1315 	 *
1316 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1317 	 * it will be created after releasing queue_lock.
1318 	 */
1319 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1320 		rq_flags |= RQF_ELVPRIV;
1321 		q->nr_rqs_elvpriv++;
1322 		if (et->icq_cache && ioc)
1323 			icq = ioc_lookup_icq(ioc, q);
1324 	}
1325 
1326 	if (blk_queue_io_stat(q))
1327 		rq_flags |= RQF_IO_STAT;
1328 	spin_unlock_irq(q->queue_lock);
1329 
1330 	/* allocate and init request */
1331 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1332 	if (!rq)
1333 		goto fail_alloc;
1334 
1335 	blk_rq_init(q, rq);
1336 	blk_rq_set_rl(rq, rl);
1337 	rq->cmd_flags = op;
1338 	rq->rq_flags = rq_flags;
1339 	if (flags & BLK_MQ_REQ_PREEMPT)
1340 		rq->rq_flags |= RQF_PREEMPT;
1341 
1342 	/* init elvpriv */
1343 	if (rq_flags & RQF_ELVPRIV) {
1344 		if (unlikely(et->icq_cache && !icq)) {
1345 			if (ioc)
1346 				icq = ioc_create_icq(ioc, q, gfp_mask);
1347 			if (!icq)
1348 				goto fail_elvpriv;
1349 		}
1350 
1351 		rq->elv.icq = icq;
1352 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1353 			goto fail_elvpriv;
1354 
1355 		/* @rq->elv.icq holds io_context until @rq is freed */
1356 		if (icq)
1357 			get_io_context(icq->ioc);
1358 	}
1359 out:
1360 	/*
1361 	 * ioc may be NULL here, and ioc_batching will be false. That's
1362 	 * OK, if the queue is under the request limit then requests need
1363 	 * not count toward the nr_batch_requests limit. There will always
1364 	 * be some limit enforced by BLK_BATCH_TIME.
1365 	 */
1366 	if (ioc_batching(q, ioc))
1367 		ioc->nr_batch_requests--;
1368 
1369 	trace_block_getrq(q, bio, op);
1370 	return rq;
1371 
1372 fail_elvpriv:
1373 	/*
1374 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1375 	 * and may fail indefinitely under memory pressure and thus
1376 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1377 	 * disturb iosched and blkcg but weird is bettern than dead.
1378 	 */
1379 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1380 			   __func__, dev_name(q->backing_dev_info->dev));
1381 
1382 	rq->rq_flags &= ~RQF_ELVPRIV;
1383 	rq->elv.icq = NULL;
1384 
1385 	spin_lock_irq(q->queue_lock);
1386 	q->nr_rqs_elvpriv--;
1387 	spin_unlock_irq(q->queue_lock);
1388 	goto out;
1389 
1390 fail_alloc:
1391 	/*
1392 	 * Allocation failed presumably due to memory. Undo anything we
1393 	 * might have messed up.
1394 	 *
1395 	 * Allocating task should really be put onto the front of the wait
1396 	 * queue, but this is pretty rare.
1397 	 */
1398 	spin_lock_irq(q->queue_lock);
1399 	freed_request(rl, is_sync, rq_flags);
1400 
1401 	/*
1402 	 * in the very unlikely event that allocation failed and no
1403 	 * requests for this direction was pending, mark us starved so that
1404 	 * freeing of a request in the other direction will notice
1405 	 * us. another possible fix would be to split the rq mempool into
1406 	 * READ and WRITE
1407 	 */
1408 rq_starved:
1409 	if (unlikely(rl->count[is_sync] == 0))
1410 		rl->starved[is_sync] = 1;
1411 	return ERR_PTR(-ENOMEM);
1412 }
1413 
1414 /**
1415  * get_request - get a free request
1416  * @q: request_queue to allocate request from
1417  * @op: operation and flags
1418  * @bio: bio to allocate request for (can be %NULL)
1419  * @flags: BLK_MQ_REQ_* flags.
1420  *
1421  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1422  * this function keeps retrying under memory pressure and fails iff @q is dead.
1423  *
1424  * Must be called with @q->queue_lock held and,
1425  * Returns ERR_PTR on failure, with @q->queue_lock held.
1426  * Returns request pointer on success, with @q->queue_lock *not held*.
1427  */
1428 static struct request *get_request(struct request_queue *q, unsigned int op,
1429 				   struct bio *bio, blk_mq_req_flags_t flags)
1430 {
1431 	const bool is_sync = op_is_sync(op);
1432 	DEFINE_WAIT(wait);
1433 	struct request_list *rl;
1434 	struct request *rq;
1435 
1436 	lockdep_assert_held(q->queue_lock);
1437 	WARN_ON_ONCE(q->mq_ops);
1438 
1439 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1440 retry:
1441 	rq = __get_request(rl, op, bio, flags);
1442 	if (!IS_ERR(rq))
1443 		return rq;
1444 
1445 	if (op & REQ_NOWAIT) {
1446 		blk_put_rl(rl);
1447 		return ERR_PTR(-EAGAIN);
1448 	}
1449 
1450 	if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1451 		blk_put_rl(rl);
1452 		return rq;
1453 	}
1454 
1455 	/* wait on @rl and retry */
1456 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1457 				  TASK_UNINTERRUPTIBLE);
1458 
1459 	trace_block_sleeprq(q, bio, op);
1460 
1461 	spin_unlock_irq(q->queue_lock);
1462 	io_schedule();
1463 
1464 	/*
1465 	 * After sleeping, we become a "batching" process and will be able
1466 	 * to allocate at least one request, and up to a big batch of them
1467 	 * for a small period time.  See ioc_batching, ioc_set_batching
1468 	 */
1469 	ioc_set_batching(q, current->io_context);
1470 
1471 	spin_lock_irq(q->queue_lock);
1472 	finish_wait(&rl->wait[is_sync], &wait);
1473 
1474 	goto retry;
1475 }
1476 
1477 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1478 static struct request *blk_old_get_request(struct request_queue *q,
1479 				unsigned int op, blk_mq_req_flags_t flags)
1480 {
1481 	struct request *rq;
1482 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1483 			 __GFP_DIRECT_RECLAIM;
1484 	int ret = 0;
1485 
1486 	WARN_ON_ONCE(q->mq_ops);
1487 
1488 	/* create ioc upfront */
1489 	create_io_context(gfp_mask, q->node);
1490 
1491 	ret = blk_queue_enter(q, flags);
1492 	if (ret)
1493 		return ERR_PTR(ret);
1494 	spin_lock_irq(q->queue_lock);
1495 	rq = get_request(q, op, NULL, flags);
1496 	if (IS_ERR(rq)) {
1497 		spin_unlock_irq(q->queue_lock);
1498 		blk_queue_exit(q);
1499 		return rq;
1500 	}
1501 
1502 	/* q->queue_lock is unlocked at this point */
1503 	rq->__data_len = 0;
1504 	rq->__sector = (sector_t) -1;
1505 	rq->bio = rq->biotail = NULL;
1506 	return rq;
1507 }
1508 
1509 /**
1510  * blk_get_request_flags - allocate a request
1511  * @q: request queue to allocate a request for
1512  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1513  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1514  */
1515 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1516 				      blk_mq_req_flags_t flags)
1517 {
1518 	struct request *req;
1519 
1520 	WARN_ON_ONCE(op & REQ_NOWAIT);
1521 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1522 
1523 	if (q->mq_ops) {
1524 		req = blk_mq_alloc_request(q, op, flags);
1525 		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1526 			q->mq_ops->initialize_rq_fn(req);
1527 	} else {
1528 		req = blk_old_get_request(q, op, flags);
1529 		if (!IS_ERR(req) && q->initialize_rq_fn)
1530 			q->initialize_rq_fn(req);
1531 	}
1532 
1533 	return req;
1534 }
1535 EXPORT_SYMBOL(blk_get_request_flags);
1536 
1537 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1538 				gfp_t gfp_mask)
1539 {
1540 	return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1541 				     0 : BLK_MQ_REQ_NOWAIT);
1542 }
1543 EXPORT_SYMBOL(blk_get_request);
1544 
1545 /**
1546  * blk_requeue_request - put a request back on queue
1547  * @q:		request queue where request should be inserted
1548  * @rq:		request to be inserted
1549  *
1550  * Description:
1551  *    Drivers often keep queueing requests until the hardware cannot accept
1552  *    more, when that condition happens we need to put the request back
1553  *    on the queue. Must be called with queue lock held.
1554  */
1555 void blk_requeue_request(struct request_queue *q, struct request *rq)
1556 {
1557 	lockdep_assert_held(q->queue_lock);
1558 	WARN_ON_ONCE(q->mq_ops);
1559 
1560 	blk_delete_timer(rq);
1561 	blk_clear_rq_complete(rq);
1562 	trace_block_rq_requeue(q, rq);
1563 	wbt_requeue(q->rq_wb, &rq->issue_stat);
1564 
1565 	if (rq->rq_flags & RQF_QUEUED)
1566 		blk_queue_end_tag(q, rq);
1567 
1568 	BUG_ON(blk_queued_rq(rq));
1569 
1570 	elv_requeue_request(q, rq);
1571 }
1572 EXPORT_SYMBOL(blk_requeue_request);
1573 
1574 static void add_acct_request(struct request_queue *q, struct request *rq,
1575 			     int where)
1576 {
1577 	blk_account_io_start(rq, true);
1578 	__elv_add_request(q, rq, where);
1579 }
1580 
1581 static void part_round_stats_single(struct request_queue *q, int cpu,
1582 				    struct hd_struct *part, unsigned long now,
1583 				    unsigned int inflight)
1584 {
1585 	if (inflight) {
1586 		__part_stat_add(cpu, part, time_in_queue,
1587 				inflight * (now - part->stamp));
1588 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1589 	}
1590 	part->stamp = now;
1591 }
1592 
1593 /**
1594  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1595  * @q: target block queue
1596  * @cpu: cpu number for stats access
1597  * @part: target partition
1598  *
1599  * The average IO queue length and utilisation statistics are maintained
1600  * by observing the current state of the queue length and the amount of
1601  * time it has been in this state for.
1602  *
1603  * Normally, that accounting is done on IO completion, but that can result
1604  * in more than a second's worth of IO being accounted for within any one
1605  * second, leading to >100% utilisation.  To deal with that, we call this
1606  * function to do a round-off before returning the results when reading
1607  * /proc/diskstats.  This accounts immediately for all queue usage up to
1608  * the current jiffies and restarts the counters again.
1609  */
1610 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1611 {
1612 	struct hd_struct *part2 = NULL;
1613 	unsigned long now = jiffies;
1614 	unsigned int inflight[2];
1615 	int stats = 0;
1616 
1617 	if (part->stamp != now)
1618 		stats |= 1;
1619 
1620 	if (part->partno) {
1621 		part2 = &part_to_disk(part)->part0;
1622 		if (part2->stamp != now)
1623 			stats |= 2;
1624 	}
1625 
1626 	if (!stats)
1627 		return;
1628 
1629 	part_in_flight(q, part, inflight);
1630 
1631 	if (stats & 2)
1632 		part_round_stats_single(q, cpu, part2, now, inflight[1]);
1633 	if (stats & 1)
1634 		part_round_stats_single(q, cpu, part, now, inflight[0]);
1635 }
1636 EXPORT_SYMBOL_GPL(part_round_stats);
1637 
1638 #ifdef CONFIG_PM
1639 static void blk_pm_put_request(struct request *rq)
1640 {
1641 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1642 		pm_runtime_mark_last_busy(rq->q->dev);
1643 }
1644 #else
1645 static inline void blk_pm_put_request(struct request *rq) {}
1646 #endif
1647 
1648 void __blk_put_request(struct request_queue *q, struct request *req)
1649 {
1650 	req_flags_t rq_flags = req->rq_flags;
1651 
1652 	if (unlikely(!q))
1653 		return;
1654 
1655 	if (q->mq_ops) {
1656 		blk_mq_free_request(req);
1657 		return;
1658 	}
1659 
1660 	lockdep_assert_held(q->queue_lock);
1661 
1662 	blk_req_zone_write_unlock(req);
1663 	blk_pm_put_request(req);
1664 
1665 	elv_completed_request(q, req);
1666 
1667 	/* this is a bio leak */
1668 	WARN_ON(req->bio != NULL);
1669 
1670 	wbt_done(q->rq_wb, &req->issue_stat);
1671 
1672 	/*
1673 	 * Request may not have originated from ll_rw_blk. if not,
1674 	 * it didn't come out of our reserved rq pools
1675 	 */
1676 	if (rq_flags & RQF_ALLOCED) {
1677 		struct request_list *rl = blk_rq_rl(req);
1678 		bool sync = op_is_sync(req->cmd_flags);
1679 
1680 		BUG_ON(!list_empty(&req->queuelist));
1681 		BUG_ON(ELV_ON_HASH(req));
1682 
1683 		blk_free_request(rl, req);
1684 		freed_request(rl, sync, rq_flags);
1685 		blk_put_rl(rl);
1686 		blk_queue_exit(q);
1687 	}
1688 }
1689 EXPORT_SYMBOL_GPL(__blk_put_request);
1690 
1691 void blk_put_request(struct request *req)
1692 {
1693 	struct request_queue *q = req->q;
1694 
1695 	if (q->mq_ops)
1696 		blk_mq_free_request(req);
1697 	else {
1698 		unsigned long flags;
1699 
1700 		spin_lock_irqsave(q->queue_lock, flags);
1701 		__blk_put_request(q, req);
1702 		spin_unlock_irqrestore(q->queue_lock, flags);
1703 	}
1704 }
1705 EXPORT_SYMBOL(blk_put_request);
1706 
1707 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1708 			    struct bio *bio)
1709 {
1710 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1711 
1712 	if (!ll_back_merge_fn(q, req, bio))
1713 		return false;
1714 
1715 	trace_block_bio_backmerge(q, req, bio);
1716 
1717 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1718 		blk_rq_set_mixed_merge(req);
1719 
1720 	req->biotail->bi_next = bio;
1721 	req->biotail = bio;
1722 	req->__data_len += bio->bi_iter.bi_size;
1723 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1724 
1725 	blk_account_io_start(req, false);
1726 	return true;
1727 }
1728 
1729 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1730 			     struct bio *bio)
1731 {
1732 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1733 
1734 	if (!ll_front_merge_fn(q, req, bio))
1735 		return false;
1736 
1737 	trace_block_bio_frontmerge(q, req, bio);
1738 
1739 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1740 		blk_rq_set_mixed_merge(req);
1741 
1742 	bio->bi_next = req->bio;
1743 	req->bio = bio;
1744 
1745 	req->__sector = bio->bi_iter.bi_sector;
1746 	req->__data_len += bio->bi_iter.bi_size;
1747 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1748 
1749 	blk_account_io_start(req, false);
1750 	return true;
1751 }
1752 
1753 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1754 		struct bio *bio)
1755 {
1756 	unsigned short segments = blk_rq_nr_discard_segments(req);
1757 
1758 	if (segments >= queue_max_discard_segments(q))
1759 		goto no_merge;
1760 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1761 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1762 		goto no_merge;
1763 
1764 	req->biotail->bi_next = bio;
1765 	req->biotail = bio;
1766 	req->__data_len += bio->bi_iter.bi_size;
1767 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1768 	req->nr_phys_segments = segments + 1;
1769 
1770 	blk_account_io_start(req, false);
1771 	return true;
1772 no_merge:
1773 	req_set_nomerge(q, req);
1774 	return false;
1775 }
1776 
1777 /**
1778  * blk_attempt_plug_merge - try to merge with %current's plugged list
1779  * @q: request_queue new bio is being queued at
1780  * @bio: new bio being queued
1781  * @request_count: out parameter for number of traversed plugged requests
1782  * @same_queue_rq: pointer to &struct request that gets filled in when
1783  * another request associated with @q is found on the plug list
1784  * (optional, may be %NULL)
1785  *
1786  * Determine whether @bio being queued on @q can be merged with a request
1787  * on %current's plugged list.  Returns %true if merge was successful,
1788  * otherwise %false.
1789  *
1790  * Plugging coalesces IOs from the same issuer for the same purpose without
1791  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1792  * than scheduling, and the request, while may have elvpriv data, is not
1793  * added on the elevator at this point.  In addition, we don't have
1794  * reliable access to the elevator outside queue lock.  Only check basic
1795  * merging parameters without querying the elevator.
1796  *
1797  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1798  */
1799 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1800 			    unsigned int *request_count,
1801 			    struct request **same_queue_rq)
1802 {
1803 	struct blk_plug *plug;
1804 	struct request *rq;
1805 	struct list_head *plug_list;
1806 
1807 	plug = current->plug;
1808 	if (!plug)
1809 		return false;
1810 	*request_count = 0;
1811 
1812 	if (q->mq_ops)
1813 		plug_list = &plug->mq_list;
1814 	else
1815 		plug_list = &plug->list;
1816 
1817 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1818 		bool merged = false;
1819 
1820 		if (rq->q == q) {
1821 			(*request_count)++;
1822 			/*
1823 			 * Only blk-mq multiple hardware queues case checks the
1824 			 * rq in the same queue, there should be only one such
1825 			 * rq in a queue
1826 			 **/
1827 			if (same_queue_rq)
1828 				*same_queue_rq = rq;
1829 		}
1830 
1831 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1832 			continue;
1833 
1834 		switch (blk_try_merge(rq, bio)) {
1835 		case ELEVATOR_BACK_MERGE:
1836 			merged = bio_attempt_back_merge(q, rq, bio);
1837 			break;
1838 		case ELEVATOR_FRONT_MERGE:
1839 			merged = bio_attempt_front_merge(q, rq, bio);
1840 			break;
1841 		case ELEVATOR_DISCARD_MERGE:
1842 			merged = bio_attempt_discard_merge(q, rq, bio);
1843 			break;
1844 		default:
1845 			break;
1846 		}
1847 
1848 		if (merged)
1849 			return true;
1850 	}
1851 
1852 	return false;
1853 }
1854 
1855 unsigned int blk_plug_queued_count(struct request_queue *q)
1856 {
1857 	struct blk_plug *plug;
1858 	struct request *rq;
1859 	struct list_head *plug_list;
1860 	unsigned int ret = 0;
1861 
1862 	plug = current->plug;
1863 	if (!plug)
1864 		goto out;
1865 
1866 	if (q->mq_ops)
1867 		plug_list = &plug->mq_list;
1868 	else
1869 		plug_list = &plug->list;
1870 
1871 	list_for_each_entry(rq, plug_list, queuelist) {
1872 		if (rq->q == q)
1873 			ret++;
1874 	}
1875 out:
1876 	return ret;
1877 }
1878 
1879 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1880 {
1881 	struct io_context *ioc = rq_ioc(bio);
1882 
1883 	if (bio->bi_opf & REQ_RAHEAD)
1884 		req->cmd_flags |= REQ_FAILFAST_MASK;
1885 
1886 	req->__sector = bio->bi_iter.bi_sector;
1887 	if (ioprio_valid(bio_prio(bio)))
1888 		req->ioprio = bio_prio(bio);
1889 	else if (ioc)
1890 		req->ioprio = ioc->ioprio;
1891 	else
1892 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1893 	req->write_hint = bio->bi_write_hint;
1894 	blk_rq_bio_prep(req->q, req, bio);
1895 }
1896 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1897 
1898 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1899 {
1900 	struct blk_plug *plug;
1901 	int where = ELEVATOR_INSERT_SORT;
1902 	struct request *req, *free;
1903 	unsigned int request_count = 0;
1904 	unsigned int wb_acct;
1905 
1906 	/*
1907 	 * low level driver can indicate that it wants pages above a
1908 	 * certain limit bounced to low memory (ie for highmem, or even
1909 	 * ISA dma in theory)
1910 	 */
1911 	blk_queue_bounce(q, &bio);
1912 
1913 	blk_queue_split(q, &bio);
1914 
1915 	if (!bio_integrity_prep(bio))
1916 		return BLK_QC_T_NONE;
1917 
1918 	if (op_is_flush(bio->bi_opf)) {
1919 		spin_lock_irq(q->queue_lock);
1920 		where = ELEVATOR_INSERT_FLUSH;
1921 		goto get_rq;
1922 	}
1923 
1924 	/*
1925 	 * Check if we can merge with the plugged list before grabbing
1926 	 * any locks.
1927 	 */
1928 	if (!blk_queue_nomerges(q)) {
1929 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1930 			return BLK_QC_T_NONE;
1931 	} else
1932 		request_count = blk_plug_queued_count(q);
1933 
1934 	spin_lock_irq(q->queue_lock);
1935 
1936 	switch (elv_merge(q, &req, bio)) {
1937 	case ELEVATOR_BACK_MERGE:
1938 		if (!bio_attempt_back_merge(q, req, bio))
1939 			break;
1940 		elv_bio_merged(q, req, bio);
1941 		free = attempt_back_merge(q, req);
1942 		if (free)
1943 			__blk_put_request(q, free);
1944 		else
1945 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1946 		goto out_unlock;
1947 	case ELEVATOR_FRONT_MERGE:
1948 		if (!bio_attempt_front_merge(q, req, bio))
1949 			break;
1950 		elv_bio_merged(q, req, bio);
1951 		free = attempt_front_merge(q, req);
1952 		if (free)
1953 			__blk_put_request(q, free);
1954 		else
1955 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1956 		goto out_unlock;
1957 	default:
1958 		break;
1959 	}
1960 
1961 get_rq:
1962 	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1963 
1964 	/*
1965 	 * Grab a free request. This is might sleep but can not fail.
1966 	 * Returns with the queue unlocked.
1967 	 */
1968 	blk_queue_enter_live(q);
1969 	req = get_request(q, bio->bi_opf, bio, 0);
1970 	if (IS_ERR(req)) {
1971 		blk_queue_exit(q);
1972 		__wbt_done(q->rq_wb, wb_acct);
1973 		if (PTR_ERR(req) == -ENOMEM)
1974 			bio->bi_status = BLK_STS_RESOURCE;
1975 		else
1976 			bio->bi_status = BLK_STS_IOERR;
1977 		bio_endio(bio);
1978 		goto out_unlock;
1979 	}
1980 
1981 	wbt_track(&req->issue_stat, wb_acct);
1982 
1983 	/*
1984 	 * After dropping the lock and possibly sleeping here, our request
1985 	 * may now be mergeable after it had proven unmergeable (above).
1986 	 * We don't worry about that case for efficiency. It won't happen
1987 	 * often, and the elevators are able to handle it.
1988 	 */
1989 	blk_init_request_from_bio(req, bio);
1990 
1991 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1992 		req->cpu = raw_smp_processor_id();
1993 
1994 	plug = current->plug;
1995 	if (plug) {
1996 		/*
1997 		 * If this is the first request added after a plug, fire
1998 		 * of a plug trace.
1999 		 *
2000 		 * @request_count may become stale because of schedule
2001 		 * out, so check plug list again.
2002 		 */
2003 		if (!request_count || list_empty(&plug->list))
2004 			trace_block_plug(q);
2005 		else {
2006 			struct request *last = list_entry_rq(plug->list.prev);
2007 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
2008 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2009 				blk_flush_plug_list(plug, false);
2010 				trace_block_plug(q);
2011 			}
2012 		}
2013 		list_add_tail(&req->queuelist, &plug->list);
2014 		blk_account_io_start(req, true);
2015 	} else {
2016 		spin_lock_irq(q->queue_lock);
2017 		add_acct_request(q, req, where);
2018 		__blk_run_queue(q);
2019 out_unlock:
2020 		spin_unlock_irq(q->queue_lock);
2021 	}
2022 
2023 	return BLK_QC_T_NONE;
2024 }
2025 
2026 static void handle_bad_sector(struct bio *bio)
2027 {
2028 	char b[BDEVNAME_SIZE];
2029 
2030 	printk(KERN_INFO "attempt to access beyond end of device\n");
2031 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2032 			bio_devname(bio, b), bio->bi_opf,
2033 			(unsigned long long)bio_end_sector(bio),
2034 			(long long)get_capacity(bio->bi_disk));
2035 }
2036 
2037 #ifdef CONFIG_FAIL_MAKE_REQUEST
2038 
2039 static DECLARE_FAULT_ATTR(fail_make_request);
2040 
2041 static int __init setup_fail_make_request(char *str)
2042 {
2043 	return setup_fault_attr(&fail_make_request, str);
2044 }
2045 __setup("fail_make_request=", setup_fail_make_request);
2046 
2047 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2048 {
2049 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
2050 }
2051 
2052 static int __init fail_make_request_debugfs(void)
2053 {
2054 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2055 						NULL, &fail_make_request);
2056 
2057 	return PTR_ERR_OR_ZERO(dir);
2058 }
2059 
2060 late_initcall(fail_make_request_debugfs);
2061 
2062 #else /* CONFIG_FAIL_MAKE_REQUEST */
2063 
2064 static inline bool should_fail_request(struct hd_struct *part,
2065 					unsigned int bytes)
2066 {
2067 	return false;
2068 }
2069 
2070 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2071 
2072 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2073 {
2074 	if (part->policy && op_is_write(bio_op(bio))) {
2075 		char b[BDEVNAME_SIZE];
2076 
2077 		printk(KERN_ERR
2078 		       "generic_make_request: Trying to write "
2079 			"to read-only block-device %s (partno %d)\n",
2080 			bio_devname(bio, b), part->partno);
2081 		return true;
2082 	}
2083 
2084 	return false;
2085 }
2086 
2087 static noinline int should_fail_bio(struct bio *bio)
2088 {
2089 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2090 		return -EIO;
2091 	return 0;
2092 }
2093 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2094 
2095 /*
2096  * Remap block n of partition p to block n+start(p) of the disk.
2097  */
2098 static inline int blk_partition_remap(struct bio *bio)
2099 {
2100 	struct hd_struct *p;
2101 	int ret = 0;
2102 
2103 	rcu_read_lock();
2104 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2105 	if (unlikely(!p || should_fail_request(p, bio->bi_iter.bi_size) ||
2106 		     bio_check_ro(bio, p))) {
2107 		ret = -EIO;
2108 		goto out;
2109 	}
2110 
2111 	/*
2112 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
2113 	 * Include a test for the reset op code and perform the remap if needed.
2114 	 */
2115 	if (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET)
2116 		goto out;
2117 
2118 	bio->bi_iter.bi_sector += p->start_sect;
2119 	bio->bi_partno = 0;
2120 	trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2121 			      bio->bi_iter.bi_sector - p->start_sect);
2122 
2123 out:
2124 	rcu_read_unlock();
2125 	return ret;
2126 }
2127 
2128 /*
2129  * Check whether this bio extends beyond the end of the device.
2130  */
2131 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2132 {
2133 	sector_t maxsector;
2134 
2135 	if (!nr_sectors)
2136 		return 0;
2137 
2138 	/* Test device or partition size, when known. */
2139 	maxsector = get_capacity(bio->bi_disk);
2140 	if (maxsector) {
2141 		sector_t sector = bio->bi_iter.bi_sector;
2142 
2143 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2144 			/*
2145 			 * This may well happen - the kernel calls bread()
2146 			 * without checking the size of the device, e.g., when
2147 			 * mounting a device.
2148 			 */
2149 			handle_bad_sector(bio);
2150 			return 1;
2151 		}
2152 	}
2153 
2154 	return 0;
2155 }
2156 
2157 static noinline_for_stack bool
2158 generic_make_request_checks(struct bio *bio)
2159 {
2160 	struct request_queue *q;
2161 	int nr_sectors = bio_sectors(bio);
2162 	blk_status_t status = BLK_STS_IOERR;
2163 	char b[BDEVNAME_SIZE];
2164 
2165 	might_sleep();
2166 
2167 	if (bio_check_eod(bio, nr_sectors))
2168 		goto end_io;
2169 
2170 	q = bio->bi_disk->queue;
2171 	if (unlikely(!q)) {
2172 		printk(KERN_ERR
2173 		       "generic_make_request: Trying to access "
2174 			"nonexistent block-device %s (%Lu)\n",
2175 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2176 		goto end_io;
2177 	}
2178 
2179 	/*
2180 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2181 	 * if queue is not a request based queue.
2182 	 */
2183 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2184 		goto not_supported;
2185 
2186 	if (should_fail_bio(bio))
2187 		goto end_io;
2188 
2189 	if (!bio->bi_partno) {
2190 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2191 			goto end_io;
2192 	} else {
2193 		if (blk_partition_remap(bio))
2194 			goto end_io;
2195 	}
2196 
2197 	if (bio_check_eod(bio, nr_sectors))
2198 		goto end_io;
2199 
2200 	/*
2201 	 * Filter flush bio's early so that make_request based
2202 	 * drivers without flush support don't have to worry
2203 	 * about them.
2204 	 */
2205 	if (op_is_flush(bio->bi_opf) &&
2206 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2207 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2208 		if (!nr_sectors) {
2209 			status = BLK_STS_OK;
2210 			goto end_io;
2211 		}
2212 	}
2213 
2214 	switch (bio_op(bio)) {
2215 	case REQ_OP_DISCARD:
2216 		if (!blk_queue_discard(q))
2217 			goto not_supported;
2218 		break;
2219 	case REQ_OP_SECURE_ERASE:
2220 		if (!blk_queue_secure_erase(q))
2221 			goto not_supported;
2222 		break;
2223 	case REQ_OP_WRITE_SAME:
2224 		if (!q->limits.max_write_same_sectors)
2225 			goto not_supported;
2226 		break;
2227 	case REQ_OP_ZONE_REPORT:
2228 	case REQ_OP_ZONE_RESET:
2229 		if (!blk_queue_is_zoned(q))
2230 			goto not_supported;
2231 		break;
2232 	case REQ_OP_WRITE_ZEROES:
2233 		if (!q->limits.max_write_zeroes_sectors)
2234 			goto not_supported;
2235 		break;
2236 	default:
2237 		break;
2238 	}
2239 
2240 	/*
2241 	 * Various block parts want %current->io_context and lazy ioc
2242 	 * allocation ends up trading a lot of pain for a small amount of
2243 	 * memory.  Just allocate it upfront.  This may fail and block
2244 	 * layer knows how to live with it.
2245 	 */
2246 	create_io_context(GFP_ATOMIC, q->node);
2247 
2248 	if (!blkcg_bio_issue_check(q, bio))
2249 		return false;
2250 
2251 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2252 		trace_block_bio_queue(q, bio);
2253 		/* Now that enqueuing has been traced, we need to trace
2254 		 * completion as well.
2255 		 */
2256 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2257 	}
2258 	return true;
2259 
2260 not_supported:
2261 	status = BLK_STS_NOTSUPP;
2262 end_io:
2263 	bio->bi_status = status;
2264 	bio_endio(bio);
2265 	return false;
2266 }
2267 
2268 /**
2269  * generic_make_request - hand a buffer to its device driver for I/O
2270  * @bio:  The bio describing the location in memory and on the device.
2271  *
2272  * generic_make_request() is used to make I/O requests of block
2273  * devices. It is passed a &struct bio, which describes the I/O that needs
2274  * to be done.
2275  *
2276  * generic_make_request() does not return any status.  The
2277  * success/failure status of the request, along with notification of
2278  * completion, is delivered asynchronously through the bio->bi_end_io
2279  * function described (one day) else where.
2280  *
2281  * The caller of generic_make_request must make sure that bi_io_vec
2282  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2283  * set to describe the device address, and the
2284  * bi_end_io and optionally bi_private are set to describe how
2285  * completion notification should be signaled.
2286  *
2287  * generic_make_request and the drivers it calls may use bi_next if this
2288  * bio happens to be merged with someone else, and may resubmit the bio to
2289  * a lower device by calling into generic_make_request recursively, which
2290  * means the bio should NOT be touched after the call to ->make_request_fn.
2291  */
2292 blk_qc_t generic_make_request(struct bio *bio)
2293 {
2294 	/*
2295 	 * bio_list_on_stack[0] contains bios submitted by the current
2296 	 * make_request_fn.
2297 	 * bio_list_on_stack[1] contains bios that were submitted before
2298 	 * the current make_request_fn, but that haven't been processed
2299 	 * yet.
2300 	 */
2301 	struct bio_list bio_list_on_stack[2];
2302 	blk_qc_t ret = BLK_QC_T_NONE;
2303 
2304 	if (!generic_make_request_checks(bio))
2305 		goto out;
2306 
2307 	/*
2308 	 * We only want one ->make_request_fn to be active at a time, else
2309 	 * stack usage with stacked devices could be a problem.  So use
2310 	 * current->bio_list to keep a list of requests submited by a
2311 	 * make_request_fn function.  current->bio_list is also used as a
2312 	 * flag to say if generic_make_request is currently active in this
2313 	 * task or not.  If it is NULL, then no make_request is active.  If
2314 	 * it is non-NULL, then a make_request is active, and new requests
2315 	 * should be added at the tail
2316 	 */
2317 	if (current->bio_list) {
2318 		bio_list_add(&current->bio_list[0], bio);
2319 		goto out;
2320 	}
2321 
2322 	/* following loop may be a bit non-obvious, and so deserves some
2323 	 * explanation.
2324 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2325 	 * ensure that) so we have a list with a single bio.
2326 	 * We pretend that we have just taken it off a longer list, so
2327 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2328 	 * thus initialising the bio_list of new bios to be
2329 	 * added.  ->make_request() may indeed add some more bios
2330 	 * through a recursive call to generic_make_request.  If it
2331 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2332 	 * from the top.  In this case we really did just take the bio
2333 	 * of the top of the list (no pretending) and so remove it from
2334 	 * bio_list, and call into ->make_request() again.
2335 	 */
2336 	BUG_ON(bio->bi_next);
2337 	bio_list_init(&bio_list_on_stack[0]);
2338 	current->bio_list = bio_list_on_stack;
2339 	do {
2340 		struct request_queue *q = bio->bi_disk->queue;
2341 		blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
2342 			BLK_MQ_REQ_NOWAIT : 0;
2343 
2344 		if (likely(blk_queue_enter(q, flags) == 0)) {
2345 			struct bio_list lower, same;
2346 
2347 			/* Create a fresh bio_list for all subordinate requests */
2348 			bio_list_on_stack[1] = bio_list_on_stack[0];
2349 			bio_list_init(&bio_list_on_stack[0]);
2350 			ret = q->make_request_fn(q, bio);
2351 
2352 			blk_queue_exit(q);
2353 
2354 			/* sort new bios into those for a lower level
2355 			 * and those for the same level
2356 			 */
2357 			bio_list_init(&lower);
2358 			bio_list_init(&same);
2359 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2360 				if (q == bio->bi_disk->queue)
2361 					bio_list_add(&same, bio);
2362 				else
2363 					bio_list_add(&lower, bio);
2364 			/* now assemble so we handle the lowest level first */
2365 			bio_list_merge(&bio_list_on_stack[0], &lower);
2366 			bio_list_merge(&bio_list_on_stack[0], &same);
2367 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2368 		} else {
2369 			if (unlikely(!blk_queue_dying(q) &&
2370 					(bio->bi_opf & REQ_NOWAIT)))
2371 				bio_wouldblock_error(bio);
2372 			else
2373 				bio_io_error(bio);
2374 		}
2375 		bio = bio_list_pop(&bio_list_on_stack[0]);
2376 	} while (bio);
2377 	current->bio_list = NULL; /* deactivate */
2378 
2379 out:
2380 	return ret;
2381 }
2382 EXPORT_SYMBOL(generic_make_request);
2383 
2384 /**
2385  * direct_make_request - hand a buffer directly to its device driver for I/O
2386  * @bio:  The bio describing the location in memory and on the device.
2387  *
2388  * This function behaves like generic_make_request(), but does not protect
2389  * against recursion.  Must only be used if the called driver is known
2390  * to not call generic_make_request (or direct_make_request) again from
2391  * its make_request function.  (Calling direct_make_request again from
2392  * a workqueue is perfectly fine as that doesn't recurse).
2393  */
2394 blk_qc_t direct_make_request(struct bio *bio)
2395 {
2396 	struct request_queue *q = bio->bi_disk->queue;
2397 	bool nowait = bio->bi_opf & REQ_NOWAIT;
2398 	blk_qc_t ret;
2399 
2400 	if (!generic_make_request_checks(bio))
2401 		return BLK_QC_T_NONE;
2402 
2403 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2404 		if (nowait && !blk_queue_dying(q))
2405 			bio->bi_status = BLK_STS_AGAIN;
2406 		else
2407 			bio->bi_status = BLK_STS_IOERR;
2408 		bio_endio(bio);
2409 		return BLK_QC_T_NONE;
2410 	}
2411 
2412 	ret = q->make_request_fn(q, bio);
2413 	blk_queue_exit(q);
2414 	return ret;
2415 }
2416 EXPORT_SYMBOL_GPL(direct_make_request);
2417 
2418 /**
2419  * submit_bio - submit a bio to the block device layer for I/O
2420  * @bio: The &struct bio which describes the I/O
2421  *
2422  * submit_bio() is very similar in purpose to generic_make_request(), and
2423  * uses that function to do most of the work. Both are fairly rough
2424  * interfaces; @bio must be presetup and ready for I/O.
2425  *
2426  */
2427 blk_qc_t submit_bio(struct bio *bio)
2428 {
2429 	/*
2430 	 * If it's a regular read/write or a barrier with data attached,
2431 	 * go through the normal accounting stuff before submission.
2432 	 */
2433 	if (bio_has_data(bio)) {
2434 		unsigned int count;
2435 
2436 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2437 			count = queue_logical_block_size(bio->bi_disk->queue);
2438 		else
2439 			count = bio_sectors(bio);
2440 
2441 		if (op_is_write(bio_op(bio))) {
2442 			count_vm_events(PGPGOUT, count);
2443 		} else {
2444 			task_io_account_read(bio->bi_iter.bi_size);
2445 			count_vm_events(PGPGIN, count);
2446 		}
2447 
2448 		if (unlikely(block_dump)) {
2449 			char b[BDEVNAME_SIZE];
2450 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2451 			current->comm, task_pid_nr(current),
2452 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2453 				(unsigned long long)bio->bi_iter.bi_sector,
2454 				bio_devname(bio, b), count);
2455 		}
2456 	}
2457 
2458 	return generic_make_request(bio);
2459 }
2460 EXPORT_SYMBOL(submit_bio);
2461 
2462 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2463 {
2464 	if (!q->poll_fn || !blk_qc_t_valid(cookie))
2465 		return false;
2466 
2467 	if (current->plug)
2468 		blk_flush_plug_list(current->plug, false);
2469 	return q->poll_fn(q, cookie);
2470 }
2471 EXPORT_SYMBOL_GPL(blk_poll);
2472 
2473 /**
2474  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2475  *                              for new the queue limits
2476  * @q:  the queue
2477  * @rq: the request being checked
2478  *
2479  * Description:
2480  *    @rq may have been made based on weaker limitations of upper-level queues
2481  *    in request stacking drivers, and it may violate the limitation of @q.
2482  *    Since the block layer and the underlying device driver trust @rq
2483  *    after it is inserted to @q, it should be checked against @q before
2484  *    the insertion using this generic function.
2485  *
2486  *    Request stacking drivers like request-based dm may change the queue
2487  *    limits when retrying requests on other queues. Those requests need
2488  *    to be checked against the new queue limits again during dispatch.
2489  */
2490 static int blk_cloned_rq_check_limits(struct request_queue *q,
2491 				      struct request *rq)
2492 {
2493 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2494 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2495 		return -EIO;
2496 	}
2497 
2498 	/*
2499 	 * queue's settings related to segment counting like q->bounce_pfn
2500 	 * may differ from that of other stacking queues.
2501 	 * Recalculate it to check the request correctly on this queue's
2502 	 * limitation.
2503 	 */
2504 	blk_recalc_rq_segments(rq);
2505 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2506 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2507 		return -EIO;
2508 	}
2509 
2510 	return 0;
2511 }
2512 
2513 /**
2514  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2515  * @q:  the queue to submit the request
2516  * @rq: the request being queued
2517  */
2518 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2519 {
2520 	unsigned long flags;
2521 	int where = ELEVATOR_INSERT_BACK;
2522 
2523 	if (blk_cloned_rq_check_limits(q, rq))
2524 		return BLK_STS_IOERR;
2525 
2526 	if (rq->rq_disk &&
2527 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2528 		return BLK_STS_IOERR;
2529 
2530 	if (q->mq_ops) {
2531 		if (blk_queue_io_stat(q))
2532 			blk_account_io_start(rq, true);
2533 		/*
2534 		 * Since we have a scheduler attached on the top device,
2535 		 * bypass a potential scheduler on the bottom device for
2536 		 * insert.
2537 		 */
2538 		return blk_mq_request_issue_directly(rq);
2539 	}
2540 
2541 	spin_lock_irqsave(q->queue_lock, flags);
2542 	if (unlikely(blk_queue_dying(q))) {
2543 		spin_unlock_irqrestore(q->queue_lock, flags);
2544 		return BLK_STS_IOERR;
2545 	}
2546 
2547 	/*
2548 	 * Submitting request must be dequeued before calling this function
2549 	 * because it will be linked to another request_queue
2550 	 */
2551 	BUG_ON(blk_queued_rq(rq));
2552 
2553 	if (op_is_flush(rq->cmd_flags))
2554 		where = ELEVATOR_INSERT_FLUSH;
2555 
2556 	add_acct_request(q, rq, where);
2557 	if (where == ELEVATOR_INSERT_FLUSH)
2558 		__blk_run_queue(q);
2559 	spin_unlock_irqrestore(q->queue_lock, flags);
2560 
2561 	return BLK_STS_OK;
2562 }
2563 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2564 
2565 /**
2566  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2567  * @rq: request to examine
2568  *
2569  * Description:
2570  *     A request could be merge of IOs which require different failure
2571  *     handling.  This function determines the number of bytes which
2572  *     can be failed from the beginning of the request without
2573  *     crossing into area which need to be retried further.
2574  *
2575  * Return:
2576  *     The number of bytes to fail.
2577  */
2578 unsigned int blk_rq_err_bytes(const struct request *rq)
2579 {
2580 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2581 	unsigned int bytes = 0;
2582 	struct bio *bio;
2583 
2584 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2585 		return blk_rq_bytes(rq);
2586 
2587 	/*
2588 	 * Currently the only 'mixing' which can happen is between
2589 	 * different fastfail types.  We can safely fail portions
2590 	 * which have all the failfast bits that the first one has -
2591 	 * the ones which are at least as eager to fail as the first
2592 	 * one.
2593 	 */
2594 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2595 		if ((bio->bi_opf & ff) != ff)
2596 			break;
2597 		bytes += bio->bi_iter.bi_size;
2598 	}
2599 
2600 	/* this could lead to infinite loop */
2601 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2602 	return bytes;
2603 }
2604 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2605 
2606 void blk_account_io_completion(struct request *req, unsigned int bytes)
2607 {
2608 	if (blk_do_io_stat(req)) {
2609 		const int rw = rq_data_dir(req);
2610 		struct hd_struct *part;
2611 		int cpu;
2612 
2613 		cpu = part_stat_lock();
2614 		part = req->part;
2615 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2616 		part_stat_unlock();
2617 	}
2618 }
2619 
2620 void blk_account_io_done(struct request *req)
2621 {
2622 	/*
2623 	 * Account IO completion.  flush_rq isn't accounted as a
2624 	 * normal IO on queueing nor completion.  Accounting the
2625 	 * containing request is enough.
2626 	 */
2627 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2628 		unsigned long duration = jiffies - req->start_time;
2629 		const int rw = rq_data_dir(req);
2630 		struct hd_struct *part;
2631 		int cpu;
2632 
2633 		cpu = part_stat_lock();
2634 		part = req->part;
2635 
2636 		part_stat_inc(cpu, part, ios[rw]);
2637 		part_stat_add(cpu, part, ticks[rw], duration);
2638 		part_round_stats(req->q, cpu, part);
2639 		part_dec_in_flight(req->q, part, rw);
2640 
2641 		hd_struct_put(part);
2642 		part_stat_unlock();
2643 	}
2644 }
2645 
2646 #ifdef CONFIG_PM
2647 /*
2648  * Don't process normal requests when queue is suspended
2649  * or in the process of suspending/resuming
2650  */
2651 static bool blk_pm_allow_request(struct request *rq)
2652 {
2653 	switch (rq->q->rpm_status) {
2654 	case RPM_RESUMING:
2655 	case RPM_SUSPENDING:
2656 		return rq->rq_flags & RQF_PM;
2657 	case RPM_SUSPENDED:
2658 		return false;
2659 	}
2660 
2661 	return true;
2662 }
2663 #else
2664 static bool blk_pm_allow_request(struct request *rq)
2665 {
2666 	return true;
2667 }
2668 #endif
2669 
2670 void blk_account_io_start(struct request *rq, bool new_io)
2671 {
2672 	struct hd_struct *part;
2673 	int rw = rq_data_dir(rq);
2674 	int cpu;
2675 
2676 	if (!blk_do_io_stat(rq))
2677 		return;
2678 
2679 	cpu = part_stat_lock();
2680 
2681 	if (!new_io) {
2682 		part = rq->part;
2683 		part_stat_inc(cpu, part, merges[rw]);
2684 	} else {
2685 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2686 		if (!hd_struct_try_get(part)) {
2687 			/*
2688 			 * The partition is already being removed,
2689 			 * the request will be accounted on the disk only
2690 			 *
2691 			 * We take a reference on disk->part0 although that
2692 			 * partition will never be deleted, so we can treat
2693 			 * it as any other partition.
2694 			 */
2695 			part = &rq->rq_disk->part0;
2696 			hd_struct_get(part);
2697 		}
2698 		part_round_stats(rq->q, cpu, part);
2699 		part_inc_in_flight(rq->q, part, rw);
2700 		rq->part = part;
2701 	}
2702 
2703 	part_stat_unlock();
2704 }
2705 
2706 static struct request *elv_next_request(struct request_queue *q)
2707 {
2708 	struct request *rq;
2709 	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2710 
2711 	WARN_ON_ONCE(q->mq_ops);
2712 
2713 	while (1) {
2714 		list_for_each_entry(rq, &q->queue_head, queuelist) {
2715 			if (blk_pm_allow_request(rq))
2716 				return rq;
2717 
2718 			if (rq->rq_flags & RQF_SOFTBARRIER)
2719 				break;
2720 		}
2721 
2722 		/*
2723 		 * Flush request is running and flush request isn't queueable
2724 		 * in the drive, we can hold the queue till flush request is
2725 		 * finished. Even we don't do this, driver can't dispatch next
2726 		 * requests and will requeue them. And this can improve
2727 		 * throughput too. For example, we have request flush1, write1,
2728 		 * flush 2. flush1 is dispatched, then queue is hold, write1
2729 		 * isn't inserted to queue. After flush1 is finished, flush2
2730 		 * will be dispatched. Since disk cache is already clean,
2731 		 * flush2 will be finished very soon, so looks like flush2 is
2732 		 * folded to flush1.
2733 		 * Since the queue is hold, a flag is set to indicate the queue
2734 		 * should be restarted later. Please see flush_end_io() for
2735 		 * details.
2736 		 */
2737 		if (fq->flush_pending_idx != fq->flush_running_idx &&
2738 				!queue_flush_queueable(q)) {
2739 			fq->flush_queue_delayed = 1;
2740 			return NULL;
2741 		}
2742 		if (unlikely(blk_queue_bypass(q)) ||
2743 		    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2744 			return NULL;
2745 	}
2746 }
2747 
2748 /**
2749  * blk_peek_request - peek at the top of a request queue
2750  * @q: request queue to peek at
2751  *
2752  * Description:
2753  *     Return the request at the top of @q.  The returned request
2754  *     should be started using blk_start_request() before LLD starts
2755  *     processing it.
2756  *
2757  * Return:
2758  *     Pointer to the request at the top of @q if available.  Null
2759  *     otherwise.
2760  */
2761 struct request *blk_peek_request(struct request_queue *q)
2762 {
2763 	struct request *rq;
2764 	int ret;
2765 
2766 	lockdep_assert_held(q->queue_lock);
2767 	WARN_ON_ONCE(q->mq_ops);
2768 
2769 	while ((rq = elv_next_request(q)) != NULL) {
2770 		if (!(rq->rq_flags & RQF_STARTED)) {
2771 			/*
2772 			 * This is the first time the device driver
2773 			 * sees this request (possibly after
2774 			 * requeueing).  Notify IO scheduler.
2775 			 */
2776 			if (rq->rq_flags & RQF_SORTED)
2777 				elv_activate_rq(q, rq);
2778 
2779 			/*
2780 			 * just mark as started even if we don't start
2781 			 * it, a request that has been delayed should
2782 			 * not be passed by new incoming requests
2783 			 */
2784 			rq->rq_flags |= RQF_STARTED;
2785 			trace_block_rq_issue(q, rq);
2786 		}
2787 
2788 		if (!q->boundary_rq || q->boundary_rq == rq) {
2789 			q->end_sector = rq_end_sector(rq);
2790 			q->boundary_rq = NULL;
2791 		}
2792 
2793 		if (rq->rq_flags & RQF_DONTPREP)
2794 			break;
2795 
2796 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2797 			/*
2798 			 * make sure space for the drain appears we
2799 			 * know we can do this because max_hw_segments
2800 			 * has been adjusted to be one fewer than the
2801 			 * device can handle
2802 			 */
2803 			rq->nr_phys_segments++;
2804 		}
2805 
2806 		if (!q->prep_rq_fn)
2807 			break;
2808 
2809 		ret = q->prep_rq_fn(q, rq);
2810 		if (ret == BLKPREP_OK) {
2811 			break;
2812 		} else if (ret == BLKPREP_DEFER) {
2813 			/*
2814 			 * the request may have been (partially) prepped.
2815 			 * we need to keep this request in the front to
2816 			 * avoid resource deadlock.  RQF_STARTED will
2817 			 * prevent other fs requests from passing this one.
2818 			 */
2819 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2820 			    !(rq->rq_flags & RQF_DONTPREP)) {
2821 				/*
2822 				 * remove the space for the drain we added
2823 				 * so that we don't add it again
2824 				 */
2825 				--rq->nr_phys_segments;
2826 			}
2827 
2828 			rq = NULL;
2829 			break;
2830 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2831 			rq->rq_flags |= RQF_QUIET;
2832 			/*
2833 			 * Mark this request as started so we don't trigger
2834 			 * any debug logic in the end I/O path.
2835 			 */
2836 			blk_start_request(rq);
2837 			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2838 					BLK_STS_TARGET : BLK_STS_IOERR);
2839 		} else {
2840 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2841 			break;
2842 		}
2843 	}
2844 
2845 	return rq;
2846 }
2847 EXPORT_SYMBOL(blk_peek_request);
2848 
2849 static void blk_dequeue_request(struct request *rq)
2850 {
2851 	struct request_queue *q = rq->q;
2852 
2853 	BUG_ON(list_empty(&rq->queuelist));
2854 	BUG_ON(ELV_ON_HASH(rq));
2855 
2856 	list_del_init(&rq->queuelist);
2857 
2858 	/*
2859 	 * the time frame between a request being removed from the lists
2860 	 * and to it is freed is accounted as io that is in progress at
2861 	 * the driver side.
2862 	 */
2863 	if (blk_account_rq(rq)) {
2864 		q->in_flight[rq_is_sync(rq)]++;
2865 		set_io_start_time_ns(rq);
2866 	}
2867 }
2868 
2869 /**
2870  * blk_start_request - start request processing on the driver
2871  * @req: request to dequeue
2872  *
2873  * Description:
2874  *     Dequeue @req and start timeout timer on it.  This hands off the
2875  *     request to the driver.
2876  */
2877 void blk_start_request(struct request *req)
2878 {
2879 	lockdep_assert_held(req->q->queue_lock);
2880 	WARN_ON_ONCE(req->q->mq_ops);
2881 
2882 	blk_dequeue_request(req);
2883 
2884 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2885 		blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2886 		req->rq_flags |= RQF_STATS;
2887 		wbt_issue(req->q->rq_wb, &req->issue_stat);
2888 	}
2889 
2890 	BUG_ON(blk_rq_is_complete(req));
2891 	blk_add_timer(req);
2892 }
2893 EXPORT_SYMBOL(blk_start_request);
2894 
2895 /**
2896  * blk_fetch_request - fetch a request from a request queue
2897  * @q: request queue to fetch a request from
2898  *
2899  * Description:
2900  *     Return the request at the top of @q.  The request is started on
2901  *     return and LLD can start processing it immediately.
2902  *
2903  * Return:
2904  *     Pointer to the request at the top of @q if available.  Null
2905  *     otherwise.
2906  */
2907 struct request *blk_fetch_request(struct request_queue *q)
2908 {
2909 	struct request *rq;
2910 
2911 	lockdep_assert_held(q->queue_lock);
2912 	WARN_ON_ONCE(q->mq_ops);
2913 
2914 	rq = blk_peek_request(q);
2915 	if (rq)
2916 		blk_start_request(rq);
2917 	return rq;
2918 }
2919 EXPORT_SYMBOL(blk_fetch_request);
2920 
2921 /*
2922  * Steal bios from a request and add them to a bio list.
2923  * The request must not have been partially completed before.
2924  */
2925 void blk_steal_bios(struct bio_list *list, struct request *rq)
2926 {
2927 	if (rq->bio) {
2928 		if (list->tail)
2929 			list->tail->bi_next = rq->bio;
2930 		else
2931 			list->head = rq->bio;
2932 		list->tail = rq->biotail;
2933 
2934 		rq->bio = NULL;
2935 		rq->biotail = NULL;
2936 	}
2937 
2938 	rq->__data_len = 0;
2939 }
2940 EXPORT_SYMBOL_GPL(blk_steal_bios);
2941 
2942 /**
2943  * blk_update_request - Special helper function for request stacking drivers
2944  * @req:      the request being processed
2945  * @error:    block status code
2946  * @nr_bytes: number of bytes to complete @req
2947  *
2948  * Description:
2949  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2950  *     the request structure even if @req doesn't have leftover.
2951  *     If @req has leftover, sets it up for the next range of segments.
2952  *
2953  *     This special helper function is only for request stacking drivers
2954  *     (e.g. request-based dm) so that they can handle partial completion.
2955  *     Actual device drivers should use blk_end_request instead.
2956  *
2957  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2958  *     %false return from this function.
2959  *
2960  * Return:
2961  *     %false - this request doesn't have any more data
2962  *     %true  - this request has more data
2963  **/
2964 bool blk_update_request(struct request *req, blk_status_t error,
2965 		unsigned int nr_bytes)
2966 {
2967 	int total_bytes;
2968 
2969 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2970 
2971 	if (!req->bio)
2972 		return false;
2973 
2974 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
2975 		     !(req->rq_flags & RQF_QUIET)))
2976 		print_req_error(req, error);
2977 
2978 	blk_account_io_completion(req, nr_bytes);
2979 
2980 	total_bytes = 0;
2981 	while (req->bio) {
2982 		struct bio *bio = req->bio;
2983 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2984 
2985 		if (bio_bytes == bio->bi_iter.bi_size)
2986 			req->bio = bio->bi_next;
2987 
2988 		/* Completion has already been traced */
2989 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2990 		req_bio_endio(req, bio, bio_bytes, error);
2991 
2992 		total_bytes += bio_bytes;
2993 		nr_bytes -= bio_bytes;
2994 
2995 		if (!nr_bytes)
2996 			break;
2997 	}
2998 
2999 	/*
3000 	 * completely done
3001 	 */
3002 	if (!req->bio) {
3003 		/*
3004 		 * Reset counters so that the request stacking driver
3005 		 * can find how many bytes remain in the request
3006 		 * later.
3007 		 */
3008 		req->__data_len = 0;
3009 		return false;
3010 	}
3011 
3012 	req->__data_len -= total_bytes;
3013 
3014 	/* update sector only for requests with clear definition of sector */
3015 	if (!blk_rq_is_passthrough(req))
3016 		req->__sector += total_bytes >> 9;
3017 
3018 	/* mixed attributes always follow the first bio */
3019 	if (req->rq_flags & RQF_MIXED_MERGE) {
3020 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
3021 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3022 	}
3023 
3024 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3025 		/*
3026 		 * If total number of sectors is less than the first segment
3027 		 * size, something has gone terribly wrong.
3028 		 */
3029 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3030 			blk_dump_rq_flags(req, "request botched");
3031 			req->__data_len = blk_rq_cur_bytes(req);
3032 		}
3033 
3034 		/* recalculate the number of segments */
3035 		blk_recalc_rq_segments(req);
3036 	}
3037 
3038 	return true;
3039 }
3040 EXPORT_SYMBOL_GPL(blk_update_request);
3041 
3042 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3043 				    unsigned int nr_bytes,
3044 				    unsigned int bidi_bytes)
3045 {
3046 	if (blk_update_request(rq, error, nr_bytes))
3047 		return true;
3048 
3049 	/* Bidi request must be completed as a whole */
3050 	if (unlikely(blk_bidi_rq(rq)) &&
3051 	    blk_update_request(rq->next_rq, error, bidi_bytes))
3052 		return true;
3053 
3054 	if (blk_queue_add_random(rq->q))
3055 		add_disk_randomness(rq->rq_disk);
3056 
3057 	return false;
3058 }
3059 
3060 /**
3061  * blk_unprep_request - unprepare a request
3062  * @req:	the request
3063  *
3064  * This function makes a request ready for complete resubmission (or
3065  * completion).  It happens only after all error handling is complete,
3066  * so represents the appropriate moment to deallocate any resources
3067  * that were allocated to the request in the prep_rq_fn.  The queue
3068  * lock is held when calling this.
3069  */
3070 void blk_unprep_request(struct request *req)
3071 {
3072 	struct request_queue *q = req->q;
3073 
3074 	req->rq_flags &= ~RQF_DONTPREP;
3075 	if (q->unprep_rq_fn)
3076 		q->unprep_rq_fn(q, req);
3077 }
3078 EXPORT_SYMBOL_GPL(blk_unprep_request);
3079 
3080 void blk_finish_request(struct request *req, blk_status_t error)
3081 {
3082 	struct request_queue *q = req->q;
3083 
3084 	lockdep_assert_held(req->q->queue_lock);
3085 	WARN_ON_ONCE(q->mq_ops);
3086 
3087 	if (req->rq_flags & RQF_STATS)
3088 		blk_stat_add(req);
3089 
3090 	if (req->rq_flags & RQF_QUEUED)
3091 		blk_queue_end_tag(q, req);
3092 
3093 	BUG_ON(blk_queued_rq(req));
3094 
3095 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3096 		laptop_io_completion(req->q->backing_dev_info);
3097 
3098 	blk_delete_timer(req);
3099 
3100 	if (req->rq_flags & RQF_DONTPREP)
3101 		blk_unprep_request(req);
3102 
3103 	blk_account_io_done(req);
3104 
3105 	if (req->end_io) {
3106 		wbt_done(req->q->rq_wb, &req->issue_stat);
3107 		req->end_io(req, error);
3108 	} else {
3109 		if (blk_bidi_rq(req))
3110 			__blk_put_request(req->next_rq->q, req->next_rq);
3111 
3112 		__blk_put_request(q, req);
3113 	}
3114 }
3115 EXPORT_SYMBOL(blk_finish_request);
3116 
3117 /**
3118  * blk_end_bidi_request - Complete a bidi request
3119  * @rq:         the request to complete
3120  * @error:      block status code
3121  * @nr_bytes:   number of bytes to complete @rq
3122  * @bidi_bytes: number of bytes to complete @rq->next_rq
3123  *
3124  * Description:
3125  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3126  *     Drivers that supports bidi can safely call this member for any
3127  *     type of request, bidi or uni.  In the later case @bidi_bytes is
3128  *     just ignored.
3129  *
3130  * Return:
3131  *     %false - we are done with this request
3132  *     %true  - still buffers pending for this request
3133  **/
3134 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3135 				 unsigned int nr_bytes, unsigned int bidi_bytes)
3136 {
3137 	struct request_queue *q = rq->q;
3138 	unsigned long flags;
3139 
3140 	WARN_ON_ONCE(q->mq_ops);
3141 
3142 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3143 		return true;
3144 
3145 	spin_lock_irqsave(q->queue_lock, flags);
3146 	blk_finish_request(rq, error);
3147 	spin_unlock_irqrestore(q->queue_lock, flags);
3148 
3149 	return false;
3150 }
3151 
3152 /**
3153  * __blk_end_bidi_request - Complete a bidi request with queue lock held
3154  * @rq:         the request to complete
3155  * @error:      block status code
3156  * @nr_bytes:   number of bytes to complete @rq
3157  * @bidi_bytes: number of bytes to complete @rq->next_rq
3158  *
3159  * Description:
3160  *     Identical to blk_end_bidi_request() except that queue lock is
3161  *     assumed to be locked on entry and remains so on return.
3162  *
3163  * Return:
3164  *     %false - we are done with this request
3165  *     %true  - still buffers pending for this request
3166  **/
3167 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3168 				   unsigned int nr_bytes, unsigned int bidi_bytes)
3169 {
3170 	lockdep_assert_held(rq->q->queue_lock);
3171 	WARN_ON_ONCE(rq->q->mq_ops);
3172 
3173 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3174 		return true;
3175 
3176 	blk_finish_request(rq, error);
3177 
3178 	return false;
3179 }
3180 
3181 /**
3182  * blk_end_request - Helper function for drivers to complete the request.
3183  * @rq:       the request being processed
3184  * @error:    block status code
3185  * @nr_bytes: number of bytes to complete
3186  *
3187  * Description:
3188  *     Ends I/O on a number of bytes attached to @rq.
3189  *     If @rq has leftover, sets it up for the next range of segments.
3190  *
3191  * Return:
3192  *     %false - we are done with this request
3193  *     %true  - still buffers pending for this request
3194  **/
3195 bool blk_end_request(struct request *rq, blk_status_t error,
3196 		unsigned int nr_bytes)
3197 {
3198 	WARN_ON_ONCE(rq->q->mq_ops);
3199 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
3200 }
3201 EXPORT_SYMBOL(blk_end_request);
3202 
3203 /**
3204  * blk_end_request_all - Helper function for drives to finish the request.
3205  * @rq: the request to finish
3206  * @error: block status code
3207  *
3208  * Description:
3209  *     Completely finish @rq.
3210  */
3211 void blk_end_request_all(struct request *rq, blk_status_t error)
3212 {
3213 	bool pending;
3214 	unsigned int bidi_bytes = 0;
3215 
3216 	if (unlikely(blk_bidi_rq(rq)))
3217 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3218 
3219 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3220 	BUG_ON(pending);
3221 }
3222 EXPORT_SYMBOL(blk_end_request_all);
3223 
3224 /**
3225  * __blk_end_request - Helper function for drivers to complete the request.
3226  * @rq:       the request being processed
3227  * @error:    block status code
3228  * @nr_bytes: number of bytes to complete
3229  *
3230  * Description:
3231  *     Must be called with queue lock held unlike blk_end_request().
3232  *
3233  * Return:
3234  *     %false - we are done with this request
3235  *     %true  - still buffers pending for this request
3236  **/
3237 bool __blk_end_request(struct request *rq, blk_status_t error,
3238 		unsigned int nr_bytes)
3239 {
3240 	lockdep_assert_held(rq->q->queue_lock);
3241 	WARN_ON_ONCE(rq->q->mq_ops);
3242 
3243 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3244 }
3245 EXPORT_SYMBOL(__blk_end_request);
3246 
3247 /**
3248  * __blk_end_request_all - Helper function for drives to finish the request.
3249  * @rq: the request to finish
3250  * @error:    block status code
3251  *
3252  * Description:
3253  *     Completely finish @rq.  Must be called with queue lock held.
3254  */
3255 void __blk_end_request_all(struct request *rq, blk_status_t error)
3256 {
3257 	bool pending;
3258 	unsigned int bidi_bytes = 0;
3259 
3260 	lockdep_assert_held(rq->q->queue_lock);
3261 	WARN_ON_ONCE(rq->q->mq_ops);
3262 
3263 	if (unlikely(blk_bidi_rq(rq)))
3264 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3265 
3266 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3267 	BUG_ON(pending);
3268 }
3269 EXPORT_SYMBOL(__blk_end_request_all);
3270 
3271 /**
3272  * __blk_end_request_cur - Helper function to finish the current request chunk.
3273  * @rq: the request to finish the current chunk for
3274  * @error:    block status code
3275  *
3276  * Description:
3277  *     Complete the current consecutively mapped chunk from @rq.  Must
3278  *     be called with queue lock held.
3279  *
3280  * Return:
3281  *     %false - we are done with this request
3282  *     %true  - still buffers pending for this request
3283  */
3284 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3285 {
3286 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3287 }
3288 EXPORT_SYMBOL(__blk_end_request_cur);
3289 
3290 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3291 		     struct bio *bio)
3292 {
3293 	if (bio_has_data(bio))
3294 		rq->nr_phys_segments = bio_phys_segments(q, bio);
3295 	else if (bio_op(bio) == REQ_OP_DISCARD)
3296 		rq->nr_phys_segments = 1;
3297 
3298 	rq->__data_len = bio->bi_iter.bi_size;
3299 	rq->bio = rq->biotail = bio;
3300 
3301 	if (bio->bi_disk)
3302 		rq->rq_disk = bio->bi_disk;
3303 }
3304 
3305 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3306 /**
3307  * rq_flush_dcache_pages - Helper function to flush all pages in a request
3308  * @rq: the request to be flushed
3309  *
3310  * Description:
3311  *     Flush all pages in @rq.
3312  */
3313 void rq_flush_dcache_pages(struct request *rq)
3314 {
3315 	struct req_iterator iter;
3316 	struct bio_vec bvec;
3317 
3318 	rq_for_each_segment(bvec, rq, iter)
3319 		flush_dcache_page(bvec.bv_page);
3320 }
3321 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3322 #endif
3323 
3324 /**
3325  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3326  * @q : the queue of the device being checked
3327  *
3328  * Description:
3329  *    Check if underlying low-level drivers of a device are busy.
3330  *    If the drivers want to export their busy state, they must set own
3331  *    exporting function using blk_queue_lld_busy() first.
3332  *
3333  *    Basically, this function is used only by request stacking drivers
3334  *    to stop dispatching requests to underlying devices when underlying
3335  *    devices are busy.  This behavior helps more I/O merging on the queue
3336  *    of the request stacking driver and prevents I/O throughput regression
3337  *    on burst I/O load.
3338  *
3339  * Return:
3340  *    0 - Not busy (The request stacking driver should dispatch request)
3341  *    1 - Busy (The request stacking driver should stop dispatching request)
3342  */
3343 int blk_lld_busy(struct request_queue *q)
3344 {
3345 	if (q->lld_busy_fn)
3346 		return q->lld_busy_fn(q);
3347 
3348 	return 0;
3349 }
3350 EXPORT_SYMBOL_GPL(blk_lld_busy);
3351 
3352 /**
3353  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3354  * @rq: the clone request to be cleaned up
3355  *
3356  * Description:
3357  *     Free all bios in @rq for a cloned request.
3358  */
3359 void blk_rq_unprep_clone(struct request *rq)
3360 {
3361 	struct bio *bio;
3362 
3363 	while ((bio = rq->bio) != NULL) {
3364 		rq->bio = bio->bi_next;
3365 
3366 		bio_put(bio);
3367 	}
3368 }
3369 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3370 
3371 /*
3372  * Copy attributes of the original request to the clone request.
3373  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3374  */
3375 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3376 {
3377 	dst->cpu = src->cpu;
3378 	dst->__sector = blk_rq_pos(src);
3379 	dst->__data_len = blk_rq_bytes(src);
3380 	dst->nr_phys_segments = src->nr_phys_segments;
3381 	dst->ioprio = src->ioprio;
3382 	dst->extra_len = src->extra_len;
3383 }
3384 
3385 /**
3386  * blk_rq_prep_clone - Helper function to setup clone request
3387  * @rq: the request to be setup
3388  * @rq_src: original request to be cloned
3389  * @bs: bio_set that bios for clone are allocated from
3390  * @gfp_mask: memory allocation mask for bio
3391  * @bio_ctr: setup function to be called for each clone bio.
3392  *           Returns %0 for success, non %0 for failure.
3393  * @data: private data to be passed to @bio_ctr
3394  *
3395  * Description:
3396  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3397  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3398  *     are not copied, and copying such parts is the caller's responsibility.
3399  *     Also, pages which the original bios are pointing to are not copied
3400  *     and the cloned bios just point same pages.
3401  *     So cloned bios must be completed before original bios, which means
3402  *     the caller must complete @rq before @rq_src.
3403  */
3404 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3405 		      struct bio_set *bs, gfp_t gfp_mask,
3406 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3407 		      void *data)
3408 {
3409 	struct bio *bio, *bio_src;
3410 
3411 	if (!bs)
3412 		bs = fs_bio_set;
3413 
3414 	__rq_for_each_bio(bio_src, rq_src) {
3415 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3416 		if (!bio)
3417 			goto free_and_out;
3418 
3419 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3420 			goto free_and_out;
3421 
3422 		if (rq->bio) {
3423 			rq->biotail->bi_next = bio;
3424 			rq->biotail = bio;
3425 		} else
3426 			rq->bio = rq->biotail = bio;
3427 	}
3428 
3429 	__blk_rq_prep_clone(rq, rq_src);
3430 
3431 	return 0;
3432 
3433 free_and_out:
3434 	if (bio)
3435 		bio_put(bio);
3436 	blk_rq_unprep_clone(rq);
3437 
3438 	return -ENOMEM;
3439 }
3440 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3441 
3442 int kblockd_schedule_work(struct work_struct *work)
3443 {
3444 	return queue_work(kblockd_workqueue, work);
3445 }
3446 EXPORT_SYMBOL(kblockd_schedule_work);
3447 
3448 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3449 {
3450 	return queue_work_on(cpu, kblockd_workqueue, work);
3451 }
3452 EXPORT_SYMBOL(kblockd_schedule_work_on);
3453 
3454 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3455 				unsigned long delay)
3456 {
3457 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3458 }
3459 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3460 
3461 /**
3462  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3463  * @plug:	The &struct blk_plug that needs to be initialized
3464  *
3465  * Description:
3466  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3467  *   pending I/O should the task end up blocking between blk_start_plug() and
3468  *   blk_finish_plug(). This is important from a performance perspective, but
3469  *   also ensures that we don't deadlock. For instance, if the task is blocking
3470  *   for a memory allocation, memory reclaim could end up wanting to free a
3471  *   page belonging to that request that is currently residing in our private
3472  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3473  *   this kind of deadlock.
3474  */
3475 void blk_start_plug(struct blk_plug *plug)
3476 {
3477 	struct task_struct *tsk = current;
3478 
3479 	/*
3480 	 * If this is a nested plug, don't actually assign it.
3481 	 */
3482 	if (tsk->plug)
3483 		return;
3484 
3485 	INIT_LIST_HEAD(&plug->list);
3486 	INIT_LIST_HEAD(&plug->mq_list);
3487 	INIT_LIST_HEAD(&plug->cb_list);
3488 	/*
3489 	 * Store ordering should not be needed here, since a potential
3490 	 * preempt will imply a full memory barrier
3491 	 */
3492 	tsk->plug = plug;
3493 }
3494 EXPORT_SYMBOL(blk_start_plug);
3495 
3496 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3497 {
3498 	struct request *rqa = container_of(a, struct request, queuelist);
3499 	struct request *rqb = container_of(b, struct request, queuelist);
3500 
3501 	return !(rqa->q < rqb->q ||
3502 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3503 }
3504 
3505 /*
3506  * If 'from_schedule' is true, then postpone the dispatch of requests
3507  * until a safe kblockd context. We due this to avoid accidental big
3508  * additional stack usage in driver dispatch, in places where the originally
3509  * plugger did not intend it.
3510  */
3511 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3512 			    bool from_schedule)
3513 	__releases(q->queue_lock)
3514 {
3515 	lockdep_assert_held(q->queue_lock);
3516 
3517 	trace_block_unplug(q, depth, !from_schedule);
3518 
3519 	if (from_schedule)
3520 		blk_run_queue_async(q);
3521 	else
3522 		__blk_run_queue(q);
3523 	spin_unlock(q->queue_lock);
3524 }
3525 
3526 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3527 {
3528 	LIST_HEAD(callbacks);
3529 
3530 	while (!list_empty(&plug->cb_list)) {
3531 		list_splice_init(&plug->cb_list, &callbacks);
3532 
3533 		while (!list_empty(&callbacks)) {
3534 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3535 							  struct blk_plug_cb,
3536 							  list);
3537 			list_del(&cb->list);
3538 			cb->callback(cb, from_schedule);
3539 		}
3540 	}
3541 }
3542 
3543 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3544 				      int size)
3545 {
3546 	struct blk_plug *plug = current->plug;
3547 	struct blk_plug_cb *cb;
3548 
3549 	if (!plug)
3550 		return NULL;
3551 
3552 	list_for_each_entry(cb, &plug->cb_list, list)
3553 		if (cb->callback == unplug && cb->data == data)
3554 			return cb;
3555 
3556 	/* Not currently on the callback list */
3557 	BUG_ON(size < sizeof(*cb));
3558 	cb = kzalloc(size, GFP_ATOMIC);
3559 	if (cb) {
3560 		cb->data = data;
3561 		cb->callback = unplug;
3562 		list_add(&cb->list, &plug->cb_list);
3563 	}
3564 	return cb;
3565 }
3566 EXPORT_SYMBOL(blk_check_plugged);
3567 
3568 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3569 {
3570 	struct request_queue *q;
3571 	unsigned long flags;
3572 	struct request *rq;
3573 	LIST_HEAD(list);
3574 	unsigned int depth;
3575 
3576 	flush_plug_callbacks(plug, from_schedule);
3577 
3578 	if (!list_empty(&plug->mq_list))
3579 		blk_mq_flush_plug_list(plug, from_schedule);
3580 
3581 	if (list_empty(&plug->list))
3582 		return;
3583 
3584 	list_splice_init(&plug->list, &list);
3585 
3586 	list_sort(NULL, &list, plug_rq_cmp);
3587 
3588 	q = NULL;
3589 	depth = 0;
3590 
3591 	/*
3592 	 * Save and disable interrupts here, to avoid doing it for every
3593 	 * queue lock we have to take.
3594 	 */
3595 	local_irq_save(flags);
3596 	while (!list_empty(&list)) {
3597 		rq = list_entry_rq(list.next);
3598 		list_del_init(&rq->queuelist);
3599 		BUG_ON(!rq->q);
3600 		if (rq->q != q) {
3601 			/*
3602 			 * This drops the queue lock
3603 			 */
3604 			if (q)
3605 				queue_unplugged(q, depth, from_schedule);
3606 			q = rq->q;
3607 			depth = 0;
3608 			spin_lock(q->queue_lock);
3609 		}
3610 
3611 		/*
3612 		 * Short-circuit if @q is dead
3613 		 */
3614 		if (unlikely(blk_queue_dying(q))) {
3615 			__blk_end_request_all(rq, BLK_STS_IOERR);
3616 			continue;
3617 		}
3618 
3619 		/*
3620 		 * rq is already accounted, so use raw insert
3621 		 */
3622 		if (op_is_flush(rq->cmd_flags))
3623 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3624 		else
3625 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3626 
3627 		depth++;
3628 	}
3629 
3630 	/*
3631 	 * This drops the queue lock
3632 	 */
3633 	if (q)
3634 		queue_unplugged(q, depth, from_schedule);
3635 
3636 	local_irq_restore(flags);
3637 }
3638 
3639 void blk_finish_plug(struct blk_plug *plug)
3640 {
3641 	if (plug != current->plug)
3642 		return;
3643 	blk_flush_plug_list(plug, false);
3644 
3645 	current->plug = NULL;
3646 }
3647 EXPORT_SYMBOL(blk_finish_plug);
3648 
3649 #ifdef CONFIG_PM
3650 /**
3651  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3652  * @q: the queue of the device
3653  * @dev: the device the queue belongs to
3654  *
3655  * Description:
3656  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3657  *    @dev. Drivers that want to take advantage of request-based runtime PM
3658  *    should call this function after @dev has been initialized, and its
3659  *    request queue @q has been allocated, and runtime PM for it can not happen
3660  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3661  *    cases, driver should call this function before any I/O has taken place.
3662  *
3663  *    This function takes care of setting up using auto suspend for the device,
3664  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3665  *    until an updated value is either set by user or by driver. Drivers do
3666  *    not need to touch other autosuspend settings.
3667  *
3668  *    The block layer runtime PM is request based, so only works for drivers
3669  *    that use request as their IO unit instead of those directly use bio's.
3670  */
3671 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3672 {
3673 	/* not support for RQF_PM and ->rpm_status in blk-mq yet */
3674 	if (q->mq_ops)
3675 		return;
3676 
3677 	q->dev = dev;
3678 	q->rpm_status = RPM_ACTIVE;
3679 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3680 	pm_runtime_use_autosuspend(q->dev);
3681 }
3682 EXPORT_SYMBOL(blk_pm_runtime_init);
3683 
3684 /**
3685  * blk_pre_runtime_suspend - Pre runtime suspend check
3686  * @q: the queue of the device
3687  *
3688  * Description:
3689  *    This function will check if runtime suspend is allowed for the device
3690  *    by examining if there are any requests pending in the queue. If there
3691  *    are requests pending, the device can not be runtime suspended; otherwise,
3692  *    the queue's status will be updated to SUSPENDING and the driver can
3693  *    proceed to suspend the device.
3694  *
3695  *    For the not allowed case, we mark last busy for the device so that
3696  *    runtime PM core will try to autosuspend it some time later.
3697  *
3698  *    This function should be called near the start of the device's
3699  *    runtime_suspend callback.
3700  *
3701  * Return:
3702  *    0		- OK to runtime suspend the device
3703  *    -EBUSY	- Device should not be runtime suspended
3704  */
3705 int blk_pre_runtime_suspend(struct request_queue *q)
3706 {
3707 	int ret = 0;
3708 
3709 	if (!q->dev)
3710 		return ret;
3711 
3712 	spin_lock_irq(q->queue_lock);
3713 	if (q->nr_pending) {
3714 		ret = -EBUSY;
3715 		pm_runtime_mark_last_busy(q->dev);
3716 	} else {
3717 		q->rpm_status = RPM_SUSPENDING;
3718 	}
3719 	spin_unlock_irq(q->queue_lock);
3720 	return ret;
3721 }
3722 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3723 
3724 /**
3725  * blk_post_runtime_suspend - Post runtime suspend processing
3726  * @q: the queue of the device
3727  * @err: return value of the device's runtime_suspend function
3728  *
3729  * Description:
3730  *    Update the queue's runtime status according to the return value of the
3731  *    device's runtime suspend function and mark last busy for the device so
3732  *    that PM core will try to auto suspend the device at a later time.
3733  *
3734  *    This function should be called near the end of the device's
3735  *    runtime_suspend callback.
3736  */
3737 void blk_post_runtime_suspend(struct request_queue *q, int err)
3738 {
3739 	if (!q->dev)
3740 		return;
3741 
3742 	spin_lock_irq(q->queue_lock);
3743 	if (!err) {
3744 		q->rpm_status = RPM_SUSPENDED;
3745 	} else {
3746 		q->rpm_status = RPM_ACTIVE;
3747 		pm_runtime_mark_last_busy(q->dev);
3748 	}
3749 	spin_unlock_irq(q->queue_lock);
3750 }
3751 EXPORT_SYMBOL(blk_post_runtime_suspend);
3752 
3753 /**
3754  * blk_pre_runtime_resume - Pre runtime resume processing
3755  * @q: the queue of the device
3756  *
3757  * Description:
3758  *    Update the queue's runtime status to RESUMING in preparation for the
3759  *    runtime resume of the device.
3760  *
3761  *    This function should be called near the start of the device's
3762  *    runtime_resume callback.
3763  */
3764 void blk_pre_runtime_resume(struct request_queue *q)
3765 {
3766 	if (!q->dev)
3767 		return;
3768 
3769 	spin_lock_irq(q->queue_lock);
3770 	q->rpm_status = RPM_RESUMING;
3771 	spin_unlock_irq(q->queue_lock);
3772 }
3773 EXPORT_SYMBOL(blk_pre_runtime_resume);
3774 
3775 /**
3776  * blk_post_runtime_resume - Post runtime resume processing
3777  * @q: the queue of the device
3778  * @err: return value of the device's runtime_resume function
3779  *
3780  * Description:
3781  *    Update the queue's runtime status according to the return value of the
3782  *    device's runtime_resume function. If it is successfully resumed, process
3783  *    the requests that are queued into the device's queue when it is resuming
3784  *    and then mark last busy and initiate autosuspend for it.
3785  *
3786  *    This function should be called near the end of the device's
3787  *    runtime_resume callback.
3788  */
3789 void blk_post_runtime_resume(struct request_queue *q, int err)
3790 {
3791 	if (!q->dev)
3792 		return;
3793 
3794 	spin_lock_irq(q->queue_lock);
3795 	if (!err) {
3796 		q->rpm_status = RPM_ACTIVE;
3797 		__blk_run_queue(q);
3798 		pm_runtime_mark_last_busy(q->dev);
3799 		pm_request_autosuspend(q->dev);
3800 	} else {
3801 		q->rpm_status = RPM_SUSPENDED;
3802 	}
3803 	spin_unlock_irq(q->queue_lock);
3804 }
3805 EXPORT_SYMBOL(blk_post_runtime_resume);
3806 
3807 /**
3808  * blk_set_runtime_active - Force runtime status of the queue to be active
3809  * @q: the queue of the device
3810  *
3811  * If the device is left runtime suspended during system suspend the resume
3812  * hook typically resumes the device and corrects runtime status
3813  * accordingly. However, that does not affect the queue runtime PM status
3814  * which is still "suspended". This prevents processing requests from the
3815  * queue.
3816  *
3817  * This function can be used in driver's resume hook to correct queue
3818  * runtime PM status and re-enable peeking requests from the queue. It
3819  * should be called before first request is added to the queue.
3820  */
3821 void blk_set_runtime_active(struct request_queue *q)
3822 {
3823 	spin_lock_irq(q->queue_lock);
3824 	q->rpm_status = RPM_ACTIVE;
3825 	pm_runtime_mark_last_busy(q->dev);
3826 	pm_request_autosuspend(q->dev);
3827 	spin_unlock_irq(q->queue_lock);
3828 }
3829 EXPORT_SYMBOL(blk_set_runtime_active);
3830 #endif
3831 
3832 int __init blk_dev_init(void)
3833 {
3834 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3835 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3836 			FIELD_SIZEOF(struct request, cmd_flags));
3837 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3838 			FIELD_SIZEOF(struct bio, bi_opf));
3839 
3840 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3841 	kblockd_workqueue = alloc_workqueue("kblockd",
3842 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3843 	if (!kblockd_workqueue)
3844 		panic("Failed to create kblockd\n");
3845 
3846 	request_cachep = kmem_cache_create("blkdev_requests",
3847 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3848 
3849 	blk_requestq_cachep = kmem_cache_create("request_queue",
3850 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3851 
3852 #ifdef CONFIG_DEBUG_FS
3853 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3854 #endif
3855 
3856 	return 0;
3857 }
3858