1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/bio.h> 19 #include <linux/blkdev.h> 20 #include <linux/blk-mq.h> 21 #include <linux/highmem.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kernel_stat.h> 25 #include <linux/string.h> 26 #include <linux/init.h> 27 #include <linux/completion.h> 28 #include <linux/slab.h> 29 #include <linux/swap.h> 30 #include <linux/writeback.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/fault-inject.h> 33 #include <linux/list_sort.h> 34 #include <linux/delay.h> 35 #include <linux/ratelimit.h> 36 #include <linux/pm_runtime.h> 37 #include <linux/blk-cgroup.h> 38 #include <linux/t10-pi.h> 39 #include <linux/debugfs.h> 40 #include <linux/bpf.h> 41 #include <linux/psi.h> 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/block.h> 45 46 #include "blk.h" 47 #include "blk-mq.h" 48 #include "blk-mq-sched.h" 49 #include "blk-pm.h" 50 #include "blk-rq-qos.h" 51 52 #ifdef CONFIG_DEBUG_FS 53 struct dentry *blk_debugfs_root; 54 #endif 55 56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 61 62 DEFINE_IDA(blk_queue_ida); 63 64 /* 65 * For queue allocation 66 */ 67 struct kmem_cache *blk_requestq_cachep; 68 69 /* 70 * Controlling structure to kblockd 71 */ 72 static struct workqueue_struct *kblockd_workqueue; 73 74 /** 75 * blk_queue_flag_set - atomically set a queue flag 76 * @flag: flag to be set 77 * @q: request queue 78 */ 79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 80 { 81 set_bit(flag, &q->queue_flags); 82 } 83 EXPORT_SYMBOL(blk_queue_flag_set); 84 85 /** 86 * blk_queue_flag_clear - atomically clear a queue flag 87 * @flag: flag to be cleared 88 * @q: request queue 89 */ 90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 91 { 92 clear_bit(flag, &q->queue_flags); 93 } 94 EXPORT_SYMBOL(blk_queue_flag_clear); 95 96 /** 97 * blk_queue_flag_test_and_set - atomically test and set a queue flag 98 * @flag: flag to be set 99 * @q: request queue 100 * 101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 102 * the flag was already set. 103 */ 104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 105 { 106 return test_and_set_bit(flag, &q->queue_flags); 107 } 108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 109 110 void blk_rq_init(struct request_queue *q, struct request *rq) 111 { 112 memset(rq, 0, sizeof(*rq)); 113 114 INIT_LIST_HEAD(&rq->queuelist); 115 rq->q = q; 116 rq->__sector = (sector_t) -1; 117 INIT_HLIST_NODE(&rq->hash); 118 RB_CLEAR_NODE(&rq->rb_node); 119 rq->tag = -1; 120 rq->internal_tag = -1; 121 rq->start_time_ns = ktime_get_ns(); 122 rq->part = NULL; 123 refcount_set(&rq->ref, 1); 124 } 125 EXPORT_SYMBOL(blk_rq_init); 126 127 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 128 static const char *const blk_op_name[] = { 129 REQ_OP_NAME(READ), 130 REQ_OP_NAME(WRITE), 131 REQ_OP_NAME(FLUSH), 132 REQ_OP_NAME(DISCARD), 133 REQ_OP_NAME(SECURE_ERASE), 134 REQ_OP_NAME(ZONE_RESET), 135 REQ_OP_NAME(ZONE_RESET_ALL), 136 REQ_OP_NAME(ZONE_OPEN), 137 REQ_OP_NAME(ZONE_CLOSE), 138 REQ_OP_NAME(ZONE_FINISH), 139 REQ_OP_NAME(WRITE_SAME), 140 REQ_OP_NAME(WRITE_ZEROES), 141 REQ_OP_NAME(SCSI_IN), 142 REQ_OP_NAME(SCSI_OUT), 143 REQ_OP_NAME(DRV_IN), 144 REQ_OP_NAME(DRV_OUT), 145 }; 146 #undef REQ_OP_NAME 147 148 /** 149 * blk_op_str - Return string XXX in the REQ_OP_XXX. 150 * @op: REQ_OP_XXX. 151 * 152 * Description: Centralize block layer function to convert REQ_OP_XXX into 153 * string format. Useful in the debugging and tracing bio or request. For 154 * invalid REQ_OP_XXX it returns string "UNKNOWN". 155 */ 156 inline const char *blk_op_str(unsigned int op) 157 { 158 const char *op_str = "UNKNOWN"; 159 160 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 161 op_str = blk_op_name[op]; 162 163 return op_str; 164 } 165 EXPORT_SYMBOL_GPL(blk_op_str); 166 167 static const struct { 168 int errno; 169 const char *name; 170 } blk_errors[] = { 171 [BLK_STS_OK] = { 0, "" }, 172 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 173 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 174 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 175 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 176 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 177 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 178 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 179 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 180 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 181 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 182 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 183 184 /* device mapper special case, should not leak out: */ 185 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 186 187 /* everything else not covered above: */ 188 [BLK_STS_IOERR] = { -EIO, "I/O" }, 189 }; 190 191 blk_status_t errno_to_blk_status(int errno) 192 { 193 int i; 194 195 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 196 if (blk_errors[i].errno == errno) 197 return (__force blk_status_t)i; 198 } 199 200 return BLK_STS_IOERR; 201 } 202 EXPORT_SYMBOL_GPL(errno_to_blk_status); 203 204 int blk_status_to_errno(blk_status_t status) 205 { 206 int idx = (__force int)status; 207 208 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 209 return -EIO; 210 return blk_errors[idx].errno; 211 } 212 EXPORT_SYMBOL_GPL(blk_status_to_errno); 213 214 static void print_req_error(struct request *req, blk_status_t status, 215 const char *caller) 216 { 217 int idx = (__force int)status; 218 219 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 220 return; 221 222 printk_ratelimited(KERN_ERR 223 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 224 "phys_seg %u prio class %u\n", 225 caller, blk_errors[idx].name, 226 req->rq_disk ? req->rq_disk->disk_name : "?", 227 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 228 req->cmd_flags & ~REQ_OP_MASK, 229 req->nr_phys_segments, 230 IOPRIO_PRIO_CLASS(req->ioprio)); 231 } 232 233 static void req_bio_endio(struct request *rq, struct bio *bio, 234 unsigned int nbytes, blk_status_t error) 235 { 236 if (error) 237 bio->bi_status = error; 238 239 if (unlikely(rq->rq_flags & RQF_QUIET)) 240 bio_set_flag(bio, BIO_QUIET); 241 242 bio_advance(bio, nbytes); 243 244 /* don't actually finish bio if it's part of flush sequence */ 245 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 246 bio_endio(bio); 247 } 248 249 void blk_dump_rq_flags(struct request *rq, char *msg) 250 { 251 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 252 rq->rq_disk ? rq->rq_disk->disk_name : "?", 253 (unsigned long long) rq->cmd_flags); 254 255 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 256 (unsigned long long)blk_rq_pos(rq), 257 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 258 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 259 rq->bio, rq->biotail, blk_rq_bytes(rq)); 260 } 261 EXPORT_SYMBOL(blk_dump_rq_flags); 262 263 /** 264 * blk_sync_queue - cancel any pending callbacks on a queue 265 * @q: the queue 266 * 267 * Description: 268 * The block layer may perform asynchronous callback activity 269 * on a queue, such as calling the unplug function after a timeout. 270 * A block device may call blk_sync_queue to ensure that any 271 * such activity is cancelled, thus allowing it to release resources 272 * that the callbacks might use. The caller must already have made sure 273 * that its ->make_request_fn will not re-add plugging prior to calling 274 * this function. 275 * 276 * This function does not cancel any asynchronous activity arising 277 * out of elevator or throttling code. That would require elevator_exit() 278 * and blkcg_exit_queue() to be called with queue lock initialized. 279 * 280 */ 281 void blk_sync_queue(struct request_queue *q) 282 { 283 del_timer_sync(&q->timeout); 284 cancel_work_sync(&q->timeout_work); 285 } 286 EXPORT_SYMBOL(blk_sync_queue); 287 288 /** 289 * blk_set_pm_only - increment pm_only counter 290 * @q: request queue pointer 291 */ 292 void blk_set_pm_only(struct request_queue *q) 293 { 294 atomic_inc(&q->pm_only); 295 } 296 EXPORT_SYMBOL_GPL(blk_set_pm_only); 297 298 void blk_clear_pm_only(struct request_queue *q) 299 { 300 int pm_only; 301 302 pm_only = atomic_dec_return(&q->pm_only); 303 WARN_ON_ONCE(pm_only < 0); 304 if (pm_only == 0) 305 wake_up_all(&q->mq_freeze_wq); 306 } 307 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 308 309 void blk_put_queue(struct request_queue *q) 310 { 311 kobject_put(&q->kobj); 312 } 313 EXPORT_SYMBOL(blk_put_queue); 314 315 void blk_set_queue_dying(struct request_queue *q) 316 { 317 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 318 319 /* 320 * When queue DYING flag is set, we need to block new req 321 * entering queue, so we call blk_freeze_queue_start() to 322 * prevent I/O from crossing blk_queue_enter(). 323 */ 324 blk_freeze_queue_start(q); 325 326 if (queue_is_mq(q)) 327 blk_mq_wake_waiters(q); 328 329 /* Make blk_queue_enter() reexamine the DYING flag. */ 330 wake_up_all(&q->mq_freeze_wq); 331 } 332 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 333 334 /** 335 * blk_cleanup_queue - shutdown a request queue 336 * @q: request queue to shutdown 337 * 338 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 339 * put it. All future requests will be failed immediately with -ENODEV. 340 */ 341 void blk_cleanup_queue(struct request_queue *q) 342 { 343 WARN_ON_ONCE(blk_queue_registered(q)); 344 345 /* mark @q DYING, no new request or merges will be allowed afterwards */ 346 blk_set_queue_dying(q); 347 348 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 349 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 350 351 /* 352 * Drain all requests queued before DYING marking. Set DEAD flag to 353 * prevent that blk_mq_run_hw_queues() accesses the hardware queues 354 * after draining finished. 355 */ 356 blk_freeze_queue(q); 357 358 rq_qos_exit(q); 359 360 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 361 362 /* for synchronous bio-based driver finish in-flight integrity i/o */ 363 blk_flush_integrity(); 364 365 /* @q won't process any more request, flush async actions */ 366 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 367 blk_sync_queue(q); 368 369 if (queue_is_mq(q)) 370 blk_mq_exit_queue(q); 371 372 /* 373 * In theory, request pool of sched_tags belongs to request queue. 374 * However, the current implementation requires tag_set for freeing 375 * requests, so free the pool now. 376 * 377 * Queue has become frozen, there can't be any in-queue requests, so 378 * it is safe to free requests now. 379 */ 380 mutex_lock(&q->sysfs_lock); 381 if (q->elevator) 382 blk_mq_sched_free_requests(q); 383 mutex_unlock(&q->sysfs_lock); 384 385 percpu_ref_exit(&q->q_usage_counter); 386 387 /* @q is and will stay empty, shutdown and put */ 388 blk_put_queue(q); 389 } 390 EXPORT_SYMBOL(blk_cleanup_queue); 391 392 /** 393 * blk_queue_enter() - try to increase q->q_usage_counter 394 * @q: request queue pointer 395 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 396 */ 397 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 398 { 399 const bool pm = flags & BLK_MQ_REQ_PREEMPT; 400 401 while (true) { 402 bool success = false; 403 404 rcu_read_lock(); 405 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 406 /* 407 * The code that increments the pm_only counter is 408 * responsible for ensuring that that counter is 409 * globally visible before the queue is unfrozen. 410 */ 411 if (pm || !blk_queue_pm_only(q)) { 412 success = true; 413 } else { 414 percpu_ref_put(&q->q_usage_counter); 415 } 416 } 417 rcu_read_unlock(); 418 419 if (success) 420 return 0; 421 422 if (flags & BLK_MQ_REQ_NOWAIT) 423 return -EBUSY; 424 425 /* 426 * read pair of barrier in blk_freeze_queue_start(), 427 * we need to order reading __PERCPU_REF_DEAD flag of 428 * .q_usage_counter and reading .mq_freeze_depth or 429 * queue dying flag, otherwise the following wait may 430 * never return if the two reads are reordered. 431 */ 432 smp_rmb(); 433 434 wait_event(q->mq_freeze_wq, 435 (!q->mq_freeze_depth && 436 (pm || (blk_pm_request_resume(q), 437 !blk_queue_pm_only(q)))) || 438 blk_queue_dying(q)); 439 if (blk_queue_dying(q)) 440 return -ENODEV; 441 } 442 } 443 444 void blk_queue_exit(struct request_queue *q) 445 { 446 percpu_ref_put(&q->q_usage_counter); 447 } 448 449 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 450 { 451 struct request_queue *q = 452 container_of(ref, struct request_queue, q_usage_counter); 453 454 wake_up_all(&q->mq_freeze_wq); 455 } 456 457 static void blk_rq_timed_out_timer(struct timer_list *t) 458 { 459 struct request_queue *q = from_timer(q, t, timeout); 460 461 kblockd_schedule_work(&q->timeout_work); 462 } 463 464 static void blk_timeout_work(struct work_struct *work) 465 { 466 } 467 468 struct request_queue *__blk_alloc_queue(int node_id) 469 { 470 struct request_queue *q; 471 int ret; 472 473 q = kmem_cache_alloc_node(blk_requestq_cachep, 474 GFP_KERNEL | __GFP_ZERO, node_id); 475 if (!q) 476 return NULL; 477 478 q->last_merge = NULL; 479 480 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL); 481 if (q->id < 0) 482 goto fail_q; 483 484 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 485 if (ret) 486 goto fail_id; 487 488 q->backing_dev_info = bdi_alloc_node(GFP_KERNEL, node_id); 489 if (!q->backing_dev_info) 490 goto fail_split; 491 492 q->stats = blk_alloc_queue_stats(); 493 if (!q->stats) 494 goto fail_stats; 495 496 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES; 497 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 498 q->backing_dev_info->name = "block"; 499 q->node = node_id; 500 501 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 502 laptop_mode_timer_fn, 0); 503 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 504 INIT_WORK(&q->timeout_work, blk_timeout_work); 505 INIT_LIST_HEAD(&q->icq_list); 506 #ifdef CONFIG_BLK_CGROUP 507 INIT_LIST_HEAD(&q->blkg_list); 508 #endif 509 510 kobject_init(&q->kobj, &blk_queue_ktype); 511 512 #ifdef CONFIG_BLK_DEV_IO_TRACE 513 mutex_init(&q->blk_trace_mutex); 514 #endif 515 mutex_init(&q->sysfs_lock); 516 mutex_init(&q->sysfs_dir_lock); 517 spin_lock_init(&q->queue_lock); 518 519 init_waitqueue_head(&q->mq_freeze_wq); 520 mutex_init(&q->mq_freeze_lock); 521 522 /* 523 * Init percpu_ref in atomic mode so that it's faster to shutdown. 524 * See blk_register_queue() for details. 525 */ 526 if (percpu_ref_init(&q->q_usage_counter, 527 blk_queue_usage_counter_release, 528 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 529 goto fail_bdi; 530 531 if (blkcg_init_queue(q)) 532 goto fail_ref; 533 534 blk_queue_dma_alignment(q, 511); 535 blk_set_default_limits(&q->limits); 536 537 return q; 538 539 fail_ref: 540 percpu_ref_exit(&q->q_usage_counter); 541 fail_bdi: 542 blk_free_queue_stats(q->stats); 543 fail_stats: 544 bdi_put(q->backing_dev_info); 545 fail_split: 546 bioset_exit(&q->bio_split); 547 fail_id: 548 ida_simple_remove(&blk_queue_ida, q->id); 549 fail_q: 550 kmem_cache_free(blk_requestq_cachep, q); 551 return NULL; 552 } 553 554 struct request_queue *blk_alloc_queue(make_request_fn make_request, int node_id) 555 { 556 struct request_queue *q; 557 558 if (WARN_ON_ONCE(!make_request)) 559 return NULL; 560 561 q = __blk_alloc_queue(node_id); 562 if (!q) 563 return NULL; 564 q->make_request_fn = make_request; 565 q->nr_requests = BLKDEV_MAX_RQ; 566 return q; 567 } 568 EXPORT_SYMBOL(blk_alloc_queue); 569 570 bool blk_get_queue(struct request_queue *q) 571 { 572 if (likely(!blk_queue_dying(q))) { 573 __blk_get_queue(q); 574 return true; 575 } 576 577 return false; 578 } 579 EXPORT_SYMBOL(blk_get_queue); 580 581 /** 582 * blk_get_request - allocate a request 583 * @q: request queue to allocate a request for 584 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 585 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 586 */ 587 struct request *blk_get_request(struct request_queue *q, unsigned int op, 588 blk_mq_req_flags_t flags) 589 { 590 struct request *req; 591 592 WARN_ON_ONCE(op & REQ_NOWAIT); 593 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 594 595 req = blk_mq_alloc_request(q, op, flags); 596 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 597 q->mq_ops->initialize_rq_fn(req); 598 599 return req; 600 } 601 EXPORT_SYMBOL(blk_get_request); 602 603 void blk_put_request(struct request *req) 604 { 605 blk_mq_free_request(req); 606 } 607 EXPORT_SYMBOL(blk_put_request); 608 609 bool bio_attempt_back_merge(struct request *req, struct bio *bio, 610 unsigned int nr_segs) 611 { 612 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 613 614 if (!ll_back_merge_fn(req, bio, nr_segs)) 615 return false; 616 617 trace_block_bio_backmerge(req->q, req, bio); 618 rq_qos_merge(req->q, req, bio); 619 620 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 621 blk_rq_set_mixed_merge(req); 622 623 req->biotail->bi_next = bio; 624 req->biotail = bio; 625 req->__data_len += bio->bi_iter.bi_size; 626 627 blk_account_io_start(req, false); 628 return true; 629 } 630 631 bool bio_attempt_front_merge(struct request *req, struct bio *bio, 632 unsigned int nr_segs) 633 { 634 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 635 636 if (!ll_front_merge_fn(req, bio, nr_segs)) 637 return false; 638 639 trace_block_bio_frontmerge(req->q, req, bio); 640 rq_qos_merge(req->q, req, bio); 641 642 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 643 blk_rq_set_mixed_merge(req); 644 645 bio->bi_next = req->bio; 646 req->bio = bio; 647 648 req->__sector = bio->bi_iter.bi_sector; 649 req->__data_len += bio->bi_iter.bi_size; 650 651 blk_account_io_start(req, false); 652 return true; 653 } 654 655 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 656 struct bio *bio) 657 { 658 unsigned short segments = blk_rq_nr_discard_segments(req); 659 660 if (segments >= queue_max_discard_segments(q)) 661 goto no_merge; 662 if (blk_rq_sectors(req) + bio_sectors(bio) > 663 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 664 goto no_merge; 665 666 rq_qos_merge(q, req, bio); 667 668 req->biotail->bi_next = bio; 669 req->biotail = bio; 670 req->__data_len += bio->bi_iter.bi_size; 671 req->nr_phys_segments = segments + 1; 672 673 blk_account_io_start(req, false); 674 return true; 675 no_merge: 676 req_set_nomerge(q, req); 677 return false; 678 } 679 680 /** 681 * blk_attempt_plug_merge - try to merge with %current's plugged list 682 * @q: request_queue new bio is being queued at 683 * @bio: new bio being queued 684 * @nr_segs: number of segments in @bio 685 * @same_queue_rq: pointer to &struct request that gets filled in when 686 * another request associated with @q is found on the plug list 687 * (optional, may be %NULL) 688 * 689 * Determine whether @bio being queued on @q can be merged with a request 690 * on %current's plugged list. Returns %true if merge was successful, 691 * otherwise %false. 692 * 693 * Plugging coalesces IOs from the same issuer for the same purpose without 694 * going through @q->queue_lock. As such it's more of an issuing mechanism 695 * than scheduling, and the request, while may have elvpriv data, is not 696 * added on the elevator at this point. In addition, we don't have 697 * reliable access to the elevator outside queue lock. Only check basic 698 * merging parameters without querying the elevator. 699 * 700 * Caller must ensure !blk_queue_nomerges(q) beforehand. 701 */ 702 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 703 unsigned int nr_segs, struct request **same_queue_rq) 704 { 705 struct blk_plug *plug; 706 struct request *rq; 707 struct list_head *plug_list; 708 709 plug = blk_mq_plug(q, bio); 710 if (!plug) 711 return false; 712 713 plug_list = &plug->mq_list; 714 715 list_for_each_entry_reverse(rq, plug_list, queuelist) { 716 bool merged = false; 717 718 if (rq->q == q && same_queue_rq) { 719 /* 720 * Only blk-mq multiple hardware queues case checks the 721 * rq in the same queue, there should be only one such 722 * rq in a queue 723 **/ 724 *same_queue_rq = rq; 725 } 726 727 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 728 continue; 729 730 switch (blk_try_merge(rq, bio)) { 731 case ELEVATOR_BACK_MERGE: 732 merged = bio_attempt_back_merge(rq, bio, nr_segs); 733 break; 734 case ELEVATOR_FRONT_MERGE: 735 merged = bio_attempt_front_merge(rq, bio, nr_segs); 736 break; 737 case ELEVATOR_DISCARD_MERGE: 738 merged = bio_attempt_discard_merge(q, rq, bio); 739 break; 740 default: 741 break; 742 } 743 744 if (merged) 745 return true; 746 } 747 748 return false; 749 } 750 751 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 752 { 753 char b[BDEVNAME_SIZE]; 754 755 printk(KERN_INFO "attempt to access beyond end of device\n"); 756 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 757 bio_devname(bio, b), bio->bi_opf, 758 (unsigned long long)bio_end_sector(bio), 759 (long long)maxsector); 760 } 761 762 #ifdef CONFIG_FAIL_MAKE_REQUEST 763 764 static DECLARE_FAULT_ATTR(fail_make_request); 765 766 static int __init setup_fail_make_request(char *str) 767 { 768 return setup_fault_attr(&fail_make_request, str); 769 } 770 __setup("fail_make_request=", setup_fail_make_request); 771 772 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 773 { 774 return part->make_it_fail && should_fail(&fail_make_request, bytes); 775 } 776 777 static int __init fail_make_request_debugfs(void) 778 { 779 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 780 NULL, &fail_make_request); 781 782 return PTR_ERR_OR_ZERO(dir); 783 } 784 785 late_initcall(fail_make_request_debugfs); 786 787 #else /* CONFIG_FAIL_MAKE_REQUEST */ 788 789 static inline bool should_fail_request(struct hd_struct *part, 790 unsigned int bytes) 791 { 792 return false; 793 } 794 795 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 796 797 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 798 { 799 const int op = bio_op(bio); 800 801 if (part->policy && op_is_write(op)) { 802 char b[BDEVNAME_SIZE]; 803 804 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 805 return false; 806 807 WARN_ONCE(1, 808 "generic_make_request: Trying to write " 809 "to read-only block-device %s (partno %d)\n", 810 bio_devname(bio, b), part->partno); 811 /* Older lvm-tools actually trigger this */ 812 return false; 813 } 814 815 return false; 816 } 817 818 static noinline int should_fail_bio(struct bio *bio) 819 { 820 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 821 return -EIO; 822 return 0; 823 } 824 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 825 826 /* 827 * Check whether this bio extends beyond the end of the device or partition. 828 * This may well happen - the kernel calls bread() without checking the size of 829 * the device, e.g., when mounting a file system. 830 */ 831 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 832 { 833 unsigned int nr_sectors = bio_sectors(bio); 834 835 if (nr_sectors && maxsector && 836 (nr_sectors > maxsector || 837 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 838 handle_bad_sector(bio, maxsector); 839 return -EIO; 840 } 841 return 0; 842 } 843 844 /* 845 * Remap block n of partition p to block n+start(p) of the disk. 846 */ 847 static inline int blk_partition_remap(struct bio *bio) 848 { 849 struct hd_struct *p; 850 int ret = -EIO; 851 852 rcu_read_lock(); 853 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 854 if (unlikely(!p)) 855 goto out; 856 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 857 goto out; 858 if (unlikely(bio_check_ro(bio, p))) 859 goto out; 860 861 if (bio_sectors(bio)) { 862 if (bio_check_eod(bio, part_nr_sects_read(p))) 863 goto out; 864 bio->bi_iter.bi_sector += p->start_sect; 865 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 866 bio->bi_iter.bi_sector - p->start_sect); 867 } 868 bio->bi_partno = 0; 869 ret = 0; 870 out: 871 rcu_read_unlock(); 872 return ret; 873 } 874 875 static noinline_for_stack bool 876 generic_make_request_checks(struct bio *bio) 877 { 878 struct request_queue *q; 879 int nr_sectors = bio_sectors(bio); 880 blk_status_t status = BLK_STS_IOERR; 881 char b[BDEVNAME_SIZE]; 882 883 might_sleep(); 884 885 q = bio->bi_disk->queue; 886 if (unlikely(!q)) { 887 printk(KERN_ERR 888 "generic_make_request: Trying to access " 889 "nonexistent block-device %s (%Lu)\n", 890 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 891 goto end_io; 892 } 893 894 /* 895 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 896 * if queue is not a request based queue. 897 */ 898 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q)) 899 goto not_supported; 900 901 if (should_fail_bio(bio)) 902 goto end_io; 903 904 if (bio->bi_partno) { 905 if (unlikely(blk_partition_remap(bio))) 906 goto end_io; 907 } else { 908 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 909 goto end_io; 910 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 911 goto end_io; 912 } 913 914 /* 915 * Filter flush bio's early so that make_request based 916 * drivers without flush support don't have to worry 917 * about them. 918 */ 919 if (op_is_flush(bio->bi_opf) && 920 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 921 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 922 if (!nr_sectors) { 923 status = BLK_STS_OK; 924 goto end_io; 925 } 926 } 927 928 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 929 bio->bi_opf &= ~REQ_HIPRI; 930 931 switch (bio_op(bio)) { 932 case REQ_OP_DISCARD: 933 if (!blk_queue_discard(q)) 934 goto not_supported; 935 break; 936 case REQ_OP_SECURE_ERASE: 937 if (!blk_queue_secure_erase(q)) 938 goto not_supported; 939 break; 940 case REQ_OP_WRITE_SAME: 941 if (!q->limits.max_write_same_sectors) 942 goto not_supported; 943 break; 944 case REQ_OP_ZONE_RESET: 945 case REQ_OP_ZONE_OPEN: 946 case REQ_OP_ZONE_CLOSE: 947 case REQ_OP_ZONE_FINISH: 948 if (!blk_queue_is_zoned(q)) 949 goto not_supported; 950 break; 951 case REQ_OP_ZONE_RESET_ALL: 952 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q)) 953 goto not_supported; 954 break; 955 case REQ_OP_WRITE_ZEROES: 956 if (!q->limits.max_write_zeroes_sectors) 957 goto not_supported; 958 break; 959 default: 960 break; 961 } 962 963 /* 964 * Various block parts want %current->io_context and lazy ioc 965 * allocation ends up trading a lot of pain for a small amount of 966 * memory. Just allocate it upfront. This may fail and block 967 * layer knows how to live with it. 968 */ 969 create_io_context(GFP_ATOMIC, q->node); 970 971 if (!blkcg_bio_issue_check(q, bio)) 972 return false; 973 974 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 975 trace_block_bio_queue(q, bio); 976 /* Now that enqueuing has been traced, we need to trace 977 * completion as well. 978 */ 979 bio_set_flag(bio, BIO_TRACE_COMPLETION); 980 } 981 return true; 982 983 not_supported: 984 status = BLK_STS_NOTSUPP; 985 end_io: 986 bio->bi_status = status; 987 bio_endio(bio); 988 return false; 989 } 990 991 /** 992 * generic_make_request - hand a buffer to its device driver for I/O 993 * @bio: The bio describing the location in memory and on the device. 994 * 995 * generic_make_request() is used to make I/O requests of block 996 * devices. It is passed a &struct bio, which describes the I/O that needs 997 * to be done. 998 * 999 * generic_make_request() does not return any status. The 1000 * success/failure status of the request, along with notification of 1001 * completion, is delivered asynchronously through the bio->bi_end_io 1002 * function described (one day) else where. 1003 * 1004 * The caller of generic_make_request must make sure that bi_io_vec 1005 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1006 * set to describe the device address, and the 1007 * bi_end_io and optionally bi_private are set to describe how 1008 * completion notification should be signaled. 1009 * 1010 * generic_make_request and the drivers it calls may use bi_next if this 1011 * bio happens to be merged with someone else, and may resubmit the bio to 1012 * a lower device by calling into generic_make_request recursively, which 1013 * means the bio should NOT be touched after the call to ->make_request_fn. 1014 */ 1015 blk_qc_t generic_make_request(struct bio *bio) 1016 { 1017 /* 1018 * bio_list_on_stack[0] contains bios submitted by the current 1019 * make_request_fn. 1020 * bio_list_on_stack[1] contains bios that were submitted before 1021 * the current make_request_fn, but that haven't been processed 1022 * yet. 1023 */ 1024 struct bio_list bio_list_on_stack[2]; 1025 blk_qc_t ret = BLK_QC_T_NONE; 1026 1027 if (!generic_make_request_checks(bio)) 1028 goto out; 1029 1030 /* 1031 * We only want one ->make_request_fn to be active at a time, else 1032 * stack usage with stacked devices could be a problem. So use 1033 * current->bio_list to keep a list of requests submited by a 1034 * make_request_fn function. current->bio_list is also used as a 1035 * flag to say if generic_make_request is currently active in this 1036 * task or not. If it is NULL, then no make_request is active. If 1037 * it is non-NULL, then a make_request is active, and new requests 1038 * should be added at the tail 1039 */ 1040 if (current->bio_list) { 1041 bio_list_add(¤t->bio_list[0], bio); 1042 goto out; 1043 } 1044 1045 /* following loop may be a bit non-obvious, and so deserves some 1046 * explanation. 1047 * Before entering the loop, bio->bi_next is NULL (as all callers 1048 * ensure that) so we have a list with a single bio. 1049 * We pretend that we have just taken it off a longer list, so 1050 * we assign bio_list to a pointer to the bio_list_on_stack, 1051 * thus initialising the bio_list of new bios to be 1052 * added. ->make_request() may indeed add some more bios 1053 * through a recursive call to generic_make_request. If it 1054 * did, we find a non-NULL value in bio_list and re-enter the loop 1055 * from the top. In this case we really did just take the bio 1056 * of the top of the list (no pretending) and so remove it from 1057 * bio_list, and call into ->make_request() again. 1058 */ 1059 BUG_ON(bio->bi_next); 1060 bio_list_init(&bio_list_on_stack[0]); 1061 current->bio_list = bio_list_on_stack; 1062 do { 1063 struct request_queue *q = bio->bi_disk->queue; 1064 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ? 1065 BLK_MQ_REQ_NOWAIT : 0; 1066 1067 if (likely(blk_queue_enter(q, flags) == 0)) { 1068 struct bio_list lower, same; 1069 1070 /* Create a fresh bio_list for all subordinate requests */ 1071 bio_list_on_stack[1] = bio_list_on_stack[0]; 1072 bio_list_init(&bio_list_on_stack[0]); 1073 ret = q->make_request_fn(q, bio); 1074 1075 blk_queue_exit(q); 1076 1077 /* sort new bios into those for a lower level 1078 * and those for the same level 1079 */ 1080 bio_list_init(&lower); 1081 bio_list_init(&same); 1082 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 1083 if (q == bio->bi_disk->queue) 1084 bio_list_add(&same, bio); 1085 else 1086 bio_list_add(&lower, bio); 1087 /* now assemble so we handle the lowest level first */ 1088 bio_list_merge(&bio_list_on_stack[0], &lower); 1089 bio_list_merge(&bio_list_on_stack[0], &same); 1090 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 1091 } else { 1092 if (unlikely(!blk_queue_dying(q) && 1093 (bio->bi_opf & REQ_NOWAIT))) 1094 bio_wouldblock_error(bio); 1095 else 1096 bio_io_error(bio); 1097 } 1098 bio = bio_list_pop(&bio_list_on_stack[0]); 1099 } while (bio); 1100 current->bio_list = NULL; /* deactivate */ 1101 1102 out: 1103 return ret; 1104 } 1105 EXPORT_SYMBOL(generic_make_request); 1106 1107 /** 1108 * direct_make_request - hand a buffer directly to its device driver for I/O 1109 * @bio: The bio describing the location in memory and on the device. 1110 * 1111 * This function behaves like generic_make_request(), but does not protect 1112 * against recursion. Must only be used if the called driver is known 1113 * to not call generic_make_request (or direct_make_request) again from 1114 * its make_request function. (Calling direct_make_request again from 1115 * a workqueue is perfectly fine as that doesn't recurse). 1116 */ 1117 blk_qc_t direct_make_request(struct bio *bio) 1118 { 1119 struct request_queue *q = bio->bi_disk->queue; 1120 bool nowait = bio->bi_opf & REQ_NOWAIT; 1121 blk_qc_t ret; 1122 1123 if (!generic_make_request_checks(bio)) 1124 return BLK_QC_T_NONE; 1125 1126 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 1127 if (nowait && !blk_queue_dying(q)) 1128 bio_wouldblock_error(bio); 1129 else 1130 bio_io_error(bio); 1131 return BLK_QC_T_NONE; 1132 } 1133 1134 ret = q->make_request_fn(q, bio); 1135 blk_queue_exit(q); 1136 return ret; 1137 } 1138 EXPORT_SYMBOL_GPL(direct_make_request); 1139 1140 /** 1141 * submit_bio - submit a bio to the block device layer for I/O 1142 * @bio: The &struct bio which describes the I/O 1143 * 1144 * submit_bio() is very similar in purpose to generic_make_request(), and 1145 * uses that function to do most of the work. Both are fairly rough 1146 * interfaces; @bio must be presetup and ready for I/O. 1147 * 1148 */ 1149 blk_qc_t submit_bio(struct bio *bio) 1150 { 1151 bool workingset_read = false; 1152 unsigned long pflags; 1153 blk_qc_t ret; 1154 1155 if (blkcg_punt_bio_submit(bio)) 1156 return BLK_QC_T_NONE; 1157 1158 /* 1159 * If it's a regular read/write or a barrier with data attached, 1160 * go through the normal accounting stuff before submission. 1161 */ 1162 if (bio_has_data(bio)) { 1163 unsigned int count; 1164 1165 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1166 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 1167 else 1168 count = bio_sectors(bio); 1169 1170 if (op_is_write(bio_op(bio))) { 1171 count_vm_events(PGPGOUT, count); 1172 } else { 1173 if (bio_flagged(bio, BIO_WORKINGSET)) 1174 workingset_read = true; 1175 task_io_account_read(bio->bi_iter.bi_size); 1176 count_vm_events(PGPGIN, count); 1177 } 1178 1179 if (unlikely(block_dump)) { 1180 char b[BDEVNAME_SIZE]; 1181 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1182 current->comm, task_pid_nr(current), 1183 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 1184 (unsigned long long)bio->bi_iter.bi_sector, 1185 bio_devname(bio, b), count); 1186 } 1187 } 1188 1189 /* 1190 * If we're reading data that is part of the userspace 1191 * workingset, count submission time as memory stall. When the 1192 * device is congested, or the submitting cgroup IO-throttled, 1193 * submission can be a significant part of overall IO time. 1194 */ 1195 if (workingset_read) 1196 psi_memstall_enter(&pflags); 1197 1198 ret = generic_make_request(bio); 1199 1200 if (workingset_read) 1201 psi_memstall_leave(&pflags); 1202 1203 return ret; 1204 } 1205 EXPORT_SYMBOL(submit_bio); 1206 1207 /** 1208 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1209 * for the new queue limits 1210 * @q: the queue 1211 * @rq: the request being checked 1212 * 1213 * Description: 1214 * @rq may have been made based on weaker limitations of upper-level queues 1215 * in request stacking drivers, and it may violate the limitation of @q. 1216 * Since the block layer and the underlying device driver trust @rq 1217 * after it is inserted to @q, it should be checked against @q before 1218 * the insertion using this generic function. 1219 * 1220 * Request stacking drivers like request-based dm may change the queue 1221 * limits when retrying requests on other queues. Those requests need 1222 * to be checked against the new queue limits again during dispatch. 1223 */ 1224 static int blk_cloned_rq_check_limits(struct request_queue *q, 1225 struct request *rq) 1226 { 1227 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 1228 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 1229 __func__, blk_rq_sectors(rq), 1230 blk_queue_get_max_sectors(q, req_op(rq))); 1231 return -EIO; 1232 } 1233 1234 /* 1235 * queue's settings related to segment counting like q->bounce_pfn 1236 * may differ from that of other stacking queues. 1237 * Recalculate it to check the request correctly on this queue's 1238 * limitation. 1239 */ 1240 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 1241 if (rq->nr_phys_segments > queue_max_segments(q)) { 1242 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 1243 __func__, rq->nr_phys_segments, queue_max_segments(q)); 1244 return -EIO; 1245 } 1246 1247 return 0; 1248 } 1249 1250 /** 1251 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1252 * @q: the queue to submit the request 1253 * @rq: the request being queued 1254 */ 1255 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1256 { 1257 if (blk_cloned_rq_check_limits(q, rq)) 1258 return BLK_STS_IOERR; 1259 1260 if (rq->rq_disk && 1261 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1262 return BLK_STS_IOERR; 1263 1264 if (blk_queue_io_stat(q)) 1265 blk_account_io_start(rq, true); 1266 1267 /* 1268 * Since we have a scheduler attached on the top device, 1269 * bypass a potential scheduler on the bottom device for 1270 * insert. 1271 */ 1272 return blk_mq_request_issue_directly(rq, true); 1273 } 1274 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1275 1276 /** 1277 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1278 * @rq: request to examine 1279 * 1280 * Description: 1281 * A request could be merge of IOs which require different failure 1282 * handling. This function determines the number of bytes which 1283 * can be failed from the beginning of the request without 1284 * crossing into area which need to be retried further. 1285 * 1286 * Return: 1287 * The number of bytes to fail. 1288 */ 1289 unsigned int blk_rq_err_bytes(const struct request *rq) 1290 { 1291 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1292 unsigned int bytes = 0; 1293 struct bio *bio; 1294 1295 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1296 return blk_rq_bytes(rq); 1297 1298 /* 1299 * Currently the only 'mixing' which can happen is between 1300 * different fastfail types. We can safely fail portions 1301 * which have all the failfast bits that the first one has - 1302 * the ones which are at least as eager to fail as the first 1303 * one. 1304 */ 1305 for (bio = rq->bio; bio; bio = bio->bi_next) { 1306 if ((bio->bi_opf & ff) != ff) 1307 break; 1308 bytes += bio->bi_iter.bi_size; 1309 } 1310 1311 /* this could lead to infinite loop */ 1312 BUG_ON(blk_rq_bytes(rq) && !bytes); 1313 return bytes; 1314 } 1315 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1316 1317 void blk_account_io_completion(struct request *req, unsigned int bytes) 1318 { 1319 if (req->part && blk_do_io_stat(req)) { 1320 const int sgrp = op_stat_group(req_op(req)); 1321 struct hd_struct *part; 1322 1323 part_stat_lock(); 1324 part = req->part; 1325 part_stat_add(part, sectors[sgrp], bytes >> 9); 1326 part_stat_unlock(); 1327 } 1328 } 1329 1330 void blk_account_io_done(struct request *req, u64 now) 1331 { 1332 /* 1333 * Account IO completion. flush_rq isn't accounted as a 1334 * normal IO on queueing nor completion. Accounting the 1335 * containing request is enough. 1336 */ 1337 if (req->part && blk_do_io_stat(req) && 1338 !(req->rq_flags & RQF_FLUSH_SEQ)) { 1339 const int sgrp = op_stat_group(req_op(req)); 1340 struct hd_struct *part; 1341 1342 part_stat_lock(); 1343 part = req->part; 1344 1345 update_io_ticks(part, jiffies, true); 1346 part_stat_inc(part, ios[sgrp]); 1347 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns); 1348 part_dec_in_flight(req->q, part, rq_data_dir(req)); 1349 1350 hd_struct_put(part); 1351 part_stat_unlock(); 1352 } 1353 } 1354 1355 void blk_account_io_start(struct request *rq, bool new_io) 1356 { 1357 struct hd_struct *part; 1358 int rw = rq_data_dir(rq); 1359 1360 if (!blk_do_io_stat(rq)) 1361 return; 1362 1363 part_stat_lock(); 1364 1365 if (!new_io) { 1366 part = rq->part; 1367 part_stat_inc(part, merges[rw]); 1368 } else { 1369 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 1370 if (!hd_struct_try_get(part)) { 1371 /* 1372 * The partition is already being removed, 1373 * the request will be accounted on the disk only 1374 * 1375 * We take a reference on disk->part0 although that 1376 * partition will never be deleted, so we can treat 1377 * it as any other partition. 1378 */ 1379 part = &rq->rq_disk->part0; 1380 hd_struct_get(part); 1381 } 1382 part_inc_in_flight(rq->q, part, rw); 1383 rq->part = part; 1384 } 1385 1386 update_io_ticks(part, jiffies, false); 1387 1388 part_stat_unlock(); 1389 } 1390 1391 /* 1392 * Steal bios from a request and add them to a bio list. 1393 * The request must not have been partially completed before. 1394 */ 1395 void blk_steal_bios(struct bio_list *list, struct request *rq) 1396 { 1397 if (rq->bio) { 1398 if (list->tail) 1399 list->tail->bi_next = rq->bio; 1400 else 1401 list->head = rq->bio; 1402 list->tail = rq->biotail; 1403 1404 rq->bio = NULL; 1405 rq->biotail = NULL; 1406 } 1407 1408 rq->__data_len = 0; 1409 } 1410 EXPORT_SYMBOL_GPL(blk_steal_bios); 1411 1412 /** 1413 * blk_update_request - Special helper function for request stacking drivers 1414 * @req: the request being processed 1415 * @error: block status code 1416 * @nr_bytes: number of bytes to complete @req 1417 * 1418 * Description: 1419 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1420 * the request structure even if @req doesn't have leftover. 1421 * If @req has leftover, sets it up for the next range of segments. 1422 * 1423 * This special helper function is only for request stacking drivers 1424 * (e.g. request-based dm) so that they can handle partial completion. 1425 * Actual device drivers should use blk_mq_end_request instead. 1426 * 1427 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1428 * %false return from this function. 1429 * 1430 * Note: 1431 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both 1432 * blk_rq_bytes() and in blk_update_request(). 1433 * 1434 * Return: 1435 * %false - this request doesn't have any more data 1436 * %true - this request has more data 1437 **/ 1438 bool blk_update_request(struct request *req, blk_status_t error, 1439 unsigned int nr_bytes) 1440 { 1441 int total_bytes; 1442 1443 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 1444 1445 if (!req->bio) 1446 return false; 1447 1448 #ifdef CONFIG_BLK_DEV_INTEGRITY 1449 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 1450 error == BLK_STS_OK) 1451 req->q->integrity.profile->complete_fn(req, nr_bytes); 1452 #endif 1453 1454 if (unlikely(error && !blk_rq_is_passthrough(req) && 1455 !(req->rq_flags & RQF_QUIET))) 1456 print_req_error(req, error, __func__); 1457 1458 blk_account_io_completion(req, nr_bytes); 1459 1460 total_bytes = 0; 1461 while (req->bio) { 1462 struct bio *bio = req->bio; 1463 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 1464 1465 if (bio_bytes == bio->bi_iter.bi_size) 1466 req->bio = bio->bi_next; 1467 1468 /* Completion has already been traced */ 1469 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1470 req_bio_endio(req, bio, bio_bytes, error); 1471 1472 total_bytes += bio_bytes; 1473 nr_bytes -= bio_bytes; 1474 1475 if (!nr_bytes) 1476 break; 1477 } 1478 1479 /* 1480 * completely done 1481 */ 1482 if (!req->bio) { 1483 /* 1484 * Reset counters so that the request stacking driver 1485 * can find how many bytes remain in the request 1486 * later. 1487 */ 1488 req->__data_len = 0; 1489 return false; 1490 } 1491 1492 req->__data_len -= total_bytes; 1493 1494 /* update sector only for requests with clear definition of sector */ 1495 if (!blk_rq_is_passthrough(req)) 1496 req->__sector += total_bytes >> 9; 1497 1498 /* mixed attributes always follow the first bio */ 1499 if (req->rq_flags & RQF_MIXED_MERGE) { 1500 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1501 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1502 } 1503 1504 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1505 /* 1506 * If total number of sectors is less than the first segment 1507 * size, something has gone terribly wrong. 1508 */ 1509 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1510 blk_dump_rq_flags(req, "request botched"); 1511 req->__data_len = blk_rq_cur_bytes(req); 1512 } 1513 1514 /* recalculate the number of segments */ 1515 req->nr_phys_segments = blk_recalc_rq_segments(req); 1516 } 1517 1518 return true; 1519 } 1520 EXPORT_SYMBOL_GPL(blk_update_request); 1521 1522 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1523 /** 1524 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1525 * @rq: the request to be flushed 1526 * 1527 * Description: 1528 * Flush all pages in @rq. 1529 */ 1530 void rq_flush_dcache_pages(struct request *rq) 1531 { 1532 struct req_iterator iter; 1533 struct bio_vec bvec; 1534 1535 rq_for_each_segment(bvec, rq, iter) 1536 flush_dcache_page(bvec.bv_page); 1537 } 1538 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1539 #endif 1540 1541 /** 1542 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1543 * @q : the queue of the device being checked 1544 * 1545 * Description: 1546 * Check if underlying low-level drivers of a device are busy. 1547 * If the drivers want to export their busy state, they must set own 1548 * exporting function using blk_queue_lld_busy() first. 1549 * 1550 * Basically, this function is used only by request stacking drivers 1551 * to stop dispatching requests to underlying devices when underlying 1552 * devices are busy. This behavior helps more I/O merging on the queue 1553 * of the request stacking driver and prevents I/O throughput regression 1554 * on burst I/O load. 1555 * 1556 * Return: 1557 * 0 - Not busy (The request stacking driver should dispatch request) 1558 * 1 - Busy (The request stacking driver should stop dispatching request) 1559 */ 1560 int blk_lld_busy(struct request_queue *q) 1561 { 1562 if (queue_is_mq(q) && q->mq_ops->busy) 1563 return q->mq_ops->busy(q); 1564 1565 return 0; 1566 } 1567 EXPORT_SYMBOL_GPL(blk_lld_busy); 1568 1569 /** 1570 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1571 * @rq: the clone request to be cleaned up 1572 * 1573 * Description: 1574 * Free all bios in @rq for a cloned request. 1575 */ 1576 void blk_rq_unprep_clone(struct request *rq) 1577 { 1578 struct bio *bio; 1579 1580 while ((bio = rq->bio) != NULL) { 1581 rq->bio = bio->bi_next; 1582 1583 bio_put(bio); 1584 } 1585 } 1586 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1587 1588 /** 1589 * blk_rq_prep_clone - Helper function to setup clone request 1590 * @rq: the request to be setup 1591 * @rq_src: original request to be cloned 1592 * @bs: bio_set that bios for clone are allocated from 1593 * @gfp_mask: memory allocation mask for bio 1594 * @bio_ctr: setup function to be called for each clone bio. 1595 * Returns %0 for success, non %0 for failure. 1596 * @data: private data to be passed to @bio_ctr 1597 * 1598 * Description: 1599 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1600 * Also, pages which the original bios are pointing to are not copied 1601 * and the cloned bios just point same pages. 1602 * So cloned bios must be completed before original bios, which means 1603 * the caller must complete @rq before @rq_src. 1604 */ 1605 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1606 struct bio_set *bs, gfp_t gfp_mask, 1607 int (*bio_ctr)(struct bio *, struct bio *, void *), 1608 void *data) 1609 { 1610 struct bio *bio, *bio_src; 1611 1612 if (!bs) 1613 bs = &fs_bio_set; 1614 1615 __rq_for_each_bio(bio_src, rq_src) { 1616 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1617 if (!bio) 1618 goto free_and_out; 1619 1620 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1621 goto free_and_out; 1622 1623 if (rq->bio) { 1624 rq->biotail->bi_next = bio; 1625 rq->biotail = bio; 1626 } else 1627 rq->bio = rq->biotail = bio; 1628 } 1629 1630 /* Copy attributes of the original request to the clone request. */ 1631 rq->__sector = blk_rq_pos(rq_src); 1632 rq->__data_len = blk_rq_bytes(rq_src); 1633 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1634 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 1635 rq->special_vec = rq_src->special_vec; 1636 } 1637 rq->nr_phys_segments = rq_src->nr_phys_segments; 1638 rq->ioprio = rq_src->ioprio; 1639 rq->extra_len = rq_src->extra_len; 1640 1641 return 0; 1642 1643 free_and_out: 1644 if (bio) 1645 bio_put(bio); 1646 blk_rq_unprep_clone(rq); 1647 1648 return -ENOMEM; 1649 } 1650 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1651 1652 int kblockd_schedule_work(struct work_struct *work) 1653 { 1654 return queue_work(kblockd_workqueue, work); 1655 } 1656 EXPORT_SYMBOL(kblockd_schedule_work); 1657 1658 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1659 unsigned long delay) 1660 { 1661 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1662 } 1663 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1664 1665 /** 1666 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1667 * @plug: The &struct blk_plug that needs to be initialized 1668 * 1669 * Description: 1670 * blk_start_plug() indicates to the block layer an intent by the caller 1671 * to submit multiple I/O requests in a batch. The block layer may use 1672 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1673 * is called. However, the block layer may choose to submit requests 1674 * before a call to blk_finish_plug() if the number of queued I/Os 1675 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1676 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1677 * the task schedules (see below). 1678 * 1679 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1680 * pending I/O should the task end up blocking between blk_start_plug() and 1681 * blk_finish_plug(). This is important from a performance perspective, but 1682 * also ensures that we don't deadlock. For instance, if the task is blocking 1683 * for a memory allocation, memory reclaim could end up wanting to free a 1684 * page belonging to that request that is currently residing in our private 1685 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1686 * this kind of deadlock. 1687 */ 1688 void blk_start_plug(struct blk_plug *plug) 1689 { 1690 struct task_struct *tsk = current; 1691 1692 /* 1693 * If this is a nested plug, don't actually assign it. 1694 */ 1695 if (tsk->plug) 1696 return; 1697 1698 INIT_LIST_HEAD(&plug->mq_list); 1699 INIT_LIST_HEAD(&plug->cb_list); 1700 plug->rq_count = 0; 1701 plug->multiple_queues = false; 1702 1703 /* 1704 * Store ordering should not be needed here, since a potential 1705 * preempt will imply a full memory barrier 1706 */ 1707 tsk->plug = plug; 1708 } 1709 EXPORT_SYMBOL(blk_start_plug); 1710 1711 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1712 { 1713 LIST_HEAD(callbacks); 1714 1715 while (!list_empty(&plug->cb_list)) { 1716 list_splice_init(&plug->cb_list, &callbacks); 1717 1718 while (!list_empty(&callbacks)) { 1719 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1720 struct blk_plug_cb, 1721 list); 1722 list_del(&cb->list); 1723 cb->callback(cb, from_schedule); 1724 } 1725 } 1726 } 1727 1728 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1729 int size) 1730 { 1731 struct blk_plug *plug = current->plug; 1732 struct blk_plug_cb *cb; 1733 1734 if (!plug) 1735 return NULL; 1736 1737 list_for_each_entry(cb, &plug->cb_list, list) 1738 if (cb->callback == unplug && cb->data == data) 1739 return cb; 1740 1741 /* Not currently on the callback list */ 1742 BUG_ON(size < sizeof(*cb)); 1743 cb = kzalloc(size, GFP_ATOMIC); 1744 if (cb) { 1745 cb->data = data; 1746 cb->callback = unplug; 1747 list_add(&cb->list, &plug->cb_list); 1748 } 1749 return cb; 1750 } 1751 EXPORT_SYMBOL(blk_check_plugged); 1752 1753 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1754 { 1755 flush_plug_callbacks(plug, from_schedule); 1756 1757 if (!list_empty(&plug->mq_list)) 1758 blk_mq_flush_plug_list(plug, from_schedule); 1759 } 1760 1761 /** 1762 * blk_finish_plug - mark the end of a batch of submitted I/O 1763 * @plug: The &struct blk_plug passed to blk_start_plug() 1764 * 1765 * Description: 1766 * Indicate that a batch of I/O submissions is complete. This function 1767 * must be paired with an initial call to blk_start_plug(). The intent 1768 * is to allow the block layer to optimize I/O submission. See the 1769 * documentation for blk_start_plug() for more information. 1770 */ 1771 void blk_finish_plug(struct blk_plug *plug) 1772 { 1773 if (plug != current->plug) 1774 return; 1775 blk_flush_plug_list(plug, false); 1776 1777 current->plug = NULL; 1778 } 1779 EXPORT_SYMBOL(blk_finish_plug); 1780 1781 int __init blk_dev_init(void) 1782 { 1783 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1784 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1785 sizeof_field(struct request, cmd_flags)); 1786 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1787 sizeof_field(struct bio, bi_opf)); 1788 1789 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1790 kblockd_workqueue = alloc_workqueue("kblockd", 1791 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1792 if (!kblockd_workqueue) 1793 panic("Failed to create kblockd\n"); 1794 1795 blk_requestq_cachep = kmem_cache_create("request_queue", 1796 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1797 1798 #ifdef CONFIG_DEBUG_FS 1799 blk_debugfs_root = debugfs_create_dir("block", NULL); 1800 #endif 1801 1802 return 0; 1803 } 1804