1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/blktrace_api.h> 30 #include <linux/fault-inject.h> 31 32 #define CREATE_TRACE_POINTS 33 #include <trace/events/block.h> 34 35 #include "blk.h" 36 37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 39 40 static int __make_request(struct request_queue *q, struct bio *bio); 41 42 /* 43 * For the allocated request tables 44 */ 45 static struct kmem_cache *request_cachep; 46 47 /* 48 * For queue allocation 49 */ 50 struct kmem_cache *blk_requestq_cachep; 51 52 /* 53 * Controlling structure to kblockd 54 */ 55 static struct workqueue_struct *kblockd_workqueue; 56 57 static void drive_stat_acct(struct request *rq, int new_io) 58 { 59 struct hd_struct *part; 60 int rw = rq_data_dir(rq); 61 int cpu; 62 63 if (!blk_do_io_stat(rq)) 64 return; 65 66 cpu = part_stat_lock(); 67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 68 69 if (!new_io) 70 part_stat_inc(cpu, part, merges[rw]); 71 else { 72 part_round_stats(cpu, part); 73 part_inc_in_flight(part); 74 } 75 76 part_stat_unlock(); 77 } 78 79 void blk_queue_congestion_threshold(struct request_queue *q) 80 { 81 int nr; 82 83 nr = q->nr_requests - (q->nr_requests / 8) + 1; 84 if (nr > q->nr_requests) 85 nr = q->nr_requests; 86 q->nr_congestion_on = nr; 87 88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 89 if (nr < 1) 90 nr = 1; 91 q->nr_congestion_off = nr; 92 } 93 94 /** 95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 96 * @bdev: device 97 * 98 * Locates the passed device's request queue and returns the address of its 99 * backing_dev_info 100 * 101 * Will return NULL if the request queue cannot be located. 102 */ 103 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 104 { 105 struct backing_dev_info *ret = NULL; 106 struct request_queue *q = bdev_get_queue(bdev); 107 108 if (q) 109 ret = &q->backing_dev_info; 110 return ret; 111 } 112 EXPORT_SYMBOL(blk_get_backing_dev_info); 113 114 void blk_rq_init(struct request_queue *q, struct request *rq) 115 { 116 memset(rq, 0, sizeof(*rq)); 117 118 INIT_LIST_HEAD(&rq->queuelist); 119 INIT_LIST_HEAD(&rq->timeout_list); 120 rq->cpu = -1; 121 rq->q = q; 122 rq->__sector = (sector_t) -1; 123 INIT_HLIST_NODE(&rq->hash); 124 RB_CLEAR_NODE(&rq->rb_node); 125 rq->cmd = rq->__cmd; 126 rq->cmd_len = BLK_MAX_CDB; 127 rq->tag = -1; 128 rq->ref_count = 1; 129 rq->start_time = jiffies; 130 } 131 EXPORT_SYMBOL(blk_rq_init); 132 133 static void req_bio_endio(struct request *rq, struct bio *bio, 134 unsigned int nbytes, int error) 135 { 136 struct request_queue *q = rq->q; 137 138 if (&q->bar_rq != rq) { 139 if (error) 140 clear_bit(BIO_UPTODATE, &bio->bi_flags); 141 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 142 error = -EIO; 143 144 if (unlikely(nbytes > bio->bi_size)) { 145 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 146 __func__, nbytes, bio->bi_size); 147 nbytes = bio->bi_size; 148 } 149 150 if (unlikely(rq->cmd_flags & REQ_QUIET)) 151 set_bit(BIO_QUIET, &bio->bi_flags); 152 153 bio->bi_size -= nbytes; 154 bio->bi_sector += (nbytes >> 9); 155 156 if (bio_integrity(bio)) 157 bio_integrity_advance(bio, nbytes); 158 159 if (bio->bi_size == 0) 160 bio_endio(bio, error); 161 } else { 162 163 /* 164 * Okay, this is the barrier request in progress, just 165 * record the error; 166 */ 167 if (error && !q->orderr) 168 q->orderr = error; 169 } 170 } 171 172 void blk_dump_rq_flags(struct request *rq, char *msg) 173 { 174 int bit; 175 176 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 177 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 178 rq->cmd_flags); 179 180 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 181 (unsigned long long)blk_rq_pos(rq), 182 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 183 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 184 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 185 186 if (blk_pc_request(rq)) { 187 printk(KERN_INFO " cdb: "); 188 for (bit = 0; bit < BLK_MAX_CDB; bit++) 189 printk("%02x ", rq->cmd[bit]); 190 printk("\n"); 191 } 192 } 193 EXPORT_SYMBOL(blk_dump_rq_flags); 194 195 /* 196 * "plug" the device if there are no outstanding requests: this will 197 * force the transfer to start only after we have put all the requests 198 * on the list. 199 * 200 * This is called with interrupts off and no requests on the queue and 201 * with the queue lock held. 202 */ 203 void blk_plug_device(struct request_queue *q) 204 { 205 WARN_ON(!irqs_disabled()); 206 207 /* 208 * don't plug a stopped queue, it must be paired with blk_start_queue() 209 * which will restart the queueing 210 */ 211 if (blk_queue_stopped(q)) 212 return; 213 214 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) { 215 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 216 trace_block_plug(q); 217 } 218 } 219 EXPORT_SYMBOL(blk_plug_device); 220 221 /** 222 * blk_plug_device_unlocked - plug a device without queue lock held 223 * @q: The &struct request_queue to plug 224 * 225 * Description: 226 * Like @blk_plug_device(), but grabs the queue lock and disables 227 * interrupts. 228 **/ 229 void blk_plug_device_unlocked(struct request_queue *q) 230 { 231 unsigned long flags; 232 233 spin_lock_irqsave(q->queue_lock, flags); 234 blk_plug_device(q); 235 spin_unlock_irqrestore(q->queue_lock, flags); 236 } 237 EXPORT_SYMBOL(blk_plug_device_unlocked); 238 239 /* 240 * remove the queue from the plugged list, if present. called with 241 * queue lock held and interrupts disabled. 242 */ 243 int blk_remove_plug(struct request_queue *q) 244 { 245 WARN_ON(!irqs_disabled()); 246 247 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q)) 248 return 0; 249 250 del_timer(&q->unplug_timer); 251 return 1; 252 } 253 EXPORT_SYMBOL(blk_remove_plug); 254 255 /* 256 * remove the plug and let it rip.. 257 */ 258 void __generic_unplug_device(struct request_queue *q) 259 { 260 if (unlikely(blk_queue_stopped(q))) 261 return; 262 if (!blk_remove_plug(q) && !blk_queue_nonrot(q)) 263 return; 264 265 q->request_fn(q); 266 } 267 268 /** 269 * generic_unplug_device - fire a request queue 270 * @q: The &struct request_queue in question 271 * 272 * Description: 273 * Linux uses plugging to build bigger requests queues before letting 274 * the device have at them. If a queue is plugged, the I/O scheduler 275 * is still adding and merging requests on the queue. Once the queue 276 * gets unplugged, the request_fn defined for the queue is invoked and 277 * transfers started. 278 **/ 279 void generic_unplug_device(struct request_queue *q) 280 { 281 if (blk_queue_plugged(q)) { 282 spin_lock_irq(q->queue_lock); 283 __generic_unplug_device(q); 284 spin_unlock_irq(q->queue_lock); 285 } 286 } 287 EXPORT_SYMBOL(generic_unplug_device); 288 289 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 290 struct page *page) 291 { 292 struct request_queue *q = bdi->unplug_io_data; 293 294 blk_unplug(q); 295 } 296 297 void blk_unplug_work(struct work_struct *work) 298 { 299 struct request_queue *q = 300 container_of(work, struct request_queue, unplug_work); 301 302 trace_block_unplug_io(q); 303 q->unplug_fn(q); 304 } 305 306 void blk_unplug_timeout(unsigned long data) 307 { 308 struct request_queue *q = (struct request_queue *)data; 309 310 trace_block_unplug_timer(q); 311 kblockd_schedule_work(q, &q->unplug_work); 312 } 313 314 void blk_unplug(struct request_queue *q) 315 { 316 /* 317 * devices don't necessarily have an ->unplug_fn defined 318 */ 319 if (q->unplug_fn) { 320 trace_block_unplug_io(q); 321 q->unplug_fn(q); 322 } 323 } 324 EXPORT_SYMBOL(blk_unplug); 325 326 /** 327 * blk_start_queue - restart a previously stopped queue 328 * @q: The &struct request_queue in question 329 * 330 * Description: 331 * blk_start_queue() will clear the stop flag on the queue, and call 332 * the request_fn for the queue if it was in a stopped state when 333 * entered. Also see blk_stop_queue(). Queue lock must be held. 334 **/ 335 void blk_start_queue(struct request_queue *q) 336 { 337 WARN_ON(!irqs_disabled()); 338 339 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 340 __blk_run_queue(q); 341 } 342 EXPORT_SYMBOL(blk_start_queue); 343 344 /** 345 * blk_stop_queue - stop a queue 346 * @q: The &struct request_queue in question 347 * 348 * Description: 349 * The Linux block layer assumes that a block driver will consume all 350 * entries on the request queue when the request_fn strategy is called. 351 * Often this will not happen, because of hardware limitations (queue 352 * depth settings). If a device driver gets a 'queue full' response, 353 * or if it simply chooses not to queue more I/O at one point, it can 354 * call this function to prevent the request_fn from being called until 355 * the driver has signalled it's ready to go again. This happens by calling 356 * blk_start_queue() to restart queue operations. Queue lock must be held. 357 **/ 358 void blk_stop_queue(struct request_queue *q) 359 { 360 blk_remove_plug(q); 361 queue_flag_set(QUEUE_FLAG_STOPPED, q); 362 } 363 EXPORT_SYMBOL(blk_stop_queue); 364 365 /** 366 * blk_sync_queue - cancel any pending callbacks on a queue 367 * @q: the queue 368 * 369 * Description: 370 * The block layer may perform asynchronous callback activity 371 * on a queue, such as calling the unplug function after a timeout. 372 * A block device may call blk_sync_queue to ensure that any 373 * such activity is cancelled, thus allowing it to release resources 374 * that the callbacks might use. The caller must already have made sure 375 * that its ->make_request_fn will not re-add plugging prior to calling 376 * this function. 377 * 378 */ 379 void blk_sync_queue(struct request_queue *q) 380 { 381 del_timer_sync(&q->unplug_timer); 382 del_timer_sync(&q->timeout); 383 cancel_work_sync(&q->unplug_work); 384 } 385 EXPORT_SYMBOL(blk_sync_queue); 386 387 /** 388 * __blk_run_queue - run a single device queue 389 * @q: The queue to run 390 * 391 * Description: 392 * See @blk_run_queue. This variant must be called with the queue lock 393 * held and interrupts disabled. 394 * 395 */ 396 void __blk_run_queue(struct request_queue *q) 397 { 398 blk_remove_plug(q); 399 400 if (unlikely(blk_queue_stopped(q))) 401 return; 402 403 if (elv_queue_empty(q)) 404 return; 405 406 /* 407 * Only recurse once to avoid overrunning the stack, let the unplug 408 * handling reinvoke the handler shortly if we already got there. 409 */ 410 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 411 q->request_fn(q); 412 queue_flag_clear(QUEUE_FLAG_REENTER, q); 413 } else { 414 queue_flag_set(QUEUE_FLAG_PLUGGED, q); 415 kblockd_schedule_work(q, &q->unplug_work); 416 } 417 } 418 EXPORT_SYMBOL(__blk_run_queue); 419 420 /** 421 * blk_run_queue - run a single device queue 422 * @q: The queue to run 423 * 424 * Description: 425 * Invoke request handling on this queue, if it has pending work to do. 426 * May be used to restart queueing when a request has completed. 427 */ 428 void blk_run_queue(struct request_queue *q) 429 { 430 unsigned long flags; 431 432 spin_lock_irqsave(q->queue_lock, flags); 433 __blk_run_queue(q); 434 spin_unlock_irqrestore(q->queue_lock, flags); 435 } 436 EXPORT_SYMBOL(blk_run_queue); 437 438 void blk_put_queue(struct request_queue *q) 439 { 440 kobject_put(&q->kobj); 441 } 442 443 void blk_cleanup_queue(struct request_queue *q) 444 { 445 /* 446 * We know we have process context here, so we can be a little 447 * cautious and ensure that pending block actions on this device 448 * are done before moving on. Going into this function, we should 449 * not have processes doing IO to this device. 450 */ 451 blk_sync_queue(q); 452 453 mutex_lock(&q->sysfs_lock); 454 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 455 mutex_unlock(&q->sysfs_lock); 456 457 if (q->elevator) 458 elevator_exit(q->elevator); 459 460 blk_put_queue(q); 461 } 462 EXPORT_SYMBOL(blk_cleanup_queue); 463 464 static int blk_init_free_list(struct request_queue *q) 465 { 466 struct request_list *rl = &q->rq; 467 468 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 469 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 470 rl->elvpriv = 0; 471 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 472 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 473 474 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 475 mempool_free_slab, request_cachep, q->node); 476 477 if (!rl->rq_pool) 478 return -ENOMEM; 479 480 return 0; 481 } 482 483 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 484 { 485 return blk_alloc_queue_node(gfp_mask, -1); 486 } 487 EXPORT_SYMBOL(blk_alloc_queue); 488 489 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 490 { 491 struct request_queue *q; 492 int err; 493 494 q = kmem_cache_alloc_node(blk_requestq_cachep, 495 gfp_mask | __GFP_ZERO, node_id); 496 if (!q) 497 return NULL; 498 499 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 500 q->backing_dev_info.unplug_io_data = q; 501 err = bdi_init(&q->backing_dev_info); 502 if (err) { 503 kmem_cache_free(blk_requestq_cachep, q); 504 return NULL; 505 } 506 507 init_timer(&q->unplug_timer); 508 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 509 INIT_LIST_HEAD(&q->timeout_list); 510 INIT_WORK(&q->unplug_work, blk_unplug_work); 511 512 kobject_init(&q->kobj, &blk_queue_ktype); 513 514 mutex_init(&q->sysfs_lock); 515 spin_lock_init(&q->__queue_lock); 516 517 return q; 518 } 519 EXPORT_SYMBOL(blk_alloc_queue_node); 520 521 /** 522 * blk_init_queue - prepare a request queue for use with a block device 523 * @rfn: The function to be called to process requests that have been 524 * placed on the queue. 525 * @lock: Request queue spin lock 526 * 527 * Description: 528 * If a block device wishes to use the standard request handling procedures, 529 * which sorts requests and coalesces adjacent requests, then it must 530 * call blk_init_queue(). The function @rfn will be called when there 531 * are requests on the queue that need to be processed. If the device 532 * supports plugging, then @rfn may not be called immediately when requests 533 * are available on the queue, but may be called at some time later instead. 534 * Plugged queues are generally unplugged when a buffer belonging to one 535 * of the requests on the queue is needed, or due to memory pressure. 536 * 537 * @rfn is not required, or even expected, to remove all requests off the 538 * queue, but only as many as it can handle at a time. If it does leave 539 * requests on the queue, it is responsible for arranging that the requests 540 * get dealt with eventually. 541 * 542 * The queue spin lock must be held while manipulating the requests on the 543 * request queue; this lock will be taken also from interrupt context, so irq 544 * disabling is needed for it. 545 * 546 * Function returns a pointer to the initialized request queue, or %NULL if 547 * it didn't succeed. 548 * 549 * Note: 550 * blk_init_queue() must be paired with a blk_cleanup_queue() call 551 * when the block device is deactivated (such as at module unload). 552 **/ 553 554 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 555 { 556 return blk_init_queue_node(rfn, lock, -1); 557 } 558 EXPORT_SYMBOL(blk_init_queue); 559 560 struct request_queue * 561 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 562 { 563 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id); 564 565 if (!q) 566 return NULL; 567 568 q->node = node_id; 569 if (blk_init_free_list(q)) { 570 kmem_cache_free(blk_requestq_cachep, q); 571 return NULL; 572 } 573 574 /* 575 * if caller didn't supply a lock, they get per-queue locking with 576 * our embedded lock 577 */ 578 if (!lock) 579 lock = &q->__queue_lock; 580 581 q->request_fn = rfn; 582 q->prep_rq_fn = NULL; 583 q->unplug_fn = generic_unplug_device; 584 q->queue_flags = QUEUE_FLAG_DEFAULT; 585 q->queue_lock = lock; 586 587 /* 588 * This also sets hw/phys segments, boundary and size 589 */ 590 blk_queue_make_request(q, __make_request); 591 592 q->sg_reserved_size = INT_MAX; 593 594 blk_set_cmd_filter_defaults(&q->cmd_filter); 595 596 /* 597 * all done 598 */ 599 if (!elevator_init(q, NULL)) { 600 blk_queue_congestion_threshold(q); 601 return q; 602 } 603 604 blk_put_queue(q); 605 return NULL; 606 } 607 EXPORT_SYMBOL(blk_init_queue_node); 608 609 int blk_get_queue(struct request_queue *q) 610 { 611 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 612 kobject_get(&q->kobj); 613 return 0; 614 } 615 616 return 1; 617 } 618 619 static inline void blk_free_request(struct request_queue *q, struct request *rq) 620 { 621 if (rq->cmd_flags & REQ_ELVPRIV) 622 elv_put_request(q, rq); 623 mempool_free(rq, q->rq.rq_pool); 624 } 625 626 static struct request * 627 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask) 628 { 629 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 630 631 if (!rq) 632 return NULL; 633 634 blk_rq_init(q, rq); 635 636 rq->cmd_flags = flags | REQ_ALLOCED; 637 638 if (priv) { 639 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 640 mempool_free(rq, q->rq.rq_pool); 641 return NULL; 642 } 643 rq->cmd_flags |= REQ_ELVPRIV; 644 } 645 646 return rq; 647 } 648 649 /* 650 * ioc_batching returns true if the ioc is a valid batching request and 651 * should be given priority access to a request. 652 */ 653 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 654 { 655 if (!ioc) 656 return 0; 657 658 /* 659 * Make sure the process is able to allocate at least 1 request 660 * even if the batch times out, otherwise we could theoretically 661 * lose wakeups. 662 */ 663 return ioc->nr_batch_requests == q->nr_batching || 664 (ioc->nr_batch_requests > 0 665 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 666 } 667 668 /* 669 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 670 * will cause the process to be a "batcher" on all queues in the system. This 671 * is the behaviour we want though - once it gets a wakeup it should be given 672 * a nice run. 673 */ 674 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 675 { 676 if (!ioc || ioc_batching(q, ioc)) 677 return; 678 679 ioc->nr_batch_requests = q->nr_batching; 680 ioc->last_waited = jiffies; 681 } 682 683 static void __freed_request(struct request_queue *q, int sync) 684 { 685 struct request_list *rl = &q->rq; 686 687 if (rl->count[sync] < queue_congestion_off_threshold(q)) 688 blk_clear_queue_congested(q, sync); 689 690 if (rl->count[sync] + 1 <= q->nr_requests) { 691 if (waitqueue_active(&rl->wait[sync])) 692 wake_up(&rl->wait[sync]); 693 694 blk_clear_queue_full(q, sync); 695 } 696 } 697 698 /* 699 * A request has just been released. Account for it, update the full and 700 * congestion status, wake up any waiters. Called under q->queue_lock. 701 */ 702 static void freed_request(struct request_queue *q, int sync, int priv) 703 { 704 struct request_list *rl = &q->rq; 705 706 rl->count[sync]--; 707 if (priv) 708 rl->elvpriv--; 709 710 __freed_request(q, sync); 711 712 if (unlikely(rl->starved[sync ^ 1])) 713 __freed_request(q, sync ^ 1); 714 } 715 716 /* 717 * Get a free request, queue_lock must be held. 718 * Returns NULL on failure, with queue_lock held. 719 * Returns !NULL on success, with queue_lock *not held*. 720 */ 721 static struct request *get_request(struct request_queue *q, int rw_flags, 722 struct bio *bio, gfp_t gfp_mask) 723 { 724 struct request *rq = NULL; 725 struct request_list *rl = &q->rq; 726 struct io_context *ioc = NULL; 727 const bool is_sync = rw_is_sync(rw_flags) != 0; 728 int may_queue, priv; 729 730 may_queue = elv_may_queue(q, rw_flags); 731 if (may_queue == ELV_MQUEUE_NO) 732 goto rq_starved; 733 734 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 735 if (rl->count[is_sync]+1 >= q->nr_requests) { 736 ioc = current_io_context(GFP_ATOMIC, q->node); 737 /* 738 * The queue will fill after this allocation, so set 739 * it as full, and mark this process as "batching". 740 * This process will be allowed to complete a batch of 741 * requests, others will be blocked. 742 */ 743 if (!blk_queue_full(q, is_sync)) { 744 ioc_set_batching(q, ioc); 745 blk_set_queue_full(q, is_sync); 746 } else { 747 if (may_queue != ELV_MQUEUE_MUST 748 && !ioc_batching(q, ioc)) { 749 /* 750 * The queue is full and the allocating 751 * process is not a "batcher", and not 752 * exempted by the IO scheduler 753 */ 754 goto out; 755 } 756 } 757 } 758 blk_set_queue_congested(q, is_sync); 759 } 760 761 /* 762 * Only allow batching queuers to allocate up to 50% over the defined 763 * limit of requests, otherwise we could have thousands of requests 764 * allocated with any setting of ->nr_requests 765 */ 766 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 767 goto out; 768 769 rl->count[is_sync]++; 770 rl->starved[is_sync] = 0; 771 772 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 773 if (priv) 774 rl->elvpriv++; 775 776 if (blk_queue_io_stat(q)) 777 rw_flags |= REQ_IO_STAT; 778 spin_unlock_irq(q->queue_lock); 779 780 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 781 if (unlikely(!rq)) { 782 /* 783 * Allocation failed presumably due to memory. Undo anything 784 * we might have messed up. 785 * 786 * Allocating task should really be put onto the front of the 787 * wait queue, but this is pretty rare. 788 */ 789 spin_lock_irq(q->queue_lock); 790 freed_request(q, is_sync, priv); 791 792 /* 793 * in the very unlikely event that allocation failed and no 794 * requests for this direction was pending, mark us starved 795 * so that freeing of a request in the other direction will 796 * notice us. another possible fix would be to split the 797 * rq mempool into READ and WRITE 798 */ 799 rq_starved: 800 if (unlikely(rl->count[is_sync] == 0)) 801 rl->starved[is_sync] = 1; 802 803 goto out; 804 } 805 806 /* 807 * ioc may be NULL here, and ioc_batching will be false. That's 808 * OK, if the queue is under the request limit then requests need 809 * not count toward the nr_batch_requests limit. There will always 810 * be some limit enforced by BLK_BATCH_TIME. 811 */ 812 if (ioc_batching(q, ioc)) 813 ioc->nr_batch_requests--; 814 815 trace_block_getrq(q, bio, rw_flags & 1); 816 out: 817 return rq; 818 } 819 820 /* 821 * No available requests for this queue, unplug the device and wait for some 822 * requests to become available. 823 * 824 * Called with q->queue_lock held, and returns with it unlocked. 825 */ 826 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 827 struct bio *bio) 828 { 829 const bool is_sync = rw_is_sync(rw_flags) != 0; 830 struct request *rq; 831 832 rq = get_request(q, rw_flags, bio, GFP_NOIO); 833 while (!rq) { 834 DEFINE_WAIT(wait); 835 struct io_context *ioc; 836 struct request_list *rl = &q->rq; 837 838 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 839 TASK_UNINTERRUPTIBLE); 840 841 trace_block_sleeprq(q, bio, rw_flags & 1); 842 843 __generic_unplug_device(q); 844 spin_unlock_irq(q->queue_lock); 845 io_schedule(); 846 847 /* 848 * After sleeping, we become a "batching" process and 849 * will be able to allocate at least one request, and 850 * up to a big batch of them for a small period time. 851 * See ioc_batching, ioc_set_batching 852 */ 853 ioc = current_io_context(GFP_NOIO, q->node); 854 ioc_set_batching(q, ioc); 855 856 spin_lock_irq(q->queue_lock); 857 finish_wait(&rl->wait[is_sync], &wait); 858 859 rq = get_request(q, rw_flags, bio, GFP_NOIO); 860 }; 861 862 return rq; 863 } 864 865 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 866 { 867 struct request *rq; 868 869 BUG_ON(rw != READ && rw != WRITE); 870 871 spin_lock_irq(q->queue_lock); 872 if (gfp_mask & __GFP_WAIT) { 873 rq = get_request_wait(q, rw, NULL); 874 } else { 875 rq = get_request(q, rw, NULL, gfp_mask); 876 if (!rq) 877 spin_unlock_irq(q->queue_lock); 878 } 879 /* q->queue_lock is unlocked at this point */ 880 881 return rq; 882 } 883 EXPORT_SYMBOL(blk_get_request); 884 885 /** 886 * blk_make_request - given a bio, allocate a corresponding struct request. 887 * 888 * @bio: The bio describing the memory mappings that will be submitted for IO. 889 * It may be a chained-bio properly constructed by block/bio layer. 890 * 891 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 892 * type commands. Where the struct request needs to be farther initialized by 893 * the caller. It is passed a &struct bio, which describes the memory info of 894 * the I/O transfer. 895 * 896 * The caller of blk_make_request must make sure that bi_io_vec 897 * are set to describe the memory buffers. That bio_data_dir() will return 898 * the needed direction of the request. (And all bio's in the passed bio-chain 899 * are properly set accordingly) 900 * 901 * If called under none-sleepable conditions, mapped bio buffers must not 902 * need bouncing, by calling the appropriate masked or flagged allocator, 903 * suitable for the target device. Otherwise the call to blk_queue_bounce will 904 * BUG. 905 * 906 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 907 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 908 * anything but the first bio in the chain. Otherwise you risk waiting for IO 909 * completion of a bio that hasn't been submitted yet, thus resulting in a 910 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 911 * of bio_alloc(), as that avoids the mempool deadlock. 912 * If possible a big IO should be split into smaller parts when allocation 913 * fails. Partial allocation should not be an error, or you risk a live-lock. 914 */ 915 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 916 gfp_t gfp_mask) 917 { 918 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 919 920 if (unlikely(!rq)) 921 return ERR_PTR(-ENOMEM); 922 923 for_each_bio(bio) { 924 struct bio *bounce_bio = bio; 925 int ret; 926 927 blk_queue_bounce(q, &bounce_bio); 928 ret = blk_rq_append_bio(q, rq, bounce_bio); 929 if (unlikely(ret)) { 930 blk_put_request(rq); 931 return ERR_PTR(ret); 932 } 933 } 934 935 return rq; 936 } 937 EXPORT_SYMBOL(blk_make_request); 938 939 /** 940 * blk_requeue_request - put a request back on queue 941 * @q: request queue where request should be inserted 942 * @rq: request to be inserted 943 * 944 * Description: 945 * Drivers often keep queueing requests until the hardware cannot accept 946 * more, when that condition happens we need to put the request back 947 * on the queue. Must be called with queue lock held. 948 */ 949 void blk_requeue_request(struct request_queue *q, struct request *rq) 950 { 951 blk_delete_timer(rq); 952 blk_clear_rq_complete(rq); 953 trace_block_rq_requeue(q, rq); 954 955 if (blk_rq_tagged(rq)) 956 blk_queue_end_tag(q, rq); 957 958 BUG_ON(blk_queued_rq(rq)); 959 960 elv_requeue_request(q, rq); 961 } 962 EXPORT_SYMBOL(blk_requeue_request); 963 964 /** 965 * blk_insert_request - insert a special request into a request queue 966 * @q: request queue where request should be inserted 967 * @rq: request to be inserted 968 * @at_head: insert request at head or tail of queue 969 * @data: private data 970 * 971 * Description: 972 * Many block devices need to execute commands asynchronously, so they don't 973 * block the whole kernel from preemption during request execution. This is 974 * accomplished normally by inserting aritficial requests tagged as 975 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 976 * be scheduled for actual execution by the request queue. 977 * 978 * We have the option of inserting the head or the tail of the queue. 979 * Typically we use the tail for new ioctls and so forth. We use the head 980 * of the queue for things like a QUEUE_FULL message from a device, or a 981 * host that is unable to accept a particular command. 982 */ 983 void blk_insert_request(struct request_queue *q, struct request *rq, 984 int at_head, void *data) 985 { 986 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 987 unsigned long flags; 988 989 /* 990 * tell I/O scheduler that this isn't a regular read/write (ie it 991 * must not attempt merges on this) and that it acts as a soft 992 * barrier 993 */ 994 rq->cmd_type = REQ_TYPE_SPECIAL; 995 996 rq->special = data; 997 998 spin_lock_irqsave(q->queue_lock, flags); 999 1000 /* 1001 * If command is tagged, release the tag 1002 */ 1003 if (blk_rq_tagged(rq)) 1004 blk_queue_end_tag(q, rq); 1005 1006 drive_stat_acct(rq, 1); 1007 __elv_add_request(q, rq, where, 0); 1008 __blk_run_queue(q); 1009 spin_unlock_irqrestore(q->queue_lock, flags); 1010 } 1011 EXPORT_SYMBOL(blk_insert_request); 1012 1013 /* 1014 * add-request adds a request to the linked list. 1015 * queue lock is held and interrupts disabled, as we muck with the 1016 * request queue list. 1017 */ 1018 static inline void add_request(struct request_queue *q, struct request *req) 1019 { 1020 drive_stat_acct(req, 1); 1021 1022 /* 1023 * elevator indicated where it wants this request to be 1024 * inserted at elevator_merge time 1025 */ 1026 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); 1027 } 1028 1029 static void part_round_stats_single(int cpu, struct hd_struct *part, 1030 unsigned long now) 1031 { 1032 if (now == part->stamp) 1033 return; 1034 1035 if (part->in_flight) { 1036 __part_stat_add(cpu, part, time_in_queue, 1037 part->in_flight * (now - part->stamp)); 1038 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1039 } 1040 part->stamp = now; 1041 } 1042 1043 /** 1044 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1045 * @cpu: cpu number for stats access 1046 * @part: target partition 1047 * 1048 * The average IO queue length and utilisation statistics are maintained 1049 * by observing the current state of the queue length and the amount of 1050 * time it has been in this state for. 1051 * 1052 * Normally, that accounting is done on IO completion, but that can result 1053 * in more than a second's worth of IO being accounted for within any one 1054 * second, leading to >100% utilisation. To deal with that, we call this 1055 * function to do a round-off before returning the results when reading 1056 * /proc/diskstats. This accounts immediately for all queue usage up to 1057 * the current jiffies and restarts the counters again. 1058 */ 1059 void part_round_stats(int cpu, struct hd_struct *part) 1060 { 1061 unsigned long now = jiffies; 1062 1063 if (part->partno) 1064 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1065 part_round_stats_single(cpu, part, now); 1066 } 1067 EXPORT_SYMBOL_GPL(part_round_stats); 1068 1069 /* 1070 * queue lock must be held 1071 */ 1072 void __blk_put_request(struct request_queue *q, struct request *req) 1073 { 1074 if (unlikely(!q)) 1075 return; 1076 if (unlikely(--req->ref_count)) 1077 return; 1078 1079 elv_completed_request(q, req); 1080 1081 /* this is a bio leak */ 1082 WARN_ON(req->bio != NULL); 1083 1084 /* 1085 * Request may not have originated from ll_rw_blk. if not, 1086 * it didn't come out of our reserved rq pools 1087 */ 1088 if (req->cmd_flags & REQ_ALLOCED) { 1089 int is_sync = rq_is_sync(req) != 0; 1090 int priv = req->cmd_flags & REQ_ELVPRIV; 1091 1092 BUG_ON(!list_empty(&req->queuelist)); 1093 BUG_ON(!hlist_unhashed(&req->hash)); 1094 1095 blk_free_request(q, req); 1096 freed_request(q, is_sync, priv); 1097 } 1098 } 1099 EXPORT_SYMBOL_GPL(__blk_put_request); 1100 1101 void blk_put_request(struct request *req) 1102 { 1103 unsigned long flags; 1104 struct request_queue *q = req->q; 1105 1106 spin_lock_irqsave(q->queue_lock, flags); 1107 __blk_put_request(q, req); 1108 spin_unlock_irqrestore(q->queue_lock, flags); 1109 } 1110 EXPORT_SYMBOL(blk_put_request); 1111 1112 void init_request_from_bio(struct request *req, struct bio *bio) 1113 { 1114 req->cpu = bio->bi_comp_cpu; 1115 req->cmd_type = REQ_TYPE_FS; 1116 1117 /* 1118 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST) 1119 */ 1120 if (bio_rw_ahead(bio)) 1121 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | 1122 REQ_FAILFAST_DRIVER); 1123 if (bio_failfast_dev(bio)) 1124 req->cmd_flags |= REQ_FAILFAST_DEV; 1125 if (bio_failfast_transport(bio)) 1126 req->cmd_flags |= REQ_FAILFAST_TRANSPORT; 1127 if (bio_failfast_driver(bio)) 1128 req->cmd_flags |= REQ_FAILFAST_DRIVER; 1129 1130 if (unlikely(bio_discard(bio))) { 1131 req->cmd_flags |= REQ_DISCARD; 1132 if (bio_barrier(bio)) 1133 req->cmd_flags |= REQ_SOFTBARRIER; 1134 req->q->prepare_discard_fn(req->q, req); 1135 } else if (unlikely(bio_barrier(bio))) 1136 req->cmd_flags |= REQ_HARDBARRIER; 1137 1138 if (bio_sync(bio)) 1139 req->cmd_flags |= REQ_RW_SYNC; 1140 if (bio_rw_meta(bio)) 1141 req->cmd_flags |= REQ_RW_META; 1142 if (bio_noidle(bio)) 1143 req->cmd_flags |= REQ_NOIDLE; 1144 1145 req->errors = 0; 1146 req->__sector = bio->bi_sector; 1147 req->ioprio = bio_prio(bio); 1148 blk_rq_bio_prep(req->q, req, bio); 1149 } 1150 1151 /* 1152 * Only disabling plugging for non-rotational devices if it does tagging 1153 * as well, otherwise we do need the proper merging 1154 */ 1155 static inline bool queue_should_plug(struct request_queue *q) 1156 { 1157 return !(blk_queue_nonrot(q) && blk_queue_tagged(q)); 1158 } 1159 1160 static int __make_request(struct request_queue *q, struct bio *bio) 1161 { 1162 struct request *req; 1163 int el_ret; 1164 unsigned int bytes = bio->bi_size; 1165 const unsigned short prio = bio_prio(bio); 1166 const int sync = bio_sync(bio); 1167 const int unplug = bio_unplug(bio); 1168 int rw_flags; 1169 1170 /* 1171 * low level driver can indicate that it wants pages above a 1172 * certain limit bounced to low memory (ie for highmem, or even 1173 * ISA dma in theory) 1174 */ 1175 blk_queue_bounce(q, &bio); 1176 1177 spin_lock_irq(q->queue_lock); 1178 1179 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q)) 1180 goto get_rq; 1181 1182 el_ret = elv_merge(q, &req, bio); 1183 switch (el_ret) { 1184 case ELEVATOR_BACK_MERGE: 1185 BUG_ON(!rq_mergeable(req)); 1186 1187 if (!ll_back_merge_fn(q, req, bio)) 1188 break; 1189 1190 trace_block_bio_backmerge(q, bio); 1191 1192 req->biotail->bi_next = bio; 1193 req->biotail = bio; 1194 req->__data_len += bytes; 1195 req->ioprio = ioprio_best(req->ioprio, prio); 1196 if (!blk_rq_cpu_valid(req)) 1197 req->cpu = bio->bi_comp_cpu; 1198 drive_stat_acct(req, 0); 1199 if (!attempt_back_merge(q, req)) 1200 elv_merged_request(q, req, el_ret); 1201 goto out; 1202 1203 case ELEVATOR_FRONT_MERGE: 1204 BUG_ON(!rq_mergeable(req)); 1205 1206 if (!ll_front_merge_fn(q, req, bio)) 1207 break; 1208 1209 trace_block_bio_frontmerge(q, bio); 1210 1211 bio->bi_next = req->bio; 1212 req->bio = bio; 1213 1214 /* 1215 * may not be valid. if the low level driver said 1216 * it didn't need a bounce buffer then it better 1217 * not touch req->buffer either... 1218 */ 1219 req->buffer = bio_data(bio); 1220 req->__sector = bio->bi_sector; 1221 req->__data_len += bytes; 1222 req->ioprio = ioprio_best(req->ioprio, prio); 1223 if (!blk_rq_cpu_valid(req)) 1224 req->cpu = bio->bi_comp_cpu; 1225 drive_stat_acct(req, 0); 1226 if (!attempt_front_merge(q, req)) 1227 elv_merged_request(q, req, el_ret); 1228 goto out; 1229 1230 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1231 default: 1232 ; 1233 } 1234 1235 get_rq: 1236 /* 1237 * This sync check and mask will be re-done in init_request_from_bio(), 1238 * but we need to set it earlier to expose the sync flag to the 1239 * rq allocator and io schedulers. 1240 */ 1241 rw_flags = bio_data_dir(bio); 1242 if (sync) 1243 rw_flags |= REQ_RW_SYNC; 1244 1245 /* 1246 * Grab a free request. This is might sleep but can not fail. 1247 * Returns with the queue unlocked. 1248 */ 1249 req = get_request_wait(q, rw_flags, bio); 1250 1251 /* 1252 * After dropping the lock and possibly sleeping here, our request 1253 * may now be mergeable after it had proven unmergeable (above). 1254 * We don't worry about that case for efficiency. It won't happen 1255 * often, and the elevators are able to handle it. 1256 */ 1257 init_request_from_bio(req, bio); 1258 1259 spin_lock_irq(q->queue_lock); 1260 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1261 bio_flagged(bio, BIO_CPU_AFFINE)) 1262 req->cpu = blk_cpu_to_group(smp_processor_id()); 1263 if (queue_should_plug(q) && elv_queue_empty(q)) 1264 blk_plug_device(q); 1265 add_request(q, req); 1266 out: 1267 if (unplug || !queue_should_plug(q)) 1268 __generic_unplug_device(q); 1269 spin_unlock_irq(q->queue_lock); 1270 return 0; 1271 } 1272 1273 /* 1274 * If bio->bi_dev is a partition, remap the location 1275 */ 1276 static inline void blk_partition_remap(struct bio *bio) 1277 { 1278 struct block_device *bdev = bio->bi_bdev; 1279 1280 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1281 struct hd_struct *p = bdev->bd_part; 1282 1283 bio->bi_sector += p->start_sect; 1284 bio->bi_bdev = bdev->bd_contains; 1285 1286 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio, 1287 bdev->bd_dev, 1288 bio->bi_sector - p->start_sect); 1289 } 1290 } 1291 1292 static void handle_bad_sector(struct bio *bio) 1293 { 1294 char b[BDEVNAME_SIZE]; 1295 1296 printk(KERN_INFO "attempt to access beyond end of device\n"); 1297 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1298 bdevname(bio->bi_bdev, b), 1299 bio->bi_rw, 1300 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1301 (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); 1302 1303 set_bit(BIO_EOF, &bio->bi_flags); 1304 } 1305 1306 #ifdef CONFIG_FAIL_MAKE_REQUEST 1307 1308 static DECLARE_FAULT_ATTR(fail_make_request); 1309 1310 static int __init setup_fail_make_request(char *str) 1311 { 1312 return setup_fault_attr(&fail_make_request, str); 1313 } 1314 __setup("fail_make_request=", setup_fail_make_request); 1315 1316 static int should_fail_request(struct bio *bio) 1317 { 1318 struct hd_struct *part = bio->bi_bdev->bd_part; 1319 1320 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail) 1321 return should_fail(&fail_make_request, bio->bi_size); 1322 1323 return 0; 1324 } 1325 1326 static int __init fail_make_request_debugfs(void) 1327 { 1328 return init_fault_attr_dentries(&fail_make_request, 1329 "fail_make_request"); 1330 } 1331 1332 late_initcall(fail_make_request_debugfs); 1333 1334 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1335 1336 static inline int should_fail_request(struct bio *bio) 1337 { 1338 return 0; 1339 } 1340 1341 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1342 1343 /* 1344 * Check whether this bio extends beyond the end of the device. 1345 */ 1346 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1347 { 1348 sector_t maxsector; 1349 1350 if (!nr_sectors) 1351 return 0; 1352 1353 /* Test device or partition size, when known. */ 1354 maxsector = bio->bi_bdev->bd_inode->i_size >> 9; 1355 if (maxsector) { 1356 sector_t sector = bio->bi_sector; 1357 1358 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1359 /* 1360 * This may well happen - the kernel calls bread() 1361 * without checking the size of the device, e.g., when 1362 * mounting a device. 1363 */ 1364 handle_bad_sector(bio); 1365 return 1; 1366 } 1367 } 1368 1369 return 0; 1370 } 1371 1372 /** 1373 * generic_make_request - hand a buffer to its device driver for I/O 1374 * @bio: The bio describing the location in memory and on the device. 1375 * 1376 * generic_make_request() is used to make I/O requests of block 1377 * devices. It is passed a &struct bio, which describes the I/O that needs 1378 * to be done. 1379 * 1380 * generic_make_request() does not return any status. The 1381 * success/failure status of the request, along with notification of 1382 * completion, is delivered asynchronously through the bio->bi_end_io 1383 * function described (one day) else where. 1384 * 1385 * The caller of generic_make_request must make sure that bi_io_vec 1386 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1387 * set to describe the device address, and the 1388 * bi_end_io and optionally bi_private are set to describe how 1389 * completion notification should be signaled. 1390 * 1391 * generic_make_request and the drivers it calls may use bi_next if this 1392 * bio happens to be merged with someone else, and may change bi_dev and 1393 * bi_sector for remaps as it sees fit. So the values of these fields 1394 * should NOT be depended on after the call to generic_make_request. 1395 */ 1396 static inline void __generic_make_request(struct bio *bio) 1397 { 1398 struct request_queue *q; 1399 sector_t old_sector; 1400 int ret, nr_sectors = bio_sectors(bio); 1401 dev_t old_dev; 1402 int err = -EIO; 1403 1404 might_sleep(); 1405 1406 if (bio_check_eod(bio, nr_sectors)) 1407 goto end_io; 1408 1409 /* 1410 * Resolve the mapping until finished. (drivers are 1411 * still free to implement/resolve their own stacking 1412 * by explicitly returning 0) 1413 * 1414 * NOTE: we don't repeat the blk_size check for each new device. 1415 * Stacking drivers are expected to know what they are doing. 1416 */ 1417 old_sector = -1; 1418 old_dev = 0; 1419 do { 1420 char b[BDEVNAME_SIZE]; 1421 1422 q = bdev_get_queue(bio->bi_bdev); 1423 if (unlikely(!q)) { 1424 printk(KERN_ERR 1425 "generic_make_request: Trying to access " 1426 "nonexistent block-device %s (%Lu)\n", 1427 bdevname(bio->bi_bdev, b), 1428 (long long) bio->bi_sector); 1429 goto end_io; 1430 } 1431 1432 if (unlikely(nr_sectors > queue_max_hw_sectors(q))) { 1433 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1434 bdevname(bio->bi_bdev, b), 1435 bio_sectors(bio), 1436 queue_max_hw_sectors(q)); 1437 goto end_io; 1438 } 1439 1440 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1441 goto end_io; 1442 1443 if (should_fail_request(bio)) 1444 goto end_io; 1445 1446 /* 1447 * If this device has partitions, remap block n 1448 * of partition p to block n+start(p) of the disk. 1449 */ 1450 blk_partition_remap(bio); 1451 1452 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1453 goto end_io; 1454 1455 if (old_sector != -1) 1456 trace_block_remap(q, bio, old_dev, old_sector); 1457 1458 trace_block_bio_queue(q, bio); 1459 1460 old_sector = bio->bi_sector; 1461 old_dev = bio->bi_bdev->bd_dev; 1462 1463 if (bio_check_eod(bio, nr_sectors)) 1464 goto end_io; 1465 1466 if (bio_discard(bio) && !q->prepare_discard_fn) { 1467 err = -EOPNOTSUPP; 1468 goto end_io; 1469 } 1470 if (bio_barrier(bio) && bio_has_data(bio) && 1471 (q->next_ordered == QUEUE_ORDERED_NONE)) { 1472 err = -EOPNOTSUPP; 1473 goto end_io; 1474 } 1475 1476 ret = q->make_request_fn(q, bio); 1477 } while (ret); 1478 1479 return; 1480 1481 end_io: 1482 bio_endio(bio, err); 1483 } 1484 1485 /* 1486 * We only want one ->make_request_fn to be active at a time, 1487 * else stack usage with stacked devices could be a problem. 1488 * So use current->bio_{list,tail} to keep a list of requests 1489 * submited by a make_request_fn function. 1490 * current->bio_tail is also used as a flag to say if 1491 * generic_make_request is currently active in this task or not. 1492 * If it is NULL, then no make_request is active. If it is non-NULL, 1493 * then a make_request is active, and new requests should be added 1494 * at the tail 1495 */ 1496 void generic_make_request(struct bio *bio) 1497 { 1498 if (current->bio_tail) { 1499 /* make_request is active */ 1500 *(current->bio_tail) = bio; 1501 bio->bi_next = NULL; 1502 current->bio_tail = &bio->bi_next; 1503 return; 1504 } 1505 /* following loop may be a bit non-obvious, and so deserves some 1506 * explanation. 1507 * Before entering the loop, bio->bi_next is NULL (as all callers 1508 * ensure that) so we have a list with a single bio. 1509 * We pretend that we have just taken it off a longer list, so 1510 * we assign bio_list to the next (which is NULL) and bio_tail 1511 * to &bio_list, thus initialising the bio_list of new bios to be 1512 * added. __generic_make_request may indeed add some more bios 1513 * through a recursive call to generic_make_request. If it 1514 * did, we find a non-NULL value in bio_list and re-enter the loop 1515 * from the top. In this case we really did just take the bio 1516 * of the top of the list (no pretending) and so fixup bio_list and 1517 * bio_tail or bi_next, and call into __generic_make_request again. 1518 * 1519 * The loop was structured like this to make only one call to 1520 * __generic_make_request (which is important as it is large and 1521 * inlined) and to keep the structure simple. 1522 */ 1523 BUG_ON(bio->bi_next); 1524 do { 1525 current->bio_list = bio->bi_next; 1526 if (bio->bi_next == NULL) 1527 current->bio_tail = ¤t->bio_list; 1528 else 1529 bio->bi_next = NULL; 1530 __generic_make_request(bio); 1531 bio = current->bio_list; 1532 } while (bio); 1533 current->bio_tail = NULL; /* deactivate */ 1534 } 1535 EXPORT_SYMBOL(generic_make_request); 1536 1537 /** 1538 * submit_bio - submit a bio to the block device layer for I/O 1539 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1540 * @bio: The &struct bio which describes the I/O 1541 * 1542 * submit_bio() is very similar in purpose to generic_make_request(), and 1543 * uses that function to do most of the work. Both are fairly rough 1544 * interfaces; @bio must be presetup and ready for I/O. 1545 * 1546 */ 1547 void submit_bio(int rw, struct bio *bio) 1548 { 1549 int count = bio_sectors(bio); 1550 1551 bio->bi_rw |= rw; 1552 1553 /* 1554 * If it's a regular read/write or a barrier with data attached, 1555 * go through the normal accounting stuff before submission. 1556 */ 1557 if (bio_has_data(bio)) { 1558 if (rw & WRITE) { 1559 count_vm_events(PGPGOUT, count); 1560 } else { 1561 task_io_account_read(bio->bi_size); 1562 count_vm_events(PGPGIN, count); 1563 } 1564 1565 if (unlikely(block_dump)) { 1566 char b[BDEVNAME_SIZE]; 1567 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", 1568 current->comm, task_pid_nr(current), 1569 (rw & WRITE) ? "WRITE" : "READ", 1570 (unsigned long long)bio->bi_sector, 1571 bdevname(bio->bi_bdev, b)); 1572 } 1573 } 1574 1575 generic_make_request(bio); 1576 } 1577 EXPORT_SYMBOL(submit_bio); 1578 1579 /** 1580 * blk_rq_check_limits - Helper function to check a request for the queue limit 1581 * @q: the queue 1582 * @rq: the request being checked 1583 * 1584 * Description: 1585 * @rq may have been made based on weaker limitations of upper-level queues 1586 * in request stacking drivers, and it may violate the limitation of @q. 1587 * Since the block layer and the underlying device driver trust @rq 1588 * after it is inserted to @q, it should be checked against @q before 1589 * the insertion using this generic function. 1590 * 1591 * This function should also be useful for request stacking drivers 1592 * in some cases below, so export this fuction. 1593 * Request stacking drivers like request-based dm may change the queue 1594 * limits while requests are in the queue (e.g. dm's table swapping). 1595 * Such request stacking drivers should check those requests agaist 1596 * the new queue limits again when they dispatch those requests, 1597 * although such checkings are also done against the old queue limits 1598 * when submitting requests. 1599 */ 1600 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1601 { 1602 if (blk_rq_sectors(rq) > queue_max_sectors(q) || 1603 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) { 1604 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1605 return -EIO; 1606 } 1607 1608 /* 1609 * queue's settings related to segment counting like q->bounce_pfn 1610 * may differ from that of other stacking queues. 1611 * Recalculate it to check the request correctly on this queue's 1612 * limitation. 1613 */ 1614 blk_recalc_rq_segments(rq); 1615 if (rq->nr_phys_segments > queue_max_phys_segments(q) || 1616 rq->nr_phys_segments > queue_max_hw_segments(q)) { 1617 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1618 return -EIO; 1619 } 1620 1621 return 0; 1622 } 1623 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1624 1625 /** 1626 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1627 * @q: the queue to submit the request 1628 * @rq: the request being queued 1629 */ 1630 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1631 { 1632 unsigned long flags; 1633 1634 if (blk_rq_check_limits(q, rq)) 1635 return -EIO; 1636 1637 #ifdef CONFIG_FAIL_MAKE_REQUEST 1638 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail && 1639 should_fail(&fail_make_request, blk_rq_bytes(rq))) 1640 return -EIO; 1641 #endif 1642 1643 spin_lock_irqsave(q->queue_lock, flags); 1644 1645 /* 1646 * Submitting request must be dequeued before calling this function 1647 * because it will be linked to another request_queue 1648 */ 1649 BUG_ON(blk_queued_rq(rq)); 1650 1651 drive_stat_acct(rq, 1); 1652 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0); 1653 1654 spin_unlock_irqrestore(q->queue_lock, flags); 1655 1656 return 0; 1657 } 1658 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1659 1660 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1661 { 1662 if (blk_do_io_stat(req)) { 1663 const int rw = rq_data_dir(req); 1664 struct hd_struct *part; 1665 int cpu; 1666 1667 cpu = part_stat_lock(); 1668 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req)); 1669 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1670 part_stat_unlock(); 1671 } 1672 } 1673 1674 static void blk_account_io_done(struct request *req) 1675 { 1676 /* 1677 * Account IO completion. bar_rq isn't accounted as a normal 1678 * IO on queueing nor completion. Accounting the containing 1679 * request is enough. 1680 */ 1681 if (blk_do_io_stat(req) && req != &req->q->bar_rq) { 1682 unsigned long duration = jiffies - req->start_time; 1683 const int rw = rq_data_dir(req); 1684 struct hd_struct *part; 1685 int cpu; 1686 1687 cpu = part_stat_lock(); 1688 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req)); 1689 1690 part_stat_inc(cpu, part, ios[rw]); 1691 part_stat_add(cpu, part, ticks[rw], duration); 1692 part_round_stats(cpu, part); 1693 part_dec_in_flight(part); 1694 1695 part_stat_unlock(); 1696 } 1697 } 1698 1699 /** 1700 * blk_peek_request - peek at the top of a request queue 1701 * @q: request queue to peek at 1702 * 1703 * Description: 1704 * Return the request at the top of @q. The returned request 1705 * should be started using blk_start_request() before LLD starts 1706 * processing it. 1707 * 1708 * Return: 1709 * Pointer to the request at the top of @q if available. Null 1710 * otherwise. 1711 * 1712 * Context: 1713 * queue_lock must be held. 1714 */ 1715 struct request *blk_peek_request(struct request_queue *q) 1716 { 1717 struct request *rq; 1718 int ret; 1719 1720 while ((rq = __elv_next_request(q)) != NULL) { 1721 if (!(rq->cmd_flags & REQ_STARTED)) { 1722 /* 1723 * This is the first time the device driver 1724 * sees this request (possibly after 1725 * requeueing). Notify IO scheduler. 1726 */ 1727 if (blk_sorted_rq(rq)) 1728 elv_activate_rq(q, rq); 1729 1730 /* 1731 * just mark as started even if we don't start 1732 * it, a request that has been delayed should 1733 * not be passed by new incoming requests 1734 */ 1735 rq->cmd_flags |= REQ_STARTED; 1736 trace_block_rq_issue(q, rq); 1737 } 1738 1739 if (!q->boundary_rq || q->boundary_rq == rq) { 1740 q->end_sector = rq_end_sector(rq); 1741 q->boundary_rq = NULL; 1742 } 1743 1744 if (rq->cmd_flags & REQ_DONTPREP) 1745 break; 1746 1747 if (q->dma_drain_size && blk_rq_bytes(rq)) { 1748 /* 1749 * make sure space for the drain appears we 1750 * know we can do this because max_hw_segments 1751 * has been adjusted to be one fewer than the 1752 * device can handle 1753 */ 1754 rq->nr_phys_segments++; 1755 } 1756 1757 if (!q->prep_rq_fn) 1758 break; 1759 1760 ret = q->prep_rq_fn(q, rq); 1761 if (ret == BLKPREP_OK) { 1762 break; 1763 } else if (ret == BLKPREP_DEFER) { 1764 /* 1765 * the request may have been (partially) prepped. 1766 * we need to keep this request in the front to 1767 * avoid resource deadlock. REQ_STARTED will 1768 * prevent other fs requests from passing this one. 1769 */ 1770 if (q->dma_drain_size && blk_rq_bytes(rq) && 1771 !(rq->cmd_flags & REQ_DONTPREP)) { 1772 /* 1773 * remove the space for the drain we added 1774 * so that we don't add it again 1775 */ 1776 --rq->nr_phys_segments; 1777 } 1778 1779 rq = NULL; 1780 break; 1781 } else if (ret == BLKPREP_KILL) { 1782 rq->cmd_flags |= REQ_QUIET; 1783 /* 1784 * Mark this request as started so we don't trigger 1785 * any debug logic in the end I/O path. 1786 */ 1787 blk_start_request(rq); 1788 __blk_end_request_all(rq, -EIO); 1789 } else { 1790 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 1791 break; 1792 } 1793 } 1794 1795 return rq; 1796 } 1797 EXPORT_SYMBOL(blk_peek_request); 1798 1799 void blk_dequeue_request(struct request *rq) 1800 { 1801 struct request_queue *q = rq->q; 1802 1803 BUG_ON(list_empty(&rq->queuelist)); 1804 BUG_ON(ELV_ON_HASH(rq)); 1805 1806 list_del_init(&rq->queuelist); 1807 1808 /* 1809 * the time frame between a request being removed from the lists 1810 * and to it is freed is accounted as io that is in progress at 1811 * the driver side. 1812 */ 1813 if (blk_account_rq(rq)) 1814 q->in_flight[rq_is_sync(rq)]++; 1815 } 1816 1817 /** 1818 * blk_start_request - start request processing on the driver 1819 * @req: request to dequeue 1820 * 1821 * Description: 1822 * Dequeue @req and start timeout timer on it. This hands off the 1823 * request to the driver. 1824 * 1825 * Block internal functions which don't want to start timer should 1826 * call blk_dequeue_request(). 1827 * 1828 * Context: 1829 * queue_lock must be held. 1830 */ 1831 void blk_start_request(struct request *req) 1832 { 1833 blk_dequeue_request(req); 1834 1835 /* 1836 * We are now handing the request to the hardware, initialize 1837 * resid_len to full count and add the timeout handler. 1838 */ 1839 req->resid_len = blk_rq_bytes(req); 1840 if (unlikely(blk_bidi_rq(req))) 1841 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 1842 1843 blk_add_timer(req); 1844 } 1845 EXPORT_SYMBOL(blk_start_request); 1846 1847 /** 1848 * blk_fetch_request - fetch a request from a request queue 1849 * @q: request queue to fetch a request from 1850 * 1851 * Description: 1852 * Return the request at the top of @q. The request is started on 1853 * return and LLD can start processing it immediately. 1854 * 1855 * Return: 1856 * Pointer to the request at the top of @q if available. Null 1857 * otherwise. 1858 * 1859 * Context: 1860 * queue_lock must be held. 1861 */ 1862 struct request *blk_fetch_request(struct request_queue *q) 1863 { 1864 struct request *rq; 1865 1866 rq = blk_peek_request(q); 1867 if (rq) 1868 blk_start_request(rq); 1869 return rq; 1870 } 1871 EXPORT_SYMBOL(blk_fetch_request); 1872 1873 /** 1874 * blk_update_request - Special helper function for request stacking drivers 1875 * @rq: the request being processed 1876 * @error: %0 for success, < %0 for error 1877 * @nr_bytes: number of bytes to complete @rq 1878 * 1879 * Description: 1880 * Ends I/O on a number of bytes attached to @rq, but doesn't complete 1881 * the request structure even if @rq doesn't have leftover. 1882 * If @rq has leftover, sets it up for the next range of segments. 1883 * 1884 * This special helper function is only for request stacking drivers 1885 * (e.g. request-based dm) so that they can handle partial completion. 1886 * Actual device drivers should use blk_end_request instead. 1887 * 1888 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1889 * %false return from this function. 1890 * 1891 * Return: 1892 * %false - this request doesn't have any more data 1893 * %true - this request has more data 1894 **/ 1895 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 1896 { 1897 int total_bytes, bio_nbytes, next_idx = 0; 1898 struct bio *bio; 1899 1900 if (!req->bio) 1901 return false; 1902 1903 trace_block_rq_complete(req->q, req); 1904 1905 /* 1906 * For fs requests, rq is just carrier of independent bio's 1907 * and each partial completion should be handled separately. 1908 * Reset per-request error on each partial completion. 1909 * 1910 * TODO: tj: This is too subtle. It would be better to let 1911 * low level drivers do what they see fit. 1912 */ 1913 if (blk_fs_request(req)) 1914 req->errors = 0; 1915 1916 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) { 1917 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 1918 req->rq_disk ? req->rq_disk->disk_name : "?", 1919 (unsigned long long)blk_rq_pos(req)); 1920 } 1921 1922 blk_account_io_completion(req, nr_bytes); 1923 1924 total_bytes = bio_nbytes = 0; 1925 while ((bio = req->bio) != NULL) { 1926 int nbytes; 1927 1928 if (nr_bytes >= bio->bi_size) { 1929 req->bio = bio->bi_next; 1930 nbytes = bio->bi_size; 1931 req_bio_endio(req, bio, nbytes, error); 1932 next_idx = 0; 1933 bio_nbytes = 0; 1934 } else { 1935 int idx = bio->bi_idx + next_idx; 1936 1937 if (unlikely(idx >= bio->bi_vcnt)) { 1938 blk_dump_rq_flags(req, "__end_that"); 1939 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 1940 __func__, idx, bio->bi_vcnt); 1941 break; 1942 } 1943 1944 nbytes = bio_iovec_idx(bio, idx)->bv_len; 1945 BIO_BUG_ON(nbytes > bio->bi_size); 1946 1947 /* 1948 * not a complete bvec done 1949 */ 1950 if (unlikely(nbytes > nr_bytes)) { 1951 bio_nbytes += nr_bytes; 1952 total_bytes += nr_bytes; 1953 break; 1954 } 1955 1956 /* 1957 * advance to the next vector 1958 */ 1959 next_idx++; 1960 bio_nbytes += nbytes; 1961 } 1962 1963 total_bytes += nbytes; 1964 nr_bytes -= nbytes; 1965 1966 bio = req->bio; 1967 if (bio) { 1968 /* 1969 * end more in this run, or just return 'not-done' 1970 */ 1971 if (unlikely(nr_bytes <= 0)) 1972 break; 1973 } 1974 } 1975 1976 /* 1977 * completely done 1978 */ 1979 if (!req->bio) { 1980 /* 1981 * Reset counters so that the request stacking driver 1982 * can find how many bytes remain in the request 1983 * later. 1984 */ 1985 req->__data_len = 0; 1986 return false; 1987 } 1988 1989 /* 1990 * if the request wasn't completed, update state 1991 */ 1992 if (bio_nbytes) { 1993 req_bio_endio(req, bio, bio_nbytes, error); 1994 bio->bi_idx += next_idx; 1995 bio_iovec(bio)->bv_offset += nr_bytes; 1996 bio_iovec(bio)->bv_len -= nr_bytes; 1997 } 1998 1999 req->__data_len -= total_bytes; 2000 req->buffer = bio_data(req->bio); 2001 2002 /* update sector only for requests with clear definition of sector */ 2003 if (blk_fs_request(req) || blk_discard_rq(req)) 2004 req->__sector += total_bytes >> 9; 2005 2006 /* 2007 * If total number of sectors is less than the first segment 2008 * size, something has gone terribly wrong. 2009 */ 2010 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2011 printk(KERN_ERR "blk: request botched\n"); 2012 req->__data_len = blk_rq_cur_bytes(req); 2013 } 2014 2015 /* recalculate the number of segments */ 2016 blk_recalc_rq_segments(req); 2017 2018 return true; 2019 } 2020 EXPORT_SYMBOL_GPL(blk_update_request); 2021 2022 static bool blk_update_bidi_request(struct request *rq, int error, 2023 unsigned int nr_bytes, 2024 unsigned int bidi_bytes) 2025 { 2026 if (blk_update_request(rq, error, nr_bytes)) 2027 return true; 2028 2029 /* Bidi request must be completed as a whole */ 2030 if (unlikely(blk_bidi_rq(rq)) && 2031 blk_update_request(rq->next_rq, error, bidi_bytes)) 2032 return true; 2033 2034 add_disk_randomness(rq->rq_disk); 2035 2036 return false; 2037 } 2038 2039 /* 2040 * queue lock must be held 2041 */ 2042 static void blk_finish_request(struct request *req, int error) 2043 { 2044 if (blk_rq_tagged(req)) 2045 blk_queue_end_tag(req->q, req); 2046 2047 BUG_ON(blk_queued_rq(req)); 2048 2049 if (unlikely(laptop_mode) && blk_fs_request(req)) 2050 laptop_io_completion(); 2051 2052 blk_delete_timer(req); 2053 2054 blk_account_io_done(req); 2055 2056 if (req->end_io) 2057 req->end_io(req, error); 2058 else { 2059 if (blk_bidi_rq(req)) 2060 __blk_put_request(req->next_rq->q, req->next_rq); 2061 2062 __blk_put_request(req->q, req); 2063 } 2064 } 2065 2066 /** 2067 * blk_end_bidi_request - Complete a bidi request 2068 * @rq: the request to complete 2069 * @error: %0 for success, < %0 for error 2070 * @nr_bytes: number of bytes to complete @rq 2071 * @bidi_bytes: number of bytes to complete @rq->next_rq 2072 * 2073 * Description: 2074 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2075 * Drivers that supports bidi can safely call this member for any 2076 * type of request, bidi or uni. In the later case @bidi_bytes is 2077 * just ignored. 2078 * 2079 * Return: 2080 * %false - we are done with this request 2081 * %true - still buffers pending for this request 2082 **/ 2083 static bool blk_end_bidi_request(struct request *rq, int error, 2084 unsigned int nr_bytes, unsigned int bidi_bytes) 2085 { 2086 struct request_queue *q = rq->q; 2087 unsigned long flags; 2088 2089 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2090 return true; 2091 2092 spin_lock_irqsave(q->queue_lock, flags); 2093 blk_finish_request(rq, error); 2094 spin_unlock_irqrestore(q->queue_lock, flags); 2095 2096 return false; 2097 } 2098 2099 /** 2100 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2101 * @rq: the request to complete 2102 * @error: %0 for success, < %0 for error 2103 * @nr_bytes: number of bytes to complete @rq 2104 * @bidi_bytes: number of bytes to complete @rq->next_rq 2105 * 2106 * Description: 2107 * Identical to blk_end_bidi_request() except that queue lock is 2108 * assumed to be locked on entry and remains so on return. 2109 * 2110 * Return: 2111 * %false - we are done with this request 2112 * %true - still buffers pending for this request 2113 **/ 2114 static bool __blk_end_bidi_request(struct request *rq, int error, 2115 unsigned int nr_bytes, unsigned int bidi_bytes) 2116 { 2117 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2118 return true; 2119 2120 blk_finish_request(rq, error); 2121 2122 return false; 2123 } 2124 2125 /** 2126 * blk_end_request - Helper function for drivers to complete the request. 2127 * @rq: the request being processed 2128 * @error: %0 for success, < %0 for error 2129 * @nr_bytes: number of bytes to complete 2130 * 2131 * Description: 2132 * Ends I/O on a number of bytes attached to @rq. 2133 * If @rq has leftover, sets it up for the next range of segments. 2134 * 2135 * Return: 2136 * %false - we are done with this request 2137 * %true - still buffers pending for this request 2138 **/ 2139 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2140 { 2141 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2142 } 2143 EXPORT_SYMBOL_GPL(blk_end_request); 2144 2145 /** 2146 * blk_end_request_all - Helper function for drives to finish the request. 2147 * @rq: the request to finish 2148 * @err: %0 for success, < %0 for error 2149 * 2150 * Description: 2151 * Completely finish @rq. 2152 */ 2153 void blk_end_request_all(struct request *rq, int error) 2154 { 2155 bool pending; 2156 unsigned int bidi_bytes = 0; 2157 2158 if (unlikely(blk_bidi_rq(rq))) 2159 bidi_bytes = blk_rq_bytes(rq->next_rq); 2160 2161 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2162 BUG_ON(pending); 2163 } 2164 EXPORT_SYMBOL_GPL(blk_end_request_all); 2165 2166 /** 2167 * blk_end_request_cur - Helper function to finish the current request chunk. 2168 * @rq: the request to finish the current chunk for 2169 * @err: %0 for success, < %0 for error 2170 * 2171 * Description: 2172 * Complete the current consecutively mapped chunk from @rq. 2173 * 2174 * Return: 2175 * %false - we are done with this request 2176 * %true - still buffers pending for this request 2177 */ 2178 bool blk_end_request_cur(struct request *rq, int error) 2179 { 2180 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2181 } 2182 EXPORT_SYMBOL_GPL(blk_end_request_cur); 2183 2184 /** 2185 * __blk_end_request - Helper function for drivers to complete the request. 2186 * @rq: the request being processed 2187 * @error: %0 for success, < %0 for error 2188 * @nr_bytes: number of bytes to complete 2189 * 2190 * Description: 2191 * Must be called with queue lock held unlike blk_end_request(). 2192 * 2193 * Return: 2194 * %false - we are done with this request 2195 * %true - still buffers pending for this request 2196 **/ 2197 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2198 { 2199 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2200 } 2201 EXPORT_SYMBOL_GPL(__blk_end_request); 2202 2203 /** 2204 * __blk_end_request_all - Helper function for drives to finish the request. 2205 * @rq: the request to finish 2206 * @err: %0 for success, < %0 for error 2207 * 2208 * Description: 2209 * Completely finish @rq. Must be called with queue lock held. 2210 */ 2211 void __blk_end_request_all(struct request *rq, int error) 2212 { 2213 bool pending; 2214 unsigned int bidi_bytes = 0; 2215 2216 if (unlikely(blk_bidi_rq(rq))) 2217 bidi_bytes = blk_rq_bytes(rq->next_rq); 2218 2219 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2220 BUG_ON(pending); 2221 } 2222 EXPORT_SYMBOL_GPL(__blk_end_request_all); 2223 2224 /** 2225 * __blk_end_request_cur - Helper function to finish the current request chunk. 2226 * @rq: the request to finish the current chunk for 2227 * @err: %0 for success, < %0 for error 2228 * 2229 * Description: 2230 * Complete the current consecutively mapped chunk from @rq. Must 2231 * be called with queue lock held. 2232 * 2233 * Return: 2234 * %false - we are done with this request 2235 * %true - still buffers pending for this request 2236 */ 2237 bool __blk_end_request_cur(struct request *rq, int error) 2238 { 2239 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2240 } 2241 EXPORT_SYMBOL_GPL(__blk_end_request_cur); 2242 2243 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2244 struct bio *bio) 2245 { 2246 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and 2247 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */ 2248 rq->cmd_flags |= (bio->bi_rw & 3); 2249 2250 if (bio_has_data(bio)) { 2251 rq->nr_phys_segments = bio_phys_segments(q, bio); 2252 rq->buffer = bio_data(bio); 2253 } 2254 rq->__data_len = bio->bi_size; 2255 rq->bio = rq->biotail = bio; 2256 2257 if (bio->bi_bdev) 2258 rq->rq_disk = bio->bi_bdev->bd_disk; 2259 } 2260 2261 /** 2262 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2263 * @q : the queue of the device being checked 2264 * 2265 * Description: 2266 * Check if underlying low-level drivers of a device are busy. 2267 * If the drivers want to export their busy state, they must set own 2268 * exporting function using blk_queue_lld_busy() first. 2269 * 2270 * Basically, this function is used only by request stacking drivers 2271 * to stop dispatching requests to underlying devices when underlying 2272 * devices are busy. This behavior helps more I/O merging on the queue 2273 * of the request stacking driver and prevents I/O throughput regression 2274 * on burst I/O load. 2275 * 2276 * Return: 2277 * 0 - Not busy (The request stacking driver should dispatch request) 2278 * 1 - Busy (The request stacking driver should stop dispatching request) 2279 */ 2280 int blk_lld_busy(struct request_queue *q) 2281 { 2282 if (q->lld_busy_fn) 2283 return q->lld_busy_fn(q); 2284 2285 return 0; 2286 } 2287 EXPORT_SYMBOL_GPL(blk_lld_busy); 2288 2289 /** 2290 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2291 * @rq: the clone request to be cleaned up 2292 * 2293 * Description: 2294 * Free all bios in @rq for a cloned request. 2295 */ 2296 void blk_rq_unprep_clone(struct request *rq) 2297 { 2298 struct bio *bio; 2299 2300 while ((bio = rq->bio) != NULL) { 2301 rq->bio = bio->bi_next; 2302 2303 bio_put(bio); 2304 } 2305 } 2306 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2307 2308 /* 2309 * Copy attributes of the original request to the clone request. 2310 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2311 */ 2312 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2313 { 2314 dst->cpu = src->cpu; 2315 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE); 2316 dst->cmd_type = src->cmd_type; 2317 dst->__sector = blk_rq_pos(src); 2318 dst->__data_len = blk_rq_bytes(src); 2319 dst->nr_phys_segments = src->nr_phys_segments; 2320 dst->ioprio = src->ioprio; 2321 dst->extra_len = src->extra_len; 2322 } 2323 2324 /** 2325 * blk_rq_prep_clone - Helper function to setup clone request 2326 * @rq: the request to be setup 2327 * @rq_src: original request to be cloned 2328 * @bs: bio_set that bios for clone are allocated from 2329 * @gfp_mask: memory allocation mask for bio 2330 * @bio_ctr: setup function to be called for each clone bio. 2331 * Returns %0 for success, non %0 for failure. 2332 * @data: private data to be passed to @bio_ctr 2333 * 2334 * Description: 2335 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2336 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2337 * are not copied, and copying such parts is the caller's responsibility. 2338 * Also, pages which the original bios are pointing to are not copied 2339 * and the cloned bios just point same pages. 2340 * So cloned bios must be completed before original bios, which means 2341 * the caller must complete @rq before @rq_src. 2342 */ 2343 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2344 struct bio_set *bs, gfp_t gfp_mask, 2345 int (*bio_ctr)(struct bio *, struct bio *, void *), 2346 void *data) 2347 { 2348 struct bio *bio, *bio_src; 2349 2350 if (!bs) 2351 bs = fs_bio_set; 2352 2353 blk_rq_init(NULL, rq); 2354 2355 __rq_for_each_bio(bio_src, rq_src) { 2356 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs); 2357 if (!bio) 2358 goto free_and_out; 2359 2360 __bio_clone(bio, bio_src); 2361 2362 if (bio_integrity(bio_src) && 2363 bio_integrity_clone(bio, bio_src, gfp_mask)) 2364 goto free_and_out; 2365 2366 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2367 goto free_and_out; 2368 2369 if (rq->bio) { 2370 rq->biotail->bi_next = bio; 2371 rq->biotail = bio; 2372 } else 2373 rq->bio = rq->biotail = bio; 2374 } 2375 2376 __blk_rq_prep_clone(rq, rq_src); 2377 2378 return 0; 2379 2380 free_and_out: 2381 if (bio) 2382 bio_free(bio, bs); 2383 blk_rq_unprep_clone(rq); 2384 2385 return -ENOMEM; 2386 } 2387 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2388 2389 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2390 { 2391 return queue_work(kblockd_workqueue, work); 2392 } 2393 EXPORT_SYMBOL(kblockd_schedule_work); 2394 2395 int __init blk_dev_init(void) 2396 { 2397 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 2398 sizeof(((struct request *)0)->cmd_flags)); 2399 2400 kblockd_workqueue = create_workqueue("kblockd"); 2401 if (!kblockd_workqueue) 2402 panic("Failed to create kblockd\n"); 2403 2404 request_cachep = kmem_cache_create("blkdev_requests", 2405 sizeof(struct request), 0, SLAB_PANIC, NULL); 2406 2407 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2408 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2409 2410 return 0; 2411 } 2412 2413