xref: /openbmc/linux/block/blk-core.c (revision 78c99ba1)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/block.h>
34 
35 #include "blk.h"
36 
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
39 
40 static int __make_request(struct request_queue *q, struct bio *bio);
41 
42 /*
43  * For the allocated request tables
44  */
45 static struct kmem_cache *request_cachep;
46 
47 /*
48  * For queue allocation
49  */
50 struct kmem_cache *blk_requestq_cachep;
51 
52 /*
53  * Controlling structure to kblockd
54  */
55 static struct workqueue_struct *kblockd_workqueue;
56 
57 static void drive_stat_acct(struct request *rq, int new_io)
58 {
59 	struct hd_struct *part;
60 	int rw = rq_data_dir(rq);
61 	int cpu;
62 
63 	if (!blk_do_io_stat(rq))
64 		return;
65 
66 	cpu = part_stat_lock();
67 	part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
68 
69 	if (!new_io)
70 		part_stat_inc(cpu, part, merges[rw]);
71 	else {
72 		part_round_stats(cpu, part);
73 		part_inc_in_flight(part);
74 	}
75 
76 	part_stat_unlock();
77 }
78 
79 void blk_queue_congestion_threshold(struct request_queue *q)
80 {
81 	int nr;
82 
83 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 	if (nr > q->nr_requests)
85 		nr = q->nr_requests;
86 	q->nr_congestion_on = nr;
87 
88 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 	if (nr < 1)
90 		nr = 1;
91 	q->nr_congestion_off = nr;
92 }
93 
94 /**
95  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96  * @bdev:	device
97  *
98  * Locates the passed device's request queue and returns the address of its
99  * backing_dev_info
100  *
101  * Will return NULL if the request queue cannot be located.
102  */
103 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
104 {
105 	struct backing_dev_info *ret = NULL;
106 	struct request_queue *q = bdev_get_queue(bdev);
107 
108 	if (q)
109 		ret = &q->backing_dev_info;
110 	return ret;
111 }
112 EXPORT_SYMBOL(blk_get_backing_dev_info);
113 
114 void blk_rq_init(struct request_queue *q, struct request *rq)
115 {
116 	memset(rq, 0, sizeof(*rq));
117 
118 	INIT_LIST_HEAD(&rq->queuelist);
119 	INIT_LIST_HEAD(&rq->timeout_list);
120 	rq->cpu = -1;
121 	rq->q = q;
122 	rq->__sector = (sector_t) -1;
123 	INIT_HLIST_NODE(&rq->hash);
124 	RB_CLEAR_NODE(&rq->rb_node);
125 	rq->cmd = rq->__cmd;
126 	rq->cmd_len = BLK_MAX_CDB;
127 	rq->tag = -1;
128 	rq->ref_count = 1;
129 	rq->start_time = jiffies;
130 }
131 EXPORT_SYMBOL(blk_rq_init);
132 
133 static void req_bio_endio(struct request *rq, struct bio *bio,
134 			  unsigned int nbytes, int error)
135 {
136 	struct request_queue *q = rq->q;
137 
138 	if (&q->bar_rq != rq) {
139 		if (error)
140 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
141 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
142 			error = -EIO;
143 
144 		if (unlikely(nbytes > bio->bi_size)) {
145 			printk(KERN_ERR "%s: want %u bytes done, %u left\n",
146 			       __func__, nbytes, bio->bi_size);
147 			nbytes = bio->bi_size;
148 		}
149 
150 		if (unlikely(rq->cmd_flags & REQ_QUIET))
151 			set_bit(BIO_QUIET, &bio->bi_flags);
152 
153 		bio->bi_size -= nbytes;
154 		bio->bi_sector += (nbytes >> 9);
155 
156 		if (bio_integrity(bio))
157 			bio_integrity_advance(bio, nbytes);
158 
159 		if (bio->bi_size == 0)
160 			bio_endio(bio, error);
161 	} else {
162 
163 		/*
164 		 * Okay, this is the barrier request in progress, just
165 		 * record the error;
166 		 */
167 		if (error && !q->orderr)
168 			q->orderr = error;
169 	}
170 }
171 
172 void blk_dump_rq_flags(struct request *rq, char *msg)
173 {
174 	int bit;
175 
176 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
177 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
178 		rq->cmd_flags);
179 
180 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
181 	       (unsigned long long)blk_rq_pos(rq),
182 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
183 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
184 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
185 
186 	if (blk_pc_request(rq)) {
187 		printk(KERN_INFO "  cdb: ");
188 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
189 			printk("%02x ", rq->cmd[bit]);
190 		printk("\n");
191 	}
192 }
193 EXPORT_SYMBOL(blk_dump_rq_flags);
194 
195 /*
196  * "plug" the device if there are no outstanding requests: this will
197  * force the transfer to start only after we have put all the requests
198  * on the list.
199  *
200  * This is called with interrupts off and no requests on the queue and
201  * with the queue lock held.
202  */
203 void blk_plug_device(struct request_queue *q)
204 {
205 	WARN_ON(!irqs_disabled());
206 
207 	/*
208 	 * don't plug a stopped queue, it must be paired with blk_start_queue()
209 	 * which will restart the queueing
210 	 */
211 	if (blk_queue_stopped(q))
212 		return;
213 
214 	if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
215 		mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
216 		trace_block_plug(q);
217 	}
218 }
219 EXPORT_SYMBOL(blk_plug_device);
220 
221 /**
222  * blk_plug_device_unlocked - plug a device without queue lock held
223  * @q:    The &struct request_queue to plug
224  *
225  * Description:
226  *   Like @blk_plug_device(), but grabs the queue lock and disables
227  *   interrupts.
228  **/
229 void blk_plug_device_unlocked(struct request_queue *q)
230 {
231 	unsigned long flags;
232 
233 	spin_lock_irqsave(q->queue_lock, flags);
234 	blk_plug_device(q);
235 	spin_unlock_irqrestore(q->queue_lock, flags);
236 }
237 EXPORT_SYMBOL(blk_plug_device_unlocked);
238 
239 /*
240  * remove the queue from the plugged list, if present. called with
241  * queue lock held and interrupts disabled.
242  */
243 int blk_remove_plug(struct request_queue *q)
244 {
245 	WARN_ON(!irqs_disabled());
246 
247 	if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
248 		return 0;
249 
250 	del_timer(&q->unplug_timer);
251 	return 1;
252 }
253 EXPORT_SYMBOL(blk_remove_plug);
254 
255 /*
256  * remove the plug and let it rip..
257  */
258 void __generic_unplug_device(struct request_queue *q)
259 {
260 	if (unlikely(blk_queue_stopped(q)))
261 		return;
262 	if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
263 		return;
264 
265 	q->request_fn(q);
266 }
267 
268 /**
269  * generic_unplug_device - fire a request queue
270  * @q:    The &struct request_queue in question
271  *
272  * Description:
273  *   Linux uses plugging to build bigger requests queues before letting
274  *   the device have at them. If a queue is plugged, the I/O scheduler
275  *   is still adding and merging requests on the queue. Once the queue
276  *   gets unplugged, the request_fn defined for the queue is invoked and
277  *   transfers started.
278  **/
279 void generic_unplug_device(struct request_queue *q)
280 {
281 	if (blk_queue_plugged(q)) {
282 		spin_lock_irq(q->queue_lock);
283 		__generic_unplug_device(q);
284 		spin_unlock_irq(q->queue_lock);
285 	}
286 }
287 EXPORT_SYMBOL(generic_unplug_device);
288 
289 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
290 				   struct page *page)
291 {
292 	struct request_queue *q = bdi->unplug_io_data;
293 
294 	blk_unplug(q);
295 }
296 
297 void blk_unplug_work(struct work_struct *work)
298 {
299 	struct request_queue *q =
300 		container_of(work, struct request_queue, unplug_work);
301 
302 	trace_block_unplug_io(q);
303 	q->unplug_fn(q);
304 }
305 
306 void blk_unplug_timeout(unsigned long data)
307 {
308 	struct request_queue *q = (struct request_queue *)data;
309 
310 	trace_block_unplug_timer(q);
311 	kblockd_schedule_work(q, &q->unplug_work);
312 }
313 
314 void blk_unplug(struct request_queue *q)
315 {
316 	/*
317 	 * devices don't necessarily have an ->unplug_fn defined
318 	 */
319 	if (q->unplug_fn) {
320 		trace_block_unplug_io(q);
321 		q->unplug_fn(q);
322 	}
323 }
324 EXPORT_SYMBOL(blk_unplug);
325 
326 /**
327  * blk_start_queue - restart a previously stopped queue
328  * @q:    The &struct request_queue in question
329  *
330  * Description:
331  *   blk_start_queue() will clear the stop flag on the queue, and call
332  *   the request_fn for the queue if it was in a stopped state when
333  *   entered. Also see blk_stop_queue(). Queue lock must be held.
334  **/
335 void blk_start_queue(struct request_queue *q)
336 {
337 	WARN_ON(!irqs_disabled());
338 
339 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
340 	__blk_run_queue(q);
341 }
342 EXPORT_SYMBOL(blk_start_queue);
343 
344 /**
345  * blk_stop_queue - stop a queue
346  * @q:    The &struct request_queue in question
347  *
348  * Description:
349  *   The Linux block layer assumes that a block driver will consume all
350  *   entries on the request queue when the request_fn strategy is called.
351  *   Often this will not happen, because of hardware limitations (queue
352  *   depth settings). If a device driver gets a 'queue full' response,
353  *   or if it simply chooses not to queue more I/O at one point, it can
354  *   call this function to prevent the request_fn from being called until
355  *   the driver has signalled it's ready to go again. This happens by calling
356  *   blk_start_queue() to restart queue operations. Queue lock must be held.
357  **/
358 void blk_stop_queue(struct request_queue *q)
359 {
360 	blk_remove_plug(q);
361 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
362 }
363 EXPORT_SYMBOL(blk_stop_queue);
364 
365 /**
366  * blk_sync_queue - cancel any pending callbacks on a queue
367  * @q: the queue
368  *
369  * Description:
370  *     The block layer may perform asynchronous callback activity
371  *     on a queue, such as calling the unplug function after a timeout.
372  *     A block device may call blk_sync_queue to ensure that any
373  *     such activity is cancelled, thus allowing it to release resources
374  *     that the callbacks might use. The caller must already have made sure
375  *     that its ->make_request_fn will not re-add plugging prior to calling
376  *     this function.
377  *
378  */
379 void blk_sync_queue(struct request_queue *q)
380 {
381 	del_timer_sync(&q->unplug_timer);
382 	del_timer_sync(&q->timeout);
383 	cancel_work_sync(&q->unplug_work);
384 }
385 EXPORT_SYMBOL(blk_sync_queue);
386 
387 /**
388  * __blk_run_queue - run a single device queue
389  * @q:	The queue to run
390  *
391  * Description:
392  *    See @blk_run_queue. This variant must be called with the queue lock
393  *    held and interrupts disabled.
394  *
395  */
396 void __blk_run_queue(struct request_queue *q)
397 {
398 	blk_remove_plug(q);
399 
400 	if (unlikely(blk_queue_stopped(q)))
401 		return;
402 
403 	if (elv_queue_empty(q))
404 		return;
405 
406 	/*
407 	 * Only recurse once to avoid overrunning the stack, let the unplug
408 	 * handling reinvoke the handler shortly if we already got there.
409 	 */
410 	if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
411 		q->request_fn(q);
412 		queue_flag_clear(QUEUE_FLAG_REENTER, q);
413 	} else {
414 		queue_flag_set(QUEUE_FLAG_PLUGGED, q);
415 		kblockd_schedule_work(q, &q->unplug_work);
416 	}
417 }
418 EXPORT_SYMBOL(__blk_run_queue);
419 
420 /**
421  * blk_run_queue - run a single device queue
422  * @q: The queue to run
423  *
424  * Description:
425  *    Invoke request handling on this queue, if it has pending work to do.
426  *    May be used to restart queueing when a request has completed.
427  */
428 void blk_run_queue(struct request_queue *q)
429 {
430 	unsigned long flags;
431 
432 	spin_lock_irqsave(q->queue_lock, flags);
433 	__blk_run_queue(q);
434 	spin_unlock_irqrestore(q->queue_lock, flags);
435 }
436 EXPORT_SYMBOL(blk_run_queue);
437 
438 void blk_put_queue(struct request_queue *q)
439 {
440 	kobject_put(&q->kobj);
441 }
442 
443 void blk_cleanup_queue(struct request_queue *q)
444 {
445 	/*
446 	 * We know we have process context here, so we can be a little
447 	 * cautious and ensure that pending block actions on this device
448 	 * are done before moving on. Going into this function, we should
449 	 * not have processes doing IO to this device.
450 	 */
451 	blk_sync_queue(q);
452 
453 	mutex_lock(&q->sysfs_lock);
454 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
455 	mutex_unlock(&q->sysfs_lock);
456 
457 	if (q->elevator)
458 		elevator_exit(q->elevator);
459 
460 	blk_put_queue(q);
461 }
462 EXPORT_SYMBOL(blk_cleanup_queue);
463 
464 static int blk_init_free_list(struct request_queue *q)
465 {
466 	struct request_list *rl = &q->rq;
467 
468 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
469 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
470 	rl->elvpriv = 0;
471 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
472 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
473 
474 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
475 				mempool_free_slab, request_cachep, q->node);
476 
477 	if (!rl->rq_pool)
478 		return -ENOMEM;
479 
480 	return 0;
481 }
482 
483 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
484 {
485 	return blk_alloc_queue_node(gfp_mask, -1);
486 }
487 EXPORT_SYMBOL(blk_alloc_queue);
488 
489 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
490 {
491 	struct request_queue *q;
492 	int err;
493 
494 	q = kmem_cache_alloc_node(blk_requestq_cachep,
495 				gfp_mask | __GFP_ZERO, node_id);
496 	if (!q)
497 		return NULL;
498 
499 	q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
500 	q->backing_dev_info.unplug_io_data = q;
501 	err = bdi_init(&q->backing_dev_info);
502 	if (err) {
503 		kmem_cache_free(blk_requestq_cachep, q);
504 		return NULL;
505 	}
506 
507 	init_timer(&q->unplug_timer);
508 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
509 	INIT_LIST_HEAD(&q->timeout_list);
510 	INIT_WORK(&q->unplug_work, blk_unplug_work);
511 
512 	kobject_init(&q->kobj, &blk_queue_ktype);
513 
514 	mutex_init(&q->sysfs_lock);
515 	spin_lock_init(&q->__queue_lock);
516 
517 	return q;
518 }
519 EXPORT_SYMBOL(blk_alloc_queue_node);
520 
521 /**
522  * blk_init_queue  - prepare a request queue for use with a block device
523  * @rfn:  The function to be called to process requests that have been
524  *        placed on the queue.
525  * @lock: Request queue spin lock
526  *
527  * Description:
528  *    If a block device wishes to use the standard request handling procedures,
529  *    which sorts requests and coalesces adjacent requests, then it must
530  *    call blk_init_queue().  The function @rfn will be called when there
531  *    are requests on the queue that need to be processed.  If the device
532  *    supports plugging, then @rfn may not be called immediately when requests
533  *    are available on the queue, but may be called at some time later instead.
534  *    Plugged queues are generally unplugged when a buffer belonging to one
535  *    of the requests on the queue is needed, or due to memory pressure.
536  *
537  *    @rfn is not required, or even expected, to remove all requests off the
538  *    queue, but only as many as it can handle at a time.  If it does leave
539  *    requests on the queue, it is responsible for arranging that the requests
540  *    get dealt with eventually.
541  *
542  *    The queue spin lock must be held while manipulating the requests on the
543  *    request queue; this lock will be taken also from interrupt context, so irq
544  *    disabling is needed for it.
545  *
546  *    Function returns a pointer to the initialized request queue, or %NULL if
547  *    it didn't succeed.
548  *
549  * Note:
550  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
551  *    when the block device is deactivated (such as at module unload).
552  **/
553 
554 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
555 {
556 	return blk_init_queue_node(rfn, lock, -1);
557 }
558 EXPORT_SYMBOL(blk_init_queue);
559 
560 struct request_queue *
561 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
562 {
563 	struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
564 
565 	if (!q)
566 		return NULL;
567 
568 	q->node = node_id;
569 	if (blk_init_free_list(q)) {
570 		kmem_cache_free(blk_requestq_cachep, q);
571 		return NULL;
572 	}
573 
574 	/*
575 	 * if caller didn't supply a lock, they get per-queue locking with
576 	 * our embedded lock
577 	 */
578 	if (!lock)
579 		lock = &q->__queue_lock;
580 
581 	q->request_fn		= rfn;
582 	q->prep_rq_fn		= NULL;
583 	q->unplug_fn		= generic_unplug_device;
584 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
585 	q->queue_lock		= lock;
586 
587 	/*
588 	 * This also sets hw/phys segments, boundary and size
589 	 */
590 	blk_queue_make_request(q, __make_request);
591 
592 	q->sg_reserved_size = INT_MAX;
593 
594 	blk_set_cmd_filter_defaults(&q->cmd_filter);
595 
596 	/*
597 	 * all done
598 	 */
599 	if (!elevator_init(q, NULL)) {
600 		blk_queue_congestion_threshold(q);
601 		return q;
602 	}
603 
604 	blk_put_queue(q);
605 	return NULL;
606 }
607 EXPORT_SYMBOL(blk_init_queue_node);
608 
609 int blk_get_queue(struct request_queue *q)
610 {
611 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
612 		kobject_get(&q->kobj);
613 		return 0;
614 	}
615 
616 	return 1;
617 }
618 
619 static inline void blk_free_request(struct request_queue *q, struct request *rq)
620 {
621 	if (rq->cmd_flags & REQ_ELVPRIV)
622 		elv_put_request(q, rq);
623 	mempool_free(rq, q->rq.rq_pool);
624 }
625 
626 static struct request *
627 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
628 {
629 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
630 
631 	if (!rq)
632 		return NULL;
633 
634 	blk_rq_init(q, rq);
635 
636 	rq->cmd_flags = flags | REQ_ALLOCED;
637 
638 	if (priv) {
639 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
640 			mempool_free(rq, q->rq.rq_pool);
641 			return NULL;
642 		}
643 		rq->cmd_flags |= REQ_ELVPRIV;
644 	}
645 
646 	return rq;
647 }
648 
649 /*
650  * ioc_batching returns true if the ioc is a valid batching request and
651  * should be given priority access to a request.
652  */
653 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
654 {
655 	if (!ioc)
656 		return 0;
657 
658 	/*
659 	 * Make sure the process is able to allocate at least 1 request
660 	 * even if the batch times out, otherwise we could theoretically
661 	 * lose wakeups.
662 	 */
663 	return ioc->nr_batch_requests == q->nr_batching ||
664 		(ioc->nr_batch_requests > 0
665 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
666 }
667 
668 /*
669  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
670  * will cause the process to be a "batcher" on all queues in the system. This
671  * is the behaviour we want though - once it gets a wakeup it should be given
672  * a nice run.
673  */
674 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
675 {
676 	if (!ioc || ioc_batching(q, ioc))
677 		return;
678 
679 	ioc->nr_batch_requests = q->nr_batching;
680 	ioc->last_waited = jiffies;
681 }
682 
683 static void __freed_request(struct request_queue *q, int sync)
684 {
685 	struct request_list *rl = &q->rq;
686 
687 	if (rl->count[sync] < queue_congestion_off_threshold(q))
688 		blk_clear_queue_congested(q, sync);
689 
690 	if (rl->count[sync] + 1 <= q->nr_requests) {
691 		if (waitqueue_active(&rl->wait[sync]))
692 			wake_up(&rl->wait[sync]);
693 
694 		blk_clear_queue_full(q, sync);
695 	}
696 }
697 
698 /*
699  * A request has just been released.  Account for it, update the full and
700  * congestion status, wake up any waiters.   Called under q->queue_lock.
701  */
702 static void freed_request(struct request_queue *q, int sync, int priv)
703 {
704 	struct request_list *rl = &q->rq;
705 
706 	rl->count[sync]--;
707 	if (priv)
708 		rl->elvpriv--;
709 
710 	__freed_request(q, sync);
711 
712 	if (unlikely(rl->starved[sync ^ 1]))
713 		__freed_request(q, sync ^ 1);
714 }
715 
716 /*
717  * Get a free request, queue_lock must be held.
718  * Returns NULL on failure, with queue_lock held.
719  * Returns !NULL on success, with queue_lock *not held*.
720  */
721 static struct request *get_request(struct request_queue *q, int rw_flags,
722 				   struct bio *bio, gfp_t gfp_mask)
723 {
724 	struct request *rq = NULL;
725 	struct request_list *rl = &q->rq;
726 	struct io_context *ioc = NULL;
727 	const bool is_sync = rw_is_sync(rw_flags) != 0;
728 	int may_queue, priv;
729 
730 	may_queue = elv_may_queue(q, rw_flags);
731 	if (may_queue == ELV_MQUEUE_NO)
732 		goto rq_starved;
733 
734 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
735 		if (rl->count[is_sync]+1 >= q->nr_requests) {
736 			ioc = current_io_context(GFP_ATOMIC, q->node);
737 			/*
738 			 * The queue will fill after this allocation, so set
739 			 * it as full, and mark this process as "batching".
740 			 * This process will be allowed to complete a batch of
741 			 * requests, others will be blocked.
742 			 */
743 			if (!blk_queue_full(q, is_sync)) {
744 				ioc_set_batching(q, ioc);
745 				blk_set_queue_full(q, is_sync);
746 			} else {
747 				if (may_queue != ELV_MQUEUE_MUST
748 						&& !ioc_batching(q, ioc)) {
749 					/*
750 					 * The queue is full and the allocating
751 					 * process is not a "batcher", and not
752 					 * exempted by the IO scheduler
753 					 */
754 					goto out;
755 				}
756 			}
757 		}
758 		blk_set_queue_congested(q, is_sync);
759 	}
760 
761 	/*
762 	 * Only allow batching queuers to allocate up to 50% over the defined
763 	 * limit of requests, otherwise we could have thousands of requests
764 	 * allocated with any setting of ->nr_requests
765 	 */
766 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
767 		goto out;
768 
769 	rl->count[is_sync]++;
770 	rl->starved[is_sync] = 0;
771 
772 	priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
773 	if (priv)
774 		rl->elvpriv++;
775 
776 	if (blk_queue_io_stat(q))
777 		rw_flags |= REQ_IO_STAT;
778 	spin_unlock_irq(q->queue_lock);
779 
780 	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
781 	if (unlikely(!rq)) {
782 		/*
783 		 * Allocation failed presumably due to memory. Undo anything
784 		 * we might have messed up.
785 		 *
786 		 * Allocating task should really be put onto the front of the
787 		 * wait queue, but this is pretty rare.
788 		 */
789 		spin_lock_irq(q->queue_lock);
790 		freed_request(q, is_sync, priv);
791 
792 		/*
793 		 * in the very unlikely event that allocation failed and no
794 		 * requests for this direction was pending, mark us starved
795 		 * so that freeing of a request in the other direction will
796 		 * notice us. another possible fix would be to split the
797 		 * rq mempool into READ and WRITE
798 		 */
799 rq_starved:
800 		if (unlikely(rl->count[is_sync] == 0))
801 			rl->starved[is_sync] = 1;
802 
803 		goto out;
804 	}
805 
806 	/*
807 	 * ioc may be NULL here, and ioc_batching will be false. That's
808 	 * OK, if the queue is under the request limit then requests need
809 	 * not count toward the nr_batch_requests limit. There will always
810 	 * be some limit enforced by BLK_BATCH_TIME.
811 	 */
812 	if (ioc_batching(q, ioc))
813 		ioc->nr_batch_requests--;
814 
815 	trace_block_getrq(q, bio, rw_flags & 1);
816 out:
817 	return rq;
818 }
819 
820 /*
821  * No available requests for this queue, unplug the device and wait for some
822  * requests to become available.
823  *
824  * Called with q->queue_lock held, and returns with it unlocked.
825  */
826 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
827 					struct bio *bio)
828 {
829 	const bool is_sync = rw_is_sync(rw_flags) != 0;
830 	struct request *rq;
831 
832 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
833 	while (!rq) {
834 		DEFINE_WAIT(wait);
835 		struct io_context *ioc;
836 		struct request_list *rl = &q->rq;
837 
838 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
839 				TASK_UNINTERRUPTIBLE);
840 
841 		trace_block_sleeprq(q, bio, rw_flags & 1);
842 
843 		__generic_unplug_device(q);
844 		spin_unlock_irq(q->queue_lock);
845 		io_schedule();
846 
847 		/*
848 		 * After sleeping, we become a "batching" process and
849 		 * will be able to allocate at least one request, and
850 		 * up to a big batch of them for a small period time.
851 		 * See ioc_batching, ioc_set_batching
852 		 */
853 		ioc = current_io_context(GFP_NOIO, q->node);
854 		ioc_set_batching(q, ioc);
855 
856 		spin_lock_irq(q->queue_lock);
857 		finish_wait(&rl->wait[is_sync], &wait);
858 
859 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
860 	};
861 
862 	return rq;
863 }
864 
865 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
866 {
867 	struct request *rq;
868 
869 	BUG_ON(rw != READ && rw != WRITE);
870 
871 	spin_lock_irq(q->queue_lock);
872 	if (gfp_mask & __GFP_WAIT) {
873 		rq = get_request_wait(q, rw, NULL);
874 	} else {
875 		rq = get_request(q, rw, NULL, gfp_mask);
876 		if (!rq)
877 			spin_unlock_irq(q->queue_lock);
878 	}
879 	/* q->queue_lock is unlocked at this point */
880 
881 	return rq;
882 }
883 EXPORT_SYMBOL(blk_get_request);
884 
885 /**
886  * blk_make_request - given a bio, allocate a corresponding struct request.
887  *
888  * @bio:  The bio describing the memory mappings that will be submitted for IO.
889  *        It may be a chained-bio properly constructed by block/bio layer.
890  *
891  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
892  * type commands. Where the struct request needs to be farther initialized by
893  * the caller. It is passed a &struct bio, which describes the memory info of
894  * the I/O transfer.
895  *
896  * The caller of blk_make_request must make sure that bi_io_vec
897  * are set to describe the memory buffers. That bio_data_dir() will return
898  * the needed direction of the request. (And all bio's in the passed bio-chain
899  * are properly set accordingly)
900  *
901  * If called under none-sleepable conditions, mapped bio buffers must not
902  * need bouncing, by calling the appropriate masked or flagged allocator,
903  * suitable for the target device. Otherwise the call to blk_queue_bounce will
904  * BUG.
905  *
906  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
907  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
908  * anything but the first bio in the chain. Otherwise you risk waiting for IO
909  * completion of a bio that hasn't been submitted yet, thus resulting in a
910  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
911  * of bio_alloc(), as that avoids the mempool deadlock.
912  * If possible a big IO should be split into smaller parts when allocation
913  * fails. Partial allocation should not be an error, or you risk a live-lock.
914  */
915 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
916 				 gfp_t gfp_mask)
917 {
918 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
919 
920 	if (unlikely(!rq))
921 		return ERR_PTR(-ENOMEM);
922 
923 	for_each_bio(bio) {
924 		struct bio *bounce_bio = bio;
925 		int ret;
926 
927 		blk_queue_bounce(q, &bounce_bio);
928 		ret = blk_rq_append_bio(q, rq, bounce_bio);
929 		if (unlikely(ret)) {
930 			blk_put_request(rq);
931 			return ERR_PTR(ret);
932 		}
933 	}
934 
935 	return rq;
936 }
937 EXPORT_SYMBOL(blk_make_request);
938 
939 /**
940  * blk_requeue_request - put a request back on queue
941  * @q:		request queue where request should be inserted
942  * @rq:		request to be inserted
943  *
944  * Description:
945  *    Drivers often keep queueing requests until the hardware cannot accept
946  *    more, when that condition happens we need to put the request back
947  *    on the queue. Must be called with queue lock held.
948  */
949 void blk_requeue_request(struct request_queue *q, struct request *rq)
950 {
951 	blk_delete_timer(rq);
952 	blk_clear_rq_complete(rq);
953 	trace_block_rq_requeue(q, rq);
954 
955 	if (blk_rq_tagged(rq))
956 		blk_queue_end_tag(q, rq);
957 
958 	BUG_ON(blk_queued_rq(rq));
959 
960 	elv_requeue_request(q, rq);
961 }
962 EXPORT_SYMBOL(blk_requeue_request);
963 
964 /**
965  * blk_insert_request - insert a special request into a request queue
966  * @q:		request queue where request should be inserted
967  * @rq:		request to be inserted
968  * @at_head:	insert request at head or tail of queue
969  * @data:	private data
970  *
971  * Description:
972  *    Many block devices need to execute commands asynchronously, so they don't
973  *    block the whole kernel from preemption during request execution.  This is
974  *    accomplished normally by inserting aritficial requests tagged as
975  *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
976  *    be scheduled for actual execution by the request queue.
977  *
978  *    We have the option of inserting the head or the tail of the queue.
979  *    Typically we use the tail for new ioctls and so forth.  We use the head
980  *    of the queue for things like a QUEUE_FULL message from a device, or a
981  *    host that is unable to accept a particular command.
982  */
983 void blk_insert_request(struct request_queue *q, struct request *rq,
984 			int at_head, void *data)
985 {
986 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
987 	unsigned long flags;
988 
989 	/*
990 	 * tell I/O scheduler that this isn't a regular read/write (ie it
991 	 * must not attempt merges on this) and that it acts as a soft
992 	 * barrier
993 	 */
994 	rq->cmd_type = REQ_TYPE_SPECIAL;
995 
996 	rq->special = data;
997 
998 	spin_lock_irqsave(q->queue_lock, flags);
999 
1000 	/*
1001 	 * If command is tagged, release the tag
1002 	 */
1003 	if (blk_rq_tagged(rq))
1004 		blk_queue_end_tag(q, rq);
1005 
1006 	drive_stat_acct(rq, 1);
1007 	__elv_add_request(q, rq, where, 0);
1008 	__blk_run_queue(q);
1009 	spin_unlock_irqrestore(q->queue_lock, flags);
1010 }
1011 EXPORT_SYMBOL(blk_insert_request);
1012 
1013 /*
1014  * add-request adds a request to the linked list.
1015  * queue lock is held and interrupts disabled, as we muck with the
1016  * request queue list.
1017  */
1018 static inline void add_request(struct request_queue *q, struct request *req)
1019 {
1020 	drive_stat_acct(req, 1);
1021 
1022 	/*
1023 	 * elevator indicated where it wants this request to be
1024 	 * inserted at elevator_merge time
1025 	 */
1026 	__elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1027 }
1028 
1029 static void part_round_stats_single(int cpu, struct hd_struct *part,
1030 				    unsigned long now)
1031 {
1032 	if (now == part->stamp)
1033 		return;
1034 
1035 	if (part->in_flight) {
1036 		__part_stat_add(cpu, part, time_in_queue,
1037 				part->in_flight * (now - part->stamp));
1038 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1039 	}
1040 	part->stamp = now;
1041 }
1042 
1043 /**
1044  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1045  * @cpu: cpu number for stats access
1046  * @part: target partition
1047  *
1048  * The average IO queue length and utilisation statistics are maintained
1049  * by observing the current state of the queue length and the amount of
1050  * time it has been in this state for.
1051  *
1052  * Normally, that accounting is done on IO completion, but that can result
1053  * in more than a second's worth of IO being accounted for within any one
1054  * second, leading to >100% utilisation.  To deal with that, we call this
1055  * function to do a round-off before returning the results when reading
1056  * /proc/diskstats.  This accounts immediately for all queue usage up to
1057  * the current jiffies and restarts the counters again.
1058  */
1059 void part_round_stats(int cpu, struct hd_struct *part)
1060 {
1061 	unsigned long now = jiffies;
1062 
1063 	if (part->partno)
1064 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1065 	part_round_stats_single(cpu, part, now);
1066 }
1067 EXPORT_SYMBOL_GPL(part_round_stats);
1068 
1069 /*
1070  * queue lock must be held
1071  */
1072 void __blk_put_request(struct request_queue *q, struct request *req)
1073 {
1074 	if (unlikely(!q))
1075 		return;
1076 	if (unlikely(--req->ref_count))
1077 		return;
1078 
1079 	elv_completed_request(q, req);
1080 
1081 	/* this is a bio leak */
1082 	WARN_ON(req->bio != NULL);
1083 
1084 	/*
1085 	 * Request may not have originated from ll_rw_blk. if not,
1086 	 * it didn't come out of our reserved rq pools
1087 	 */
1088 	if (req->cmd_flags & REQ_ALLOCED) {
1089 		int is_sync = rq_is_sync(req) != 0;
1090 		int priv = req->cmd_flags & REQ_ELVPRIV;
1091 
1092 		BUG_ON(!list_empty(&req->queuelist));
1093 		BUG_ON(!hlist_unhashed(&req->hash));
1094 
1095 		blk_free_request(q, req);
1096 		freed_request(q, is_sync, priv);
1097 	}
1098 }
1099 EXPORT_SYMBOL_GPL(__blk_put_request);
1100 
1101 void blk_put_request(struct request *req)
1102 {
1103 	unsigned long flags;
1104 	struct request_queue *q = req->q;
1105 
1106 	spin_lock_irqsave(q->queue_lock, flags);
1107 	__blk_put_request(q, req);
1108 	spin_unlock_irqrestore(q->queue_lock, flags);
1109 }
1110 EXPORT_SYMBOL(blk_put_request);
1111 
1112 void init_request_from_bio(struct request *req, struct bio *bio)
1113 {
1114 	req->cpu = bio->bi_comp_cpu;
1115 	req->cmd_type = REQ_TYPE_FS;
1116 
1117 	/*
1118 	 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1119 	 */
1120 	if (bio_rw_ahead(bio))
1121 		req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1122 				   REQ_FAILFAST_DRIVER);
1123 	if (bio_failfast_dev(bio))
1124 		req->cmd_flags |= REQ_FAILFAST_DEV;
1125 	if (bio_failfast_transport(bio))
1126 		req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1127 	if (bio_failfast_driver(bio))
1128 		req->cmd_flags |= REQ_FAILFAST_DRIVER;
1129 
1130 	if (unlikely(bio_discard(bio))) {
1131 		req->cmd_flags |= REQ_DISCARD;
1132 		if (bio_barrier(bio))
1133 			req->cmd_flags |= REQ_SOFTBARRIER;
1134 		req->q->prepare_discard_fn(req->q, req);
1135 	} else if (unlikely(bio_barrier(bio)))
1136 		req->cmd_flags |= REQ_HARDBARRIER;
1137 
1138 	if (bio_sync(bio))
1139 		req->cmd_flags |= REQ_RW_SYNC;
1140 	if (bio_rw_meta(bio))
1141 		req->cmd_flags |= REQ_RW_META;
1142 	if (bio_noidle(bio))
1143 		req->cmd_flags |= REQ_NOIDLE;
1144 
1145 	req->errors = 0;
1146 	req->__sector = bio->bi_sector;
1147 	req->ioprio = bio_prio(bio);
1148 	blk_rq_bio_prep(req->q, req, bio);
1149 }
1150 
1151 /*
1152  * Only disabling plugging for non-rotational devices if it does tagging
1153  * as well, otherwise we do need the proper merging
1154  */
1155 static inline bool queue_should_plug(struct request_queue *q)
1156 {
1157 	return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1158 }
1159 
1160 static int __make_request(struct request_queue *q, struct bio *bio)
1161 {
1162 	struct request *req;
1163 	int el_ret;
1164 	unsigned int bytes = bio->bi_size;
1165 	const unsigned short prio = bio_prio(bio);
1166 	const int sync = bio_sync(bio);
1167 	const int unplug = bio_unplug(bio);
1168 	int rw_flags;
1169 
1170 	/*
1171 	 * low level driver can indicate that it wants pages above a
1172 	 * certain limit bounced to low memory (ie for highmem, or even
1173 	 * ISA dma in theory)
1174 	 */
1175 	blk_queue_bounce(q, &bio);
1176 
1177 	spin_lock_irq(q->queue_lock);
1178 
1179 	if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1180 		goto get_rq;
1181 
1182 	el_ret = elv_merge(q, &req, bio);
1183 	switch (el_ret) {
1184 	case ELEVATOR_BACK_MERGE:
1185 		BUG_ON(!rq_mergeable(req));
1186 
1187 		if (!ll_back_merge_fn(q, req, bio))
1188 			break;
1189 
1190 		trace_block_bio_backmerge(q, bio);
1191 
1192 		req->biotail->bi_next = bio;
1193 		req->biotail = bio;
1194 		req->__data_len += bytes;
1195 		req->ioprio = ioprio_best(req->ioprio, prio);
1196 		if (!blk_rq_cpu_valid(req))
1197 			req->cpu = bio->bi_comp_cpu;
1198 		drive_stat_acct(req, 0);
1199 		if (!attempt_back_merge(q, req))
1200 			elv_merged_request(q, req, el_ret);
1201 		goto out;
1202 
1203 	case ELEVATOR_FRONT_MERGE:
1204 		BUG_ON(!rq_mergeable(req));
1205 
1206 		if (!ll_front_merge_fn(q, req, bio))
1207 			break;
1208 
1209 		trace_block_bio_frontmerge(q, bio);
1210 
1211 		bio->bi_next = req->bio;
1212 		req->bio = bio;
1213 
1214 		/*
1215 		 * may not be valid. if the low level driver said
1216 		 * it didn't need a bounce buffer then it better
1217 		 * not touch req->buffer either...
1218 		 */
1219 		req->buffer = bio_data(bio);
1220 		req->__sector = bio->bi_sector;
1221 		req->__data_len += bytes;
1222 		req->ioprio = ioprio_best(req->ioprio, prio);
1223 		if (!blk_rq_cpu_valid(req))
1224 			req->cpu = bio->bi_comp_cpu;
1225 		drive_stat_acct(req, 0);
1226 		if (!attempt_front_merge(q, req))
1227 			elv_merged_request(q, req, el_ret);
1228 		goto out;
1229 
1230 	/* ELV_NO_MERGE: elevator says don't/can't merge. */
1231 	default:
1232 		;
1233 	}
1234 
1235 get_rq:
1236 	/*
1237 	 * This sync check and mask will be re-done in init_request_from_bio(),
1238 	 * but we need to set it earlier to expose the sync flag to the
1239 	 * rq allocator and io schedulers.
1240 	 */
1241 	rw_flags = bio_data_dir(bio);
1242 	if (sync)
1243 		rw_flags |= REQ_RW_SYNC;
1244 
1245 	/*
1246 	 * Grab a free request. This is might sleep but can not fail.
1247 	 * Returns with the queue unlocked.
1248 	 */
1249 	req = get_request_wait(q, rw_flags, bio);
1250 
1251 	/*
1252 	 * After dropping the lock and possibly sleeping here, our request
1253 	 * may now be mergeable after it had proven unmergeable (above).
1254 	 * We don't worry about that case for efficiency. It won't happen
1255 	 * often, and the elevators are able to handle it.
1256 	 */
1257 	init_request_from_bio(req, bio);
1258 
1259 	spin_lock_irq(q->queue_lock);
1260 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1261 	    bio_flagged(bio, BIO_CPU_AFFINE))
1262 		req->cpu = blk_cpu_to_group(smp_processor_id());
1263 	if (queue_should_plug(q) && elv_queue_empty(q))
1264 		blk_plug_device(q);
1265 	add_request(q, req);
1266 out:
1267 	if (unplug || !queue_should_plug(q))
1268 		__generic_unplug_device(q);
1269 	spin_unlock_irq(q->queue_lock);
1270 	return 0;
1271 }
1272 
1273 /*
1274  * If bio->bi_dev is a partition, remap the location
1275  */
1276 static inline void blk_partition_remap(struct bio *bio)
1277 {
1278 	struct block_device *bdev = bio->bi_bdev;
1279 
1280 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1281 		struct hd_struct *p = bdev->bd_part;
1282 
1283 		bio->bi_sector += p->start_sect;
1284 		bio->bi_bdev = bdev->bd_contains;
1285 
1286 		trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1287 				    bdev->bd_dev,
1288 				    bio->bi_sector - p->start_sect);
1289 	}
1290 }
1291 
1292 static void handle_bad_sector(struct bio *bio)
1293 {
1294 	char b[BDEVNAME_SIZE];
1295 
1296 	printk(KERN_INFO "attempt to access beyond end of device\n");
1297 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1298 			bdevname(bio->bi_bdev, b),
1299 			bio->bi_rw,
1300 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1301 			(long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1302 
1303 	set_bit(BIO_EOF, &bio->bi_flags);
1304 }
1305 
1306 #ifdef CONFIG_FAIL_MAKE_REQUEST
1307 
1308 static DECLARE_FAULT_ATTR(fail_make_request);
1309 
1310 static int __init setup_fail_make_request(char *str)
1311 {
1312 	return setup_fault_attr(&fail_make_request, str);
1313 }
1314 __setup("fail_make_request=", setup_fail_make_request);
1315 
1316 static int should_fail_request(struct bio *bio)
1317 {
1318 	struct hd_struct *part = bio->bi_bdev->bd_part;
1319 
1320 	if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1321 		return should_fail(&fail_make_request, bio->bi_size);
1322 
1323 	return 0;
1324 }
1325 
1326 static int __init fail_make_request_debugfs(void)
1327 {
1328 	return init_fault_attr_dentries(&fail_make_request,
1329 					"fail_make_request");
1330 }
1331 
1332 late_initcall(fail_make_request_debugfs);
1333 
1334 #else /* CONFIG_FAIL_MAKE_REQUEST */
1335 
1336 static inline int should_fail_request(struct bio *bio)
1337 {
1338 	return 0;
1339 }
1340 
1341 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1342 
1343 /*
1344  * Check whether this bio extends beyond the end of the device.
1345  */
1346 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1347 {
1348 	sector_t maxsector;
1349 
1350 	if (!nr_sectors)
1351 		return 0;
1352 
1353 	/* Test device or partition size, when known. */
1354 	maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1355 	if (maxsector) {
1356 		sector_t sector = bio->bi_sector;
1357 
1358 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1359 			/*
1360 			 * This may well happen - the kernel calls bread()
1361 			 * without checking the size of the device, e.g., when
1362 			 * mounting a device.
1363 			 */
1364 			handle_bad_sector(bio);
1365 			return 1;
1366 		}
1367 	}
1368 
1369 	return 0;
1370 }
1371 
1372 /**
1373  * generic_make_request - hand a buffer to its device driver for I/O
1374  * @bio:  The bio describing the location in memory and on the device.
1375  *
1376  * generic_make_request() is used to make I/O requests of block
1377  * devices. It is passed a &struct bio, which describes the I/O that needs
1378  * to be done.
1379  *
1380  * generic_make_request() does not return any status.  The
1381  * success/failure status of the request, along with notification of
1382  * completion, is delivered asynchronously through the bio->bi_end_io
1383  * function described (one day) else where.
1384  *
1385  * The caller of generic_make_request must make sure that bi_io_vec
1386  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1387  * set to describe the device address, and the
1388  * bi_end_io and optionally bi_private are set to describe how
1389  * completion notification should be signaled.
1390  *
1391  * generic_make_request and the drivers it calls may use bi_next if this
1392  * bio happens to be merged with someone else, and may change bi_dev and
1393  * bi_sector for remaps as it sees fit.  So the values of these fields
1394  * should NOT be depended on after the call to generic_make_request.
1395  */
1396 static inline void __generic_make_request(struct bio *bio)
1397 {
1398 	struct request_queue *q;
1399 	sector_t old_sector;
1400 	int ret, nr_sectors = bio_sectors(bio);
1401 	dev_t old_dev;
1402 	int err = -EIO;
1403 
1404 	might_sleep();
1405 
1406 	if (bio_check_eod(bio, nr_sectors))
1407 		goto end_io;
1408 
1409 	/*
1410 	 * Resolve the mapping until finished. (drivers are
1411 	 * still free to implement/resolve their own stacking
1412 	 * by explicitly returning 0)
1413 	 *
1414 	 * NOTE: we don't repeat the blk_size check for each new device.
1415 	 * Stacking drivers are expected to know what they are doing.
1416 	 */
1417 	old_sector = -1;
1418 	old_dev = 0;
1419 	do {
1420 		char b[BDEVNAME_SIZE];
1421 
1422 		q = bdev_get_queue(bio->bi_bdev);
1423 		if (unlikely(!q)) {
1424 			printk(KERN_ERR
1425 			       "generic_make_request: Trying to access "
1426 				"nonexistent block-device %s (%Lu)\n",
1427 				bdevname(bio->bi_bdev, b),
1428 				(long long) bio->bi_sector);
1429 			goto end_io;
1430 		}
1431 
1432 		if (unlikely(nr_sectors > queue_max_hw_sectors(q))) {
1433 			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1434 			       bdevname(bio->bi_bdev, b),
1435 			       bio_sectors(bio),
1436 			       queue_max_hw_sectors(q));
1437 			goto end_io;
1438 		}
1439 
1440 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1441 			goto end_io;
1442 
1443 		if (should_fail_request(bio))
1444 			goto end_io;
1445 
1446 		/*
1447 		 * If this device has partitions, remap block n
1448 		 * of partition p to block n+start(p) of the disk.
1449 		 */
1450 		blk_partition_remap(bio);
1451 
1452 		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1453 			goto end_io;
1454 
1455 		if (old_sector != -1)
1456 			trace_block_remap(q, bio, old_dev, old_sector);
1457 
1458 		trace_block_bio_queue(q, bio);
1459 
1460 		old_sector = bio->bi_sector;
1461 		old_dev = bio->bi_bdev->bd_dev;
1462 
1463 		if (bio_check_eod(bio, nr_sectors))
1464 			goto end_io;
1465 
1466 		if (bio_discard(bio) && !q->prepare_discard_fn) {
1467 			err = -EOPNOTSUPP;
1468 			goto end_io;
1469 		}
1470 		if (bio_barrier(bio) && bio_has_data(bio) &&
1471 		    (q->next_ordered == QUEUE_ORDERED_NONE)) {
1472 			err = -EOPNOTSUPP;
1473 			goto end_io;
1474 		}
1475 
1476 		ret = q->make_request_fn(q, bio);
1477 	} while (ret);
1478 
1479 	return;
1480 
1481 end_io:
1482 	bio_endio(bio, err);
1483 }
1484 
1485 /*
1486  * We only want one ->make_request_fn to be active at a time,
1487  * else stack usage with stacked devices could be a problem.
1488  * So use current->bio_{list,tail} to keep a list of requests
1489  * submited by a make_request_fn function.
1490  * current->bio_tail is also used as a flag to say if
1491  * generic_make_request is currently active in this task or not.
1492  * If it is NULL, then no make_request is active.  If it is non-NULL,
1493  * then a make_request is active, and new requests should be added
1494  * at the tail
1495  */
1496 void generic_make_request(struct bio *bio)
1497 {
1498 	if (current->bio_tail) {
1499 		/* make_request is active */
1500 		*(current->bio_tail) = bio;
1501 		bio->bi_next = NULL;
1502 		current->bio_tail = &bio->bi_next;
1503 		return;
1504 	}
1505 	/* following loop may be a bit non-obvious, and so deserves some
1506 	 * explanation.
1507 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1508 	 * ensure that) so we have a list with a single bio.
1509 	 * We pretend that we have just taken it off a longer list, so
1510 	 * we assign bio_list to the next (which is NULL) and bio_tail
1511 	 * to &bio_list, thus initialising the bio_list of new bios to be
1512 	 * added.  __generic_make_request may indeed add some more bios
1513 	 * through a recursive call to generic_make_request.  If it
1514 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1515 	 * from the top.  In this case we really did just take the bio
1516 	 * of the top of the list (no pretending) and so fixup bio_list and
1517 	 * bio_tail or bi_next, and call into __generic_make_request again.
1518 	 *
1519 	 * The loop was structured like this to make only one call to
1520 	 * __generic_make_request (which is important as it is large and
1521 	 * inlined) and to keep the structure simple.
1522 	 */
1523 	BUG_ON(bio->bi_next);
1524 	do {
1525 		current->bio_list = bio->bi_next;
1526 		if (bio->bi_next == NULL)
1527 			current->bio_tail = &current->bio_list;
1528 		else
1529 			bio->bi_next = NULL;
1530 		__generic_make_request(bio);
1531 		bio = current->bio_list;
1532 	} while (bio);
1533 	current->bio_tail = NULL; /* deactivate */
1534 }
1535 EXPORT_SYMBOL(generic_make_request);
1536 
1537 /**
1538  * submit_bio - submit a bio to the block device layer for I/O
1539  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1540  * @bio: The &struct bio which describes the I/O
1541  *
1542  * submit_bio() is very similar in purpose to generic_make_request(), and
1543  * uses that function to do most of the work. Both are fairly rough
1544  * interfaces; @bio must be presetup and ready for I/O.
1545  *
1546  */
1547 void submit_bio(int rw, struct bio *bio)
1548 {
1549 	int count = bio_sectors(bio);
1550 
1551 	bio->bi_rw |= rw;
1552 
1553 	/*
1554 	 * If it's a regular read/write or a barrier with data attached,
1555 	 * go through the normal accounting stuff before submission.
1556 	 */
1557 	if (bio_has_data(bio)) {
1558 		if (rw & WRITE) {
1559 			count_vm_events(PGPGOUT, count);
1560 		} else {
1561 			task_io_account_read(bio->bi_size);
1562 			count_vm_events(PGPGIN, count);
1563 		}
1564 
1565 		if (unlikely(block_dump)) {
1566 			char b[BDEVNAME_SIZE];
1567 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1568 			current->comm, task_pid_nr(current),
1569 				(rw & WRITE) ? "WRITE" : "READ",
1570 				(unsigned long long)bio->bi_sector,
1571 				bdevname(bio->bi_bdev, b));
1572 		}
1573 	}
1574 
1575 	generic_make_request(bio);
1576 }
1577 EXPORT_SYMBOL(submit_bio);
1578 
1579 /**
1580  * blk_rq_check_limits - Helper function to check a request for the queue limit
1581  * @q:  the queue
1582  * @rq: the request being checked
1583  *
1584  * Description:
1585  *    @rq may have been made based on weaker limitations of upper-level queues
1586  *    in request stacking drivers, and it may violate the limitation of @q.
1587  *    Since the block layer and the underlying device driver trust @rq
1588  *    after it is inserted to @q, it should be checked against @q before
1589  *    the insertion using this generic function.
1590  *
1591  *    This function should also be useful for request stacking drivers
1592  *    in some cases below, so export this fuction.
1593  *    Request stacking drivers like request-based dm may change the queue
1594  *    limits while requests are in the queue (e.g. dm's table swapping).
1595  *    Such request stacking drivers should check those requests agaist
1596  *    the new queue limits again when they dispatch those requests,
1597  *    although such checkings are also done against the old queue limits
1598  *    when submitting requests.
1599  */
1600 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1601 {
1602 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1603 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1604 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1605 		return -EIO;
1606 	}
1607 
1608 	/*
1609 	 * queue's settings related to segment counting like q->bounce_pfn
1610 	 * may differ from that of other stacking queues.
1611 	 * Recalculate it to check the request correctly on this queue's
1612 	 * limitation.
1613 	 */
1614 	blk_recalc_rq_segments(rq);
1615 	if (rq->nr_phys_segments > queue_max_phys_segments(q) ||
1616 	    rq->nr_phys_segments > queue_max_hw_segments(q)) {
1617 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1618 		return -EIO;
1619 	}
1620 
1621 	return 0;
1622 }
1623 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1624 
1625 /**
1626  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1627  * @q:  the queue to submit the request
1628  * @rq: the request being queued
1629  */
1630 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1631 {
1632 	unsigned long flags;
1633 
1634 	if (blk_rq_check_limits(q, rq))
1635 		return -EIO;
1636 
1637 #ifdef CONFIG_FAIL_MAKE_REQUEST
1638 	if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1639 	    should_fail(&fail_make_request, blk_rq_bytes(rq)))
1640 		return -EIO;
1641 #endif
1642 
1643 	spin_lock_irqsave(q->queue_lock, flags);
1644 
1645 	/*
1646 	 * Submitting request must be dequeued before calling this function
1647 	 * because it will be linked to another request_queue
1648 	 */
1649 	BUG_ON(blk_queued_rq(rq));
1650 
1651 	drive_stat_acct(rq, 1);
1652 	__elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1653 
1654 	spin_unlock_irqrestore(q->queue_lock, flags);
1655 
1656 	return 0;
1657 }
1658 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1659 
1660 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1661 {
1662 	if (blk_do_io_stat(req)) {
1663 		const int rw = rq_data_dir(req);
1664 		struct hd_struct *part;
1665 		int cpu;
1666 
1667 		cpu = part_stat_lock();
1668 		part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1669 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1670 		part_stat_unlock();
1671 	}
1672 }
1673 
1674 static void blk_account_io_done(struct request *req)
1675 {
1676 	/*
1677 	 * Account IO completion.  bar_rq isn't accounted as a normal
1678 	 * IO on queueing nor completion.  Accounting the containing
1679 	 * request is enough.
1680 	 */
1681 	if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1682 		unsigned long duration = jiffies - req->start_time;
1683 		const int rw = rq_data_dir(req);
1684 		struct hd_struct *part;
1685 		int cpu;
1686 
1687 		cpu = part_stat_lock();
1688 		part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1689 
1690 		part_stat_inc(cpu, part, ios[rw]);
1691 		part_stat_add(cpu, part, ticks[rw], duration);
1692 		part_round_stats(cpu, part);
1693 		part_dec_in_flight(part);
1694 
1695 		part_stat_unlock();
1696 	}
1697 }
1698 
1699 /**
1700  * blk_peek_request - peek at the top of a request queue
1701  * @q: request queue to peek at
1702  *
1703  * Description:
1704  *     Return the request at the top of @q.  The returned request
1705  *     should be started using blk_start_request() before LLD starts
1706  *     processing it.
1707  *
1708  * Return:
1709  *     Pointer to the request at the top of @q if available.  Null
1710  *     otherwise.
1711  *
1712  * Context:
1713  *     queue_lock must be held.
1714  */
1715 struct request *blk_peek_request(struct request_queue *q)
1716 {
1717 	struct request *rq;
1718 	int ret;
1719 
1720 	while ((rq = __elv_next_request(q)) != NULL) {
1721 		if (!(rq->cmd_flags & REQ_STARTED)) {
1722 			/*
1723 			 * This is the first time the device driver
1724 			 * sees this request (possibly after
1725 			 * requeueing).  Notify IO scheduler.
1726 			 */
1727 			if (blk_sorted_rq(rq))
1728 				elv_activate_rq(q, rq);
1729 
1730 			/*
1731 			 * just mark as started even if we don't start
1732 			 * it, a request that has been delayed should
1733 			 * not be passed by new incoming requests
1734 			 */
1735 			rq->cmd_flags |= REQ_STARTED;
1736 			trace_block_rq_issue(q, rq);
1737 		}
1738 
1739 		if (!q->boundary_rq || q->boundary_rq == rq) {
1740 			q->end_sector = rq_end_sector(rq);
1741 			q->boundary_rq = NULL;
1742 		}
1743 
1744 		if (rq->cmd_flags & REQ_DONTPREP)
1745 			break;
1746 
1747 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1748 			/*
1749 			 * make sure space for the drain appears we
1750 			 * know we can do this because max_hw_segments
1751 			 * has been adjusted to be one fewer than the
1752 			 * device can handle
1753 			 */
1754 			rq->nr_phys_segments++;
1755 		}
1756 
1757 		if (!q->prep_rq_fn)
1758 			break;
1759 
1760 		ret = q->prep_rq_fn(q, rq);
1761 		if (ret == BLKPREP_OK) {
1762 			break;
1763 		} else if (ret == BLKPREP_DEFER) {
1764 			/*
1765 			 * the request may have been (partially) prepped.
1766 			 * we need to keep this request in the front to
1767 			 * avoid resource deadlock.  REQ_STARTED will
1768 			 * prevent other fs requests from passing this one.
1769 			 */
1770 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1771 			    !(rq->cmd_flags & REQ_DONTPREP)) {
1772 				/*
1773 				 * remove the space for the drain we added
1774 				 * so that we don't add it again
1775 				 */
1776 				--rq->nr_phys_segments;
1777 			}
1778 
1779 			rq = NULL;
1780 			break;
1781 		} else if (ret == BLKPREP_KILL) {
1782 			rq->cmd_flags |= REQ_QUIET;
1783 			/*
1784 			 * Mark this request as started so we don't trigger
1785 			 * any debug logic in the end I/O path.
1786 			 */
1787 			blk_start_request(rq);
1788 			__blk_end_request_all(rq, -EIO);
1789 		} else {
1790 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1791 			break;
1792 		}
1793 	}
1794 
1795 	return rq;
1796 }
1797 EXPORT_SYMBOL(blk_peek_request);
1798 
1799 void blk_dequeue_request(struct request *rq)
1800 {
1801 	struct request_queue *q = rq->q;
1802 
1803 	BUG_ON(list_empty(&rq->queuelist));
1804 	BUG_ON(ELV_ON_HASH(rq));
1805 
1806 	list_del_init(&rq->queuelist);
1807 
1808 	/*
1809 	 * the time frame between a request being removed from the lists
1810 	 * and to it is freed is accounted as io that is in progress at
1811 	 * the driver side.
1812 	 */
1813 	if (blk_account_rq(rq))
1814 		q->in_flight[rq_is_sync(rq)]++;
1815 }
1816 
1817 /**
1818  * blk_start_request - start request processing on the driver
1819  * @req: request to dequeue
1820  *
1821  * Description:
1822  *     Dequeue @req and start timeout timer on it.  This hands off the
1823  *     request to the driver.
1824  *
1825  *     Block internal functions which don't want to start timer should
1826  *     call blk_dequeue_request().
1827  *
1828  * Context:
1829  *     queue_lock must be held.
1830  */
1831 void blk_start_request(struct request *req)
1832 {
1833 	blk_dequeue_request(req);
1834 
1835 	/*
1836 	 * We are now handing the request to the hardware, initialize
1837 	 * resid_len to full count and add the timeout handler.
1838 	 */
1839 	req->resid_len = blk_rq_bytes(req);
1840 	if (unlikely(blk_bidi_rq(req)))
1841 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1842 
1843 	blk_add_timer(req);
1844 }
1845 EXPORT_SYMBOL(blk_start_request);
1846 
1847 /**
1848  * blk_fetch_request - fetch a request from a request queue
1849  * @q: request queue to fetch a request from
1850  *
1851  * Description:
1852  *     Return the request at the top of @q.  The request is started on
1853  *     return and LLD can start processing it immediately.
1854  *
1855  * Return:
1856  *     Pointer to the request at the top of @q if available.  Null
1857  *     otherwise.
1858  *
1859  * Context:
1860  *     queue_lock must be held.
1861  */
1862 struct request *blk_fetch_request(struct request_queue *q)
1863 {
1864 	struct request *rq;
1865 
1866 	rq = blk_peek_request(q);
1867 	if (rq)
1868 		blk_start_request(rq);
1869 	return rq;
1870 }
1871 EXPORT_SYMBOL(blk_fetch_request);
1872 
1873 /**
1874  * blk_update_request - Special helper function for request stacking drivers
1875  * @rq:	      the request being processed
1876  * @error:    %0 for success, < %0 for error
1877  * @nr_bytes: number of bytes to complete @rq
1878  *
1879  * Description:
1880  *     Ends I/O on a number of bytes attached to @rq, but doesn't complete
1881  *     the request structure even if @rq doesn't have leftover.
1882  *     If @rq has leftover, sets it up for the next range of segments.
1883  *
1884  *     This special helper function is only for request stacking drivers
1885  *     (e.g. request-based dm) so that they can handle partial completion.
1886  *     Actual device drivers should use blk_end_request instead.
1887  *
1888  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1889  *     %false return from this function.
1890  *
1891  * Return:
1892  *     %false - this request doesn't have any more data
1893  *     %true  - this request has more data
1894  **/
1895 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1896 {
1897 	int total_bytes, bio_nbytes, next_idx = 0;
1898 	struct bio *bio;
1899 
1900 	if (!req->bio)
1901 		return false;
1902 
1903 	trace_block_rq_complete(req->q, req);
1904 
1905 	/*
1906 	 * For fs requests, rq is just carrier of independent bio's
1907 	 * and each partial completion should be handled separately.
1908 	 * Reset per-request error on each partial completion.
1909 	 *
1910 	 * TODO: tj: This is too subtle.  It would be better to let
1911 	 * low level drivers do what they see fit.
1912 	 */
1913 	if (blk_fs_request(req))
1914 		req->errors = 0;
1915 
1916 	if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1917 		printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1918 				req->rq_disk ? req->rq_disk->disk_name : "?",
1919 				(unsigned long long)blk_rq_pos(req));
1920 	}
1921 
1922 	blk_account_io_completion(req, nr_bytes);
1923 
1924 	total_bytes = bio_nbytes = 0;
1925 	while ((bio = req->bio) != NULL) {
1926 		int nbytes;
1927 
1928 		if (nr_bytes >= bio->bi_size) {
1929 			req->bio = bio->bi_next;
1930 			nbytes = bio->bi_size;
1931 			req_bio_endio(req, bio, nbytes, error);
1932 			next_idx = 0;
1933 			bio_nbytes = 0;
1934 		} else {
1935 			int idx = bio->bi_idx + next_idx;
1936 
1937 			if (unlikely(idx >= bio->bi_vcnt)) {
1938 				blk_dump_rq_flags(req, "__end_that");
1939 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1940 				       __func__, idx, bio->bi_vcnt);
1941 				break;
1942 			}
1943 
1944 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
1945 			BIO_BUG_ON(nbytes > bio->bi_size);
1946 
1947 			/*
1948 			 * not a complete bvec done
1949 			 */
1950 			if (unlikely(nbytes > nr_bytes)) {
1951 				bio_nbytes += nr_bytes;
1952 				total_bytes += nr_bytes;
1953 				break;
1954 			}
1955 
1956 			/*
1957 			 * advance to the next vector
1958 			 */
1959 			next_idx++;
1960 			bio_nbytes += nbytes;
1961 		}
1962 
1963 		total_bytes += nbytes;
1964 		nr_bytes -= nbytes;
1965 
1966 		bio = req->bio;
1967 		if (bio) {
1968 			/*
1969 			 * end more in this run, or just return 'not-done'
1970 			 */
1971 			if (unlikely(nr_bytes <= 0))
1972 				break;
1973 		}
1974 	}
1975 
1976 	/*
1977 	 * completely done
1978 	 */
1979 	if (!req->bio) {
1980 		/*
1981 		 * Reset counters so that the request stacking driver
1982 		 * can find how many bytes remain in the request
1983 		 * later.
1984 		 */
1985 		req->__data_len = 0;
1986 		return false;
1987 	}
1988 
1989 	/*
1990 	 * if the request wasn't completed, update state
1991 	 */
1992 	if (bio_nbytes) {
1993 		req_bio_endio(req, bio, bio_nbytes, error);
1994 		bio->bi_idx += next_idx;
1995 		bio_iovec(bio)->bv_offset += nr_bytes;
1996 		bio_iovec(bio)->bv_len -= nr_bytes;
1997 	}
1998 
1999 	req->__data_len -= total_bytes;
2000 	req->buffer = bio_data(req->bio);
2001 
2002 	/* update sector only for requests with clear definition of sector */
2003 	if (blk_fs_request(req) || blk_discard_rq(req))
2004 		req->__sector += total_bytes >> 9;
2005 
2006 	/*
2007 	 * If total number of sectors is less than the first segment
2008 	 * size, something has gone terribly wrong.
2009 	 */
2010 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2011 		printk(KERN_ERR "blk: request botched\n");
2012 		req->__data_len = blk_rq_cur_bytes(req);
2013 	}
2014 
2015 	/* recalculate the number of segments */
2016 	blk_recalc_rq_segments(req);
2017 
2018 	return true;
2019 }
2020 EXPORT_SYMBOL_GPL(blk_update_request);
2021 
2022 static bool blk_update_bidi_request(struct request *rq, int error,
2023 				    unsigned int nr_bytes,
2024 				    unsigned int bidi_bytes)
2025 {
2026 	if (blk_update_request(rq, error, nr_bytes))
2027 		return true;
2028 
2029 	/* Bidi request must be completed as a whole */
2030 	if (unlikely(blk_bidi_rq(rq)) &&
2031 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2032 		return true;
2033 
2034 	add_disk_randomness(rq->rq_disk);
2035 
2036 	return false;
2037 }
2038 
2039 /*
2040  * queue lock must be held
2041  */
2042 static void blk_finish_request(struct request *req, int error)
2043 {
2044 	if (blk_rq_tagged(req))
2045 		blk_queue_end_tag(req->q, req);
2046 
2047 	BUG_ON(blk_queued_rq(req));
2048 
2049 	if (unlikely(laptop_mode) && blk_fs_request(req))
2050 		laptop_io_completion();
2051 
2052 	blk_delete_timer(req);
2053 
2054 	blk_account_io_done(req);
2055 
2056 	if (req->end_io)
2057 		req->end_io(req, error);
2058 	else {
2059 		if (blk_bidi_rq(req))
2060 			__blk_put_request(req->next_rq->q, req->next_rq);
2061 
2062 		__blk_put_request(req->q, req);
2063 	}
2064 }
2065 
2066 /**
2067  * blk_end_bidi_request - Complete a bidi request
2068  * @rq:         the request to complete
2069  * @error:      %0 for success, < %0 for error
2070  * @nr_bytes:   number of bytes to complete @rq
2071  * @bidi_bytes: number of bytes to complete @rq->next_rq
2072  *
2073  * Description:
2074  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2075  *     Drivers that supports bidi can safely call this member for any
2076  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2077  *     just ignored.
2078  *
2079  * Return:
2080  *     %false - we are done with this request
2081  *     %true  - still buffers pending for this request
2082  **/
2083 static bool blk_end_bidi_request(struct request *rq, int error,
2084 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2085 {
2086 	struct request_queue *q = rq->q;
2087 	unsigned long flags;
2088 
2089 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2090 		return true;
2091 
2092 	spin_lock_irqsave(q->queue_lock, flags);
2093 	blk_finish_request(rq, error);
2094 	spin_unlock_irqrestore(q->queue_lock, flags);
2095 
2096 	return false;
2097 }
2098 
2099 /**
2100  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2101  * @rq:         the request to complete
2102  * @error:      %0 for success, < %0 for error
2103  * @nr_bytes:   number of bytes to complete @rq
2104  * @bidi_bytes: number of bytes to complete @rq->next_rq
2105  *
2106  * Description:
2107  *     Identical to blk_end_bidi_request() except that queue lock is
2108  *     assumed to be locked on entry and remains so on return.
2109  *
2110  * Return:
2111  *     %false - we are done with this request
2112  *     %true  - still buffers pending for this request
2113  **/
2114 static bool __blk_end_bidi_request(struct request *rq, int error,
2115 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2116 {
2117 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2118 		return true;
2119 
2120 	blk_finish_request(rq, error);
2121 
2122 	return false;
2123 }
2124 
2125 /**
2126  * blk_end_request - Helper function for drivers to complete the request.
2127  * @rq:       the request being processed
2128  * @error:    %0 for success, < %0 for error
2129  * @nr_bytes: number of bytes to complete
2130  *
2131  * Description:
2132  *     Ends I/O on a number of bytes attached to @rq.
2133  *     If @rq has leftover, sets it up for the next range of segments.
2134  *
2135  * Return:
2136  *     %false - we are done with this request
2137  *     %true  - still buffers pending for this request
2138  **/
2139 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2140 {
2141 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2142 }
2143 EXPORT_SYMBOL_GPL(blk_end_request);
2144 
2145 /**
2146  * blk_end_request_all - Helper function for drives to finish the request.
2147  * @rq: the request to finish
2148  * @err: %0 for success, < %0 for error
2149  *
2150  * Description:
2151  *     Completely finish @rq.
2152  */
2153 void blk_end_request_all(struct request *rq, int error)
2154 {
2155 	bool pending;
2156 	unsigned int bidi_bytes = 0;
2157 
2158 	if (unlikely(blk_bidi_rq(rq)))
2159 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2160 
2161 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2162 	BUG_ON(pending);
2163 }
2164 EXPORT_SYMBOL_GPL(blk_end_request_all);
2165 
2166 /**
2167  * blk_end_request_cur - Helper function to finish the current request chunk.
2168  * @rq: the request to finish the current chunk for
2169  * @err: %0 for success, < %0 for error
2170  *
2171  * Description:
2172  *     Complete the current consecutively mapped chunk from @rq.
2173  *
2174  * Return:
2175  *     %false - we are done with this request
2176  *     %true  - still buffers pending for this request
2177  */
2178 bool blk_end_request_cur(struct request *rq, int error)
2179 {
2180 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2181 }
2182 EXPORT_SYMBOL_GPL(blk_end_request_cur);
2183 
2184 /**
2185  * __blk_end_request - Helper function for drivers to complete the request.
2186  * @rq:       the request being processed
2187  * @error:    %0 for success, < %0 for error
2188  * @nr_bytes: number of bytes to complete
2189  *
2190  * Description:
2191  *     Must be called with queue lock held unlike blk_end_request().
2192  *
2193  * Return:
2194  *     %false - we are done with this request
2195  *     %true  - still buffers pending for this request
2196  **/
2197 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2198 {
2199 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2200 }
2201 EXPORT_SYMBOL_GPL(__blk_end_request);
2202 
2203 /**
2204  * __blk_end_request_all - Helper function for drives to finish the request.
2205  * @rq: the request to finish
2206  * @err: %0 for success, < %0 for error
2207  *
2208  * Description:
2209  *     Completely finish @rq.  Must be called with queue lock held.
2210  */
2211 void __blk_end_request_all(struct request *rq, int error)
2212 {
2213 	bool pending;
2214 	unsigned int bidi_bytes = 0;
2215 
2216 	if (unlikely(blk_bidi_rq(rq)))
2217 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2218 
2219 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2220 	BUG_ON(pending);
2221 }
2222 EXPORT_SYMBOL_GPL(__blk_end_request_all);
2223 
2224 /**
2225  * __blk_end_request_cur - Helper function to finish the current request chunk.
2226  * @rq: the request to finish the current chunk for
2227  * @err: %0 for success, < %0 for error
2228  *
2229  * Description:
2230  *     Complete the current consecutively mapped chunk from @rq.  Must
2231  *     be called with queue lock held.
2232  *
2233  * Return:
2234  *     %false - we are done with this request
2235  *     %true  - still buffers pending for this request
2236  */
2237 bool __blk_end_request_cur(struct request *rq, int error)
2238 {
2239 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2240 }
2241 EXPORT_SYMBOL_GPL(__blk_end_request_cur);
2242 
2243 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2244 		     struct bio *bio)
2245 {
2246 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2247 	   we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2248 	rq->cmd_flags |= (bio->bi_rw & 3);
2249 
2250 	if (bio_has_data(bio)) {
2251 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2252 		rq->buffer = bio_data(bio);
2253 	}
2254 	rq->__data_len = bio->bi_size;
2255 	rq->bio = rq->biotail = bio;
2256 
2257 	if (bio->bi_bdev)
2258 		rq->rq_disk = bio->bi_bdev->bd_disk;
2259 }
2260 
2261 /**
2262  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2263  * @q : the queue of the device being checked
2264  *
2265  * Description:
2266  *    Check if underlying low-level drivers of a device are busy.
2267  *    If the drivers want to export their busy state, they must set own
2268  *    exporting function using blk_queue_lld_busy() first.
2269  *
2270  *    Basically, this function is used only by request stacking drivers
2271  *    to stop dispatching requests to underlying devices when underlying
2272  *    devices are busy.  This behavior helps more I/O merging on the queue
2273  *    of the request stacking driver and prevents I/O throughput regression
2274  *    on burst I/O load.
2275  *
2276  * Return:
2277  *    0 - Not busy (The request stacking driver should dispatch request)
2278  *    1 - Busy (The request stacking driver should stop dispatching request)
2279  */
2280 int blk_lld_busy(struct request_queue *q)
2281 {
2282 	if (q->lld_busy_fn)
2283 		return q->lld_busy_fn(q);
2284 
2285 	return 0;
2286 }
2287 EXPORT_SYMBOL_GPL(blk_lld_busy);
2288 
2289 /**
2290  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2291  * @rq: the clone request to be cleaned up
2292  *
2293  * Description:
2294  *     Free all bios in @rq for a cloned request.
2295  */
2296 void blk_rq_unprep_clone(struct request *rq)
2297 {
2298 	struct bio *bio;
2299 
2300 	while ((bio = rq->bio) != NULL) {
2301 		rq->bio = bio->bi_next;
2302 
2303 		bio_put(bio);
2304 	}
2305 }
2306 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2307 
2308 /*
2309  * Copy attributes of the original request to the clone request.
2310  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2311  */
2312 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2313 {
2314 	dst->cpu = src->cpu;
2315 	dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2316 	dst->cmd_type = src->cmd_type;
2317 	dst->__sector = blk_rq_pos(src);
2318 	dst->__data_len = blk_rq_bytes(src);
2319 	dst->nr_phys_segments = src->nr_phys_segments;
2320 	dst->ioprio = src->ioprio;
2321 	dst->extra_len = src->extra_len;
2322 }
2323 
2324 /**
2325  * blk_rq_prep_clone - Helper function to setup clone request
2326  * @rq: the request to be setup
2327  * @rq_src: original request to be cloned
2328  * @bs: bio_set that bios for clone are allocated from
2329  * @gfp_mask: memory allocation mask for bio
2330  * @bio_ctr: setup function to be called for each clone bio.
2331  *           Returns %0 for success, non %0 for failure.
2332  * @data: private data to be passed to @bio_ctr
2333  *
2334  * Description:
2335  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2336  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2337  *     are not copied, and copying such parts is the caller's responsibility.
2338  *     Also, pages which the original bios are pointing to are not copied
2339  *     and the cloned bios just point same pages.
2340  *     So cloned bios must be completed before original bios, which means
2341  *     the caller must complete @rq before @rq_src.
2342  */
2343 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2344 		      struct bio_set *bs, gfp_t gfp_mask,
2345 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2346 		      void *data)
2347 {
2348 	struct bio *bio, *bio_src;
2349 
2350 	if (!bs)
2351 		bs = fs_bio_set;
2352 
2353 	blk_rq_init(NULL, rq);
2354 
2355 	__rq_for_each_bio(bio_src, rq_src) {
2356 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2357 		if (!bio)
2358 			goto free_and_out;
2359 
2360 		__bio_clone(bio, bio_src);
2361 
2362 		if (bio_integrity(bio_src) &&
2363 		    bio_integrity_clone(bio, bio_src, gfp_mask))
2364 			goto free_and_out;
2365 
2366 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2367 			goto free_and_out;
2368 
2369 		if (rq->bio) {
2370 			rq->biotail->bi_next = bio;
2371 			rq->biotail = bio;
2372 		} else
2373 			rq->bio = rq->biotail = bio;
2374 	}
2375 
2376 	__blk_rq_prep_clone(rq, rq_src);
2377 
2378 	return 0;
2379 
2380 free_and_out:
2381 	if (bio)
2382 		bio_free(bio, bs);
2383 	blk_rq_unprep_clone(rq);
2384 
2385 	return -ENOMEM;
2386 }
2387 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2388 
2389 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2390 {
2391 	return queue_work(kblockd_workqueue, work);
2392 }
2393 EXPORT_SYMBOL(kblockd_schedule_work);
2394 
2395 int __init blk_dev_init(void)
2396 {
2397 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2398 			sizeof(((struct request *)0)->cmd_flags));
2399 
2400 	kblockd_workqueue = create_workqueue("kblockd");
2401 	if (!kblockd_workqueue)
2402 		panic("Failed to create kblockd\n");
2403 
2404 	request_cachep = kmem_cache_create("blkdev_requests",
2405 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2406 
2407 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2408 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2409 
2410 	return 0;
2411 }
2412 
2413