xref: /openbmc/linux/block/blk-core.c (revision 7ec6b431)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/psi.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/block.h>
44 
45 #include "blk.h"
46 #include "blk-mq.h"
47 #include "blk-mq-sched.h"
48 #include "blk-pm.h"
49 #include "blk-rq-qos.h"
50 
51 #ifdef CONFIG_DEBUG_FS
52 struct dentry *blk_debugfs_root;
53 #endif
54 
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
60 
61 DEFINE_IDA(blk_queue_ida);
62 
63 /*
64  * For queue allocation
65  */
66 struct kmem_cache *blk_requestq_cachep;
67 
68 /*
69  * Controlling structure to kblockd
70  */
71 static struct workqueue_struct *kblockd_workqueue;
72 
73 /**
74  * blk_queue_flag_set - atomically set a queue flag
75  * @flag: flag to be set
76  * @q: request queue
77  */
78 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
79 {
80 	set_bit(flag, &q->queue_flags);
81 }
82 EXPORT_SYMBOL(blk_queue_flag_set);
83 
84 /**
85  * blk_queue_flag_clear - atomically clear a queue flag
86  * @flag: flag to be cleared
87  * @q: request queue
88  */
89 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
90 {
91 	clear_bit(flag, &q->queue_flags);
92 }
93 EXPORT_SYMBOL(blk_queue_flag_clear);
94 
95 /**
96  * blk_queue_flag_test_and_set - atomically test and set a queue flag
97  * @flag: flag to be set
98  * @q: request queue
99  *
100  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
101  * the flag was already set.
102  */
103 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
104 {
105 	return test_and_set_bit(flag, &q->queue_flags);
106 }
107 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
108 
109 void blk_rq_init(struct request_queue *q, struct request *rq)
110 {
111 	memset(rq, 0, sizeof(*rq));
112 
113 	INIT_LIST_HEAD(&rq->queuelist);
114 	rq->q = q;
115 	rq->__sector = (sector_t) -1;
116 	INIT_HLIST_NODE(&rq->hash);
117 	RB_CLEAR_NODE(&rq->rb_node);
118 	rq->tag = -1;
119 	rq->internal_tag = -1;
120 	rq->start_time_ns = ktime_get_ns();
121 	rq->part = NULL;
122 	refcount_set(&rq->ref, 1);
123 }
124 EXPORT_SYMBOL(blk_rq_init);
125 
126 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
127 static const char *const blk_op_name[] = {
128 	REQ_OP_NAME(READ),
129 	REQ_OP_NAME(WRITE),
130 	REQ_OP_NAME(FLUSH),
131 	REQ_OP_NAME(DISCARD),
132 	REQ_OP_NAME(SECURE_ERASE),
133 	REQ_OP_NAME(ZONE_RESET),
134 	REQ_OP_NAME(ZONE_RESET_ALL),
135 	REQ_OP_NAME(ZONE_OPEN),
136 	REQ_OP_NAME(ZONE_CLOSE),
137 	REQ_OP_NAME(ZONE_FINISH),
138 	REQ_OP_NAME(WRITE_SAME),
139 	REQ_OP_NAME(WRITE_ZEROES),
140 	REQ_OP_NAME(SCSI_IN),
141 	REQ_OP_NAME(SCSI_OUT),
142 	REQ_OP_NAME(DRV_IN),
143 	REQ_OP_NAME(DRV_OUT),
144 };
145 #undef REQ_OP_NAME
146 
147 /**
148  * blk_op_str - Return string XXX in the REQ_OP_XXX.
149  * @op: REQ_OP_XXX.
150  *
151  * Description: Centralize block layer function to convert REQ_OP_XXX into
152  * string format. Useful in the debugging and tracing bio or request. For
153  * invalid REQ_OP_XXX it returns string "UNKNOWN".
154  */
155 inline const char *blk_op_str(unsigned int op)
156 {
157 	const char *op_str = "UNKNOWN";
158 
159 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
160 		op_str = blk_op_name[op];
161 
162 	return op_str;
163 }
164 EXPORT_SYMBOL_GPL(blk_op_str);
165 
166 static const struct {
167 	int		errno;
168 	const char	*name;
169 } blk_errors[] = {
170 	[BLK_STS_OK]		= { 0,		"" },
171 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
172 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
173 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
174 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
175 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
176 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
177 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
178 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
179 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
180 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
181 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
182 
183 	/* device mapper special case, should not leak out: */
184 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
185 
186 	/* everything else not covered above: */
187 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
188 };
189 
190 blk_status_t errno_to_blk_status(int errno)
191 {
192 	int i;
193 
194 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
195 		if (blk_errors[i].errno == errno)
196 			return (__force blk_status_t)i;
197 	}
198 
199 	return BLK_STS_IOERR;
200 }
201 EXPORT_SYMBOL_GPL(errno_to_blk_status);
202 
203 int blk_status_to_errno(blk_status_t status)
204 {
205 	int idx = (__force int)status;
206 
207 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
208 		return -EIO;
209 	return blk_errors[idx].errno;
210 }
211 EXPORT_SYMBOL_GPL(blk_status_to_errno);
212 
213 static void print_req_error(struct request *req, blk_status_t status,
214 		const char *caller)
215 {
216 	int idx = (__force int)status;
217 
218 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
219 		return;
220 
221 	printk_ratelimited(KERN_ERR
222 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
223 		"phys_seg %u prio class %u\n",
224 		caller, blk_errors[idx].name,
225 		req->rq_disk ? req->rq_disk->disk_name : "?",
226 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
227 		req->cmd_flags & ~REQ_OP_MASK,
228 		req->nr_phys_segments,
229 		IOPRIO_PRIO_CLASS(req->ioprio));
230 }
231 
232 static void req_bio_endio(struct request *rq, struct bio *bio,
233 			  unsigned int nbytes, blk_status_t error)
234 {
235 	if (error)
236 		bio->bi_status = error;
237 
238 	if (unlikely(rq->rq_flags & RQF_QUIET))
239 		bio_set_flag(bio, BIO_QUIET);
240 
241 	bio_advance(bio, nbytes);
242 
243 	/* don't actually finish bio if it's part of flush sequence */
244 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
245 		bio_endio(bio);
246 }
247 
248 void blk_dump_rq_flags(struct request *rq, char *msg)
249 {
250 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
251 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
252 		(unsigned long long) rq->cmd_flags);
253 
254 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
255 	       (unsigned long long)blk_rq_pos(rq),
256 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
257 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
258 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
259 }
260 EXPORT_SYMBOL(blk_dump_rq_flags);
261 
262 /**
263  * blk_sync_queue - cancel any pending callbacks on a queue
264  * @q: the queue
265  *
266  * Description:
267  *     The block layer may perform asynchronous callback activity
268  *     on a queue, such as calling the unplug function after a timeout.
269  *     A block device may call blk_sync_queue to ensure that any
270  *     such activity is cancelled, thus allowing it to release resources
271  *     that the callbacks might use. The caller must already have made sure
272  *     that its ->make_request_fn will not re-add plugging prior to calling
273  *     this function.
274  *
275  *     This function does not cancel any asynchronous activity arising
276  *     out of elevator or throttling code. That would require elevator_exit()
277  *     and blkcg_exit_queue() to be called with queue lock initialized.
278  *
279  */
280 void blk_sync_queue(struct request_queue *q)
281 {
282 	del_timer_sync(&q->timeout);
283 	cancel_work_sync(&q->timeout_work);
284 }
285 EXPORT_SYMBOL(blk_sync_queue);
286 
287 /**
288  * blk_set_pm_only - increment pm_only counter
289  * @q: request queue pointer
290  */
291 void blk_set_pm_only(struct request_queue *q)
292 {
293 	atomic_inc(&q->pm_only);
294 }
295 EXPORT_SYMBOL_GPL(blk_set_pm_only);
296 
297 void blk_clear_pm_only(struct request_queue *q)
298 {
299 	int pm_only;
300 
301 	pm_only = atomic_dec_return(&q->pm_only);
302 	WARN_ON_ONCE(pm_only < 0);
303 	if (pm_only == 0)
304 		wake_up_all(&q->mq_freeze_wq);
305 }
306 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
307 
308 void blk_put_queue(struct request_queue *q)
309 {
310 	kobject_put(&q->kobj);
311 }
312 EXPORT_SYMBOL(blk_put_queue);
313 
314 void blk_set_queue_dying(struct request_queue *q)
315 {
316 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
317 
318 	/*
319 	 * When queue DYING flag is set, we need to block new req
320 	 * entering queue, so we call blk_freeze_queue_start() to
321 	 * prevent I/O from crossing blk_queue_enter().
322 	 */
323 	blk_freeze_queue_start(q);
324 
325 	if (queue_is_mq(q))
326 		blk_mq_wake_waiters(q);
327 
328 	/* Make blk_queue_enter() reexamine the DYING flag. */
329 	wake_up_all(&q->mq_freeze_wq);
330 }
331 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
332 
333 /**
334  * blk_cleanup_queue - shutdown a request queue
335  * @q: request queue to shutdown
336  *
337  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
338  * put it.  All future requests will be failed immediately with -ENODEV.
339  */
340 void blk_cleanup_queue(struct request_queue *q)
341 {
342 	WARN_ON_ONCE(blk_queue_registered(q));
343 
344 	/* mark @q DYING, no new request or merges will be allowed afterwards */
345 	blk_set_queue_dying(q);
346 
347 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
348 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
349 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
350 
351 	/*
352 	 * Drain all requests queued before DYING marking. Set DEAD flag to
353 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
354 	 * after draining finished.
355 	 */
356 	blk_freeze_queue(q);
357 
358 	rq_qos_exit(q);
359 
360 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
361 
362 	/* for synchronous bio-based driver finish in-flight integrity i/o */
363 	blk_flush_integrity();
364 
365 	/* @q won't process any more request, flush async actions */
366 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
367 	blk_sync_queue(q);
368 
369 	if (queue_is_mq(q))
370 		blk_mq_exit_queue(q);
371 
372 	/*
373 	 * In theory, request pool of sched_tags belongs to request queue.
374 	 * However, the current implementation requires tag_set for freeing
375 	 * requests, so free the pool now.
376 	 *
377 	 * Queue has become frozen, there can't be any in-queue requests, so
378 	 * it is safe to free requests now.
379 	 */
380 	mutex_lock(&q->sysfs_lock);
381 	if (q->elevator)
382 		blk_mq_sched_free_requests(q);
383 	mutex_unlock(&q->sysfs_lock);
384 
385 	percpu_ref_exit(&q->q_usage_counter);
386 
387 	/* @q is and will stay empty, shutdown and put */
388 	blk_put_queue(q);
389 }
390 EXPORT_SYMBOL(blk_cleanup_queue);
391 
392 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
393 {
394 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
395 }
396 EXPORT_SYMBOL(blk_alloc_queue);
397 
398 /**
399  * blk_queue_enter() - try to increase q->q_usage_counter
400  * @q: request queue pointer
401  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
402  */
403 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
404 {
405 	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
406 
407 	while (true) {
408 		bool success = false;
409 
410 		rcu_read_lock();
411 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
412 			/*
413 			 * The code that increments the pm_only counter is
414 			 * responsible for ensuring that that counter is
415 			 * globally visible before the queue is unfrozen.
416 			 */
417 			if (pm || !blk_queue_pm_only(q)) {
418 				success = true;
419 			} else {
420 				percpu_ref_put(&q->q_usage_counter);
421 			}
422 		}
423 		rcu_read_unlock();
424 
425 		if (success)
426 			return 0;
427 
428 		if (flags & BLK_MQ_REQ_NOWAIT)
429 			return -EBUSY;
430 
431 		/*
432 		 * read pair of barrier in blk_freeze_queue_start(),
433 		 * we need to order reading __PERCPU_REF_DEAD flag of
434 		 * .q_usage_counter and reading .mq_freeze_depth or
435 		 * queue dying flag, otherwise the following wait may
436 		 * never return if the two reads are reordered.
437 		 */
438 		smp_rmb();
439 
440 		wait_event(q->mq_freeze_wq,
441 			   (!q->mq_freeze_depth &&
442 			    (pm || (blk_pm_request_resume(q),
443 				    !blk_queue_pm_only(q)))) ||
444 			   blk_queue_dying(q));
445 		if (blk_queue_dying(q))
446 			return -ENODEV;
447 	}
448 }
449 
450 void blk_queue_exit(struct request_queue *q)
451 {
452 	percpu_ref_put(&q->q_usage_counter);
453 }
454 
455 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
456 {
457 	struct request_queue *q =
458 		container_of(ref, struct request_queue, q_usage_counter);
459 
460 	wake_up_all(&q->mq_freeze_wq);
461 }
462 
463 static void blk_rq_timed_out_timer(struct timer_list *t)
464 {
465 	struct request_queue *q = from_timer(q, t, timeout);
466 
467 	kblockd_schedule_work(&q->timeout_work);
468 }
469 
470 static void blk_timeout_work(struct work_struct *work)
471 {
472 }
473 
474 /**
475  * blk_alloc_queue_node - allocate a request queue
476  * @gfp_mask: memory allocation flags
477  * @node_id: NUMA node to allocate memory from
478  */
479 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
480 {
481 	struct request_queue *q;
482 	int ret;
483 
484 	q = kmem_cache_alloc_node(blk_requestq_cachep,
485 				gfp_mask | __GFP_ZERO, node_id);
486 	if (!q)
487 		return NULL;
488 
489 	q->last_merge = NULL;
490 
491 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
492 	if (q->id < 0)
493 		goto fail_q;
494 
495 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
496 	if (ret)
497 		goto fail_id;
498 
499 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
500 	if (!q->backing_dev_info)
501 		goto fail_split;
502 
503 	q->stats = blk_alloc_queue_stats();
504 	if (!q->stats)
505 		goto fail_stats;
506 
507 	q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
508 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
509 	q->backing_dev_info->name = "block";
510 	q->node = node_id;
511 
512 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
513 		    laptop_mode_timer_fn, 0);
514 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
515 	INIT_WORK(&q->timeout_work, blk_timeout_work);
516 	INIT_LIST_HEAD(&q->icq_list);
517 #ifdef CONFIG_BLK_CGROUP
518 	INIT_LIST_HEAD(&q->blkg_list);
519 #endif
520 
521 	kobject_init(&q->kobj, &blk_queue_ktype);
522 
523 #ifdef CONFIG_BLK_DEV_IO_TRACE
524 	mutex_init(&q->blk_trace_mutex);
525 #endif
526 	mutex_init(&q->sysfs_lock);
527 	mutex_init(&q->sysfs_dir_lock);
528 	spin_lock_init(&q->queue_lock);
529 
530 	init_waitqueue_head(&q->mq_freeze_wq);
531 	mutex_init(&q->mq_freeze_lock);
532 
533 	/*
534 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
535 	 * See blk_register_queue() for details.
536 	 */
537 	if (percpu_ref_init(&q->q_usage_counter,
538 				blk_queue_usage_counter_release,
539 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
540 		goto fail_bdi;
541 
542 	if (blkcg_init_queue(q))
543 		goto fail_ref;
544 
545 	return q;
546 
547 fail_ref:
548 	percpu_ref_exit(&q->q_usage_counter);
549 fail_bdi:
550 	blk_free_queue_stats(q->stats);
551 fail_stats:
552 	bdi_put(q->backing_dev_info);
553 fail_split:
554 	bioset_exit(&q->bio_split);
555 fail_id:
556 	ida_simple_remove(&blk_queue_ida, q->id);
557 fail_q:
558 	kmem_cache_free(blk_requestq_cachep, q);
559 	return NULL;
560 }
561 EXPORT_SYMBOL(blk_alloc_queue_node);
562 
563 bool blk_get_queue(struct request_queue *q)
564 {
565 	if (likely(!blk_queue_dying(q))) {
566 		__blk_get_queue(q);
567 		return true;
568 	}
569 
570 	return false;
571 }
572 EXPORT_SYMBOL(blk_get_queue);
573 
574 /**
575  * blk_get_request - allocate a request
576  * @q: request queue to allocate a request for
577  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
578  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
579  */
580 struct request *blk_get_request(struct request_queue *q, unsigned int op,
581 				blk_mq_req_flags_t flags)
582 {
583 	struct request *req;
584 
585 	WARN_ON_ONCE(op & REQ_NOWAIT);
586 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
587 
588 	req = blk_mq_alloc_request(q, op, flags);
589 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
590 		q->mq_ops->initialize_rq_fn(req);
591 
592 	return req;
593 }
594 EXPORT_SYMBOL(blk_get_request);
595 
596 void blk_put_request(struct request *req)
597 {
598 	blk_mq_free_request(req);
599 }
600 EXPORT_SYMBOL(blk_put_request);
601 
602 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
603 		unsigned int nr_segs)
604 {
605 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
606 
607 	if (!ll_back_merge_fn(req, bio, nr_segs))
608 		return false;
609 
610 	trace_block_bio_backmerge(req->q, req, bio);
611 	rq_qos_merge(req->q, req, bio);
612 
613 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
614 		blk_rq_set_mixed_merge(req);
615 
616 	req->biotail->bi_next = bio;
617 	req->biotail = bio;
618 	req->__data_len += bio->bi_iter.bi_size;
619 
620 	blk_account_io_start(req, false);
621 	return true;
622 }
623 
624 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
625 		unsigned int nr_segs)
626 {
627 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
628 
629 	if (!ll_front_merge_fn(req, bio, nr_segs))
630 		return false;
631 
632 	trace_block_bio_frontmerge(req->q, req, bio);
633 	rq_qos_merge(req->q, req, bio);
634 
635 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
636 		blk_rq_set_mixed_merge(req);
637 
638 	bio->bi_next = req->bio;
639 	req->bio = bio;
640 
641 	req->__sector = bio->bi_iter.bi_sector;
642 	req->__data_len += bio->bi_iter.bi_size;
643 
644 	blk_account_io_start(req, false);
645 	return true;
646 }
647 
648 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
649 		struct bio *bio)
650 {
651 	unsigned short segments = blk_rq_nr_discard_segments(req);
652 
653 	if (segments >= queue_max_discard_segments(q))
654 		goto no_merge;
655 	if (blk_rq_sectors(req) + bio_sectors(bio) >
656 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
657 		goto no_merge;
658 
659 	rq_qos_merge(q, req, bio);
660 
661 	req->biotail->bi_next = bio;
662 	req->biotail = bio;
663 	req->__data_len += bio->bi_iter.bi_size;
664 	req->nr_phys_segments = segments + 1;
665 
666 	blk_account_io_start(req, false);
667 	return true;
668 no_merge:
669 	req_set_nomerge(q, req);
670 	return false;
671 }
672 
673 /**
674  * blk_attempt_plug_merge - try to merge with %current's plugged list
675  * @q: request_queue new bio is being queued at
676  * @bio: new bio being queued
677  * @nr_segs: number of segments in @bio
678  * @same_queue_rq: pointer to &struct request that gets filled in when
679  * another request associated with @q is found on the plug list
680  * (optional, may be %NULL)
681  *
682  * Determine whether @bio being queued on @q can be merged with a request
683  * on %current's plugged list.  Returns %true if merge was successful,
684  * otherwise %false.
685  *
686  * Plugging coalesces IOs from the same issuer for the same purpose without
687  * going through @q->queue_lock.  As such it's more of an issuing mechanism
688  * than scheduling, and the request, while may have elvpriv data, is not
689  * added on the elevator at this point.  In addition, we don't have
690  * reliable access to the elevator outside queue lock.  Only check basic
691  * merging parameters without querying the elevator.
692  *
693  * Caller must ensure !blk_queue_nomerges(q) beforehand.
694  */
695 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
696 		unsigned int nr_segs, struct request **same_queue_rq)
697 {
698 	struct blk_plug *plug;
699 	struct request *rq;
700 	struct list_head *plug_list;
701 
702 	plug = blk_mq_plug(q, bio);
703 	if (!plug)
704 		return false;
705 
706 	plug_list = &plug->mq_list;
707 
708 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
709 		bool merged = false;
710 
711 		if (rq->q == q && same_queue_rq) {
712 			/*
713 			 * Only blk-mq multiple hardware queues case checks the
714 			 * rq in the same queue, there should be only one such
715 			 * rq in a queue
716 			 **/
717 			*same_queue_rq = rq;
718 		}
719 
720 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
721 			continue;
722 
723 		switch (blk_try_merge(rq, bio)) {
724 		case ELEVATOR_BACK_MERGE:
725 			merged = bio_attempt_back_merge(rq, bio, nr_segs);
726 			break;
727 		case ELEVATOR_FRONT_MERGE:
728 			merged = bio_attempt_front_merge(rq, bio, nr_segs);
729 			break;
730 		case ELEVATOR_DISCARD_MERGE:
731 			merged = bio_attempt_discard_merge(q, rq, bio);
732 			break;
733 		default:
734 			break;
735 		}
736 
737 		if (merged)
738 			return true;
739 	}
740 
741 	return false;
742 }
743 
744 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
745 {
746 	char b[BDEVNAME_SIZE];
747 
748 	printk(KERN_INFO "attempt to access beyond end of device\n");
749 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
750 			bio_devname(bio, b), bio->bi_opf,
751 			(unsigned long long)bio_end_sector(bio),
752 			(long long)maxsector);
753 }
754 
755 #ifdef CONFIG_FAIL_MAKE_REQUEST
756 
757 static DECLARE_FAULT_ATTR(fail_make_request);
758 
759 static int __init setup_fail_make_request(char *str)
760 {
761 	return setup_fault_attr(&fail_make_request, str);
762 }
763 __setup("fail_make_request=", setup_fail_make_request);
764 
765 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
766 {
767 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
768 }
769 
770 static int __init fail_make_request_debugfs(void)
771 {
772 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
773 						NULL, &fail_make_request);
774 
775 	return PTR_ERR_OR_ZERO(dir);
776 }
777 
778 late_initcall(fail_make_request_debugfs);
779 
780 #else /* CONFIG_FAIL_MAKE_REQUEST */
781 
782 static inline bool should_fail_request(struct hd_struct *part,
783 					unsigned int bytes)
784 {
785 	return false;
786 }
787 
788 #endif /* CONFIG_FAIL_MAKE_REQUEST */
789 
790 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
791 {
792 	const int op = bio_op(bio);
793 
794 	if (part->policy && op_is_write(op)) {
795 		char b[BDEVNAME_SIZE];
796 
797 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
798 			return false;
799 
800 		WARN_ONCE(1,
801 		       "generic_make_request: Trying to write "
802 			"to read-only block-device %s (partno %d)\n",
803 			bio_devname(bio, b), part->partno);
804 		/* Older lvm-tools actually trigger this */
805 		return false;
806 	}
807 
808 	return false;
809 }
810 
811 static noinline int should_fail_bio(struct bio *bio)
812 {
813 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
814 		return -EIO;
815 	return 0;
816 }
817 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
818 
819 /*
820  * Check whether this bio extends beyond the end of the device or partition.
821  * This may well happen - the kernel calls bread() without checking the size of
822  * the device, e.g., when mounting a file system.
823  */
824 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
825 {
826 	unsigned int nr_sectors = bio_sectors(bio);
827 
828 	if (nr_sectors && maxsector &&
829 	    (nr_sectors > maxsector ||
830 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
831 		handle_bad_sector(bio, maxsector);
832 		return -EIO;
833 	}
834 	return 0;
835 }
836 
837 /*
838  * Remap block n of partition p to block n+start(p) of the disk.
839  */
840 static inline int blk_partition_remap(struct bio *bio)
841 {
842 	struct hd_struct *p;
843 	int ret = -EIO;
844 
845 	rcu_read_lock();
846 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
847 	if (unlikely(!p))
848 		goto out;
849 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
850 		goto out;
851 	if (unlikely(bio_check_ro(bio, p)))
852 		goto out;
853 
854 	if (bio_sectors(bio)) {
855 		if (bio_check_eod(bio, part_nr_sects_read(p)))
856 			goto out;
857 		bio->bi_iter.bi_sector += p->start_sect;
858 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
859 				      bio->bi_iter.bi_sector - p->start_sect);
860 	}
861 	bio->bi_partno = 0;
862 	ret = 0;
863 out:
864 	rcu_read_unlock();
865 	return ret;
866 }
867 
868 static noinline_for_stack bool
869 generic_make_request_checks(struct bio *bio)
870 {
871 	struct request_queue *q;
872 	int nr_sectors = bio_sectors(bio);
873 	blk_status_t status = BLK_STS_IOERR;
874 	char b[BDEVNAME_SIZE];
875 
876 	might_sleep();
877 
878 	q = bio->bi_disk->queue;
879 	if (unlikely(!q)) {
880 		printk(KERN_ERR
881 		       "generic_make_request: Trying to access "
882 			"nonexistent block-device %s (%Lu)\n",
883 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
884 		goto end_io;
885 	}
886 
887 	/*
888 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
889 	 * if queue is not a request based queue.
890 	 */
891 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
892 		goto not_supported;
893 
894 	if (should_fail_bio(bio))
895 		goto end_io;
896 
897 	if (bio->bi_partno) {
898 		if (unlikely(blk_partition_remap(bio)))
899 			goto end_io;
900 	} else {
901 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
902 			goto end_io;
903 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
904 			goto end_io;
905 	}
906 
907 	/*
908 	 * Filter flush bio's early so that make_request based
909 	 * drivers without flush support don't have to worry
910 	 * about them.
911 	 */
912 	if (op_is_flush(bio->bi_opf) &&
913 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
914 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
915 		if (!nr_sectors) {
916 			status = BLK_STS_OK;
917 			goto end_io;
918 		}
919 	}
920 
921 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
922 		bio->bi_opf &= ~REQ_HIPRI;
923 
924 	switch (bio_op(bio)) {
925 	case REQ_OP_DISCARD:
926 		if (!blk_queue_discard(q))
927 			goto not_supported;
928 		break;
929 	case REQ_OP_SECURE_ERASE:
930 		if (!blk_queue_secure_erase(q))
931 			goto not_supported;
932 		break;
933 	case REQ_OP_WRITE_SAME:
934 		if (!q->limits.max_write_same_sectors)
935 			goto not_supported;
936 		break;
937 	case REQ_OP_ZONE_RESET:
938 	case REQ_OP_ZONE_OPEN:
939 	case REQ_OP_ZONE_CLOSE:
940 	case REQ_OP_ZONE_FINISH:
941 		if (!blk_queue_is_zoned(q))
942 			goto not_supported;
943 		break;
944 	case REQ_OP_ZONE_RESET_ALL:
945 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
946 			goto not_supported;
947 		break;
948 	case REQ_OP_WRITE_ZEROES:
949 		if (!q->limits.max_write_zeroes_sectors)
950 			goto not_supported;
951 		break;
952 	default:
953 		break;
954 	}
955 
956 	/*
957 	 * Various block parts want %current->io_context and lazy ioc
958 	 * allocation ends up trading a lot of pain for a small amount of
959 	 * memory.  Just allocate it upfront.  This may fail and block
960 	 * layer knows how to live with it.
961 	 */
962 	create_io_context(GFP_ATOMIC, q->node);
963 
964 	if (!blkcg_bio_issue_check(q, bio))
965 		return false;
966 
967 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
968 		trace_block_bio_queue(q, bio);
969 		/* Now that enqueuing has been traced, we need to trace
970 		 * completion as well.
971 		 */
972 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
973 	}
974 	return true;
975 
976 not_supported:
977 	status = BLK_STS_NOTSUPP;
978 end_io:
979 	bio->bi_status = status;
980 	bio_endio(bio);
981 	return false;
982 }
983 
984 /**
985  * generic_make_request - hand a buffer to its device driver for I/O
986  * @bio:  The bio describing the location in memory and on the device.
987  *
988  * generic_make_request() is used to make I/O requests of block
989  * devices. It is passed a &struct bio, which describes the I/O that needs
990  * to be done.
991  *
992  * generic_make_request() does not return any status.  The
993  * success/failure status of the request, along with notification of
994  * completion, is delivered asynchronously through the bio->bi_end_io
995  * function described (one day) else where.
996  *
997  * The caller of generic_make_request must make sure that bi_io_vec
998  * are set to describe the memory buffer, and that bi_dev and bi_sector are
999  * set to describe the device address, and the
1000  * bi_end_io and optionally bi_private are set to describe how
1001  * completion notification should be signaled.
1002  *
1003  * generic_make_request and the drivers it calls may use bi_next if this
1004  * bio happens to be merged with someone else, and may resubmit the bio to
1005  * a lower device by calling into generic_make_request recursively, which
1006  * means the bio should NOT be touched after the call to ->make_request_fn.
1007  */
1008 blk_qc_t generic_make_request(struct bio *bio)
1009 {
1010 	/*
1011 	 * bio_list_on_stack[0] contains bios submitted by the current
1012 	 * make_request_fn.
1013 	 * bio_list_on_stack[1] contains bios that were submitted before
1014 	 * the current make_request_fn, but that haven't been processed
1015 	 * yet.
1016 	 */
1017 	struct bio_list bio_list_on_stack[2];
1018 	blk_qc_t ret = BLK_QC_T_NONE;
1019 
1020 	if (!generic_make_request_checks(bio))
1021 		goto out;
1022 
1023 	/*
1024 	 * We only want one ->make_request_fn to be active at a time, else
1025 	 * stack usage with stacked devices could be a problem.  So use
1026 	 * current->bio_list to keep a list of requests submited by a
1027 	 * make_request_fn function.  current->bio_list is also used as a
1028 	 * flag to say if generic_make_request is currently active in this
1029 	 * task or not.  If it is NULL, then no make_request is active.  If
1030 	 * it is non-NULL, then a make_request is active, and new requests
1031 	 * should be added at the tail
1032 	 */
1033 	if (current->bio_list) {
1034 		bio_list_add(&current->bio_list[0], bio);
1035 		goto out;
1036 	}
1037 
1038 	/* following loop may be a bit non-obvious, and so deserves some
1039 	 * explanation.
1040 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1041 	 * ensure that) so we have a list with a single bio.
1042 	 * We pretend that we have just taken it off a longer list, so
1043 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1044 	 * thus initialising the bio_list of new bios to be
1045 	 * added.  ->make_request() may indeed add some more bios
1046 	 * through a recursive call to generic_make_request.  If it
1047 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1048 	 * from the top.  In this case we really did just take the bio
1049 	 * of the top of the list (no pretending) and so remove it from
1050 	 * bio_list, and call into ->make_request() again.
1051 	 */
1052 	BUG_ON(bio->bi_next);
1053 	bio_list_init(&bio_list_on_stack[0]);
1054 	current->bio_list = bio_list_on_stack;
1055 	do {
1056 		struct request_queue *q = bio->bi_disk->queue;
1057 		blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1058 			BLK_MQ_REQ_NOWAIT : 0;
1059 
1060 		if (likely(blk_queue_enter(q, flags) == 0)) {
1061 			struct bio_list lower, same;
1062 
1063 			/* Create a fresh bio_list for all subordinate requests */
1064 			bio_list_on_stack[1] = bio_list_on_stack[0];
1065 			bio_list_init(&bio_list_on_stack[0]);
1066 			ret = q->make_request_fn(q, bio);
1067 
1068 			blk_queue_exit(q);
1069 
1070 			/* sort new bios into those for a lower level
1071 			 * and those for the same level
1072 			 */
1073 			bio_list_init(&lower);
1074 			bio_list_init(&same);
1075 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1076 				if (q == bio->bi_disk->queue)
1077 					bio_list_add(&same, bio);
1078 				else
1079 					bio_list_add(&lower, bio);
1080 			/* now assemble so we handle the lowest level first */
1081 			bio_list_merge(&bio_list_on_stack[0], &lower);
1082 			bio_list_merge(&bio_list_on_stack[0], &same);
1083 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1084 		} else {
1085 			if (unlikely(!blk_queue_dying(q) &&
1086 					(bio->bi_opf & REQ_NOWAIT)))
1087 				bio_wouldblock_error(bio);
1088 			else
1089 				bio_io_error(bio);
1090 		}
1091 		bio = bio_list_pop(&bio_list_on_stack[0]);
1092 	} while (bio);
1093 	current->bio_list = NULL; /* deactivate */
1094 
1095 out:
1096 	return ret;
1097 }
1098 EXPORT_SYMBOL(generic_make_request);
1099 
1100 /**
1101  * direct_make_request - hand a buffer directly to its device driver for I/O
1102  * @bio:  The bio describing the location in memory and on the device.
1103  *
1104  * This function behaves like generic_make_request(), but does not protect
1105  * against recursion.  Must only be used if the called driver is known
1106  * to not call generic_make_request (or direct_make_request) again from
1107  * its make_request function.  (Calling direct_make_request again from
1108  * a workqueue is perfectly fine as that doesn't recurse).
1109  */
1110 blk_qc_t direct_make_request(struct bio *bio)
1111 {
1112 	struct request_queue *q = bio->bi_disk->queue;
1113 	bool nowait = bio->bi_opf & REQ_NOWAIT;
1114 	blk_qc_t ret;
1115 
1116 	if (!generic_make_request_checks(bio))
1117 		return BLK_QC_T_NONE;
1118 
1119 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1120 		if (nowait && !blk_queue_dying(q))
1121 			bio->bi_status = BLK_STS_AGAIN;
1122 		else
1123 			bio->bi_status = BLK_STS_IOERR;
1124 		bio_endio(bio);
1125 		return BLK_QC_T_NONE;
1126 	}
1127 
1128 	ret = q->make_request_fn(q, bio);
1129 	blk_queue_exit(q);
1130 	return ret;
1131 }
1132 EXPORT_SYMBOL_GPL(direct_make_request);
1133 
1134 /**
1135  * submit_bio - submit a bio to the block device layer for I/O
1136  * @bio: The &struct bio which describes the I/O
1137  *
1138  * submit_bio() is very similar in purpose to generic_make_request(), and
1139  * uses that function to do most of the work. Both are fairly rough
1140  * interfaces; @bio must be presetup and ready for I/O.
1141  *
1142  */
1143 blk_qc_t submit_bio(struct bio *bio)
1144 {
1145 	bool workingset_read = false;
1146 	unsigned long pflags;
1147 	blk_qc_t ret;
1148 
1149 	if (blkcg_punt_bio_submit(bio))
1150 		return BLK_QC_T_NONE;
1151 
1152 	/*
1153 	 * If it's a regular read/write or a barrier with data attached,
1154 	 * go through the normal accounting stuff before submission.
1155 	 */
1156 	if (bio_has_data(bio)) {
1157 		unsigned int count;
1158 
1159 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1160 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1161 		else
1162 			count = bio_sectors(bio);
1163 
1164 		if (op_is_write(bio_op(bio))) {
1165 			count_vm_events(PGPGOUT, count);
1166 		} else {
1167 			if (bio_flagged(bio, BIO_WORKINGSET))
1168 				workingset_read = true;
1169 			task_io_account_read(bio->bi_iter.bi_size);
1170 			count_vm_events(PGPGIN, count);
1171 		}
1172 
1173 		if (unlikely(block_dump)) {
1174 			char b[BDEVNAME_SIZE];
1175 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1176 			current->comm, task_pid_nr(current),
1177 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1178 				(unsigned long long)bio->bi_iter.bi_sector,
1179 				bio_devname(bio, b), count);
1180 		}
1181 	}
1182 
1183 	/*
1184 	 * If we're reading data that is part of the userspace
1185 	 * workingset, count submission time as memory stall. When the
1186 	 * device is congested, or the submitting cgroup IO-throttled,
1187 	 * submission can be a significant part of overall IO time.
1188 	 */
1189 	if (workingset_read)
1190 		psi_memstall_enter(&pflags);
1191 
1192 	ret = generic_make_request(bio);
1193 
1194 	if (workingset_read)
1195 		psi_memstall_leave(&pflags);
1196 
1197 	return ret;
1198 }
1199 EXPORT_SYMBOL(submit_bio);
1200 
1201 /**
1202  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1203  *                              for new the queue limits
1204  * @q:  the queue
1205  * @rq: the request being checked
1206  *
1207  * Description:
1208  *    @rq may have been made based on weaker limitations of upper-level queues
1209  *    in request stacking drivers, and it may violate the limitation of @q.
1210  *    Since the block layer and the underlying device driver trust @rq
1211  *    after it is inserted to @q, it should be checked against @q before
1212  *    the insertion using this generic function.
1213  *
1214  *    Request stacking drivers like request-based dm may change the queue
1215  *    limits when retrying requests on other queues. Those requests need
1216  *    to be checked against the new queue limits again during dispatch.
1217  */
1218 static int blk_cloned_rq_check_limits(struct request_queue *q,
1219 				      struct request *rq)
1220 {
1221 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1222 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1223 			__func__, blk_rq_sectors(rq),
1224 			blk_queue_get_max_sectors(q, req_op(rq)));
1225 		return -EIO;
1226 	}
1227 
1228 	/*
1229 	 * queue's settings related to segment counting like q->bounce_pfn
1230 	 * may differ from that of other stacking queues.
1231 	 * Recalculate it to check the request correctly on this queue's
1232 	 * limitation.
1233 	 */
1234 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1235 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1236 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1237 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1238 		return -EIO;
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 /**
1245  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1246  * @q:  the queue to submit the request
1247  * @rq: the request being queued
1248  */
1249 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1250 {
1251 	if (blk_cloned_rq_check_limits(q, rq))
1252 		return BLK_STS_IOERR;
1253 
1254 	if (rq->rq_disk &&
1255 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1256 		return BLK_STS_IOERR;
1257 
1258 	if (blk_queue_io_stat(q))
1259 		blk_account_io_start(rq, true);
1260 
1261 	/*
1262 	 * Since we have a scheduler attached on the top device,
1263 	 * bypass a potential scheduler on the bottom device for
1264 	 * insert.
1265 	 */
1266 	return blk_mq_request_issue_directly(rq, true);
1267 }
1268 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1269 
1270 /**
1271  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1272  * @rq: request to examine
1273  *
1274  * Description:
1275  *     A request could be merge of IOs which require different failure
1276  *     handling.  This function determines the number of bytes which
1277  *     can be failed from the beginning of the request without
1278  *     crossing into area which need to be retried further.
1279  *
1280  * Return:
1281  *     The number of bytes to fail.
1282  */
1283 unsigned int blk_rq_err_bytes(const struct request *rq)
1284 {
1285 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1286 	unsigned int bytes = 0;
1287 	struct bio *bio;
1288 
1289 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1290 		return blk_rq_bytes(rq);
1291 
1292 	/*
1293 	 * Currently the only 'mixing' which can happen is between
1294 	 * different fastfail types.  We can safely fail portions
1295 	 * which have all the failfast bits that the first one has -
1296 	 * the ones which are at least as eager to fail as the first
1297 	 * one.
1298 	 */
1299 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1300 		if ((bio->bi_opf & ff) != ff)
1301 			break;
1302 		bytes += bio->bi_iter.bi_size;
1303 	}
1304 
1305 	/* this could lead to infinite loop */
1306 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1307 	return bytes;
1308 }
1309 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1310 
1311 void blk_account_io_completion(struct request *req, unsigned int bytes)
1312 {
1313 	if (blk_do_io_stat(req)) {
1314 		const int sgrp = op_stat_group(req_op(req));
1315 		struct hd_struct *part;
1316 
1317 		part_stat_lock();
1318 		part = req->part;
1319 		part_stat_add(part, sectors[sgrp], bytes >> 9);
1320 		part_stat_unlock();
1321 	}
1322 }
1323 
1324 void blk_account_io_done(struct request *req, u64 now)
1325 {
1326 	/*
1327 	 * Account IO completion.  flush_rq isn't accounted as a
1328 	 * normal IO on queueing nor completion.  Accounting the
1329 	 * containing request is enough.
1330 	 */
1331 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1332 		const int sgrp = op_stat_group(req_op(req));
1333 		struct hd_struct *part;
1334 
1335 		part_stat_lock();
1336 		part = req->part;
1337 
1338 		update_io_ticks(part, jiffies);
1339 		part_stat_inc(part, ios[sgrp]);
1340 		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1341 		part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1342 		part_dec_in_flight(req->q, part, rq_data_dir(req));
1343 
1344 		hd_struct_put(part);
1345 		part_stat_unlock();
1346 	}
1347 }
1348 
1349 void blk_account_io_start(struct request *rq, bool new_io)
1350 {
1351 	struct hd_struct *part;
1352 	int rw = rq_data_dir(rq);
1353 
1354 	if (!blk_do_io_stat(rq))
1355 		return;
1356 
1357 	part_stat_lock();
1358 
1359 	if (!new_io) {
1360 		part = rq->part;
1361 		part_stat_inc(part, merges[rw]);
1362 	} else {
1363 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1364 		if (!hd_struct_try_get(part)) {
1365 			/*
1366 			 * The partition is already being removed,
1367 			 * the request will be accounted on the disk only
1368 			 *
1369 			 * We take a reference on disk->part0 although that
1370 			 * partition will never be deleted, so we can treat
1371 			 * it as any other partition.
1372 			 */
1373 			part = &rq->rq_disk->part0;
1374 			hd_struct_get(part);
1375 		}
1376 		part_inc_in_flight(rq->q, part, rw);
1377 		rq->part = part;
1378 	}
1379 
1380 	update_io_ticks(part, jiffies);
1381 
1382 	part_stat_unlock();
1383 }
1384 
1385 /*
1386  * Steal bios from a request and add them to a bio list.
1387  * The request must not have been partially completed before.
1388  */
1389 void blk_steal_bios(struct bio_list *list, struct request *rq)
1390 {
1391 	if (rq->bio) {
1392 		if (list->tail)
1393 			list->tail->bi_next = rq->bio;
1394 		else
1395 			list->head = rq->bio;
1396 		list->tail = rq->biotail;
1397 
1398 		rq->bio = NULL;
1399 		rq->biotail = NULL;
1400 	}
1401 
1402 	rq->__data_len = 0;
1403 }
1404 EXPORT_SYMBOL_GPL(blk_steal_bios);
1405 
1406 /**
1407  * blk_update_request - Special helper function for request stacking drivers
1408  * @req:      the request being processed
1409  * @error:    block status code
1410  * @nr_bytes: number of bytes to complete @req
1411  *
1412  * Description:
1413  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1414  *     the request structure even if @req doesn't have leftover.
1415  *     If @req has leftover, sets it up for the next range of segments.
1416  *
1417  *     This special helper function is only for request stacking drivers
1418  *     (e.g. request-based dm) so that they can handle partial completion.
1419  *     Actual device drivers should use blk_mq_end_request instead.
1420  *
1421  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1422  *     %false return from this function.
1423  *
1424  * Note:
1425  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1426  *	blk_rq_bytes() and in blk_update_request().
1427  *
1428  * Return:
1429  *     %false - this request doesn't have any more data
1430  *     %true  - this request has more data
1431  **/
1432 bool blk_update_request(struct request *req, blk_status_t error,
1433 		unsigned int nr_bytes)
1434 {
1435 	int total_bytes;
1436 
1437 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1438 
1439 	if (!req->bio)
1440 		return false;
1441 
1442 #ifdef CONFIG_BLK_DEV_INTEGRITY
1443 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1444 	    error == BLK_STS_OK)
1445 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1446 #endif
1447 
1448 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1449 		     !(req->rq_flags & RQF_QUIET)))
1450 		print_req_error(req, error, __func__);
1451 
1452 	blk_account_io_completion(req, nr_bytes);
1453 
1454 	total_bytes = 0;
1455 	while (req->bio) {
1456 		struct bio *bio = req->bio;
1457 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1458 
1459 		if (bio_bytes == bio->bi_iter.bi_size)
1460 			req->bio = bio->bi_next;
1461 
1462 		/* Completion has already been traced */
1463 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1464 		req_bio_endio(req, bio, bio_bytes, error);
1465 
1466 		total_bytes += bio_bytes;
1467 		nr_bytes -= bio_bytes;
1468 
1469 		if (!nr_bytes)
1470 			break;
1471 	}
1472 
1473 	/*
1474 	 * completely done
1475 	 */
1476 	if (!req->bio) {
1477 		/*
1478 		 * Reset counters so that the request stacking driver
1479 		 * can find how many bytes remain in the request
1480 		 * later.
1481 		 */
1482 		req->__data_len = 0;
1483 		return false;
1484 	}
1485 
1486 	req->__data_len -= total_bytes;
1487 
1488 	/* update sector only for requests with clear definition of sector */
1489 	if (!blk_rq_is_passthrough(req))
1490 		req->__sector += total_bytes >> 9;
1491 
1492 	/* mixed attributes always follow the first bio */
1493 	if (req->rq_flags & RQF_MIXED_MERGE) {
1494 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1495 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1496 	}
1497 
1498 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1499 		/*
1500 		 * If total number of sectors is less than the first segment
1501 		 * size, something has gone terribly wrong.
1502 		 */
1503 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1504 			blk_dump_rq_flags(req, "request botched");
1505 			req->__data_len = blk_rq_cur_bytes(req);
1506 		}
1507 
1508 		/* recalculate the number of segments */
1509 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1510 	}
1511 
1512 	return true;
1513 }
1514 EXPORT_SYMBOL_GPL(blk_update_request);
1515 
1516 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1517 /**
1518  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1519  * @rq: the request to be flushed
1520  *
1521  * Description:
1522  *     Flush all pages in @rq.
1523  */
1524 void rq_flush_dcache_pages(struct request *rq)
1525 {
1526 	struct req_iterator iter;
1527 	struct bio_vec bvec;
1528 
1529 	rq_for_each_segment(bvec, rq, iter)
1530 		flush_dcache_page(bvec.bv_page);
1531 }
1532 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1533 #endif
1534 
1535 /**
1536  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1537  * @q : the queue of the device being checked
1538  *
1539  * Description:
1540  *    Check if underlying low-level drivers of a device are busy.
1541  *    If the drivers want to export their busy state, they must set own
1542  *    exporting function using blk_queue_lld_busy() first.
1543  *
1544  *    Basically, this function is used only by request stacking drivers
1545  *    to stop dispatching requests to underlying devices when underlying
1546  *    devices are busy.  This behavior helps more I/O merging on the queue
1547  *    of the request stacking driver and prevents I/O throughput regression
1548  *    on burst I/O load.
1549  *
1550  * Return:
1551  *    0 - Not busy (The request stacking driver should dispatch request)
1552  *    1 - Busy (The request stacking driver should stop dispatching request)
1553  */
1554 int blk_lld_busy(struct request_queue *q)
1555 {
1556 	if (queue_is_mq(q) && q->mq_ops->busy)
1557 		return q->mq_ops->busy(q);
1558 
1559 	return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(blk_lld_busy);
1562 
1563 /**
1564  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1565  * @rq: the clone request to be cleaned up
1566  *
1567  * Description:
1568  *     Free all bios in @rq for a cloned request.
1569  */
1570 void blk_rq_unprep_clone(struct request *rq)
1571 {
1572 	struct bio *bio;
1573 
1574 	while ((bio = rq->bio) != NULL) {
1575 		rq->bio = bio->bi_next;
1576 
1577 		bio_put(bio);
1578 	}
1579 }
1580 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1581 
1582 /*
1583  * Copy attributes of the original request to the clone request.
1584  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1585  */
1586 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1587 {
1588 	dst->__sector = blk_rq_pos(src);
1589 	dst->__data_len = blk_rq_bytes(src);
1590 	if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1591 		dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1592 		dst->special_vec = src->special_vec;
1593 	}
1594 	dst->nr_phys_segments = src->nr_phys_segments;
1595 	dst->ioprio = src->ioprio;
1596 	dst->extra_len = src->extra_len;
1597 }
1598 
1599 /**
1600  * blk_rq_prep_clone - Helper function to setup clone request
1601  * @rq: the request to be setup
1602  * @rq_src: original request to be cloned
1603  * @bs: bio_set that bios for clone are allocated from
1604  * @gfp_mask: memory allocation mask for bio
1605  * @bio_ctr: setup function to be called for each clone bio.
1606  *           Returns %0 for success, non %0 for failure.
1607  * @data: private data to be passed to @bio_ctr
1608  *
1609  * Description:
1610  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1611  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1612  *     are not copied, and copying such parts is the caller's responsibility.
1613  *     Also, pages which the original bios are pointing to are not copied
1614  *     and the cloned bios just point same pages.
1615  *     So cloned bios must be completed before original bios, which means
1616  *     the caller must complete @rq before @rq_src.
1617  */
1618 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1619 		      struct bio_set *bs, gfp_t gfp_mask,
1620 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1621 		      void *data)
1622 {
1623 	struct bio *bio, *bio_src;
1624 
1625 	if (!bs)
1626 		bs = &fs_bio_set;
1627 
1628 	__rq_for_each_bio(bio_src, rq_src) {
1629 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1630 		if (!bio)
1631 			goto free_and_out;
1632 
1633 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1634 			goto free_and_out;
1635 
1636 		if (rq->bio) {
1637 			rq->biotail->bi_next = bio;
1638 			rq->biotail = bio;
1639 		} else
1640 			rq->bio = rq->biotail = bio;
1641 	}
1642 
1643 	__blk_rq_prep_clone(rq, rq_src);
1644 
1645 	return 0;
1646 
1647 free_and_out:
1648 	if (bio)
1649 		bio_put(bio);
1650 	blk_rq_unprep_clone(rq);
1651 
1652 	return -ENOMEM;
1653 }
1654 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1655 
1656 int kblockd_schedule_work(struct work_struct *work)
1657 {
1658 	return queue_work(kblockd_workqueue, work);
1659 }
1660 EXPORT_SYMBOL(kblockd_schedule_work);
1661 
1662 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1663 {
1664 	return queue_work_on(cpu, kblockd_workqueue, work);
1665 }
1666 EXPORT_SYMBOL(kblockd_schedule_work_on);
1667 
1668 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1669 				unsigned long delay)
1670 {
1671 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1672 }
1673 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1674 
1675 /**
1676  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1677  * @plug:	The &struct blk_plug that needs to be initialized
1678  *
1679  * Description:
1680  *   blk_start_plug() indicates to the block layer an intent by the caller
1681  *   to submit multiple I/O requests in a batch.  The block layer may use
1682  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1683  *   is called.  However, the block layer may choose to submit requests
1684  *   before a call to blk_finish_plug() if the number of queued I/Os
1685  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1686  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1687  *   the task schedules (see below).
1688  *
1689  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1690  *   pending I/O should the task end up blocking between blk_start_plug() and
1691  *   blk_finish_plug(). This is important from a performance perspective, but
1692  *   also ensures that we don't deadlock. For instance, if the task is blocking
1693  *   for a memory allocation, memory reclaim could end up wanting to free a
1694  *   page belonging to that request that is currently residing in our private
1695  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1696  *   this kind of deadlock.
1697  */
1698 void blk_start_plug(struct blk_plug *plug)
1699 {
1700 	struct task_struct *tsk = current;
1701 
1702 	/*
1703 	 * If this is a nested plug, don't actually assign it.
1704 	 */
1705 	if (tsk->plug)
1706 		return;
1707 
1708 	INIT_LIST_HEAD(&plug->mq_list);
1709 	INIT_LIST_HEAD(&plug->cb_list);
1710 	plug->rq_count = 0;
1711 	plug->multiple_queues = false;
1712 
1713 	/*
1714 	 * Store ordering should not be needed here, since a potential
1715 	 * preempt will imply a full memory barrier
1716 	 */
1717 	tsk->plug = plug;
1718 }
1719 EXPORT_SYMBOL(blk_start_plug);
1720 
1721 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1722 {
1723 	LIST_HEAD(callbacks);
1724 
1725 	while (!list_empty(&plug->cb_list)) {
1726 		list_splice_init(&plug->cb_list, &callbacks);
1727 
1728 		while (!list_empty(&callbacks)) {
1729 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1730 							  struct blk_plug_cb,
1731 							  list);
1732 			list_del(&cb->list);
1733 			cb->callback(cb, from_schedule);
1734 		}
1735 	}
1736 }
1737 
1738 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1739 				      int size)
1740 {
1741 	struct blk_plug *plug = current->plug;
1742 	struct blk_plug_cb *cb;
1743 
1744 	if (!plug)
1745 		return NULL;
1746 
1747 	list_for_each_entry(cb, &plug->cb_list, list)
1748 		if (cb->callback == unplug && cb->data == data)
1749 			return cb;
1750 
1751 	/* Not currently on the callback list */
1752 	BUG_ON(size < sizeof(*cb));
1753 	cb = kzalloc(size, GFP_ATOMIC);
1754 	if (cb) {
1755 		cb->data = data;
1756 		cb->callback = unplug;
1757 		list_add(&cb->list, &plug->cb_list);
1758 	}
1759 	return cb;
1760 }
1761 EXPORT_SYMBOL(blk_check_plugged);
1762 
1763 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1764 {
1765 	flush_plug_callbacks(plug, from_schedule);
1766 
1767 	if (!list_empty(&plug->mq_list))
1768 		blk_mq_flush_plug_list(plug, from_schedule);
1769 }
1770 
1771 /**
1772  * blk_finish_plug - mark the end of a batch of submitted I/O
1773  * @plug:	The &struct blk_plug passed to blk_start_plug()
1774  *
1775  * Description:
1776  * Indicate that a batch of I/O submissions is complete.  This function
1777  * must be paired with an initial call to blk_start_plug().  The intent
1778  * is to allow the block layer to optimize I/O submission.  See the
1779  * documentation for blk_start_plug() for more information.
1780  */
1781 void blk_finish_plug(struct blk_plug *plug)
1782 {
1783 	if (plug != current->plug)
1784 		return;
1785 	blk_flush_plug_list(plug, false);
1786 
1787 	current->plug = NULL;
1788 }
1789 EXPORT_SYMBOL(blk_finish_plug);
1790 
1791 int __init blk_dev_init(void)
1792 {
1793 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1794 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1795 			FIELD_SIZEOF(struct request, cmd_flags));
1796 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1797 			FIELD_SIZEOF(struct bio, bi_opf));
1798 
1799 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1800 	kblockd_workqueue = alloc_workqueue("kblockd",
1801 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1802 	if (!kblockd_workqueue)
1803 		panic("Failed to create kblockd\n");
1804 
1805 	blk_requestq_cachep = kmem_cache_create("request_queue",
1806 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1807 
1808 #ifdef CONFIG_DEBUG_FS
1809 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1810 #endif
1811 
1812 	return 0;
1813 }
1814