xref: /openbmc/linux/block/blk-core.c (revision 7af6fbdd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
47 
48 #include "blk.h"
49 #include "blk-mq.h"
50 #include "blk-mq-sched.h"
51 #include "blk-pm.h"
52 #include "blk-rq-qos.h"
53 
54 struct dentry *blk_debugfs_root;
55 
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 
62 DEFINE_IDA(blk_queue_ida);
63 
64 /*
65  * For queue allocation
66  */
67 struct kmem_cache *blk_requestq_cachep;
68 
69 /*
70  * Controlling structure to kblockd
71  */
72 static struct workqueue_struct *kblockd_workqueue;
73 
74 /**
75  * blk_queue_flag_set - atomically set a queue flag
76  * @flag: flag to be set
77  * @q: request queue
78  */
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 	set_bit(flag, &q->queue_flags);
82 }
83 EXPORT_SYMBOL(blk_queue_flag_set);
84 
85 /**
86  * blk_queue_flag_clear - atomically clear a queue flag
87  * @flag: flag to be cleared
88  * @q: request queue
89  */
90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91 {
92 	clear_bit(flag, &q->queue_flags);
93 }
94 EXPORT_SYMBOL(blk_queue_flag_clear);
95 
96 /**
97  * blk_queue_flag_test_and_set - atomically test and set a queue flag
98  * @flag: flag to be set
99  * @q: request queue
100  *
101  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102  * the flag was already set.
103  */
104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105 {
106 	return test_and_set_bit(flag, &q->queue_flags);
107 }
108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109 
110 void blk_rq_init(struct request_queue *q, struct request *rq)
111 {
112 	memset(rq, 0, sizeof(*rq));
113 
114 	INIT_LIST_HEAD(&rq->queuelist);
115 	rq->q = q;
116 	rq->__sector = (sector_t) -1;
117 	INIT_HLIST_NODE(&rq->hash);
118 	RB_CLEAR_NODE(&rq->rb_node);
119 	rq->tag = BLK_MQ_NO_TAG;
120 	rq->internal_tag = BLK_MQ_NO_TAG;
121 	rq->start_time_ns = ktime_get_ns();
122 	rq->part = NULL;
123 	refcount_set(&rq->ref, 1);
124 	blk_crypto_rq_set_defaults(rq);
125 }
126 EXPORT_SYMBOL(blk_rq_init);
127 
128 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
129 static const char *const blk_op_name[] = {
130 	REQ_OP_NAME(READ),
131 	REQ_OP_NAME(WRITE),
132 	REQ_OP_NAME(FLUSH),
133 	REQ_OP_NAME(DISCARD),
134 	REQ_OP_NAME(SECURE_ERASE),
135 	REQ_OP_NAME(ZONE_RESET),
136 	REQ_OP_NAME(ZONE_RESET_ALL),
137 	REQ_OP_NAME(ZONE_OPEN),
138 	REQ_OP_NAME(ZONE_CLOSE),
139 	REQ_OP_NAME(ZONE_FINISH),
140 	REQ_OP_NAME(ZONE_APPEND),
141 	REQ_OP_NAME(WRITE_SAME),
142 	REQ_OP_NAME(WRITE_ZEROES),
143 	REQ_OP_NAME(SCSI_IN),
144 	REQ_OP_NAME(SCSI_OUT),
145 	REQ_OP_NAME(DRV_IN),
146 	REQ_OP_NAME(DRV_OUT),
147 };
148 #undef REQ_OP_NAME
149 
150 /**
151  * blk_op_str - Return string XXX in the REQ_OP_XXX.
152  * @op: REQ_OP_XXX.
153  *
154  * Description: Centralize block layer function to convert REQ_OP_XXX into
155  * string format. Useful in the debugging and tracing bio or request. For
156  * invalid REQ_OP_XXX it returns string "UNKNOWN".
157  */
158 inline const char *blk_op_str(unsigned int op)
159 {
160 	const char *op_str = "UNKNOWN";
161 
162 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
163 		op_str = blk_op_name[op];
164 
165 	return op_str;
166 }
167 EXPORT_SYMBOL_GPL(blk_op_str);
168 
169 static const struct {
170 	int		errno;
171 	const char	*name;
172 } blk_errors[] = {
173 	[BLK_STS_OK]		= { 0,		"" },
174 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
175 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
176 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
177 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
178 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
179 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
180 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
181 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
182 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
183 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
184 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
185 
186 	/* device mapper special case, should not leak out: */
187 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
188 
189 	/* everything else not covered above: */
190 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
191 };
192 
193 blk_status_t errno_to_blk_status(int errno)
194 {
195 	int i;
196 
197 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
198 		if (blk_errors[i].errno == errno)
199 			return (__force blk_status_t)i;
200 	}
201 
202 	return BLK_STS_IOERR;
203 }
204 EXPORT_SYMBOL_GPL(errno_to_blk_status);
205 
206 int blk_status_to_errno(blk_status_t status)
207 {
208 	int idx = (__force int)status;
209 
210 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
211 		return -EIO;
212 	return blk_errors[idx].errno;
213 }
214 EXPORT_SYMBOL_GPL(blk_status_to_errno);
215 
216 static void print_req_error(struct request *req, blk_status_t status,
217 		const char *caller)
218 {
219 	int idx = (__force int)status;
220 
221 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
222 		return;
223 
224 	printk_ratelimited(KERN_ERR
225 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
226 		"phys_seg %u prio class %u\n",
227 		caller, blk_errors[idx].name,
228 		req->rq_disk ? req->rq_disk->disk_name : "?",
229 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
230 		req->cmd_flags & ~REQ_OP_MASK,
231 		req->nr_phys_segments,
232 		IOPRIO_PRIO_CLASS(req->ioprio));
233 }
234 
235 static void req_bio_endio(struct request *rq, struct bio *bio,
236 			  unsigned int nbytes, blk_status_t error)
237 {
238 	if (error)
239 		bio->bi_status = error;
240 
241 	if (unlikely(rq->rq_flags & RQF_QUIET))
242 		bio_set_flag(bio, BIO_QUIET);
243 
244 	bio_advance(bio, nbytes);
245 
246 	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
247 		/*
248 		 * Partial zone append completions cannot be supported as the
249 		 * BIO fragments may end up not being written sequentially.
250 		 */
251 		if (bio->bi_iter.bi_size)
252 			bio->bi_status = BLK_STS_IOERR;
253 		else
254 			bio->bi_iter.bi_sector = rq->__sector;
255 	}
256 
257 	/* don't actually finish bio if it's part of flush sequence */
258 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
259 		bio_endio(bio);
260 }
261 
262 void blk_dump_rq_flags(struct request *rq, char *msg)
263 {
264 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
265 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
266 		(unsigned long long) rq->cmd_flags);
267 
268 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
269 	       (unsigned long long)blk_rq_pos(rq),
270 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
271 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
272 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
273 }
274 EXPORT_SYMBOL(blk_dump_rq_flags);
275 
276 /**
277  * blk_sync_queue - cancel any pending callbacks on a queue
278  * @q: the queue
279  *
280  * Description:
281  *     The block layer may perform asynchronous callback activity
282  *     on a queue, such as calling the unplug function after a timeout.
283  *     A block device may call blk_sync_queue to ensure that any
284  *     such activity is cancelled, thus allowing it to release resources
285  *     that the callbacks might use. The caller must already have made sure
286  *     that its ->submit_bio will not re-add plugging prior to calling
287  *     this function.
288  *
289  *     This function does not cancel any asynchronous activity arising
290  *     out of elevator or throttling code. That would require elevator_exit()
291  *     and blkcg_exit_queue() to be called with queue lock initialized.
292  *
293  */
294 void blk_sync_queue(struct request_queue *q)
295 {
296 	del_timer_sync(&q->timeout);
297 	cancel_work_sync(&q->timeout_work);
298 }
299 EXPORT_SYMBOL(blk_sync_queue);
300 
301 /**
302  * blk_set_pm_only - increment pm_only counter
303  * @q: request queue pointer
304  */
305 void blk_set_pm_only(struct request_queue *q)
306 {
307 	atomic_inc(&q->pm_only);
308 }
309 EXPORT_SYMBOL_GPL(blk_set_pm_only);
310 
311 void blk_clear_pm_only(struct request_queue *q)
312 {
313 	int pm_only;
314 
315 	pm_only = atomic_dec_return(&q->pm_only);
316 	WARN_ON_ONCE(pm_only < 0);
317 	if (pm_only == 0)
318 		wake_up_all(&q->mq_freeze_wq);
319 }
320 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
321 
322 /**
323  * blk_put_queue - decrement the request_queue refcount
324  * @q: the request_queue structure to decrement the refcount for
325  *
326  * Decrements the refcount of the request_queue kobject. When this reaches 0
327  * we'll have blk_release_queue() called.
328  *
329  * Context: Any context, but the last reference must not be dropped from
330  *          atomic context.
331  */
332 void blk_put_queue(struct request_queue *q)
333 {
334 	kobject_put(&q->kobj);
335 }
336 EXPORT_SYMBOL(blk_put_queue);
337 
338 void blk_set_queue_dying(struct request_queue *q)
339 {
340 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
341 
342 	/*
343 	 * When queue DYING flag is set, we need to block new req
344 	 * entering queue, so we call blk_freeze_queue_start() to
345 	 * prevent I/O from crossing blk_queue_enter().
346 	 */
347 	blk_freeze_queue_start(q);
348 
349 	if (queue_is_mq(q))
350 		blk_mq_wake_waiters(q);
351 
352 	/* Make blk_queue_enter() reexamine the DYING flag. */
353 	wake_up_all(&q->mq_freeze_wq);
354 }
355 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
356 
357 /**
358  * blk_cleanup_queue - shutdown a request queue
359  * @q: request queue to shutdown
360  *
361  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
362  * put it.  All future requests will be failed immediately with -ENODEV.
363  *
364  * Context: can sleep
365  */
366 void blk_cleanup_queue(struct request_queue *q)
367 {
368 	/* cannot be called from atomic context */
369 	might_sleep();
370 
371 	WARN_ON_ONCE(blk_queue_registered(q));
372 
373 	/* mark @q DYING, no new request or merges will be allowed afterwards */
374 	blk_set_queue_dying(q);
375 
376 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
377 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
378 
379 	/*
380 	 * Drain all requests queued before DYING marking. Set DEAD flag to
381 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
382 	 * after draining finished.
383 	 */
384 	blk_freeze_queue(q);
385 
386 	rq_qos_exit(q);
387 
388 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
389 
390 	/* for synchronous bio-based driver finish in-flight integrity i/o */
391 	blk_flush_integrity();
392 
393 	/* @q won't process any more request, flush async actions */
394 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
395 	blk_sync_queue(q);
396 
397 	if (queue_is_mq(q))
398 		blk_mq_exit_queue(q);
399 
400 	/*
401 	 * In theory, request pool of sched_tags belongs to request queue.
402 	 * However, the current implementation requires tag_set for freeing
403 	 * requests, so free the pool now.
404 	 *
405 	 * Queue has become frozen, there can't be any in-queue requests, so
406 	 * it is safe to free requests now.
407 	 */
408 	mutex_lock(&q->sysfs_lock);
409 	if (q->elevator)
410 		blk_mq_sched_free_requests(q);
411 	mutex_unlock(&q->sysfs_lock);
412 
413 	percpu_ref_exit(&q->q_usage_counter);
414 
415 	/* @q is and will stay empty, shutdown and put */
416 	blk_put_queue(q);
417 }
418 EXPORT_SYMBOL(blk_cleanup_queue);
419 
420 /**
421  * blk_queue_enter() - try to increase q->q_usage_counter
422  * @q: request queue pointer
423  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
424  */
425 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
426 {
427 	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
428 
429 	while (true) {
430 		bool success = false;
431 
432 		rcu_read_lock();
433 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
434 			/*
435 			 * The code that increments the pm_only counter is
436 			 * responsible for ensuring that that counter is
437 			 * globally visible before the queue is unfrozen.
438 			 */
439 			if (pm || !blk_queue_pm_only(q)) {
440 				success = true;
441 			} else {
442 				percpu_ref_put(&q->q_usage_counter);
443 			}
444 		}
445 		rcu_read_unlock();
446 
447 		if (success)
448 			return 0;
449 
450 		if (flags & BLK_MQ_REQ_NOWAIT)
451 			return -EBUSY;
452 
453 		/*
454 		 * read pair of barrier in blk_freeze_queue_start(),
455 		 * we need to order reading __PERCPU_REF_DEAD flag of
456 		 * .q_usage_counter and reading .mq_freeze_depth or
457 		 * queue dying flag, otherwise the following wait may
458 		 * never return if the two reads are reordered.
459 		 */
460 		smp_rmb();
461 
462 		wait_event(q->mq_freeze_wq,
463 			   (!q->mq_freeze_depth &&
464 			    (pm || (blk_pm_request_resume(q),
465 				    !blk_queue_pm_only(q)))) ||
466 			   blk_queue_dying(q));
467 		if (blk_queue_dying(q))
468 			return -ENODEV;
469 	}
470 }
471 
472 static inline int bio_queue_enter(struct bio *bio)
473 {
474 	struct request_queue *q = bio->bi_disk->queue;
475 	bool nowait = bio->bi_opf & REQ_NOWAIT;
476 	int ret;
477 
478 	ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
479 	if (unlikely(ret)) {
480 		if (nowait && !blk_queue_dying(q))
481 			bio_wouldblock_error(bio);
482 		else
483 			bio_io_error(bio);
484 	}
485 
486 	return ret;
487 }
488 
489 void blk_queue_exit(struct request_queue *q)
490 {
491 	percpu_ref_put(&q->q_usage_counter);
492 }
493 
494 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
495 {
496 	struct request_queue *q =
497 		container_of(ref, struct request_queue, q_usage_counter);
498 
499 	wake_up_all(&q->mq_freeze_wq);
500 }
501 
502 static void blk_rq_timed_out_timer(struct timer_list *t)
503 {
504 	struct request_queue *q = from_timer(q, t, timeout);
505 
506 	kblockd_schedule_work(&q->timeout_work);
507 }
508 
509 static void blk_timeout_work(struct work_struct *work)
510 {
511 }
512 
513 struct request_queue *blk_alloc_queue(int node_id)
514 {
515 	struct request_queue *q;
516 	int ret;
517 
518 	q = kmem_cache_alloc_node(blk_requestq_cachep,
519 				GFP_KERNEL | __GFP_ZERO, node_id);
520 	if (!q)
521 		return NULL;
522 
523 	q->last_merge = NULL;
524 
525 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
526 	if (q->id < 0)
527 		goto fail_q;
528 
529 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
530 	if (ret)
531 		goto fail_id;
532 
533 	q->backing_dev_info = bdi_alloc(node_id);
534 	if (!q->backing_dev_info)
535 		goto fail_split;
536 
537 	q->stats = blk_alloc_queue_stats();
538 	if (!q->stats)
539 		goto fail_stats;
540 
541 	q->node = node_id;
542 
543 	atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
544 
545 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
546 		    laptop_mode_timer_fn, 0);
547 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
548 	INIT_WORK(&q->timeout_work, blk_timeout_work);
549 	INIT_LIST_HEAD(&q->icq_list);
550 #ifdef CONFIG_BLK_CGROUP
551 	INIT_LIST_HEAD(&q->blkg_list);
552 #endif
553 
554 	kobject_init(&q->kobj, &blk_queue_ktype);
555 
556 	mutex_init(&q->debugfs_mutex);
557 	mutex_init(&q->sysfs_lock);
558 	mutex_init(&q->sysfs_dir_lock);
559 	spin_lock_init(&q->queue_lock);
560 
561 	init_waitqueue_head(&q->mq_freeze_wq);
562 	mutex_init(&q->mq_freeze_lock);
563 
564 	/*
565 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
566 	 * See blk_register_queue() for details.
567 	 */
568 	if (percpu_ref_init(&q->q_usage_counter,
569 				blk_queue_usage_counter_release,
570 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
571 		goto fail_bdi;
572 
573 	if (blkcg_init_queue(q))
574 		goto fail_ref;
575 
576 	blk_queue_dma_alignment(q, 511);
577 	blk_set_default_limits(&q->limits);
578 	q->nr_requests = BLKDEV_MAX_RQ;
579 
580 	return q;
581 
582 fail_ref:
583 	percpu_ref_exit(&q->q_usage_counter);
584 fail_bdi:
585 	blk_free_queue_stats(q->stats);
586 fail_stats:
587 	bdi_put(q->backing_dev_info);
588 fail_split:
589 	bioset_exit(&q->bio_split);
590 fail_id:
591 	ida_simple_remove(&blk_queue_ida, q->id);
592 fail_q:
593 	kmem_cache_free(blk_requestq_cachep, q);
594 	return NULL;
595 }
596 EXPORT_SYMBOL(blk_alloc_queue);
597 
598 /**
599  * blk_get_queue - increment the request_queue refcount
600  * @q: the request_queue structure to increment the refcount for
601  *
602  * Increment the refcount of the request_queue kobject.
603  *
604  * Context: Any context.
605  */
606 bool blk_get_queue(struct request_queue *q)
607 {
608 	if (likely(!blk_queue_dying(q))) {
609 		__blk_get_queue(q);
610 		return true;
611 	}
612 
613 	return false;
614 }
615 EXPORT_SYMBOL(blk_get_queue);
616 
617 /**
618  * blk_get_request - allocate a request
619  * @q: request queue to allocate a request for
620  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
621  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
622  */
623 struct request *blk_get_request(struct request_queue *q, unsigned int op,
624 				blk_mq_req_flags_t flags)
625 {
626 	struct request *req;
627 
628 	WARN_ON_ONCE(op & REQ_NOWAIT);
629 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
630 
631 	req = blk_mq_alloc_request(q, op, flags);
632 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
633 		q->mq_ops->initialize_rq_fn(req);
634 
635 	return req;
636 }
637 EXPORT_SYMBOL(blk_get_request);
638 
639 void blk_put_request(struct request *req)
640 {
641 	blk_mq_free_request(req);
642 }
643 EXPORT_SYMBOL(blk_put_request);
644 
645 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
646 {
647 	char b[BDEVNAME_SIZE];
648 
649 	pr_info_ratelimited("attempt to access beyond end of device\n"
650 			    "%s: rw=%d, want=%llu, limit=%llu\n",
651 			    bio_devname(bio, b), bio->bi_opf,
652 			    bio_end_sector(bio), maxsector);
653 }
654 
655 #ifdef CONFIG_FAIL_MAKE_REQUEST
656 
657 static DECLARE_FAULT_ATTR(fail_make_request);
658 
659 static int __init setup_fail_make_request(char *str)
660 {
661 	return setup_fault_attr(&fail_make_request, str);
662 }
663 __setup("fail_make_request=", setup_fail_make_request);
664 
665 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
666 {
667 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
668 }
669 
670 static int __init fail_make_request_debugfs(void)
671 {
672 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
673 						NULL, &fail_make_request);
674 
675 	return PTR_ERR_OR_ZERO(dir);
676 }
677 
678 late_initcall(fail_make_request_debugfs);
679 
680 #else /* CONFIG_FAIL_MAKE_REQUEST */
681 
682 static inline bool should_fail_request(struct hd_struct *part,
683 					unsigned int bytes)
684 {
685 	return false;
686 }
687 
688 #endif /* CONFIG_FAIL_MAKE_REQUEST */
689 
690 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
691 {
692 	const int op = bio_op(bio);
693 
694 	if (part->policy && op_is_write(op)) {
695 		char b[BDEVNAME_SIZE];
696 
697 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
698 			return false;
699 
700 		WARN_ONCE(1,
701 		       "Trying to write to read-only block-device %s (partno %d)\n",
702 			bio_devname(bio, b), part->partno);
703 		/* Older lvm-tools actually trigger this */
704 		return false;
705 	}
706 
707 	return false;
708 }
709 
710 static noinline int should_fail_bio(struct bio *bio)
711 {
712 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
713 		return -EIO;
714 	return 0;
715 }
716 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
717 
718 /*
719  * Check whether this bio extends beyond the end of the device or partition.
720  * This may well happen - the kernel calls bread() without checking the size of
721  * the device, e.g., when mounting a file system.
722  */
723 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
724 {
725 	unsigned int nr_sectors = bio_sectors(bio);
726 
727 	if (nr_sectors && maxsector &&
728 	    (nr_sectors > maxsector ||
729 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
730 		handle_bad_sector(bio, maxsector);
731 		return -EIO;
732 	}
733 	return 0;
734 }
735 
736 /*
737  * Remap block n of partition p to block n+start(p) of the disk.
738  */
739 static inline int blk_partition_remap(struct bio *bio)
740 {
741 	struct hd_struct *p;
742 	int ret = -EIO;
743 
744 	rcu_read_lock();
745 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
746 	if (unlikely(!p))
747 		goto out;
748 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
749 		goto out;
750 	if (unlikely(bio_check_ro(bio, p)))
751 		goto out;
752 
753 	if (bio_sectors(bio)) {
754 		if (bio_check_eod(bio, part_nr_sects_read(p)))
755 			goto out;
756 		bio->bi_iter.bi_sector += p->start_sect;
757 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
758 				      bio->bi_iter.bi_sector - p->start_sect);
759 	}
760 	bio->bi_partno = 0;
761 	ret = 0;
762 out:
763 	rcu_read_unlock();
764 	return ret;
765 }
766 
767 /*
768  * Check write append to a zoned block device.
769  */
770 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
771 						 struct bio *bio)
772 {
773 	sector_t pos = bio->bi_iter.bi_sector;
774 	int nr_sectors = bio_sectors(bio);
775 
776 	/* Only applicable to zoned block devices */
777 	if (!blk_queue_is_zoned(q))
778 		return BLK_STS_NOTSUPP;
779 
780 	/* The bio sector must point to the start of a sequential zone */
781 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
782 	    !blk_queue_zone_is_seq(q, pos))
783 		return BLK_STS_IOERR;
784 
785 	/*
786 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
787 	 * split and could result in non-contiguous sectors being written in
788 	 * different zones.
789 	 */
790 	if (nr_sectors > q->limits.chunk_sectors)
791 		return BLK_STS_IOERR;
792 
793 	/* Make sure the BIO is small enough and will not get split */
794 	if (nr_sectors > q->limits.max_zone_append_sectors)
795 		return BLK_STS_IOERR;
796 
797 	bio->bi_opf |= REQ_NOMERGE;
798 
799 	return BLK_STS_OK;
800 }
801 
802 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
803 {
804 	struct request_queue *q = bio->bi_disk->queue;
805 	blk_status_t status = BLK_STS_IOERR;
806 	struct blk_plug *plug;
807 
808 	might_sleep();
809 
810 	plug = blk_mq_plug(q, bio);
811 	if (plug && plug->nowait)
812 		bio->bi_opf |= REQ_NOWAIT;
813 
814 	/*
815 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
816 	 * if queue does not support NOWAIT.
817 	 */
818 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
819 		goto not_supported;
820 
821 	if (should_fail_bio(bio))
822 		goto end_io;
823 
824 	if (bio->bi_partno) {
825 		if (unlikely(blk_partition_remap(bio)))
826 			goto end_io;
827 	} else {
828 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
829 			goto end_io;
830 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
831 			goto end_io;
832 	}
833 
834 	/*
835 	 * Filter flush bio's early so that bio based drivers without flush
836 	 * support don't have to worry about them.
837 	 */
838 	if (op_is_flush(bio->bi_opf) &&
839 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
840 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
841 		if (!bio_sectors(bio)) {
842 			status = BLK_STS_OK;
843 			goto end_io;
844 		}
845 	}
846 
847 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
848 		bio->bi_opf &= ~REQ_HIPRI;
849 
850 	switch (bio_op(bio)) {
851 	case REQ_OP_DISCARD:
852 		if (!blk_queue_discard(q))
853 			goto not_supported;
854 		break;
855 	case REQ_OP_SECURE_ERASE:
856 		if (!blk_queue_secure_erase(q))
857 			goto not_supported;
858 		break;
859 	case REQ_OP_WRITE_SAME:
860 		if (!q->limits.max_write_same_sectors)
861 			goto not_supported;
862 		break;
863 	case REQ_OP_ZONE_APPEND:
864 		status = blk_check_zone_append(q, bio);
865 		if (status != BLK_STS_OK)
866 			goto end_io;
867 		break;
868 	case REQ_OP_ZONE_RESET:
869 	case REQ_OP_ZONE_OPEN:
870 	case REQ_OP_ZONE_CLOSE:
871 	case REQ_OP_ZONE_FINISH:
872 		if (!blk_queue_is_zoned(q))
873 			goto not_supported;
874 		break;
875 	case REQ_OP_ZONE_RESET_ALL:
876 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
877 			goto not_supported;
878 		break;
879 	case REQ_OP_WRITE_ZEROES:
880 		if (!q->limits.max_write_zeroes_sectors)
881 			goto not_supported;
882 		break;
883 	default:
884 		break;
885 	}
886 
887 	/*
888 	 * Various block parts want %current->io_context, so allocate it up
889 	 * front rather than dealing with lots of pain to allocate it only
890 	 * where needed. This may fail and the block layer knows how to live
891 	 * with it.
892 	 */
893 	if (unlikely(!current->io_context))
894 		create_task_io_context(current, GFP_ATOMIC, q->node);
895 
896 	if (blk_throtl_bio(bio)) {
897 		blkcg_bio_issue_init(bio);
898 		return false;
899 	}
900 
901 	blk_cgroup_bio_start(bio);
902 	blkcg_bio_issue_init(bio);
903 
904 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
905 		trace_block_bio_queue(q, bio);
906 		/* Now that enqueuing has been traced, we need to trace
907 		 * completion as well.
908 		 */
909 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
910 	}
911 	return true;
912 
913 not_supported:
914 	status = BLK_STS_NOTSUPP;
915 end_io:
916 	bio->bi_status = status;
917 	bio_endio(bio);
918 	return false;
919 }
920 
921 static blk_qc_t __submit_bio(struct bio *bio)
922 {
923 	struct gendisk *disk = bio->bi_disk;
924 	blk_qc_t ret = BLK_QC_T_NONE;
925 
926 	if (blk_crypto_bio_prep(&bio)) {
927 		if (!disk->fops->submit_bio)
928 			return blk_mq_submit_bio(bio);
929 		ret = disk->fops->submit_bio(bio);
930 	}
931 	blk_queue_exit(disk->queue);
932 	return ret;
933 }
934 
935 /*
936  * The loop in this function may be a bit non-obvious, and so deserves some
937  * explanation:
938  *
939  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
940  *    that), so we have a list with a single bio.
941  *  - We pretend that we have just taken it off a longer list, so we assign
942  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
943  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
944  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
945  *    non-NULL value in bio_list and re-enter the loop from the top.
946  *  - In this case we really did just take the bio of the top of the list (no
947  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
948  *    again.
949  *
950  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
951  * bio_list_on_stack[1] contains bios that were submitted before the current
952  *	->submit_bio_bio, but that haven't been processed yet.
953  */
954 static blk_qc_t __submit_bio_noacct(struct bio *bio)
955 {
956 	struct bio_list bio_list_on_stack[2];
957 	blk_qc_t ret = BLK_QC_T_NONE;
958 
959 	BUG_ON(bio->bi_next);
960 
961 	bio_list_init(&bio_list_on_stack[0]);
962 	current->bio_list = bio_list_on_stack;
963 
964 	do {
965 		struct request_queue *q = bio->bi_disk->queue;
966 		struct bio_list lower, same;
967 
968 		if (unlikely(bio_queue_enter(bio) != 0))
969 			continue;
970 
971 		/*
972 		 * Create a fresh bio_list for all subordinate requests.
973 		 */
974 		bio_list_on_stack[1] = bio_list_on_stack[0];
975 		bio_list_init(&bio_list_on_stack[0]);
976 
977 		ret = __submit_bio(bio);
978 
979 		/*
980 		 * Sort new bios into those for a lower level and those for the
981 		 * same level.
982 		 */
983 		bio_list_init(&lower);
984 		bio_list_init(&same);
985 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
986 			if (q == bio->bi_disk->queue)
987 				bio_list_add(&same, bio);
988 			else
989 				bio_list_add(&lower, bio);
990 
991 		/*
992 		 * Now assemble so we handle the lowest level first.
993 		 */
994 		bio_list_merge(&bio_list_on_stack[0], &lower);
995 		bio_list_merge(&bio_list_on_stack[0], &same);
996 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
997 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
998 
999 	current->bio_list = NULL;
1000 	return ret;
1001 }
1002 
1003 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1004 {
1005 	struct bio_list bio_list[2] = { };
1006 	blk_qc_t ret = BLK_QC_T_NONE;
1007 
1008 	current->bio_list = bio_list;
1009 
1010 	do {
1011 		struct gendisk *disk = bio->bi_disk;
1012 
1013 		if (unlikely(bio_queue_enter(bio) != 0))
1014 			continue;
1015 
1016 		if (!blk_crypto_bio_prep(&bio)) {
1017 			blk_queue_exit(disk->queue);
1018 			ret = BLK_QC_T_NONE;
1019 			continue;
1020 		}
1021 
1022 		ret = blk_mq_submit_bio(bio);
1023 	} while ((bio = bio_list_pop(&bio_list[0])));
1024 
1025 	current->bio_list = NULL;
1026 	return ret;
1027 }
1028 
1029 /**
1030  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1031  * @bio:  The bio describing the location in memory and on the device.
1032  *
1033  * This is a version of submit_bio() that shall only be used for I/O that is
1034  * resubmitted to lower level drivers by stacking block drivers.  All file
1035  * systems and other upper level users of the block layer should use
1036  * submit_bio() instead.
1037  */
1038 blk_qc_t submit_bio_noacct(struct bio *bio)
1039 {
1040 	if (!submit_bio_checks(bio))
1041 		return BLK_QC_T_NONE;
1042 
1043 	/*
1044 	 * We only want one ->submit_bio to be active at a time, else stack
1045 	 * usage with stacked devices could be a problem.  Use current->bio_list
1046 	 * to collect a list of requests submited by a ->submit_bio method while
1047 	 * it is active, and then process them after it returned.
1048 	 */
1049 	if (current->bio_list) {
1050 		bio_list_add(&current->bio_list[0], bio);
1051 		return BLK_QC_T_NONE;
1052 	}
1053 
1054 	if (!bio->bi_disk->fops->submit_bio)
1055 		return __submit_bio_noacct_mq(bio);
1056 	return __submit_bio_noacct(bio);
1057 }
1058 EXPORT_SYMBOL(submit_bio_noacct);
1059 
1060 /**
1061  * submit_bio - submit a bio to the block device layer for I/O
1062  * @bio: The &struct bio which describes the I/O
1063  *
1064  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1065  * fully set up &struct bio that describes the I/O that needs to be done.  The
1066  * bio will be send to the device described by the bi_disk and bi_partno fields.
1067  *
1068  * The success/failure status of the request, along with notification of
1069  * completion, is delivered asynchronously through the ->bi_end_io() callback
1070  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1071  * been called.
1072  */
1073 blk_qc_t submit_bio(struct bio *bio)
1074 {
1075 	if (blkcg_punt_bio_submit(bio))
1076 		return BLK_QC_T_NONE;
1077 
1078 	/*
1079 	 * If it's a regular read/write or a barrier with data attached,
1080 	 * go through the normal accounting stuff before submission.
1081 	 */
1082 	if (bio_has_data(bio)) {
1083 		unsigned int count;
1084 
1085 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1086 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1087 		else
1088 			count = bio_sectors(bio);
1089 
1090 		if (op_is_write(bio_op(bio))) {
1091 			count_vm_events(PGPGOUT, count);
1092 		} else {
1093 			task_io_account_read(bio->bi_iter.bi_size);
1094 			count_vm_events(PGPGIN, count);
1095 		}
1096 
1097 		if (unlikely(block_dump)) {
1098 			char b[BDEVNAME_SIZE];
1099 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1100 			current->comm, task_pid_nr(current),
1101 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1102 				(unsigned long long)bio->bi_iter.bi_sector,
1103 				bio_devname(bio, b), count);
1104 		}
1105 	}
1106 
1107 	/*
1108 	 * If we're reading data that is part of the userspace workingset, count
1109 	 * submission time as memory stall.  When the device is congested, or
1110 	 * the submitting cgroup IO-throttled, submission can be a significant
1111 	 * part of overall IO time.
1112 	 */
1113 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1114 	    bio_flagged(bio, BIO_WORKINGSET))) {
1115 		unsigned long pflags;
1116 		blk_qc_t ret;
1117 
1118 		psi_memstall_enter(&pflags);
1119 		ret = submit_bio_noacct(bio);
1120 		psi_memstall_leave(&pflags);
1121 
1122 		return ret;
1123 	}
1124 
1125 	return submit_bio_noacct(bio);
1126 }
1127 EXPORT_SYMBOL(submit_bio);
1128 
1129 /**
1130  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1131  *                              for the new queue limits
1132  * @q:  the queue
1133  * @rq: the request being checked
1134  *
1135  * Description:
1136  *    @rq may have been made based on weaker limitations of upper-level queues
1137  *    in request stacking drivers, and it may violate the limitation of @q.
1138  *    Since the block layer and the underlying device driver trust @rq
1139  *    after it is inserted to @q, it should be checked against @q before
1140  *    the insertion using this generic function.
1141  *
1142  *    Request stacking drivers like request-based dm may change the queue
1143  *    limits when retrying requests on other queues. Those requests need
1144  *    to be checked against the new queue limits again during dispatch.
1145  */
1146 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1147 				      struct request *rq)
1148 {
1149 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1150 
1151 	if (blk_rq_sectors(rq) > max_sectors) {
1152 		/*
1153 		 * SCSI device does not have a good way to return if
1154 		 * Write Same/Zero is actually supported. If a device rejects
1155 		 * a non-read/write command (discard, write same,etc.) the
1156 		 * low-level device driver will set the relevant queue limit to
1157 		 * 0 to prevent blk-lib from issuing more of the offending
1158 		 * operations. Commands queued prior to the queue limit being
1159 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1160 		 * errors being propagated to upper layers.
1161 		 */
1162 		if (max_sectors == 0)
1163 			return BLK_STS_NOTSUPP;
1164 
1165 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1166 			__func__, blk_rq_sectors(rq), max_sectors);
1167 		return BLK_STS_IOERR;
1168 	}
1169 
1170 	/*
1171 	 * queue's settings related to segment counting like q->bounce_pfn
1172 	 * may differ from that of other stacking queues.
1173 	 * Recalculate it to check the request correctly on this queue's
1174 	 * limitation.
1175 	 */
1176 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1177 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1178 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1179 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1180 		return BLK_STS_IOERR;
1181 	}
1182 
1183 	return BLK_STS_OK;
1184 }
1185 
1186 /**
1187  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1188  * @q:  the queue to submit the request
1189  * @rq: the request being queued
1190  */
1191 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1192 {
1193 	blk_status_t ret;
1194 
1195 	ret = blk_cloned_rq_check_limits(q, rq);
1196 	if (ret != BLK_STS_OK)
1197 		return ret;
1198 
1199 	if (rq->rq_disk &&
1200 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1201 		return BLK_STS_IOERR;
1202 
1203 	if (blk_crypto_insert_cloned_request(rq))
1204 		return BLK_STS_IOERR;
1205 
1206 	if (blk_queue_io_stat(q))
1207 		blk_account_io_start(rq);
1208 
1209 	/*
1210 	 * Since we have a scheduler attached on the top device,
1211 	 * bypass a potential scheduler on the bottom device for
1212 	 * insert.
1213 	 */
1214 	return blk_mq_request_issue_directly(rq, true);
1215 }
1216 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1217 
1218 /**
1219  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1220  * @rq: request to examine
1221  *
1222  * Description:
1223  *     A request could be merge of IOs which require different failure
1224  *     handling.  This function determines the number of bytes which
1225  *     can be failed from the beginning of the request without
1226  *     crossing into area which need to be retried further.
1227  *
1228  * Return:
1229  *     The number of bytes to fail.
1230  */
1231 unsigned int blk_rq_err_bytes(const struct request *rq)
1232 {
1233 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1234 	unsigned int bytes = 0;
1235 	struct bio *bio;
1236 
1237 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1238 		return blk_rq_bytes(rq);
1239 
1240 	/*
1241 	 * Currently the only 'mixing' which can happen is between
1242 	 * different fastfail types.  We can safely fail portions
1243 	 * which have all the failfast bits that the first one has -
1244 	 * the ones which are at least as eager to fail as the first
1245 	 * one.
1246 	 */
1247 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1248 		if ((bio->bi_opf & ff) != ff)
1249 			break;
1250 		bytes += bio->bi_iter.bi_size;
1251 	}
1252 
1253 	/* this could lead to infinite loop */
1254 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1255 	return bytes;
1256 }
1257 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1258 
1259 static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1260 {
1261 	unsigned long stamp;
1262 again:
1263 	stamp = READ_ONCE(part->stamp);
1264 	if (unlikely(stamp != now)) {
1265 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
1266 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1267 	}
1268 	if (part->partno) {
1269 		part = &part_to_disk(part)->part0;
1270 		goto again;
1271 	}
1272 }
1273 
1274 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1275 {
1276 	if (req->part && blk_do_io_stat(req)) {
1277 		const int sgrp = op_stat_group(req_op(req));
1278 		struct hd_struct *part;
1279 
1280 		part_stat_lock();
1281 		part = req->part;
1282 		part_stat_add(part, sectors[sgrp], bytes >> 9);
1283 		part_stat_unlock();
1284 	}
1285 }
1286 
1287 void blk_account_io_done(struct request *req, u64 now)
1288 {
1289 	/*
1290 	 * Account IO completion.  flush_rq isn't accounted as a
1291 	 * normal IO on queueing nor completion.  Accounting the
1292 	 * containing request is enough.
1293 	 */
1294 	if (req->part && blk_do_io_stat(req) &&
1295 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1296 		const int sgrp = op_stat_group(req_op(req));
1297 		struct hd_struct *part;
1298 
1299 		part_stat_lock();
1300 		part = req->part;
1301 
1302 		update_io_ticks(part, jiffies, true);
1303 		part_stat_inc(part, ios[sgrp]);
1304 		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1305 		part_stat_unlock();
1306 
1307 		hd_struct_put(part);
1308 	}
1309 }
1310 
1311 void blk_account_io_start(struct request *rq)
1312 {
1313 	if (!blk_do_io_stat(rq))
1314 		return;
1315 
1316 	rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1317 
1318 	part_stat_lock();
1319 	update_io_ticks(rq->part, jiffies, false);
1320 	part_stat_unlock();
1321 }
1322 
1323 static unsigned long __part_start_io_acct(struct hd_struct *part,
1324 					  unsigned int sectors, unsigned int op)
1325 {
1326 	const int sgrp = op_stat_group(op);
1327 	unsigned long now = READ_ONCE(jiffies);
1328 
1329 	part_stat_lock();
1330 	update_io_ticks(part, now, false);
1331 	part_stat_inc(part, ios[sgrp]);
1332 	part_stat_add(part, sectors[sgrp], sectors);
1333 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1334 	part_stat_unlock();
1335 
1336 	return now;
1337 }
1338 
1339 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
1340 				 struct bio *bio)
1341 {
1342 	*part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);
1343 
1344 	return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
1345 }
1346 EXPORT_SYMBOL_GPL(part_start_io_acct);
1347 
1348 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1349 				 unsigned int op)
1350 {
1351 	return __part_start_io_acct(&disk->part0, sectors, op);
1352 }
1353 EXPORT_SYMBOL(disk_start_io_acct);
1354 
1355 static void __part_end_io_acct(struct hd_struct *part, unsigned int op,
1356 			       unsigned long start_time)
1357 {
1358 	const int sgrp = op_stat_group(op);
1359 	unsigned long now = READ_ONCE(jiffies);
1360 	unsigned long duration = now - start_time;
1361 
1362 	part_stat_lock();
1363 	update_io_ticks(part, now, true);
1364 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1365 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1366 	part_stat_unlock();
1367 }
1368 
1369 void part_end_io_acct(struct hd_struct *part, struct bio *bio,
1370 		      unsigned long start_time)
1371 {
1372 	__part_end_io_acct(part, bio_op(bio), start_time);
1373 	hd_struct_put(part);
1374 }
1375 EXPORT_SYMBOL_GPL(part_end_io_acct);
1376 
1377 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1378 		      unsigned long start_time)
1379 {
1380 	__part_end_io_acct(&disk->part0, op, start_time);
1381 }
1382 EXPORT_SYMBOL(disk_end_io_acct);
1383 
1384 /*
1385  * Steal bios from a request and add them to a bio list.
1386  * The request must not have been partially completed before.
1387  */
1388 void blk_steal_bios(struct bio_list *list, struct request *rq)
1389 {
1390 	if (rq->bio) {
1391 		if (list->tail)
1392 			list->tail->bi_next = rq->bio;
1393 		else
1394 			list->head = rq->bio;
1395 		list->tail = rq->biotail;
1396 
1397 		rq->bio = NULL;
1398 		rq->biotail = NULL;
1399 	}
1400 
1401 	rq->__data_len = 0;
1402 }
1403 EXPORT_SYMBOL_GPL(blk_steal_bios);
1404 
1405 /**
1406  * blk_update_request - Special helper function for request stacking drivers
1407  * @req:      the request being processed
1408  * @error:    block status code
1409  * @nr_bytes: number of bytes to complete @req
1410  *
1411  * Description:
1412  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1413  *     the request structure even if @req doesn't have leftover.
1414  *     If @req has leftover, sets it up for the next range of segments.
1415  *
1416  *     This special helper function is only for request stacking drivers
1417  *     (e.g. request-based dm) so that they can handle partial completion.
1418  *     Actual device drivers should use blk_mq_end_request instead.
1419  *
1420  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1421  *     %false return from this function.
1422  *
1423  * Note:
1424  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1425  *	blk_rq_bytes() and in blk_update_request().
1426  *
1427  * Return:
1428  *     %false - this request doesn't have any more data
1429  *     %true  - this request has more data
1430  **/
1431 bool blk_update_request(struct request *req, blk_status_t error,
1432 		unsigned int nr_bytes)
1433 {
1434 	int total_bytes;
1435 
1436 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1437 
1438 	if (!req->bio)
1439 		return false;
1440 
1441 #ifdef CONFIG_BLK_DEV_INTEGRITY
1442 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1443 	    error == BLK_STS_OK)
1444 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1445 #endif
1446 
1447 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1448 		     !(req->rq_flags & RQF_QUIET)))
1449 		print_req_error(req, error, __func__);
1450 
1451 	blk_account_io_completion(req, nr_bytes);
1452 
1453 	total_bytes = 0;
1454 	while (req->bio) {
1455 		struct bio *bio = req->bio;
1456 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1457 
1458 		if (bio_bytes == bio->bi_iter.bi_size)
1459 			req->bio = bio->bi_next;
1460 
1461 		/* Completion has already been traced */
1462 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1463 		req_bio_endio(req, bio, bio_bytes, error);
1464 
1465 		total_bytes += bio_bytes;
1466 		nr_bytes -= bio_bytes;
1467 
1468 		if (!nr_bytes)
1469 			break;
1470 	}
1471 
1472 	/*
1473 	 * completely done
1474 	 */
1475 	if (!req->bio) {
1476 		/*
1477 		 * Reset counters so that the request stacking driver
1478 		 * can find how many bytes remain in the request
1479 		 * later.
1480 		 */
1481 		req->__data_len = 0;
1482 		return false;
1483 	}
1484 
1485 	req->__data_len -= total_bytes;
1486 
1487 	/* update sector only for requests with clear definition of sector */
1488 	if (!blk_rq_is_passthrough(req))
1489 		req->__sector += total_bytes >> 9;
1490 
1491 	/* mixed attributes always follow the first bio */
1492 	if (req->rq_flags & RQF_MIXED_MERGE) {
1493 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1494 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1495 	}
1496 
1497 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1498 		/*
1499 		 * If total number of sectors is less than the first segment
1500 		 * size, something has gone terribly wrong.
1501 		 */
1502 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1503 			blk_dump_rq_flags(req, "request botched");
1504 			req->__data_len = blk_rq_cur_bytes(req);
1505 		}
1506 
1507 		/* recalculate the number of segments */
1508 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1509 	}
1510 
1511 	return true;
1512 }
1513 EXPORT_SYMBOL_GPL(blk_update_request);
1514 
1515 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1516 /**
1517  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1518  * @rq: the request to be flushed
1519  *
1520  * Description:
1521  *     Flush all pages in @rq.
1522  */
1523 void rq_flush_dcache_pages(struct request *rq)
1524 {
1525 	struct req_iterator iter;
1526 	struct bio_vec bvec;
1527 
1528 	rq_for_each_segment(bvec, rq, iter)
1529 		flush_dcache_page(bvec.bv_page);
1530 }
1531 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1532 #endif
1533 
1534 /**
1535  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1536  * @q : the queue of the device being checked
1537  *
1538  * Description:
1539  *    Check if underlying low-level drivers of a device are busy.
1540  *    If the drivers want to export their busy state, they must set own
1541  *    exporting function using blk_queue_lld_busy() first.
1542  *
1543  *    Basically, this function is used only by request stacking drivers
1544  *    to stop dispatching requests to underlying devices when underlying
1545  *    devices are busy.  This behavior helps more I/O merging on the queue
1546  *    of the request stacking driver and prevents I/O throughput regression
1547  *    on burst I/O load.
1548  *
1549  * Return:
1550  *    0 - Not busy (The request stacking driver should dispatch request)
1551  *    1 - Busy (The request stacking driver should stop dispatching request)
1552  */
1553 int blk_lld_busy(struct request_queue *q)
1554 {
1555 	if (queue_is_mq(q) && q->mq_ops->busy)
1556 		return q->mq_ops->busy(q);
1557 
1558 	return 0;
1559 }
1560 EXPORT_SYMBOL_GPL(blk_lld_busy);
1561 
1562 /**
1563  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1564  * @rq: the clone request to be cleaned up
1565  *
1566  * Description:
1567  *     Free all bios in @rq for a cloned request.
1568  */
1569 void blk_rq_unprep_clone(struct request *rq)
1570 {
1571 	struct bio *bio;
1572 
1573 	while ((bio = rq->bio) != NULL) {
1574 		rq->bio = bio->bi_next;
1575 
1576 		bio_put(bio);
1577 	}
1578 }
1579 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1580 
1581 /**
1582  * blk_rq_prep_clone - Helper function to setup clone request
1583  * @rq: the request to be setup
1584  * @rq_src: original request to be cloned
1585  * @bs: bio_set that bios for clone are allocated from
1586  * @gfp_mask: memory allocation mask for bio
1587  * @bio_ctr: setup function to be called for each clone bio.
1588  *           Returns %0 for success, non %0 for failure.
1589  * @data: private data to be passed to @bio_ctr
1590  *
1591  * Description:
1592  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1593  *     Also, pages which the original bios are pointing to are not copied
1594  *     and the cloned bios just point same pages.
1595  *     So cloned bios must be completed before original bios, which means
1596  *     the caller must complete @rq before @rq_src.
1597  */
1598 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1599 		      struct bio_set *bs, gfp_t gfp_mask,
1600 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1601 		      void *data)
1602 {
1603 	struct bio *bio, *bio_src;
1604 
1605 	if (!bs)
1606 		bs = &fs_bio_set;
1607 
1608 	__rq_for_each_bio(bio_src, rq_src) {
1609 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1610 		if (!bio)
1611 			goto free_and_out;
1612 
1613 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1614 			goto free_and_out;
1615 
1616 		if (rq->bio) {
1617 			rq->biotail->bi_next = bio;
1618 			rq->biotail = bio;
1619 		} else {
1620 			rq->bio = rq->biotail = bio;
1621 		}
1622 		bio = NULL;
1623 	}
1624 
1625 	/* Copy attributes of the original request to the clone request. */
1626 	rq->__sector = blk_rq_pos(rq_src);
1627 	rq->__data_len = blk_rq_bytes(rq_src);
1628 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1629 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1630 		rq->special_vec = rq_src->special_vec;
1631 	}
1632 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1633 	rq->ioprio = rq_src->ioprio;
1634 
1635 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1636 		goto free_and_out;
1637 
1638 	return 0;
1639 
1640 free_and_out:
1641 	if (bio)
1642 		bio_put(bio);
1643 	blk_rq_unprep_clone(rq);
1644 
1645 	return -ENOMEM;
1646 }
1647 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1648 
1649 int kblockd_schedule_work(struct work_struct *work)
1650 {
1651 	return queue_work(kblockd_workqueue, work);
1652 }
1653 EXPORT_SYMBOL(kblockd_schedule_work);
1654 
1655 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1656 				unsigned long delay)
1657 {
1658 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1659 }
1660 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1661 
1662 /**
1663  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1664  * @plug:	The &struct blk_plug that needs to be initialized
1665  *
1666  * Description:
1667  *   blk_start_plug() indicates to the block layer an intent by the caller
1668  *   to submit multiple I/O requests in a batch.  The block layer may use
1669  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1670  *   is called.  However, the block layer may choose to submit requests
1671  *   before a call to blk_finish_plug() if the number of queued I/Os
1672  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1673  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1674  *   the task schedules (see below).
1675  *
1676  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1677  *   pending I/O should the task end up blocking between blk_start_plug() and
1678  *   blk_finish_plug(). This is important from a performance perspective, but
1679  *   also ensures that we don't deadlock. For instance, if the task is blocking
1680  *   for a memory allocation, memory reclaim could end up wanting to free a
1681  *   page belonging to that request that is currently residing in our private
1682  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1683  *   this kind of deadlock.
1684  */
1685 void blk_start_plug(struct blk_plug *plug)
1686 {
1687 	struct task_struct *tsk = current;
1688 
1689 	/*
1690 	 * If this is a nested plug, don't actually assign it.
1691 	 */
1692 	if (tsk->plug)
1693 		return;
1694 
1695 	INIT_LIST_HEAD(&plug->mq_list);
1696 	INIT_LIST_HEAD(&plug->cb_list);
1697 	plug->rq_count = 0;
1698 	plug->multiple_queues = false;
1699 	plug->nowait = false;
1700 
1701 	/*
1702 	 * Store ordering should not be needed here, since a potential
1703 	 * preempt will imply a full memory barrier
1704 	 */
1705 	tsk->plug = plug;
1706 }
1707 EXPORT_SYMBOL(blk_start_plug);
1708 
1709 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1710 {
1711 	LIST_HEAD(callbacks);
1712 
1713 	while (!list_empty(&plug->cb_list)) {
1714 		list_splice_init(&plug->cb_list, &callbacks);
1715 
1716 		while (!list_empty(&callbacks)) {
1717 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1718 							  struct blk_plug_cb,
1719 							  list);
1720 			list_del(&cb->list);
1721 			cb->callback(cb, from_schedule);
1722 		}
1723 	}
1724 }
1725 
1726 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1727 				      int size)
1728 {
1729 	struct blk_plug *plug = current->plug;
1730 	struct blk_plug_cb *cb;
1731 
1732 	if (!plug)
1733 		return NULL;
1734 
1735 	list_for_each_entry(cb, &plug->cb_list, list)
1736 		if (cb->callback == unplug && cb->data == data)
1737 			return cb;
1738 
1739 	/* Not currently on the callback list */
1740 	BUG_ON(size < sizeof(*cb));
1741 	cb = kzalloc(size, GFP_ATOMIC);
1742 	if (cb) {
1743 		cb->data = data;
1744 		cb->callback = unplug;
1745 		list_add(&cb->list, &plug->cb_list);
1746 	}
1747 	return cb;
1748 }
1749 EXPORT_SYMBOL(blk_check_plugged);
1750 
1751 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1752 {
1753 	flush_plug_callbacks(plug, from_schedule);
1754 
1755 	if (!list_empty(&plug->mq_list))
1756 		blk_mq_flush_plug_list(plug, from_schedule);
1757 }
1758 
1759 /**
1760  * blk_finish_plug - mark the end of a batch of submitted I/O
1761  * @plug:	The &struct blk_plug passed to blk_start_plug()
1762  *
1763  * Description:
1764  * Indicate that a batch of I/O submissions is complete.  This function
1765  * must be paired with an initial call to blk_start_plug().  The intent
1766  * is to allow the block layer to optimize I/O submission.  See the
1767  * documentation for blk_start_plug() for more information.
1768  */
1769 void blk_finish_plug(struct blk_plug *plug)
1770 {
1771 	if (plug != current->plug)
1772 		return;
1773 	blk_flush_plug_list(plug, false);
1774 
1775 	current->plug = NULL;
1776 }
1777 EXPORT_SYMBOL(blk_finish_plug);
1778 
1779 void blk_io_schedule(void)
1780 {
1781 	/* Prevent hang_check timer from firing at us during very long I/O */
1782 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1783 
1784 	if (timeout)
1785 		io_schedule_timeout(timeout);
1786 	else
1787 		io_schedule();
1788 }
1789 EXPORT_SYMBOL_GPL(blk_io_schedule);
1790 
1791 int __init blk_dev_init(void)
1792 {
1793 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1794 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1795 			sizeof_field(struct request, cmd_flags));
1796 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1797 			sizeof_field(struct bio, bi_opf));
1798 
1799 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1800 	kblockd_workqueue = alloc_workqueue("kblockd",
1801 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1802 	if (!kblockd_workqueue)
1803 		panic("Failed to create kblockd\n");
1804 
1805 	blk_requestq_cachep = kmem_cache_create("request_queue",
1806 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1807 
1808 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1809 
1810 	return 0;
1811 }
1812