xref: /openbmc/linux/block/blk-core.c (revision 78bb17f7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/block.h>
45 
46 #include "blk.h"
47 #include "blk-mq.h"
48 #include "blk-mq-sched.h"
49 #include "blk-pm.h"
50 #include "blk-rq-qos.h"
51 
52 #ifdef CONFIG_DEBUG_FS
53 struct dentry *blk_debugfs_root;
54 #endif
55 
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 
62 DEFINE_IDA(blk_queue_ida);
63 
64 /*
65  * For queue allocation
66  */
67 struct kmem_cache *blk_requestq_cachep;
68 
69 /*
70  * Controlling structure to kblockd
71  */
72 static struct workqueue_struct *kblockd_workqueue;
73 
74 /**
75  * blk_queue_flag_set - atomically set a queue flag
76  * @flag: flag to be set
77  * @q: request queue
78  */
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 	set_bit(flag, &q->queue_flags);
82 }
83 EXPORT_SYMBOL(blk_queue_flag_set);
84 
85 /**
86  * blk_queue_flag_clear - atomically clear a queue flag
87  * @flag: flag to be cleared
88  * @q: request queue
89  */
90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91 {
92 	clear_bit(flag, &q->queue_flags);
93 }
94 EXPORT_SYMBOL(blk_queue_flag_clear);
95 
96 /**
97  * blk_queue_flag_test_and_set - atomically test and set a queue flag
98  * @flag: flag to be set
99  * @q: request queue
100  *
101  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102  * the flag was already set.
103  */
104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105 {
106 	return test_and_set_bit(flag, &q->queue_flags);
107 }
108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109 
110 void blk_rq_init(struct request_queue *q, struct request *rq)
111 {
112 	memset(rq, 0, sizeof(*rq));
113 
114 	INIT_LIST_HEAD(&rq->queuelist);
115 	rq->q = q;
116 	rq->__sector = (sector_t) -1;
117 	INIT_HLIST_NODE(&rq->hash);
118 	RB_CLEAR_NODE(&rq->rb_node);
119 	rq->tag = -1;
120 	rq->internal_tag = -1;
121 	rq->start_time_ns = ktime_get_ns();
122 	rq->part = NULL;
123 	refcount_set(&rq->ref, 1);
124 }
125 EXPORT_SYMBOL(blk_rq_init);
126 
127 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
128 static const char *const blk_op_name[] = {
129 	REQ_OP_NAME(READ),
130 	REQ_OP_NAME(WRITE),
131 	REQ_OP_NAME(FLUSH),
132 	REQ_OP_NAME(DISCARD),
133 	REQ_OP_NAME(SECURE_ERASE),
134 	REQ_OP_NAME(ZONE_RESET),
135 	REQ_OP_NAME(ZONE_RESET_ALL),
136 	REQ_OP_NAME(ZONE_OPEN),
137 	REQ_OP_NAME(ZONE_CLOSE),
138 	REQ_OP_NAME(ZONE_FINISH),
139 	REQ_OP_NAME(WRITE_SAME),
140 	REQ_OP_NAME(WRITE_ZEROES),
141 	REQ_OP_NAME(SCSI_IN),
142 	REQ_OP_NAME(SCSI_OUT),
143 	REQ_OP_NAME(DRV_IN),
144 	REQ_OP_NAME(DRV_OUT),
145 };
146 #undef REQ_OP_NAME
147 
148 /**
149  * blk_op_str - Return string XXX in the REQ_OP_XXX.
150  * @op: REQ_OP_XXX.
151  *
152  * Description: Centralize block layer function to convert REQ_OP_XXX into
153  * string format. Useful in the debugging and tracing bio or request. For
154  * invalid REQ_OP_XXX it returns string "UNKNOWN".
155  */
156 inline const char *blk_op_str(unsigned int op)
157 {
158 	const char *op_str = "UNKNOWN";
159 
160 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
161 		op_str = blk_op_name[op];
162 
163 	return op_str;
164 }
165 EXPORT_SYMBOL_GPL(blk_op_str);
166 
167 static const struct {
168 	int		errno;
169 	const char	*name;
170 } blk_errors[] = {
171 	[BLK_STS_OK]		= { 0,		"" },
172 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
173 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
174 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
175 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
176 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
177 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
178 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
179 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
180 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
181 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
182 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
183 
184 	/* device mapper special case, should not leak out: */
185 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
186 
187 	/* everything else not covered above: */
188 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
189 };
190 
191 blk_status_t errno_to_blk_status(int errno)
192 {
193 	int i;
194 
195 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
196 		if (blk_errors[i].errno == errno)
197 			return (__force blk_status_t)i;
198 	}
199 
200 	return BLK_STS_IOERR;
201 }
202 EXPORT_SYMBOL_GPL(errno_to_blk_status);
203 
204 int blk_status_to_errno(blk_status_t status)
205 {
206 	int idx = (__force int)status;
207 
208 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
209 		return -EIO;
210 	return blk_errors[idx].errno;
211 }
212 EXPORT_SYMBOL_GPL(blk_status_to_errno);
213 
214 static void print_req_error(struct request *req, blk_status_t status,
215 		const char *caller)
216 {
217 	int idx = (__force int)status;
218 
219 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
220 		return;
221 
222 	printk_ratelimited(KERN_ERR
223 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
224 		"phys_seg %u prio class %u\n",
225 		caller, blk_errors[idx].name,
226 		req->rq_disk ? req->rq_disk->disk_name : "?",
227 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
228 		req->cmd_flags & ~REQ_OP_MASK,
229 		req->nr_phys_segments,
230 		IOPRIO_PRIO_CLASS(req->ioprio));
231 }
232 
233 static void req_bio_endio(struct request *rq, struct bio *bio,
234 			  unsigned int nbytes, blk_status_t error)
235 {
236 	if (error)
237 		bio->bi_status = error;
238 
239 	if (unlikely(rq->rq_flags & RQF_QUIET))
240 		bio_set_flag(bio, BIO_QUIET);
241 
242 	bio_advance(bio, nbytes);
243 
244 	/* don't actually finish bio if it's part of flush sequence */
245 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
246 		bio_endio(bio);
247 }
248 
249 void blk_dump_rq_flags(struct request *rq, char *msg)
250 {
251 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
252 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
253 		(unsigned long long) rq->cmd_flags);
254 
255 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
256 	       (unsigned long long)blk_rq_pos(rq),
257 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
258 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
259 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
260 }
261 EXPORT_SYMBOL(blk_dump_rq_flags);
262 
263 /**
264  * blk_sync_queue - cancel any pending callbacks on a queue
265  * @q: the queue
266  *
267  * Description:
268  *     The block layer may perform asynchronous callback activity
269  *     on a queue, such as calling the unplug function after a timeout.
270  *     A block device may call blk_sync_queue to ensure that any
271  *     such activity is cancelled, thus allowing it to release resources
272  *     that the callbacks might use. The caller must already have made sure
273  *     that its ->make_request_fn will not re-add plugging prior to calling
274  *     this function.
275  *
276  *     This function does not cancel any asynchronous activity arising
277  *     out of elevator or throttling code. That would require elevator_exit()
278  *     and blkcg_exit_queue() to be called with queue lock initialized.
279  *
280  */
281 void blk_sync_queue(struct request_queue *q)
282 {
283 	del_timer_sync(&q->timeout);
284 	cancel_work_sync(&q->timeout_work);
285 }
286 EXPORT_SYMBOL(blk_sync_queue);
287 
288 /**
289  * blk_set_pm_only - increment pm_only counter
290  * @q: request queue pointer
291  */
292 void blk_set_pm_only(struct request_queue *q)
293 {
294 	atomic_inc(&q->pm_only);
295 }
296 EXPORT_SYMBOL_GPL(blk_set_pm_only);
297 
298 void blk_clear_pm_only(struct request_queue *q)
299 {
300 	int pm_only;
301 
302 	pm_only = atomic_dec_return(&q->pm_only);
303 	WARN_ON_ONCE(pm_only < 0);
304 	if (pm_only == 0)
305 		wake_up_all(&q->mq_freeze_wq);
306 }
307 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
308 
309 void blk_put_queue(struct request_queue *q)
310 {
311 	kobject_put(&q->kobj);
312 }
313 EXPORT_SYMBOL(blk_put_queue);
314 
315 void blk_set_queue_dying(struct request_queue *q)
316 {
317 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
318 
319 	/*
320 	 * When queue DYING flag is set, we need to block new req
321 	 * entering queue, so we call blk_freeze_queue_start() to
322 	 * prevent I/O from crossing blk_queue_enter().
323 	 */
324 	blk_freeze_queue_start(q);
325 
326 	if (queue_is_mq(q))
327 		blk_mq_wake_waiters(q);
328 
329 	/* Make blk_queue_enter() reexamine the DYING flag. */
330 	wake_up_all(&q->mq_freeze_wq);
331 }
332 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
333 
334 /**
335  * blk_cleanup_queue - shutdown a request queue
336  * @q: request queue to shutdown
337  *
338  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
339  * put it.  All future requests will be failed immediately with -ENODEV.
340  */
341 void blk_cleanup_queue(struct request_queue *q)
342 {
343 	WARN_ON_ONCE(blk_queue_registered(q));
344 
345 	/* mark @q DYING, no new request or merges will be allowed afterwards */
346 	blk_set_queue_dying(q);
347 
348 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
349 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
350 
351 	/*
352 	 * Drain all requests queued before DYING marking. Set DEAD flag to
353 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
354 	 * after draining finished.
355 	 */
356 	blk_freeze_queue(q);
357 
358 	rq_qos_exit(q);
359 
360 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
361 
362 	/* for synchronous bio-based driver finish in-flight integrity i/o */
363 	blk_flush_integrity();
364 
365 	/* @q won't process any more request, flush async actions */
366 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
367 	blk_sync_queue(q);
368 
369 	if (queue_is_mq(q))
370 		blk_mq_exit_queue(q);
371 
372 	/*
373 	 * In theory, request pool of sched_tags belongs to request queue.
374 	 * However, the current implementation requires tag_set for freeing
375 	 * requests, so free the pool now.
376 	 *
377 	 * Queue has become frozen, there can't be any in-queue requests, so
378 	 * it is safe to free requests now.
379 	 */
380 	mutex_lock(&q->sysfs_lock);
381 	if (q->elevator)
382 		blk_mq_sched_free_requests(q);
383 	mutex_unlock(&q->sysfs_lock);
384 
385 	percpu_ref_exit(&q->q_usage_counter);
386 
387 	/* @q is and will stay empty, shutdown and put */
388 	blk_put_queue(q);
389 }
390 EXPORT_SYMBOL(blk_cleanup_queue);
391 
392 /**
393  * blk_queue_enter() - try to increase q->q_usage_counter
394  * @q: request queue pointer
395  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
396  */
397 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
398 {
399 	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
400 
401 	while (true) {
402 		bool success = false;
403 
404 		rcu_read_lock();
405 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
406 			/*
407 			 * The code that increments the pm_only counter is
408 			 * responsible for ensuring that that counter is
409 			 * globally visible before the queue is unfrozen.
410 			 */
411 			if (pm || !blk_queue_pm_only(q)) {
412 				success = true;
413 			} else {
414 				percpu_ref_put(&q->q_usage_counter);
415 			}
416 		}
417 		rcu_read_unlock();
418 
419 		if (success)
420 			return 0;
421 
422 		if (flags & BLK_MQ_REQ_NOWAIT)
423 			return -EBUSY;
424 
425 		/*
426 		 * read pair of barrier in blk_freeze_queue_start(),
427 		 * we need to order reading __PERCPU_REF_DEAD flag of
428 		 * .q_usage_counter and reading .mq_freeze_depth or
429 		 * queue dying flag, otherwise the following wait may
430 		 * never return if the two reads are reordered.
431 		 */
432 		smp_rmb();
433 
434 		wait_event(q->mq_freeze_wq,
435 			   (!q->mq_freeze_depth &&
436 			    (pm || (blk_pm_request_resume(q),
437 				    !blk_queue_pm_only(q)))) ||
438 			   blk_queue_dying(q));
439 		if (blk_queue_dying(q))
440 			return -ENODEV;
441 	}
442 }
443 
444 void blk_queue_exit(struct request_queue *q)
445 {
446 	percpu_ref_put(&q->q_usage_counter);
447 }
448 
449 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
450 {
451 	struct request_queue *q =
452 		container_of(ref, struct request_queue, q_usage_counter);
453 
454 	wake_up_all(&q->mq_freeze_wq);
455 }
456 
457 static void blk_rq_timed_out_timer(struct timer_list *t)
458 {
459 	struct request_queue *q = from_timer(q, t, timeout);
460 
461 	kblockd_schedule_work(&q->timeout_work);
462 }
463 
464 static void blk_timeout_work(struct work_struct *work)
465 {
466 }
467 
468 struct request_queue *__blk_alloc_queue(int node_id)
469 {
470 	struct request_queue *q;
471 	int ret;
472 
473 	q = kmem_cache_alloc_node(blk_requestq_cachep,
474 				GFP_KERNEL | __GFP_ZERO, node_id);
475 	if (!q)
476 		return NULL;
477 
478 	q->last_merge = NULL;
479 
480 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
481 	if (q->id < 0)
482 		goto fail_q;
483 
484 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
485 	if (ret)
486 		goto fail_id;
487 
488 	q->backing_dev_info = bdi_alloc_node(GFP_KERNEL, node_id);
489 	if (!q->backing_dev_info)
490 		goto fail_split;
491 
492 	q->stats = blk_alloc_queue_stats();
493 	if (!q->stats)
494 		goto fail_stats;
495 
496 	q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
497 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
498 	q->backing_dev_info->name = "block";
499 	q->node = node_id;
500 
501 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
502 		    laptop_mode_timer_fn, 0);
503 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
504 	INIT_WORK(&q->timeout_work, blk_timeout_work);
505 	INIT_LIST_HEAD(&q->icq_list);
506 #ifdef CONFIG_BLK_CGROUP
507 	INIT_LIST_HEAD(&q->blkg_list);
508 #endif
509 
510 	kobject_init(&q->kobj, &blk_queue_ktype);
511 
512 #ifdef CONFIG_BLK_DEV_IO_TRACE
513 	mutex_init(&q->blk_trace_mutex);
514 #endif
515 	mutex_init(&q->sysfs_lock);
516 	mutex_init(&q->sysfs_dir_lock);
517 	spin_lock_init(&q->queue_lock);
518 
519 	init_waitqueue_head(&q->mq_freeze_wq);
520 	mutex_init(&q->mq_freeze_lock);
521 
522 	/*
523 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
524 	 * See blk_register_queue() for details.
525 	 */
526 	if (percpu_ref_init(&q->q_usage_counter,
527 				blk_queue_usage_counter_release,
528 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
529 		goto fail_bdi;
530 
531 	if (blkcg_init_queue(q))
532 		goto fail_ref;
533 
534 	blk_queue_dma_alignment(q, 511);
535 	blk_set_default_limits(&q->limits);
536 
537 	return q;
538 
539 fail_ref:
540 	percpu_ref_exit(&q->q_usage_counter);
541 fail_bdi:
542 	blk_free_queue_stats(q->stats);
543 fail_stats:
544 	bdi_put(q->backing_dev_info);
545 fail_split:
546 	bioset_exit(&q->bio_split);
547 fail_id:
548 	ida_simple_remove(&blk_queue_ida, q->id);
549 fail_q:
550 	kmem_cache_free(blk_requestq_cachep, q);
551 	return NULL;
552 }
553 
554 struct request_queue *blk_alloc_queue(make_request_fn make_request, int node_id)
555 {
556 	struct request_queue *q;
557 
558 	if (WARN_ON_ONCE(!make_request))
559 		return NULL;
560 
561 	q = __blk_alloc_queue(node_id);
562 	if (!q)
563 		return NULL;
564 	q->make_request_fn = make_request;
565 	q->nr_requests = BLKDEV_MAX_RQ;
566 	return q;
567 }
568 EXPORT_SYMBOL(blk_alloc_queue);
569 
570 bool blk_get_queue(struct request_queue *q)
571 {
572 	if (likely(!blk_queue_dying(q))) {
573 		__blk_get_queue(q);
574 		return true;
575 	}
576 
577 	return false;
578 }
579 EXPORT_SYMBOL(blk_get_queue);
580 
581 /**
582  * blk_get_request - allocate a request
583  * @q: request queue to allocate a request for
584  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
585  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
586  */
587 struct request *blk_get_request(struct request_queue *q, unsigned int op,
588 				blk_mq_req_flags_t flags)
589 {
590 	struct request *req;
591 
592 	WARN_ON_ONCE(op & REQ_NOWAIT);
593 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
594 
595 	req = blk_mq_alloc_request(q, op, flags);
596 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
597 		q->mq_ops->initialize_rq_fn(req);
598 
599 	return req;
600 }
601 EXPORT_SYMBOL(blk_get_request);
602 
603 void blk_put_request(struct request *req)
604 {
605 	blk_mq_free_request(req);
606 }
607 EXPORT_SYMBOL(blk_put_request);
608 
609 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
610 		unsigned int nr_segs)
611 {
612 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
613 
614 	if (!ll_back_merge_fn(req, bio, nr_segs))
615 		return false;
616 
617 	trace_block_bio_backmerge(req->q, req, bio);
618 	rq_qos_merge(req->q, req, bio);
619 
620 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
621 		blk_rq_set_mixed_merge(req);
622 
623 	req->biotail->bi_next = bio;
624 	req->biotail = bio;
625 	req->__data_len += bio->bi_iter.bi_size;
626 
627 	blk_account_io_start(req, false);
628 	return true;
629 }
630 
631 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
632 		unsigned int nr_segs)
633 {
634 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
635 
636 	if (!ll_front_merge_fn(req, bio, nr_segs))
637 		return false;
638 
639 	trace_block_bio_frontmerge(req->q, req, bio);
640 	rq_qos_merge(req->q, req, bio);
641 
642 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
643 		blk_rq_set_mixed_merge(req);
644 
645 	bio->bi_next = req->bio;
646 	req->bio = bio;
647 
648 	req->__sector = bio->bi_iter.bi_sector;
649 	req->__data_len += bio->bi_iter.bi_size;
650 
651 	blk_account_io_start(req, false);
652 	return true;
653 }
654 
655 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
656 		struct bio *bio)
657 {
658 	unsigned short segments = blk_rq_nr_discard_segments(req);
659 
660 	if (segments >= queue_max_discard_segments(q))
661 		goto no_merge;
662 	if (blk_rq_sectors(req) + bio_sectors(bio) >
663 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
664 		goto no_merge;
665 
666 	rq_qos_merge(q, req, bio);
667 
668 	req->biotail->bi_next = bio;
669 	req->biotail = bio;
670 	req->__data_len += bio->bi_iter.bi_size;
671 	req->nr_phys_segments = segments + 1;
672 
673 	blk_account_io_start(req, false);
674 	return true;
675 no_merge:
676 	req_set_nomerge(q, req);
677 	return false;
678 }
679 
680 /**
681  * blk_attempt_plug_merge - try to merge with %current's plugged list
682  * @q: request_queue new bio is being queued at
683  * @bio: new bio being queued
684  * @nr_segs: number of segments in @bio
685  * @same_queue_rq: pointer to &struct request that gets filled in when
686  * another request associated with @q is found on the plug list
687  * (optional, may be %NULL)
688  *
689  * Determine whether @bio being queued on @q can be merged with a request
690  * on %current's plugged list.  Returns %true if merge was successful,
691  * otherwise %false.
692  *
693  * Plugging coalesces IOs from the same issuer for the same purpose without
694  * going through @q->queue_lock.  As such it's more of an issuing mechanism
695  * than scheduling, and the request, while may have elvpriv data, is not
696  * added on the elevator at this point.  In addition, we don't have
697  * reliable access to the elevator outside queue lock.  Only check basic
698  * merging parameters without querying the elevator.
699  *
700  * Caller must ensure !blk_queue_nomerges(q) beforehand.
701  */
702 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
703 		unsigned int nr_segs, struct request **same_queue_rq)
704 {
705 	struct blk_plug *plug;
706 	struct request *rq;
707 	struct list_head *plug_list;
708 
709 	plug = blk_mq_plug(q, bio);
710 	if (!plug)
711 		return false;
712 
713 	plug_list = &plug->mq_list;
714 
715 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
716 		bool merged = false;
717 
718 		if (rq->q == q && same_queue_rq) {
719 			/*
720 			 * Only blk-mq multiple hardware queues case checks the
721 			 * rq in the same queue, there should be only one such
722 			 * rq in a queue
723 			 **/
724 			*same_queue_rq = rq;
725 		}
726 
727 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
728 			continue;
729 
730 		switch (blk_try_merge(rq, bio)) {
731 		case ELEVATOR_BACK_MERGE:
732 			merged = bio_attempt_back_merge(rq, bio, nr_segs);
733 			break;
734 		case ELEVATOR_FRONT_MERGE:
735 			merged = bio_attempt_front_merge(rq, bio, nr_segs);
736 			break;
737 		case ELEVATOR_DISCARD_MERGE:
738 			merged = bio_attempt_discard_merge(q, rq, bio);
739 			break;
740 		default:
741 			break;
742 		}
743 
744 		if (merged)
745 			return true;
746 	}
747 
748 	return false;
749 }
750 
751 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
752 {
753 	char b[BDEVNAME_SIZE];
754 
755 	printk(KERN_INFO "attempt to access beyond end of device\n");
756 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
757 			bio_devname(bio, b), bio->bi_opf,
758 			(unsigned long long)bio_end_sector(bio),
759 			(long long)maxsector);
760 }
761 
762 #ifdef CONFIG_FAIL_MAKE_REQUEST
763 
764 static DECLARE_FAULT_ATTR(fail_make_request);
765 
766 static int __init setup_fail_make_request(char *str)
767 {
768 	return setup_fault_attr(&fail_make_request, str);
769 }
770 __setup("fail_make_request=", setup_fail_make_request);
771 
772 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
773 {
774 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
775 }
776 
777 static int __init fail_make_request_debugfs(void)
778 {
779 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
780 						NULL, &fail_make_request);
781 
782 	return PTR_ERR_OR_ZERO(dir);
783 }
784 
785 late_initcall(fail_make_request_debugfs);
786 
787 #else /* CONFIG_FAIL_MAKE_REQUEST */
788 
789 static inline bool should_fail_request(struct hd_struct *part,
790 					unsigned int bytes)
791 {
792 	return false;
793 }
794 
795 #endif /* CONFIG_FAIL_MAKE_REQUEST */
796 
797 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
798 {
799 	const int op = bio_op(bio);
800 
801 	if (part->policy && op_is_write(op)) {
802 		char b[BDEVNAME_SIZE];
803 
804 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
805 			return false;
806 
807 		WARN_ONCE(1,
808 		       "generic_make_request: Trying to write "
809 			"to read-only block-device %s (partno %d)\n",
810 			bio_devname(bio, b), part->partno);
811 		/* Older lvm-tools actually trigger this */
812 		return false;
813 	}
814 
815 	return false;
816 }
817 
818 static noinline int should_fail_bio(struct bio *bio)
819 {
820 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
821 		return -EIO;
822 	return 0;
823 }
824 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
825 
826 /*
827  * Check whether this bio extends beyond the end of the device or partition.
828  * This may well happen - the kernel calls bread() without checking the size of
829  * the device, e.g., when mounting a file system.
830  */
831 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
832 {
833 	unsigned int nr_sectors = bio_sectors(bio);
834 
835 	if (nr_sectors && maxsector &&
836 	    (nr_sectors > maxsector ||
837 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
838 		handle_bad_sector(bio, maxsector);
839 		return -EIO;
840 	}
841 	return 0;
842 }
843 
844 /*
845  * Remap block n of partition p to block n+start(p) of the disk.
846  */
847 static inline int blk_partition_remap(struct bio *bio)
848 {
849 	struct hd_struct *p;
850 	int ret = -EIO;
851 
852 	rcu_read_lock();
853 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
854 	if (unlikely(!p))
855 		goto out;
856 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
857 		goto out;
858 	if (unlikely(bio_check_ro(bio, p)))
859 		goto out;
860 
861 	if (bio_sectors(bio)) {
862 		if (bio_check_eod(bio, part_nr_sects_read(p)))
863 			goto out;
864 		bio->bi_iter.bi_sector += p->start_sect;
865 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
866 				      bio->bi_iter.bi_sector - p->start_sect);
867 	}
868 	bio->bi_partno = 0;
869 	ret = 0;
870 out:
871 	rcu_read_unlock();
872 	return ret;
873 }
874 
875 static noinline_for_stack bool
876 generic_make_request_checks(struct bio *bio)
877 {
878 	struct request_queue *q;
879 	int nr_sectors = bio_sectors(bio);
880 	blk_status_t status = BLK_STS_IOERR;
881 	char b[BDEVNAME_SIZE];
882 
883 	might_sleep();
884 
885 	q = bio->bi_disk->queue;
886 	if (unlikely(!q)) {
887 		printk(KERN_ERR
888 		       "generic_make_request: Trying to access "
889 			"nonexistent block-device %s (%Lu)\n",
890 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
891 		goto end_io;
892 	}
893 
894 	/*
895 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
896 	 * if queue is not a request based queue.
897 	 */
898 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
899 		goto not_supported;
900 
901 	if (should_fail_bio(bio))
902 		goto end_io;
903 
904 	if (bio->bi_partno) {
905 		if (unlikely(blk_partition_remap(bio)))
906 			goto end_io;
907 	} else {
908 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
909 			goto end_io;
910 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
911 			goto end_io;
912 	}
913 
914 	/*
915 	 * Filter flush bio's early so that make_request based
916 	 * drivers without flush support don't have to worry
917 	 * about them.
918 	 */
919 	if (op_is_flush(bio->bi_opf) &&
920 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
921 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
922 		if (!nr_sectors) {
923 			status = BLK_STS_OK;
924 			goto end_io;
925 		}
926 	}
927 
928 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
929 		bio->bi_opf &= ~REQ_HIPRI;
930 
931 	switch (bio_op(bio)) {
932 	case REQ_OP_DISCARD:
933 		if (!blk_queue_discard(q))
934 			goto not_supported;
935 		break;
936 	case REQ_OP_SECURE_ERASE:
937 		if (!blk_queue_secure_erase(q))
938 			goto not_supported;
939 		break;
940 	case REQ_OP_WRITE_SAME:
941 		if (!q->limits.max_write_same_sectors)
942 			goto not_supported;
943 		break;
944 	case REQ_OP_ZONE_RESET:
945 	case REQ_OP_ZONE_OPEN:
946 	case REQ_OP_ZONE_CLOSE:
947 	case REQ_OP_ZONE_FINISH:
948 		if (!blk_queue_is_zoned(q))
949 			goto not_supported;
950 		break;
951 	case REQ_OP_ZONE_RESET_ALL:
952 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
953 			goto not_supported;
954 		break;
955 	case REQ_OP_WRITE_ZEROES:
956 		if (!q->limits.max_write_zeroes_sectors)
957 			goto not_supported;
958 		break;
959 	default:
960 		break;
961 	}
962 
963 	/*
964 	 * Various block parts want %current->io_context and lazy ioc
965 	 * allocation ends up trading a lot of pain for a small amount of
966 	 * memory.  Just allocate it upfront.  This may fail and block
967 	 * layer knows how to live with it.
968 	 */
969 	create_io_context(GFP_ATOMIC, q->node);
970 
971 	if (!blkcg_bio_issue_check(q, bio))
972 		return false;
973 
974 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
975 		trace_block_bio_queue(q, bio);
976 		/* Now that enqueuing has been traced, we need to trace
977 		 * completion as well.
978 		 */
979 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
980 	}
981 	return true;
982 
983 not_supported:
984 	status = BLK_STS_NOTSUPP;
985 end_io:
986 	bio->bi_status = status;
987 	bio_endio(bio);
988 	return false;
989 }
990 
991 /**
992  * generic_make_request - hand a buffer to its device driver for I/O
993  * @bio:  The bio describing the location in memory and on the device.
994  *
995  * generic_make_request() is used to make I/O requests of block
996  * devices. It is passed a &struct bio, which describes the I/O that needs
997  * to be done.
998  *
999  * generic_make_request() does not return any status.  The
1000  * success/failure status of the request, along with notification of
1001  * completion, is delivered asynchronously through the bio->bi_end_io
1002  * function described (one day) else where.
1003  *
1004  * The caller of generic_make_request must make sure that bi_io_vec
1005  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1006  * set to describe the device address, and the
1007  * bi_end_io and optionally bi_private are set to describe how
1008  * completion notification should be signaled.
1009  *
1010  * generic_make_request and the drivers it calls may use bi_next if this
1011  * bio happens to be merged with someone else, and may resubmit the bio to
1012  * a lower device by calling into generic_make_request recursively, which
1013  * means the bio should NOT be touched after the call to ->make_request_fn.
1014  */
1015 blk_qc_t generic_make_request(struct bio *bio)
1016 {
1017 	/*
1018 	 * bio_list_on_stack[0] contains bios submitted by the current
1019 	 * make_request_fn.
1020 	 * bio_list_on_stack[1] contains bios that were submitted before
1021 	 * the current make_request_fn, but that haven't been processed
1022 	 * yet.
1023 	 */
1024 	struct bio_list bio_list_on_stack[2];
1025 	blk_qc_t ret = BLK_QC_T_NONE;
1026 
1027 	if (!generic_make_request_checks(bio))
1028 		goto out;
1029 
1030 	/*
1031 	 * We only want one ->make_request_fn to be active at a time, else
1032 	 * stack usage with stacked devices could be a problem.  So use
1033 	 * current->bio_list to keep a list of requests submited by a
1034 	 * make_request_fn function.  current->bio_list is also used as a
1035 	 * flag to say if generic_make_request is currently active in this
1036 	 * task or not.  If it is NULL, then no make_request is active.  If
1037 	 * it is non-NULL, then a make_request is active, and new requests
1038 	 * should be added at the tail
1039 	 */
1040 	if (current->bio_list) {
1041 		bio_list_add(&current->bio_list[0], bio);
1042 		goto out;
1043 	}
1044 
1045 	/* following loop may be a bit non-obvious, and so deserves some
1046 	 * explanation.
1047 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1048 	 * ensure that) so we have a list with a single bio.
1049 	 * We pretend that we have just taken it off a longer list, so
1050 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1051 	 * thus initialising the bio_list of new bios to be
1052 	 * added.  ->make_request() may indeed add some more bios
1053 	 * through a recursive call to generic_make_request.  If it
1054 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1055 	 * from the top.  In this case we really did just take the bio
1056 	 * of the top of the list (no pretending) and so remove it from
1057 	 * bio_list, and call into ->make_request() again.
1058 	 */
1059 	BUG_ON(bio->bi_next);
1060 	bio_list_init(&bio_list_on_stack[0]);
1061 	current->bio_list = bio_list_on_stack;
1062 	do {
1063 		struct request_queue *q = bio->bi_disk->queue;
1064 		blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1065 			BLK_MQ_REQ_NOWAIT : 0;
1066 
1067 		if (likely(blk_queue_enter(q, flags) == 0)) {
1068 			struct bio_list lower, same;
1069 
1070 			/* Create a fresh bio_list for all subordinate requests */
1071 			bio_list_on_stack[1] = bio_list_on_stack[0];
1072 			bio_list_init(&bio_list_on_stack[0]);
1073 			ret = q->make_request_fn(q, bio);
1074 
1075 			blk_queue_exit(q);
1076 
1077 			/* sort new bios into those for a lower level
1078 			 * and those for the same level
1079 			 */
1080 			bio_list_init(&lower);
1081 			bio_list_init(&same);
1082 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1083 				if (q == bio->bi_disk->queue)
1084 					bio_list_add(&same, bio);
1085 				else
1086 					bio_list_add(&lower, bio);
1087 			/* now assemble so we handle the lowest level first */
1088 			bio_list_merge(&bio_list_on_stack[0], &lower);
1089 			bio_list_merge(&bio_list_on_stack[0], &same);
1090 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1091 		} else {
1092 			if (unlikely(!blk_queue_dying(q) &&
1093 					(bio->bi_opf & REQ_NOWAIT)))
1094 				bio_wouldblock_error(bio);
1095 			else
1096 				bio_io_error(bio);
1097 		}
1098 		bio = bio_list_pop(&bio_list_on_stack[0]);
1099 	} while (bio);
1100 	current->bio_list = NULL; /* deactivate */
1101 
1102 out:
1103 	return ret;
1104 }
1105 EXPORT_SYMBOL(generic_make_request);
1106 
1107 /**
1108  * direct_make_request - hand a buffer directly to its device driver for I/O
1109  * @bio:  The bio describing the location in memory and on the device.
1110  *
1111  * This function behaves like generic_make_request(), but does not protect
1112  * against recursion.  Must only be used if the called driver is known
1113  * to not call generic_make_request (or direct_make_request) again from
1114  * its make_request function.  (Calling direct_make_request again from
1115  * a workqueue is perfectly fine as that doesn't recurse).
1116  */
1117 blk_qc_t direct_make_request(struct bio *bio)
1118 {
1119 	struct request_queue *q = bio->bi_disk->queue;
1120 	bool nowait = bio->bi_opf & REQ_NOWAIT;
1121 	blk_qc_t ret;
1122 
1123 	if (!generic_make_request_checks(bio))
1124 		return BLK_QC_T_NONE;
1125 
1126 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1127 		if (nowait && !blk_queue_dying(q))
1128 			bio_wouldblock_error(bio);
1129 		else
1130 			bio_io_error(bio);
1131 		return BLK_QC_T_NONE;
1132 	}
1133 
1134 	ret = q->make_request_fn(q, bio);
1135 	blk_queue_exit(q);
1136 	return ret;
1137 }
1138 EXPORT_SYMBOL_GPL(direct_make_request);
1139 
1140 /**
1141  * submit_bio - submit a bio to the block device layer for I/O
1142  * @bio: The &struct bio which describes the I/O
1143  *
1144  * submit_bio() is very similar in purpose to generic_make_request(), and
1145  * uses that function to do most of the work. Both are fairly rough
1146  * interfaces; @bio must be presetup and ready for I/O.
1147  *
1148  */
1149 blk_qc_t submit_bio(struct bio *bio)
1150 {
1151 	bool workingset_read = false;
1152 	unsigned long pflags;
1153 	blk_qc_t ret;
1154 
1155 	if (blkcg_punt_bio_submit(bio))
1156 		return BLK_QC_T_NONE;
1157 
1158 	/*
1159 	 * If it's a regular read/write or a barrier with data attached,
1160 	 * go through the normal accounting stuff before submission.
1161 	 */
1162 	if (bio_has_data(bio)) {
1163 		unsigned int count;
1164 
1165 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1166 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1167 		else
1168 			count = bio_sectors(bio);
1169 
1170 		if (op_is_write(bio_op(bio))) {
1171 			count_vm_events(PGPGOUT, count);
1172 		} else {
1173 			if (bio_flagged(bio, BIO_WORKINGSET))
1174 				workingset_read = true;
1175 			task_io_account_read(bio->bi_iter.bi_size);
1176 			count_vm_events(PGPGIN, count);
1177 		}
1178 
1179 		if (unlikely(block_dump)) {
1180 			char b[BDEVNAME_SIZE];
1181 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1182 			current->comm, task_pid_nr(current),
1183 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1184 				(unsigned long long)bio->bi_iter.bi_sector,
1185 				bio_devname(bio, b), count);
1186 		}
1187 	}
1188 
1189 	/*
1190 	 * If we're reading data that is part of the userspace
1191 	 * workingset, count submission time as memory stall. When the
1192 	 * device is congested, or the submitting cgroup IO-throttled,
1193 	 * submission can be a significant part of overall IO time.
1194 	 */
1195 	if (workingset_read)
1196 		psi_memstall_enter(&pflags);
1197 
1198 	ret = generic_make_request(bio);
1199 
1200 	if (workingset_read)
1201 		psi_memstall_leave(&pflags);
1202 
1203 	return ret;
1204 }
1205 EXPORT_SYMBOL(submit_bio);
1206 
1207 /**
1208  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1209  *                              for the new queue limits
1210  * @q:  the queue
1211  * @rq: the request being checked
1212  *
1213  * Description:
1214  *    @rq may have been made based on weaker limitations of upper-level queues
1215  *    in request stacking drivers, and it may violate the limitation of @q.
1216  *    Since the block layer and the underlying device driver trust @rq
1217  *    after it is inserted to @q, it should be checked against @q before
1218  *    the insertion using this generic function.
1219  *
1220  *    Request stacking drivers like request-based dm may change the queue
1221  *    limits when retrying requests on other queues. Those requests need
1222  *    to be checked against the new queue limits again during dispatch.
1223  */
1224 static int blk_cloned_rq_check_limits(struct request_queue *q,
1225 				      struct request *rq)
1226 {
1227 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1228 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1229 			__func__, blk_rq_sectors(rq),
1230 			blk_queue_get_max_sectors(q, req_op(rq)));
1231 		return -EIO;
1232 	}
1233 
1234 	/*
1235 	 * queue's settings related to segment counting like q->bounce_pfn
1236 	 * may differ from that of other stacking queues.
1237 	 * Recalculate it to check the request correctly on this queue's
1238 	 * limitation.
1239 	 */
1240 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1241 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1242 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1243 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1244 		return -EIO;
1245 	}
1246 
1247 	return 0;
1248 }
1249 
1250 /**
1251  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1252  * @q:  the queue to submit the request
1253  * @rq: the request being queued
1254  */
1255 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1256 {
1257 	if (blk_cloned_rq_check_limits(q, rq))
1258 		return BLK_STS_IOERR;
1259 
1260 	if (rq->rq_disk &&
1261 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1262 		return BLK_STS_IOERR;
1263 
1264 	if (blk_queue_io_stat(q))
1265 		blk_account_io_start(rq, true);
1266 
1267 	/*
1268 	 * Since we have a scheduler attached on the top device,
1269 	 * bypass a potential scheduler on the bottom device for
1270 	 * insert.
1271 	 */
1272 	return blk_mq_request_issue_directly(rq, true);
1273 }
1274 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1275 
1276 /**
1277  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1278  * @rq: request to examine
1279  *
1280  * Description:
1281  *     A request could be merge of IOs which require different failure
1282  *     handling.  This function determines the number of bytes which
1283  *     can be failed from the beginning of the request without
1284  *     crossing into area which need to be retried further.
1285  *
1286  * Return:
1287  *     The number of bytes to fail.
1288  */
1289 unsigned int blk_rq_err_bytes(const struct request *rq)
1290 {
1291 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1292 	unsigned int bytes = 0;
1293 	struct bio *bio;
1294 
1295 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1296 		return blk_rq_bytes(rq);
1297 
1298 	/*
1299 	 * Currently the only 'mixing' which can happen is between
1300 	 * different fastfail types.  We can safely fail portions
1301 	 * which have all the failfast bits that the first one has -
1302 	 * the ones which are at least as eager to fail as the first
1303 	 * one.
1304 	 */
1305 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1306 		if ((bio->bi_opf & ff) != ff)
1307 			break;
1308 		bytes += bio->bi_iter.bi_size;
1309 	}
1310 
1311 	/* this could lead to infinite loop */
1312 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1313 	return bytes;
1314 }
1315 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1316 
1317 void blk_account_io_completion(struct request *req, unsigned int bytes)
1318 {
1319 	if (req->part && blk_do_io_stat(req)) {
1320 		const int sgrp = op_stat_group(req_op(req));
1321 		struct hd_struct *part;
1322 
1323 		part_stat_lock();
1324 		part = req->part;
1325 		part_stat_add(part, sectors[sgrp], bytes >> 9);
1326 		part_stat_unlock();
1327 	}
1328 }
1329 
1330 void blk_account_io_done(struct request *req, u64 now)
1331 {
1332 	/*
1333 	 * Account IO completion.  flush_rq isn't accounted as a
1334 	 * normal IO on queueing nor completion.  Accounting the
1335 	 * containing request is enough.
1336 	 */
1337 	if (req->part && blk_do_io_stat(req) &&
1338 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1339 		const int sgrp = op_stat_group(req_op(req));
1340 		struct hd_struct *part;
1341 
1342 		part_stat_lock();
1343 		part = req->part;
1344 
1345 		update_io_ticks(part, jiffies, true);
1346 		part_stat_inc(part, ios[sgrp]);
1347 		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1348 		part_dec_in_flight(req->q, part, rq_data_dir(req));
1349 
1350 		hd_struct_put(part);
1351 		part_stat_unlock();
1352 	}
1353 }
1354 
1355 void blk_account_io_start(struct request *rq, bool new_io)
1356 {
1357 	struct hd_struct *part;
1358 	int rw = rq_data_dir(rq);
1359 
1360 	if (!blk_do_io_stat(rq))
1361 		return;
1362 
1363 	part_stat_lock();
1364 
1365 	if (!new_io) {
1366 		part = rq->part;
1367 		part_stat_inc(part, merges[rw]);
1368 	} else {
1369 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1370 		if (!hd_struct_try_get(part)) {
1371 			/*
1372 			 * The partition is already being removed,
1373 			 * the request will be accounted on the disk only
1374 			 *
1375 			 * We take a reference on disk->part0 although that
1376 			 * partition will never be deleted, so we can treat
1377 			 * it as any other partition.
1378 			 */
1379 			part = &rq->rq_disk->part0;
1380 			hd_struct_get(part);
1381 		}
1382 		part_inc_in_flight(rq->q, part, rw);
1383 		rq->part = part;
1384 	}
1385 
1386 	update_io_ticks(part, jiffies, false);
1387 
1388 	part_stat_unlock();
1389 }
1390 
1391 /*
1392  * Steal bios from a request and add them to a bio list.
1393  * The request must not have been partially completed before.
1394  */
1395 void blk_steal_bios(struct bio_list *list, struct request *rq)
1396 {
1397 	if (rq->bio) {
1398 		if (list->tail)
1399 			list->tail->bi_next = rq->bio;
1400 		else
1401 			list->head = rq->bio;
1402 		list->tail = rq->biotail;
1403 
1404 		rq->bio = NULL;
1405 		rq->biotail = NULL;
1406 	}
1407 
1408 	rq->__data_len = 0;
1409 }
1410 EXPORT_SYMBOL_GPL(blk_steal_bios);
1411 
1412 /**
1413  * blk_update_request - Special helper function for request stacking drivers
1414  * @req:      the request being processed
1415  * @error:    block status code
1416  * @nr_bytes: number of bytes to complete @req
1417  *
1418  * Description:
1419  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1420  *     the request structure even if @req doesn't have leftover.
1421  *     If @req has leftover, sets it up for the next range of segments.
1422  *
1423  *     This special helper function is only for request stacking drivers
1424  *     (e.g. request-based dm) so that they can handle partial completion.
1425  *     Actual device drivers should use blk_mq_end_request instead.
1426  *
1427  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1428  *     %false return from this function.
1429  *
1430  * Note:
1431  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1432  *	blk_rq_bytes() and in blk_update_request().
1433  *
1434  * Return:
1435  *     %false - this request doesn't have any more data
1436  *     %true  - this request has more data
1437  **/
1438 bool blk_update_request(struct request *req, blk_status_t error,
1439 		unsigned int nr_bytes)
1440 {
1441 	int total_bytes;
1442 
1443 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1444 
1445 	if (!req->bio)
1446 		return false;
1447 
1448 #ifdef CONFIG_BLK_DEV_INTEGRITY
1449 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1450 	    error == BLK_STS_OK)
1451 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1452 #endif
1453 
1454 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1455 		     !(req->rq_flags & RQF_QUIET)))
1456 		print_req_error(req, error, __func__);
1457 
1458 	blk_account_io_completion(req, nr_bytes);
1459 
1460 	total_bytes = 0;
1461 	while (req->bio) {
1462 		struct bio *bio = req->bio;
1463 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1464 
1465 		if (bio_bytes == bio->bi_iter.bi_size)
1466 			req->bio = bio->bi_next;
1467 
1468 		/* Completion has already been traced */
1469 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1470 		req_bio_endio(req, bio, bio_bytes, error);
1471 
1472 		total_bytes += bio_bytes;
1473 		nr_bytes -= bio_bytes;
1474 
1475 		if (!nr_bytes)
1476 			break;
1477 	}
1478 
1479 	/*
1480 	 * completely done
1481 	 */
1482 	if (!req->bio) {
1483 		/*
1484 		 * Reset counters so that the request stacking driver
1485 		 * can find how many bytes remain in the request
1486 		 * later.
1487 		 */
1488 		req->__data_len = 0;
1489 		return false;
1490 	}
1491 
1492 	req->__data_len -= total_bytes;
1493 
1494 	/* update sector only for requests with clear definition of sector */
1495 	if (!blk_rq_is_passthrough(req))
1496 		req->__sector += total_bytes >> 9;
1497 
1498 	/* mixed attributes always follow the first bio */
1499 	if (req->rq_flags & RQF_MIXED_MERGE) {
1500 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1501 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1502 	}
1503 
1504 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1505 		/*
1506 		 * If total number of sectors is less than the first segment
1507 		 * size, something has gone terribly wrong.
1508 		 */
1509 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1510 			blk_dump_rq_flags(req, "request botched");
1511 			req->__data_len = blk_rq_cur_bytes(req);
1512 		}
1513 
1514 		/* recalculate the number of segments */
1515 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1516 	}
1517 
1518 	return true;
1519 }
1520 EXPORT_SYMBOL_GPL(blk_update_request);
1521 
1522 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1523 /**
1524  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1525  * @rq: the request to be flushed
1526  *
1527  * Description:
1528  *     Flush all pages in @rq.
1529  */
1530 void rq_flush_dcache_pages(struct request *rq)
1531 {
1532 	struct req_iterator iter;
1533 	struct bio_vec bvec;
1534 
1535 	rq_for_each_segment(bvec, rq, iter)
1536 		flush_dcache_page(bvec.bv_page);
1537 }
1538 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1539 #endif
1540 
1541 /**
1542  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1543  * @q : the queue of the device being checked
1544  *
1545  * Description:
1546  *    Check if underlying low-level drivers of a device are busy.
1547  *    If the drivers want to export their busy state, they must set own
1548  *    exporting function using blk_queue_lld_busy() first.
1549  *
1550  *    Basically, this function is used only by request stacking drivers
1551  *    to stop dispatching requests to underlying devices when underlying
1552  *    devices are busy.  This behavior helps more I/O merging on the queue
1553  *    of the request stacking driver and prevents I/O throughput regression
1554  *    on burst I/O load.
1555  *
1556  * Return:
1557  *    0 - Not busy (The request stacking driver should dispatch request)
1558  *    1 - Busy (The request stacking driver should stop dispatching request)
1559  */
1560 int blk_lld_busy(struct request_queue *q)
1561 {
1562 	if (queue_is_mq(q) && q->mq_ops->busy)
1563 		return q->mq_ops->busy(q);
1564 
1565 	return 0;
1566 }
1567 EXPORT_SYMBOL_GPL(blk_lld_busy);
1568 
1569 /**
1570  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1571  * @rq: the clone request to be cleaned up
1572  *
1573  * Description:
1574  *     Free all bios in @rq for a cloned request.
1575  */
1576 void blk_rq_unprep_clone(struct request *rq)
1577 {
1578 	struct bio *bio;
1579 
1580 	while ((bio = rq->bio) != NULL) {
1581 		rq->bio = bio->bi_next;
1582 
1583 		bio_put(bio);
1584 	}
1585 }
1586 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1587 
1588 /**
1589  * blk_rq_prep_clone - Helper function to setup clone request
1590  * @rq: the request to be setup
1591  * @rq_src: original request to be cloned
1592  * @bs: bio_set that bios for clone are allocated from
1593  * @gfp_mask: memory allocation mask for bio
1594  * @bio_ctr: setup function to be called for each clone bio.
1595  *           Returns %0 for success, non %0 for failure.
1596  * @data: private data to be passed to @bio_ctr
1597  *
1598  * Description:
1599  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1600  *     Also, pages which the original bios are pointing to are not copied
1601  *     and the cloned bios just point same pages.
1602  *     So cloned bios must be completed before original bios, which means
1603  *     the caller must complete @rq before @rq_src.
1604  */
1605 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1606 		      struct bio_set *bs, gfp_t gfp_mask,
1607 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1608 		      void *data)
1609 {
1610 	struct bio *bio, *bio_src;
1611 
1612 	if (!bs)
1613 		bs = &fs_bio_set;
1614 
1615 	__rq_for_each_bio(bio_src, rq_src) {
1616 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1617 		if (!bio)
1618 			goto free_and_out;
1619 
1620 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1621 			goto free_and_out;
1622 
1623 		if (rq->bio) {
1624 			rq->biotail->bi_next = bio;
1625 			rq->biotail = bio;
1626 		} else
1627 			rq->bio = rq->biotail = bio;
1628 	}
1629 
1630 	/* Copy attributes of the original request to the clone request. */
1631 	rq->__sector = blk_rq_pos(rq_src);
1632 	rq->__data_len = blk_rq_bytes(rq_src);
1633 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1634 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1635 		rq->special_vec = rq_src->special_vec;
1636 	}
1637 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1638 	rq->ioprio = rq_src->ioprio;
1639 	rq->extra_len = rq_src->extra_len;
1640 
1641 	return 0;
1642 
1643 free_and_out:
1644 	if (bio)
1645 		bio_put(bio);
1646 	blk_rq_unprep_clone(rq);
1647 
1648 	return -ENOMEM;
1649 }
1650 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1651 
1652 int kblockd_schedule_work(struct work_struct *work)
1653 {
1654 	return queue_work(kblockd_workqueue, work);
1655 }
1656 EXPORT_SYMBOL(kblockd_schedule_work);
1657 
1658 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1659 				unsigned long delay)
1660 {
1661 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1662 }
1663 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1664 
1665 /**
1666  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1667  * @plug:	The &struct blk_plug that needs to be initialized
1668  *
1669  * Description:
1670  *   blk_start_plug() indicates to the block layer an intent by the caller
1671  *   to submit multiple I/O requests in a batch.  The block layer may use
1672  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1673  *   is called.  However, the block layer may choose to submit requests
1674  *   before a call to blk_finish_plug() if the number of queued I/Os
1675  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1676  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1677  *   the task schedules (see below).
1678  *
1679  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1680  *   pending I/O should the task end up blocking between blk_start_plug() and
1681  *   blk_finish_plug(). This is important from a performance perspective, but
1682  *   also ensures that we don't deadlock. For instance, if the task is blocking
1683  *   for a memory allocation, memory reclaim could end up wanting to free a
1684  *   page belonging to that request that is currently residing in our private
1685  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1686  *   this kind of deadlock.
1687  */
1688 void blk_start_plug(struct blk_plug *plug)
1689 {
1690 	struct task_struct *tsk = current;
1691 
1692 	/*
1693 	 * If this is a nested plug, don't actually assign it.
1694 	 */
1695 	if (tsk->plug)
1696 		return;
1697 
1698 	INIT_LIST_HEAD(&plug->mq_list);
1699 	INIT_LIST_HEAD(&plug->cb_list);
1700 	plug->rq_count = 0;
1701 	plug->multiple_queues = false;
1702 
1703 	/*
1704 	 * Store ordering should not be needed here, since a potential
1705 	 * preempt will imply a full memory barrier
1706 	 */
1707 	tsk->plug = plug;
1708 }
1709 EXPORT_SYMBOL(blk_start_plug);
1710 
1711 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1712 {
1713 	LIST_HEAD(callbacks);
1714 
1715 	while (!list_empty(&plug->cb_list)) {
1716 		list_splice_init(&plug->cb_list, &callbacks);
1717 
1718 		while (!list_empty(&callbacks)) {
1719 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1720 							  struct blk_plug_cb,
1721 							  list);
1722 			list_del(&cb->list);
1723 			cb->callback(cb, from_schedule);
1724 		}
1725 	}
1726 }
1727 
1728 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1729 				      int size)
1730 {
1731 	struct blk_plug *plug = current->plug;
1732 	struct blk_plug_cb *cb;
1733 
1734 	if (!plug)
1735 		return NULL;
1736 
1737 	list_for_each_entry(cb, &plug->cb_list, list)
1738 		if (cb->callback == unplug && cb->data == data)
1739 			return cb;
1740 
1741 	/* Not currently on the callback list */
1742 	BUG_ON(size < sizeof(*cb));
1743 	cb = kzalloc(size, GFP_ATOMIC);
1744 	if (cb) {
1745 		cb->data = data;
1746 		cb->callback = unplug;
1747 		list_add(&cb->list, &plug->cb_list);
1748 	}
1749 	return cb;
1750 }
1751 EXPORT_SYMBOL(blk_check_plugged);
1752 
1753 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1754 {
1755 	flush_plug_callbacks(plug, from_schedule);
1756 
1757 	if (!list_empty(&plug->mq_list))
1758 		blk_mq_flush_plug_list(plug, from_schedule);
1759 }
1760 
1761 /**
1762  * blk_finish_plug - mark the end of a batch of submitted I/O
1763  * @plug:	The &struct blk_plug passed to blk_start_plug()
1764  *
1765  * Description:
1766  * Indicate that a batch of I/O submissions is complete.  This function
1767  * must be paired with an initial call to blk_start_plug().  The intent
1768  * is to allow the block layer to optimize I/O submission.  See the
1769  * documentation for blk_start_plug() for more information.
1770  */
1771 void blk_finish_plug(struct blk_plug *plug)
1772 {
1773 	if (plug != current->plug)
1774 		return;
1775 	blk_flush_plug_list(plug, false);
1776 
1777 	current->plug = NULL;
1778 }
1779 EXPORT_SYMBOL(blk_finish_plug);
1780 
1781 int __init blk_dev_init(void)
1782 {
1783 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1784 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1785 			sizeof_field(struct request, cmd_flags));
1786 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1787 			sizeof_field(struct bio, bi_opf));
1788 
1789 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1790 	kblockd_workqueue = alloc_workqueue("kblockd",
1791 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1792 	if (!kblockd_workqueue)
1793 		panic("Failed to create kblockd\n");
1794 
1795 	blk_requestq_cachep = kmem_cache_create("request_queue",
1796 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1797 
1798 #ifdef CONFIG_DEBUG_FS
1799 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1800 #endif
1801 
1802 	return 0;
1803 }
1804