1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/bio.h> 19 #include <linux/blkdev.h> 20 #include <linux/blk-mq.h> 21 #include <linux/highmem.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kernel_stat.h> 25 #include <linux/string.h> 26 #include <linux/init.h> 27 #include <linux/completion.h> 28 #include <linux/slab.h> 29 #include <linux/swap.h> 30 #include <linux/writeback.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/fault-inject.h> 33 #include <linux/list_sort.h> 34 #include <linux/delay.h> 35 #include <linux/ratelimit.h> 36 #include <linux/pm_runtime.h> 37 #include <linux/blk-cgroup.h> 38 #include <linux/t10-pi.h> 39 #include <linux/debugfs.h> 40 #include <linux/bpf.h> 41 #include <linux/psi.h> 42 #include <linux/sched/sysctl.h> 43 #include <linux/blk-crypto.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/block.h> 47 48 #include "blk.h" 49 #include "blk-mq.h" 50 #include "blk-mq-sched.h" 51 #include "blk-pm.h" 52 #include "blk-rq-qos.h" 53 54 struct dentry *blk_debugfs_root; 55 56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 61 62 DEFINE_IDA(blk_queue_ida); 63 64 /* 65 * For queue allocation 66 */ 67 struct kmem_cache *blk_requestq_cachep; 68 69 /* 70 * Controlling structure to kblockd 71 */ 72 static struct workqueue_struct *kblockd_workqueue; 73 74 /** 75 * blk_queue_flag_set - atomically set a queue flag 76 * @flag: flag to be set 77 * @q: request queue 78 */ 79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 80 { 81 set_bit(flag, &q->queue_flags); 82 } 83 EXPORT_SYMBOL(blk_queue_flag_set); 84 85 /** 86 * blk_queue_flag_clear - atomically clear a queue flag 87 * @flag: flag to be cleared 88 * @q: request queue 89 */ 90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 91 { 92 clear_bit(flag, &q->queue_flags); 93 } 94 EXPORT_SYMBOL(blk_queue_flag_clear); 95 96 /** 97 * blk_queue_flag_test_and_set - atomically test and set a queue flag 98 * @flag: flag to be set 99 * @q: request queue 100 * 101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 102 * the flag was already set. 103 */ 104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 105 { 106 return test_and_set_bit(flag, &q->queue_flags); 107 } 108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 109 110 void blk_rq_init(struct request_queue *q, struct request *rq) 111 { 112 memset(rq, 0, sizeof(*rq)); 113 114 INIT_LIST_HEAD(&rq->queuelist); 115 rq->q = q; 116 rq->__sector = (sector_t) -1; 117 INIT_HLIST_NODE(&rq->hash); 118 RB_CLEAR_NODE(&rq->rb_node); 119 rq->tag = BLK_MQ_NO_TAG; 120 rq->internal_tag = BLK_MQ_NO_TAG; 121 rq->start_time_ns = ktime_get_ns(); 122 rq->part = NULL; 123 refcount_set(&rq->ref, 1); 124 blk_crypto_rq_set_defaults(rq); 125 } 126 EXPORT_SYMBOL(blk_rq_init); 127 128 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 129 static const char *const blk_op_name[] = { 130 REQ_OP_NAME(READ), 131 REQ_OP_NAME(WRITE), 132 REQ_OP_NAME(FLUSH), 133 REQ_OP_NAME(DISCARD), 134 REQ_OP_NAME(SECURE_ERASE), 135 REQ_OP_NAME(ZONE_RESET), 136 REQ_OP_NAME(ZONE_RESET_ALL), 137 REQ_OP_NAME(ZONE_OPEN), 138 REQ_OP_NAME(ZONE_CLOSE), 139 REQ_OP_NAME(ZONE_FINISH), 140 REQ_OP_NAME(ZONE_APPEND), 141 REQ_OP_NAME(WRITE_SAME), 142 REQ_OP_NAME(WRITE_ZEROES), 143 REQ_OP_NAME(SCSI_IN), 144 REQ_OP_NAME(SCSI_OUT), 145 REQ_OP_NAME(DRV_IN), 146 REQ_OP_NAME(DRV_OUT), 147 }; 148 #undef REQ_OP_NAME 149 150 /** 151 * blk_op_str - Return string XXX in the REQ_OP_XXX. 152 * @op: REQ_OP_XXX. 153 * 154 * Description: Centralize block layer function to convert REQ_OP_XXX into 155 * string format. Useful in the debugging and tracing bio or request. For 156 * invalid REQ_OP_XXX it returns string "UNKNOWN". 157 */ 158 inline const char *blk_op_str(unsigned int op) 159 { 160 const char *op_str = "UNKNOWN"; 161 162 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 163 op_str = blk_op_name[op]; 164 165 return op_str; 166 } 167 EXPORT_SYMBOL_GPL(blk_op_str); 168 169 static const struct { 170 int errno; 171 const char *name; 172 } blk_errors[] = { 173 [BLK_STS_OK] = { 0, "" }, 174 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 175 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 176 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 177 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 178 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 179 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 180 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 181 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 182 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 183 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 184 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 185 186 /* device mapper special case, should not leak out: */ 187 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 188 189 /* everything else not covered above: */ 190 [BLK_STS_IOERR] = { -EIO, "I/O" }, 191 }; 192 193 blk_status_t errno_to_blk_status(int errno) 194 { 195 int i; 196 197 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 198 if (blk_errors[i].errno == errno) 199 return (__force blk_status_t)i; 200 } 201 202 return BLK_STS_IOERR; 203 } 204 EXPORT_SYMBOL_GPL(errno_to_blk_status); 205 206 int blk_status_to_errno(blk_status_t status) 207 { 208 int idx = (__force int)status; 209 210 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 211 return -EIO; 212 return blk_errors[idx].errno; 213 } 214 EXPORT_SYMBOL_GPL(blk_status_to_errno); 215 216 static void print_req_error(struct request *req, blk_status_t status, 217 const char *caller) 218 { 219 int idx = (__force int)status; 220 221 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 222 return; 223 224 printk_ratelimited(KERN_ERR 225 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 226 "phys_seg %u prio class %u\n", 227 caller, blk_errors[idx].name, 228 req->rq_disk ? req->rq_disk->disk_name : "?", 229 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 230 req->cmd_flags & ~REQ_OP_MASK, 231 req->nr_phys_segments, 232 IOPRIO_PRIO_CLASS(req->ioprio)); 233 } 234 235 static void req_bio_endio(struct request *rq, struct bio *bio, 236 unsigned int nbytes, blk_status_t error) 237 { 238 if (error) 239 bio->bi_status = error; 240 241 if (unlikely(rq->rq_flags & RQF_QUIET)) 242 bio_set_flag(bio, BIO_QUIET); 243 244 bio_advance(bio, nbytes); 245 246 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) { 247 /* 248 * Partial zone append completions cannot be supported as the 249 * BIO fragments may end up not being written sequentially. 250 */ 251 if (bio->bi_iter.bi_size) 252 bio->bi_status = BLK_STS_IOERR; 253 else 254 bio->bi_iter.bi_sector = rq->__sector; 255 } 256 257 /* don't actually finish bio if it's part of flush sequence */ 258 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 259 bio_endio(bio); 260 } 261 262 void blk_dump_rq_flags(struct request *rq, char *msg) 263 { 264 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 265 rq->rq_disk ? rq->rq_disk->disk_name : "?", 266 (unsigned long long) rq->cmd_flags); 267 268 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 269 (unsigned long long)blk_rq_pos(rq), 270 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 271 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 272 rq->bio, rq->biotail, blk_rq_bytes(rq)); 273 } 274 EXPORT_SYMBOL(blk_dump_rq_flags); 275 276 /** 277 * blk_sync_queue - cancel any pending callbacks on a queue 278 * @q: the queue 279 * 280 * Description: 281 * The block layer may perform asynchronous callback activity 282 * on a queue, such as calling the unplug function after a timeout. 283 * A block device may call blk_sync_queue to ensure that any 284 * such activity is cancelled, thus allowing it to release resources 285 * that the callbacks might use. The caller must already have made sure 286 * that its ->submit_bio will not re-add plugging prior to calling 287 * this function. 288 * 289 * This function does not cancel any asynchronous activity arising 290 * out of elevator or throttling code. That would require elevator_exit() 291 * and blkcg_exit_queue() to be called with queue lock initialized. 292 * 293 */ 294 void blk_sync_queue(struct request_queue *q) 295 { 296 del_timer_sync(&q->timeout); 297 cancel_work_sync(&q->timeout_work); 298 } 299 EXPORT_SYMBOL(blk_sync_queue); 300 301 /** 302 * blk_set_pm_only - increment pm_only counter 303 * @q: request queue pointer 304 */ 305 void blk_set_pm_only(struct request_queue *q) 306 { 307 atomic_inc(&q->pm_only); 308 } 309 EXPORT_SYMBOL_GPL(blk_set_pm_only); 310 311 void blk_clear_pm_only(struct request_queue *q) 312 { 313 int pm_only; 314 315 pm_only = atomic_dec_return(&q->pm_only); 316 WARN_ON_ONCE(pm_only < 0); 317 if (pm_only == 0) 318 wake_up_all(&q->mq_freeze_wq); 319 } 320 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 321 322 /** 323 * blk_put_queue - decrement the request_queue refcount 324 * @q: the request_queue structure to decrement the refcount for 325 * 326 * Decrements the refcount of the request_queue kobject. When this reaches 0 327 * we'll have blk_release_queue() called. 328 * 329 * Context: Any context, but the last reference must not be dropped from 330 * atomic context. 331 */ 332 void blk_put_queue(struct request_queue *q) 333 { 334 kobject_put(&q->kobj); 335 } 336 EXPORT_SYMBOL(blk_put_queue); 337 338 void blk_set_queue_dying(struct request_queue *q) 339 { 340 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 341 342 /* 343 * When queue DYING flag is set, we need to block new req 344 * entering queue, so we call blk_freeze_queue_start() to 345 * prevent I/O from crossing blk_queue_enter(). 346 */ 347 blk_freeze_queue_start(q); 348 349 if (queue_is_mq(q)) 350 blk_mq_wake_waiters(q); 351 352 /* Make blk_queue_enter() reexamine the DYING flag. */ 353 wake_up_all(&q->mq_freeze_wq); 354 } 355 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 356 357 /** 358 * blk_cleanup_queue - shutdown a request queue 359 * @q: request queue to shutdown 360 * 361 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 362 * put it. All future requests will be failed immediately with -ENODEV. 363 * 364 * Context: can sleep 365 */ 366 void blk_cleanup_queue(struct request_queue *q) 367 { 368 /* cannot be called from atomic context */ 369 might_sleep(); 370 371 WARN_ON_ONCE(blk_queue_registered(q)); 372 373 /* mark @q DYING, no new request or merges will be allowed afterwards */ 374 blk_set_queue_dying(q); 375 376 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 377 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 378 379 /* 380 * Drain all requests queued before DYING marking. Set DEAD flag to 381 * prevent that blk_mq_run_hw_queues() accesses the hardware queues 382 * after draining finished. 383 */ 384 blk_freeze_queue(q); 385 386 rq_qos_exit(q); 387 388 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 389 390 /* for synchronous bio-based driver finish in-flight integrity i/o */ 391 blk_flush_integrity(); 392 393 /* @q won't process any more request, flush async actions */ 394 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 395 blk_sync_queue(q); 396 397 if (queue_is_mq(q)) 398 blk_mq_exit_queue(q); 399 400 /* 401 * In theory, request pool of sched_tags belongs to request queue. 402 * However, the current implementation requires tag_set for freeing 403 * requests, so free the pool now. 404 * 405 * Queue has become frozen, there can't be any in-queue requests, so 406 * it is safe to free requests now. 407 */ 408 mutex_lock(&q->sysfs_lock); 409 if (q->elevator) 410 blk_mq_sched_free_requests(q); 411 mutex_unlock(&q->sysfs_lock); 412 413 percpu_ref_exit(&q->q_usage_counter); 414 415 /* @q is and will stay empty, shutdown and put */ 416 blk_put_queue(q); 417 } 418 EXPORT_SYMBOL(blk_cleanup_queue); 419 420 /** 421 * blk_queue_enter() - try to increase q->q_usage_counter 422 * @q: request queue pointer 423 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 424 */ 425 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 426 { 427 const bool pm = flags & BLK_MQ_REQ_PREEMPT; 428 429 while (true) { 430 bool success = false; 431 432 rcu_read_lock(); 433 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 434 /* 435 * The code that increments the pm_only counter is 436 * responsible for ensuring that that counter is 437 * globally visible before the queue is unfrozen. 438 */ 439 if (pm || !blk_queue_pm_only(q)) { 440 success = true; 441 } else { 442 percpu_ref_put(&q->q_usage_counter); 443 } 444 } 445 rcu_read_unlock(); 446 447 if (success) 448 return 0; 449 450 if (flags & BLK_MQ_REQ_NOWAIT) 451 return -EBUSY; 452 453 /* 454 * read pair of barrier in blk_freeze_queue_start(), 455 * we need to order reading __PERCPU_REF_DEAD flag of 456 * .q_usage_counter and reading .mq_freeze_depth or 457 * queue dying flag, otherwise the following wait may 458 * never return if the two reads are reordered. 459 */ 460 smp_rmb(); 461 462 wait_event(q->mq_freeze_wq, 463 (!q->mq_freeze_depth && 464 (pm || (blk_pm_request_resume(q), 465 !blk_queue_pm_only(q)))) || 466 blk_queue_dying(q)); 467 if (blk_queue_dying(q)) 468 return -ENODEV; 469 } 470 } 471 472 static inline int bio_queue_enter(struct bio *bio) 473 { 474 struct request_queue *q = bio->bi_disk->queue; 475 bool nowait = bio->bi_opf & REQ_NOWAIT; 476 int ret; 477 478 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0); 479 if (unlikely(ret)) { 480 if (nowait && !blk_queue_dying(q)) 481 bio_wouldblock_error(bio); 482 else 483 bio_io_error(bio); 484 } 485 486 return ret; 487 } 488 489 void blk_queue_exit(struct request_queue *q) 490 { 491 percpu_ref_put(&q->q_usage_counter); 492 } 493 494 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 495 { 496 struct request_queue *q = 497 container_of(ref, struct request_queue, q_usage_counter); 498 499 wake_up_all(&q->mq_freeze_wq); 500 } 501 502 static void blk_rq_timed_out_timer(struct timer_list *t) 503 { 504 struct request_queue *q = from_timer(q, t, timeout); 505 506 kblockd_schedule_work(&q->timeout_work); 507 } 508 509 static void blk_timeout_work(struct work_struct *work) 510 { 511 } 512 513 struct request_queue *blk_alloc_queue(int node_id) 514 { 515 struct request_queue *q; 516 int ret; 517 518 q = kmem_cache_alloc_node(blk_requestq_cachep, 519 GFP_KERNEL | __GFP_ZERO, node_id); 520 if (!q) 521 return NULL; 522 523 q->last_merge = NULL; 524 525 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL); 526 if (q->id < 0) 527 goto fail_q; 528 529 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 530 if (ret) 531 goto fail_id; 532 533 q->backing_dev_info = bdi_alloc(node_id); 534 if (!q->backing_dev_info) 535 goto fail_split; 536 537 q->stats = blk_alloc_queue_stats(); 538 if (!q->stats) 539 goto fail_stats; 540 541 q->node = node_id; 542 543 atomic_set(&q->nr_active_requests_shared_sbitmap, 0); 544 545 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 546 laptop_mode_timer_fn, 0); 547 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 548 INIT_WORK(&q->timeout_work, blk_timeout_work); 549 INIT_LIST_HEAD(&q->icq_list); 550 #ifdef CONFIG_BLK_CGROUP 551 INIT_LIST_HEAD(&q->blkg_list); 552 #endif 553 554 kobject_init(&q->kobj, &blk_queue_ktype); 555 556 mutex_init(&q->debugfs_mutex); 557 mutex_init(&q->sysfs_lock); 558 mutex_init(&q->sysfs_dir_lock); 559 spin_lock_init(&q->queue_lock); 560 561 init_waitqueue_head(&q->mq_freeze_wq); 562 mutex_init(&q->mq_freeze_lock); 563 564 /* 565 * Init percpu_ref in atomic mode so that it's faster to shutdown. 566 * See blk_register_queue() for details. 567 */ 568 if (percpu_ref_init(&q->q_usage_counter, 569 blk_queue_usage_counter_release, 570 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 571 goto fail_bdi; 572 573 if (blkcg_init_queue(q)) 574 goto fail_ref; 575 576 blk_queue_dma_alignment(q, 511); 577 blk_set_default_limits(&q->limits); 578 q->nr_requests = BLKDEV_MAX_RQ; 579 580 return q; 581 582 fail_ref: 583 percpu_ref_exit(&q->q_usage_counter); 584 fail_bdi: 585 blk_free_queue_stats(q->stats); 586 fail_stats: 587 bdi_put(q->backing_dev_info); 588 fail_split: 589 bioset_exit(&q->bio_split); 590 fail_id: 591 ida_simple_remove(&blk_queue_ida, q->id); 592 fail_q: 593 kmem_cache_free(blk_requestq_cachep, q); 594 return NULL; 595 } 596 EXPORT_SYMBOL(blk_alloc_queue); 597 598 /** 599 * blk_get_queue - increment the request_queue refcount 600 * @q: the request_queue structure to increment the refcount for 601 * 602 * Increment the refcount of the request_queue kobject. 603 * 604 * Context: Any context. 605 */ 606 bool blk_get_queue(struct request_queue *q) 607 { 608 if (likely(!blk_queue_dying(q))) { 609 __blk_get_queue(q); 610 return true; 611 } 612 613 return false; 614 } 615 EXPORT_SYMBOL(blk_get_queue); 616 617 /** 618 * blk_get_request - allocate a request 619 * @q: request queue to allocate a request for 620 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 621 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 622 */ 623 struct request *blk_get_request(struct request_queue *q, unsigned int op, 624 blk_mq_req_flags_t flags) 625 { 626 struct request *req; 627 628 WARN_ON_ONCE(op & REQ_NOWAIT); 629 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 630 631 req = blk_mq_alloc_request(q, op, flags); 632 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 633 q->mq_ops->initialize_rq_fn(req); 634 635 return req; 636 } 637 EXPORT_SYMBOL(blk_get_request); 638 639 void blk_put_request(struct request *req) 640 { 641 blk_mq_free_request(req); 642 } 643 EXPORT_SYMBOL(blk_put_request); 644 645 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 646 { 647 char b[BDEVNAME_SIZE]; 648 649 pr_info_ratelimited("attempt to access beyond end of device\n" 650 "%s: rw=%d, want=%llu, limit=%llu\n", 651 bio_devname(bio, b), bio->bi_opf, 652 bio_end_sector(bio), maxsector); 653 } 654 655 #ifdef CONFIG_FAIL_MAKE_REQUEST 656 657 static DECLARE_FAULT_ATTR(fail_make_request); 658 659 static int __init setup_fail_make_request(char *str) 660 { 661 return setup_fault_attr(&fail_make_request, str); 662 } 663 __setup("fail_make_request=", setup_fail_make_request); 664 665 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 666 { 667 return part->make_it_fail && should_fail(&fail_make_request, bytes); 668 } 669 670 static int __init fail_make_request_debugfs(void) 671 { 672 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 673 NULL, &fail_make_request); 674 675 return PTR_ERR_OR_ZERO(dir); 676 } 677 678 late_initcall(fail_make_request_debugfs); 679 680 #else /* CONFIG_FAIL_MAKE_REQUEST */ 681 682 static inline bool should_fail_request(struct hd_struct *part, 683 unsigned int bytes) 684 { 685 return false; 686 } 687 688 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 689 690 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 691 { 692 const int op = bio_op(bio); 693 694 if (part->policy && op_is_write(op)) { 695 char b[BDEVNAME_SIZE]; 696 697 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 698 return false; 699 700 WARN_ONCE(1, 701 "Trying to write to read-only block-device %s (partno %d)\n", 702 bio_devname(bio, b), part->partno); 703 /* Older lvm-tools actually trigger this */ 704 return false; 705 } 706 707 return false; 708 } 709 710 static noinline int should_fail_bio(struct bio *bio) 711 { 712 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 713 return -EIO; 714 return 0; 715 } 716 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 717 718 /* 719 * Check whether this bio extends beyond the end of the device or partition. 720 * This may well happen - the kernel calls bread() without checking the size of 721 * the device, e.g., when mounting a file system. 722 */ 723 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 724 { 725 unsigned int nr_sectors = bio_sectors(bio); 726 727 if (nr_sectors && maxsector && 728 (nr_sectors > maxsector || 729 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 730 handle_bad_sector(bio, maxsector); 731 return -EIO; 732 } 733 return 0; 734 } 735 736 /* 737 * Remap block n of partition p to block n+start(p) of the disk. 738 */ 739 static inline int blk_partition_remap(struct bio *bio) 740 { 741 struct hd_struct *p; 742 int ret = -EIO; 743 744 rcu_read_lock(); 745 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 746 if (unlikely(!p)) 747 goto out; 748 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 749 goto out; 750 if (unlikely(bio_check_ro(bio, p))) 751 goto out; 752 753 if (bio_sectors(bio)) { 754 if (bio_check_eod(bio, part_nr_sects_read(p))) 755 goto out; 756 bio->bi_iter.bi_sector += p->start_sect; 757 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 758 bio->bi_iter.bi_sector - p->start_sect); 759 } 760 bio->bi_partno = 0; 761 ret = 0; 762 out: 763 rcu_read_unlock(); 764 return ret; 765 } 766 767 /* 768 * Check write append to a zoned block device. 769 */ 770 static inline blk_status_t blk_check_zone_append(struct request_queue *q, 771 struct bio *bio) 772 { 773 sector_t pos = bio->bi_iter.bi_sector; 774 int nr_sectors = bio_sectors(bio); 775 776 /* Only applicable to zoned block devices */ 777 if (!blk_queue_is_zoned(q)) 778 return BLK_STS_NOTSUPP; 779 780 /* The bio sector must point to the start of a sequential zone */ 781 if (pos & (blk_queue_zone_sectors(q) - 1) || 782 !blk_queue_zone_is_seq(q, pos)) 783 return BLK_STS_IOERR; 784 785 /* 786 * Not allowed to cross zone boundaries. Otherwise, the BIO will be 787 * split and could result in non-contiguous sectors being written in 788 * different zones. 789 */ 790 if (nr_sectors > q->limits.chunk_sectors) 791 return BLK_STS_IOERR; 792 793 /* Make sure the BIO is small enough and will not get split */ 794 if (nr_sectors > q->limits.max_zone_append_sectors) 795 return BLK_STS_IOERR; 796 797 bio->bi_opf |= REQ_NOMERGE; 798 799 return BLK_STS_OK; 800 } 801 802 static noinline_for_stack bool submit_bio_checks(struct bio *bio) 803 { 804 struct request_queue *q = bio->bi_disk->queue; 805 blk_status_t status = BLK_STS_IOERR; 806 struct blk_plug *plug; 807 808 might_sleep(); 809 810 plug = blk_mq_plug(q, bio); 811 if (plug && plug->nowait) 812 bio->bi_opf |= REQ_NOWAIT; 813 814 /* 815 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 816 * if queue does not support NOWAIT. 817 */ 818 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q)) 819 goto not_supported; 820 821 if (should_fail_bio(bio)) 822 goto end_io; 823 824 if (bio->bi_partno) { 825 if (unlikely(blk_partition_remap(bio))) 826 goto end_io; 827 } else { 828 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 829 goto end_io; 830 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 831 goto end_io; 832 } 833 834 /* 835 * Filter flush bio's early so that bio based drivers without flush 836 * support don't have to worry about them. 837 */ 838 if (op_is_flush(bio->bi_opf) && 839 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 840 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 841 if (!bio_sectors(bio)) { 842 status = BLK_STS_OK; 843 goto end_io; 844 } 845 } 846 847 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 848 bio->bi_opf &= ~REQ_HIPRI; 849 850 switch (bio_op(bio)) { 851 case REQ_OP_DISCARD: 852 if (!blk_queue_discard(q)) 853 goto not_supported; 854 break; 855 case REQ_OP_SECURE_ERASE: 856 if (!blk_queue_secure_erase(q)) 857 goto not_supported; 858 break; 859 case REQ_OP_WRITE_SAME: 860 if (!q->limits.max_write_same_sectors) 861 goto not_supported; 862 break; 863 case REQ_OP_ZONE_APPEND: 864 status = blk_check_zone_append(q, bio); 865 if (status != BLK_STS_OK) 866 goto end_io; 867 break; 868 case REQ_OP_ZONE_RESET: 869 case REQ_OP_ZONE_OPEN: 870 case REQ_OP_ZONE_CLOSE: 871 case REQ_OP_ZONE_FINISH: 872 if (!blk_queue_is_zoned(q)) 873 goto not_supported; 874 break; 875 case REQ_OP_ZONE_RESET_ALL: 876 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q)) 877 goto not_supported; 878 break; 879 case REQ_OP_WRITE_ZEROES: 880 if (!q->limits.max_write_zeroes_sectors) 881 goto not_supported; 882 break; 883 default: 884 break; 885 } 886 887 /* 888 * Various block parts want %current->io_context, so allocate it up 889 * front rather than dealing with lots of pain to allocate it only 890 * where needed. This may fail and the block layer knows how to live 891 * with it. 892 */ 893 if (unlikely(!current->io_context)) 894 create_task_io_context(current, GFP_ATOMIC, q->node); 895 896 if (blk_throtl_bio(bio)) { 897 blkcg_bio_issue_init(bio); 898 return false; 899 } 900 901 blk_cgroup_bio_start(bio); 902 blkcg_bio_issue_init(bio); 903 904 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 905 trace_block_bio_queue(q, bio); 906 /* Now that enqueuing has been traced, we need to trace 907 * completion as well. 908 */ 909 bio_set_flag(bio, BIO_TRACE_COMPLETION); 910 } 911 return true; 912 913 not_supported: 914 status = BLK_STS_NOTSUPP; 915 end_io: 916 bio->bi_status = status; 917 bio_endio(bio); 918 return false; 919 } 920 921 static blk_qc_t __submit_bio(struct bio *bio) 922 { 923 struct gendisk *disk = bio->bi_disk; 924 blk_qc_t ret = BLK_QC_T_NONE; 925 926 if (blk_crypto_bio_prep(&bio)) { 927 if (!disk->fops->submit_bio) 928 return blk_mq_submit_bio(bio); 929 ret = disk->fops->submit_bio(bio); 930 } 931 blk_queue_exit(disk->queue); 932 return ret; 933 } 934 935 /* 936 * The loop in this function may be a bit non-obvious, and so deserves some 937 * explanation: 938 * 939 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure 940 * that), so we have a list with a single bio. 941 * - We pretend that we have just taken it off a longer list, so we assign 942 * bio_list to a pointer to the bio_list_on_stack, thus initialising the 943 * bio_list of new bios to be added. ->submit_bio() may indeed add some more 944 * bios through a recursive call to submit_bio_noacct. If it did, we find a 945 * non-NULL value in bio_list and re-enter the loop from the top. 946 * - In this case we really did just take the bio of the top of the list (no 947 * pretending) and so remove it from bio_list, and call into ->submit_bio() 948 * again. 949 * 950 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio. 951 * bio_list_on_stack[1] contains bios that were submitted before the current 952 * ->submit_bio_bio, but that haven't been processed yet. 953 */ 954 static blk_qc_t __submit_bio_noacct(struct bio *bio) 955 { 956 struct bio_list bio_list_on_stack[2]; 957 blk_qc_t ret = BLK_QC_T_NONE; 958 959 BUG_ON(bio->bi_next); 960 961 bio_list_init(&bio_list_on_stack[0]); 962 current->bio_list = bio_list_on_stack; 963 964 do { 965 struct request_queue *q = bio->bi_disk->queue; 966 struct bio_list lower, same; 967 968 if (unlikely(bio_queue_enter(bio) != 0)) 969 continue; 970 971 /* 972 * Create a fresh bio_list for all subordinate requests. 973 */ 974 bio_list_on_stack[1] = bio_list_on_stack[0]; 975 bio_list_init(&bio_list_on_stack[0]); 976 977 ret = __submit_bio(bio); 978 979 /* 980 * Sort new bios into those for a lower level and those for the 981 * same level. 982 */ 983 bio_list_init(&lower); 984 bio_list_init(&same); 985 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 986 if (q == bio->bi_disk->queue) 987 bio_list_add(&same, bio); 988 else 989 bio_list_add(&lower, bio); 990 991 /* 992 * Now assemble so we handle the lowest level first. 993 */ 994 bio_list_merge(&bio_list_on_stack[0], &lower); 995 bio_list_merge(&bio_list_on_stack[0], &same); 996 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 997 } while ((bio = bio_list_pop(&bio_list_on_stack[0]))); 998 999 current->bio_list = NULL; 1000 return ret; 1001 } 1002 1003 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio) 1004 { 1005 struct bio_list bio_list[2] = { }; 1006 blk_qc_t ret = BLK_QC_T_NONE; 1007 1008 current->bio_list = bio_list; 1009 1010 do { 1011 struct gendisk *disk = bio->bi_disk; 1012 1013 if (unlikely(bio_queue_enter(bio) != 0)) 1014 continue; 1015 1016 if (!blk_crypto_bio_prep(&bio)) { 1017 blk_queue_exit(disk->queue); 1018 ret = BLK_QC_T_NONE; 1019 continue; 1020 } 1021 1022 ret = blk_mq_submit_bio(bio); 1023 } while ((bio = bio_list_pop(&bio_list[0]))); 1024 1025 current->bio_list = NULL; 1026 return ret; 1027 } 1028 1029 /** 1030 * submit_bio_noacct - re-submit a bio to the block device layer for I/O 1031 * @bio: The bio describing the location in memory and on the device. 1032 * 1033 * This is a version of submit_bio() that shall only be used for I/O that is 1034 * resubmitted to lower level drivers by stacking block drivers. All file 1035 * systems and other upper level users of the block layer should use 1036 * submit_bio() instead. 1037 */ 1038 blk_qc_t submit_bio_noacct(struct bio *bio) 1039 { 1040 if (!submit_bio_checks(bio)) 1041 return BLK_QC_T_NONE; 1042 1043 /* 1044 * We only want one ->submit_bio to be active at a time, else stack 1045 * usage with stacked devices could be a problem. Use current->bio_list 1046 * to collect a list of requests submited by a ->submit_bio method while 1047 * it is active, and then process them after it returned. 1048 */ 1049 if (current->bio_list) { 1050 bio_list_add(¤t->bio_list[0], bio); 1051 return BLK_QC_T_NONE; 1052 } 1053 1054 if (!bio->bi_disk->fops->submit_bio) 1055 return __submit_bio_noacct_mq(bio); 1056 return __submit_bio_noacct(bio); 1057 } 1058 EXPORT_SYMBOL(submit_bio_noacct); 1059 1060 /** 1061 * submit_bio - submit a bio to the block device layer for I/O 1062 * @bio: The &struct bio which describes the I/O 1063 * 1064 * submit_bio() is used to submit I/O requests to block devices. It is passed a 1065 * fully set up &struct bio that describes the I/O that needs to be done. The 1066 * bio will be send to the device described by the bi_disk and bi_partno fields. 1067 * 1068 * The success/failure status of the request, along with notification of 1069 * completion, is delivered asynchronously through the ->bi_end_io() callback 1070 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has 1071 * been called. 1072 */ 1073 blk_qc_t submit_bio(struct bio *bio) 1074 { 1075 if (blkcg_punt_bio_submit(bio)) 1076 return BLK_QC_T_NONE; 1077 1078 /* 1079 * If it's a regular read/write or a barrier with data attached, 1080 * go through the normal accounting stuff before submission. 1081 */ 1082 if (bio_has_data(bio)) { 1083 unsigned int count; 1084 1085 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1086 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 1087 else 1088 count = bio_sectors(bio); 1089 1090 if (op_is_write(bio_op(bio))) { 1091 count_vm_events(PGPGOUT, count); 1092 } else { 1093 task_io_account_read(bio->bi_iter.bi_size); 1094 count_vm_events(PGPGIN, count); 1095 } 1096 1097 if (unlikely(block_dump)) { 1098 char b[BDEVNAME_SIZE]; 1099 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1100 current->comm, task_pid_nr(current), 1101 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 1102 (unsigned long long)bio->bi_iter.bi_sector, 1103 bio_devname(bio, b), count); 1104 } 1105 } 1106 1107 /* 1108 * If we're reading data that is part of the userspace workingset, count 1109 * submission time as memory stall. When the device is congested, or 1110 * the submitting cgroup IO-throttled, submission can be a significant 1111 * part of overall IO time. 1112 */ 1113 if (unlikely(bio_op(bio) == REQ_OP_READ && 1114 bio_flagged(bio, BIO_WORKINGSET))) { 1115 unsigned long pflags; 1116 blk_qc_t ret; 1117 1118 psi_memstall_enter(&pflags); 1119 ret = submit_bio_noacct(bio); 1120 psi_memstall_leave(&pflags); 1121 1122 return ret; 1123 } 1124 1125 return submit_bio_noacct(bio); 1126 } 1127 EXPORT_SYMBOL(submit_bio); 1128 1129 /** 1130 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1131 * for the new queue limits 1132 * @q: the queue 1133 * @rq: the request being checked 1134 * 1135 * Description: 1136 * @rq may have been made based on weaker limitations of upper-level queues 1137 * in request stacking drivers, and it may violate the limitation of @q. 1138 * Since the block layer and the underlying device driver trust @rq 1139 * after it is inserted to @q, it should be checked against @q before 1140 * the insertion using this generic function. 1141 * 1142 * Request stacking drivers like request-based dm may change the queue 1143 * limits when retrying requests on other queues. Those requests need 1144 * to be checked against the new queue limits again during dispatch. 1145 */ 1146 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q, 1147 struct request *rq) 1148 { 1149 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 1150 1151 if (blk_rq_sectors(rq) > max_sectors) { 1152 /* 1153 * SCSI device does not have a good way to return if 1154 * Write Same/Zero is actually supported. If a device rejects 1155 * a non-read/write command (discard, write same,etc.) the 1156 * low-level device driver will set the relevant queue limit to 1157 * 0 to prevent blk-lib from issuing more of the offending 1158 * operations. Commands queued prior to the queue limit being 1159 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 1160 * errors being propagated to upper layers. 1161 */ 1162 if (max_sectors == 0) 1163 return BLK_STS_NOTSUPP; 1164 1165 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 1166 __func__, blk_rq_sectors(rq), max_sectors); 1167 return BLK_STS_IOERR; 1168 } 1169 1170 /* 1171 * queue's settings related to segment counting like q->bounce_pfn 1172 * may differ from that of other stacking queues. 1173 * Recalculate it to check the request correctly on this queue's 1174 * limitation. 1175 */ 1176 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 1177 if (rq->nr_phys_segments > queue_max_segments(q)) { 1178 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 1179 __func__, rq->nr_phys_segments, queue_max_segments(q)); 1180 return BLK_STS_IOERR; 1181 } 1182 1183 return BLK_STS_OK; 1184 } 1185 1186 /** 1187 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1188 * @q: the queue to submit the request 1189 * @rq: the request being queued 1190 */ 1191 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1192 { 1193 blk_status_t ret; 1194 1195 ret = blk_cloned_rq_check_limits(q, rq); 1196 if (ret != BLK_STS_OK) 1197 return ret; 1198 1199 if (rq->rq_disk && 1200 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1201 return BLK_STS_IOERR; 1202 1203 if (blk_crypto_insert_cloned_request(rq)) 1204 return BLK_STS_IOERR; 1205 1206 if (blk_queue_io_stat(q)) 1207 blk_account_io_start(rq); 1208 1209 /* 1210 * Since we have a scheduler attached on the top device, 1211 * bypass a potential scheduler on the bottom device for 1212 * insert. 1213 */ 1214 return blk_mq_request_issue_directly(rq, true); 1215 } 1216 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1217 1218 /** 1219 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1220 * @rq: request to examine 1221 * 1222 * Description: 1223 * A request could be merge of IOs which require different failure 1224 * handling. This function determines the number of bytes which 1225 * can be failed from the beginning of the request without 1226 * crossing into area which need to be retried further. 1227 * 1228 * Return: 1229 * The number of bytes to fail. 1230 */ 1231 unsigned int blk_rq_err_bytes(const struct request *rq) 1232 { 1233 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1234 unsigned int bytes = 0; 1235 struct bio *bio; 1236 1237 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1238 return blk_rq_bytes(rq); 1239 1240 /* 1241 * Currently the only 'mixing' which can happen is between 1242 * different fastfail types. We can safely fail portions 1243 * which have all the failfast bits that the first one has - 1244 * the ones which are at least as eager to fail as the first 1245 * one. 1246 */ 1247 for (bio = rq->bio; bio; bio = bio->bi_next) { 1248 if ((bio->bi_opf & ff) != ff) 1249 break; 1250 bytes += bio->bi_iter.bi_size; 1251 } 1252 1253 /* this could lead to infinite loop */ 1254 BUG_ON(blk_rq_bytes(rq) && !bytes); 1255 return bytes; 1256 } 1257 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1258 1259 static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end) 1260 { 1261 unsigned long stamp; 1262 again: 1263 stamp = READ_ONCE(part->stamp); 1264 if (unlikely(stamp != now)) { 1265 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) 1266 __part_stat_add(part, io_ticks, end ? now - stamp : 1); 1267 } 1268 if (part->partno) { 1269 part = &part_to_disk(part)->part0; 1270 goto again; 1271 } 1272 } 1273 1274 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1275 { 1276 if (req->part && blk_do_io_stat(req)) { 1277 const int sgrp = op_stat_group(req_op(req)); 1278 struct hd_struct *part; 1279 1280 part_stat_lock(); 1281 part = req->part; 1282 part_stat_add(part, sectors[sgrp], bytes >> 9); 1283 part_stat_unlock(); 1284 } 1285 } 1286 1287 void blk_account_io_done(struct request *req, u64 now) 1288 { 1289 /* 1290 * Account IO completion. flush_rq isn't accounted as a 1291 * normal IO on queueing nor completion. Accounting the 1292 * containing request is enough. 1293 */ 1294 if (req->part && blk_do_io_stat(req) && 1295 !(req->rq_flags & RQF_FLUSH_SEQ)) { 1296 const int sgrp = op_stat_group(req_op(req)); 1297 struct hd_struct *part; 1298 1299 part_stat_lock(); 1300 part = req->part; 1301 1302 update_io_ticks(part, jiffies, true); 1303 part_stat_inc(part, ios[sgrp]); 1304 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns); 1305 part_stat_unlock(); 1306 1307 hd_struct_put(part); 1308 } 1309 } 1310 1311 void blk_account_io_start(struct request *rq) 1312 { 1313 if (!blk_do_io_stat(rq)) 1314 return; 1315 1316 rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 1317 1318 part_stat_lock(); 1319 update_io_ticks(rq->part, jiffies, false); 1320 part_stat_unlock(); 1321 } 1322 1323 static unsigned long __part_start_io_acct(struct hd_struct *part, 1324 unsigned int sectors, unsigned int op) 1325 { 1326 const int sgrp = op_stat_group(op); 1327 unsigned long now = READ_ONCE(jiffies); 1328 1329 part_stat_lock(); 1330 update_io_ticks(part, now, false); 1331 part_stat_inc(part, ios[sgrp]); 1332 part_stat_add(part, sectors[sgrp], sectors); 1333 part_stat_local_inc(part, in_flight[op_is_write(op)]); 1334 part_stat_unlock(); 1335 1336 return now; 1337 } 1338 1339 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part, 1340 struct bio *bio) 1341 { 1342 *part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector); 1343 1344 return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio)); 1345 } 1346 EXPORT_SYMBOL_GPL(part_start_io_acct); 1347 1348 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1349 unsigned int op) 1350 { 1351 return __part_start_io_acct(&disk->part0, sectors, op); 1352 } 1353 EXPORT_SYMBOL(disk_start_io_acct); 1354 1355 static void __part_end_io_acct(struct hd_struct *part, unsigned int op, 1356 unsigned long start_time) 1357 { 1358 const int sgrp = op_stat_group(op); 1359 unsigned long now = READ_ONCE(jiffies); 1360 unsigned long duration = now - start_time; 1361 1362 part_stat_lock(); 1363 update_io_ticks(part, now, true); 1364 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1365 part_stat_local_dec(part, in_flight[op_is_write(op)]); 1366 part_stat_unlock(); 1367 } 1368 1369 void part_end_io_acct(struct hd_struct *part, struct bio *bio, 1370 unsigned long start_time) 1371 { 1372 __part_end_io_acct(part, bio_op(bio), start_time); 1373 hd_struct_put(part); 1374 } 1375 EXPORT_SYMBOL_GPL(part_end_io_acct); 1376 1377 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1378 unsigned long start_time) 1379 { 1380 __part_end_io_acct(&disk->part0, op, start_time); 1381 } 1382 EXPORT_SYMBOL(disk_end_io_acct); 1383 1384 /* 1385 * Steal bios from a request and add them to a bio list. 1386 * The request must not have been partially completed before. 1387 */ 1388 void blk_steal_bios(struct bio_list *list, struct request *rq) 1389 { 1390 if (rq->bio) { 1391 if (list->tail) 1392 list->tail->bi_next = rq->bio; 1393 else 1394 list->head = rq->bio; 1395 list->tail = rq->biotail; 1396 1397 rq->bio = NULL; 1398 rq->biotail = NULL; 1399 } 1400 1401 rq->__data_len = 0; 1402 } 1403 EXPORT_SYMBOL_GPL(blk_steal_bios); 1404 1405 /** 1406 * blk_update_request - Special helper function for request stacking drivers 1407 * @req: the request being processed 1408 * @error: block status code 1409 * @nr_bytes: number of bytes to complete @req 1410 * 1411 * Description: 1412 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1413 * the request structure even if @req doesn't have leftover. 1414 * If @req has leftover, sets it up for the next range of segments. 1415 * 1416 * This special helper function is only for request stacking drivers 1417 * (e.g. request-based dm) so that they can handle partial completion. 1418 * Actual device drivers should use blk_mq_end_request instead. 1419 * 1420 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1421 * %false return from this function. 1422 * 1423 * Note: 1424 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both 1425 * blk_rq_bytes() and in blk_update_request(). 1426 * 1427 * Return: 1428 * %false - this request doesn't have any more data 1429 * %true - this request has more data 1430 **/ 1431 bool blk_update_request(struct request *req, blk_status_t error, 1432 unsigned int nr_bytes) 1433 { 1434 int total_bytes; 1435 1436 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 1437 1438 if (!req->bio) 1439 return false; 1440 1441 #ifdef CONFIG_BLK_DEV_INTEGRITY 1442 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 1443 error == BLK_STS_OK) 1444 req->q->integrity.profile->complete_fn(req, nr_bytes); 1445 #endif 1446 1447 if (unlikely(error && !blk_rq_is_passthrough(req) && 1448 !(req->rq_flags & RQF_QUIET))) 1449 print_req_error(req, error, __func__); 1450 1451 blk_account_io_completion(req, nr_bytes); 1452 1453 total_bytes = 0; 1454 while (req->bio) { 1455 struct bio *bio = req->bio; 1456 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 1457 1458 if (bio_bytes == bio->bi_iter.bi_size) 1459 req->bio = bio->bi_next; 1460 1461 /* Completion has already been traced */ 1462 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1463 req_bio_endio(req, bio, bio_bytes, error); 1464 1465 total_bytes += bio_bytes; 1466 nr_bytes -= bio_bytes; 1467 1468 if (!nr_bytes) 1469 break; 1470 } 1471 1472 /* 1473 * completely done 1474 */ 1475 if (!req->bio) { 1476 /* 1477 * Reset counters so that the request stacking driver 1478 * can find how many bytes remain in the request 1479 * later. 1480 */ 1481 req->__data_len = 0; 1482 return false; 1483 } 1484 1485 req->__data_len -= total_bytes; 1486 1487 /* update sector only for requests with clear definition of sector */ 1488 if (!blk_rq_is_passthrough(req)) 1489 req->__sector += total_bytes >> 9; 1490 1491 /* mixed attributes always follow the first bio */ 1492 if (req->rq_flags & RQF_MIXED_MERGE) { 1493 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1494 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1495 } 1496 1497 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1498 /* 1499 * If total number of sectors is less than the first segment 1500 * size, something has gone terribly wrong. 1501 */ 1502 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1503 blk_dump_rq_flags(req, "request botched"); 1504 req->__data_len = blk_rq_cur_bytes(req); 1505 } 1506 1507 /* recalculate the number of segments */ 1508 req->nr_phys_segments = blk_recalc_rq_segments(req); 1509 } 1510 1511 return true; 1512 } 1513 EXPORT_SYMBOL_GPL(blk_update_request); 1514 1515 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1516 /** 1517 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1518 * @rq: the request to be flushed 1519 * 1520 * Description: 1521 * Flush all pages in @rq. 1522 */ 1523 void rq_flush_dcache_pages(struct request *rq) 1524 { 1525 struct req_iterator iter; 1526 struct bio_vec bvec; 1527 1528 rq_for_each_segment(bvec, rq, iter) 1529 flush_dcache_page(bvec.bv_page); 1530 } 1531 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1532 #endif 1533 1534 /** 1535 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1536 * @q : the queue of the device being checked 1537 * 1538 * Description: 1539 * Check if underlying low-level drivers of a device are busy. 1540 * If the drivers want to export their busy state, they must set own 1541 * exporting function using blk_queue_lld_busy() first. 1542 * 1543 * Basically, this function is used only by request stacking drivers 1544 * to stop dispatching requests to underlying devices when underlying 1545 * devices are busy. This behavior helps more I/O merging on the queue 1546 * of the request stacking driver and prevents I/O throughput regression 1547 * on burst I/O load. 1548 * 1549 * Return: 1550 * 0 - Not busy (The request stacking driver should dispatch request) 1551 * 1 - Busy (The request stacking driver should stop dispatching request) 1552 */ 1553 int blk_lld_busy(struct request_queue *q) 1554 { 1555 if (queue_is_mq(q) && q->mq_ops->busy) 1556 return q->mq_ops->busy(q); 1557 1558 return 0; 1559 } 1560 EXPORT_SYMBOL_GPL(blk_lld_busy); 1561 1562 /** 1563 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1564 * @rq: the clone request to be cleaned up 1565 * 1566 * Description: 1567 * Free all bios in @rq for a cloned request. 1568 */ 1569 void blk_rq_unprep_clone(struct request *rq) 1570 { 1571 struct bio *bio; 1572 1573 while ((bio = rq->bio) != NULL) { 1574 rq->bio = bio->bi_next; 1575 1576 bio_put(bio); 1577 } 1578 } 1579 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1580 1581 /** 1582 * blk_rq_prep_clone - Helper function to setup clone request 1583 * @rq: the request to be setup 1584 * @rq_src: original request to be cloned 1585 * @bs: bio_set that bios for clone are allocated from 1586 * @gfp_mask: memory allocation mask for bio 1587 * @bio_ctr: setup function to be called for each clone bio. 1588 * Returns %0 for success, non %0 for failure. 1589 * @data: private data to be passed to @bio_ctr 1590 * 1591 * Description: 1592 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1593 * Also, pages which the original bios are pointing to are not copied 1594 * and the cloned bios just point same pages. 1595 * So cloned bios must be completed before original bios, which means 1596 * the caller must complete @rq before @rq_src. 1597 */ 1598 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1599 struct bio_set *bs, gfp_t gfp_mask, 1600 int (*bio_ctr)(struct bio *, struct bio *, void *), 1601 void *data) 1602 { 1603 struct bio *bio, *bio_src; 1604 1605 if (!bs) 1606 bs = &fs_bio_set; 1607 1608 __rq_for_each_bio(bio_src, rq_src) { 1609 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1610 if (!bio) 1611 goto free_and_out; 1612 1613 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1614 goto free_and_out; 1615 1616 if (rq->bio) { 1617 rq->biotail->bi_next = bio; 1618 rq->biotail = bio; 1619 } else { 1620 rq->bio = rq->biotail = bio; 1621 } 1622 bio = NULL; 1623 } 1624 1625 /* Copy attributes of the original request to the clone request. */ 1626 rq->__sector = blk_rq_pos(rq_src); 1627 rq->__data_len = blk_rq_bytes(rq_src); 1628 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1629 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 1630 rq->special_vec = rq_src->special_vec; 1631 } 1632 rq->nr_phys_segments = rq_src->nr_phys_segments; 1633 rq->ioprio = rq_src->ioprio; 1634 1635 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 1636 goto free_and_out; 1637 1638 return 0; 1639 1640 free_and_out: 1641 if (bio) 1642 bio_put(bio); 1643 blk_rq_unprep_clone(rq); 1644 1645 return -ENOMEM; 1646 } 1647 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1648 1649 int kblockd_schedule_work(struct work_struct *work) 1650 { 1651 return queue_work(kblockd_workqueue, work); 1652 } 1653 EXPORT_SYMBOL(kblockd_schedule_work); 1654 1655 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1656 unsigned long delay) 1657 { 1658 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1659 } 1660 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1661 1662 /** 1663 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1664 * @plug: The &struct blk_plug that needs to be initialized 1665 * 1666 * Description: 1667 * blk_start_plug() indicates to the block layer an intent by the caller 1668 * to submit multiple I/O requests in a batch. The block layer may use 1669 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1670 * is called. However, the block layer may choose to submit requests 1671 * before a call to blk_finish_plug() if the number of queued I/Os 1672 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1673 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1674 * the task schedules (see below). 1675 * 1676 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1677 * pending I/O should the task end up blocking between blk_start_plug() and 1678 * blk_finish_plug(). This is important from a performance perspective, but 1679 * also ensures that we don't deadlock. For instance, if the task is blocking 1680 * for a memory allocation, memory reclaim could end up wanting to free a 1681 * page belonging to that request that is currently residing in our private 1682 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1683 * this kind of deadlock. 1684 */ 1685 void blk_start_plug(struct blk_plug *plug) 1686 { 1687 struct task_struct *tsk = current; 1688 1689 /* 1690 * If this is a nested plug, don't actually assign it. 1691 */ 1692 if (tsk->plug) 1693 return; 1694 1695 INIT_LIST_HEAD(&plug->mq_list); 1696 INIT_LIST_HEAD(&plug->cb_list); 1697 plug->rq_count = 0; 1698 plug->multiple_queues = false; 1699 plug->nowait = false; 1700 1701 /* 1702 * Store ordering should not be needed here, since a potential 1703 * preempt will imply a full memory barrier 1704 */ 1705 tsk->plug = plug; 1706 } 1707 EXPORT_SYMBOL(blk_start_plug); 1708 1709 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1710 { 1711 LIST_HEAD(callbacks); 1712 1713 while (!list_empty(&plug->cb_list)) { 1714 list_splice_init(&plug->cb_list, &callbacks); 1715 1716 while (!list_empty(&callbacks)) { 1717 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1718 struct blk_plug_cb, 1719 list); 1720 list_del(&cb->list); 1721 cb->callback(cb, from_schedule); 1722 } 1723 } 1724 } 1725 1726 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1727 int size) 1728 { 1729 struct blk_plug *plug = current->plug; 1730 struct blk_plug_cb *cb; 1731 1732 if (!plug) 1733 return NULL; 1734 1735 list_for_each_entry(cb, &plug->cb_list, list) 1736 if (cb->callback == unplug && cb->data == data) 1737 return cb; 1738 1739 /* Not currently on the callback list */ 1740 BUG_ON(size < sizeof(*cb)); 1741 cb = kzalloc(size, GFP_ATOMIC); 1742 if (cb) { 1743 cb->data = data; 1744 cb->callback = unplug; 1745 list_add(&cb->list, &plug->cb_list); 1746 } 1747 return cb; 1748 } 1749 EXPORT_SYMBOL(blk_check_plugged); 1750 1751 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1752 { 1753 flush_plug_callbacks(plug, from_schedule); 1754 1755 if (!list_empty(&plug->mq_list)) 1756 blk_mq_flush_plug_list(plug, from_schedule); 1757 } 1758 1759 /** 1760 * blk_finish_plug - mark the end of a batch of submitted I/O 1761 * @plug: The &struct blk_plug passed to blk_start_plug() 1762 * 1763 * Description: 1764 * Indicate that a batch of I/O submissions is complete. This function 1765 * must be paired with an initial call to blk_start_plug(). The intent 1766 * is to allow the block layer to optimize I/O submission. See the 1767 * documentation for blk_start_plug() for more information. 1768 */ 1769 void blk_finish_plug(struct blk_plug *plug) 1770 { 1771 if (plug != current->plug) 1772 return; 1773 blk_flush_plug_list(plug, false); 1774 1775 current->plug = NULL; 1776 } 1777 EXPORT_SYMBOL(blk_finish_plug); 1778 1779 void blk_io_schedule(void) 1780 { 1781 /* Prevent hang_check timer from firing at us during very long I/O */ 1782 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 1783 1784 if (timeout) 1785 io_schedule_timeout(timeout); 1786 else 1787 io_schedule(); 1788 } 1789 EXPORT_SYMBOL_GPL(blk_io_schedule); 1790 1791 int __init blk_dev_init(void) 1792 { 1793 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1794 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1795 sizeof_field(struct request, cmd_flags)); 1796 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1797 sizeof_field(struct bio, bi_opf)); 1798 1799 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1800 kblockd_workqueue = alloc_workqueue("kblockd", 1801 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1802 if (!kblockd_workqueue) 1803 panic("Failed to create kblockd\n"); 1804 1805 blk_requestq_cachep = kmem_cache_create("request_queue", 1806 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1807 1808 blk_debugfs_root = debugfs_create_dir("block", NULL); 1809 1810 return 0; 1811 } 1812