xref: /openbmc/linux/block/blk-core.c (revision 7b7dfdd2)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38 
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42 
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48 
49 DEFINE_IDA(blk_queue_ida);
50 
51 /*
52  * For the allocated request tables
53  */
54 struct kmem_cache *request_cachep = NULL;
55 
56 /*
57  * For queue allocation
58  */
59 struct kmem_cache *blk_requestq_cachep;
60 
61 /*
62  * Controlling structure to kblockd
63  */
64 static struct workqueue_struct *kblockd_workqueue;
65 
66 void blk_queue_congestion_threshold(struct request_queue *q)
67 {
68 	int nr;
69 
70 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 	if (nr > q->nr_requests)
72 		nr = q->nr_requests;
73 	q->nr_congestion_on = nr;
74 
75 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 	if (nr < 1)
77 		nr = 1;
78 	q->nr_congestion_off = nr;
79 }
80 
81 /**
82  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83  * @bdev:	device
84  *
85  * Locates the passed device's request queue and returns the address of its
86  * backing_dev_info
87  *
88  * Will return NULL if the request queue cannot be located.
89  */
90 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
91 {
92 	struct backing_dev_info *ret = NULL;
93 	struct request_queue *q = bdev_get_queue(bdev);
94 
95 	if (q)
96 		ret = &q->backing_dev_info;
97 	return ret;
98 }
99 EXPORT_SYMBOL(blk_get_backing_dev_info);
100 
101 void blk_rq_init(struct request_queue *q, struct request *rq)
102 {
103 	memset(rq, 0, sizeof(*rq));
104 
105 	INIT_LIST_HEAD(&rq->queuelist);
106 	INIT_LIST_HEAD(&rq->timeout_list);
107 	rq->cpu = -1;
108 	rq->q = q;
109 	rq->__sector = (sector_t) -1;
110 	INIT_HLIST_NODE(&rq->hash);
111 	RB_CLEAR_NODE(&rq->rb_node);
112 	rq->cmd = rq->__cmd;
113 	rq->cmd_len = BLK_MAX_CDB;
114 	rq->tag = -1;
115 	rq->start_time = jiffies;
116 	set_start_time_ns(rq);
117 	rq->part = NULL;
118 }
119 EXPORT_SYMBOL(blk_rq_init);
120 
121 static void req_bio_endio(struct request *rq, struct bio *bio,
122 			  unsigned int nbytes, int error)
123 {
124 	if (error)
125 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
126 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
127 		error = -EIO;
128 
129 	if (unlikely(rq->cmd_flags & REQ_QUIET))
130 		set_bit(BIO_QUIET, &bio->bi_flags);
131 
132 	bio_advance(bio, nbytes);
133 
134 	/* don't actually finish bio if it's part of flush sequence */
135 	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
136 		bio_endio(bio, error);
137 }
138 
139 void blk_dump_rq_flags(struct request *rq, char *msg)
140 {
141 	int bit;
142 
143 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
144 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
145 		(unsigned long long) rq->cmd_flags);
146 
147 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
148 	       (unsigned long long)blk_rq_pos(rq),
149 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
150 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
151 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
152 
153 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
154 		printk(KERN_INFO "  cdb: ");
155 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
156 			printk("%02x ", rq->cmd[bit]);
157 		printk("\n");
158 	}
159 }
160 EXPORT_SYMBOL(blk_dump_rq_flags);
161 
162 static void blk_delay_work(struct work_struct *work)
163 {
164 	struct request_queue *q;
165 
166 	q = container_of(work, struct request_queue, delay_work.work);
167 	spin_lock_irq(q->queue_lock);
168 	__blk_run_queue(q);
169 	spin_unlock_irq(q->queue_lock);
170 }
171 
172 /**
173  * blk_delay_queue - restart queueing after defined interval
174  * @q:		The &struct request_queue in question
175  * @msecs:	Delay in msecs
176  *
177  * Description:
178  *   Sometimes queueing needs to be postponed for a little while, to allow
179  *   resources to come back. This function will make sure that queueing is
180  *   restarted around the specified time. Queue lock must be held.
181  */
182 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
183 {
184 	if (likely(!blk_queue_dead(q)))
185 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 				   msecs_to_jiffies(msecs));
187 }
188 EXPORT_SYMBOL(blk_delay_queue);
189 
190 /**
191  * blk_start_queue - restart a previously stopped queue
192  * @q:    The &struct request_queue in question
193  *
194  * Description:
195  *   blk_start_queue() will clear the stop flag on the queue, and call
196  *   the request_fn for the queue if it was in a stopped state when
197  *   entered. Also see blk_stop_queue(). Queue lock must be held.
198  **/
199 void blk_start_queue(struct request_queue *q)
200 {
201 	WARN_ON(!irqs_disabled());
202 
203 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
204 	__blk_run_queue(q);
205 }
206 EXPORT_SYMBOL(blk_start_queue);
207 
208 /**
209  * blk_stop_queue - stop a queue
210  * @q:    The &struct request_queue in question
211  *
212  * Description:
213  *   The Linux block layer assumes that a block driver will consume all
214  *   entries on the request queue when the request_fn strategy is called.
215  *   Often this will not happen, because of hardware limitations (queue
216  *   depth settings). If a device driver gets a 'queue full' response,
217  *   or if it simply chooses not to queue more I/O at one point, it can
218  *   call this function to prevent the request_fn from being called until
219  *   the driver has signalled it's ready to go again. This happens by calling
220  *   blk_start_queue() to restart queue operations. Queue lock must be held.
221  **/
222 void blk_stop_queue(struct request_queue *q)
223 {
224 	cancel_delayed_work(&q->delay_work);
225 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
226 }
227 EXPORT_SYMBOL(blk_stop_queue);
228 
229 /**
230  * blk_sync_queue - cancel any pending callbacks on a queue
231  * @q: the queue
232  *
233  * Description:
234  *     The block layer may perform asynchronous callback activity
235  *     on a queue, such as calling the unplug function after a timeout.
236  *     A block device may call blk_sync_queue to ensure that any
237  *     such activity is cancelled, thus allowing it to release resources
238  *     that the callbacks might use. The caller must already have made sure
239  *     that its ->make_request_fn will not re-add plugging prior to calling
240  *     this function.
241  *
242  *     This function does not cancel any asynchronous activity arising
243  *     out of elevator or throttling code. That would require elevaotor_exit()
244  *     and blkcg_exit_queue() to be called with queue lock initialized.
245  *
246  */
247 void blk_sync_queue(struct request_queue *q)
248 {
249 	del_timer_sync(&q->timeout);
250 
251 	if (q->mq_ops) {
252 		struct blk_mq_hw_ctx *hctx;
253 		int i;
254 
255 		queue_for_each_hw_ctx(q, hctx, i) {
256 			cancel_delayed_work_sync(&hctx->run_work);
257 			cancel_delayed_work_sync(&hctx->delay_work);
258 		}
259 	} else {
260 		cancel_delayed_work_sync(&q->delay_work);
261 	}
262 }
263 EXPORT_SYMBOL(blk_sync_queue);
264 
265 /**
266  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
267  * @q:	The queue to run
268  *
269  * Description:
270  *    Invoke request handling on a queue if there are any pending requests.
271  *    May be used to restart request handling after a request has completed.
272  *    This variant runs the queue whether or not the queue has been
273  *    stopped. Must be called with the queue lock held and interrupts
274  *    disabled. See also @blk_run_queue.
275  */
276 inline void __blk_run_queue_uncond(struct request_queue *q)
277 {
278 	if (unlikely(blk_queue_dead(q)))
279 		return;
280 
281 	/*
282 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
283 	 * the queue lock internally. As a result multiple threads may be
284 	 * running such a request function concurrently. Keep track of the
285 	 * number of active request_fn invocations such that blk_drain_queue()
286 	 * can wait until all these request_fn calls have finished.
287 	 */
288 	q->request_fn_active++;
289 	q->request_fn(q);
290 	q->request_fn_active--;
291 }
292 
293 /**
294  * __blk_run_queue - run a single device queue
295  * @q:	The queue to run
296  *
297  * Description:
298  *    See @blk_run_queue. This variant must be called with the queue lock
299  *    held and interrupts disabled.
300  */
301 void __blk_run_queue(struct request_queue *q)
302 {
303 	if (unlikely(blk_queue_stopped(q)))
304 		return;
305 
306 	__blk_run_queue_uncond(q);
307 }
308 EXPORT_SYMBOL(__blk_run_queue);
309 
310 /**
311  * blk_run_queue_async - run a single device queue in workqueue context
312  * @q:	The queue to run
313  *
314  * Description:
315  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
316  *    of us. The caller must hold the queue lock.
317  */
318 void blk_run_queue_async(struct request_queue *q)
319 {
320 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
321 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
322 }
323 EXPORT_SYMBOL(blk_run_queue_async);
324 
325 /**
326  * blk_run_queue - run a single device queue
327  * @q: The queue to run
328  *
329  * Description:
330  *    Invoke request handling on this queue, if it has pending work to do.
331  *    May be used to restart queueing when a request has completed.
332  */
333 void blk_run_queue(struct request_queue *q)
334 {
335 	unsigned long flags;
336 
337 	spin_lock_irqsave(q->queue_lock, flags);
338 	__blk_run_queue(q);
339 	spin_unlock_irqrestore(q->queue_lock, flags);
340 }
341 EXPORT_SYMBOL(blk_run_queue);
342 
343 void blk_put_queue(struct request_queue *q)
344 {
345 	kobject_put(&q->kobj);
346 }
347 EXPORT_SYMBOL(blk_put_queue);
348 
349 /**
350  * __blk_drain_queue - drain requests from request_queue
351  * @q: queue to drain
352  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
353  *
354  * Drain requests from @q.  If @drain_all is set, all requests are drained.
355  * If not, only ELVPRIV requests are drained.  The caller is responsible
356  * for ensuring that no new requests which need to be drained are queued.
357  */
358 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
359 	__releases(q->queue_lock)
360 	__acquires(q->queue_lock)
361 {
362 	int i;
363 
364 	lockdep_assert_held(q->queue_lock);
365 
366 	while (true) {
367 		bool drain = false;
368 
369 		/*
370 		 * The caller might be trying to drain @q before its
371 		 * elevator is initialized.
372 		 */
373 		if (q->elevator)
374 			elv_drain_elevator(q);
375 
376 		blkcg_drain_queue(q);
377 
378 		/*
379 		 * This function might be called on a queue which failed
380 		 * driver init after queue creation or is not yet fully
381 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
382 		 * in such cases.  Kick queue iff dispatch queue has
383 		 * something on it and @q has request_fn set.
384 		 */
385 		if (!list_empty(&q->queue_head) && q->request_fn)
386 			__blk_run_queue(q);
387 
388 		drain |= q->nr_rqs_elvpriv;
389 		drain |= q->request_fn_active;
390 
391 		/*
392 		 * Unfortunately, requests are queued at and tracked from
393 		 * multiple places and there's no single counter which can
394 		 * be drained.  Check all the queues and counters.
395 		 */
396 		if (drain_all) {
397 			drain |= !list_empty(&q->queue_head);
398 			for (i = 0; i < 2; i++) {
399 				drain |= q->nr_rqs[i];
400 				drain |= q->in_flight[i];
401 				drain |= !list_empty(&q->flush_queue[i]);
402 			}
403 		}
404 
405 		if (!drain)
406 			break;
407 
408 		spin_unlock_irq(q->queue_lock);
409 
410 		msleep(10);
411 
412 		spin_lock_irq(q->queue_lock);
413 	}
414 
415 	/*
416 	 * With queue marked dead, any woken up waiter will fail the
417 	 * allocation path, so the wakeup chaining is lost and we're
418 	 * left with hung waiters. We need to wake up those waiters.
419 	 */
420 	if (q->request_fn) {
421 		struct request_list *rl;
422 
423 		blk_queue_for_each_rl(rl, q)
424 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
425 				wake_up_all(&rl->wait[i]);
426 	}
427 }
428 
429 /**
430  * blk_queue_bypass_start - enter queue bypass mode
431  * @q: queue of interest
432  *
433  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
434  * function makes @q enter bypass mode and drains all requests which were
435  * throttled or issued before.  On return, it's guaranteed that no request
436  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437  * inside queue or RCU read lock.
438  */
439 void blk_queue_bypass_start(struct request_queue *q)
440 {
441 	bool drain;
442 
443 	spin_lock_irq(q->queue_lock);
444 	drain = !q->bypass_depth++;
445 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
446 	spin_unlock_irq(q->queue_lock);
447 
448 	if (drain) {
449 		spin_lock_irq(q->queue_lock);
450 		__blk_drain_queue(q, false);
451 		spin_unlock_irq(q->queue_lock);
452 
453 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
454 		synchronize_rcu();
455 	}
456 }
457 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
458 
459 /**
460  * blk_queue_bypass_end - leave queue bypass mode
461  * @q: queue of interest
462  *
463  * Leave bypass mode and restore the normal queueing behavior.
464  */
465 void blk_queue_bypass_end(struct request_queue *q)
466 {
467 	spin_lock_irq(q->queue_lock);
468 	if (!--q->bypass_depth)
469 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
470 	WARN_ON_ONCE(q->bypass_depth < 0);
471 	spin_unlock_irq(q->queue_lock);
472 }
473 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
474 
475 /**
476  * blk_cleanup_queue - shutdown a request queue
477  * @q: request queue to shutdown
478  *
479  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
480  * put it.  All future requests will be failed immediately with -ENODEV.
481  */
482 void blk_cleanup_queue(struct request_queue *q)
483 {
484 	spinlock_t *lock = q->queue_lock;
485 
486 	/* mark @q DYING, no new request or merges will be allowed afterwards */
487 	mutex_lock(&q->sysfs_lock);
488 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
489 	spin_lock_irq(lock);
490 
491 	/*
492 	 * A dying queue is permanently in bypass mode till released.  Note
493 	 * that, unlike blk_queue_bypass_start(), we aren't performing
494 	 * synchronize_rcu() after entering bypass mode to avoid the delay
495 	 * as some drivers create and destroy a lot of queues while
496 	 * probing.  This is still safe because blk_release_queue() will be
497 	 * called only after the queue refcnt drops to zero and nothing,
498 	 * RCU or not, would be traversing the queue by then.
499 	 */
500 	q->bypass_depth++;
501 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
502 
503 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
504 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
505 	queue_flag_set(QUEUE_FLAG_DYING, q);
506 	spin_unlock_irq(lock);
507 	mutex_unlock(&q->sysfs_lock);
508 
509 	/*
510 	 * Drain all requests queued before DYING marking. Set DEAD flag to
511 	 * prevent that q->request_fn() gets invoked after draining finished.
512 	 */
513 	if (q->mq_ops) {
514 		blk_mq_drain_queue(q);
515 		spin_lock_irq(lock);
516 	} else {
517 		spin_lock_irq(lock);
518 		__blk_drain_queue(q, true);
519 	}
520 	queue_flag_set(QUEUE_FLAG_DEAD, q);
521 	spin_unlock_irq(lock);
522 
523 	/* @q won't process any more request, flush async actions */
524 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
525 	blk_sync_queue(q);
526 
527 	spin_lock_irq(lock);
528 	if (q->queue_lock != &q->__queue_lock)
529 		q->queue_lock = &q->__queue_lock;
530 	spin_unlock_irq(lock);
531 
532 	/* @q is and will stay empty, shutdown and put */
533 	blk_put_queue(q);
534 }
535 EXPORT_SYMBOL(blk_cleanup_queue);
536 
537 int blk_init_rl(struct request_list *rl, struct request_queue *q,
538 		gfp_t gfp_mask)
539 {
540 	if (unlikely(rl->rq_pool))
541 		return 0;
542 
543 	rl->q = q;
544 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
545 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
546 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
547 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
548 
549 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
550 					  mempool_free_slab, request_cachep,
551 					  gfp_mask, q->node);
552 	if (!rl->rq_pool)
553 		return -ENOMEM;
554 
555 	return 0;
556 }
557 
558 void blk_exit_rl(struct request_list *rl)
559 {
560 	if (rl->rq_pool)
561 		mempool_destroy(rl->rq_pool);
562 }
563 
564 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
565 {
566 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
567 }
568 EXPORT_SYMBOL(blk_alloc_queue);
569 
570 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
571 {
572 	struct request_queue *q;
573 	int err;
574 
575 	q = kmem_cache_alloc_node(blk_requestq_cachep,
576 				gfp_mask | __GFP_ZERO, node_id);
577 	if (!q)
578 		return NULL;
579 
580 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
581 	if (q->id < 0)
582 		goto fail_q;
583 
584 	q->backing_dev_info.ra_pages =
585 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
586 	q->backing_dev_info.state = 0;
587 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
588 	q->backing_dev_info.name = "block";
589 	q->node = node_id;
590 
591 	err = bdi_init(&q->backing_dev_info);
592 	if (err)
593 		goto fail_id;
594 
595 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
596 		    laptop_mode_timer_fn, (unsigned long) q);
597 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
598 	INIT_LIST_HEAD(&q->queue_head);
599 	INIT_LIST_HEAD(&q->timeout_list);
600 	INIT_LIST_HEAD(&q->icq_list);
601 #ifdef CONFIG_BLK_CGROUP
602 	INIT_LIST_HEAD(&q->blkg_list);
603 #endif
604 	INIT_LIST_HEAD(&q->flush_queue[0]);
605 	INIT_LIST_HEAD(&q->flush_queue[1]);
606 	INIT_LIST_HEAD(&q->flush_data_in_flight);
607 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
608 
609 	kobject_init(&q->kobj, &blk_queue_ktype);
610 
611 	mutex_init(&q->sysfs_lock);
612 	spin_lock_init(&q->__queue_lock);
613 
614 	/*
615 	 * By default initialize queue_lock to internal lock and driver can
616 	 * override it later if need be.
617 	 */
618 	q->queue_lock = &q->__queue_lock;
619 
620 	/*
621 	 * A queue starts its life with bypass turned on to avoid
622 	 * unnecessary bypass on/off overhead and nasty surprises during
623 	 * init.  The initial bypass will be finished when the queue is
624 	 * registered by blk_register_queue().
625 	 */
626 	q->bypass_depth = 1;
627 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
628 
629 	init_waitqueue_head(&q->mq_freeze_wq);
630 
631 	if (blkcg_init_queue(q))
632 		goto fail_bdi;
633 
634 	return q;
635 
636 fail_bdi:
637 	bdi_destroy(&q->backing_dev_info);
638 fail_id:
639 	ida_simple_remove(&blk_queue_ida, q->id);
640 fail_q:
641 	kmem_cache_free(blk_requestq_cachep, q);
642 	return NULL;
643 }
644 EXPORT_SYMBOL(blk_alloc_queue_node);
645 
646 /**
647  * blk_init_queue  - prepare a request queue for use with a block device
648  * @rfn:  The function to be called to process requests that have been
649  *        placed on the queue.
650  * @lock: Request queue spin lock
651  *
652  * Description:
653  *    If a block device wishes to use the standard request handling procedures,
654  *    which sorts requests and coalesces adjacent requests, then it must
655  *    call blk_init_queue().  The function @rfn will be called when there
656  *    are requests on the queue that need to be processed.  If the device
657  *    supports plugging, then @rfn may not be called immediately when requests
658  *    are available on the queue, but may be called at some time later instead.
659  *    Plugged queues are generally unplugged when a buffer belonging to one
660  *    of the requests on the queue is needed, or due to memory pressure.
661  *
662  *    @rfn is not required, or even expected, to remove all requests off the
663  *    queue, but only as many as it can handle at a time.  If it does leave
664  *    requests on the queue, it is responsible for arranging that the requests
665  *    get dealt with eventually.
666  *
667  *    The queue spin lock must be held while manipulating the requests on the
668  *    request queue; this lock will be taken also from interrupt context, so irq
669  *    disabling is needed for it.
670  *
671  *    Function returns a pointer to the initialized request queue, or %NULL if
672  *    it didn't succeed.
673  *
674  * Note:
675  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
676  *    when the block device is deactivated (such as at module unload).
677  **/
678 
679 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
680 {
681 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
682 }
683 EXPORT_SYMBOL(blk_init_queue);
684 
685 struct request_queue *
686 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
687 {
688 	struct request_queue *uninit_q, *q;
689 
690 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
691 	if (!uninit_q)
692 		return NULL;
693 
694 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
695 	if (!q)
696 		blk_cleanup_queue(uninit_q);
697 
698 	return q;
699 }
700 EXPORT_SYMBOL(blk_init_queue_node);
701 
702 struct request_queue *
703 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
704 			 spinlock_t *lock)
705 {
706 	if (!q)
707 		return NULL;
708 
709 	q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
710 	if (!q->flush_rq)
711 		return NULL;
712 
713 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
714 		goto fail;
715 
716 	q->request_fn		= rfn;
717 	q->prep_rq_fn		= NULL;
718 	q->unprep_rq_fn		= NULL;
719 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
720 
721 	/* Override internal queue lock with supplied lock pointer */
722 	if (lock)
723 		q->queue_lock		= lock;
724 
725 	/*
726 	 * This also sets hw/phys segments, boundary and size
727 	 */
728 	blk_queue_make_request(q, blk_queue_bio);
729 
730 	q->sg_reserved_size = INT_MAX;
731 
732 	/* Protect q->elevator from elevator_change */
733 	mutex_lock(&q->sysfs_lock);
734 
735 	/* init elevator */
736 	if (elevator_init(q, NULL)) {
737 		mutex_unlock(&q->sysfs_lock);
738 		goto fail;
739 	}
740 
741 	mutex_unlock(&q->sysfs_lock);
742 
743 	return q;
744 
745 fail:
746 	kfree(q->flush_rq);
747 	return NULL;
748 }
749 EXPORT_SYMBOL(blk_init_allocated_queue);
750 
751 bool blk_get_queue(struct request_queue *q)
752 {
753 	if (likely(!blk_queue_dying(q))) {
754 		__blk_get_queue(q);
755 		return true;
756 	}
757 
758 	return false;
759 }
760 EXPORT_SYMBOL(blk_get_queue);
761 
762 static inline void blk_free_request(struct request_list *rl, struct request *rq)
763 {
764 	if (rq->cmd_flags & REQ_ELVPRIV) {
765 		elv_put_request(rl->q, rq);
766 		if (rq->elv.icq)
767 			put_io_context(rq->elv.icq->ioc);
768 	}
769 
770 	mempool_free(rq, rl->rq_pool);
771 }
772 
773 /*
774  * ioc_batching returns true if the ioc is a valid batching request and
775  * should be given priority access to a request.
776  */
777 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
778 {
779 	if (!ioc)
780 		return 0;
781 
782 	/*
783 	 * Make sure the process is able to allocate at least 1 request
784 	 * even if the batch times out, otherwise we could theoretically
785 	 * lose wakeups.
786 	 */
787 	return ioc->nr_batch_requests == q->nr_batching ||
788 		(ioc->nr_batch_requests > 0
789 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
790 }
791 
792 /*
793  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
794  * will cause the process to be a "batcher" on all queues in the system. This
795  * is the behaviour we want though - once it gets a wakeup it should be given
796  * a nice run.
797  */
798 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
799 {
800 	if (!ioc || ioc_batching(q, ioc))
801 		return;
802 
803 	ioc->nr_batch_requests = q->nr_batching;
804 	ioc->last_waited = jiffies;
805 }
806 
807 static void __freed_request(struct request_list *rl, int sync)
808 {
809 	struct request_queue *q = rl->q;
810 
811 	/*
812 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
813 	 * blkcg anyway, just use root blkcg state.
814 	 */
815 	if (rl == &q->root_rl &&
816 	    rl->count[sync] < queue_congestion_off_threshold(q))
817 		blk_clear_queue_congested(q, sync);
818 
819 	if (rl->count[sync] + 1 <= q->nr_requests) {
820 		if (waitqueue_active(&rl->wait[sync]))
821 			wake_up(&rl->wait[sync]);
822 
823 		blk_clear_rl_full(rl, sync);
824 	}
825 }
826 
827 /*
828  * A request has just been released.  Account for it, update the full and
829  * congestion status, wake up any waiters.   Called under q->queue_lock.
830  */
831 static void freed_request(struct request_list *rl, unsigned int flags)
832 {
833 	struct request_queue *q = rl->q;
834 	int sync = rw_is_sync(flags);
835 
836 	q->nr_rqs[sync]--;
837 	rl->count[sync]--;
838 	if (flags & REQ_ELVPRIV)
839 		q->nr_rqs_elvpriv--;
840 
841 	__freed_request(rl, sync);
842 
843 	if (unlikely(rl->starved[sync ^ 1]))
844 		__freed_request(rl, sync ^ 1);
845 }
846 
847 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
848 {
849 	struct request_list *rl;
850 
851 	spin_lock_irq(q->queue_lock);
852 	q->nr_requests = nr;
853 	blk_queue_congestion_threshold(q);
854 
855 	/* congestion isn't cgroup aware and follows root blkcg for now */
856 	rl = &q->root_rl;
857 
858 	if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
859 		blk_set_queue_congested(q, BLK_RW_SYNC);
860 	else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
861 		blk_clear_queue_congested(q, BLK_RW_SYNC);
862 
863 	if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
864 		blk_set_queue_congested(q, BLK_RW_ASYNC);
865 	else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
866 		blk_clear_queue_congested(q, BLK_RW_ASYNC);
867 
868 	blk_queue_for_each_rl(rl, q) {
869 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
870 			blk_set_rl_full(rl, BLK_RW_SYNC);
871 		} else {
872 			blk_clear_rl_full(rl, BLK_RW_SYNC);
873 			wake_up(&rl->wait[BLK_RW_SYNC]);
874 		}
875 
876 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
877 			blk_set_rl_full(rl, BLK_RW_ASYNC);
878 		} else {
879 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
880 			wake_up(&rl->wait[BLK_RW_ASYNC]);
881 		}
882 	}
883 
884 	spin_unlock_irq(q->queue_lock);
885 	return 0;
886 }
887 
888 /*
889  * Determine if elevator data should be initialized when allocating the
890  * request associated with @bio.
891  */
892 static bool blk_rq_should_init_elevator(struct bio *bio)
893 {
894 	if (!bio)
895 		return true;
896 
897 	/*
898 	 * Flush requests do not use the elevator so skip initialization.
899 	 * This allows a request to share the flush and elevator data.
900 	 */
901 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
902 		return false;
903 
904 	return true;
905 }
906 
907 /**
908  * rq_ioc - determine io_context for request allocation
909  * @bio: request being allocated is for this bio (can be %NULL)
910  *
911  * Determine io_context to use for request allocation for @bio.  May return
912  * %NULL if %current->io_context doesn't exist.
913  */
914 static struct io_context *rq_ioc(struct bio *bio)
915 {
916 #ifdef CONFIG_BLK_CGROUP
917 	if (bio && bio->bi_ioc)
918 		return bio->bi_ioc;
919 #endif
920 	return current->io_context;
921 }
922 
923 /**
924  * __get_request - get a free request
925  * @rl: request list to allocate from
926  * @rw_flags: RW and SYNC flags
927  * @bio: bio to allocate request for (can be %NULL)
928  * @gfp_mask: allocation mask
929  *
930  * Get a free request from @q.  This function may fail under memory
931  * pressure or if @q is dead.
932  *
933  * Must be callled with @q->queue_lock held and,
934  * Returns %NULL on failure, with @q->queue_lock held.
935  * Returns !%NULL on success, with @q->queue_lock *not held*.
936  */
937 static struct request *__get_request(struct request_list *rl, int rw_flags,
938 				     struct bio *bio, gfp_t gfp_mask)
939 {
940 	struct request_queue *q = rl->q;
941 	struct request *rq;
942 	struct elevator_type *et = q->elevator->type;
943 	struct io_context *ioc = rq_ioc(bio);
944 	struct io_cq *icq = NULL;
945 	const bool is_sync = rw_is_sync(rw_flags) != 0;
946 	int may_queue;
947 
948 	if (unlikely(blk_queue_dying(q)))
949 		return NULL;
950 
951 	may_queue = elv_may_queue(q, rw_flags);
952 	if (may_queue == ELV_MQUEUE_NO)
953 		goto rq_starved;
954 
955 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
956 		if (rl->count[is_sync]+1 >= q->nr_requests) {
957 			/*
958 			 * The queue will fill after this allocation, so set
959 			 * it as full, and mark this process as "batching".
960 			 * This process will be allowed to complete a batch of
961 			 * requests, others will be blocked.
962 			 */
963 			if (!blk_rl_full(rl, is_sync)) {
964 				ioc_set_batching(q, ioc);
965 				blk_set_rl_full(rl, is_sync);
966 			} else {
967 				if (may_queue != ELV_MQUEUE_MUST
968 						&& !ioc_batching(q, ioc)) {
969 					/*
970 					 * The queue is full and the allocating
971 					 * process is not a "batcher", and not
972 					 * exempted by the IO scheduler
973 					 */
974 					return NULL;
975 				}
976 			}
977 		}
978 		/*
979 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
980 		 * root blkcg anyway, just use root blkcg state.
981 		 */
982 		if (rl == &q->root_rl)
983 			blk_set_queue_congested(q, is_sync);
984 	}
985 
986 	/*
987 	 * Only allow batching queuers to allocate up to 50% over the defined
988 	 * limit of requests, otherwise we could have thousands of requests
989 	 * allocated with any setting of ->nr_requests
990 	 */
991 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
992 		return NULL;
993 
994 	q->nr_rqs[is_sync]++;
995 	rl->count[is_sync]++;
996 	rl->starved[is_sync] = 0;
997 
998 	/*
999 	 * Decide whether the new request will be managed by elevator.  If
1000 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
1001 	 * prevent the current elevator from being destroyed until the new
1002 	 * request is freed.  This guarantees icq's won't be destroyed and
1003 	 * makes creating new ones safe.
1004 	 *
1005 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1006 	 * it will be created after releasing queue_lock.
1007 	 */
1008 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1009 		rw_flags |= REQ_ELVPRIV;
1010 		q->nr_rqs_elvpriv++;
1011 		if (et->icq_cache && ioc)
1012 			icq = ioc_lookup_icq(ioc, q);
1013 	}
1014 
1015 	if (blk_queue_io_stat(q))
1016 		rw_flags |= REQ_IO_STAT;
1017 	spin_unlock_irq(q->queue_lock);
1018 
1019 	/* allocate and init request */
1020 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1021 	if (!rq)
1022 		goto fail_alloc;
1023 
1024 	blk_rq_init(q, rq);
1025 	blk_rq_set_rl(rq, rl);
1026 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
1027 
1028 	/* init elvpriv */
1029 	if (rw_flags & REQ_ELVPRIV) {
1030 		if (unlikely(et->icq_cache && !icq)) {
1031 			if (ioc)
1032 				icq = ioc_create_icq(ioc, q, gfp_mask);
1033 			if (!icq)
1034 				goto fail_elvpriv;
1035 		}
1036 
1037 		rq->elv.icq = icq;
1038 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1039 			goto fail_elvpriv;
1040 
1041 		/* @rq->elv.icq holds io_context until @rq is freed */
1042 		if (icq)
1043 			get_io_context(icq->ioc);
1044 	}
1045 out:
1046 	/*
1047 	 * ioc may be NULL here, and ioc_batching will be false. That's
1048 	 * OK, if the queue is under the request limit then requests need
1049 	 * not count toward the nr_batch_requests limit. There will always
1050 	 * be some limit enforced by BLK_BATCH_TIME.
1051 	 */
1052 	if (ioc_batching(q, ioc))
1053 		ioc->nr_batch_requests--;
1054 
1055 	trace_block_getrq(q, bio, rw_flags & 1);
1056 	return rq;
1057 
1058 fail_elvpriv:
1059 	/*
1060 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1061 	 * and may fail indefinitely under memory pressure and thus
1062 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1063 	 * disturb iosched and blkcg but weird is bettern than dead.
1064 	 */
1065 	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1066 			   dev_name(q->backing_dev_info.dev));
1067 
1068 	rq->cmd_flags &= ~REQ_ELVPRIV;
1069 	rq->elv.icq = NULL;
1070 
1071 	spin_lock_irq(q->queue_lock);
1072 	q->nr_rqs_elvpriv--;
1073 	spin_unlock_irq(q->queue_lock);
1074 	goto out;
1075 
1076 fail_alloc:
1077 	/*
1078 	 * Allocation failed presumably due to memory. Undo anything we
1079 	 * might have messed up.
1080 	 *
1081 	 * Allocating task should really be put onto the front of the wait
1082 	 * queue, but this is pretty rare.
1083 	 */
1084 	spin_lock_irq(q->queue_lock);
1085 	freed_request(rl, rw_flags);
1086 
1087 	/*
1088 	 * in the very unlikely event that allocation failed and no
1089 	 * requests for this direction was pending, mark us starved so that
1090 	 * freeing of a request in the other direction will notice
1091 	 * us. another possible fix would be to split the rq mempool into
1092 	 * READ and WRITE
1093 	 */
1094 rq_starved:
1095 	if (unlikely(rl->count[is_sync] == 0))
1096 		rl->starved[is_sync] = 1;
1097 	return NULL;
1098 }
1099 
1100 /**
1101  * get_request - get a free request
1102  * @q: request_queue to allocate request from
1103  * @rw_flags: RW and SYNC flags
1104  * @bio: bio to allocate request for (can be %NULL)
1105  * @gfp_mask: allocation mask
1106  *
1107  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1108  * function keeps retrying under memory pressure and fails iff @q is dead.
1109  *
1110  * Must be callled with @q->queue_lock held and,
1111  * Returns %NULL on failure, with @q->queue_lock held.
1112  * Returns !%NULL on success, with @q->queue_lock *not held*.
1113  */
1114 static struct request *get_request(struct request_queue *q, int rw_flags,
1115 				   struct bio *bio, gfp_t gfp_mask)
1116 {
1117 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1118 	DEFINE_WAIT(wait);
1119 	struct request_list *rl;
1120 	struct request *rq;
1121 
1122 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1123 retry:
1124 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1125 	if (rq)
1126 		return rq;
1127 
1128 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1129 		blk_put_rl(rl);
1130 		return NULL;
1131 	}
1132 
1133 	/* wait on @rl and retry */
1134 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1135 				  TASK_UNINTERRUPTIBLE);
1136 
1137 	trace_block_sleeprq(q, bio, rw_flags & 1);
1138 
1139 	spin_unlock_irq(q->queue_lock);
1140 	io_schedule();
1141 
1142 	/*
1143 	 * After sleeping, we become a "batching" process and will be able
1144 	 * to allocate at least one request, and up to a big batch of them
1145 	 * for a small period time.  See ioc_batching, ioc_set_batching
1146 	 */
1147 	ioc_set_batching(q, current->io_context);
1148 
1149 	spin_lock_irq(q->queue_lock);
1150 	finish_wait(&rl->wait[is_sync], &wait);
1151 
1152 	goto retry;
1153 }
1154 
1155 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1156 		gfp_t gfp_mask)
1157 {
1158 	struct request *rq;
1159 
1160 	BUG_ON(rw != READ && rw != WRITE);
1161 
1162 	/* create ioc upfront */
1163 	create_io_context(gfp_mask, q->node);
1164 
1165 	spin_lock_irq(q->queue_lock);
1166 	rq = get_request(q, rw, NULL, gfp_mask);
1167 	if (!rq)
1168 		spin_unlock_irq(q->queue_lock);
1169 	/* q->queue_lock is unlocked at this point */
1170 
1171 	return rq;
1172 }
1173 
1174 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1175 {
1176 	if (q->mq_ops)
1177 		return blk_mq_alloc_request(q, rw, gfp_mask, false);
1178 	else
1179 		return blk_old_get_request(q, rw, gfp_mask);
1180 }
1181 EXPORT_SYMBOL(blk_get_request);
1182 
1183 /**
1184  * blk_make_request - given a bio, allocate a corresponding struct request.
1185  * @q: target request queue
1186  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1187  *        It may be a chained-bio properly constructed by block/bio layer.
1188  * @gfp_mask: gfp flags to be used for memory allocation
1189  *
1190  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1191  * type commands. Where the struct request needs to be farther initialized by
1192  * the caller. It is passed a &struct bio, which describes the memory info of
1193  * the I/O transfer.
1194  *
1195  * The caller of blk_make_request must make sure that bi_io_vec
1196  * are set to describe the memory buffers. That bio_data_dir() will return
1197  * the needed direction of the request. (And all bio's in the passed bio-chain
1198  * are properly set accordingly)
1199  *
1200  * If called under none-sleepable conditions, mapped bio buffers must not
1201  * need bouncing, by calling the appropriate masked or flagged allocator,
1202  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1203  * BUG.
1204  *
1205  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1206  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1207  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1208  * completion of a bio that hasn't been submitted yet, thus resulting in a
1209  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1210  * of bio_alloc(), as that avoids the mempool deadlock.
1211  * If possible a big IO should be split into smaller parts when allocation
1212  * fails. Partial allocation should not be an error, or you risk a live-lock.
1213  */
1214 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1215 				 gfp_t gfp_mask)
1216 {
1217 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1218 
1219 	if (unlikely(!rq))
1220 		return ERR_PTR(-ENOMEM);
1221 
1222 	blk_rq_set_block_pc(rq);
1223 
1224 	for_each_bio(bio) {
1225 		struct bio *bounce_bio = bio;
1226 		int ret;
1227 
1228 		blk_queue_bounce(q, &bounce_bio);
1229 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1230 		if (unlikely(ret)) {
1231 			blk_put_request(rq);
1232 			return ERR_PTR(ret);
1233 		}
1234 	}
1235 
1236 	return rq;
1237 }
1238 EXPORT_SYMBOL(blk_make_request);
1239 
1240 /**
1241  * blk_rq_set_block_pc - initialize a requeest to type BLOCK_PC
1242  * @rq:		request to be initialized
1243  *
1244  */
1245 void blk_rq_set_block_pc(struct request *rq)
1246 {
1247 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1248 	rq->__data_len = 0;
1249 	rq->__sector = (sector_t) -1;
1250 	rq->bio = rq->biotail = NULL;
1251 	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1252 	rq->cmd = rq->__cmd;
1253 }
1254 EXPORT_SYMBOL(blk_rq_set_block_pc);
1255 
1256 /**
1257  * blk_requeue_request - put a request back on queue
1258  * @q:		request queue where request should be inserted
1259  * @rq:		request to be inserted
1260  *
1261  * Description:
1262  *    Drivers often keep queueing requests until the hardware cannot accept
1263  *    more, when that condition happens we need to put the request back
1264  *    on the queue. Must be called with queue lock held.
1265  */
1266 void blk_requeue_request(struct request_queue *q, struct request *rq)
1267 {
1268 	blk_delete_timer(rq);
1269 	blk_clear_rq_complete(rq);
1270 	trace_block_rq_requeue(q, rq);
1271 
1272 	if (blk_rq_tagged(rq))
1273 		blk_queue_end_tag(q, rq);
1274 
1275 	BUG_ON(blk_queued_rq(rq));
1276 
1277 	elv_requeue_request(q, rq);
1278 }
1279 EXPORT_SYMBOL(blk_requeue_request);
1280 
1281 static void add_acct_request(struct request_queue *q, struct request *rq,
1282 			     int where)
1283 {
1284 	blk_account_io_start(rq, true);
1285 	__elv_add_request(q, rq, where);
1286 }
1287 
1288 static void part_round_stats_single(int cpu, struct hd_struct *part,
1289 				    unsigned long now)
1290 {
1291 	int inflight;
1292 
1293 	if (now == part->stamp)
1294 		return;
1295 
1296 	inflight = part_in_flight(part);
1297 	if (inflight) {
1298 		__part_stat_add(cpu, part, time_in_queue,
1299 				inflight * (now - part->stamp));
1300 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1301 	}
1302 	part->stamp = now;
1303 }
1304 
1305 /**
1306  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1307  * @cpu: cpu number for stats access
1308  * @part: target partition
1309  *
1310  * The average IO queue length and utilisation statistics are maintained
1311  * by observing the current state of the queue length and the amount of
1312  * time it has been in this state for.
1313  *
1314  * Normally, that accounting is done on IO completion, but that can result
1315  * in more than a second's worth of IO being accounted for within any one
1316  * second, leading to >100% utilisation.  To deal with that, we call this
1317  * function to do a round-off before returning the results when reading
1318  * /proc/diskstats.  This accounts immediately for all queue usage up to
1319  * the current jiffies and restarts the counters again.
1320  */
1321 void part_round_stats(int cpu, struct hd_struct *part)
1322 {
1323 	unsigned long now = jiffies;
1324 
1325 	if (part->partno)
1326 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1327 	part_round_stats_single(cpu, part, now);
1328 }
1329 EXPORT_SYMBOL_GPL(part_round_stats);
1330 
1331 #ifdef CONFIG_PM_RUNTIME
1332 static void blk_pm_put_request(struct request *rq)
1333 {
1334 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1335 		pm_runtime_mark_last_busy(rq->q->dev);
1336 }
1337 #else
1338 static inline void blk_pm_put_request(struct request *rq) {}
1339 #endif
1340 
1341 /*
1342  * queue lock must be held
1343  */
1344 void __blk_put_request(struct request_queue *q, struct request *req)
1345 {
1346 	if (unlikely(!q))
1347 		return;
1348 
1349 	if (q->mq_ops) {
1350 		blk_mq_free_request(req);
1351 		return;
1352 	}
1353 
1354 	blk_pm_put_request(req);
1355 
1356 	elv_completed_request(q, req);
1357 
1358 	/* this is a bio leak */
1359 	WARN_ON(req->bio != NULL);
1360 
1361 	/*
1362 	 * Request may not have originated from ll_rw_blk. if not,
1363 	 * it didn't come out of our reserved rq pools
1364 	 */
1365 	if (req->cmd_flags & REQ_ALLOCED) {
1366 		unsigned int flags = req->cmd_flags;
1367 		struct request_list *rl = blk_rq_rl(req);
1368 
1369 		BUG_ON(!list_empty(&req->queuelist));
1370 		BUG_ON(ELV_ON_HASH(req));
1371 
1372 		blk_free_request(rl, req);
1373 		freed_request(rl, flags);
1374 		blk_put_rl(rl);
1375 	}
1376 }
1377 EXPORT_SYMBOL_GPL(__blk_put_request);
1378 
1379 void blk_put_request(struct request *req)
1380 {
1381 	struct request_queue *q = req->q;
1382 
1383 	if (q->mq_ops)
1384 		blk_mq_free_request(req);
1385 	else {
1386 		unsigned long flags;
1387 
1388 		spin_lock_irqsave(q->queue_lock, flags);
1389 		__blk_put_request(q, req);
1390 		spin_unlock_irqrestore(q->queue_lock, flags);
1391 	}
1392 }
1393 EXPORT_SYMBOL(blk_put_request);
1394 
1395 /**
1396  * blk_add_request_payload - add a payload to a request
1397  * @rq: request to update
1398  * @page: page backing the payload
1399  * @len: length of the payload.
1400  *
1401  * This allows to later add a payload to an already submitted request by
1402  * a block driver.  The driver needs to take care of freeing the payload
1403  * itself.
1404  *
1405  * Note that this is a quite horrible hack and nothing but handling of
1406  * discard requests should ever use it.
1407  */
1408 void blk_add_request_payload(struct request *rq, struct page *page,
1409 		unsigned int len)
1410 {
1411 	struct bio *bio = rq->bio;
1412 
1413 	bio->bi_io_vec->bv_page = page;
1414 	bio->bi_io_vec->bv_offset = 0;
1415 	bio->bi_io_vec->bv_len = len;
1416 
1417 	bio->bi_iter.bi_size = len;
1418 	bio->bi_vcnt = 1;
1419 	bio->bi_phys_segments = 1;
1420 
1421 	rq->__data_len = rq->resid_len = len;
1422 	rq->nr_phys_segments = 1;
1423 }
1424 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1425 
1426 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1427 			    struct bio *bio)
1428 {
1429 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1430 
1431 	if (!ll_back_merge_fn(q, req, bio))
1432 		return false;
1433 
1434 	trace_block_bio_backmerge(q, req, bio);
1435 
1436 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1437 		blk_rq_set_mixed_merge(req);
1438 
1439 	req->biotail->bi_next = bio;
1440 	req->biotail = bio;
1441 	req->__data_len += bio->bi_iter.bi_size;
1442 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1443 
1444 	blk_account_io_start(req, false);
1445 	return true;
1446 }
1447 
1448 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1449 			     struct bio *bio)
1450 {
1451 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1452 
1453 	if (!ll_front_merge_fn(q, req, bio))
1454 		return false;
1455 
1456 	trace_block_bio_frontmerge(q, req, bio);
1457 
1458 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1459 		blk_rq_set_mixed_merge(req);
1460 
1461 	bio->bi_next = req->bio;
1462 	req->bio = bio;
1463 
1464 	req->__sector = bio->bi_iter.bi_sector;
1465 	req->__data_len += bio->bi_iter.bi_size;
1466 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1467 
1468 	blk_account_io_start(req, false);
1469 	return true;
1470 }
1471 
1472 /**
1473  * blk_attempt_plug_merge - try to merge with %current's plugged list
1474  * @q: request_queue new bio is being queued at
1475  * @bio: new bio being queued
1476  * @request_count: out parameter for number of traversed plugged requests
1477  *
1478  * Determine whether @bio being queued on @q can be merged with a request
1479  * on %current's plugged list.  Returns %true if merge was successful,
1480  * otherwise %false.
1481  *
1482  * Plugging coalesces IOs from the same issuer for the same purpose without
1483  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1484  * than scheduling, and the request, while may have elvpriv data, is not
1485  * added on the elevator at this point.  In addition, we don't have
1486  * reliable access to the elevator outside queue lock.  Only check basic
1487  * merging parameters without querying the elevator.
1488  *
1489  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1490  */
1491 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1492 			    unsigned int *request_count)
1493 {
1494 	struct blk_plug *plug;
1495 	struct request *rq;
1496 	bool ret = false;
1497 	struct list_head *plug_list;
1498 
1499 	plug = current->plug;
1500 	if (!plug)
1501 		goto out;
1502 	*request_count = 0;
1503 
1504 	if (q->mq_ops)
1505 		plug_list = &plug->mq_list;
1506 	else
1507 		plug_list = &plug->list;
1508 
1509 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1510 		int el_ret;
1511 
1512 		if (rq->q == q)
1513 			(*request_count)++;
1514 
1515 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1516 			continue;
1517 
1518 		el_ret = blk_try_merge(rq, bio);
1519 		if (el_ret == ELEVATOR_BACK_MERGE) {
1520 			ret = bio_attempt_back_merge(q, rq, bio);
1521 			if (ret)
1522 				break;
1523 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1524 			ret = bio_attempt_front_merge(q, rq, bio);
1525 			if (ret)
1526 				break;
1527 		}
1528 	}
1529 out:
1530 	return ret;
1531 }
1532 
1533 void init_request_from_bio(struct request *req, struct bio *bio)
1534 {
1535 	req->cmd_type = REQ_TYPE_FS;
1536 
1537 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1538 	if (bio->bi_rw & REQ_RAHEAD)
1539 		req->cmd_flags |= REQ_FAILFAST_MASK;
1540 
1541 	req->errors = 0;
1542 	req->__sector = bio->bi_iter.bi_sector;
1543 	req->ioprio = bio_prio(bio);
1544 	blk_rq_bio_prep(req->q, req, bio);
1545 }
1546 
1547 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1548 {
1549 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1550 	struct blk_plug *plug;
1551 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1552 	struct request *req;
1553 	unsigned int request_count = 0;
1554 
1555 	/*
1556 	 * low level driver can indicate that it wants pages above a
1557 	 * certain limit bounced to low memory (ie for highmem, or even
1558 	 * ISA dma in theory)
1559 	 */
1560 	blk_queue_bounce(q, &bio);
1561 
1562 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1563 		bio_endio(bio, -EIO);
1564 		return;
1565 	}
1566 
1567 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1568 		spin_lock_irq(q->queue_lock);
1569 		where = ELEVATOR_INSERT_FLUSH;
1570 		goto get_rq;
1571 	}
1572 
1573 	/*
1574 	 * Check if we can merge with the plugged list before grabbing
1575 	 * any locks.
1576 	 */
1577 	if (!blk_queue_nomerges(q) &&
1578 	    blk_attempt_plug_merge(q, bio, &request_count))
1579 		return;
1580 
1581 	spin_lock_irq(q->queue_lock);
1582 
1583 	el_ret = elv_merge(q, &req, bio);
1584 	if (el_ret == ELEVATOR_BACK_MERGE) {
1585 		if (bio_attempt_back_merge(q, req, bio)) {
1586 			elv_bio_merged(q, req, bio);
1587 			if (!attempt_back_merge(q, req))
1588 				elv_merged_request(q, req, el_ret);
1589 			goto out_unlock;
1590 		}
1591 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1592 		if (bio_attempt_front_merge(q, req, bio)) {
1593 			elv_bio_merged(q, req, bio);
1594 			if (!attempt_front_merge(q, req))
1595 				elv_merged_request(q, req, el_ret);
1596 			goto out_unlock;
1597 		}
1598 	}
1599 
1600 get_rq:
1601 	/*
1602 	 * This sync check and mask will be re-done in init_request_from_bio(),
1603 	 * but we need to set it earlier to expose the sync flag to the
1604 	 * rq allocator and io schedulers.
1605 	 */
1606 	rw_flags = bio_data_dir(bio);
1607 	if (sync)
1608 		rw_flags |= REQ_SYNC;
1609 
1610 	/*
1611 	 * Grab a free request. This is might sleep but can not fail.
1612 	 * Returns with the queue unlocked.
1613 	 */
1614 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1615 	if (unlikely(!req)) {
1616 		bio_endio(bio, -ENODEV);	/* @q is dead */
1617 		goto out_unlock;
1618 	}
1619 
1620 	/*
1621 	 * After dropping the lock and possibly sleeping here, our request
1622 	 * may now be mergeable after it had proven unmergeable (above).
1623 	 * We don't worry about that case for efficiency. It won't happen
1624 	 * often, and the elevators are able to handle it.
1625 	 */
1626 	init_request_from_bio(req, bio);
1627 
1628 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1629 		req->cpu = raw_smp_processor_id();
1630 
1631 	plug = current->plug;
1632 	if (plug) {
1633 		/*
1634 		 * If this is the first request added after a plug, fire
1635 		 * of a plug trace.
1636 		 */
1637 		if (!request_count)
1638 			trace_block_plug(q);
1639 		else {
1640 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1641 				blk_flush_plug_list(plug, false);
1642 				trace_block_plug(q);
1643 			}
1644 		}
1645 		list_add_tail(&req->queuelist, &plug->list);
1646 		blk_account_io_start(req, true);
1647 	} else {
1648 		spin_lock_irq(q->queue_lock);
1649 		add_acct_request(q, req, where);
1650 		__blk_run_queue(q);
1651 out_unlock:
1652 		spin_unlock_irq(q->queue_lock);
1653 	}
1654 }
1655 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1656 
1657 /*
1658  * If bio->bi_dev is a partition, remap the location
1659  */
1660 static inline void blk_partition_remap(struct bio *bio)
1661 {
1662 	struct block_device *bdev = bio->bi_bdev;
1663 
1664 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1665 		struct hd_struct *p = bdev->bd_part;
1666 
1667 		bio->bi_iter.bi_sector += p->start_sect;
1668 		bio->bi_bdev = bdev->bd_contains;
1669 
1670 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1671 				      bdev->bd_dev,
1672 				      bio->bi_iter.bi_sector - p->start_sect);
1673 	}
1674 }
1675 
1676 static void handle_bad_sector(struct bio *bio)
1677 {
1678 	char b[BDEVNAME_SIZE];
1679 
1680 	printk(KERN_INFO "attempt to access beyond end of device\n");
1681 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1682 			bdevname(bio->bi_bdev, b),
1683 			bio->bi_rw,
1684 			(unsigned long long)bio_end_sector(bio),
1685 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1686 
1687 	set_bit(BIO_EOF, &bio->bi_flags);
1688 }
1689 
1690 #ifdef CONFIG_FAIL_MAKE_REQUEST
1691 
1692 static DECLARE_FAULT_ATTR(fail_make_request);
1693 
1694 static int __init setup_fail_make_request(char *str)
1695 {
1696 	return setup_fault_attr(&fail_make_request, str);
1697 }
1698 __setup("fail_make_request=", setup_fail_make_request);
1699 
1700 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1701 {
1702 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1703 }
1704 
1705 static int __init fail_make_request_debugfs(void)
1706 {
1707 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1708 						NULL, &fail_make_request);
1709 
1710 	return PTR_ERR_OR_ZERO(dir);
1711 }
1712 
1713 late_initcall(fail_make_request_debugfs);
1714 
1715 #else /* CONFIG_FAIL_MAKE_REQUEST */
1716 
1717 static inline bool should_fail_request(struct hd_struct *part,
1718 					unsigned int bytes)
1719 {
1720 	return false;
1721 }
1722 
1723 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1724 
1725 /*
1726  * Check whether this bio extends beyond the end of the device.
1727  */
1728 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1729 {
1730 	sector_t maxsector;
1731 
1732 	if (!nr_sectors)
1733 		return 0;
1734 
1735 	/* Test device or partition size, when known. */
1736 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1737 	if (maxsector) {
1738 		sector_t sector = bio->bi_iter.bi_sector;
1739 
1740 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1741 			/*
1742 			 * This may well happen - the kernel calls bread()
1743 			 * without checking the size of the device, e.g., when
1744 			 * mounting a device.
1745 			 */
1746 			handle_bad_sector(bio);
1747 			return 1;
1748 		}
1749 	}
1750 
1751 	return 0;
1752 }
1753 
1754 static noinline_for_stack bool
1755 generic_make_request_checks(struct bio *bio)
1756 {
1757 	struct request_queue *q;
1758 	int nr_sectors = bio_sectors(bio);
1759 	int err = -EIO;
1760 	char b[BDEVNAME_SIZE];
1761 	struct hd_struct *part;
1762 
1763 	might_sleep();
1764 
1765 	if (bio_check_eod(bio, nr_sectors))
1766 		goto end_io;
1767 
1768 	q = bdev_get_queue(bio->bi_bdev);
1769 	if (unlikely(!q)) {
1770 		printk(KERN_ERR
1771 		       "generic_make_request: Trying to access "
1772 			"nonexistent block-device %s (%Lu)\n",
1773 			bdevname(bio->bi_bdev, b),
1774 			(long long) bio->bi_iter.bi_sector);
1775 		goto end_io;
1776 	}
1777 
1778 	if (likely(bio_is_rw(bio) &&
1779 		   nr_sectors > queue_max_hw_sectors(q))) {
1780 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1781 		       bdevname(bio->bi_bdev, b),
1782 		       bio_sectors(bio),
1783 		       queue_max_hw_sectors(q));
1784 		goto end_io;
1785 	}
1786 
1787 	part = bio->bi_bdev->bd_part;
1788 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1789 	    should_fail_request(&part_to_disk(part)->part0,
1790 				bio->bi_iter.bi_size))
1791 		goto end_io;
1792 
1793 	/*
1794 	 * If this device has partitions, remap block n
1795 	 * of partition p to block n+start(p) of the disk.
1796 	 */
1797 	blk_partition_remap(bio);
1798 
1799 	if (bio_check_eod(bio, nr_sectors))
1800 		goto end_io;
1801 
1802 	/*
1803 	 * Filter flush bio's early so that make_request based
1804 	 * drivers without flush support don't have to worry
1805 	 * about them.
1806 	 */
1807 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1808 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1809 		if (!nr_sectors) {
1810 			err = 0;
1811 			goto end_io;
1812 		}
1813 	}
1814 
1815 	if ((bio->bi_rw & REQ_DISCARD) &&
1816 	    (!blk_queue_discard(q) ||
1817 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1818 		err = -EOPNOTSUPP;
1819 		goto end_io;
1820 	}
1821 
1822 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1823 		err = -EOPNOTSUPP;
1824 		goto end_io;
1825 	}
1826 
1827 	/*
1828 	 * Various block parts want %current->io_context and lazy ioc
1829 	 * allocation ends up trading a lot of pain for a small amount of
1830 	 * memory.  Just allocate it upfront.  This may fail and block
1831 	 * layer knows how to live with it.
1832 	 */
1833 	create_io_context(GFP_ATOMIC, q->node);
1834 
1835 	if (blk_throtl_bio(q, bio))
1836 		return false;	/* throttled, will be resubmitted later */
1837 
1838 	trace_block_bio_queue(q, bio);
1839 	return true;
1840 
1841 end_io:
1842 	bio_endio(bio, err);
1843 	return false;
1844 }
1845 
1846 /**
1847  * generic_make_request - hand a buffer to its device driver for I/O
1848  * @bio:  The bio describing the location in memory and on the device.
1849  *
1850  * generic_make_request() is used to make I/O requests of block
1851  * devices. It is passed a &struct bio, which describes the I/O that needs
1852  * to be done.
1853  *
1854  * generic_make_request() does not return any status.  The
1855  * success/failure status of the request, along with notification of
1856  * completion, is delivered asynchronously through the bio->bi_end_io
1857  * function described (one day) else where.
1858  *
1859  * The caller of generic_make_request must make sure that bi_io_vec
1860  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1861  * set to describe the device address, and the
1862  * bi_end_io and optionally bi_private are set to describe how
1863  * completion notification should be signaled.
1864  *
1865  * generic_make_request and the drivers it calls may use bi_next if this
1866  * bio happens to be merged with someone else, and may resubmit the bio to
1867  * a lower device by calling into generic_make_request recursively, which
1868  * means the bio should NOT be touched after the call to ->make_request_fn.
1869  */
1870 void generic_make_request(struct bio *bio)
1871 {
1872 	struct bio_list bio_list_on_stack;
1873 
1874 	if (!generic_make_request_checks(bio))
1875 		return;
1876 
1877 	/*
1878 	 * We only want one ->make_request_fn to be active at a time, else
1879 	 * stack usage with stacked devices could be a problem.  So use
1880 	 * current->bio_list to keep a list of requests submited by a
1881 	 * make_request_fn function.  current->bio_list is also used as a
1882 	 * flag to say if generic_make_request is currently active in this
1883 	 * task or not.  If it is NULL, then no make_request is active.  If
1884 	 * it is non-NULL, then a make_request is active, and new requests
1885 	 * should be added at the tail
1886 	 */
1887 	if (current->bio_list) {
1888 		bio_list_add(current->bio_list, bio);
1889 		return;
1890 	}
1891 
1892 	/* following loop may be a bit non-obvious, and so deserves some
1893 	 * explanation.
1894 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1895 	 * ensure that) so we have a list with a single bio.
1896 	 * We pretend that we have just taken it off a longer list, so
1897 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1898 	 * thus initialising the bio_list of new bios to be
1899 	 * added.  ->make_request() may indeed add some more bios
1900 	 * through a recursive call to generic_make_request.  If it
1901 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1902 	 * from the top.  In this case we really did just take the bio
1903 	 * of the top of the list (no pretending) and so remove it from
1904 	 * bio_list, and call into ->make_request() again.
1905 	 */
1906 	BUG_ON(bio->bi_next);
1907 	bio_list_init(&bio_list_on_stack);
1908 	current->bio_list = &bio_list_on_stack;
1909 	do {
1910 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1911 
1912 		q->make_request_fn(q, bio);
1913 
1914 		bio = bio_list_pop(current->bio_list);
1915 	} while (bio);
1916 	current->bio_list = NULL; /* deactivate */
1917 }
1918 EXPORT_SYMBOL(generic_make_request);
1919 
1920 /**
1921  * submit_bio - submit a bio to the block device layer for I/O
1922  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1923  * @bio: The &struct bio which describes the I/O
1924  *
1925  * submit_bio() is very similar in purpose to generic_make_request(), and
1926  * uses that function to do most of the work. Both are fairly rough
1927  * interfaces; @bio must be presetup and ready for I/O.
1928  *
1929  */
1930 void submit_bio(int rw, struct bio *bio)
1931 {
1932 	bio->bi_rw |= rw;
1933 
1934 	/*
1935 	 * If it's a regular read/write or a barrier with data attached,
1936 	 * go through the normal accounting stuff before submission.
1937 	 */
1938 	if (bio_has_data(bio)) {
1939 		unsigned int count;
1940 
1941 		if (unlikely(rw & REQ_WRITE_SAME))
1942 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1943 		else
1944 			count = bio_sectors(bio);
1945 
1946 		if (rw & WRITE) {
1947 			count_vm_events(PGPGOUT, count);
1948 		} else {
1949 			task_io_account_read(bio->bi_iter.bi_size);
1950 			count_vm_events(PGPGIN, count);
1951 		}
1952 
1953 		if (unlikely(block_dump)) {
1954 			char b[BDEVNAME_SIZE];
1955 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1956 			current->comm, task_pid_nr(current),
1957 				(rw & WRITE) ? "WRITE" : "READ",
1958 				(unsigned long long)bio->bi_iter.bi_sector,
1959 				bdevname(bio->bi_bdev, b),
1960 				count);
1961 		}
1962 	}
1963 
1964 	generic_make_request(bio);
1965 }
1966 EXPORT_SYMBOL(submit_bio);
1967 
1968 /**
1969  * blk_rq_check_limits - Helper function to check a request for the queue limit
1970  * @q:  the queue
1971  * @rq: the request being checked
1972  *
1973  * Description:
1974  *    @rq may have been made based on weaker limitations of upper-level queues
1975  *    in request stacking drivers, and it may violate the limitation of @q.
1976  *    Since the block layer and the underlying device driver trust @rq
1977  *    after it is inserted to @q, it should be checked against @q before
1978  *    the insertion using this generic function.
1979  *
1980  *    This function should also be useful for request stacking drivers
1981  *    in some cases below, so export this function.
1982  *    Request stacking drivers like request-based dm may change the queue
1983  *    limits while requests are in the queue (e.g. dm's table swapping).
1984  *    Such request stacking drivers should check those requests against
1985  *    the new queue limits again when they dispatch those requests,
1986  *    although such checkings are also done against the old queue limits
1987  *    when submitting requests.
1988  */
1989 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1990 {
1991 	if (!rq_mergeable(rq))
1992 		return 0;
1993 
1994 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1995 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1996 		return -EIO;
1997 	}
1998 
1999 	/*
2000 	 * queue's settings related to segment counting like q->bounce_pfn
2001 	 * may differ from that of other stacking queues.
2002 	 * Recalculate it to check the request correctly on this queue's
2003 	 * limitation.
2004 	 */
2005 	blk_recalc_rq_segments(rq);
2006 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2007 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2008 		return -EIO;
2009 	}
2010 
2011 	return 0;
2012 }
2013 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2014 
2015 /**
2016  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2017  * @q:  the queue to submit the request
2018  * @rq: the request being queued
2019  */
2020 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2021 {
2022 	unsigned long flags;
2023 	int where = ELEVATOR_INSERT_BACK;
2024 
2025 	if (blk_rq_check_limits(q, rq))
2026 		return -EIO;
2027 
2028 	if (rq->rq_disk &&
2029 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2030 		return -EIO;
2031 
2032 	spin_lock_irqsave(q->queue_lock, flags);
2033 	if (unlikely(blk_queue_dying(q))) {
2034 		spin_unlock_irqrestore(q->queue_lock, flags);
2035 		return -ENODEV;
2036 	}
2037 
2038 	/*
2039 	 * Submitting request must be dequeued before calling this function
2040 	 * because it will be linked to another request_queue
2041 	 */
2042 	BUG_ON(blk_queued_rq(rq));
2043 
2044 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2045 		where = ELEVATOR_INSERT_FLUSH;
2046 
2047 	add_acct_request(q, rq, where);
2048 	if (where == ELEVATOR_INSERT_FLUSH)
2049 		__blk_run_queue(q);
2050 	spin_unlock_irqrestore(q->queue_lock, flags);
2051 
2052 	return 0;
2053 }
2054 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2055 
2056 /**
2057  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2058  * @rq: request to examine
2059  *
2060  * Description:
2061  *     A request could be merge of IOs which require different failure
2062  *     handling.  This function determines the number of bytes which
2063  *     can be failed from the beginning of the request without
2064  *     crossing into area which need to be retried further.
2065  *
2066  * Return:
2067  *     The number of bytes to fail.
2068  *
2069  * Context:
2070  *     queue_lock must be held.
2071  */
2072 unsigned int blk_rq_err_bytes(const struct request *rq)
2073 {
2074 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2075 	unsigned int bytes = 0;
2076 	struct bio *bio;
2077 
2078 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2079 		return blk_rq_bytes(rq);
2080 
2081 	/*
2082 	 * Currently the only 'mixing' which can happen is between
2083 	 * different fastfail types.  We can safely fail portions
2084 	 * which have all the failfast bits that the first one has -
2085 	 * the ones which are at least as eager to fail as the first
2086 	 * one.
2087 	 */
2088 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2089 		if ((bio->bi_rw & ff) != ff)
2090 			break;
2091 		bytes += bio->bi_iter.bi_size;
2092 	}
2093 
2094 	/* this could lead to infinite loop */
2095 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2096 	return bytes;
2097 }
2098 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2099 
2100 void blk_account_io_completion(struct request *req, unsigned int bytes)
2101 {
2102 	if (blk_do_io_stat(req)) {
2103 		const int rw = rq_data_dir(req);
2104 		struct hd_struct *part;
2105 		int cpu;
2106 
2107 		cpu = part_stat_lock();
2108 		part = req->part;
2109 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2110 		part_stat_unlock();
2111 	}
2112 }
2113 
2114 void blk_account_io_done(struct request *req)
2115 {
2116 	/*
2117 	 * Account IO completion.  flush_rq isn't accounted as a
2118 	 * normal IO on queueing nor completion.  Accounting the
2119 	 * containing request is enough.
2120 	 */
2121 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2122 		unsigned long duration = jiffies - req->start_time;
2123 		const int rw = rq_data_dir(req);
2124 		struct hd_struct *part;
2125 		int cpu;
2126 
2127 		cpu = part_stat_lock();
2128 		part = req->part;
2129 
2130 		part_stat_inc(cpu, part, ios[rw]);
2131 		part_stat_add(cpu, part, ticks[rw], duration);
2132 		part_round_stats(cpu, part);
2133 		part_dec_in_flight(part, rw);
2134 
2135 		hd_struct_put(part);
2136 		part_stat_unlock();
2137 	}
2138 }
2139 
2140 #ifdef CONFIG_PM_RUNTIME
2141 /*
2142  * Don't process normal requests when queue is suspended
2143  * or in the process of suspending/resuming
2144  */
2145 static struct request *blk_pm_peek_request(struct request_queue *q,
2146 					   struct request *rq)
2147 {
2148 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2149 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2150 		return NULL;
2151 	else
2152 		return rq;
2153 }
2154 #else
2155 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2156 						  struct request *rq)
2157 {
2158 	return rq;
2159 }
2160 #endif
2161 
2162 void blk_account_io_start(struct request *rq, bool new_io)
2163 {
2164 	struct hd_struct *part;
2165 	int rw = rq_data_dir(rq);
2166 	int cpu;
2167 
2168 	if (!blk_do_io_stat(rq))
2169 		return;
2170 
2171 	cpu = part_stat_lock();
2172 
2173 	if (!new_io) {
2174 		part = rq->part;
2175 		part_stat_inc(cpu, part, merges[rw]);
2176 	} else {
2177 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2178 		if (!hd_struct_try_get(part)) {
2179 			/*
2180 			 * The partition is already being removed,
2181 			 * the request will be accounted on the disk only
2182 			 *
2183 			 * We take a reference on disk->part0 although that
2184 			 * partition will never be deleted, so we can treat
2185 			 * it as any other partition.
2186 			 */
2187 			part = &rq->rq_disk->part0;
2188 			hd_struct_get(part);
2189 		}
2190 		part_round_stats(cpu, part);
2191 		part_inc_in_flight(part, rw);
2192 		rq->part = part;
2193 	}
2194 
2195 	part_stat_unlock();
2196 }
2197 
2198 /**
2199  * blk_peek_request - peek at the top of a request queue
2200  * @q: request queue to peek at
2201  *
2202  * Description:
2203  *     Return the request at the top of @q.  The returned request
2204  *     should be started using blk_start_request() before LLD starts
2205  *     processing it.
2206  *
2207  * Return:
2208  *     Pointer to the request at the top of @q if available.  Null
2209  *     otherwise.
2210  *
2211  * Context:
2212  *     queue_lock must be held.
2213  */
2214 struct request *blk_peek_request(struct request_queue *q)
2215 {
2216 	struct request *rq;
2217 	int ret;
2218 
2219 	while ((rq = __elv_next_request(q)) != NULL) {
2220 
2221 		rq = blk_pm_peek_request(q, rq);
2222 		if (!rq)
2223 			break;
2224 
2225 		if (!(rq->cmd_flags & REQ_STARTED)) {
2226 			/*
2227 			 * This is the first time the device driver
2228 			 * sees this request (possibly after
2229 			 * requeueing).  Notify IO scheduler.
2230 			 */
2231 			if (rq->cmd_flags & REQ_SORTED)
2232 				elv_activate_rq(q, rq);
2233 
2234 			/*
2235 			 * just mark as started even if we don't start
2236 			 * it, a request that has been delayed should
2237 			 * not be passed by new incoming requests
2238 			 */
2239 			rq->cmd_flags |= REQ_STARTED;
2240 			trace_block_rq_issue(q, rq);
2241 		}
2242 
2243 		if (!q->boundary_rq || q->boundary_rq == rq) {
2244 			q->end_sector = rq_end_sector(rq);
2245 			q->boundary_rq = NULL;
2246 		}
2247 
2248 		if (rq->cmd_flags & REQ_DONTPREP)
2249 			break;
2250 
2251 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2252 			/*
2253 			 * make sure space for the drain appears we
2254 			 * know we can do this because max_hw_segments
2255 			 * has been adjusted to be one fewer than the
2256 			 * device can handle
2257 			 */
2258 			rq->nr_phys_segments++;
2259 		}
2260 
2261 		if (!q->prep_rq_fn)
2262 			break;
2263 
2264 		ret = q->prep_rq_fn(q, rq);
2265 		if (ret == BLKPREP_OK) {
2266 			break;
2267 		} else if (ret == BLKPREP_DEFER) {
2268 			/*
2269 			 * the request may have been (partially) prepped.
2270 			 * we need to keep this request in the front to
2271 			 * avoid resource deadlock.  REQ_STARTED will
2272 			 * prevent other fs requests from passing this one.
2273 			 */
2274 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2275 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2276 				/*
2277 				 * remove the space for the drain we added
2278 				 * so that we don't add it again
2279 				 */
2280 				--rq->nr_phys_segments;
2281 			}
2282 
2283 			rq = NULL;
2284 			break;
2285 		} else if (ret == BLKPREP_KILL) {
2286 			rq->cmd_flags |= REQ_QUIET;
2287 			/*
2288 			 * Mark this request as started so we don't trigger
2289 			 * any debug logic in the end I/O path.
2290 			 */
2291 			blk_start_request(rq);
2292 			__blk_end_request_all(rq, -EIO);
2293 		} else {
2294 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2295 			break;
2296 		}
2297 	}
2298 
2299 	return rq;
2300 }
2301 EXPORT_SYMBOL(blk_peek_request);
2302 
2303 void blk_dequeue_request(struct request *rq)
2304 {
2305 	struct request_queue *q = rq->q;
2306 
2307 	BUG_ON(list_empty(&rq->queuelist));
2308 	BUG_ON(ELV_ON_HASH(rq));
2309 
2310 	list_del_init(&rq->queuelist);
2311 
2312 	/*
2313 	 * the time frame between a request being removed from the lists
2314 	 * and to it is freed is accounted as io that is in progress at
2315 	 * the driver side.
2316 	 */
2317 	if (blk_account_rq(rq)) {
2318 		q->in_flight[rq_is_sync(rq)]++;
2319 		set_io_start_time_ns(rq);
2320 	}
2321 }
2322 
2323 /**
2324  * blk_start_request - start request processing on the driver
2325  * @req: request to dequeue
2326  *
2327  * Description:
2328  *     Dequeue @req and start timeout timer on it.  This hands off the
2329  *     request to the driver.
2330  *
2331  *     Block internal functions which don't want to start timer should
2332  *     call blk_dequeue_request().
2333  *
2334  * Context:
2335  *     queue_lock must be held.
2336  */
2337 void blk_start_request(struct request *req)
2338 {
2339 	blk_dequeue_request(req);
2340 
2341 	/*
2342 	 * We are now handing the request to the hardware, initialize
2343 	 * resid_len to full count and add the timeout handler.
2344 	 */
2345 	req->resid_len = blk_rq_bytes(req);
2346 	if (unlikely(blk_bidi_rq(req)))
2347 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2348 
2349 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2350 	blk_add_timer(req);
2351 }
2352 EXPORT_SYMBOL(blk_start_request);
2353 
2354 /**
2355  * blk_fetch_request - fetch a request from a request queue
2356  * @q: request queue to fetch a request from
2357  *
2358  * Description:
2359  *     Return the request at the top of @q.  The request is started on
2360  *     return and LLD can start processing it immediately.
2361  *
2362  * Return:
2363  *     Pointer to the request at the top of @q if available.  Null
2364  *     otherwise.
2365  *
2366  * Context:
2367  *     queue_lock must be held.
2368  */
2369 struct request *blk_fetch_request(struct request_queue *q)
2370 {
2371 	struct request *rq;
2372 
2373 	rq = blk_peek_request(q);
2374 	if (rq)
2375 		blk_start_request(rq);
2376 	return rq;
2377 }
2378 EXPORT_SYMBOL(blk_fetch_request);
2379 
2380 /**
2381  * blk_update_request - Special helper function for request stacking drivers
2382  * @req:      the request being processed
2383  * @error:    %0 for success, < %0 for error
2384  * @nr_bytes: number of bytes to complete @req
2385  *
2386  * Description:
2387  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2388  *     the request structure even if @req doesn't have leftover.
2389  *     If @req has leftover, sets it up for the next range of segments.
2390  *
2391  *     This special helper function is only for request stacking drivers
2392  *     (e.g. request-based dm) so that they can handle partial completion.
2393  *     Actual device drivers should use blk_end_request instead.
2394  *
2395  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2396  *     %false return from this function.
2397  *
2398  * Return:
2399  *     %false - this request doesn't have any more data
2400  *     %true  - this request has more data
2401  **/
2402 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2403 {
2404 	int total_bytes;
2405 
2406 	if (!req->bio)
2407 		return false;
2408 
2409 	trace_block_rq_complete(req->q, req, nr_bytes);
2410 
2411 	/*
2412 	 * For fs requests, rq is just carrier of independent bio's
2413 	 * and each partial completion should be handled separately.
2414 	 * Reset per-request error on each partial completion.
2415 	 *
2416 	 * TODO: tj: This is too subtle.  It would be better to let
2417 	 * low level drivers do what they see fit.
2418 	 */
2419 	if (req->cmd_type == REQ_TYPE_FS)
2420 		req->errors = 0;
2421 
2422 	if (error && req->cmd_type == REQ_TYPE_FS &&
2423 	    !(req->cmd_flags & REQ_QUIET)) {
2424 		char *error_type;
2425 
2426 		switch (error) {
2427 		case -ENOLINK:
2428 			error_type = "recoverable transport";
2429 			break;
2430 		case -EREMOTEIO:
2431 			error_type = "critical target";
2432 			break;
2433 		case -EBADE:
2434 			error_type = "critical nexus";
2435 			break;
2436 		case -ETIMEDOUT:
2437 			error_type = "timeout";
2438 			break;
2439 		case -ENOSPC:
2440 			error_type = "critical space allocation";
2441 			break;
2442 		case -ENODATA:
2443 			error_type = "critical medium";
2444 			break;
2445 		case -EIO:
2446 		default:
2447 			error_type = "I/O";
2448 			break;
2449 		}
2450 		printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2451 				   error_type, req->rq_disk ?
2452 				   req->rq_disk->disk_name : "?",
2453 				   (unsigned long long)blk_rq_pos(req));
2454 
2455 	}
2456 
2457 	blk_account_io_completion(req, nr_bytes);
2458 
2459 	total_bytes = 0;
2460 	while (req->bio) {
2461 		struct bio *bio = req->bio;
2462 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2463 
2464 		if (bio_bytes == bio->bi_iter.bi_size)
2465 			req->bio = bio->bi_next;
2466 
2467 		req_bio_endio(req, bio, bio_bytes, error);
2468 
2469 		total_bytes += bio_bytes;
2470 		nr_bytes -= bio_bytes;
2471 
2472 		if (!nr_bytes)
2473 			break;
2474 	}
2475 
2476 	/*
2477 	 * completely done
2478 	 */
2479 	if (!req->bio) {
2480 		/*
2481 		 * Reset counters so that the request stacking driver
2482 		 * can find how many bytes remain in the request
2483 		 * later.
2484 		 */
2485 		req->__data_len = 0;
2486 		return false;
2487 	}
2488 
2489 	req->__data_len -= total_bytes;
2490 
2491 	/* update sector only for requests with clear definition of sector */
2492 	if (req->cmd_type == REQ_TYPE_FS)
2493 		req->__sector += total_bytes >> 9;
2494 
2495 	/* mixed attributes always follow the first bio */
2496 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2497 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2498 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2499 	}
2500 
2501 	/*
2502 	 * If total number of sectors is less than the first segment
2503 	 * size, something has gone terribly wrong.
2504 	 */
2505 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2506 		blk_dump_rq_flags(req, "request botched");
2507 		req->__data_len = blk_rq_cur_bytes(req);
2508 	}
2509 
2510 	/* recalculate the number of segments */
2511 	blk_recalc_rq_segments(req);
2512 
2513 	return true;
2514 }
2515 EXPORT_SYMBOL_GPL(blk_update_request);
2516 
2517 static bool blk_update_bidi_request(struct request *rq, int error,
2518 				    unsigned int nr_bytes,
2519 				    unsigned int bidi_bytes)
2520 {
2521 	if (blk_update_request(rq, error, nr_bytes))
2522 		return true;
2523 
2524 	/* Bidi request must be completed as a whole */
2525 	if (unlikely(blk_bidi_rq(rq)) &&
2526 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2527 		return true;
2528 
2529 	if (blk_queue_add_random(rq->q))
2530 		add_disk_randomness(rq->rq_disk);
2531 
2532 	return false;
2533 }
2534 
2535 /**
2536  * blk_unprep_request - unprepare a request
2537  * @req:	the request
2538  *
2539  * This function makes a request ready for complete resubmission (or
2540  * completion).  It happens only after all error handling is complete,
2541  * so represents the appropriate moment to deallocate any resources
2542  * that were allocated to the request in the prep_rq_fn.  The queue
2543  * lock is held when calling this.
2544  */
2545 void blk_unprep_request(struct request *req)
2546 {
2547 	struct request_queue *q = req->q;
2548 
2549 	req->cmd_flags &= ~REQ_DONTPREP;
2550 	if (q->unprep_rq_fn)
2551 		q->unprep_rq_fn(q, req);
2552 }
2553 EXPORT_SYMBOL_GPL(blk_unprep_request);
2554 
2555 /*
2556  * queue lock must be held
2557  */
2558 void blk_finish_request(struct request *req, int error)
2559 {
2560 	if (blk_rq_tagged(req))
2561 		blk_queue_end_tag(req->q, req);
2562 
2563 	BUG_ON(blk_queued_rq(req));
2564 
2565 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2566 		laptop_io_completion(&req->q->backing_dev_info);
2567 
2568 	blk_delete_timer(req);
2569 
2570 	if (req->cmd_flags & REQ_DONTPREP)
2571 		blk_unprep_request(req);
2572 
2573 	blk_account_io_done(req);
2574 
2575 	if (req->end_io)
2576 		req->end_io(req, error);
2577 	else {
2578 		if (blk_bidi_rq(req))
2579 			__blk_put_request(req->next_rq->q, req->next_rq);
2580 
2581 		__blk_put_request(req->q, req);
2582 	}
2583 }
2584 EXPORT_SYMBOL(blk_finish_request);
2585 
2586 /**
2587  * blk_end_bidi_request - Complete a bidi request
2588  * @rq:         the request to complete
2589  * @error:      %0 for success, < %0 for error
2590  * @nr_bytes:   number of bytes to complete @rq
2591  * @bidi_bytes: number of bytes to complete @rq->next_rq
2592  *
2593  * Description:
2594  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2595  *     Drivers that supports bidi can safely call this member for any
2596  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2597  *     just ignored.
2598  *
2599  * Return:
2600  *     %false - we are done with this request
2601  *     %true  - still buffers pending for this request
2602  **/
2603 static bool blk_end_bidi_request(struct request *rq, int error,
2604 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2605 {
2606 	struct request_queue *q = rq->q;
2607 	unsigned long flags;
2608 
2609 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2610 		return true;
2611 
2612 	spin_lock_irqsave(q->queue_lock, flags);
2613 	blk_finish_request(rq, error);
2614 	spin_unlock_irqrestore(q->queue_lock, flags);
2615 
2616 	return false;
2617 }
2618 
2619 /**
2620  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2621  * @rq:         the request to complete
2622  * @error:      %0 for success, < %0 for error
2623  * @nr_bytes:   number of bytes to complete @rq
2624  * @bidi_bytes: number of bytes to complete @rq->next_rq
2625  *
2626  * Description:
2627  *     Identical to blk_end_bidi_request() except that queue lock is
2628  *     assumed to be locked on entry and remains so on return.
2629  *
2630  * Return:
2631  *     %false - we are done with this request
2632  *     %true  - still buffers pending for this request
2633  **/
2634 bool __blk_end_bidi_request(struct request *rq, int error,
2635 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2636 {
2637 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2638 		return true;
2639 
2640 	blk_finish_request(rq, error);
2641 
2642 	return false;
2643 }
2644 
2645 /**
2646  * blk_end_request - Helper function for drivers to complete the request.
2647  * @rq:       the request being processed
2648  * @error:    %0 for success, < %0 for error
2649  * @nr_bytes: number of bytes to complete
2650  *
2651  * Description:
2652  *     Ends I/O on a number of bytes attached to @rq.
2653  *     If @rq has leftover, sets it up for the next range of segments.
2654  *
2655  * Return:
2656  *     %false - we are done with this request
2657  *     %true  - still buffers pending for this request
2658  **/
2659 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2660 {
2661 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2662 }
2663 EXPORT_SYMBOL(blk_end_request);
2664 
2665 /**
2666  * blk_end_request_all - Helper function for drives to finish the request.
2667  * @rq: the request to finish
2668  * @error: %0 for success, < %0 for error
2669  *
2670  * Description:
2671  *     Completely finish @rq.
2672  */
2673 void blk_end_request_all(struct request *rq, int error)
2674 {
2675 	bool pending;
2676 	unsigned int bidi_bytes = 0;
2677 
2678 	if (unlikely(blk_bidi_rq(rq)))
2679 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2680 
2681 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2682 	BUG_ON(pending);
2683 }
2684 EXPORT_SYMBOL(blk_end_request_all);
2685 
2686 /**
2687  * blk_end_request_cur - Helper function to finish the current request chunk.
2688  * @rq: the request to finish the current chunk for
2689  * @error: %0 for success, < %0 for error
2690  *
2691  * Description:
2692  *     Complete the current consecutively mapped chunk from @rq.
2693  *
2694  * Return:
2695  *     %false - we are done with this request
2696  *     %true  - still buffers pending for this request
2697  */
2698 bool blk_end_request_cur(struct request *rq, int error)
2699 {
2700 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2701 }
2702 EXPORT_SYMBOL(blk_end_request_cur);
2703 
2704 /**
2705  * blk_end_request_err - Finish a request till the next failure boundary.
2706  * @rq: the request to finish till the next failure boundary for
2707  * @error: must be negative errno
2708  *
2709  * Description:
2710  *     Complete @rq till the next failure boundary.
2711  *
2712  * Return:
2713  *     %false - we are done with this request
2714  *     %true  - still buffers pending for this request
2715  */
2716 bool blk_end_request_err(struct request *rq, int error)
2717 {
2718 	WARN_ON(error >= 0);
2719 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2720 }
2721 EXPORT_SYMBOL_GPL(blk_end_request_err);
2722 
2723 /**
2724  * __blk_end_request - Helper function for drivers to complete the request.
2725  * @rq:       the request being processed
2726  * @error:    %0 for success, < %0 for error
2727  * @nr_bytes: number of bytes to complete
2728  *
2729  * Description:
2730  *     Must be called with queue lock held unlike blk_end_request().
2731  *
2732  * Return:
2733  *     %false - we are done with this request
2734  *     %true  - still buffers pending for this request
2735  **/
2736 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2737 {
2738 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2739 }
2740 EXPORT_SYMBOL(__blk_end_request);
2741 
2742 /**
2743  * __blk_end_request_all - Helper function for drives to finish the request.
2744  * @rq: the request to finish
2745  * @error: %0 for success, < %0 for error
2746  *
2747  * Description:
2748  *     Completely finish @rq.  Must be called with queue lock held.
2749  */
2750 void __blk_end_request_all(struct request *rq, int error)
2751 {
2752 	bool pending;
2753 	unsigned int bidi_bytes = 0;
2754 
2755 	if (unlikely(blk_bidi_rq(rq)))
2756 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2757 
2758 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2759 	BUG_ON(pending);
2760 }
2761 EXPORT_SYMBOL(__blk_end_request_all);
2762 
2763 /**
2764  * __blk_end_request_cur - Helper function to finish the current request chunk.
2765  * @rq: the request to finish the current chunk for
2766  * @error: %0 for success, < %0 for error
2767  *
2768  * Description:
2769  *     Complete the current consecutively mapped chunk from @rq.  Must
2770  *     be called with queue lock held.
2771  *
2772  * Return:
2773  *     %false - we are done with this request
2774  *     %true  - still buffers pending for this request
2775  */
2776 bool __blk_end_request_cur(struct request *rq, int error)
2777 {
2778 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2779 }
2780 EXPORT_SYMBOL(__blk_end_request_cur);
2781 
2782 /**
2783  * __blk_end_request_err - Finish a request till the next failure boundary.
2784  * @rq: the request to finish till the next failure boundary for
2785  * @error: must be negative errno
2786  *
2787  * Description:
2788  *     Complete @rq till the next failure boundary.  Must be called
2789  *     with queue lock held.
2790  *
2791  * Return:
2792  *     %false - we are done with this request
2793  *     %true  - still buffers pending for this request
2794  */
2795 bool __blk_end_request_err(struct request *rq, int error)
2796 {
2797 	WARN_ON(error >= 0);
2798 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2799 }
2800 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2801 
2802 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2803 		     struct bio *bio)
2804 {
2805 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2806 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2807 
2808 	if (bio_has_data(bio))
2809 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2810 
2811 	rq->__data_len = bio->bi_iter.bi_size;
2812 	rq->bio = rq->biotail = bio;
2813 
2814 	if (bio->bi_bdev)
2815 		rq->rq_disk = bio->bi_bdev->bd_disk;
2816 }
2817 
2818 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2819 /**
2820  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2821  * @rq: the request to be flushed
2822  *
2823  * Description:
2824  *     Flush all pages in @rq.
2825  */
2826 void rq_flush_dcache_pages(struct request *rq)
2827 {
2828 	struct req_iterator iter;
2829 	struct bio_vec bvec;
2830 
2831 	rq_for_each_segment(bvec, rq, iter)
2832 		flush_dcache_page(bvec.bv_page);
2833 }
2834 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2835 #endif
2836 
2837 /**
2838  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2839  * @q : the queue of the device being checked
2840  *
2841  * Description:
2842  *    Check if underlying low-level drivers of a device are busy.
2843  *    If the drivers want to export their busy state, they must set own
2844  *    exporting function using blk_queue_lld_busy() first.
2845  *
2846  *    Basically, this function is used only by request stacking drivers
2847  *    to stop dispatching requests to underlying devices when underlying
2848  *    devices are busy.  This behavior helps more I/O merging on the queue
2849  *    of the request stacking driver and prevents I/O throughput regression
2850  *    on burst I/O load.
2851  *
2852  * Return:
2853  *    0 - Not busy (The request stacking driver should dispatch request)
2854  *    1 - Busy (The request stacking driver should stop dispatching request)
2855  */
2856 int blk_lld_busy(struct request_queue *q)
2857 {
2858 	if (q->lld_busy_fn)
2859 		return q->lld_busy_fn(q);
2860 
2861 	return 0;
2862 }
2863 EXPORT_SYMBOL_GPL(blk_lld_busy);
2864 
2865 /**
2866  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2867  * @rq: the clone request to be cleaned up
2868  *
2869  * Description:
2870  *     Free all bios in @rq for a cloned request.
2871  */
2872 void blk_rq_unprep_clone(struct request *rq)
2873 {
2874 	struct bio *bio;
2875 
2876 	while ((bio = rq->bio) != NULL) {
2877 		rq->bio = bio->bi_next;
2878 
2879 		bio_put(bio);
2880 	}
2881 }
2882 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2883 
2884 /*
2885  * Copy attributes of the original request to the clone request.
2886  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2887  */
2888 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2889 {
2890 	dst->cpu = src->cpu;
2891 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2892 	dst->cmd_type = src->cmd_type;
2893 	dst->__sector = blk_rq_pos(src);
2894 	dst->__data_len = blk_rq_bytes(src);
2895 	dst->nr_phys_segments = src->nr_phys_segments;
2896 	dst->ioprio = src->ioprio;
2897 	dst->extra_len = src->extra_len;
2898 }
2899 
2900 /**
2901  * blk_rq_prep_clone - Helper function to setup clone request
2902  * @rq: the request to be setup
2903  * @rq_src: original request to be cloned
2904  * @bs: bio_set that bios for clone are allocated from
2905  * @gfp_mask: memory allocation mask for bio
2906  * @bio_ctr: setup function to be called for each clone bio.
2907  *           Returns %0 for success, non %0 for failure.
2908  * @data: private data to be passed to @bio_ctr
2909  *
2910  * Description:
2911  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2912  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2913  *     are not copied, and copying such parts is the caller's responsibility.
2914  *     Also, pages which the original bios are pointing to are not copied
2915  *     and the cloned bios just point same pages.
2916  *     So cloned bios must be completed before original bios, which means
2917  *     the caller must complete @rq before @rq_src.
2918  */
2919 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2920 		      struct bio_set *bs, gfp_t gfp_mask,
2921 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2922 		      void *data)
2923 {
2924 	struct bio *bio, *bio_src;
2925 
2926 	if (!bs)
2927 		bs = fs_bio_set;
2928 
2929 	blk_rq_init(NULL, rq);
2930 
2931 	__rq_for_each_bio(bio_src, rq_src) {
2932 		bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2933 		if (!bio)
2934 			goto free_and_out;
2935 
2936 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2937 			goto free_and_out;
2938 
2939 		if (rq->bio) {
2940 			rq->biotail->bi_next = bio;
2941 			rq->biotail = bio;
2942 		} else
2943 			rq->bio = rq->biotail = bio;
2944 	}
2945 
2946 	__blk_rq_prep_clone(rq, rq_src);
2947 
2948 	return 0;
2949 
2950 free_and_out:
2951 	if (bio)
2952 		bio_put(bio);
2953 	blk_rq_unprep_clone(rq);
2954 
2955 	return -ENOMEM;
2956 }
2957 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2958 
2959 int kblockd_schedule_work(struct work_struct *work)
2960 {
2961 	return queue_work(kblockd_workqueue, work);
2962 }
2963 EXPORT_SYMBOL(kblockd_schedule_work);
2964 
2965 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2966 				  unsigned long delay)
2967 {
2968 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2969 }
2970 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2971 
2972 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2973 				     unsigned long delay)
2974 {
2975 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2976 }
2977 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2978 
2979 /**
2980  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2981  * @plug:	The &struct blk_plug that needs to be initialized
2982  *
2983  * Description:
2984  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2985  *   pending I/O should the task end up blocking between blk_start_plug() and
2986  *   blk_finish_plug(). This is important from a performance perspective, but
2987  *   also ensures that we don't deadlock. For instance, if the task is blocking
2988  *   for a memory allocation, memory reclaim could end up wanting to free a
2989  *   page belonging to that request that is currently residing in our private
2990  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2991  *   this kind of deadlock.
2992  */
2993 void blk_start_plug(struct blk_plug *plug)
2994 {
2995 	struct task_struct *tsk = current;
2996 
2997 	INIT_LIST_HEAD(&plug->list);
2998 	INIT_LIST_HEAD(&plug->mq_list);
2999 	INIT_LIST_HEAD(&plug->cb_list);
3000 
3001 	/*
3002 	 * If this is a nested plug, don't actually assign it. It will be
3003 	 * flushed on its own.
3004 	 */
3005 	if (!tsk->plug) {
3006 		/*
3007 		 * Store ordering should not be needed here, since a potential
3008 		 * preempt will imply a full memory barrier
3009 		 */
3010 		tsk->plug = plug;
3011 	}
3012 }
3013 EXPORT_SYMBOL(blk_start_plug);
3014 
3015 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3016 {
3017 	struct request *rqa = container_of(a, struct request, queuelist);
3018 	struct request *rqb = container_of(b, struct request, queuelist);
3019 
3020 	return !(rqa->q < rqb->q ||
3021 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3022 }
3023 
3024 /*
3025  * If 'from_schedule' is true, then postpone the dispatch of requests
3026  * until a safe kblockd context. We due this to avoid accidental big
3027  * additional stack usage in driver dispatch, in places where the originally
3028  * plugger did not intend it.
3029  */
3030 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3031 			    bool from_schedule)
3032 	__releases(q->queue_lock)
3033 {
3034 	trace_block_unplug(q, depth, !from_schedule);
3035 
3036 	if (from_schedule)
3037 		blk_run_queue_async(q);
3038 	else
3039 		__blk_run_queue(q);
3040 	spin_unlock(q->queue_lock);
3041 }
3042 
3043 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3044 {
3045 	LIST_HEAD(callbacks);
3046 
3047 	while (!list_empty(&plug->cb_list)) {
3048 		list_splice_init(&plug->cb_list, &callbacks);
3049 
3050 		while (!list_empty(&callbacks)) {
3051 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3052 							  struct blk_plug_cb,
3053 							  list);
3054 			list_del(&cb->list);
3055 			cb->callback(cb, from_schedule);
3056 		}
3057 	}
3058 }
3059 
3060 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3061 				      int size)
3062 {
3063 	struct blk_plug *plug = current->plug;
3064 	struct blk_plug_cb *cb;
3065 
3066 	if (!plug)
3067 		return NULL;
3068 
3069 	list_for_each_entry(cb, &plug->cb_list, list)
3070 		if (cb->callback == unplug && cb->data == data)
3071 			return cb;
3072 
3073 	/* Not currently on the callback list */
3074 	BUG_ON(size < sizeof(*cb));
3075 	cb = kzalloc(size, GFP_ATOMIC);
3076 	if (cb) {
3077 		cb->data = data;
3078 		cb->callback = unplug;
3079 		list_add(&cb->list, &plug->cb_list);
3080 	}
3081 	return cb;
3082 }
3083 EXPORT_SYMBOL(blk_check_plugged);
3084 
3085 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3086 {
3087 	struct request_queue *q;
3088 	unsigned long flags;
3089 	struct request *rq;
3090 	LIST_HEAD(list);
3091 	unsigned int depth;
3092 
3093 	flush_plug_callbacks(plug, from_schedule);
3094 
3095 	if (!list_empty(&plug->mq_list))
3096 		blk_mq_flush_plug_list(plug, from_schedule);
3097 
3098 	if (list_empty(&plug->list))
3099 		return;
3100 
3101 	list_splice_init(&plug->list, &list);
3102 
3103 	list_sort(NULL, &list, plug_rq_cmp);
3104 
3105 	q = NULL;
3106 	depth = 0;
3107 
3108 	/*
3109 	 * Save and disable interrupts here, to avoid doing it for every
3110 	 * queue lock we have to take.
3111 	 */
3112 	local_irq_save(flags);
3113 	while (!list_empty(&list)) {
3114 		rq = list_entry_rq(list.next);
3115 		list_del_init(&rq->queuelist);
3116 		BUG_ON(!rq->q);
3117 		if (rq->q != q) {
3118 			/*
3119 			 * This drops the queue lock
3120 			 */
3121 			if (q)
3122 				queue_unplugged(q, depth, from_schedule);
3123 			q = rq->q;
3124 			depth = 0;
3125 			spin_lock(q->queue_lock);
3126 		}
3127 
3128 		/*
3129 		 * Short-circuit if @q is dead
3130 		 */
3131 		if (unlikely(blk_queue_dying(q))) {
3132 			__blk_end_request_all(rq, -ENODEV);
3133 			continue;
3134 		}
3135 
3136 		/*
3137 		 * rq is already accounted, so use raw insert
3138 		 */
3139 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3140 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3141 		else
3142 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3143 
3144 		depth++;
3145 	}
3146 
3147 	/*
3148 	 * This drops the queue lock
3149 	 */
3150 	if (q)
3151 		queue_unplugged(q, depth, from_schedule);
3152 
3153 	local_irq_restore(flags);
3154 }
3155 
3156 void blk_finish_plug(struct blk_plug *plug)
3157 {
3158 	blk_flush_plug_list(plug, false);
3159 
3160 	if (plug == current->plug)
3161 		current->plug = NULL;
3162 }
3163 EXPORT_SYMBOL(blk_finish_plug);
3164 
3165 #ifdef CONFIG_PM_RUNTIME
3166 /**
3167  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3168  * @q: the queue of the device
3169  * @dev: the device the queue belongs to
3170  *
3171  * Description:
3172  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3173  *    @dev. Drivers that want to take advantage of request-based runtime PM
3174  *    should call this function after @dev has been initialized, and its
3175  *    request queue @q has been allocated, and runtime PM for it can not happen
3176  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3177  *    cases, driver should call this function before any I/O has taken place.
3178  *
3179  *    This function takes care of setting up using auto suspend for the device,
3180  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3181  *    until an updated value is either set by user or by driver. Drivers do
3182  *    not need to touch other autosuspend settings.
3183  *
3184  *    The block layer runtime PM is request based, so only works for drivers
3185  *    that use request as their IO unit instead of those directly use bio's.
3186  */
3187 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3188 {
3189 	q->dev = dev;
3190 	q->rpm_status = RPM_ACTIVE;
3191 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3192 	pm_runtime_use_autosuspend(q->dev);
3193 }
3194 EXPORT_SYMBOL(blk_pm_runtime_init);
3195 
3196 /**
3197  * blk_pre_runtime_suspend - Pre runtime suspend check
3198  * @q: the queue of the device
3199  *
3200  * Description:
3201  *    This function will check if runtime suspend is allowed for the device
3202  *    by examining if there are any requests pending in the queue. If there
3203  *    are requests pending, the device can not be runtime suspended; otherwise,
3204  *    the queue's status will be updated to SUSPENDING and the driver can
3205  *    proceed to suspend the device.
3206  *
3207  *    For the not allowed case, we mark last busy for the device so that
3208  *    runtime PM core will try to autosuspend it some time later.
3209  *
3210  *    This function should be called near the start of the device's
3211  *    runtime_suspend callback.
3212  *
3213  * Return:
3214  *    0		- OK to runtime suspend the device
3215  *    -EBUSY	- Device should not be runtime suspended
3216  */
3217 int blk_pre_runtime_suspend(struct request_queue *q)
3218 {
3219 	int ret = 0;
3220 
3221 	spin_lock_irq(q->queue_lock);
3222 	if (q->nr_pending) {
3223 		ret = -EBUSY;
3224 		pm_runtime_mark_last_busy(q->dev);
3225 	} else {
3226 		q->rpm_status = RPM_SUSPENDING;
3227 	}
3228 	spin_unlock_irq(q->queue_lock);
3229 	return ret;
3230 }
3231 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3232 
3233 /**
3234  * blk_post_runtime_suspend - Post runtime suspend processing
3235  * @q: the queue of the device
3236  * @err: return value of the device's runtime_suspend function
3237  *
3238  * Description:
3239  *    Update the queue's runtime status according to the return value of the
3240  *    device's runtime suspend function and mark last busy for the device so
3241  *    that PM core will try to auto suspend the device at a later time.
3242  *
3243  *    This function should be called near the end of the device's
3244  *    runtime_suspend callback.
3245  */
3246 void blk_post_runtime_suspend(struct request_queue *q, int err)
3247 {
3248 	spin_lock_irq(q->queue_lock);
3249 	if (!err) {
3250 		q->rpm_status = RPM_SUSPENDED;
3251 	} else {
3252 		q->rpm_status = RPM_ACTIVE;
3253 		pm_runtime_mark_last_busy(q->dev);
3254 	}
3255 	spin_unlock_irq(q->queue_lock);
3256 }
3257 EXPORT_SYMBOL(blk_post_runtime_suspend);
3258 
3259 /**
3260  * blk_pre_runtime_resume - Pre runtime resume processing
3261  * @q: the queue of the device
3262  *
3263  * Description:
3264  *    Update the queue's runtime status to RESUMING in preparation for the
3265  *    runtime resume of the device.
3266  *
3267  *    This function should be called near the start of the device's
3268  *    runtime_resume callback.
3269  */
3270 void blk_pre_runtime_resume(struct request_queue *q)
3271 {
3272 	spin_lock_irq(q->queue_lock);
3273 	q->rpm_status = RPM_RESUMING;
3274 	spin_unlock_irq(q->queue_lock);
3275 }
3276 EXPORT_SYMBOL(blk_pre_runtime_resume);
3277 
3278 /**
3279  * blk_post_runtime_resume - Post runtime resume processing
3280  * @q: the queue of the device
3281  * @err: return value of the device's runtime_resume function
3282  *
3283  * Description:
3284  *    Update the queue's runtime status according to the return value of the
3285  *    device's runtime_resume function. If it is successfully resumed, process
3286  *    the requests that are queued into the device's queue when it is resuming
3287  *    and then mark last busy and initiate autosuspend for it.
3288  *
3289  *    This function should be called near the end of the device's
3290  *    runtime_resume callback.
3291  */
3292 void blk_post_runtime_resume(struct request_queue *q, int err)
3293 {
3294 	spin_lock_irq(q->queue_lock);
3295 	if (!err) {
3296 		q->rpm_status = RPM_ACTIVE;
3297 		__blk_run_queue(q);
3298 		pm_runtime_mark_last_busy(q->dev);
3299 		pm_request_autosuspend(q->dev);
3300 	} else {
3301 		q->rpm_status = RPM_SUSPENDED;
3302 	}
3303 	spin_unlock_irq(q->queue_lock);
3304 }
3305 EXPORT_SYMBOL(blk_post_runtime_resume);
3306 #endif
3307 
3308 int __init blk_dev_init(void)
3309 {
3310 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3311 			sizeof(((struct request *)0)->cmd_flags));
3312 
3313 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3314 	kblockd_workqueue = alloc_workqueue("kblockd",
3315 					    WQ_MEM_RECLAIM | WQ_HIGHPRI |
3316 					    WQ_POWER_EFFICIENT, 0);
3317 	if (!kblockd_workqueue)
3318 		panic("Failed to create kblockd\n");
3319 
3320 	request_cachep = kmem_cache_create("blkdev_requests",
3321 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3322 
3323 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3324 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3325 
3326 	return 0;
3327 }
3328