1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/block.h> 40 41 #include "blk.h" 42 #include "blk-mq.h" 43 #include "blk-mq-sched.h" 44 #include "blk-wbt.h" 45 46 #ifdef CONFIG_DEBUG_FS 47 struct dentry *blk_debugfs_root; 48 #endif 49 50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 55 56 DEFINE_IDA(blk_queue_ida); 57 58 /* 59 * For the allocated request tables 60 */ 61 struct kmem_cache *request_cachep; 62 63 /* 64 * For queue allocation 65 */ 66 struct kmem_cache *blk_requestq_cachep; 67 68 /* 69 * Controlling structure to kblockd 70 */ 71 static struct workqueue_struct *kblockd_workqueue; 72 73 static void blk_clear_congested(struct request_list *rl, int sync) 74 { 75 #ifdef CONFIG_CGROUP_WRITEBACK 76 clear_wb_congested(rl->blkg->wb_congested, sync); 77 #else 78 /* 79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 80 * flip its congestion state for events on other blkcgs. 81 */ 82 if (rl == &rl->q->root_rl) 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 84 #endif 85 } 86 87 static void blk_set_congested(struct request_list *rl, int sync) 88 { 89 #ifdef CONFIG_CGROUP_WRITEBACK 90 set_wb_congested(rl->blkg->wb_congested, sync); 91 #else 92 /* see blk_clear_congested() */ 93 if (rl == &rl->q->root_rl) 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 95 #endif 96 } 97 98 void blk_queue_congestion_threshold(struct request_queue *q) 99 { 100 int nr; 101 102 nr = q->nr_requests - (q->nr_requests / 8) + 1; 103 if (nr > q->nr_requests) 104 nr = q->nr_requests; 105 q->nr_congestion_on = nr; 106 107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 108 if (nr < 1) 109 nr = 1; 110 q->nr_congestion_off = nr; 111 } 112 113 void blk_rq_init(struct request_queue *q, struct request *rq) 114 { 115 memset(rq, 0, sizeof(*rq)); 116 117 INIT_LIST_HEAD(&rq->queuelist); 118 INIT_LIST_HEAD(&rq->timeout_list); 119 rq->cpu = -1; 120 rq->q = q; 121 rq->__sector = (sector_t) -1; 122 INIT_HLIST_NODE(&rq->hash); 123 RB_CLEAR_NODE(&rq->rb_node); 124 rq->tag = -1; 125 rq->internal_tag = -1; 126 rq->start_time = jiffies; 127 set_start_time_ns(rq); 128 rq->part = NULL; 129 } 130 EXPORT_SYMBOL(blk_rq_init); 131 132 static const struct { 133 int errno; 134 const char *name; 135 } blk_errors[] = { 136 [BLK_STS_OK] = { 0, "" }, 137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 147 148 /* device mapper special case, should not leak out: */ 149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 150 151 /* everything else not covered above: */ 152 [BLK_STS_IOERR] = { -EIO, "I/O" }, 153 }; 154 155 blk_status_t errno_to_blk_status(int errno) 156 { 157 int i; 158 159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 160 if (blk_errors[i].errno == errno) 161 return (__force blk_status_t)i; 162 } 163 164 return BLK_STS_IOERR; 165 } 166 EXPORT_SYMBOL_GPL(errno_to_blk_status); 167 168 int blk_status_to_errno(blk_status_t status) 169 { 170 int idx = (__force int)status; 171 172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 173 return -EIO; 174 return blk_errors[idx].errno; 175 } 176 EXPORT_SYMBOL_GPL(blk_status_to_errno); 177 178 static void print_req_error(struct request *req, blk_status_t status) 179 { 180 int idx = (__force int)status; 181 182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 183 return; 184 185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 186 __func__, blk_errors[idx].name, req->rq_disk ? 187 req->rq_disk->disk_name : "?", 188 (unsigned long long)blk_rq_pos(req)); 189 } 190 191 static void req_bio_endio(struct request *rq, struct bio *bio, 192 unsigned int nbytes, blk_status_t error) 193 { 194 if (error) 195 bio->bi_status = error; 196 197 if (unlikely(rq->rq_flags & RQF_QUIET)) 198 bio_set_flag(bio, BIO_QUIET); 199 200 bio_advance(bio, nbytes); 201 202 /* don't actually finish bio if it's part of flush sequence */ 203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 204 bio_endio(bio); 205 } 206 207 void blk_dump_rq_flags(struct request *rq, char *msg) 208 { 209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 210 rq->rq_disk ? rq->rq_disk->disk_name : "?", 211 (unsigned long long) rq->cmd_flags); 212 213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 214 (unsigned long long)blk_rq_pos(rq), 215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 216 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 217 rq->bio, rq->biotail, blk_rq_bytes(rq)); 218 } 219 EXPORT_SYMBOL(blk_dump_rq_flags); 220 221 static void blk_delay_work(struct work_struct *work) 222 { 223 struct request_queue *q; 224 225 q = container_of(work, struct request_queue, delay_work.work); 226 spin_lock_irq(q->queue_lock); 227 __blk_run_queue(q); 228 spin_unlock_irq(q->queue_lock); 229 } 230 231 /** 232 * blk_delay_queue - restart queueing after defined interval 233 * @q: The &struct request_queue in question 234 * @msecs: Delay in msecs 235 * 236 * Description: 237 * Sometimes queueing needs to be postponed for a little while, to allow 238 * resources to come back. This function will make sure that queueing is 239 * restarted around the specified time. 240 */ 241 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 242 { 243 lockdep_assert_held(q->queue_lock); 244 WARN_ON_ONCE(q->mq_ops); 245 246 if (likely(!blk_queue_dead(q))) 247 queue_delayed_work(kblockd_workqueue, &q->delay_work, 248 msecs_to_jiffies(msecs)); 249 } 250 EXPORT_SYMBOL(blk_delay_queue); 251 252 /** 253 * blk_start_queue_async - asynchronously restart a previously stopped queue 254 * @q: The &struct request_queue in question 255 * 256 * Description: 257 * blk_start_queue_async() will clear the stop flag on the queue, and 258 * ensure that the request_fn for the queue is run from an async 259 * context. 260 **/ 261 void blk_start_queue_async(struct request_queue *q) 262 { 263 lockdep_assert_held(q->queue_lock); 264 WARN_ON_ONCE(q->mq_ops); 265 266 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 267 blk_run_queue_async(q); 268 } 269 EXPORT_SYMBOL(blk_start_queue_async); 270 271 /** 272 * blk_start_queue - restart a previously stopped queue 273 * @q: The &struct request_queue in question 274 * 275 * Description: 276 * blk_start_queue() will clear the stop flag on the queue, and call 277 * the request_fn for the queue if it was in a stopped state when 278 * entered. Also see blk_stop_queue(). 279 **/ 280 void blk_start_queue(struct request_queue *q) 281 { 282 lockdep_assert_held(q->queue_lock); 283 WARN_ON(!in_interrupt() && !irqs_disabled()); 284 WARN_ON_ONCE(q->mq_ops); 285 286 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 287 __blk_run_queue(q); 288 } 289 EXPORT_SYMBOL(blk_start_queue); 290 291 /** 292 * blk_stop_queue - stop a queue 293 * @q: The &struct request_queue in question 294 * 295 * Description: 296 * The Linux block layer assumes that a block driver will consume all 297 * entries on the request queue when the request_fn strategy is called. 298 * Often this will not happen, because of hardware limitations (queue 299 * depth settings). If a device driver gets a 'queue full' response, 300 * or if it simply chooses not to queue more I/O at one point, it can 301 * call this function to prevent the request_fn from being called until 302 * the driver has signalled it's ready to go again. This happens by calling 303 * blk_start_queue() to restart queue operations. 304 **/ 305 void blk_stop_queue(struct request_queue *q) 306 { 307 lockdep_assert_held(q->queue_lock); 308 WARN_ON_ONCE(q->mq_ops); 309 310 cancel_delayed_work(&q->delay_work); 311 queue_flag_set(QUEUE_FLAG_STOPPED, q); 312 } 313 EXPORT_SYMBOL(blk_stop_queue); 314 315 /** 316 * blk_sync_queue - cancel any pending callbacks on a queue 317 * @q: the queue 318 * 319 * Description: 320 * The block layer may perform asynchronous callback activity 321 * on a queue, such as calling the unplug function after a timeout. 322 * A block device may call blk_sync_queue to ensure that any 323 * such activity is cancelled, thus allowing it to release resources 324 * that the callbacks might use. The caller must already have made sure 325 * that its ->make_request_fn will not re-add plugging prior to calling 326 * this function. 327 * 328 * This function does not cancel any asynchronous activity arising 329 * out of elevator or throttling code. That would require elevator_exit() 330 * and blkcg_exit_queue() to be called with queue lock initialized. 331 * 332 */ 333 void blk_sync_queue(struct request_queue *q) 334 { 335 del_timer_sync(&q->timeout); 336 337 if (q->mq_ops) { 338 struct blk_mq_hw_ctx *hctx; 339 int i; 340 341 queue_for_each_hw_ctx(q, hctx, i) 342 cancel_delayed_work_sync(&hctx->run_work); 343 } else { 344 cancel_delayed_work_sync(&q->delay_work); 345 } 346 } 347 EXPORT_SYMBOL(blk_sync_queue); 348 349 /** 350 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 351 * @q: The queue to run 352 * 353 * Description: 354 * Invoke request handling on a queue if there are any pending requests. 355 * May be used to restart request handling after a request has completed. 356 * This variant runs the queue whether or not the queue has been 357 * stopped. Must be called with the queue lock held and interrupts 358 * disabled. See also @blk_run_queue. 359 */ 360 inline void __blk_run_queue_uncond(struct request_queue *q) 361 { 362 lockdep_assert_held(q->queue_lock); 363 WARN_ON_ONCE(q->mq_ops); 364 365 if (unlikely(blk_queue_dead(q))) 366 return; 367 368 /* 369 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 370 * the queue lock internally. As a result multiple threads may be 371 * running such a request function concurrently. Keep track of the 372 * number of active request_fn invocations such that blk_drain_queue() 373 * can wait until all these request_fn calls have finished. 374 */ 375 q->request_fn_active++; 376 q->request_fn(q); 377 q->request_fn_active--; 378 } 379 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 380 381 /** 382 * __blk_run_queue - run a single device queue 383 * @q: The queue to run 384 * 385 * Description: 386 * See @blk_run_queue. 387 */ 388 void __blk_run_queue(struct request_queue *q) 389 { 390 lockdep_assert_held(q->queue_lock); 391 WARN_ON_ONCE(q->mq_ops); 392 393 if (unlikely(blk_queue_stopped(q))) 394 return; 395 396 __blk_run_queue_uncond(q); 397 } 398 EXPORT_SYMBOL(__blk_run_queue); 399 400 /** 401 * blk_run_queue_async - run a single device queue in workqueue context 402 * @q: The queue to run 403 * 404 * Description: 405 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 406 * of us. 407 * 408 * Note: 409 * Since it is not allowed to run q->delay_work after blk_cleanup_queue() 410 * has canceled q->delay_work, callers must hold the queue lock to avoid 411 * race conditions between blk_cleanup_queue() and blk_run_queue_async(). 412 */ 413 void blk_run_queue_async(struct request_queue *q) 414 { 415 lockdep_assert_held(q->queue_lock); 416 WARN_ON_ONCE(q->mq_ops); 417 418 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 419 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 420 } 421 EXPORT_SYMBOL(blk_run_queue_async); 422 423 /** 424 * blk_run_queue - run a single device queue 425 * @q: The queue to run 426 * 427 * Description: 428 * Invoke request handling on this queue, if it has pending work to do. 429 * May be used to restart queueing when a request has completed. 430 */ 431 void blk_run_queue(struct request_queue *q) 432 { 433 unsigned long flags; 434 435 WARN_ON_ONCE(q->mq_ops); 436 437 spin_lock_irqsave(q->queue_lock, flags); 438 __blk_run_queue(q); 439 spin_unlock_irqrestore(q->queue_lock, flags); 440 } 441 EXPORT_SYMBOL(blk_run_queue); 442 443 void blk_put_queue(struct request_queue *q) 444 { 445 kobject_put(&q->kobj); 446 } 447 EXPORT_SYMBOL(blk_put_queue); 448 449 /** 450 * __blk_drain_queue - drain requests from request_queue 451 * @q: queue to drain 452 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 453 * 454 * Drain requests from @q. If @drain_all is set, all requests are drained. 455 * If not, only ELVPRIV requests are drained. The caller is responsible 456 * for ensuring that no new requests which need to be drained are queued. 457 */ 458 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 459 __releases(q->queue_lock) 460 __acquires(q->queue_lock) 461 { 462 int i; 463 464 lockdep_assert_held(q->queue_lock); 465 WARN_ON_ONCE(q->mq_ops); 466 467 while (true) { 468 bool drain = false; 469 470 /* 471 * The caller might be trying to drain @q before its 472 * elevator is initialized. 473 */ 474 if (q->elevator) 475 elv_drain_elevator(q); 476 477 blkcg_drain_queue(q); 478 479 /* 480 * This function might be called on a queue which failed 481 * driver init after queue creation or is not yet fully 482 * active yet. Some drivers (e.g. fd and loop) get unhappy 483 * in such cases. Kick queue iff dispatch queue has 484 * something on it and @q has request_fn set. 485 */ 486 if (!list_empty(&q->queue_head) && q->request_fn) 487 __blk_run_queue(q); 488 489 drain |= q->nr_rqs_elvpriv; 490 drain |= q->request_fn_active; 491 492 /* 493 * Unfortunately, requests are queued at and tracked from 494 * multiple places and there's no single counter which can 495 * be drained. Check all the queues and counters. 496 */ 497 if (drain_all) { 498 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 499 drain |= !list_empty(&q->queue_head); 500 for (i = 0; i < 2; i++) { 501 drain |= q->nr_rqs[i]; 502 drain |= q->in_flight[i]; 503 if (fq) 504 drain |= !list_empty(&fq->flush_queue[i]); 505 } 506 } 507 508 if (!drain) 509 break; 510 511 spin_unlock_irq(q->queue_lock); 512 513 msleep(10); 514 515 spin_lock_irq(q->queue_lock); 516 } 517 518 /* 519 * With queue marked dead, any woken up waiter will fail the 520 * allocation path, so the wakeup chaining is lost and we're 521 * left with hung waiters. We need to wake up those waiters. 522 */ 523 if (q->request_fn) { 524 struct request_list *rl; 525 526 blk_queue_for_each_rl(rl, q) 527 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 528 wake_up_all(&rl->wait[i]); 529 } 530 } 531 532 /** 533 * blk_queue_bypass_start - enter queue bypass mode 534 * @q: queue of interest 535 * 536 * In bypass mode, only the dispatch FIFO queue of @q is used. This 537 * function makes @q enter bypass mode and drains all requests which were 538 * throttled or issued before. On return, it's guaranteed that no request 539 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 540 * inside queue or RCU read lock. 541 */ 542 void blk_queue_bypass_start(struct request_queue *q) 543 { 544 WARN_ON_ONCE(q->mq_ops); 545 546 spin_lock_irq(q->queue_lock); 547 q->bypass_depth++; 548 queue_flag_set(QUEUE_FLAG_BYPASS, q); 549 spin_unlock_irq(q->queue_lock); 550 551 /* 552 * Queues start drained. Skip actual draining till init is 553 * complete. This avoids lenghty delays during queue init which 554 * can happen many times during boot. 555 */ 556 if (blk_queue_init_done(q)) { 557 spin_lock_irq(q->queue_lock); 558 __blk_drain_queue(q, false); 559 spin_unlock_irq(q->queue_lock); 560 561 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 562 synchronize_rcu(); 563 } 564 } 565 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 566 567 /** 568 * blk_queue_bypass_end - leave queue bypass mode 569 * @q: queue of interest 570 * 571 * Leave bypass mode and restore the normal queueing behavior. 572 * 573 * Note: although blk_queue_bypass_start() is only called for blk-sq queues, 574 * this function is called for both blk-sq and blk-mq queues. 575 */ 576 void blk_queue_bypass_end(struct request_queue *q) 577 { 578 spin_lock_irq(q->queue_lock); 579 if (!--q->bypass_depth) 580 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 581 WARN_ON_ONCE(q->bypass_depth < 0); 582 spin_unlock_irq(q->queue_lock); 583 } 584 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 585 586 void blk_set_queue_dying(struct request_queue *q) 587 { 588 spin_lock_irq(q->queue_lock); 589 queue_flag_set(QUEUE_FLAG_DYING, q); 590 spin_unlock_irq(q->queue_lock); 591 592 /* 593 * When queue DYING flag is set, we need to block new req 594 * entering queue, so we call blk_freeze_queue_start() to 595 * prevent I/O from crossing blk_queue_enter(). 596 */ 597 blk_freeze_queue_start(q); 598 599 if (q->mq_ops) 600 blk_mq_wake_waiters(q); 601 else { 602 struct request_list *rl; 603 604 spin_lock_irq(q->queue_lock); 605 blk_queue_for_each_rl(rl, q) { 606 if (rl->rq_pool) { 607 wake_up(&rl->wait[BLK_RW_SYNC]); 608 wake_up(&rl->wait[BLK_RW_ASYNC]); 609 } 610 } 611 spin_unlock_irq(q->queue_lock); 612 } 613 } 614 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 615 616 /** 617 * blk_cleanup_queue - shutdown a request queue 618 * @q: request queue to shutdown 619 * 620 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 621 * put it. All future requests will be failed immediately with -ENODEV. 622 */ 623 void blk_cleanup_queue(struct request_queue *q) 624 { 625 spinlock_t *lock = q->queue_lock; 626 627 /* mark @q DYING, no new request or merges will be allowed afterwards */ 628 mutex_lock(&q->sysfs_lock); 629 blk_set_queue_dying(q); 630 spin_lock_irq(lock); 631 632 /* 633 * A dying queue is permanently in bypass mode till released. Note 634 * that, unlike blk_queue_bypass_start(), we aren't performing 635 * synchronize_rcu() after entering bypass mode to avoid the delay 636 * as some drivers create and destroy a lot of queues while 637 * probing. This is still safe because blk_release_queue() will be 638 * called only after the queue refcnt drops to zero and nothing, 639 * RCU or not, would be traversing the queue by then. 640 */ 641 q->bypass_depth++; 642 queue_flag_set(QUEUE_FLAG_BYPASS, q); 643 644 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 645 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 646 queue_flag_set(QUEUE_FLAG_DYING, q); 647 spin_unlock_irq(lock); 648 mutex_unlock(&q->sysfs_lock); 649 650 /* 651 * Drain all requests queued before DYING marking. Set DEAD flag to 652 * prevent that q->request_fn() gets invoked after draining finished. 653 */ 654 blk_freeze_queue(q); 655 spin_lock_irq(lock); 656 if (!q->mq_ops) 657 __blk_drain_queue(q, true); 658 queue_flag_set(QUEUE_FLAG_DEAD, q); 659 spin_unlock_irq(lock); 660 661 /* for synchronous bio-based driver finish in-flight integrity i/o */ 662 blk_flush_integrity(); 663 664 /* @q won't process any more request, flush async actions */ 665 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 666 blk_sync_queue(q); 667 668 if (q->mq_ops) 669 blk_mq_free_queue(q); 670 percpu_ref_exit(&q->q_usage_counter); 671 672 spin_lock_irq(lock); 673 if (q->queue_lock != &q->__queue_lock) 674 q->queue_lock = &q->__queue_lock; 675 spin_unlock_irq(lock); 676 677 /* @q is and will stay empty, shutdown and put */ 678 blk_put_queue(q); 679 } 680 EXPORT_SYMBOL(blk_cleanup_queue); 681 682 /* Allocate memory local to the request queue */ 683 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 684 { 685 struct request_queue *q = data; 686 687 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 688 } 689 690 static void free_request_simple(void *element, void *data) 691 { 692 kmem_cache_free(request_cachep, element); 693 } 694 695 static void *alloc_request_size(gfp_t gfp_mask, void *data) 696 { 697 struct request_queue *q = data; 698 struct request *rq; 699 700 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 701 q->node); 702 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 703 kfree(rq); 704 rq = NULL; 705 } 706 return rq; 707 } 708 709 static void free_request_size(void *element, void *data) 710 { 711 struct request_queue *q = data; 712 713 if (q->exit_rq_fn) 714 q->exit_rq_fn(q, element); 715 kfree(element); 716 } 717 718 int blk_init_rl(struct request_list *rl, struct request_queue *q, 719 gfp_t gfp_mask) 720 { 721 if (unlikely(rl->rq_pool)) 722 return 0; 723 724 rl->q = q; 725 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 726 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 727 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 728 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 729 730 if (q->cmd_size) { 731 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 732 alloc_request_size, free_request_size, 733 q, gfp_mask, q->node); 734 } else { 735 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 736 alloc_request_simple, free_request_simple, 737 q, gfp_mask, q->node); 738 } 739 if (!rl->rq_pool) 740 return -ENOMEM; 741 742 if (rl != &q->root_rl) 743 WARN_ON_ONCE(!blk_get_queue(q)); 744 745 return 0; 746 } 747 748 void blk_exit_rl(struct request_queue *q, struct request_list *rl) 749 { 750 if (rl->rq_pool) { 751 mempool_destroy(rl->rq_pool); 752 if (rl != &q->root_rl) 753 blk_put_queue(q); 754 } 755 } 756 757 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 758 { 759 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 760 } 761 EXPORT_SYMBOL(blk_alloc_queue); 762 763 int blk_queue_enter(struct request_queue *q, bool nowait) 764 { 765 while (true) { 766 int ret; 767 768 if (percpu_ref_tryget_live(&q->q_usage_counter)) 769 return 0; 770 771 if (nowait) 772 return -EBUSY; 773 774 /* 775 * read pair of barrier in blk_freeze_queue_start(), 776 * we need to order reading __PERCPU_REF_DEAD flag of 777 * .q_usage_counter and reading .mq_freeze_depth or 778 * queue dying flag, otherwise the following wait may 779 * never return if the two reads are reordered. 780 */ 781 smp_rmb(); 782 783 ret = wait_event_interruptible(q->mq_freeze_wq, 784 !atomic_read(&q->mq_freeze_depth) || 785 blk_queue_dying(q)); 786 if (blk_queue_dying(q)) 787 return -ENODEV; 788 if (ret) 789 return ret; 790 } 791 } 792 793 void blk_queue_exit(struct request_queue *q) 794 { 795 percpu_ref_put(&q->q_usage_counter); 796 } 797 798 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 799 { 800 struct request_queue *q = 801 container_of(ref, struct request_queue, q_usage_counter); 802 803 wake_up_all(&q->mq_freeze_wq); 804 } 805 806 static void blk_rq_timed_out_timer(unsigned long data) 807 { 808 struct request_queue *q = (struct request_queue *)data; 809 810 kblockd_schedule_work(&q->timeout_work); 811 } 812 813 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 814 { 815 struct request_queue *q; 816 817 q = kmem_cache_alloc_node(blk_requestq_cachep, 818 gfp_mask | __GFP_ZERO, node_id); 819 if (!q) 820 return NULL; 821 822 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 823 if (q->id < 0) 824 goto fail_q; 825 826 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 827 if (!q->bio_split) 828 goto fail_id; 829 830 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 831 if (!q->backing_dev_info) 832 goto fail_split; 833 834 q->stats = blk_alloc_queue_stats(); 835 if (!q->stats) 836 goto fail_stats; 837 838 q->backing_dev_info->ra_pages = 839 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 840 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 841 q->backing_dev_info->name = "block"; 842 q->node = node_id; 843 844 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer, 845 laptop_mode_timer_fn, (unsigned long) q); 846 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 847 INIT_LIST_HEAD(&q->queue_head); 848 INIT_LIST_HEAD(&q->timeout_list); 849 INIT_LIST_HEAD(&q->icq_list); 850 #ifdef CONFIG_BLK_CGROUP 851 INIT_LIST_HEAD(&q->blkg_list); 852 #endif 853 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 854 855 kobject_init(&q->kobj, &blk_queue_ktype); 856 857 mutex_init(&q->sysfs_lock); 858 spin_lock_init(&q->__queue_lock); 859 860 /* 861 * By default initialize queue_lock to internal lock and driver can 862 * override it later if need be. 863 */ 864 q->queue_lock = &q->__queue_lock; 865 866 /* 867 * A queue starts its life with bypass turned on to avoid 868 * unnecessary bypass on/off overhead and nasty surprises during 869 * init. The initial bypass will be finished when the queue is 870 * registered by blk_register_queue(). 871 */ 872 q->bypass_depth = 1; 873 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 874 875 init_waitqueue_head(&q->mq_freeze_wq); 876 877 /* 878 * Init percpu_ref in atomic mode so that it's faster to shutdown. 879 * See blk_register_queue() for details. 880 */ 881 if (percpu_ref_init(&q->q_usage_counter, 882 blk_queue_usage_counter_release, 883 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 884 goto fail_bdi; 885 886 if (blkcg_init_queue(q)) 887 goto fail_ref; 888 889 return q; 890 891 fail_ref: 892 percpu_ref_exit(&q->q_usage_counter); 893 fail_bdi: 894 blk_free_queue_stats(q->stats); 895 fail_stats: 896 bdi_put(q->backing_dev_info); 897 fail_split: 898 bioset_free(q->bio_split); 899 fail_id: 900 ida_simple_remove(&blk_queue_ida, q->id); 901 fail_q: 902 kmem_cache_free(blk_requestq_cachep, q); 903 return NULL; 904 } 905 EXPORT_SYMBOL(blk_alloc_queue_node); 906 907 /** 908 * blk_init_queue - prepare a request queue for use with a block device 909 * @rfn: The function to be called to process requests that have been 910 * placed on the queue. 911 * @lock: Request queue spin lock 912 * 913 * Description: 914 * If a block device wishes to use the standard request handling procedures, 915 * which sorts requests and coalesces adjacent requests, then it must 916 * call blk_init_queue(). The function @rfn will be called when there 917 * are requests on the queue that need to be processed. If the device 918 * supports plugging, then @rfn may not be called immediately when requests 919 * are available on the queue, but may be called at some time later instead. 920 * Plugged queues are generally unplugged when a buffer belonging to one 921 * of the requests on the queue is needed, or due to memory pressure. 922 * 923 * @rfn is not required, or even expected, to remove all requests off the 924 * queue, but only as many as it can handle at a time. If it does leave 925 * requests on the queue, it is responsible for arranging that the requests 926 * get dealt with eventually. 927 * 928 * The queue spin lock must be held while manipulating the requests on the 929 * request queue; this lock will be taken also from interrupt context, so irq 930 * disabling is needed for it. 931 * 932 * Function returns a pointer to the initialized request queue, or %NULL if 933 * it didn't succeed. 934 * 935 * Note: 936 * blk_init_queue() must be paired with a blk_cleanup_queue() call 937 * when the block device is deactivated (such as at module unload). 938 **/ 939 940 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 941 { 942 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 943 } 944 EXPORT_SYMBOL(blk_init_queue); 945 946 struct request_queue * 947 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 948 { 949 struct request_queue *q; 950 951 q = blk_alloc_queue_node(GFP_KERNEL, node_id); 952 if (!q) 953 return NULL; 954 955 q->request_fn = rfn; 956 if (lock) 957 q->queue_lock = lock; 958 if (blk_init_allocated_queue(q) < 0) { 959 blk_cleanup_queue(q); 960 return NULL; 961 } 962 963 return q; 964 } 965 EXPORT_SYMBOL(blk_init_queue_node); 966 967 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 968 969 970 int blk_init_allocated_queue(struct request_queue *q) 971 { 972 WARN_ON_ONCE(q->mq_ops); 973 974 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); 975 if (!q->fq) 976 return -ENOMEM; 977 978 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 979 goto out_free_flush_queue; 980 981 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 982 goto out_exit_flush_rq; 983 984 INIT_WORK(&q->timeout_work, blk_timeout_work); 985 q->queue_flags |= QUEUE_FLAG_DEFAULT; 986 987 /* 988 * This also sets hw/phys segments, boundary and size 989 */ 990 blk_queue_make_request(q, blk_queue_bio); 991 992 q->sg_reserved_size = INT_MAX; 993 994 /* Protect q->elevator from elevator_change */ 995 mutex_lock(&q->sysfs_lock); 996 997 /* init elevator */ 998 if (elevator_init(q, NULL)) { 999 mutex_unlock(&q->sysfs_lock); 1000 goto out_exit_flush_rq; 1001 } 1002 1003 mutex_unlock(&q->sysfs_lock); 1004 return 0; 1005 1006 out_exit_flush_rq: 1007 if (q->exit_rq_fn) 1008 q->exit_rq_fn(q, q->fq->flush_rq); 1009 out_free_flush_queue: 1010 blk_free_flush_queue(q->fq); 1011 return -ENOMEM; 1012 } 1013 EXPORT_SYMBOL(blk_init_allocated_queue); 1014 1015 bool blk_get_queue(struct request_queue *q) 1016 { 1017 if (likely(!blk_queue_dying(q))) { 1018 __blk_get_queue(q); 1019 return true; 1020 } 1021 1022 return false; 1023 } 1024 EXPORT_SYMBOL(blk_get_queue); 1025 1026 static inline void blk_free_request(struct request_list *rl, struct request *rq) 1027 { 1028 if (rq->rq_flags & RQF_ELVPRIV) { 1029 elv_put_request(rl->q, rq); 1030 if (rq->elv.icq) 1031 put_io_context(rq->elv.icq->ioc); 1032 } 1033 1034 mempool_free(rq, rl->rq_pool); 1035 } 1036 1037 /* 1038 * ioc_batching returns true if the ioc is a valid batching request and 1039 * should be given priority access to a request. 1040 */ 1041 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 1042 { 1043 if (!ioc) 1044 return 0; 1045 1046 /* 1047 * Make sure the process is able to allocate at least 1 request 1048 * even if the batch times out, otherwise we could theoretically 1049 * lose wakeups. 1050 */ 1051 return ioc->nr_batch_requests == q->nr_batching || 1052 (ioc->nr_batch_requests > 0 1053 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 1054 } 1055 1056 /* 1057 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 1058 * will cause the process to be a "batcher" on all queues in the system. This 1059 * is the behaviour we want though - once it gets a wakeup it should be given 1060 * a nice run. 1061 */ 1062 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 1063 { 1064 if (!ioc || ioc_batching(q, ioc)) 1065 return; 1066 1067 ioc->nr_batch_requests = q->nr_batching; 1068 ioc->last_waited = jiffies; 1069 } 1070 1071 static void __freed_request(struct request_list *rl, int sync) 1072 { 1073 struct request_queue *q = rl->q; 1074 1075 if (rl->count[sync] < queue_congestion_off_threshold(q)) 1076 blk_clear_congested(rl, sync); 1077 1078 if (rl->count[sync] + 1 <= q->nr_requests) { 1079 if (waitqueue_active(&rl->wait[sync])) 1080 wake_up(&rl->wait[sync]); 1081 1082 blk_clear_rl_full(rl, sync); 1083 } 1084 } 1085 1086 /* 1087 * A request has just been released. Account for it, update the full and 1088 * congestion status, wake up any waiters. Called under q->queue_lock. 1089 */ 1090 static void freed_request(struct request_list *rl, bool sync, 1091 req_flags_t rq_flags) 1092 { 1093 struct request_queue *q = rl->q; 1094 1095 q->nr_rqs[sync]--; 1096 rl->count[sync]--; 1097 if (rq_flags & RQF_ELVPRIV) 1098 q->nr_rqs_elvpriv--; 1099 1100 __freed_request(rl, sync); 1101 1102 if (unlikely(rl->starved[sync ^ 1])) 1103 __freed_request(rl, sync ^ 1); 1104 } 1105 1106 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 1107 { 1108 struct request_list *rl; 1109 int on_thresh, off_thresh; 1110 1111 WARN_ON_ONCE(q->mq_ops); 1112 1113 spin_lock_irq(q->queue_lock); 1114 q->nr_requests = nr; 1115 blk_queue_congestion_threshold(q); 1116 on_thresh = queue_congestion_on_threshold(q); 1117 off_thresh = queue_congestion_off_threshold(q); 1118 1119 blk_queue_for_each_rl(rl, q) { 1120 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1121 blk_set_congested(rl, BLK_RW_SYNC); 1122 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1123 blk_clear_congested(rl, BLK_RW_SYNC); 1124 1125 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1126 blk_set_congested(rl, BLK_RW_ASYNC); 1127 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1128 blk_clear_congested(rl, BLK_RW_ASYNC); 1129 1130 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1131 blk_set_rl_full(rl, BLK_RW_SYNC); 1132 } else { 1133 blk_clear_rl_full(rl, BLK_RW_SYNC); 1134 wake_up(&rl->wait[BLK_RW_SYNC]); 1135 } 1136 1137 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1138 blk_set_rl_full(rl, BLK_RW_ASYNC); 1139 } else { 1140 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1141 wake_up(&rl->wait[BLK_RW_ASYNC]); 1142 } 1143 } 1144 1145 spin_unlock_irq(q->queue_lock); 1146 return 0; 1147 } 1148 1149 /** 1150 * __get_request - get a free request 1151 * @rl: request list to allocate from 1152 * @op: operation and flags 1153 * @bio: bio to allocate request for (can be %NULL) 1154 * @gfp_mask: allocation mask 1155 * 1156 * Get a free request from @q. This function may fail under memory 1157 * pressure or if @q is dead. 1158 * 1159 * Must be called with @q->queue_lock held and, 1160 * Returns ERR_PTR on failure, with @q->queue_lock held. 1161 * Returns request pointer on success, with @q->queue_lock *not held*. 1162 */ 1163 static struct request *__get_request(struct request_list *rl, unsigned int op, 1164 struct bio *bio, gfp_t gfp_mask) 1165 { 1166 struct request_queue *q = rl->q; 1167 struct request *rq; 1168 struct elevator_type *et = q->elevator->type; 1169 struct io_context *ioc = rq_ioc(bio); 1170 struct io_cq *icq = NULL; 1171 const bool is_sync = op_is_sync(op); 1172 int may_queue; 1173 req_flags_t rq_flags = RQF_ALLOCED; 1174 1175 lockdep_assert_held(q->queue_lock); 1176 1177 if (unlikely(blk_queue_dying(q))) 1178 return ERR_PTR(-ENODEV); 1179 1180 may_queue = elv_may_queue(q, op); 1181 if (may_queue == ELV_MQUEUE_NO) 1182 goto rq_starved; 1183 1184 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1185 if (rl->count[is_sync]+1 >= q->nr_requests) { 1186 /* 1187 * The queue will fill after this allocation, so set 1188 * it as full, and mark this process as "batching". 1189 * This process will be allowed to complete a batch of 1190 * requests, others will be blocked. 1191 */ 1192 if (!blk_rl_full(rl, is_sync)) { 1193 ioc_set_batching(q, ioc); 1194 blk_set_rl_full(rl, is_sync); 1195 } else { 1196 if (may_queue != ELV_MQUEUE_MUST 1197 && !ioc_batching(q, ioc)) { 1198 /* 1199 * The queue is full and the allocating 1200 * process is not a "batcher", and not 1201 * exempted by the IO scheduler 1202 */ 1203 return ERR_PTR(-ENOMEM); 1204 } 1205 } 1206 } 1207 blk_set_congested(rl, is_sync); 1208 } 1209 1210 /* 1211 * Only allow batching queuers to allocate up to 50% over the defined 1212 * limit of requests, otherwise we could have thousands of requests 1213 * allocated with any setting of ->nr_requests 1214 */ 1215 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1216 return ERR_PTR(-ENOMEM); 1217 1218 q->nr_rqs[is_sync]++; 1219 rl->count[is_sync]++; 1220 rl->starved[is_sync] = 0; 1221 1222 /* 1223 * Decide whether the new request will be managed by elevator. If 1224 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1225 * prevent the current elevator from being destroyed until the new 1226 * request is freed. This guarantees icq's won't be destroyed and 1227 * makes creating new ones safe. 1228 * 1229 * Flush requests do not use the elevator so skip initialization. 1230 * This allows a request to share the flush and elevator data. 1231 * 1232 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1233 * it will be created after releasing queue_lock. 1234 */ 1235 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1236 rq_flags |= RQF_ELVPRIV; 1237 q->nr_rqs_elvpriv++; 1238 if (et->icq_cache && ioc) 1239 icq = ioc_lookup_icq(ioc, q); 1240 } 1241 1242 if (blk_queue_io_stat(q)) 1243 rq_flags |= RQF_IO_STAT; 1244 spin_unlock_irq(q->queue_lock); 1245 1246 /* allocate and init request */ 1247 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1248 if (!rq) 1249 goto fail_alloc; 1250 1251 blk_rq_init(q, rq); 1252 blk_rq_set_rl(rq, rl); 1253 rq->cmd_flags = op; 1254 rq->rq_flags = rq_flags; 1255 1256 /* init elvpriv */ 1257 if (rq_flags & RQF_ELVPRIV) { 1258 if (unlikely(et->icq_cache && !icq)) { 1259 if (ioc) 1260 icq = ioc_create_icq(ioc, q, gfp_mask); 1261 if (!icq) 1262 goto fail_elvpriv; 1263 } 1264 1265 rq->elv.icq = icq; 1266 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1267 goto fail_elvpriv; 1268 1269 /* @rq->elv.icq holds io_context until @rq is freed */ 1270 if (icq) 1271 get_io_context(icq->ioc); 1272 } 1273 out: 1274 /* 1275 * ioc may be NULL here, and ioc_batching will be false. That's 1276 * OK, if the queue is under the request limit then requests need 1277 * not count toward the nr_batch_requests limit. There will always 1278 * be some limit enforced by BLK_BATCH_TIME. 1279 */ 1280 if (ioc_batching(q, ioc)) 1281 ioc->nr_batch_requests--; 1282 1283 trace_block_getrq(q, bio, op); 1284 return rq; 1285 1286 fail_elvpriv: 1287 /* 1288 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1289 * and may fail indefinitely under memory pressure and thus 1290 * shouldn't stall IO. Treat this request as !elvpriv. This will 1291 * disturb iosched and blkcg but weird is bettern than dead. 1292 */ 1293 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1294 __func__, dev_name(q->backing_dev_info->dev)); 1295 1296 rq->rq_flags &= ~RQF_ELVPRIV; 1297 rq->elv.icq = NULL; 1298 1299 spin_lock_irq(q->queue_lock); 1300 q->nr_rqs_elvpriv--; 1301 spin_unlock_irq(q->queue_lock); 1302 goto out; 1303 1304 fail_alloc: 1305 /* 1306 * Allocation failed presumably due to memory. Undo anything we 1307 * might have messed up. 1308 * 1309 * Allocating task should really be put onto the front of the wait 1310 * queue, but this is pretty rare. 1311 */ 1312 spin_lock_irq(q->queue_lock); 1313 freed_request(rl, is_sync, rq_flags); 1314 1315 /* 1316 * in the very unlikely event that allocation failed and no 1317 * requests for this direction was pending, mark us starved so that 1318 * freeing of a request in the other direction will notice 1319 * us. another possible fix would be to split the rq mempool into 1320 * READ and WRITE 1321 */ 1322 rq_starved: 1323 if (unlikely(rl->count[is_sync] == 0)) 1324 rl->starved[is_sync] = 1; 1325 return ERR_PTR(-ENOMEM); 1326 } 1327 1328 /** 1329 * get_request - get a free request 1330 * @q: request_queue to allocate request from 1331 * @op: operation and flags 1332 * @bio: bio to allocate request for (can be %NULL) 1333 * @gfp_mask: allocation mask 1334 * 1335 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1336 * this function keeps retrying under memory pressure and fails iff @q is dead. 1337 * 1338 * Must be called with @q->queue_lock held and, 1339 * Returns ERR_PTR on failure, with @q->queue_lock held. 1340 * Returns request pointer on success, with @q->queue_lock *not held*. 1341 */ 1342 static struct request *get_request(struct request_queue *q, unsigned int op, 1343 struct bio *bio, gfp_t gfp_mask) 1344 { 1345 const bool is_sync = op_is_sync(op); 1346 DEFINE_WAIT(wait); 1347 struct request_list *rl; 1348 struct request *rq; 1349 1350 lockdep_assert_held(q->queue_lock); 1351 WARN_ON_ONCE(q->mq_ops); 1352 1353 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1354 retry: 1355 rq = __get_request(rl, op, bio, gfp_mask); 1356 if (!IS_ERR(rq)) 1357 return rq; 1358 1359 if (op & REQ_NOWAIT) { 1360 blk_put_rl(rl); 1361 return ERR_PTR(-EAGAIN); 1362 } 1363 1364 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) { 1365 blk_put_rl(rl); 1366 return rq; 1367 } 1368 1369 /* wait on @rl and retry */ 1370 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1371 TASK_UNINTERRUPTIBLE); 1372 1373 trace_block_sleeprq(q, bio, op); 1374 1375 spin_unlock_irq(q->queue_lock); 1376 io_schedule(); 1377 1378 /* 1379 * After sleeping, we become a "batching" process and will be able 1380 * to allocate at least one request, and up to a big batch of them 1381 * for a small period time. See ioc_batching, ioc_set_batching 1382 */ 1383 ioc_set_batching(q, current->io_context); 1384 1385 spin_lock_irq(q->queue_lock); 1386 finish_wait(&rl->wait[is_sync], &wait); 1387 1388 goto retry; 1389 } 1390 1391 static struct request *blk_old_get_request(struct request_queue *q, 1392 unsigned int op, gfp_t gfp_mask) 1393 { 1394 struct request *rq; 1395 1396 WARN_ON_ONCE(q->mq_ops); 1397 1398 /* create ioc upfront */ 1399 create_io_context(gfp_mask, q->node); 1400 1401 spin_lock_irq(q->queue_lock); 1402 rq = get_request(q, op, NULL, gfp_mask); 1403 if (IS_ERR(rq)) { 1404 spin_unlock_irq(q->queue_lock); 1405 return rq; 1406 } 1407 1408 /* q->queue_lock is unlocked at this point */ 1409 rq->__data_len = 0; 1410 rq->__sector = (sector_t) -1; 1411 rq->bio = rq->biotail = NULL; 1412 return rq; 1413 } 1414 1415 struct request *blk_get_request(struct request_queue *q, unsigned int op, 1416 gfp_t gfp_mask) 1417 { 1418 struct request *req; 1419 1420 if (q->mq_ops) { 1421 req = blk_mq_alloc_request(q, op, 1422 (gfp_mask & __GFP_DIRECT_RECLAIM) ? 1423 0 : BLK_MQ_REQ_NOWAIT); 1424 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 1425 q->mq_ops->initialize_rq_fn(req); 1426 } else { 1427 req = blk_old_get_request(q, op, gfp_mask); 1428 if (!IS_ERR(req) && q->initialize_rq_fn) 1429 q->initialize_rq_fn(req); 1430 } 1431 1432 return req; 1433 } 1434 EXPORT_SYMBOL(blk_get_request); 1435 1436 /** 1437 * blk_requeue_request - put a request back on queue 1438 * @q: request queue where request should be inserted 1439 * @rq: request to be inserted 1440 * 1441 * Description: 1442 * Drivers often keep queueing requests until the hardware cannot accept 1443 * more, when that condition happens we need to put the request back 1444 * on the queue. Must be called with queue lock held. 1445 */ 1446 void blk_requeue_request(struct request_queue *q, struct request *rq) 1447 { 1448 lockdep_assert_held(q->queue_lock); 1449 WARN_ON_ONCE(q->mq_ops); 1450 1451 blk_delete_timer(rq); 1452 blk_clear_rq_complete(rq); 1453 trace_block_rq_requeue(q, rq); 1454 wbt_requeue(q->rq_wb, &rq->issue_stat); 1455 1456 if (rq->rq_flags & RQF_QUEUED) 1457 blk_queue_end_tag(q, rq); 1458 1459 BUG_ON(blk_queued_rq(rq)); 1460 1461 elv_requeue_request(q, rq); 1462 } 1463 EXPORT_SYMBOL(blk_requeue_request); 1464 1465 static void add_acct_request(struct request_queue *q, struct request *rq, 1466 int where) 1467 { 1468 blk_account_io_start(rq, true); 1469 __elv_add_request(q, rq, where); 1470 } 1471 1472 static void part_round_stats_single(struct request_queue *q, int cpu, 1473 struct hd_struct *part, unsigned long now, 1474 unsigned int inflight) 1475 { 1476 if (inflight) { 1477 __part_stat_add(cpu, part, time_in_queue, 1478 inflight * (now - part->stamp)); 1479 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1480 } 1481 part->stamp = now; 1482 } 1483 1484 /** 1485 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1486 * @q: target block queue 1487 * @cpu: cpu number for stats access 1488 * @part: target partition 1489 * 1490 * The average IO queue length and utilisation statistics are maintained 1491 * by observing the current state of the queue length and the amount of 1492 * time it has been in this state for. 1493 * 1494 * Normally, that accounting is done on IO completion, but that can result 1495 * in more than a second's worth of IO being accounted for within any one 1496 * second, leading to >100% utilisation. To deal with that, we call this 1497 * function to do a round-off before returning the results when reading 1498 * /proc/diskstats. This accounts immediately for all queue usage up to 1499 * the current jiffies and restarts the counters again. 1500 */ 1501 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part) 1502 { 1503 struct hd_struct *part2 = NULL; 1504 unsigned long now = jiffies; 1505 unsigned int inflight[2]; 1506 int stats = 0; 1507 1508 if (part->stamp != now) 1509 stats |= 1; 1510 1511 if (part->partno) { 1512 part2 = &part_to_disk(part)->part0; 1513 if (part2->stamp != now) 1514 stats |= 2; 1515 } 1516 1517 if (!stats) 1518 return; 1519 1520 part_in_flight(q, part, inflight); 1521 1522 if (stats & 2) 1523 part_round_stats_single(q, cpu, part2, now, inflight[1]); 1524 if (stats & 1) 1525 part_round_stats_single(q, cpu, part, now, inflight[0]); 1526 } 1527 EXPORT_SYMBOL_GPL(part_round_stats); 1528 1529 #ifdef CONFIG_PM 1530 static void blk_pm_put_request(struct request *rq) 1531 { 1532 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1533 pm_runtime_mark_last_busy(rq->q->dev); 1534 } 1535 #else 1536 static inline void blk_pm_put_request(struct request *rq) {} 1537 #endif 1538 1539 void __blk_put_request(struct request_queue *q, struct request *req) 1540 { 1541 req_flags_t rq_flags = req->rq_flags; 1542 1543 if (unlikely(!q)) 1544 return; 1545 1546 if (q->mq_ops) { 1547 blk_mq_free_request(req); 1548 return; 1549 } 1550 1551 lockdep_assert_held(q->queue_lock); 1552 1553 blk_pm_put_request(req); 1554 1555 elv_completed_request(q, req); 1556 1557 /* this is a bio leak */ 1558 WARN_ON(req->bio != NULL); 1559 1560 wbt_done(q->rq_wb, &req->issue_stat); 1561 1562 /* 1563 * Request may not have originated from ll_rw_blk. if not, 1564 * it didn't come out of our reserved rq pools 1565 */ 1566 if (rq_flags & RQF_ALLOCED) { 1567 struct request_list *rl = blk_rq_rl(req); 1568 bool sync = op_is_sync(req->cmd_flags); 1569 1570 BUG_ON(!list_empty(&req->queuelist)); 1571 BUG_ON(ELV_ON_HASH(req)); 1572 1573 blk_free_request(rl, req); 1574 freed_request(rl, sync, rq_flags); 1575 blk_put_rl(rl); 1576 } 1577 } 1578 EXPORT_SYMBOL_GPL(__blk_put_request); 1579 1580 void blk_put_request(struct request *req) 1581 { 1582 struct request_queue *q = req->q; 1583 1584 if (q->mq_ops) 1585 blk_mq_free_request(req); 1586 else { 1587 unsigned long flags; 1588 1589 spin_lock_irqsave(q->queue_lock, flags); 1590 __blk_put_request(q, req); 1591 spin_unlock_irqrestore(q->queue_lock, flags); 1592 } 1593 } 1594 EXPORT_SYMBOL(blk_put_request); 1595 1596 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1597 struct bio *bio) 1598 { 1599 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1600 1601 if (!ll_back_merge_fn(q, req, bio)) 1602 return false; 1603 1604 trace_block_bio_backmerge(q, req, bio); 1605 1606 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1607 blk_rq_set_mixed_merge(req); 1608 1609 req->biotail->bi_next = bio; 1610 req->biotail = bio; 1611 req->__data_len += bio->bi_iter.bi_size; 1612 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1613 1614 blk_account_io_start(req, false); 1615 return true; 1616 } 1617 1618 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1619 struct bio *bio) 1620 { 1621 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1622 1623 if (!ll_front_merge_fn(q, req, bio)) 1624 return false; 1625 1626 trace_block_bio_frontmerge(q, req, bio); 1627 1628 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1629 blk_rq_set_mixed_merge(req); 1630 1631 bio->bi_next = req->bio; 1632 req->bio = bio; 1633 1634 req->__sector = bio->bi_iter.bi_sector; 1635 req->__data_len += bio->bi_iter.bi_size; 1636 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1637 1638 blk_account_io_start(req, false); 1639 return true; 1640 } 1641 1642 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1643 struct bio *bio) 1644 { 1645 unsigned short segments = blk_rq_nr_discard_segments(req); 1646 1647 if (segments >= queue_max_discard_segments(q)) 1648 goto no_merge; 1649 if (blk_rq_sectors(req) + bio_sectors(bio) > 1650 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1651 goto no_merge; 1652 1653 req->biotail->bi_next = bio; 1654 req->biotail = bio; 1655 req->__data_len += bio->bi_iter.bi_size; 1656 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1657 req->nr_phys_segments = segments + 1; 1658 1659 blk_account_io_start(req, false); 1660 return true; 1661 no_merge: 1662 req_set_nomerge(q, req); 1663 return false; 1664 } 1665 1666 /** 1667 * blk_attempt_plug_merge - try to merge with %current's plugged list 1668 * @q: request_queue new bio is being queued at 1669 * @bio: new bio being queued 1670 * @request_count: out parameter for number of traversed plugged requests 1671 * @same_queue_rq: pointer to &struct request that gets filled in when 1672 * another request associated with @q is found on the plug list 1673 * (optional, may be %NULL) 1674 * 1675 * Determine whether @bio being queued on @q can be merged with a request 1676 * on %current's plugged list. Returns %true if merge was successful, 1677 * otherwise %false. 1678 * 1679 * Plugging coalesces IOs from the same issuer for the same purpose without 1680 * going through @q->queue_lock. As such it's more of an issuing mechanism 1681 * than scheduling, and the request, while may have elvpriv data, is not 1682 * added on the elevator at this point. In addition, we don't have 1683 * reliable access to the elevator outside queue lock. Only check basic 1684 * merging parameters without querying the elevator. 1685 * 1686 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1687 */ 1688 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1689 unsigned int *request_count, 1690 struct request **same_queue_rq) 1691 { 1692 struct blk_plug *plug; 1693 struct request *rq; 1694 struct list_head *plug_list; 1695 1696 plug = current->plug; 1697 if (!plug) 1698 return false; 1699 *request_count = 0; 1700 1701 if (q->mq_ops) 1702 plug_list = &plug->mq_list; 1703 else 1704 plug_list = &plug->list; 1705 1706 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1707 bool merged = false; 1708 1709 if (rq->q == q) { 1710 (*request_count)++; 1711 /* 1712 * Only blk-mq multiple hardware queues case checks the 1713 * rq in the same queue, there should be only one such 1714 * rq in a queue 1715 **/ 1716 if (same_queue_rq) 1717 *same_queue_rq = rq; 1718 } 1719 1720 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1721 continue; 1722 1723 switch (blk_try_merge(rq, bio)) { 1724 case ELEVATOR_BACK_MERGE: 1725 merged = bio_attempt_back_merge(q, rq, bio); 1726 break; 1727 case ELEVATOR_FRONT_MERGE: 1728 merged = bio_attempt_front_merge(q, rq, bio); 1729 break; 1730 case ELEVATOR_DISCARD_MERGE: 1731 merged = bio_attempt_discard_merge(q, rq, bio); 1732 break; 1733 default: 1734 break; 1735 } 1736 1737 if (merged) 1738 return true; 1739 } 1740 1741 return false; 1742 } 1743 1744 unsigned int blk_plug_queued_count(struct request_queue *q) 1745 { 1746 struct blk_plug *plug; 1747 struct request *rq; 1748 struct list_head *plug_list; 1749 unsigned int ret = 0; 1750 1751 plug = current->plug; 1752 if (!plug) 1753 goto out; 1754 1755 if (q->mq_ops) 1756 plug_list = &plug->mq_list; 1757 else 1758 plug_list = &plug->list; 1759 1760 list_for_each_entry(rq, plug_list, queuelist) { 1761 if (rq->q == q) 1762 ret++; 1763 } 1764 out: 1765 return ret; 1766 } 1767 1768 void blk_init_request_from_bio(struct request *req, struct bio *bio) 1769 { 1770 struct io_context *ioc = rq_ioc(bio); 1771 1772 if (bio->bi_opf & REQ_RAHEAD) 1773 req->cmd_flags |= REQ_FAILFAST_MASK; 1774 1775 req->__sector = bio->bi_iter.bi_sector; 1776 if (ioprio_valid(bio_prio(bio))) 1777 req->ioprio = bio_prio(bio); 1778 else if (ioc) 1779 req->ioprio = ioc->ioprio; 1780 else 1781 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1782 req->write_hint = bio->bi_write_hint; 1783 blk_rq_bio_prep(req->q, req, bio); 1784 } 1785 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 1786 1787 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1788 { 1789 struct blk_plug *plug; 1790 int where = ELEVATOR_INSERT_SORT; 1791 struct request *req, *free; 1792 unsigned int request_count = 0; 1793 unsigned int wb_acct; 1794 1795 /* 1796 * low level driver can indicate that it wants pages above a 1797 * certain limit bounced to low memory (ie for highmem, or even 1798 * ISA dma in theory) 1799 */ 1800 blk_queue_bounce(q, &bio); 1801 1802 blk_queue_split(q, &bio); 1803 1804 if (!bio_integrity_prep(bio)) 1805 return BLK_QC_T_NONE; 1806 1807 if (op_is_flush(bio->bi_opf)) { 1808 spin_lock_irq(q->queue_lock); 1809 where = ELEVATOR_INSERT_FLUSH; 1810 goto get_rq; 1811 } 1812 1813 /* 1814 * Check if we can merge with the plugged list before grabbing 1815 * any locks. 1816 */ 1817 if (!blk_queue_nomerges(q)) { 1818 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1819 return BLK_QC_T_NONE; 1820 } else 1821 request_count = blk_plug_queued_count(q); 1822 1823 spin_lock_irq(q->queue_lock); 1824 1825 switch (elv_merge(q, &req, bio)) { 1826 case ELEVATOR_BACK_MERGE: 1827 if (!bio_attempt_back_merge(q, req, bio)) 1828 break; 1829 elv_bio_merged(q, req, bio); 1830 free = attempt_back_merge(q, req); 1831 if (free) 1832 __blk_put_request(q, free); 1833 else 1834 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 1835 goto out_unlock; 1836 case ELEVATOR_FRONT_MERGE: 1837 if (!bio_attempt_front_merge(q, req, bio)) 1838 break; 1839 elv_bio_merged(q, req, bio); 1840 free = attempt_front_merge(q, req); 1841 if (free) 1842 __blk_put_request(q, free); 1843 else 1844 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 1845 goto out_unlock; 1846 default: 1847 break; 1848 } 1849 1850 get_rq: 1851 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock); 1852 1853 /* 1854 * Grab a free request. This is might sleep but can not fail. 1855 * Returns with the queue unlocked. 1856 */ 1857 req = get_request(q, bio->bi_opf, bio, GFP_NOIO); 1858 if (IS_ERR(req)) { 1859 __wbt_done(q->rq_wb, wb_acct); 1860 if (PTR_ERR(req) == -ENOMEM) 1861 bio->bi_status = BLK_STS_RESOURCE; 1862 else 1863 bio->bi_status = BLK_STS_IOERR; 1864 bio_endio(bio); 1865 goto out_unlock; 1866 } 1867 1868 wbt_track(&req->issue_stat, wb_acct); 1869 1870 /* 1871 * After dropping the lock and possibly sleeping here, our request 1872 * may now be mergeable after it had proven unmergeable (above). 1873 * We don't worry about that case for efficiency. It won't happen 1874 * often, and the elevators are able to handle it. 1875 */ 1876 blk_init_request_from_bio(req, bio); 1877 1878 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1879 req->cpu = raw_smp_processor_id(); 1880 1881 plug = current->plug; 1882 if (plug) { 1883 /* 1884 * If this is the first request added after a plug, fire 1885 * of a plug trace. 1886 * 1887 * @request_count may become stale because of schedule 1888 * out, so check plug list again. 1889 */ 1890 if (!request_count || list_empty(&plug->list)) 1891 trace_block_plug(q); 1892 else { 1893 struct request *last = list_entry_rq(plug->list.prev); 1894 if (request_count >= BLK_MAX_REQUEST_COUNT || 1895 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 1896 blk_flush_plug_list(plug, false); 1897 trace_block_plug(q); 1898 } 1899 } 1900 list_add_tail(&req->queuelist, &plug->list); 1901 blk_account_io_start(req, true); 1902 } else { 1903 spin_lock_irq(q->queue_lock); 1904 add_acct_request(q, req, where); 1905 __blk_run_queue(q); 1906 out_unlock: 1907 spin_unlock_irq(q->queue_lock); 1908 } 1909 1910 return BLK_QC_T_NONE; 1911 } 1912 1913 static void handle_bad_sector(struct bio *bio) 1914 { 1915 char b[BDEVNAME_SIZE]; 1916 1917 printk(KERN_INFO "attempt to access beyond end of device\n"); 1918 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 1919 bio_devname(bio, b), bio->bi_opf, 1920 (unsigned long long)bio_end_sector(bio), 1921 (long long)get_capacity(bio->bi_disk)); 1922 } 1923 1924 #ifdef CONFIG_FAIL_MAKE_REQUEST 1925 1926 static DECLARE_FAULT_ATTR(fail_make_request); 1927 1928 static int __init setup_fail_make_request(char *str) 1929 { 1930 return setup_fault_attr(&fail_make_request, str); 1931 } 1932 __setup("fail_make_request=", setup_fail_make_request); 1933 1934 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1935 { 1936 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1937 } 1938 1939 static int __init fail_make_request_debugfs(void) 1940 { 1941 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1942 NULL, &fail_make_request); 1943 1944 return PTR_ERR_OR_ZERO(dir); 1945 } 1946 1947 late_initcall(fail_make_request_debugfs); 1948 1949 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1950 1951 static inline bool should_fail_request(struct hd_struct *part, 1952 unsigned int bytes) 1953 { 1954 return false; 1955 } 1956 1957 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1958 1959 /* 1960 * Remap block n of partition p to block n+start(p) of the disk. 1961 */ 1962 static inline int blk_partition_remap(struct bio *bio) 1963 { 1964 struct hd_struct *p; 1965 int ret = 0; 1966 1967 /* 1968 * Zone reset does not include bi_size so bio_sectors() is always 0. 1969 * Include a test for the reset op code and perform the remap if needed. 1970 */ 1971 if (!bio->bi_partno || 1972 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET)) 1973 return 0; 1974 1975 rcu_read_lock(); 1976 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 1977 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) { 1978 bio->bi_iter.bi_sector += p->start_sect; 1979 bio->bi_partno = 0; 1980 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 1981 bio->bi_iter.bi_sector - p->start_sect); 1982 } else { 1983 printk("%s: fail for partition %d\n", __func__, bio->bi_partno); 1984 ret = -EIO; 1985 } 1986 rcu_read_unlock(); 1987 1988 return ret; 1989 } 1990 1991 /* 1992 * Check whether this bio extends beyond the end of the device. 1993 */ 1994 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1995 { 1996 sector_t maxsector; 1997 1998 if (!nr_sectors) 1999 return 0; 2000 2001 /* Test device or partition size, when known. */ 2002 maxsector = get_capacity(bio->bi_disk); 2003 if (maxsector) { 2004 sector_t sector = bio->bi_iter.bi_sector; 2005 2006 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 2007 /* 2008 * This may well happen - the kernel calls bread() 2009 * without checking the size of the device, e.g., when 2010 * mounting a device. 2011 */ 2012 handle_bad_sector(bio); 2013 return 1; 2014 } 2015 } 2016 2017 return 0; 2018 } 2019 2020 static noinline_for_stack bool 2021 generic_make_request_checks(struct bio *bio) 2022 { 2023 struct request_queue *q; 2024 int nr_sectors = bio_sectors(bio); 2025 blk_status_t status = BLK_STS_IOERR; 2026 char b[BDEVNAME_SIZE]; 2027 2028 might_sleep(); 2029 2030 if (bio_check_eod(bio, nr_sectors)) 2031 goto end_io; 2032 2033 q = bio->bi_disk->queue; 2034 if (unlikely(!q)) { 2035 printk(KERN_ERR 2036 "generic_make_request: Trying to access " 2037 "nonexistent block-device %s (%Lu)\n", 2038 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 2039 goto end_io; 2040 } 2041 2042 /* 2043 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 2044 * if queue is not a request based queue. 2045 */ 2046 2047 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q)) 2048 goto not_supported; 2049 2050 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 2051 goto end_io; 2052 2053 if (blk_partition_remap(bio)) 2054 goto end_io; 2055 2056 if (bio_check_eod(bio, nr_sectors)) 2057 goto end_io; 2058 2059 /* 2060 * Filter flush bio's early so that make_request based 2061 * drivers without flush support don't have to worry 2062 * about them. 2063 */ 2064 if (op_is_flush(bio->bi_opf) && 2065 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 2066 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 2067 if (!nr_sectors) { 2068 status = BLK_STS_OK; 2069 goto end_io; 2070 } 2071 } 2072 2073 switch (bio_op(bio)) { 2074 case REQ_OP_DISCARD: 2075 if (!blk_queue_discard(q)) 2076 goto not_supported; 2077 break; 2078 case REQ_OP_SECURE_ERASE: 2079 if (!blk_queue_secure_erase(q)) 2080 goto not_supported; 2081 break; 2082 case REQ_OP_WRITE_SAME: 2083 if (!q->limits.max_write_same_sectors) 2084 goto not_supported; 2085 break; 2086 case REQ_OP_ZONE_REPORT: 2087 case REQ_OP_ZONE_RESET: 2088 if (!blk_queue_is_zoned(q)) 2089 goto not_supported; 2090 break; 2091 case REQ_OP_WRITE_ZEROES: 2092 if (!q->limits.max_write_zeroes_sectors) 2093 goto not_supported; 2094 break; 2095 default: 2096 break; 2097 } 2098 2099 /* 2100 * Various block parts want %current->io_context and lazy ioc 2101 * allocation ends up trading a lot of pain for a small amount of 2102 * memory. Just allocate it upfront. This may fail and block 2103 * layer knows how to live with it. 2104 */ 2105 create_io_context(GFP_ATOMIC, q->node); 2106 2107 if (!blkcg_bio_issue_check(q, bio)) 2108 return false; 2109 2110 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 2111 trace_block_bio_queue(q, bio); 2112 /* Now that enqueuing has been traced, we need to trace 2113 * completion as well. 2114 */ 2115 bio_set_flag(bio, BIO_TRACE_COMPLETION); 2116 } 2117 return true; 2118 2119 not_supported: 2120 status = BLK_STS_NOTSUPP; 2121 end_io: 2122 bio->bi_status = status; 2123 bio_endio(bio); 2124 return false; 2125 } 2126 2127 /** 2128 * generic_make_request - hand a buffer to its device driver for I/O 2129 * @bio: The bio describing the location in memory and on the device. 2130 * 2131 * generic_make_request() is used to make I/O requests of block 2132 * devices. It is passed a &struct bio, which describes the I/O that needs 2133 * to be done. 2134 * 2135 * generic_make_request() does not return any status. The 2136 * success/failure status of the request, along with notification of 2137 * completion, is delivered asynchronously through the bio->bi_end_io 2138 * function described (one day) else where. 2139 * 2140 * The caller of generic_make_request must make sure that bi_io_vec 2141 * are set to describe the memory buffer, and that bi_dev and bi_sector are 2142 * set to describe the device address, and the 2143 * bi_end_io and optionally bi_private are set to describe how 2144 * completion notification should be signaled. 2145 * 2146 * generic_make_request and the drivers it calls may use bi_next if this 2147 * bio happens to be merged with someone else, and may resubmit the bio to 2148 * a lower device by calling into generic_make_request recursively, which 2149 * means the bio should NOT be touched after the call to ->make_request_fn. 2150 */ 2151 blk_qc_t generic_make_request(struct bio *bio) 2152 { 2153 /* 2154 * bio_list_on_stack[0] contains bios submitted by the current 2155 * make_request_fn. 2156 * bio_list_on_stack[1] contains bios that were submitted before 2157 * the current make_request_fn, but that haven't been processed 2158 * yet. 2159 */ 2160 struct bio_list bio_list_on_stack[2]; 2161 blk_qc_t ret = BLK_QC_T_NONE; 2162 2163 if (!generic_make_request_checks(bio)) 2164 goto out; 2165 2166 /* 2167 * We only want one ->make_request_fn to be active at a time, else 2168 * stack usage with stacked devices could be a problem. So use 2169 * current->bio_list to keep a list of requests submited by a 2170 * make_request_fn function. current->bio_list is also used as a 2171 * flag to say if generic_make_request is currently active in this 2172 * task or not. If it is NULL, then no make_request is active. If 2173 * it is non-NULL, then a make_request is active, and new requests 2174 * should be added at the tail 2175 */ 2176 if (current->bio_list) { 2177 bio_list_add(¤t->bio_list[0], bio); 2178 goto out; 2179 } 2180 2181 /* following loop may be a bit non-obvious, and so deserves some 2182 * explanation. 2183 * Before entering the loop, bio->bi_next is NULL (as all callers 2184 * ensure that) so we have a list with a single bio. 2185 * We pretend that we have just taken it off a longer list, so 2186 * we assign bio_list to a pointer to the bio_list_on_stack, 2187 * thus initialising the bio_list of new bios to be 2188 * added. ->make_request() may indeed add some more bios 2189 * through a recursive call to generic_make_request. If it 2190 * did, we find a non-NULL value in bio_list and re-enter the loop 2191 * from the top. In this case we really did just take the bio 2192 * of the top of the list (no pretending) and so remove it from 2193 * bio_list, and call into ->make_request() again. 2194 */ 2195 BUG_ON(bio->bi_next); 2196 bio_list_init(&bio_list_on_stack[0]); 2197 current->bio_list = bio_list_on_stack; 2198 do { 2199 struct request_queue *q = bio->bi_disk->queue; 2200 2201 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) { 2202 struct bio_list lower, same; 2203 2204 /* Create a fresh bio_list for all subordinate requests */ 2205 bio_list_on_stack[1] = bio_list_on_stack[0]; 2206 bio_list_init(&bio_list_on_stack[0]); 2207 ret = q->make_request_fn(q, bio); 2208 2209 blk_queue_exit(q); 2210 2211 /* sort new bios into those for a lower level 2212 * and those for the same level 2213 */ 2214 bio_list_init(&lower); 2215 bio_list_init(&same); 2216 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 2217 if (q == bio->bi_disk->queue) 2218 bio_list_add(&same, bio); 2219 else 2220 bio_list_add(&lower, bio); 2221 /* now assemble so we handle the lowest level first */ 2222 bio_list_merge(&bio_list_on_stack[0], &lower); 2223 bio_list_merge(&bio_list_on_stack[0], &same); 2224 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 2225 } else { 2226 if (unlikely(!blk_queue_dying(q) && 2227 (bio->bi_opf & REQ_NOWAIT))) 2228 bio_wouldblock_error(bio); 2229 else 2230 bio_io_error(bio); 2231 } 2232 bio = bio_list_pop(&bio_list_on_stack[0]); 2233 } while (bio); 2234 current->bio_list = NULL; /* deactivate */ 2235 2236 out: 2237 return ret; 2238 } 2239 EXPORT_SYMBOL(generic_make_request); 2240 2241 /** 2242 * submit_bio - submit a bio to the block device layer for I/O 2243 * @bio: The &struct bio which describes the I/O 2244 * 2245 * submit_bio() is very similar in purpose to generic_make_request(), and 2246 * uses that function to do most of the work. Both are fairly rough 2247 * interfaces; @bio must be presetup and ready for I/O. 2248 * 2249 */ 2250 blk_qc_t submit_bio(struct bio *bio) 2251 { 2252 /* 2253 * If it's a regular read/write or a barrier with data attached, 2254 * go through the normal accounting stuff before submission. 2255 */ 2256 if (bio_has_data(bio)) { 2257 unsigned int count; 2258 2259 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2260 count = queue_logical_block_size(bio->bi_disk->queue); 2261 else 2262 count = bio_sectors(bio); 2263 2264 if (op_is_write(bio_op(bio))) { 2265 count_vm_events(PGPGOUT, count); 2266 } else { 2267 task_io_account_read(bio->bi_iter.bi_size); 2268 count_vm_events(PGPGIN, count); 2269 } 2270 2271 if (unlikely(block_dump)) { 2272 char b[BDEVNAME_SIZE]; 2273 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2274 current->comm, task_pid_nr(current), 2275 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2276 (unsigned long long)bio->bi_iter.bi_sector, 2277 bio_devname(bio, b), count); 2278 } 2279 } 2280 2281 return generic_make_request(bio); 2282 } 2283 EXPORT_SYMBOL(submit_bio); 2284 2285 /** 2286 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2287 * for new the queue limits 2288 * @q: the queue 2289 * @rq: the request being checked 2290 * 2291 * Description: 2292 * @rq may have been made based on weaker limitations of upper-level queues 2293 * in request stacking drivers, and it may violate the limitation of @q. 2294 * Since the block layer and the underlying device driver trust @rq 2295 * after it is inserted to @q, it should be checked against @q before 2296 * the insertion using this generic function. 2297 * 2298 * Request stacking drivers like request-based dm may change the queue 2299 * limits when retrying requests on other queues. Those requests need 2300 * to be checked against the new queue limits again during dispatch. 2301 */ 2302 static int blk_cloned_rq_check_limits(struct request_queue *q, 2303 struct request *rq) 2304 { 2305 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2306 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2307 return -EIO; 2308 } 2309 2310 /* 2311 * queue's settings related to segment counting like q->bounce_pfn 2312 * may differ from that of other stacking queues. 2313 * Recalculate it to check the request correctly on this queue's 2314 * limitation. 2315 */ 2316 blk_recalc_rq_segments(rq); 2317 if (rq->nr_phys_segments > queue_max_segments(q)) { 2318 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2319 return -EIO; 2320 } 2321 2322 return 0; 2323 } 2324 2325 /** 2326 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2327 * @q: the queue to submit the request 2328 * @rq: the request being queued 2329 */ 2330 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2331 { 2332 unsigned long flags; 2333 int where = ELEVATOR_INSERT_BACK; 2334 2335 if (blk_cloned_rq_check_limits(q, rq)) 2336 return BLK_STS_IOERR; 2337 2338 if (rq->rq_disk && 2339 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2340 return BLK_STS_IOERR; 2341 2342 if (q->mq_ops) { 2343 if (blk_queue_io_stat(q)) 2344 blk_account_io_start(rq, true); 2345 /* 2346 * Since we have a scheduler attached on the top device, 2347 * bypass a potential scheduler on the bottom device for 2348 * insert. 2349 */ 2350 blk_mq_request_bypass_insert(rq); 2351 return BLK_STS_OK; 2352 } 2353 2354 spin_lock_irqsave(q->queue_lock, flags); 2355 if (unlikely(blk_queue_dying(q))) { 2356 spin_unlock_irqrestore(q->queue_lock, flags); 2357 return BLK_STS_IOERR; 2358 } 2359 2360 /* 2361 * Submitting request must be dequeued before calling this function 2362 * because it will be linked to another request_queue 2363 */ 2364 BUG_ON(blk_queued_rq(rq)); 2365 2366 if (op_is_flush(rq->cmd_flags)) 2367 where = ELEVATOR_INSERT_FLUSH; 2368 2369 add_acct_request(q, rq, where); 2370 if (where == ELEVATOR_INSERT_FLUSH) 2371 __blk_run_queue(q); 2372 spin_unlock_irqrestore(q->queue_lock, flags); 2373 2374 return BLK_STS_OK; 2375 } 2376 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2377 2378 /** 2379 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2380 * @rq: request to examine 2381 * 2382 * Description: 2383 * A request could be merge of IOs which require different failure 2384 * handling. This function determines the number of bytes which 2385 * can be failed from the beginning of the request without 2386 * crossing into area which need to be retried further. 2387 * 2388 * Return: 2389 * The number of bytes to fail. 2390 */ 2391 unsigned int blk_rq_err_bytes(const struct request *rq) 2392 { 2393 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2394 unsigned int bytes = 0; 2395 struct bio *bio; 2396 2397 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2398 return blk_rq_bytes(rq); 2399 2400 /* 2401 * Currently the only 'mixing' which can happen is between 2402 * different fastfail types. We can safely fail portions 2403 * which have all the failfast bits that the first one has - 2404 * the ones which are at least as eager to fail as the first 2405 * one. 2406 */ 2407 for (bio = rq->bio; bio; bio = bio->bi_next) { 2408 if ((bio->bi_opf & ff) != ff) 2409 break; 2410 bytes += bio->bi_iter.bi_size; 2411 } 2412 2413 /* this could lead to infinite loop */ 2414 BUG_ON(blk_rq_bytes(rq) && !bytes); 2415 return bytes; 2416 } 2417 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2418 2419 void blk_account_io_completion(struct request *req, unsigned int bytes) 2420 { 2421 if (blk_do_io_stat(req)) { 2422 const int rw = rq_data_dir(req); 2423 struct hd_struct *part; 2424 int cpu; 2425 2426 cpu = part_stat_lock(); 2427 part = req->part; 2428 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2429 part_stat_unlock(); 2430 } 2431 } 2432 2433 void blk_account_io_done(struct request *req) 2434 { 2435 /* 2436 * Account IO completion. flush_rq isn't accounted as a 2437 * normal IO on queueing nor completion. Accounting the 2438 * containing request is enough. 2439 */ 2440 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2441 unsigned long duration = jiffies - req->start_time; 2442 const int rw = rq_data_dir(req); 2443 struct hd_struct *part; 2444 int cpu; 2445 2446 cpu = part_stat_lock(); 2447 part = req->part; 2448 2449 part_stat_inc(cpu, part, ios[rw]); 2450 part_stat_add(cpu, part, ticks[rw], duration); 2451 part_round_stats(req->q, cpu, part); 2452 part_dec_in_flight(req->q, part, rw); 2453 2454 hd_struct_put(part); 2455 part_stat_unlock(); 2456 } 2457 } 2458 2459 #ifdef CONFIG_PM 2460 /* 2461 * Don't process normal requests when queue is suspended 2462 * or in the process of suspending/resuming 2463 */ 2464 static struct request *blk_pm_peek_request(struct request_queue *q, 2465 struct request *rq) 2466 { 2467 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2468 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM)))) 2469 return NULL; 2470 else 2471 return rq; 2472 } 2473 #else 2474 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2475 struct request *rq) 2476 { 2477 return rq; 2478 } 2479 #endif 2480 2481 void blk_account_io_start(struct request *rq, bool new_io) 2482 { 2483 struct hd_struct *part; 2484 int rw = rq_data_dir(rq); 2485 int cpu; 2486 2487 if (!blk_do_io_stat(rq)) 2488 return; 2489 2490 cpu = part_stat_lock(); 2491 2492 if (!new_io) { 2493 part = rq->part; 2494 part_stat_inc(cpu, part, merges[rw]); 2495 } else { 2496 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2497 if (!hd_struct_try_get(part)) { 2498 /* 2499 * The partition is already being removed, 2500 * the request will be accounted on the disk only 2501 * 2502 * We take a reference on disk->part0 although that 2503 * partition will never be deleted, so we can treat 2504 * it as any other partition. 2505 */ 2506 part = &rq->rq_disk->part0; 2507 hd_struct_get(part); 2508 } 2509 part_round_stats(rq->q, cpu, part); 2510 part_inc_in_flight(rq->q, part, rw); 2511 rq->part = part; 2512 } 2513 2514 part_stat_unlock(); 2515 } 2516 2517 /** 2518 * blk_peek_request - peek at the top of a request queue 2519 * @q: request queue to peek at 2520 * 2521 * Description: 2522 * Return the request at the top of @q. The returned request 2523 * should be started using blk_start_request() before LLD starts 2524 * processing it. 2525 * 2526 * Return: 2527 * Pointer to the request at the top of @q if available. Null 2528 * otherwise. 2529 */ 2530 struct request *blk_peek_request(struct request_queue *q) 2531 { 2532 struct request *rq; 2533 int ret; 2534 2535 lockdep_assert_held(q->queue_lock); 2536 WARN_ON_ONCE(q->mq_ops); 2537 2538 while ((rq = __elv_next_request(q)) != NULL) { 2539 2540 rq = blk_pm_peek_request(q, rq); 2541 if (!rq) 2542 break; 2543 2544 if (!(rq->rq_flags & RQF_STARTED)) { 2545 /* 2546 * This is the first time the device driver 2547 * sees this request (possibly after 2548 * requeueing). Notify IO scheduler. 2549 */ 2550 if (rq->rq_flags & RQF_SORTED) 2551 elv_activate_rq(q, rq); 2552 2553 /* 2554 * just mark as started even if we don't start 2555 * it, a request that has been delayed should 2556 * not be passed by new incoming requests 2557 */ 2558 rq->rq_flags |= RQF_STARTED; 2559 trace_block_rq_issue(q, rq); 2560 } 2561 2562 if (!q->boundary_rq || q->boundary_rq == rq) { 2563 q->end_sector = rq_end_sector(rq); 2564 q->boundary_rq = NULL; 2565 } 2566 2567 if (rq->rq_flags & RQF_DONTPREP) 2568 break; 2569 2570 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2571 /* 2572 * make sure space for the drain appears we 2573 * know we can do this because max_hw_segments 2574 * has been adjusted to be one fewer than the 2575 * device can handle 2576 */ 2577 rq->nr_phys_segments++; 2578 } 2579 2580 if (!q->prep_rq_fn) 2581 break; 2582 2583 ret = q->prep_rq_fn(q, rq); 2584 if (ret == BLKPREP_OK) { 2585 break; 2586 } else if (ret == BLKPREP_DEFER) { 2587 /* 2588 * the request may have been (partially) prepped. 2589 * we need to keep this request in the front to 2590 * avoid resource deadlock. RQF_STARTED will 2591 * prevent other fs requests from passing this one. 2592 */ 2593 if (q->dma_drain_size && blk_rq_bytes(rq) && 2594 !(rq->rq_flags & RQF_DONTPREP)) { 2595 /* 2596 * remove the space for the drain we added 2597 * so that we don't add it again 2598 */ 2599 --rq->nr_phys_segments; 2600 } 2601 2602 rq = NULL; 2603 break; 2604 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2605 rq->rq_flags |= RQF_QUIET; 2606 /* 2607 * Mark this request as started so we don't trigger 2608 * any debug logic in the end I/O path. 2609 */ 2610 blk_start_request(rq); 2611 __blk_end_request_all(rq, ret == BLKPREP_INVALID ? 2612 BLK_STS_TARGET : BLK_STS_IOERR); 2613 } else { 2614 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2615 break; 2616 } 2617 } 2618 2619 return rq; 2620 } 2621 EXPORT_SYMBOL(blk_peek_request); 2622 2623 static void blk_dequeue_request(struct request *rq) 2624 { 2625 struct request_queue *q = rq->q; 2626 2627 BUG_ON(list_empty(&rq->queuelist)); 2628 BUG_ON(ELV_ON_HASH(rq)); 2629 2630 list_del_init(&rq->queuelist); 2631 2632 /* 2633 * the time frame between a request being removed from the lists 2634 * and to it is freed is accounted as io that is in progress at 2635 * the driver side. 2636 */ 2637 if (blk_account_rq(rq)) { 2638 q->in_flight[rq_is_sync(rq)]++; 2639 set_io_start_time_ns(rq); 2640 } 2641 } 2642 2643 /** 2644 * blk_start_request - start request processing on the driver 2645 * @req: request to dequeue 2646 * 2647 * Description: 2648 * Dequeue @req and start timeout timer on it. This hands off the 2649 * request to the driver. 2650 */ 2651 void blk_start_request(struct request *req) 2652 { 2653 lockdep_assert_held(req->q->queue_lock); 2654 WARN_ON_ONCE(req->q->mq_ops); 2655 2656 blk_dequeue_request(req); 2657 2658 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2659 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req)); 2660 req->rq_flags |= RQF_STATS; 2661 wbt_issue(req->q->rq_wb, &req->issue_stat); 2662 } 2663 2664 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2665 blk_add_timer(req); 2666 } 2667 EXPORT_SYMBOL(blk_start_request); 2668 2669 /** 2670 * blk_fetch_request - fetch a request from a request queue 2671 * @q: request queue to fetch a request from 2672 * 2673 * Description: 2674 * Return the request at the top of @q. The request is started on 2675 * return and LLD can start processing it immediately. 2676 * 2677 * Return: 2678 * Pointer to the request at the top of @q if available. Null 2679 * otherwise. 2680 */ 2681 struct request *blk_fetch_request(struct request_queue *q) 2682 { 2683 struct request *rq; 2684 2685 lockdep_assert_held(q->queue_lock); 2686 WARN_ON_ONCE(q->mq_ops); 2687 2688 rq = blk_peek_request(q); 2689 if (rq) 2690 blk_start_request(rq); 2691 return rq; 2692 } 2693 EXPORT_SYMBOL(blk_fetch_request); 2694 2695 /** 2696 * blk_update_request - Special helper function for request stacking drivers 2697 * @req: the request being processed 2698 * @error: block status code 2699 * @nr_bytes: number of bytes to complete @req 2700 * 2701 * Description: 2702 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2703 * the request structure even if @req doesn't have leftover. 2704 * If @req has leftover, sets it up for the next range of segments. 2705 * 2706 * This special helper function is only for request stacking drivers 2707 * (e.g. request-based dm) so that they can handle partial completion. 2708 * Actual device drivers should use blk_end_request instead. 2709 * 2710 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2711 * %false return from this function. 2712 * 2713 * Return: 2714 * %false - this request doesn't have any more data 2715 * %true - this request has more data 2716 **/ 2717 bool blk_update_request(struct request *req, blk_status_t error, 2718 unsigned int nr_bytes) 2719 { 2720 int total_bytes; 2721 2722 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 2723 2724 if (!req->bio) 2725 return false; 2726 2727 if (unlikely(error && !blk_rq_is_passthrough(req) && 2728 !(req->rq_flags & RQF_QUIET))) 2729 print_req_error(req, error); 2730 2731 blk_account_io_completion(req, nr_bytes); 2732 2733 total_bytes = 0; 2734 while (req->bio) { 2735 struct bio *bio = req->bio; 2736 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2737 2738 if (bio_bytes == bio->bi_iter.bi_size) 2739 req->bio = bio->bi_next; 2740 2741 /* Completion has already been traced */ 2742 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 2743 req_bio_endio(req, bio, bio_bytes, error); 2744 2745 total_bytes += bio_bytes; 2746 nr_bytes -= bio_bytes; 2747 2748 if (!nr_bytes) 2749 break; 2750 } 2751 2752 /* 2753 * completely done 2754 */ 2755 if (!req->bio) { 2756 /* 2757 * Reset counters so that the request stacking driver 2758 * can find how many bytes remain in the request 2759 * later. 2760 */ 2761 req->__data_len = 0; 2762 return false; 2763 } 2764 2765 req->__data_len -= total_bytes; 2766 2767 /* update sector only for requests with clear definition of sector */ 2768 if (!blk_rq_is_passthrough(req)) 2769 req->__sector += total_bytes >> 9; 2770 2771 /* mixed attributes always follow the first bio */ 2772 if (req->rq_flags & RQF_MIXED_MERGE) { 2773 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2774 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 2775 } 2776 2777 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 2778 /* 2779 * If total number of sectors is less than the first segment 2780 * size, something has gone terribly wrong. 2781 */ 2782 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2783 blk_dump_rq_flags(req, "request botched"); 2784 req->__data_len = blk_rq_cur_bytes(req); 2785 } 2786 2787 /* recalculate the number of segments */ 2788 blk_recalc_rq_segments(req); 2789 } 2790 2791 return true; 2792 } 2793 EXPORT_SYMBOL_GPL(blk_update_request); 2794 2795 static bool blk_update_bidi_request(struct request *rq, blk_status_t error, 2796 unsigned int nr_bytes, 2797 unsigned int bidi_bytes) 2798 { 2799 if (blk_update_request(rq, error, nr_bytes)) 2800 return true; 2801 2802 /* Bidi request must be completed as a whole */ 2803 if (unlikely(blk_bidi_rq(rq)) && 2804 blk_update_request(rq->next_rq, error, bidi_bytes)) 2805 return true; 2806 2807 if (blk_queue_add_random(rq->q)) 2808 add_disk_randomness(rq->rq_disk); 2809 2810 return false; 2811 } 2812 2813 /** 2814 * blk_unprep_request - unprepare a request 2815 * @req: the request 2816 * 2817 * This function makes a request ready for complete resubmission (or 2818 * completion). It happens only after all error handling is complete, 2819 * so represents the appropriate moment to deallocate any resources 2820 * that were allocated to the request in the prep_rq_fn. The queue 2821 * lock is held when calling this. 2822 */ 2823 void blk_unprep_request(struct request *req) 2824 { 2825 struct request_queue *q = req->q; 2826 2827 req->rq_flags &= ~RQF_DONTPREP; 2828 if (q->unprep_rq_fn) 2829 q->unprep_rq_fn(q, req); 2830 } 2831 EXPORT_SYMBOL_GPL(blk_unprep_request); 2832 2833 void blk_finish_request(struct request *req, blk_status_t error) 2834 { 2835 struct request_queue *q = req->q; 2836 2837 lockdep_assert_held(req->q->queue_lock); 2838 WARN_ON_ONCE(q->mq_ops); 2839 2840 if (req->rq_flags & RQF_STATS) 2841 blk_stat_add(req); 2842 2843 if (req->rq_flags & RQF_QUEUED) 2844 blk_queue_end_tag(q, req); 2845 2846 BUG_ON(blk_queued_rq(req)); 2847 2848 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 2849 laptop_io_completion(req->q->backing_dev_info); 2850 2851 blk_delete_timer(req); 2852 2853 if (req->rq_flags & RQF_DONTPREP) 2854 blk_unprep_request(req); 2855 2856 blk_account_io_done(req); 2857 2858 if (req->end_io) { 2859 wbt_done(req->q->rq_wb, &req->issue_stat); 2860 req->end_io(req, error); 2861 } else { 2862 if (blk_bidi_rq(req)) 2863 __blk_put_request(req->next_rq->q, req->next_rq); 2864 2865 __blk_put_request(q, req); 2866 } 2867 } 2868 EXPORT_SYMBOL(blk_finish_request); 2869 2870 /** 2871 * blk_end_bidi_request - Complete a bidi request 2872 * @rq: the request to complete 2873 * @error: block status code 2874 * @nr_bytes: number of bytes to complete @rq 2875 * @bidi_bytes: number of bytes to complete @rq->next_rq 2876 * 2877 * Description: 2878 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2879 * Drivers that supports bidi can safely call this member for any 2880 * type of request, bidi or uni. In the later case @bidi_bytes is 2881 * just ignored. 2882 * 2883 * Return: 2884 * %false - we are done with this request 2885 * %true - still buffers pending for this request 2886 **/ 2887 static bool blk_end_bidi_request(struct request *rq, blk_status_t error, 2888 unsigned int nr_bytes, unsigned int bidi_bytes) 2889 { 2890 struct request_queue *q = rq->q; 2891 unsigned long flags; 2892 2893 WARN_ON_ONCE(q->mq_ops); 2894 2895 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2896 return true; 2897 2898 spin_lock_irqsave(q->queue_lock, flags); 2899 blk_finish_request(rq, error); 2900 spin_unlock_irqrestore(q->queue_lock, flags); 2901 2902 return false; 2903 } 2904 2905 /** 2906 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2907 * @rq: the request to complete 2908 * @error: block status code 2909 * @nr_bytes: number of bytes to complete @rq 2910 * @bidi_bytes: number of bytes to complete @rq->next_rq 2911 * 2912 * Description: 2913 * Identical to blk_end_bidi_request() except that queue lock is 2914 * assumed to be locked on entry and remains so on return. 2915 * 2916 * Return: 2917 * %false - we are done with this request 2918 * %true - still buffers pending for this request 2919 **/ 2920 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error, 2921 unsigned int nr_bytes, unsigned int bidi_bytes) 2922 { 2923 lockdep_assert_held(rq->q->queue_lock); 2924 WARN_ON_ONCE(rq->q->mq_ops); 2925 2926 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2927 return true; 2928 2929 blk_finish_request(rq, error); 2930 2931 return false; 2932 } 2933 2934 /** 2935 * blk_end_request - Helper function for drivers to complete the request. 2936 * @rq: the request being processed 2937 * @error: block status code 2938 * @nr_bytes: number of bytes to complete 2939 * 2940 * Description: 2941 * Ends I/O on a number of bytes attached to @rq. 2942 * If @rq has leftover, sets it up for the next range of segments. 2943 * 2944 * Return: 2945 * %false - we are done with this request 2946 * %true - still buffers pending for this request 2947 **/ 2948 bool blk_end_request(struct request *rq, blk_status_t error, 2949 unsigned int nr_bytes) 2950 { 2951 WARN_ON_ONCE(rq->q->mq_ops); 2952 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2953 } 2954 EXPORT_SYMBOL(blk_end_request); 2955 2956 /** 2957 * blk_end_request_all - Helper function for drives to finish the request. 2958 * @rq: the request to finish 2959 * @error: block status code 2960 * 2961 * Description: 2962 * Completely finish @rq. 2963 */ 2964 void blk_end_request_all(struct request *rq, blk_status_t error) 2965 { 2966 bool pending; 2967 unsigned int bidi_bytes = 0; 2968 2969 if (unlikely(blk_bidi_rq(rq))) 2970 bidi_bytes = blk_rq_bytes(rq->next_rq); 2971 2972 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2973 BUG_ON(pending); 2974 } 2975 EXPORT_SYMBOL(blk_end_request_all); 2976 2977 /** 2978 * __blk_end_request - Helper function for drivers to complete the request. 2979 * @rq: the request being processed 2980 * @error: block status code 2981 * @nr_bytes: number of bytes to complete 2982 * 2983 * Description: 2984 * Must be called with queue lock held unlike blk_end_request(). 2985 * 2986 * Return: 2987 * %false - we are done with this request 2988 * %true - still buffers pending for this request 2989 **/ 2990 bool __blk_end_request(struct request *rq, blk_status_t error, 2991 unsigned int nr_bytes) 2992 { 2993 lockdep_assert_held(rq->q->queue_lock); 2994 WARN_ON_ONCE(rq->q->mq_ops); 2995 2996 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2997 } 2998 EXPORT_SYMBOL(__blk_end_request); 2999 3000 /** 3001 * __blk_end_request_all - Helper function for drives to finish the request. 3002 * @rq: the request to finish 3003 * @error: block status code 3004 * 3005 * Description: 3006 * Completely finish @rq. Must be called with queue lock held. 3007 */ 3008 void __blk_end_request_all(struct request *rq, blk_status_t error) 3009 { 3010 bool pending; 3011 unsigned int bidi_bytes = 0; 3012 3013 lockdep_assert_held(rq->q->queue_lock); 3014 WARN_ON_ONCE(rq->q->mq_ops); 3015 3016 if (unlikely(blk_bidi_rq(rq))) 3017 bidi_bytes = blk_rq_bytes(rq->next_rq); 3018 3019 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3020 BUG_ON(pending); 3021 } 3022 EXPORT_SYMBOL(__blk_end_request_all); 3023 3024 /** 3025 * __blk_end_request_cur - Helper function to finish the current request chunk. 3026 * @rq: the request to finish the current chunk for 3027 * @error: block status code 3028 * 3029 * Description: 3030 * Complete the current consecutively mapped chunk from @rq. Must 3031 * be called with queue lock held. 3032 * 3033 * Return: 3034 * %false - we are done with this request 3035 * %true - still buffers pending for this request 3036 */ 3037 bool __blk_end_request_cur(struct request *rq, blk_status_t error) 3038 { 3039 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 3040 } 3041 EXPORT_SYMBOL(__blk_end_request_cur); 3042 3043 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 3044 struct bio *bio) 3045 { 3046 if (bio_has_data(bio)) 3047 rq->nr_phys_segments = bio_phys_segments(q, bio); 3048 3049 rq->__data_len = bio->bi_iter.bi_size; 3050 rq->bio = rq->biotail = bio; 3051 3052 if (bio->bi_disk) 3053 rq->rq_disk = bio->bi_disk; 3054 } 3055 3056 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 3057 /** 3058 * rq_flush_dcache_pages - Helper function to flush all pages in a request 3059 * @rq: the request to be flushed 3060 * 3061 * Description: 3062 * Flush all pages in @rq. 3063 */ 3064 void rq_flush_dcache_pages(struct request *rq) 3065 { 3066 struct req_iterator iter; 3067 struct bio_vec bvec; 3068 3069 rq_for_each_segment(bvec, rq, iter) 3070 flush_dcache_page(bvec.bv_page); 3071 } 3072 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 3073 #endif 3074 3075 /** 3076 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 3077 * @q : the queue of the device being checked 3078 * 3079 * Description: 3080 * Check if underlying low-level drivers of a device are busy. 3081 * If the drivers want to export their busy state, they must set own 3082 * exporting function using blk_queue_lld_busy() first. 3083 * 3084 * Basically, this function is used only by request stacking drivers 3085 * to stop dispatching requests to underlying devices when underlying 3086 * devices are busy. This behavior helps more I/O merging on the queue 3087 * of the request stacking driver and prevents I/O throughput regression 3088 * on burst I/O load. 3089 * 3090 * Return: 3091 * 0 - Not busy (The request stacking driver should dispatch request) 3092 * 1 - Busy (The request stacking driver should stop dispatching request) 3093 */ 3094 int blk_lld_busy(struct request_queue *q) 3095 { 3096 if (q->lld_busy_fn) 3097 return q->lld_busy_fn(q); 3098 3099 return 0; 3100 } 3101 EXPORT_SYMBOL_GPL(blk_lld_busy); 3102 3103 /** 3104 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3105 * @rq: the clone request to be cleaned up 3106 * 3107 * Description: 3108 * Free all bios in @rq for a cloned request. 3109 */ 3110 void blk_rq_unprep_clone(struct request *rq) 3111 { 3112 struct bio *bio; 3113 3114 while ((bio = rq->bio) != NULL) { 3115 rq->bio = bio->bi_next; 3116 3117 bio_put(bio); 3118 } 3119 } 3120 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3121 3122 /* 3123 * Copy attributes of the original request to the clone request. 3124 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3125 */ 3126 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3127 { 3128 dst->cpu = src->cpu; 3129 dst->__sector = blk_rq_pos(src); 3130 dst->__data_len = blk_rq_bytes(src); 3131 dst->nr_phys_segments = src->nr_phys_segments; 3132 dst->ioprio = src->ioprio; 3133 dst->extra_len = src->extra_len; 3134 } 3135 3136 /** 3137 * blk_rq_prep_clone - Helper function to setup clone request 3138 * @rq: the request to be setup 3139 * @rq_src: original request to be cloned 3140 * @bs: bio_set that bios for clone are allocated from 3141 * @gfp_mask: memory allocation mask for bio 3142 * @bio_ctr: setup function to be called for each clone bio. 3143 * Returns %0 for success, non %0 for failure. 3144 * @data: private data to be passed to @bio_ctr 3145 * 3146 * Description: 3147 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3148 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3149 * are not copied, and copying such parts is the caller's responsibility. 3150 * Also, pages which the original bios are pointing to are not copied 3151 * and the cloned bios just point same pages. 3152 * So cloned bios must be completed before original bios, which means 3153 * the caller must complete @rq before @rq_src. 3154 */ 3155 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3156 struct bio_set *bs, gfp_t gfp_mask, 3157 int (*bio_ctr)(struct bio *, struct bio *, void *), 3158 void *data) 3159 { 3160 struct bio *bio, *bio_src; 3161 3162 if (!bs) 3163 bs = fs_bio_set; 3164 3165 __rq_for_each_bio(bio_src, rq_src) { 3166 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3167 if (!bio) 3168 goto free_and_out; 3169 3170 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3171 goto free_and_out; 3172 3173 if (rq->bio) { 3174 rq->biotail->bi_next = bio; 3175 rq->biotail = bio; 3176 } else 3177 rq->bio = rq->biotail = bio; 3178 } 3179 3180 __blk_rq_prep_clone(rq, rq_src); 3181 3182 return 0; 3183 3184 free_and_out: 3185 if (bio) 3186 bio_put(bio); 3187 blk_rq_unprep_clone(rq); 3188 3189 return -ENOMEM; 3190 } 3191 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3192 3193 int kblockd_schedule_work(struct work_struct *work) 3194 { 3195 return queue_work(kblockd_workqueue, work); 3196 } 3197 EXPORT_SYMBOL(kblockd_schedule_work); 3198 3199 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3200 { 3201 return queue_work_on(cpu, kblockd_workqueue, work); 3202 } 3203 EXPORT_SYMBOL(kblockd_schedule_work_on); 3204 3205 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 3206 unsigned long delay) 3207 { 3208 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3209 } 3210 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 3211 3212 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 3213 unsigned long delay) 3214 { 3215 return queue_delayed_work(kblockd_workqueue, dwork, delay); 3216 } 3217 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 3218 3219 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3220 unsigned long delay) 3221 { 3222 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3223 } 3224 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 3225 3226 /** 3227 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3228 * @plug: The &struct blk_plug that needs to be initialized 3229 * 3230 * Description: 3231 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3232 * pending I/O should the task end up blocking between blk_start_plug() and 3233 * blk_finish_plug(). This is important from a performance perspective, but 3234 * also ensures that we don't deadlock. For instance, if the task is blocking 3235 * for a memory allocation, memory reclaim could end up wanting to free a 3236 * page belonging to that request that is currently residing in our private 3237 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3238 * this kind of deadlock. 3239 */ 3240 void blk_start_plug(struct blk_plug *plug) 3241 { 3242 struct task_struct *tsk = current; 3243 3244 /* 3245 * If this is a nested plug, don't actually assign it. 3246 */ 3247 if (tsk->plug) 3248 return; 3249 3250 INIT_LIST_HEAD(&plug->list); 3251 INIT_LIST_HEAD(&plug->mq_list); 3252 INIT_LIST_HEAD(&plug->cb_list); 3253 /* 3254 * Store ordering should not be needed here, since a potential 3255 * preempt will imply a full memory barrier 3256 */ 3257 tsk->plug = plug; 3258 } 3259 EXPORT_SYMBOL(blk_start_plug); 3260 3261 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3262 { 3263 struct request *rqa = container_of(a, struct request, queuelist); 3264 struct request *rqb = container_of(b, struct request, queuelist); 3265 3266 return !(rqa->q < rqb->q || 3267 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3268 } 3269 3270 /* 3271 * If 'from_schedule' is true, then postpone the dispatch of requests 3272 * until a safe kblockd context. We due this to avoid accidental big 3273 * additional stack usage in driver dispatch, in places where the originally 3274 * plugger did not intend it. 3275 */ 3276 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3277 bool from_schedule) 3278 __releases(q->queue_lock) 3279 { 3280 lockdep_assert_held(q->queue_lock); 3281 3282 trace_block_unplug(q, depth, !from_schedule); 3283 3284 if (from_schedule) 3285 blk_run_queue_async(q); 3286 else 3287 __blk_run_queue(q); 3288 spin_unlock(q->queue_lock); 3289 } 3290 3291 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3292 { 3293 LIST_HEAD(callbacks); 3294 3295 while (!list_empty(&plug->cb_list)) { 3296 list_splice_init(&plug->cb_list, &callbacks); 3297 3298 while (!list_empty(&callbacks)) { 3299 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3300 struct blk_plug_cb, 3301 list); 3302 list_del(&cb->list); 3303 cb->callback(cb, from_schedule); 3304 } 3305 } 3306 } 3307 3308 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3309 int size) 3310 { 3311 struct blk_plug *plug = current->plug; 3312 struct blk_plug_cb *cb; 3313 3314 if (!plug) 3315 return NULL; 3316 3317 list_for_each_entry(cb, &plug->cb_list, list) 3318 if (cb->callback == unplug && cb->data == data) 3319 return cb; 3320 3321 /* Not currently on the callback list */ 3322 BUG_ON(size < sizeof(*cb)); 3323 cb = kzalloc(size, GFP_ATOMIC); 3324 if (cb) { 3325 cb->data = data; 3326 cb->callback = unplug; 3327 list_add(&cb->list, &plug->cb_list); 3328 } 3329 return cb; 3330 } 3331 EXPORT_SYMBOL(blk_check_plugged); 3332 3333 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3334 { 3335 struct request_queue *q; 3336 unsigned long flags; 3337 struct request *rq; 3338 LIST_HEAD(list); 3339 unsigned int depth; 3340 3341 flush_plug_callbacks(plug, from_schedule); 3342 3343 if (!list_empty(&plug->mq_list)) 3344 blk_mq_flush_plug_list(plug, from_schedule); 3345 3346 if (list_empty(&plug->list)) 3347 return; 3348 3349 list_splice_init(&plug->list, &list); 3350 3351 list_sort(NULL, &list, plug_rq_cmp); 3352 3353 q = NULL; 3354 depth = 0; 3355 3356 /* 3357 * Save and disable interrupts here, to avoid doing it for every 3358 * queue lock we have to take. 3359 */ 3360 local_irq_save(flags); 3361 while (!list_empty(&list)) { 3362 rq = list_entry_rq(list.next); 3363 list_del_init(&rq->queuelist); 3364 BUG_ON(!rq->q); 3365 if (rq->q != q) { 3366 /* 3367 * This drops the queue lock 3368 */ 3369 if (q) 3370 queue_unplugged(q, depth, from_schedule); 3371 q = rq->q; 3372 depth = 0; 3373 spin_lock(q->queue_lock); 3374 } 3375 3376 /* 3377 * Short-circuit if @q is dead 3378 */ 3379 if (unlikely(blk_queue_dying(q))) { 3380 __blk_end_request_all(rq, BLK_STS_IOERR); 3381 continue; 3382 } 3383 3384 /* 3385 * rq is already accounted, so use raw insert 3386 */ 3387 if (op_is_flush(rq->cmd_flags)) 3388 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3389 else 3390 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3391 3392 depth++; 3393 } 3394 3395 /* 3396 * This drops the queue lock 3397 */ 3398 if (q) 3399 queue_unplugged(q, depth, from_schedule); 3400 3401 local_irq_restore(flags); 3402 } 3403 3404 void blk_finish_plug(struct blk_plug *plug) 3405 { 3406 if (plug != current->plug) 3407 return; 3408 blk_flush_plug_list(plug, false); 3409 3410 current->plug = NULL; 3411 } 3412 EXPORT_SYMBOL(blk_finish_plug); 3413 3414 #ifdef CONFIG_PM 3415 /** 3416 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3417 * @q: the queue of the device 3418 * @dev: the device the queue belongs to 3419 * 3420 * Description: 3421 * Initialize runtime-PM-related fields for @q and start auto suspend for 3422 * @dev. Drivers that want to take advantage of request-based runtime PM 3423 * should call this function after @dev has been initialized, and its 3424 * request queue @q has been allocated, and runtime PM for it can not happen 3425 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3426 * cases, driver should call this function before any I/O has taken place. 3427 * 3428 * This function takes care of setting up using auto suspend for the device, 3429 * the autosuspend delay is set to -1 to make runtime suspend impossible 3430 * until an updated value is either set by user or by driver. Drivers do 3431 * not need to touch other autosuspend settings. 3432 * 3433 * The block layer runtime PM is request based, so only works for drivers 3434 * that use request as their IO unit instead of those directly use bio's. 3435 */ 3436 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3437 { 3438 /* not support for RQF_PM and ->rpm_status in blk-mq yet */ 3439 if (q->mq_ops) 3440 return; 3441 3442 q->dev = dev; 3443 q->rpm_status = RPM_ACTIVE; 3444 pm_runtime_set_autosuspend_delay(q->dev, -1); 3445 pm_runtime_use_autosuspend(q->dev); 3446 } 3447 EXPORT_SYMBOL(blk_pm_runtime_init); 3448 3449 /** 3450 * blk_pre_runtime_suspend - Pre runtime suspend check 3451 * @q: the queue of the device 3452 * 3453 * Description: 3454 * This function will check if runtime suspend is allowed for the device 3455 * by examining if there are any requests pending in the queue. If there 3456 * are requests pending, the device can not be runtime suspended; otherwise, 3457 * the queue's status will be updated to SUSPENDING and the driver can 3458 * proceed to suspend the device. 3459 * 3460 * For the not allowed case, we mark last busy for the device so that 3461 * runtime PM core will try to autosuspend it some time later. 3462 * 3463 * This function should be called near the start of the device's 3464 * runtime_suspend callback. 3465 * 3466 * Return: 3467 * 0 - OK to runtime suspend the device 3468 * -EBUSY - Device should not be runtime suspended 3469 */ 3470 int blk_pre_runtime_suspend(struct request_queue *q) 3471 { 3472 int ret = 0; 3473 3474 if (!q->dev) 3475 return ret; 3476 3477 spin_lock_irq(q->queue_lock); 3478 if (q->nr_pending) { 3479 ret = -EBUSY; 3480 pm_runtime_mark_last_busy(q->dev); 3481 } else { 3482 q->rpm_status = RPM_SUSPENDING; 3483 } 3484 spin_unlock_irq(q->queue_lock); 3485 return ret; 3486 } 3487 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3488 3489 /** 3490 * blk_post_runtime_suspend - Post runtime suspend processing 3491 * @q: the queue of the device 3492 * @err: return value of the device's runtime_suspend function 3493 * 3494 * Description: 3495 * Update the queue's runtime status according to the return value of the 3496 * device's runtime suspend function and mark last busy for the device so 3497 * that PM core will try to auto suspend the device at a later time. 3498 * 3499 * This function should be called near the end of the device's 3500 * runtime_suspend callback. 3501 */ 3502 void blk_post_runtime_suspend(struct request_queue *q, int err) 3503 { 3504 if (!q->dev) 3505 return; 3506 3507 spin_lock_irq(q->queue_lock); 3508 if (!err) { 3509 q->rpm_status = RPM_SUSPENDED; 3510 } else { 3511 q->rpm_status = RPM_ACTIVE; 3512 pm_runtime_mark_last_busy(q->dev); 3513 } 3514 spin_unlock_irq(q->queue_lock); 3515 } 3516 EXPORT_SYMBOL(blk_post_runtime_suspend); 3517 3518 /** 3519 * blk_pre_runtime_resume - Pre runtime resume processing 3520 * @q: the queue of the device 3521 * 3522 * Description: 3523 * Update the queue's runtime status to RESUMING in preparation for the 3524 * runtime resume of the device. 3525 * 3526 * This function should be called near the start of the device's 3527 * runtime_resume callback. 3528 */ 3529 void blk_pre_runtime_resume(struct request_queue *q) 3530 { 3531 if (!q->dev) 3532 return; 3533 3534 spin_lock_irq(q->queue_lock); 3535 q->rpm_status = RPM_RESUMING; 3536 spin_unlock_irq(q->queue_lock); 3537 } 3538 EXPORT_SYMBOL(blk_pre_runtime_resume); 3539 3540 /** 3541 * blk_post_runtime_resume - Post runtime resume processing 3542 * @q: the queue of the device 3543 * @err: return value of the device's runtime_resume function 3544 * 3545 * Description: 3546 * Update the queue's runtime status according to the return value of the 3547 * device's runtime_resume function. If it is successfully resumed, process 3548 * the requests that are queued into the device's queue when it is resuming 3549 * and then mark last busy and initiate autosuspend for it. 3550 * 3551 * This function should be called near the end of the device's 3552 * runtime_resume callback. 3553 */ 3554 void blk_post_runtime_resume(struct request_queue *q, int err) 3555 { 3556 if (!q->dev) 3557 return; 3558 3559 spin_lock_irq(q->queue_lock); 3560 if (!err) { 3561 q->rpm_status = RPM_ACTIVE; 3562 __blk_run_queue(q); 3563 pm_runtime_mark_last_busy(q->dev); 3564 pm_request_autosuspend(q->dev); 3565 } else { 3566 q->rpm_status = RPM_SUSPENDED; 3567 } 3568 spin_unlock_irq(q->queue_lock); 3569 } 3570 EXPORT_SYMBOL(blk_post_runtime_resume); 3571 3572 /** 3573 * blk_set_runtime_active - Force runtime status of the queue to be active 3574 * @q: the queue of the device 3575 * 3576 * If the device is left runtime suspended during system suspend the resume 3577 * hook typically resumes the device and corrects runtime status 3578 * accordingly. However, that does not affect the queue runtime PM status 3579 * which is still "suspended". This prevents processing requests from the 3580 * queue. 3581 * 3582 * This function can be used in driver's resume hook to correct queue 3583 * runtime PM status and re-enable peeking requests from the queue. It 3584 * should be called before first request is added to the queue. 3585 */ 3586 void blk_set_runtime_active(struct request_queue *q) 3587 { 3588 spin_lock_irq(q->queue_lock); 3589 q->rpm_status = RPM_ACTIVE; 3590 pm_runtime_mark_last_busy(q->dev); 3591 pm_request_autosuspend(q->dev); 3592 spin_unlock_irq(q->queue_lock); 3593 } 3594 EXPORT_SYMBOL(blk_set_runtime_active); 3595 #endif 3596 3597 int __init blk_dev_init(void) 3598 { 3599 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3600 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3601 FIELD_SIZEOF(struct request, cmd_flags)); 3602 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3603 FIELD_SIZEOF(struct bio, bi_opf)); 3604 3605 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3606 kblockd_workqueue = alloc_workqueue("kblockd", 3607 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3608 if (!kblockd_workqueue) 3609 panic("Failed to create kblockd\n"); 3610 3611 request_cachep = kmem_cache_create("blkdev_requests", 3612 sizeof(struct request), 0, SLAB_PANIC, NULL); 3613 3614 blk_requestq_cachep = kmem_cache_create("request_queue", 3615 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3616 3617 #ifdef CONFIG_DEBUG_FS 3618 blk_debugfs_root = debugfs_create_dir("block", NULL); 3619 #endif 3620 3621 return 0; 3622 } 3623