1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/block.h> 39 40 #include "blk.h" 41 #include "blk-mq.h" 42 43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 48 49 DEFINE_IDA(blk_queue_ida); 50 51 /* 52 * For the allocated request tables 53 */ 54 struct kmem_cache *request_cachep; 55 56 /* 57 * For queue allocation 58 */ 59 struct kmem_cache *blk_requestq_cachep; 60 61 /* 62 * Controlling structure to kblockd 63 */ 64 static struct workqueue_struct *kblockd_workqueue; 65 66 static void blk_clear_congested(struct request_list *rl, int sync) 67 { 68 #ifdef CONFIG_CGROUP_WRITEBACK 69 clear_wb_congested(rl->blkg->wb_congested, sync); 70 #else 71 /* 72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 73 * flip its congestion state for events on other blkcgs. 74 */ 75 if (rl == &rl->q->root_rl) 76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync); 77 #endif 78 } 79 80 static void blk_set_congested(struct request_list *rl, int sync) 81 { 82 #ifdef CONFIG_CGROUP_WRITEBACK 83 set_wb_congested(rl->blkg->wb_congested, sync); 84 #else 85 /* see blk_clear_congested() */ 86 if (rl == &rl->q->root_rl) 87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync); 88 #endif 89 } 90 91 void blk_queue_congestion_threshold(struct request_queue *q) 92 { 93 int nr; 94 95 nr = q->nr_requests - (q->nr_requests / 8) + 1; 96 if (nr > q->nr_requests) 97 nr = q->nr_requests; 98 q->nr_congestion_on = nr; 99 100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 101 if (nr < 1) 102 nr = 1; 103 q->nr_congestion_off = nr; 104 } 105 106 /** 107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 108 * @bdev: device 109 * 110 * Locates the passed device's request queue and returns the address of its 111 * backing_dev_info. This function can only be called if @bdev is opened 112 * and the return value is never NULL. 113 */ 114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 115 { 116 struct request_queue *q = bdev_get_queue(bdev); 117 118 return &q->backing_dev_info; 119 } 120 EXPORT_SYMBOL(blk_get_backing_dev_info); 121 122 void blk_rq_init(struct request_queue *q, struct request *rq) 123 { 124 memset(rq, 0, sizeof(*rq)); 125 126 INIT_LIST_HEAD(&rq->queuelist); 127 INIT_LIST_HEAD(&rq->timeout_list); 128 rq->cpu = -1; 129 rq->q = q; 130 rq->__sector = (sector_t) -1; 131 INIT_HLIST_NODE(&rq->hash); 132 RB_CLEAR_NODE(&rq->rb_node); 133 rq->cmd = rq->__cmd; 134 rq->cmd_len = BLK_MAX_CDB; 135 rq->tag = -1; 136 rq->start_time = jiffies; 137 set_start_time_ns(rq); 138 rq->part = NULL; 139 } 140 EXPORT_SYMBOL(blk_rq_init); 141 142 static void req_bio_endio(struct request *rq, struct bio *bio, 143 unsigned int nbytes, int error) 144 { 145 if (error) 146 bio->bi_error = error; 147 148 if (unlikely(rq->cmd_flags & REQ_QUIET)) 149 bio_set_flag(bio, BIO_QUIET); 150 151 bio_advance(bio, nbytes); 152 153 /* don't actually finish bio if it's part of flush sequence */ 154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 155 bio_endio(bio); 156 } 157 158 void blk_dump_rq_flags(struct request *rq, char *msg) 159 { 160 int bit; 161 162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg, 163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 164 (unsigned long long) rq->cmd_flags); 165 166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 167 (unsigned long long)blk_rq_pos(rq), 168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 169 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 170 rq->bio, rq->biotail, blk_rq_bytes(rq)); 171 172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 173 printk(KERN_INFO " cdb: "); 174 for (bit = 0; bit < BLK_MAX_CDB; bit++) 175 printk("%02x ", rq->cmd[bit]); 176 printk("\n"); 177 } 178 } 179 EXPORT_SYMBOL(blk_dump_rq_flags); 180 181 static void blk_delay_work(struct work_struct *work) 182 { 183 struct request_queue *q; 184 185 q = container_of(work, struct request_queue, delay_work.work); 186 spin_lock_irq(q->queue_lock); 187 __blk_run_queue(q); 188 spin_unlock_irq(q->queue_lock); 189 } 190 191 /** 192 * blk_delay_queue - restart queueing after defined interval 193 * @q: The &struct request_queue in question 194 * @msecs: Delay in msecs 195 * 196 * Description: 197 * Sometimes queueing needs to be postponed for a little while, to allow 198 * resources to come back. This function will make sure that queueing is 199 * restarted around the specified time. Queue lock must be held. 200 */ 201 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 202 { 203 if (likely(!blk_queue_dead(q))) 204 queue_delayed_work(kblockd_workqueue, &q->delay_work, 205 msecs_to_jiffies(msecs)); 206 } 207 EXPORT_SYMBOL(blk_delay_queue); 208 209 /** 210 * blk_start_queue_async - asynchronously restart a previously stopped queue 211 * @q: The &struct request_queue in question 212 * 213 * Description: 214 * blk_start_queue_async() will clear the stop flag on the queue, and 215 * ensure that the request_fn for the queue is run from an async 216 * context. 217 **/ 218 void blk_start_queue_async(struct request_queue *q) 219 { 220 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 221 blk_run_queue_async(q); 222 } 223 EXPORT_SYMBOL(blk_start_queue_async); 224 225 /** 226 * blk_start_queue - restart a previously stopped queue 227 * @q: The &struct request_queue in question 228 * 229 * Description: 230 * blk_start_queue() will clear the stop flag on the queue, and call 231 * the request_fn for the queue if it was in a stopped state when 232 * entered. Also see blk_stop_queue(). Queue lock must be held. 233 **/ 234 void blk_start_queue(struct request_queue *q) 235 { 236 WARN_ON(!irqs_disabled()); 237 238 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 239 __blk_run_queue(q); 240 } 241 EXPORT_SYMBOL(blk_start_queue); 242 243 /** 244 * blk_stop_queue - stop a queue 245 * @q: The &struct request_queue in question 246 * 247 * Description: 248 * The Linux block layer assumes that a block driver will consume all 249 * entries on the request queue when the request_fn strategy is called. 250 * Often this will not happen, because of hardware limitations (queue 251 * depth settings). If a device driver gets a 'queue full' response, 252 * or if it simply chooses not to queue more I/O at one point, it can 253 * call this function to prevent the request_fn from being called until 254 * the driver has signalled it's ready to go again. This happens by calling 255 * blk_start_queue() to restart queue operations. Queue lock must be held. 256 **/ 257 void blk_stop_queue(struct request_queue *q) 258 { 259 cancel_delayed_work(&q->delay_work); 260 queue_flag_set(QUEUE_FLAG_STOPPED, q); 261 } 262 EXPORT_SYMBOL(blk_stop_queue); 263 264 /** 265 * blk_sync_queue - cancel any pending callbacks on a queue 266 * @q: the queue 267 * 268 * Description: 269 * The block layer may perform asynchronous callback activity 270 * on a queue, such as calling the unplug function after a timeout. 271 * A block device may call blk_sync_queue to ensure that any 272 * such activity is cancelled, thus allowing it to release resources 273 * that the callbacks might use. The caller must already have made sure 274 * that its ->make_request_fn will not re-add plugging prior to calling 275 * this function. 276 * 277 * This function does not cancel any asynchronous activity arising 278 * out of elevator or throttling code. That would require elevator_exit() 279 * and blkcg_exit_queue() to be called with queue lock initialized. 280 * 281 */ 282 void blk_sync_queue(struct request_queue *q) 283 { 284 del_timer_sync(&q->timeout); 285 286 if (q->mq_ops) { 287 struct blk_mq_hw_ctx *hctx; 288 int i; 289 290 queue_for_each_hw_ctx(q, hctx, i) { 291 cancel_work_sync(&hctx->run_work); 292 cancel_delayed_work_sync(&hctx->delay_work); 293 } 294 } else { 295 cancel_delayed_work_sync(&q->delay_work); 296 } 297 } 298 EXPORT_SYMBOL(blk_sync_queue); 299 300 /** 301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 302 * @q: The queue to run 303 * 304 * Description: 305 * Invoke request handling on a queue if there are any pending requests. 306 * May be used to restart request handling after a request has completed. 307 * This variant runs the queue whether or not the queue has been 308 * stopped. Must be called with the queue lock held and interrupts 309 * disabled. See also @blk_run_queue. 310 */ 311 inline void __blk_run_queue_uncond(struct request_queue *q) 312 { 313 if (unlikely(blk_queue_dead(q))) 314 return; 315 316 /* 317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 318 * the queue lock internally. As a result multiple threads may be 319 * running such a request function concurrently. Keep track of the 320 * number of active request_fn invocations such that blk_drain_queue() 321 * can wait until all these request_fn calls have finished. 322 */ 323 q->request_fn_active++; 324 q->request_fn(q); 325 q->request_fn_active--; 326 } 327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 328 329 /** 330 * __blk_run_queue - run a single device queue 331 * @q: The queue to run 332 * 333 * Description: 334 * See @blk_run_queue. This variant must be called with the queue lock 335 * held and interrupts disabled. 336 */ 337 void __blk_run_queue(struct request_queue *q) 338 { 339 if (unlikely(blk_queue_stopped(q))) 340 return; 341 342 __blk_run_queue_uncond(q); 343 } 344 EXPORT_SYMBOL(__blk_run_queue); 345 346 /** 347 * blk_run_queue_async - run a single device queue in workqueue context 348 * @q: The queue to run 349 * 350 * Description: 351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 352 * of us. The caller must hold the queue lock. 353 */ 354 void blk_run_queue_async(struct request_queue *q) 355 { 356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 358 } 359 EXPORT_SYMBOL(blk_run_queue_async); 360 361 /** 362 * blk_run_queue - run a single device queue 363 * @q: The queue to run 364 * 365 * Description: 366 * Invoke request handling on this queue, if it has pending work to do. 367 * May be used to restart queueing when a request has completed. 368 */ 369 void blk_run_queue(struct request_queue *q) 370 { 371 unsigned long flags; 372 373 spin_lock_irqsave(q->queue_lock, flags); 374 __blk_run_queue(q); 375 spin_unlock_irqrestore(q->queue_lock, flags); 376 } 377 EXPORT_SYMBOL(blk_run_queue); 378 379 void blk_put_queue(struct request_queue *q) 380 { 381 kobject_put(&q->kobj); 382 } 383 EXPORT_SYMBOL(blk_put_queue); 384 385 /** 386 * __blk_drain_queue - drain requests from request_queue 387 * @q: queue to drain 388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 389 * 390 * Drain requests from @q. If @drain_all is set, all requests are drained. 391 * If not, only ELVPRIV requests are drained. The caller is responsible 392 * for ensuring that no new requests which need to be drained are queued. 393 */ 394 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 395 __releases(q->queue_lock) 396 __acquires(q->queue_lock) 397 { 398 int i; 399 400 lockdep_assert_held(q->queue_lock); 401 402 while (true) { 403 bool drain = false; 404 405 /* 406 * The caller might be trying to drain @q before its 407 * elevator is initialized. 408 */ 409 if (q->elevator) 410 elv_drain_elevator(q); 411 412 blkcg_drain_queue(q); 413 414 /* 415 * This function might be called on a queue which failed 416 * driver init after queue creation or is not yet fully 417 * active yet. Some drivers (e.g. fd and loop) get unhappy 418 * in such cases. Kick queue iff dispatch queue has 419 * something on it and @q has request_fn set. 420 */ 421 if (!list_empty(&q->queue_head) && q->request_fn) 422 __blk_run_queue(q); 423 424 drain |= q->nr_rqs_elvpriv; 425 drain |= q->request_fn_active; 426 427 /* 428 * Unfortunately, requests are queued at and tracked from 429 * multiple places and there's no single counter which can 430 * be drained. Check all the queues and counters. 431 */ 432 if (drain_all) { 433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 434 drain |= !list_empty(&q->queue_head); 435 for (i = 0; i < 2; i++) { 436 drain |= q->nr_rqs[i]; 437 drain |= q->in_flight[i]; 438 if (fq) 439 drain |= !list_empty(&fq->flush_queue[i]); 440 } 441 } 442 443 if (!drain) 444 break; 445 446 spin_unlock_irq(q->queue_lock); 447 448 msleep(10); 449 450 spin_lock_irq(q->queue_lock); 451 } 452 453 /* 454 * With queue marked dead, any woken up waiter will fail the 455 * allocation path, so the wakeup chaining is lost and we're 456 * left with hung waiters. We need to wake up those waiters. 457 */ 458 if (q->request_fn) { 459 struct request_list *rl; 460 461 blk_queue_for_each_rl(rl, q) 462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 463 wake_up_all(&rl->wait[i]); 464 } 465 } 466 467 /** 468 * blk_queue_bypass_start - enter queue bypass mode 469 * @q: queue of interest 470 * 471 * In bypass mode, only the dispatch FIFO queue of @q is used. This 472 * function makes @q enter bypass mode and drains all requests which were 473 * throttled or issued before. On return, it's guaranteed that no request 474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 475 * inside queue or RCU read lock. 476 */ 477 void blk_queue_bypass_start(struct request_queue *q) 478 { 479 spin_lock_irq(q->queue_lock); 480 q->bypass_depth++; 481 queue_flag_set(QUEUE_FLAG_BYPASS, q); 482 spin_unlock_irq(q->queue_lock); 483 484 /* 485 * Queues start drained. Skip actual draining till init is 486 * complete. This avoids lenghty delays during queue init which 487 * can happen many times during boot. 488 */ 489 if (blk_queue_init_done(q)) { 490 spin_lock_irq(q->queue_lock); 491 __blk_drain_queue(q, false); 492 spin_unlock_irq(q->queue_lock); 493 494 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 495 synchronize_rcu(); 496 } 497 } 498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 499 500 /** 501 * blk_queue_bypass_end - leave queue bypass mode 502 * @q: queue of interest 503 * 504 * Leave bypass mode and restore the normal queueing behavior. 505 */ 506 void blk_queue_bypass_end(struct request_queue *q) 507 { 508 spin_lock_irq(q->queue_lock); 509 if (!--q->bypass_depth) 510 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 511 WARN_ON_ONCE(q->bypass_depth < 0); 512 spin_unlock_irq(q->queue_lock); 513 } 514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 515 516 void blk_set_queue_dying(struct request_queue *q) 517 { 518 spin_lock_irq(q->queue_lock); 519 queue_flag_set(QUEUE_FLAG_DYING, q); 520 spin_unlock_irq(q->queue_lock); 521 522 if (q->mq_ops) 523 blk_mq_wake_waiters(q); 524 else { 525 struct request_list *rl; 526 527 blk_queue_for_each_rl(rl, q) { 528 if (rl->rq_pool) { 529 wake_up(&rl->wait[BLK_RW_SYNC]); 530 wake_up(&rl->wait[BLK_RW_ASYNC]); 531 } 532 } 533 } 534 } 535 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 536 537 /** 538 * blk_cleanup_queue - shutdown a request queue 539 * @q: request queue to shutdown 540 * 541 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 542 * put it. All future requests will be failed immediately with -ENODEV. 543 */ 544 void blk_cleanup_queue(struct request_queue *q) 545 { 546 spinlock_t *lock = q->queue_lock; 547 548 /* mark @q DYING, no new request or merges will be allowed afterwards */ 549 mutex_lock(&q->sysfs_lock); 550 blk_set_queue_dying(q); 551 spin_lock_irq(lock); 552 553 /* 554 * A dying queue is permanently in bypass mode till released. Note 555 * that, unlike blk_queue_bypass_start(), we aren't performing 556 * synchronize_rcu() after entering bypass mode to avoid the delay 557 * as some drivers create and destroy a lot of queues while 558 * probing. This is still safe because blk_release_queue() will be 559 * called only after the queue refcnt drops to zero and nothing, 560 * RCU or not, would be traversing the queue by then. 561 */ 562 q->bypass_depth++; 563 queue_flag_set(QUEUE_FLAG_BYPASS, q); 564 565 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 566 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 567 queue_flag_set(QUEUE_FLAG_DYING, q); 568 spin_unlock_irq(lock); 569 mutex_unlock(&q->sysfs_lock); 570 571 /* 572 * Drain all requests queued before DYING marking. Set DEAD flag to 573 * prevent that q->request_fn() gets invoked after draining finished. 574 */ 575 blk_freeze_queue(q); 576 spin_lock_irq(lock); 577 if (!q->mq_ops) 578 __blk_drain_queue(q, true); 579 queue_flag_set(QUEUE_FLAG_DEAD, q); 580 spin_unlock_irq(lock); 581 582 /* for synchronous bio-based driver finish in-flight integrity i/o */ 583 blk_flush_integrity(); 584 585 /* @q won't process any more request, flush async actions */ 586 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 587 blk_sync_queue(q); 588 589 if (q->mq_ops) 590 blk_mq_free_queue(q); 591 percpu_ref_exit(&q->q_usage_counter); 592 593 spin_lock_irq(lock); 594 if (q->queue_lock != &q->__queue_lock) 595 q->queue_lock = &q->__queue_lock; 596 spin_unlock_irq(lock); 597 598 bdi_unregister(&q->backing_dev_info); 599 600 /* @q is and will stay empty, shutdown and put */ 601 blk_put_queue(q); 602 } 603 EXPORT_SYMBOL(blk_cleanup_queue); 604 605 /* Allocate memory local to the request queue */ 606 static void *alloc_request_struct(gfp_t gfp_mask, void *data) 607 { 608 int nid = (int)(long)data; 609 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid); 610 } 611 612 static void free_request_struct(void *element, void *unused) 613 { 614 kmem_cache_free(request_cachep, element); 615 } 616 617 int blk_init_rl(struct request_list *rl, struct request_queue *q, 618 gfp_t gfp_mask) 619 { 620 if (unlikely(rl->rq_pool)) 621 return 0; 622 623 rl->q = q; 624 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 625 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 626 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 627 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 628 629 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct, 630 free_request_struct, 631 (void *)(long)q->node, gfp_mask, 632 q->node); 633 if (!rl->rq_pool) 634 return -ENOMEM; 635 636 return 0; 637 } 638 639 void blk_exit_rl(struct request_list *rl) 640 { 641 if (rl->rq_pool) 642 mempool_destroy(rl->rq_pool); 643 } 644 645 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 646 { 647 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 648 } 649 EXPORT_SYMBOL(blk_alloc_queue); 650 651 int blk_queue_enter(struct request_queue *q, bool nowait) 652 { 653 while (true) { 654 int ret; 655 656 if (percpu_ref_tryget_live(&q->q_usage_counter)) 657 return 0; 658 659 if (nowait) 660 return -EBUSY; 661 662 ret = wait_event_interruptible(q->mq_freeze_wq, 663 !atomic_read(&q->mq_freeze_depth) || 664 blk_queue_dying(q)); 665 if (blk_queue_dying(q)) 666 return -ENODEV; 667 if (ret) 668 return ret; 669 } 670 } 671 672 void blk_queue_exit(struct request_queue *q) 673 { 674 percpu_ref_put(&q->q_usage_counter); 675 } 676 677 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 678 { 679 struct request_queue *q = 680 container_of(ref, struct request_queue, q_usage_counter); 681 682 wake_up_all(&q->mq_freeze_wq); 683 } 684 685 static void blk_rq_timed_out_timer(unsigned long data) 686 { 687 struct request_queue *q = (struct request_queue *)data; 688 689 kblockd_schedule_work(&q->timeout_work); 690 } 691 692 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 693 { 694 struct request_queue *q; 695 int err; 696 697 q = kmem_cache_alloc_node(blk_requestq_cachep, 698 gfp_mask | __GFP_ZERO, node_id); 699 if (!q) 700 return NULL; 701 702 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 703 if (q->id < 0) 704 goto fail_q; 705 706 q->bio_split = bioset_create(BIO_POOL_SIZE, 0); 707 if (!q->bio_split) 708 goto fail_id; 709 710 q->backing_dev_info.ra_pages = 711 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 712 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK; 713 q->backing_dev_info.name = "block"; 714 q->node = node_id; 715 716 err = bdi_init(&q->backing_dev_info); 717 if (err) 718 goto fail_split; 719 720 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 721 laptop_mode_timer_fn, (unsigned long) q); 722 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 723 INIT_LIST_HEAD(&q->queue_head); 724 INIT_LIST_HEAD(&q->timeout_list); 725 INIT_LIST_HEAD(&q->icq_list); 726 #ifdef CONFIG_BLK_CGROUP 727 INIT_LIST_HEAD(&q->blkg_list); 728 #endif 729 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 730 731 kobject_init(&q->kobj, &blk_queue_ktype); 732 733 mutex_init(&q->sysfs_lock); 734 spin_lock_init(&q->__queue_lock); 735 736 /* 737 * By default initialize queue_lock to internal lock and driver can 738 * override it later if need be. 739 */ 740 q->queue_lock = &q->__queue_lock; 741 742 /* 743 * A queue starts its life with bypass turned on to avoid 744 * unnecessary bypass on/off overhead and nasty surprises during 745 * init. The initial bypass will be finished when the queue is 746 * registered by blk_register_queue(). 747 */ 748 q->bypass_depth = 1; 749 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 750 751 init_waitqueue_head(&q->mq_freeze_wq); 752 753 /* 754 * Init percpu_ref in atomic mode so that it's faster to shutdown. 755 * See blk_register_queue() for details. 756 */ 757 if (percpu_ref_init(&q->q_usage_counter, 758 blk_queue_usage_counter_release, 759 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 760 goto fail_bdi; 761 762 if (blkcg_init_queue(q)) 763 goto fail_ref; 764 765 return q; 766 767 fail_ref: 768 percpu_ref_exit(&q->q_usage_counter); 769 fail_bdi: 770 bdi_destroy(&q->backing_dev_info); 771 fail_split: 772 bioset_free(q->bio_split); 773 fail_id: 774 ida_simple_remove(&blk_queue_ida, q->id); 775 fail_q: 776 kmem_cache_free(blk_requestq_cachep, q); 777 return NULL; 778 } 779 EXPORT_SYMBOL(blk_alloc_queue_node); 780 781 /** 782 * blk_init_queue - prepare a request queue for use with a block device 783 * @rfn: The function to be called to process requests that have been 784 * placed on the queue. 785 * @lock: Request queue spin lock 786 * 787 * Description: 788 * If a block device wishes to use the standard request handling procedures, 789 * which sorts requests and coalesces adjacent requests, then it must 790 * call blk_init_queue(). The function @rfn will be called when there 791 * are requests on the queue that need to be processed. If the device 792 * supports plugging, then @rfn may not be called immediately when requests 793 * are available on the queue, but may be called at some time later instead. 794 * Plugged queues are generally unplugged when a buffer belonging to one 795 * of the requests on the queue is needed, or due to memory pressure. 796 * 797 * @rfn is not required, or even expected, to remove all requests off the 798 * queue, but only as many as it can handle at a time. If it does leave 799 * requests on the queue, it is responsible for arranging that the requests 800 * get dealt with eventually. 801 * 802 * The queue spin lock must be held while manipulating the requests on the 803 * request queue; this lock will be taken also from interrupt context, so irq 804 * disabling is needed for it. 805 * 806 * Function returns a pointer to the initialized request queue, or %NULL if 807 * it didn't succeed. 808 * 809 * Note: 810 * blk_init_queue() must be paired with a blk_cleanup_queue() call 811 * when the block device is deactivated (such as at module unload). 812 **/ 813 814 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 815 { 816 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 817 } 818 EXPORT_SYMBOL(blk_init_queue); 819 820 struct request_queue * 821 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 822 { 823 struct request_queue *uninit_q, *q; 824 825 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 826 if (!uninit_q) 827 return NULL; 828 829 q = blk_init_allocated_queue(uninit_q, rfn, lock); 830 if (!q) 831 blk_cleanup_queue(uninit_q); 832 833 return q; 834 } 835 EXPORT_SYMBOL(blk_init_queue_node); 836 837 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 838 839 struct request_queue * 840 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 841 spinlock_t *lock) 842 { 843 if (!q) 844 return NULL; 845 846 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0); 847 if (!q->fq) 848 return NULL; 849 850 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 851 goto fail; 852 853 INIT_WORK(&q->timeout_work, blk_timeout_work); 854 q->request_fn = rfn; 855 q->prep_rq_fn = NULL; 856 q->unprep_rq_fn = NULL; 857 q->queue_flags |= QUEUE_FLAG_DEFAULT; 858 859 /* Override internal queue lock with supplied lock pointer */ 860 if (lock) 861 q->queue_lock = lock; 862 863 /* 864 * This also sets hw/phys segments, boundary and size 865 */ 866 blk_queue_make_request(q, blk_queue_bio); 867 868 q->sg_reserved_size = INT_MAX; 869 870 /* Protect q->elevator from elevator_change */ 871 mutex_lock(&q->sysfs_lock); 872 873 /* init elevator */ 874 if (elevator_init(q, NULL)) { 875 mutex_unlock(&q->sysfs_lock); 876 goto fail; 877 } 878 879 mutex_unlock(&q->sysfs_lock); 880 881 return q; 882 883 fail: 884 blk_free_flush_queue(q->fq); 885 return NULL; 886 } 887 EXPORT_SYMBOL(blk_init_allocated_queue); 888 889 bool blk_get_queue(struct request_queue *q) 890 { 891 if (likely(!blk_queue_dying(q))) { 892 __blk_get_queue(q); 893 return true; 894 } 895 896 return false; 897 } 898 EXPORT_SYMBOL(blk_get_queue); 899 900 static inline void blk_free_request(struct request_list *rl, struct request *rq) 901 { 902 if (rq->cmd_flags & REQ_ELVPRIV) { 903 elv_put_request(rl->q, rq); 904 if (rq->elv.icq) 905 put_io_context(rq->elv.icq->ioc); 906 } 907 908 mempool_free(rq, rl->rq_pool); 909 } 910 911 /* 912 * ioc_batching returns true if the ioc is a valid batching request and 913 * should be given priority access to a request. 914 */ 915 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 916 { 917 if (!ioc) 918 return 0; 919 920 /* 921 * Make sure the process is able to allocate at least 1 request 922 * even if the batch times out, otherwise we could theoretically 923 * lose wakeups. 924 */ 925 return ioc->nr_batch_requests == q->nr_batching || 926 (ioc->nr_batch_requests > 0 927 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 928 } 929 930 /* 931 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 932 * will cause the process to be a "batcher" on all queues in the system. This 933 * is the behaviour we want though - once it gets a wakeup it should be given 934 * a nice run. 935 */ 936 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 937 { 938 if (!ioc || ioc_batching(q, ioc)) 939 return; 940 941 ioc->nr_batch_requests = q->nr_batching; 942 ioc->last_waited = jiffies; 943 } 944 945 static void __freed_request(struct request_list *rl, int sync) 946 { 947 struct request_queue *q = rl->q; 948 949 if (rl->count[sync] < queue_congestion_off_threshold(q)) 950 blk_clear_congested(rl, sync); 951 952 if (rl->count[sync] + 1 <= q->nr_requests) { 953 if (waitqueue_active(&rl->wait[sync])) 954 wake_up(&rl->wait[sync]); 955 956 blk_clear_rl_full(rl, sync); 957 } 958 } 959 960 /* 961 * A request has just been released. Account for it, update the full and 962 * congestion status, wake up any waiters. Called under q->queue_lock. 963 */ 964 static void freed_request(struct request_list *rl, int op, unsigned int flags) 965 { 966 struct request_queue *q = rl->q; 967 int sync = rw_is_sync(op, flags); 968 969 q->nr_rqs[sync]--; 970 rl->count[sync]--; 971 if (flags & REQ_ELVPRIV) 972 q->nr_rqs_elvpriv--; 973 974 __freed_request(rl, sync); 975 976 if (unlikely(rl->starved[sync ^ 1])) 977 __freed_request(rl, sync ^ 1); 978 } 979 980 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 981 { 982 struct request_list *rl; 983 int on_thresh, off_thresh; 984 985 spin_lock_irq(q->queue_lock); 986 q->nr_requests = nr; 987 blk_queue_congestion_threshold(q); 988 on_thresh = queue_congestion_on_threshold(q); 989 off_thresh = queue_congestion_off_threshold(q); 990 991 blk_queue_for_each_rl(rl, q) { 992 if (rl->count[BLK_RW_SYNC] >= on_thresh) 993 blk_set_congested(rl, BLK_RW_SYNC); 994 else if (rl->count[BLK_RW_SYNC] < off_thresh) 995 blk_clear_congested(rl, BLK_RW_SYNC); 996 997 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 998 blk_set_congested(rl, BLK_RW_ASYNC); 999 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1000 blk_clear_congested(rl, BLK_RW_ASYNC); 1001 1002 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1003 blk_set_rl_full(rl, BLK_RW_SYNC); 1004 } else { 1005 blk_clear_rl_full(rl, BLK_RW_SYNC); 1006 wake_up(&rl->wait[BLK_RW_SYNC]); 1007 } 1008 1009 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1010 blk_set_rl_full(rl, BLK_RW_ASYNC); 1011 } else { 1012 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1013 wake_up(&rl->wait[BLK_RW_ASYNC]); 1014 } 1015 } 1016 1017 spin_unlock_irq(q->queue_lock); 1018 return 0; 1019 } 1020 1021 /* 1022 * Determine if elevator data should be initialized when allocating the 1023 * request associated with @bio. 1024 */ 1025 static bool blk_rq_should_init_elevator(struct bio *bio) 1026 { 1027 if (!bio) 1028 return true; 1029 1030 /* 1031 * Flush requests do not use the elevator so skip initialization. 1032 * This allows a request to share the flush and elevator data. 1033 */ 1034 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) 1035 return false; 1036 1037 return true; 1038 } 1039 1040 /** 1041 * rq_ioc - determine io_context for request allocation 1042 * @bio: request being allocated is for this bio (can be %NULL) 1043 * 1044 * Determine io_context to use for request allocation for @bio. May return 1045 * %NULL if %current->io_context doesn't exist. 1046 */ 1047 static struct io_context *rq_ioc(struct bio *bio) 1048 { 1049 #ifdef CONFIG_BLK_CGROUP 1050 if (bio && bio->bi_ioc) 1051 return bio->bi_ioc; 1052 #endif 1053 return current->io_context; 1054 } 1055 1056 /** 1057 * __get_request - get a free request 1058 * @rl: request list to allocate from 1059 * @op: REQ_OP_READ/REQ_OP_WRITE 1060 * @op_flags: rq_flag_bits 1061 * @bio: bio to allocate request for (can be %NULL) 1062 * @gfp_mask: allocation mask 1063 * 1064 * Get a free request from @q. This function may fail under memory 1065 * pressure or if @q is dead. 1066 * 1067 * Must be called with @q->queue_lock held and, 1068 * Returns ERR_PTR on failure, with @q->queue_lock held. 1069 * Returns request pointer on success, with @q->queue_lock *not held*. 1070 */ 1071 static struct request *__get_request(struct request_list *rl, int op, 1072 int op_flags, struct bio *bio, 1073 gfp_t gfp_mask) 1074 { 1075 struct request_queue *q = rl->q; 1076 struct request *rq; 1077 struct elevator_type *et = q->elevator->type; 1078 struct io_context *ioc = rq_ioc(bio); 1079 struct io_cq *icq = NULL; 1080 const bool is_sync = rw_is_sync(op, op_flags) != 0; 1081 int may_queue; 1082 1083 if (unlikely(blk_queue_dying(q))) 1084 return ERR_PTR(-ENODEV); 1085 1086 may_queue = elv_may_queue(q, op, op_flags); 1087 if (may_queue == ELV_MQUEUE_NO) 1088 goto rq_starved; 1089 1090 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1091 if (rl->count[is_sync]+1 >= q->nr_requests) { 1092 /* 1093 * The queue will fill after this allocation, so set 1094 * it as full, and mark this process as "batching". 1095 * This process will be allowed to complete a batch of 1096 * requests, others will be blocked. 1097 */ 1098 if (!blk_rl_full(rl, is_sync)) { 1099 ioc_set_batching(q, ioc); 1100 blk_set_rl_full(rl, is_sync); 1101 } else { 1102 if (may_queue != ELV_MQUEUE_MUST 1103 && !ioc_batching(q, ioc)) { 1104 /* 1105 * The queue is full and the allocating 1106 * process is not a "batcher", and not 1107 * exempted by the IO scheduler 1108 */ 1109 return ERR_PTR(-ENOMEM); 1110 } 1111 } 1112 } 1113 blk_set_congested(rl, is_sync); 1114 } 1115 1116 /* 1117 * Only allow batching queuers to allocate up to 50% over the defined 1118 * limit of requests, otherwise we could have thousands of requests 1119 * allocated with any setting of ->nr_requests 1120 */ 1121 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1122 return ERR_PTR(-ENOMEM); 1123 1124 q->nr_rqs[is_sync]++; 1125 rl->count[is_sync]++; 1126 rl->starved[is_sync] = 0; 1127 1128 /* 1129 * Decide whether the new request will be managed by elevator. If 1130 * so, mark @op_flags and increment elvpriv. Non-zero elvpriv will 1131 * prevent the current elevator from being destroyed until the new 1132 * request is freed. This guarantees icq's won't be destroyed and 1133 * makes creating new ones safe. 1134 * 1135 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1136 * it will be created after releasing queue_lock. 1137 */ 1138 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 1139 op_flags |= REQ_ELVPRIV; 1140 q->nr_rqs_elvpriv++; 1141 if (et->icq_cache && ioc) 1142 icq = ioc_lookup_icq(ioc, q); 1143 } 1144 1145 if (blk_queue_io_stat(q)) 1146 op_flags |= REQ_IO_STAT; 1147 spin_unlock_irq(q->queue_lock); 1148 1149 /* allocate and init request */ 1150 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1151 if (!rq) 1152 goto fail_alloc; 1153 1154 blk_rq_init(q, rq); 1155 blk_rq_set_rl(rq, rl); 1156 req_set_op_attrs(rq, op, op_flags | REQ_ALLOCED); 1157 1158 /* init elvpriv */ 1159 if (op_flags & REQ_ELVPRIV) { 1160 if (unlikely(et->icq_cache && !icq)) { 1161 if (ioc) 1162 icq = ioc_create_icq(ioc, q, gfp_mask); 1163 if (!icq) 1164 goto fail_elvpriv; 1165 } 1166 1167 rq->elv.icq = icq; 1168 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1169 goto fail_elvpriv; 1170 1171 /* @rq->elv.icq holds io_context until @rq is freed */ 1172 if (icq) 1173 get_io_context(icq->ioc); 1174 } 1175 out: 1176 /* 1177 * ioc may be NULL here, and ioc_batching will be false. That's 1178 * OK, if the queue is under the request limit then requests need 1179 * not count toward the nr_batch_requests limit. There will always 1180 * be some limit enforced by BLK_BATCH_TIME. 1181 */ 1182 if (ioc_batching(q, ioc)) 1183 ioc->nr_batch_requests--; 1184 1185 trace_block_getrq(q, bio, op); 1186 return rq; 1187 1188 fail_elvpriv: 1189 /* 1190 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1191 * and may fail indefinitely under memory pressure and thus 1192 * shouldn't stall IO. Treat this request as !elvpriv. This will 1193 * disturb iosched and blkcg but weird is bettern than dead. 1194 */ 1195 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1196 __func__, dev_name(q->backing_dev_info.dev)); 1197 1198 rq->cmd_flags &= ~REQ_ELVPRIV; 1199 rq->elv.icq = NULL; 1200 1201 spin_lock_irq(q->queue_lock); 1202 q->nr_rqs_elvpriv--; 1203 spin_unlock_irq(q->queue_lock); 1204 goto out; 1205 1206 fail_alloc: 1207 /* 1208 * Allocation failed presumably due to memory. Undo anything we 1209 * might have messed up. 1210 * 1211 * Allocating task should really be put onto the front of the wait 1212 * queue, but this is pretty rare. 1213 */ 1214 spin_lock_irq(q->queue_lock); 1215 freed_request(rl, op, op_flags); 1216 1217 /* 1218 * in the very unlikely event that allocation failed and no 1219 * requests for this direction was pending, mark us starved so that 1220 * freeing of a request in the other direction will notice 1221 * us. another possible fix would be to split the rq mempool into 1222 * READ and WRITE 1223 */ 1224 rq_starved: 1225 if (unlikely(rl->count[is_sync] == 0)) 1226 rl->starved[is_sync] = 1; 1227 return ERR_PTR(-ENOMEM); 1228 } 1229 1230 /** 1231 * get_request - get a free request 1232 * @q: request_queue to allocate request from 1233 * @op: REQ_OP_READ/REQ_OP_WRITE 1234 * @op_flags: rq_flag_bits 1235 * @bio: bio to allocate request for (can be %NULL) 1236 * @gfp_mask: allocation mask 1237 * 1238 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1239 * this function keeps retrying under memory pressure and fails iff @q is dead. 1240 * 1241 * Must be called with @q->queue_lock held and, 1242 * Returns ERR_PTR on failure, with @q->queue_lock held. 1243 * Returns request pointer on success, with @q->queue_lock *not held*. 1244 */ 1245 static struct request *get_request(struct request_queue *q, int op, 1246 int op_flags, struct bio *bio, 1247 gfp_t gfp_mask) 1248 { 1249 const bool is_sync = rw_is_sync(op, op_flags) != 0; 1250 DEFINE_WAIT(wait); 1251 struct request_list *rl; 1252 struct request *rq; 1253 1254 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1255 retry: 1256 rq = __get_request(rl, op, op_flags, bio, gfp_mask); 1257 if (!IS_ERR(rq)) 1258 return rq; 1259 1260 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) { 1261 blk_put_rl(rl); 1262 return rq; 1263 } 1264 1265 /* wait on @rl and retry */ 1266 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1267 TASK_UNINTERRUPTIBLE); 1268 1269 trace_block_sleeprq(q, bio, op); 1270 1271 spin_unlock_irq(q->queue_lock); 1272 io_schedule(); 1273 1274 /* 1275 * After sleeping, we become a "batching" process and will be able 1276 * to allocate at least one request, and up to a big batch of them 1277 * for a small period time. See ioc_batching, ioc_set_batching 1278 */ 1279 ioc_set_batching(q, current->io_context); 1280 1281 spin_lock_irq(q->queue_lock); 1282 finish_wait(&rl->wait[is_sync], &wait); 1283 1284 goto retry; 1285 } 1286 1287 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1288 gfp_t gfp_mask) 1289 { 1290 struct request *rq; 1291 1292 BUG_ON(rw != READ && rw != WRITE); 1293 1294 /* create ioc upfront */ 1295 create_io_context(gfp_mask, q->node); 1296 1297 spin_lock_irq(q->queue_lock); 1298 rq = get_request(q, rw, 0, NULL, gfp_mask); 1299 if (IS_ERR(rq)) { 1300 spin_unlock_irq(q->queue_lock); 1301 return rq; 1302 } 1303 1304 /* q->queue_lock is unlocked at this point */ 1305 rq->__data_len = 0; 1306 rq->__sector = (sector_t) -1; 1307 rq->bio = rq->biotail = NULL; 1308 return rq; 1309 } 1310 1311 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1312 { 1313 if (q->mq_ops) 1314 return blk_mq_alloc_request(q, rw, 1315 (gfp_mask & __GFP_DIRECT_RECLAIM) ? 1316 0 : BLK_MQ_REQ_NOWAIT); 1317 else 1318 return blk_old_get_request(q, rw, gfp_mask); 1319 } 1320 EXPORT_SYMBOL(blk_get_request); 1321 1322 /** 1323 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC 1324 * @rq: request to be initialized 1325 * 1326 */ 1327 void blk_rq_set_block_pc(struct request *rq) 1328 { 1329 rq->cmd_type = REQ_TYPE_BLOCK_PC; 1330 memset(rq->__cmd, 0, sizeof(rq->__cmd)); 1331 } 1332 EXPORT_SYMBOL(blk_rq_set_block_pc); 1333 1334 /** 1335 * blk_requeue_request - put a request back on queue 1336 * @q: request queue where request should be inserted 1337 * @rq: request to be inserted 1338 * 1339 * Description: 1340 * Drivers often keep queueing requests until the hardware cannot accept 1341 * more, when that condition happens we need to put the request back 1342 * on the queue. Must be called with queue lock held. 1343 */ 1344 void blk_requeue_request(struct request_queue *q, struct request *rq) 1345 { 1346 blk_delete_timer(rq); 1347 blk_clear_rq_complete(rq); 1348 trace_block_rq_requeue(q, rq); 1349 1350 if (rq->cmd_flags & REQ_QUEUED) 1351 blk_queue_end_tag(q, rq); 1352 1353 BUG_ON(blk_queued_rq(rq)); 1354 1355 elv_requeue_request(q, rq); 1356 } 1357 EXPORT_SYMBOL(blk_requeue_request); 1358 1359 static void add_acct_request(struct request_queue *q, struct request *rq, 1360 int where) 1361 { 1362 blk_account_io_start(rq, true); 1363 __elv_add_request(q, rq, where); 1364 } 1365 1366 static void part_round_stats_single(int cpu, struct hd_struct *part, 1367 unsigned long now) 1368 { 1369 int inflight; 1370 1371 if (now == part->stamp) 1372 return; 1373 1374 inflight = part_in_flight(part); 1375 if (inflight) { 1376 __part_stat_add(cpu, part, time_in_queue, 1377 inflight * (now - part->stamp)); 1378 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1379 } 1380 part->stamp = now; 1381 } 1382 1383 /** 1384 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1385 * @cpu: cpu number for stats access 1386 * @part: target partition 1387 * 1388 * The average IO queue length and utilisation statistics are maintained 1389 * by observing the current state of the queue length and the amount of 1390 * time it has been in this state for. 1391 * 1392 * Normally, that accounting is done on IO completion, but that can result 1393 * in more than a second's worth of IO being accounted for within any one 1394 * second, leading to >100% utilisation. To deal with that, we call this 1395 * function to do a round-off before returning the results when reading 1396 * /proc/diskstats. This accounts immediately for all queue usage up to 1397 * the current jiffies and restarts the counters again. 1398 */ 1399 void part_round_stats(int cpu, struct hd_struct *part) 1400 { 1401 unsigned long now = jiffies; 1402 1403 if (part->partno) 1404 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1405 part_round_stats_single(cpu, part, now); 1406 } 1407 EXPORT_SYMBOL_GPL(part_round_stats); 1408 1409 #ifdef CONFIG_PM 1410 static void blk_pm_put_request(struct request *rq) 1411 { 1412 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending) 1413 pm_runtime_mark_last_busy(rq->q->dev); 1414 } 1415 #else 1416 static inline void blk_pm_put_request(struct request *rq) {} 1417 #endif 1418 1419 /* 1420 * queue lock must be held 1421 */ 1422 void __blk_put_request(struct request_queue *q, struct request *req) 1423 { 1424 if (unlikely(!q)) 1425 return; 1426 1427 if (q->mq_ops) { 1428 blk_mq_free_request(req); 1429 return; 1430 } 1431 1432 blk_pm_put_request(req); 1433 1434 elv_completed_request(q, req); 1435 1436 /* this is a bio leak */ 1437 WARN_ON(req->bio != NULL); 1438 1439 /* 1440 * Request may not have originated from ll_rw_blk. if not, 1441 * it didn't come out of our reserved rq pools 1442 */ 1443 if (req->cmd_flags & REQ_ALLOCED) { 1444 unsigned int flags = req->cmd_flags; 1445 int op = req_op(req); 1446 struct request_list *rl = blk_rq_rl(req); 1447 1448 BUG_ON(!list_empty(&req->queuelist)); 1449 BUG_ON(ELV_ON_HASH(req)); 1450 1451 blk_free_request(rl, req); 1452 freed_request(rl, op, flags); 1453 blk_put_rl(rl); 1454 } 1455 } 1456 EXPORT_SYMBOL_GPL(__blk_put_request); 1457 1458 void blk_put_request(struct request *req) 1459 { 1460 struct request_queue *q = req->q; 1461 1462 if (q->mq_ops) 1463 blk_mq_free_request(req); 1464 else { 1465 unsigned long flags; 1466 1467 spin_lock_irqsave(q->queue_lock, flags); 1468 __blk_put_request(q, req); 1469 spin_unlock_irqrestore(q->queue_lock, flags); 1470 } 1471 } 1472 EXPORT_SYMBOL(blk_put_request); 1473 1474 /** 1475 * blk_add_request_payload - add a payload to a request 1476 * @rq: request to update 1477 * @page: page backing the payload 1478 * @offset: offset in page 1479 * @len: length of the payload. 1480 * 1481 * This allows to later add a payload to an already submitted request by 1482 * a block driver. The driver needs to take care of freeing the payload 1483 * itself. 1484 * 1485 * Note that this is a quite horrible hack and nothing but handling of 1486 * discard requests should ever use it. 1487 */ 1488 void blk_add_request_payload(struct request *rq, struct page *page, 1489 int offset, unsigned int len) 1490 { 1491 struct bio *bio = rq->bio; 1492 1493 bio->bi_io_vec->bv_page = page; 1494 bio->bi_io_vec->bv_offset = offset; 1495 bio->bi_io_vec->bv_len = len; 1496 1497 bio->bi_iter.bi_size = len; 1498 bio->bi_vcnt = 1; 1499 bio->bi_phys_segments = 1; 1500 1501 rq->__data_len = rq->resid_len = len; 1502 rq->nr_phys_segments = 1; 1503 } 1504 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1505 1506 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1507 struct bio *bio) 1508 { 1509 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1510 1511 if (!ll_back_merge_fn(q, req, bio)) 1512 return false; 1513 1514 trace_block_bio_backmerge(q, req, bio); 1515 1516 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1517 blk_rq_set_mixed_merge(req); 1518 1519 req->biotail->bi_next = bio; 1520 req->biotail = bio; 1521 req->__data_len += bio->bi_iter.bi_size; 1522 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1523 1524 blk_account_io_start(req, false); 1525 return true; 1526 } 1527 1528 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1529 struct bio *bio) 1530 { 1531 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1532 1533 if (!ll_front_merge_fn(q, req, bio)) 1534 return false; 1535 1536 trace_block_bio_frontmerge(q, req, bio); 1537 1538 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1539 blk_rq_set_mixed_merge(req); 1540 1541 bio->bi_next = req->bio; 1542 req->bio = bio; 1543 1544 req->__sector = bio->bi_iter.bi_sector; 1545 req->__data_len += bio->bi_iter.bi_size; 1546 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1547 1548 blk_account_io_start(req, false); 1549 return true; 1550 } 1551 1552 /** 1553 * blk_attempt_plug_merge - try to merge with %current's plugged list 1554 * @q: request_queue new bio is being queued at 1555 * @bio: new bio being queued 1556 * @request_count: out parameter for number of traversed plugged requests 1557 * @same_queue_rq: pointer to &struct request that gets filled in when 1558 * another request associated with @q is found on the plug list 1559 * (optional, may be %NULL) 1560 * 1561 * Determine whether @bio being queued on @q can be merged with a request 1562 * on %current's plugged list. Returns %true if merge was successful, 1563 * otherwise %false. 1564 * 1565 * Plugging coalesces IOs from the same issuer for the same purpose without 1566 * going through @q->queue_lock. As such it's more of an issuing mechanism 1567 * than scheduling, and the request, while may have elvpriv data, is not 1568 * added on the elevator at this point. In addition, we don't have 1569 * reliable access to the elevator outside queue lock. Only check basic 1570 * merging parameters without querying the elevator. 1571 * 1572 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1573 */ 1574 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1575 unsigned int *request_count, 1576 struct request **same_queue_rq) 1577 { 1578 struct blk_plug *plug; 1579 struct request *rq; 1580 bool ret = false; 1581 struct list_head *plug_list; 1582 1583 plug = current->plug; 1584 if (!plug) 1585 goto out; 1586 *request_count = 0; 1587 1588 if (q->mq_ops) 1589 plug_list = &plug->mq_list; 1590 else 1591 plug_list = &plug->list; 1592 1593 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1594 int el_ret; 1595 1596 if (rq->q == q) { 1597 (*request_count)++; 1598 /* 1599 * Only blk-mq multiple hardware queues case checks the 1600 * rq in the same queue, there should be only one such 1601 * rq in a queue 1602 **/ 1603 if (same_queue_rq) 1604 *same_queue_rq = rq; 1605 } 1606 1607 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1608 continue; 1609 1610 el_ret = blk_try_merge(rq, bio); 1611 if (el_ret == ELEVATOR_BACK_MERGE) { 1612 ret = bio_attempt_back_merge(q, rq, bio); 1613 if (ret) 1614 break; 1615 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1616 ret = bio_attempt_front_merge(q, rq, bio); 1617 if (ret) 1618 break; 1619 } 1620 } 1621 out: 1622 return ret; 1623 } 1624 1625 unsigned int blk_plug_queued_count(struct request_queue *q) 1626 { 1627 struct blk_plug *plug; 1628 struct request *rq; 1629 struct list_head *plug_list; 1630 unsigned int ret = 0; 1631 1632 plug = current->plug; 1633 if (!plug) 1634 goto out; 1635 1636 if (q->mq_ops) 1637 plug_list = &plug->mq_list; 1638 else 1639 plug_list = &plug->list; 1640 1641 list_for_each_entry(rq, plug_list, queuelist) { 1642 if (rq->q == q) 1643 ret++; 1644 } 1645 out: 1646 return ret; 1647 } 1648 1649 void init_request_from_bio(struct request *req, struct bio *bio) 1650 { 1651 req->cmd_type = REQ_TYPE_FS; 1652 1653 req->cmd_flags |= bio->bi_opf & REQ_COMMON_MASK; 1654 if (bio->bi_opf & REQ_RAHEAD) 1655 req->cmd_flags |= REQ_FAILFAST_MASK; 1656 1657 req->errors = 0; 1658 req->__sector = bio->bi_iter.bi_sector; 1659 req->ioprio = bio_prio(bio); 1660 blk_rq_bio_prep(req->q, req, bio); 1661 } 1662 1663 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1664 { 1665 const bool sync = !!(bio->bi_opf & REQ_SYNC); 1666 struct blk_plug *plug; 1667 int el_ret, rw_flags = 0, where = ELEVATOR_INSERT_SORT; 1668 struct request *req; 1669 unsigned int request_count = 0; 1670 1671 /* 1672 * low level driver can indicate that it wants pages above a 1673 * certain limit bounced to low memory (ie for highmem, or even 1674 * ISA dma in theory) 1675 */ 1676 blk_queue_bounce(q, &bio); 1677 1678 blk_queue_split(q, &bio, q->bio_split); 1679 1680 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1681 bio->bi_error = -EIO; 1682 bio_endio(bio); 1683 return BLK_QC_T_NONE; 1684 } 1685 1686 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) { 1687 spin_lock_irq(q->queue_lock); 1688 where = ELEVATOR_INSERT_FLUSH; 1689 goto get_rq; 1690 } 1691 1692 /* 1693 * Check if we can merge with the plugged list before grabbing 1694 * any locks. 1695 */ 1696 if (!blk_queue_nomerges(q)) { 1697 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1698 return BLK_QC_T_NONE; 1699 } else 1700 request_count = blk_plug_queued_count(q); 1701 1702 spin_lock_irq(q->queue_lock); 1703 1704 el_ret = elv_merge(q, &req, bio); 1705 if (el_ret == ELEVATOR_BACK_MERGE) { 1706 if (bio_attempt_back_merge(q, req, bio)) { 1707 elv_bio_merged(q, req, bio); 1708 if (!attempt_back_merge(q, req)) 1709 elv_merged_request(q, req, el_ret); 1710 goto out_unlock; 1711 } 1712 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1713 if (bio_attempt_front_merge(q, req, bio)) { 1714 elv_bio_merged(q, req, bio); 1715 if (!attempt_front_merge(q, req)) 1716 elv_merged_request(q, req, el_ret); 1717 goto out_unlock; 1718 } 1719 } 1720 1721 get_rq: 1722 /* 1723 * This sync check and mask will be re-done in init_request_from_bio(), 1724 * but we need to set it earlier to expose the sync flag to the 1725 * rq allocator and io schedulers. 1726 */ 1727 if (sync) 1728 rw_flags |= REQ_SYNC; 1729 1730 /* 1731 * Add in META/PRIO flags, if set, before we get to the IO scheduler 1732 */ 1733 rw_flags |= (bio->bi_opf & (REQ_META | REQ_PRIO)); 1734 1735 /* 1736 * Grab a free request. This is might sleep but can not fail. 1737 * Returns with the queue unlocked. 1738 */ 1739 req = get_request(q, bio_data_dir(bio), rw_flags, bio, GFP_NOIO); 1740 if (IS_ERR(req)) { 1741 bio->bi_error = PTR_ERR(req); 1742 bio_endio(bio); 1743 goto out_unlock; 1744 } 1745 1746 /* 1747 * After dropping the lock and possibly sleeping here, our request 1748 * may now be mergeable after it had proven unmergeable (above). 1749 * We don't worry about that case for efficiency. It won't happen 1750 * often, and the elevators are able to handle it. 1751 */ 1752 init_request_from_bio(req, bio); 1753 1754 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1755 req->cpu = raw_smp_processor_id(); 1756 1757 plug = current->plug; 1758 if (plug) { 1759 /* 1760 * If this is the first request added after a plug, fire 1761 * of a plug trace. 1762 */ 1763 if (!request_count) 1764 trace_block_plug(q); 1765 else { 1766 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1767 blk_flush_plug_list(plug, false); 1768 trace_block_plug(q); 1769 } 1770 } 1771 list_add_tail(&req->queuelist, &plug->list); 1772 blk_account_io_start(req, true); 1773 } else { 1774 spin_lock_irq(q->queue_lock); 1775 add_acct_request(q, req, where); 1776 __blk_run_queue(q); 1777 out_unlock: 1778 spin_unlock_irq(q->queue_lock); 1779 } 1780 1781 return BLK_QC_T_NONE; 1782 } 1783 1784 /* 1785 * If bio->bi_dev is a partition, remap the location 1786 */ 1787 static inline void blk_partition_remap(struct bio *bio) 1788 { 1789 struct block_device *bdev = bio->bi_bdev; 1790 1791 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1792 struct hd_struct *p = bdev->bd_part; 1793 1794 bio->bi_iter.bi_sector += p->start_sect; 1795 bio->bi_bdev = bdev->bd_contains; 1796 1797 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1798 bdev->bd_dev, 1799 bio->bi_iter.bi_sector - p->start_sect); 1800 } 1801 } 1802 1803 static void handle_bad_sector(struct bio *bio) 1804 { 1805 char b[BDEVNAME_SIZE]; 1806 1807 printk(KERN_INFO "attempt to access beyond end of device\n"); 1808 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 1809 bdevname(bio->bi_bdev, b), 1810 bio->bi_opf, 1811 (unsigned long long)bio_end_sector(bio), 1812 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1813 } 1814 1815 #ifdef CONFIG_FAIL_MAKE_REQUEST 1816 1817 static DECLARE_FAULT_ATTR(fail_make_request); 1818 1819 static int __init setup_fail_make_request(char *str) 1820 { 1821 return setup_fault_attr(&fail_make_request, str); 1822 } 1823 __setup("fail_make_request=", setup_fail_make_request); 1824 1825 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1826 { 1827 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1828 } 1829 1830 static int __init fail_make_request_debugfs(void) 1831 { 1832 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1833 NULL, &fail_make_request); 1834 1835 return PTR_ERR_OR_ZERO(dir); 1836 } 1837 1838 late_initcall(fail_make_request_debugfs); 1839 1840 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1841 1842 static inline bool should_fail_request(struct hd_struct *part, 1843 unsigned int bytes) 1844 { 1845 return false; 1846 } 1847 1848 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1849 1850 /* 1851 * Check whether this bio extends beyond the end of the device. 1852 */ 1853 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1854 { 1855 sector_t maxsector; 1856 1857 if (!nr_sectors) 1858 return 0; 1859 1860 /* Test device or partition size, when known. */ 1861 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1862 if (maxsector) { 1863 sector_t sector = bio->bi_iter.bi_sector; 1864 1865 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1866 /* 1867 * This may well happen - the kernel calls bread() 1868 * without checking the size of the device, e.g., when 1869 * mounting a device. 1870 */ 1871 handle_bad_sector(bio); 1872 return 1; 1873 } 1874 } 1875 1876 return 0; 1877 } 1878 1879 static noinline_for_stack bool 1880 generic_make_request_checks(struct bio *bio) 1881 { 1882 struct request_queue *q; 1883 int nr_sectors = bio_sectors(bio); 1884 int err = -EIO; 1885 char b[BDEVNAME_SIZE]; 1886 struct hd_struct *part; 1887 1888 might_sleep(); 1889 1890 if (bio_check_eod(bio, nr_sectors)) 1891 goto end_io; 1892 1893 q = bdev_get_queue(bio->bi_bdev); 1894 if (unlikely(!q)) { 1895 printk(KERN_ERR 1896 "generic_make_request: Trying to access " 1897 "nonexistent block-device %s (%Lu)\n", 1898 bdevname(bio->bi_bdev, b), 1899 (long long) bio->bi_iter.bi_sector); 1900 goto end_io; 1901 } 1902 1903 part = bio->bi_bdev->bd_part; 1904 if (should_fail_request(part, bio->bi_iter.bi_size) || 1905 should_fail_request(&part_to_disk(part)->part0, 1906 bio->bi_iter.bi_size)) 1907 goto end_io; 1908 1909 /* 1910 * If this device has partitions, remap block n 1911 * of partition p to block n+start(p) of the disk. 1912 */ 1913 blk_partition_remap(bio); 1914 1915 if (bio_check_eod(bio, nr_sectors)) 1916 goto end_io; 1917 1918 /* 1919 * Filter flush bio's early so that make_request based 1920 * drivers without flush support don't have to worry 1921 * about them. 1922 */ 1923 if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) && 1924 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 1925 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 1926 if (!nr_sectors) { 1927 err = 0; 1928 goto end_io; 1929 } 1930 } 1931 1932 switch (bio_op(bio)) { 1933 case REQ_OP_DISCARD: 1934 if (!blk_queue_discard(q)) 1935 goto not_supported; 1936 break; 1937 case REQ_OP_SECURE_ERASE: 1938 if (!blk_queue_secure_erase(q)) 1939 goto not_supported; 1940 break; 1941 case REQ_OP_WRITE_SAME: 1942 if (!bdev_write_same(bio->bi_bdev)) 1943 goto not_supported; 1944 break; 1945 default: 1946 break; 1947 } 1948 1949 /* 1950 * Various block parts want %current->io_context and lazy ioc 1951 * allocation ends up trading a lot of pain for a small amount of 1952 * memory. Just allocate it upfront. This may fail and block 1953 * layer knows how to live with it. 1954 */ 1955 create_io_context(GFP_ATOMIC, q->node); 1956 1957 if (!blkcg_bio_issue_check(q, bio)) 1958 return false; 1959 1960 trace_block_bio_queue(q, bio); 1961 return true; 1962 1963 not_supported: 1964 err = -EOPNOTSUPP; 1965 end_io: 1966 bio->bi_error = err; 1967 bio_endio(bio); 1968 return false; 1969 } 1970 1971 /** 1972 * generic_make_request - hand a buffer to its device driver for I/O 1973 * @bio: The bio describing the location in memory and on the device. 1974 * 1975 * generic_make_request() is used to make I/O requests of block 1976 * devices. It is passed a &struct bio, which describes the I/O that needs 1977 * to be done. 1978 * 1979 * generic_make_request() does not return any status. The 1980 * success/failure status of the request, along with notification of 1981 * completion, is delivered asynchronously through the bio->bi_end_io 1982 * function described (one day) else where. 1983 * 1984 * The caller of generic_make_request must make sure that bi_io_vec 1985 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1986 * set to describe the device address, and the 1987 * bi_end_io and optionally bi_private are set to describe how 1988 * completion notification should be signaled. 1989 * 1990 * generic_make_request and the drivers it calls may use bi_next if this 1991 * bio happens to be merged with someone else, and may resubmit the bio to 1992 * a lower device by calling into generic_make_request recursively, which 1993 * means the bio should NOT be touched after the call to ->make_request_fn. 1994 */ 1995 blk_qc_t generic_make_request(struct bio *bio) 1996 { 1997 struct bio_list bio_list_on_stack; 1998 blk_qc_t ret = BLK_QC_T_NONE; 1999 2000 if (!generic_make_request_checks(bio)) 2001 goto out; 2002 2003 /* 2004 * We only want one ->make_request_fn to be active at a time, else 2005 * stack usage with stacked devices could be a problem. So use 2006 * current->bio_list to keep a list of requests submited by a 2007 * make_request_fn function. current->bio_list is also used as a 2008 * flag to say if generic_make_request is currently active in this 2009 * task or not. If it is NULL, then no make_request is active. If 2010 * it is non-NULL, then a make_request is active, and new requests 2011 * should be added at the tail 2012 */ 2013 if (current->bio_list) { 2014 bio_list_add(current->bio_list, bio); 2015 goto out; 2016 } 2017 2018 /* following loop may be a bit non-obvious, and so deserves some 2019 * explanation. 2020 * Before entering the loop, bio->bi_next is NULL (as all callers 2021 * ensure that) so we have a list with a single bio. 2022 * We pretend that we have just taken it off a longer list, so 2023 * we assign bio_list to a pointer to the bio_list_on_stack, 2024 * thus initialising the bio_list of new bios to be 2025 * added. ->make_request() may indeed add some more bios 2026 * through a recursive call to generic_make_request. If it 2027 * did, we find a non-NULL value in bio_list and re-enter the loop 2028 * from the top. In this case we really did just take the bio 2029 * of the top of the list (no pretending) and so remove it from 2030 * bio_list, and call into ->make_request() again. 2031 */ 2032 BUG_ON(bio->bi_next); 2033 bio_list_init(&bio_list_on_stack); 2034 current->bio_list = &bio_list_on_stack; 2035 do { 2036 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2037 2038 if (likely(blk_queue_enter(q, false) == 0)) { 2039 ret = q->make_request_fn(q, bio); 2040 2041 blk_queue_exit(q); 2042 2043 bio = bio_list_pop(current->bio_list); 2044 } else { 2045 struct bio *bio_next = bio_list_pop(current->bio_list); 2046 2047 bio_io_error(bio); 2048 bio = bio_next; 2049 } 2050 } while (bio); 2051 current->bio_list = NULL; /* deactivate */ 2052 2053 out: 2054 return ret; 2055 } 2056 EXPORT_SYMBOL(generic_make_request); 2057 2058 /** 2059 * submit_bio - submit a bio to the block device layer for I/O 2060 * @bio: The &struct bio which describes the I/O 2061 * 2062 * submit_bio() is very similar in purpose to generic_make_request(), and 2063 * uses that function to do most of the work. Both are fairly rough 2064 * interfaces; @bio must be presetup and ready for I/O. 2065 * 2066 */ 2067 blk_qc_t submit_bio(struct bio *bio) 2068 { 2069 /* 2070 * If it's a regular read/write or a barrier with data attached, 2071 * go through the normal accounting stuff before submission. 2072 */ 2073 if (bio_has_data(bio)) { 2074 unsigned int count; 2075 2076 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2077 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 2078 else 2079 count = bio_sectors(bio); 2080 2081 if (op_is_write(bio_op(bio))) { 2082 count_vm_events(PGPGOUT, count); 2083 } else { 2084 task_io_account_read(bio->bi_iter.bi_size); 2085 count_vm_events(PGPGIN, count); 2086 } 2087 2088 if (unlikely(block_dump)) { 2089 char b[BDEVNAME_SIZE]; 2090 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2091 current->comm, task_pid_nr(current), 2092 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2093 (unsigned long long)bio->bi_iter.bi_sector, 2094 bdevname(bio->bi_bdev, b), 2095 count); 2096 } 2097 } 2098 2099 return generic_make_request(bio); 2100 } 2101 EXPORT_SYMBOL(submit_bio); 2102 2103 /** 2104 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2105 * for new the queue limits 2106 * @q: the queue 2107 * @rq: the request being checked 2108 * 2109 * Description: 2110 * @rq may have been made based on weaker limitations of upper-level queues 2111 * in request stacking drivers, and it may violate the limitation of @q. 2112 * Since the block layer and the underlying device driver trust @rq 2113 * after it is inserted to @q, it should be checked against @q before 2114 * the insertion using this generic function. 2115 * 2116 * Request stacking drivers like request-based dm may change the queue 2117 * limits when retrying requests on other queues. Those requests need 2118 * to be checked against the new queue limits again during dispatch. 2119 */ 2120 static int blk_cloned_rq_check_limits(struct request_queue *q, 2121 struct request *rq) 2122 { 2123 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2124 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2125 return -EIO; 2126 } 2127 2128 /* 2129 * queue's settings related to segment counting like q->bounce_pfn 2130 * may differ from that of other stacking queues. 2131 * Recalculate it to check the request correctly on this queue's 2132 * limitation. 2133 */ 2134 blk_recalc_rq_segments(rq); 2135 if (rq->nr_phys_segments > queue_max_segments(q)) { 2136 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2137 return -EIO; 2138 } 2139 2140 return 0; 2141 } 2142 2143 /** 2144 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2145 * @q: the queue to submit the request 2146 * @rq: the request being queued 2147 */ 2148 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2149 { 2150 unsigned long flags; 2151 int where = ELEVATOR_INSERT_BACK; 2152 2153 if (blk_cloned_rq_check_limits(q, rq)) 2154 return -EIO; 2155 2156 if (rq->rq_disk && 2157 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2158 return -EIO; 2159 2160 if (q->mq_ops) { 2161 if (blk_queue_io_stat(q)) 2162 blk_account_io_start(rq, true); 2163 blk_mq_insert_request(rq, false, true, false); 2164 return 0; 2165 } 2166 2167 spin_lock_irqsave(q->queue_lock, flags); 2168 if (unlikely(blk_queue_dying(q))) { 2169 spin_unlock_irqrestore(q->queue_lock, flags); 2170 return -ENODEV; 2171 } 2172 2173 /* 2174 * Submitting request must be dequeued before calling this function 2175 * because it will be linked to another request_queue 2176 */ 2177 BUG_ON(blk_queued_rq(rq)); 2178 2179 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA)) 2180 where = ELEVATOR_INSERT_FLUSH; 2181 2182 add_acct_request(q, rq, where); 2183 if (where == ELEVATOR_INSERT_FLUSH) 2184 __blk_run_queue(q); 2185 spin_unlock_irqrestore(q->queue_lock, flags); 2186 2187 return 0; 2188 } 2189 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2190 2191 /** 2192 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2193 * @rq: request to examine 2194 * 2195 * Description: 2196 * A request could be merge of IOs which require different failure 2197 * handling. This function determines the number of bytes which 2198 * can be failed from the beginning of the request without 2199 * crossing into area which need to be retried further. 2200 * 2201 * Return: 2202 * The number of bytes to fail. 2203 * 2204 * Context: 2205 * queue_lock must be held. 2206 */ 2207 unsigned int blk_rq_err_bytes(const struct request *rq) 2208 { 2209 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2210 unsigned int bytes = 0; 2211 struct bio *bio; 2212 2213 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 2214 return blk_rq_bytes(rq); 2215 2216 /* 2217 * Currently the only 'mixing' which can happen is between 2218 * different fastfail types. We can safely fail portions 2219 * which have all the failfast bits that the first one has - 2220 * the ones which are at least as eager to fail as the first 2221 * one. 2222 */ 2223 for (bio = rq->bio; bio; bio = bio->bi_next) { 2224 if ((bio->bi_opf & ff) != ff) 2225 break; 2226 bytes += bio->bi_iter.bi_size; 2227 } 2228 2229 /* this could lead to infinite loop */ 2230 BUG_ON(blk_rq_bytes(rq) && !bytes); 2231 return bytes; 2232 } 2233 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2234 2235 void blk_account_io_completion(struct request *req, unsigned int bytes) 2236 { 2237 if (blk_do_io_stat(req)) { 2238 const int rw = rq_data_dir(req); 2239 struct hd_struct *part; 2240 int cpu; 2241 2242 cpu = part_stat_lock(); 2243 part = req->part; 2244 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2245 part_stat_unlock(); 2246 } 2247 } 2248 2249 void blk_account_io_done(struct request *req) 2250 { 2251 /* 2252 * Account IO completion. flush_rq isn't accounted as a 2253 * normal IO on queueing nor completion. Accounting the 2254 * containing request is enough. 2255 */ 2256 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2257 unsigned long duration = jiffies - req->start_time; 2258 const int rw = rq_data_dir(req); 2259 struct hd_struct *part; 2260 int cpu; 2261 2262 cpu = part_stat_lock(); 2263 part = req->part; 2264 2265 part_stat_inc(cpu, part, ios[rw]); 2266 part_stat_add(cpu, part, ticks[rw], duration); 2267 part_round_stats(cpu, part); 2268 part_dec_in_flight(part, rw); 2269 2270 hd_struct_put(part); 2271 part_stat_unlock(); 2272 } 2273 } 2274 2275 #ifdef CONFIG_PM 2276 /* 2277 * Don't process normal requests when queue is suspended 2278 * or in the process of suspending/resuming 2279 */ 2280 static struct request *blk_pm_peek_request(struct request_queue *q, 2281 struct request *rq) 2282 { 2283 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2284 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM)))) 2285 return NULL; 2286 else 2287 return rq; 2288 } 2289 #else 2290 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2291 struct request *rq) 2292 { 2293 return rq; 2294 } 2295 #endif 2296 2297 void blk_account_io_start(struct request *rq, bool new_io) 2298 { 2299 struct hd_struct *part; 2300 int rw = rq_data_dir(rq); 2301 int cpu; 2302 2303 if (!blk_do_io_stat(rq)) 2304 return; 2305 2306 cpu = part_stat_lock(); 2307 2308 if (!new_io) { 2309 part = rq->part; 2310 part_stat_inc(cpu, part, merges[rw]); 2311 } else { 2312 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2313 if (!hd_struct_try_get(part)) { 2314 /* 2315 * The partition is already being removed, 2316 * the request will be accounted on the disk only 2317 * 2318 * We take a reference on disk->part0 although that 2319 * partition will never be deleted, so we can treat 2320 * it as any other partition. 2321 */ 2322 part = &rq->rq_disk->part0; 2323 hd_struct_get(part); 2324 } 2325 part_round_stats(cpu, part); 2326 part_inc_in_flight(part, rw); 2327 rq->part = part; 2328 } 2329 2330 part_stat_unlock(); 2331 } 2332 2333 /** 2334 * blk_peek_request - peek at the top of a request queue 2335 * @q: request queue to peek at 2336 * 2337 * Description: 2338 * Return the request at the top of @q. The returned request 2339 * should be started using blk_start_request() before LLD starts 2340 * processing it. 2341 * 2342 * Return: 2343 * Pointer to the request at the top of @q if available. Null 2344 * otherwise. 2345 * 2346 * Context: 2347 * queue_lock must be held. 2348 */ 2349 struct request *blk_peek_request(struct request_queue *q) 2350 { 2351 struct request *rq; 2352 int ret; 2353 2354 while ((rq = __elv_next_request(q)) != NULL) { 2355 2356 rq = blk_pm_peek_request(q, rq); 2357 if (!rq) 2358 break; 2359 2360 if (!(rq->cmd_flags & REQ_STARTED)) { 2361 /* 2362 * This is the first time the device driver 2363 * sees this request (possibly after 2364 * requeueing). Notify IO scheduler. 2365 */ 2366 if (rq->cmd_flags & REQ_SORTED) 2367 elv_activate_rq(q, rq); 2368 2369 /* 2370 * just mark as started even if we don't start 2371 * it, a request that has been delayed should 2372 * not be passed by new incoming requests 2373 */ 2374 rq->cmd_flags |= REQ_STARTED; 2375 trace_block_rq_issue(q, rq); 2376 } 2377 2378 if (!q->boundary_rq || q->boundary_rq == rq) { 2379 q->end_sector = rq_end_sector(rq); 2380 q->boundary_rq = NULL; 2381 } 2382 2383 if (rq->cmd_flags & REQ_DONTPREP) 2384 break; 2385 2386 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2387 /* 2388 * make sure space for the drain appears we 2389 * know we can do this because max_hw_segments 2390 * has been adjusted to be one fewer than the 2391 * device can handle 2392 */ 2393 rq->nr_phys_segments++; 2394 } 2395 2396 if (!q->prep_rq_fn) 2397 break; 2398 2399 ret = q->prep_rq_fn(q, rq); 2400 if (ret == BLKPREP_OK) { 2401 break; 2402 } else if (ret == BLKPREP_DEFER) { 2403 /* 2404 * the request may have been (partially) prepped. 2405 * we need to keep this request in the front to 2406 * avoid resource deadlock. REQ_STARTED will 2407 * prevent other fs requests from passing this one. 2408 */ 2409 if (q->dma_drain_size && blk_rq_bytes(rq) && 2410 !(rq->cmd_flags & REQ_DONTPREP)) { 2411 /* 2412 * remove the space for the drain we added 2413 * so that we don't add it again 2414 */ 2415 --rq->nr_phys_segments; 2416 } 2417 2418 rq = NULL; 2419 break; 2420 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2421 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO; 2422 2423 rq->cmd_flags |= REQ_QUIET; 2424 /* 2425 * Mark this request as started so we don't trigger 2426 * any debug logic in the end I/O path. 2427 */ 2428 blk_start_request(rq); 2429 __blk_end_request_all(rq, err); 2430 } else { 2431 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2432 break; 2433 } 2434 } 2435 2436 return rq; 2437 } 2438 EXPORT_SYMBOL(blk_peek_request); 2439 2440 void blk_dequeue_request(struct request *rq) 2441 { 2442 struct request_queue *q = rq->q; 2443 2444 BUG_ON(list_empty(&rq->queuelist)); 2445 BUG_ON(ELV_ON_HASH(rq)); 2446 2447 list_del_init(&rq->queuelist); 2448 2449 /* 2450 * the time frame between a request being removed from the lists 2451 * and to it is freed is accounted as io that is in progress at 2452 * the driver side. 2453 */ 2454 if (blk_account_rq(rq)) { 2455 q->in_flight[rq_is_sync(rq)]++; 2456 set_io_start_time_ns(rq); 2457 } 2458 } 2459 2460 /** 2461 * blk_start_request - start request processing on the driver 2462 * @req: request to dequeue 2463 * 2464 * Description: 2465 * Dequeue @req and start timeout timer on it. This hands off the 2466 * request to the driver. 2467 * 2468 * Block internal functions which don't want to start timer should 2469 * call blk_dequeue_request(). 2470 * 2471 * Context: 2472 * queue_lock must be held. 2473 */ 2474 void blk_start_request(struct request *req) 2475 { 2476 blk_dequeue_request(req); 2477 2478 /* 2479 * We are now handing the request to the hardware, initialize 2480 * resid_len to full count and add the timeout handler. 2481 */ 2482 req->resid_len = blk_rq_bytes(req); 2483 if (unlikely(blk_bidi_rq(req))) 2484 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2485 2486 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2487 blk_add_timer(req); 2488 } 2489 EXPORT_SYMBOL(blk_start_request); 2490 2491 /** 2492 * blk_fetch_request - fetch a request from a request queue 2493 * @q: request queue to fetch a request from 2494 * 2495 * Description: 2496 * Return the request at the top of @q. The request is started on 2497 * return and LLD can start processing it immediately. 2498 * 2499 * Return: 2500 * Pointer to the request at the top of @q if available. Null 2501 * otherwise. 2502 * 2503 * Context: 2504 * queue_lock must be held. 2505 */ 2506 struct request *blk_fetch_request(struct request_queue *q) 2507 { 2508 struct request *rq; 2509 2510 rq = blk_peek_request(q); 2511 if (rq) 2512 blk_start_request(rq); 2513 return rq; 2514 } 2515 EXPORT_SYMBOL(blk_fetch_request); 2516 2517 /** 2518 * blk_update_request - Special helper function for request stacking drivers 2519 * @req: the request being processed 2520 * @error: %0 for success, < %0 for error 2521 * @nr_bytes: number of bytes to complete @req 2522 * 2523 * Description: 2524 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2525 * the request structure even if @req doesn't have leftover. 2526 * If @req has leftover, sets it up for the next range of segments. 2527 * 2528 * This special helper function is only for request stacking drivers 2529 * (e.g. request-based dm) so that they can handle partial completion. 2530 * Actual device drivers should use blk_end_request instead. 2531 * 2532 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2533 * %false return from this function. 2534 * 2535 * Return: 2536 * %false - this request doesn't have any more data 2537 * %true - this request has more data 2538 **/ 2539 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2540 { 2541 int total_bytes; 2542 2543 trace_block_rq_complete(req->q, req, nr_bytes); 2544 2545 if (!req->bio) 2546 return false; 2547 2548 /* 2549 * For fs requests, rq is just carrier of independent bio's 2550 * and each partial completion should be handled separately. 2551 * Reset per-request error on each partial completion. 2552 * 2553 * TODO: tj: This is too subtle. It would be better to let 2554 * low level drivers do what they see fit. 2555 */ 2556 if (req->cmd_type == REQ_TYPE_FS) 2557 req->errors = 0; 2558 2559 if (error && req->cmd_type == REQ_TYPE_FS && 2560 !(req->cmd_flags & REQ_QUIET)) { 2561 char *error_type; 2562 2563 switch (error) { 2564 case -ENOLINK: 2565 error_type = "recoverable transport"; 2566 break; 2567 case -EREMOTEIO: 2568 error_type = "critical target"; 2569 break; 2570 case -EBADE: 2571 error_type = "critical nexus"; 2572 break; 2573 case -ETIMEDOUT: 2574 error_type = "timeout"; 2575 break; 2576 case -ENOSPC: 2577 error_type = "critical space allocation"; 2578 break; 2579 case -ENODATA: 2580 error_type = "critical medium"; 2581 break; 2582 case -EIO: 2583 default: 2584 error_type = "I/O"; 2585 break; 2586 } 2587 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 2588 __func__, error_type, req->rq_disk ? 2589 req->rq_disk->disk_name : "?", 2590 (unsigned long long)blk_rq_pos(req)); 2591 2592 } 2593 2594 blk_account_io_completion(req, nr_bytes); 2595 2596 total_bytes = 0; 2597 while (req->bio) { 2598 struct bio *bio = req->bio; 2599 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2600 2601 if (bio_bytes == bio->bi_iter.bi_size) 2602 req->bio = bio->bi_next; 2603 2604 req_bio_endio(req, bio, bio_bytes, error); 2605 2606 total_bytes += bio_bytes; 2607 nr_bytes -= bio_bytes; 2608 2609 if (!nr_bytes) 2610 break; 2611 } 2612 2613 /* 2614 * completely done 2615 */ 2616 if (!req->bio) { 2617 /* 2618 * Reset counters so that the request stacking driver 2619 * can find how many bytes remain in the request 2620 * later. 2621 */ 2622 req->__data_len = 0; 2623 return false; 2624 } 2625 2626 req->__data_len -= total_bytes; 2627 2628 /* update sector only for requests with clear definition of sector */ 2629 if (req->cmd_type == REQ_TYPE_FS) 2630 req->__sector += total_bytes >> 9; 2631 2632 /* mixed attributes always follow the first bio */ 2633 if (req->cmd_flags & REQ_MIXED_MERGE) { 2634 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2635 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 2636 } 2637 2638 /* 2639 * If total number of sectors is less than the first segment 2640 * size, something has gone terribly wrong. 2641 */ 2642 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2643 blk_dump_rq_flags(req, "request botched"); 2644 req->__data_len = blk_rq_cur_bytes(req); 2645 } 2646 2647 /* recalculate the number of segments */ 2648 blk_recalc_rq_segments(req); 2649 2650 return true; 2651 } 2652 EXPORT_SYMBOL_GPL(blk_update_request); 2653 2654 static bool blk_update_bidi_request(struct request *rq, int error, 2655 unsigned int nr_bytes, 2656 unsigned int bidi_bytes) 2657 { 2658 if (blk_update_request(rq, error, nr_bytes)) 2659 return true; 2660 2661 /* Bidi request must be completed as a whole */ 2662 if (unlikely(blk_bidi_rq(rq)) && 2663 blk_update_request(rq->next_rq, error, bidi_bytes)) 2664 return true; 2665 2666 if (blk_queue_add_random(rq->q)) 2667 add_disk_randomness(rq->rq_disk); 2668 2669 return false; 2670 } 2671 2672 /** 2673 * blk_unprep_request - unprepare a request 2674 * @req: the request 2675 * 2676 * This function makes a request ready for complete resubmission (or 2677 * completion). It happens only after all error handling is complete, 2678 * so represents the appropriate moment to deallocate any resources 2679 * that were allocated to the request in the prep_rq_fn. The queue 2680 * lock is held when calling this. 2681 */ 2682 void blk_unprep_request(struct request *req) 2683 { 2684 struct request_queue *q = req->q; 2685 2686 req->cmd_flags &= ~REQ_DONTPREP; 2687 if (q->unprep_rq_fn) 2688 q->unprep_rq_fn(q, req); 2689 } 2690 EXPORT_SYMBOL_GPL(blk_unprep_request); 2691 2692 /* 2693 * queue lock must be held 2694 */ 2695 void blk_finish_request(struct request *req, int error) 2696 { 2697 if (req->cmd_flags & REQ_QUEUED) 2698 blk_queue_end_tag(req->q, req); 2699 2700 BUG_ON(blk_queued_rq(req)); 2701 2702 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2703 laptop_io_completion(&req->q->backing_dev_info); 2704 2705 blk_delete_timer(req); 2706 2707 if (req->cmd_flags & REQ_DONTPREP) 2708 blk_unprep_request(req); 2709 2710 blk_account_io_done(req); 2711 2712 if (req->end_io) 2713 req->end_io(req, error); 2714 else { 2715 if (blk_bidi_rq(req)) 2716 __blk_put_request(req->next_rq->q, req->next_rq); 2717 2718 __blk_put_request(req->q, req); 2719 } 2720 } 2721 EXPORT_SYMBOL(blk_finish_request); 2722 2723 /** 2724 * blk_end_bidi_request - Complete a bidi request 2725 * @rq: the request to complete 2726 * @error: %0 for success, < %0 for error 2727 * @nr_bytes: number of bytes to complete @rq 2728 * @bidi_bytes: number of bytes to complete @rq->next_rq 2729 * 2730 * Description: 2731 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2732 * Drivers that supports bidi can safely call this member for any 2733 * type of request, bidi or uni. In the later case @bidi_bytes is 2734 * just ignored. 2735 * 2736 * Return: 2737 * %false - we are done with this request 2738 * %true - still buffers pending for this request 2739 **/ 2740 static bool blk_end_bidi_request(struct request *rq, int error, 2741 unsigned int nr_bytes, unsigned int bidi_bytes) 2742 { 2743 struct request_queue *q = rq->q; 2744 unsigned long flags; 2745 2746 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2747 return true; 2748 2749 spin_lock_irqsave(q->queue_lock, flags); 2750 blk_finish_request(rq, error); 2751 spin_unlock_irqrestore(q->queue_lock, flags); 2752 2753 return false; 2754 } 2755 2756 /** 2757 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2758 * @rq: the request to complete 2759 * @error: %0 for success, < %0 for error 2760 * @nr_bytes: number of bytes to complete @rq 2761 * @bidi_bytes: number of bytes to complete @rq->next_rq 2762 * 2763 * Description: 2764 * Identical to blk_end_bidi_request() except that queue lock is 2765 * assumed to be locked on entry and remains so on return. 2766 * 2767 * Return: 2768 * %false - we are done with this request 2769 * %true - still buffers pending for this request 2770 **/ 2771 bool __blk_end_bidi_request(struct request *rq, int error, 2772 unsigned int nr_bytes, unsigned int bidi_bytes) 2773 { 2774 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2775 return true; 2776 2777 blk_finish_request(rq, error); 2778 2779 return false; 2780 } 2781 2782 /** 2783 * blk_end_request - Helper function for drivers to complete the request. 2784 * @rq: the request being processed 2785 * @error: %0 for success, < %0 for error 2786 * @nr_bytes: number of bytes to complete 2787 * 2788 * Description: 2789 * Ends I/O on a number of bytes attached to @rq. 2790 * If @rq has leftover, sets it up for the next range of segments. 2791 * 2792 * Return: 2793 * %false - we are done with this request 2794 * %true - still buffers pending for this request 2795 **/ 2796 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2797 { 2798 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2799 } 2800 EXPORT_SYMBOL(blk_end_request); 2801 2802 /** 2803 * blk_end_request_all - Helper function for drives to finish the request. 2804 * @rq: the request to finish 2805 * @error: %0 for success, < %0 for error 2806 * 2807 * Description: 2808 * Completely finish @rq. 2809 */ 2810 void blk_end_request_all(struct request *rq, int error) 2811 { 2812 bool pending; 2813 unsigned int bidi_bytes = 0; 2814 2815 if (unlikely(blk_bidi_rq(rq))) 2816 bidi_bytes = blk_rq_bytes(rq->next_rq); 2817 2818 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2819 BUG_ON(pending); 2820 } 2821 EXPORT_SYMBOL(blk_end_request_all); 2822 2823 /** 2824 * blk_end_request_cur - Helper function to finish the current request chunk. 2825 * @rq: the request to finish the current chunk for 2826 * @error: %0 for success, < %0 for error 2827 * 2828 * Description: 2829 * Complete the current consecutively mapped chunk from @rq. 2830 * 2831 * Return: 2832 * %false - we are done with this request 2833 * %true - still buffers pending for this request 2834 */ 2835 bool blk_end_request_cur(struct request *rq, int error) 2836 { 2837 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2838 } 2839 EXPORT_SYMBOL(blk_end_request_cur); 2840 2841 /** 2842 * blk_end_request_err - Finish a request till the next failure boundary. 2843 * @rq: the request to finish till the next failure boundary for 2844 * @error: must be negative errno 2845 * 2846 * Description: 2847 * Complete @rq till the next failure boundary. 2848 * 2849 * Return: 2850 * %false - we are done with this request 2851 * %true - still buffers pending for this request 2852 */ 2853 bool blk_end_request_err(struct request *rq, int error) 2854 { 2855 WARN_ON(error >= 0); 2856 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2857 } 2858 EXPORT_SYMBOL_GPL(blk_end_request_err); 2859 2860 /** 2861 * __blk_end_request - Helper function for drivers to complete the request. 2862 * @rq: the request being processed 2863 * @error: %0 for success, < %0 for error 2864 * @nr_bytes: number of bytes to complete 2865 * 2866 * Description: 2867 * Must be called with queue lock held unlike blk_end_request(). 2868 * 2869 * Return: 2870 * %false - we are done with this request 2871 * %true - still buffers pending for this request 2872 **/ 2873 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2874 { 2875 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2876 } 2877 EXPORT_SYMBOL(__blk_end_request); 2878 2879 /** 2880 * __blk_end_request_all - Helper function for drives to finish the request. 2881 * @rq: the request to finish 2882 * @error: %0 for success, < %0 for error 2883 * 2884 * Description: 2885 * Completely finish @rq. Must be called with queue lock held. 2886 */ 2887 void __blk_end_request_all(struct request *rq, int error) 2888 { 2889 bool pending; 2890 unsigned int bidi_bytes = 0; 2891 2892 if (unlikely(blk_bidi_rq(rq))) 2893 bidi_bytes = blk_rq_bytes(rq->next_rq); 2894 2895 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2896 BUG_ON(pending); 2897 } 2898 EXPORT_SYMBOL(__blk_end_request_all); 2899 2900 /** 2901 * __blk_end_request_cur - Helper function to finish the current request chunk. 2902 * @rq: the request to finish the current chunk for 2903 * @error: %0 for success, < %0 for error 2904 * 2905 * Description: 2906 * Complete the current consecutively mapped chunk from @rq. Must 2907 * be called with queue lock held. 2908 * 2909 * Return: 2910 * %false - we are done with this request 2911 * %true - still buffers pending for this request 2912 */ 2913 bool __blk_end_request_cur(struct request *rq, int error) 2914 { 2915 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2916 } 2917 EXPORT_SYMBOL(__blk_end_request_cur); 2918 2919 /** 2920 * __blk_end_request_err - Finish a request till the next failure boundary. 2921 * @rq: the request to finish till the next failure boundary for 2922 * @error: must be negative errno 2923 * 2924 * Description: 2925 * Complete @rq till the next failure boundary. Must be called 2926 * with queue lock held. 2927 * 2928 * Return: 2929 * %false - we are done with this request 2930 * %true - still buffers pending for this request 2931 */ 2932 bool __blk_end_request_err(struct request *rq, int error) 2933 { 2934 WARN_ON(error >= 0); 2935 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2936 } 2937 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2938 2939 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2940 struct bio *bio) 2941 { 2942 req_set_op(rq, bio_op(bio)); 2943 2944 if (bio_has_data(bio)) 2945 rq->nr_phys_segments = bio_phys_segments(q, bio); 2946 2947 rq->__data_len = bio->bi_iter.bi_size; 2948 rq->bio = rq->biotail = bio; 2949 2950 if (bio->bi_bdev) 2951 rq->rq_disk = bio->bi_bdev->bd_disk; 2952 } 2953 2954 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2955 /** 2956 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2957 * @rq: the request to be flushed 2958 * 2959 * Description: 2960 * Flush all pages in @rq. 2961 */ 2962 void rq_flush_dcache_pages(struct request *rq) 2963 { 2964 struct req_iterator iter; 2965 struct bio_vec bvec; 2966 2967 rq_for_each_segment(bvec, rq, iter) 2968 flush_dcache_page(bvec.bv_page); 2969 } 2970 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2971 #endif 2972 2973 /** 2974 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2975 * @q : the queue of the device being checked 2976 * 2977 * Description: 2978 * Check if underlying low-level drivers of a device are busy. 2979 * If the drivers want to export their busy state, they must set own 2980 * exporting function using blk_queue_lld_busy() first. 2981 * 2982 * Basically, this function is used only by request stacking drivers 2983 * to stop dispatching requests to underlying devices when underlying 2984 * devices are busy. This behavior helps more I/O merging on the queue 2985 * of the request stacking driver and prevents I/O throughput regression 2986 * on burst I/O load. 2987 * 2988 * Return: 2989 * 0 - Not busy (The request stacking driver should dispatch request) 2990 * 1 - Busy (The request stacking driver should stop dispatching request) 2991 */ 2992 int blk_lld_busy(struct request_queue *q) 2993 { 2994 if (q->lld_busy_fn) 2995 return q->lld_busy_fn(q); 2996 2997 return 0; 2998 } 2999 EXPORT_SYMBOL_GPL(blk_lld_busy); 3000 3001 /** 3002 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3003 * @rq: the clone request to be cleaned up 3004 * 3005 * Description: 3006 * Free all bios in @rq for a cloned request. 3007 */ 3008 void blk_rq_unprep_clone(struct request *rq) 3009 { 3010 struct bio *bio; 3011 3012 while ((bio = rq->bio) != NULL) { 3013 rq->bio = bio->bi_next; 3014 3015 bio_put(bio); 3016 } 3017 } 3018 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3019 3020 /* 3021 * Copy attributes of the original request to the clone request. 3022 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3023 */ 3024 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3025 { 3026 dst->cpu = src->cpu; 3027 req_set_op_attrs(dst, req_op(src), 3028 (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE); 3029 dst->cmd_type = src->cmd_type; 3030 dst->__sector = blk_rq_pos(src); 3031 dst->__data_len = blk_rq_bytes(src); 3032 dst->nr_phys_segments = src->nr_phys_segments; 3033 dst->ioprio = src->ioprio; 3034 dst->extra_len = src->extra_len; 3035 } 3036 3037 /** 3038 * blk_rq_prep_clone - Helper function to setup clone request 3039 * @rq: the request to be setup 3040 * @rq_src: original request to be cloned 3041 * @bs: bio_set that bios for clone are allocated from 3042 * @gfp_mask: memory allocation mask for bio 3043 * @bio_ctr: setup function to be called for each clone bio. 3044 * Returns %0 for success, non %0 for failure. 3045 * @data: private data to be passed to @bio_ctr 3046 * 3047 * Description: 3048 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3049 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3050 * are not copied, and copying such parts is the caller's responsibility. 3051 * Also, pages which the original bios are pointing to are not copied 3052 * and the cloned bios just point same pages. 3053 * So cloned bios must be completed before original bios, which means 3054 * the caller must complete @rq before @rq_src. 3055 */ 3056 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3057 struct bio_set *bs, gfp_t gfp_mask, 3058 int (*bio_ctr)(struct bio *, struct bio *, void *), 3059 void *data) 3060 { 3061 struct bio *bio, *bio_src; 3062 3063 if (!bs) 3064 bs = fs_bio_set; 3065 3066 __rq_for_each_bio(bio_src, rq_src) { 3067 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3068 if (!bio) 3069 goto free_and_out; 3070 3071 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3072 goto free_and_out; 3073 3074 if (rq->bio) { 3075 rq->biotail->bi_next = bio; 3076 rq->biotail = bio; 3077 } else 3078 rq->bio = rq->biotail = bio; 3079 } 3080 3081 __blk_rq_prep_clone(rq, rq_src); 3082 3083 return 0; 3084 3085 free_and_out: 3086 if (bio) 3087 bio_put(bio); 3088 blk_rq_unprep_clone(rq); 3089 3090 return -ENOMEM; 3091 } 3092 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3093 3094 int kblockd_schedule_work(struct work_struct *work) 3095 { 3096 return queue_work(kblockd_workqueue, work); 3097 } 3098 EXPORT_SYMBOL(kblockd_schedule_work); 3099 3100 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3101 { 3102 return queue_work_on(cpu, kblockd_workqueue, work); 3103 } 3104 EXPORT_SYMBOL(kblockd_schedule_work_on); 3105 3106 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 3107 unsigned long delay) 3108 { 3109 return queue_delayed_work(kblockd_workqueue, dwork, delay); 3110 } 3111 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 3112 3113 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3114 unsigned long delay) 3115 { 3116 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3117 } 3118 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 3119 3120 /** 3121 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3122 * @plug: The &struct blk_plug that needs to be initialized 3123 * 3124 * Description: 3125 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3126 * pending I/O should the task end up blocking between blk_start_plug() and 3127 * blk_finish_plug(). This is important from a performance perspective, but 3128 * also ensures that we don't deadlock. For instance, if the task is blocking 3129 * for a memory allocation, memory reclaim could end up wanting to free a 3130 * page belonging to that request that is currently residing in our private 3131 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3132 * this kind of deadlock. 3133 */ 3134 void blk_start_plug(struct blk_plug *plug) 3135 { 3136 struct task_struct *tsk = current; 3137 3138 /* 3139 * If this is a nested plug, don't actually assign it. 3140 */ 3141 if (tsk->plug) 3142 return; 3143 3144 INIT_LIST_HEAD(&plug->list); 3145 INIT_LIST_HEAD(&plug->mq_list); 3146 INIT_LIST_HEAD(&plug->cb_list); 3147 /* 3148 * Store ordering should not be needed here, since a potential 3149 * preempt will imply a full memory barrier 3150 */ 3151 tsk->plug = plug; 3152 } 3153 EXPORT_SYMBOL(blk_start_plug); 3154 3155 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3156 { 3157 struct request *rqa = container_of(a, struct request, queuelist); 3158 struct request *rqb = container_of(b, struct request, queuelist); 3159 3160 return !(rqa->q < rqb->q || 3161 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3162 } 3163 3164 /* 3165 * If 'from_schedule' is true, then postpone the dispatch of requests 3166 * until a safe kblockd context. We due this to avoid accidental big 3167 * additional stack usage in driver dispatch, in places where the originally 3168 * plugger did not intend it. 3169 */ 3170 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3171 bool from_schedule) 3172 __releases(q->queue_lock) 3173 { 3174 trace_block_unplug(q, depth, !from_schedule); 3175 3176 if (from_schedule) 3177 blk_run_queue_async(q); 3178 else 3179 __blk_run_queue(q); 3180 spin_unlock(q->queue_lock); 3181 } 3182 3183 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3184 { 3185 LIST_HEAD(callbacks); 3186 3187 while (!list_empty(&plug->cb_list)) { 3188 list_splice_init(&plug->cb_list, &callbacks); 3189 3190 while (!list_empty(&callbacks)) { 3191 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3192 struct blk_plug_cb, 3193 list); 3194 list_del(&cb->list); 3195 cb->callback(cb, from_schedule); 3196 } 3197 } 3198 } 3199 3200 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3201 int size) 3202 { 3203 struct blk_plug *plug = current->plug; 3204 struct blk_plug_cb *cb; 3205 3206 if (!plug) 3207 return NULL; 3208 3209 list_for_each_entry(cb, &plug->cb_list, list) 3210 if (cb->callback == unplug && cb->data == data) 3211 return cb; 3212 3213 /* Not currently on the callback list */ 3214 BUG_ON(size < sizeof(*cb)); 3215 cb = kzalloc(size, GFP_ATOMIC); 3216 if (cb) { 3217 cb->data = data; 3218 cb->callback = unplug; 3219 list_add(&cb->list, &plug->cb_list); 3220 } 3221 return cb; 3222 } 3223 EXPORT_SYMBOL(blk_check_plugged); 3224 3225 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3226 { 3227 struct request_queue *q; 3228 unsigned long flags; 3229 struct request *rq; 3230 LIST_HEAD(list); 3231 unsigned int depth; 3232 3233 flush_plug_callbacks(plug, from_schedule); 3234 3235 if (!list_empty(&plug->mq_list)) 3236 blk_mq_flush_plug_list(plug, from_schedule); 3237 3238 if (list_empty(&plug->list)) 3239 return; 3240 3241 list_splice_init(&plug->list, &list); 3242 3243 list_sort(NULL, &list, plug_rq_cmp); 3244 3245 q = NULL; 3246 depth = 0; 3247 3248 /* 3249 * Save and disable interrupts here, to avoid doing it for every 3250 * queue lock we have to take. 3251 */ 3252 local_irq_save(flags); 3253 while (!list_empty(&list)) { 3254 rq = list_entry_rq(list.next); 3255 list_del_init(&rq->queuelist); 3256 BUG_ON(!rq->q); 3257 if (rq->q != q) { 3258 /* 3259 * This drops the queue lock 3260 */ 3261 if (q) 3262 queue_unplugged(q, depth, from_schedule); 3263 q = rq->q; 3264 depth = 0; 3265 spin_lock(q->queue_lock); 3266 } 3267 3268 /* 3269 * Short-circuit if @q is dead 3270 */ 3271 if (unlikely(blk_queue_dying(q))) { 3272 __blk_end_request_all(rq, -ENODEV); 3273 continue; 3274 } 3275 3276 /* 3277 * rq is already accounted, so use raw insert 3278 */ 3279 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA)) 3280 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3281 else 3282 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3283 3284 depth++; 3285 } 3286 3287 /* 3288 * This drops the queue lock 3289 */ 3290 if (q) 3291 queue_unplugged(q, depth, from_schedule); 3292 3293 local_irq_restore(flags); 3294 } 3295 3296 void blk_finish_plug(struct blk_plug *plug) 3297 { 3298 if (plug != current->plug) 3299 return; 3300 blk_flush_plug_list(plug, false); 3301 3302 current->plug = NULL; 3303 } 3304 EXPORT_SYMBOL(blk_finish_plug); 3305 3306 bool blk_poll(struct request_queue *q, blk_qc_t cookie) 3307 { 3308 struct blk_plug *plug; 3309 long state; 3310 unsigned int queue_num; 3311 struct blk_mq_hw_ctx *hctx; 3312 3313 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) || 3314 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3315 return false; 3316 3317 queue_num = blk_qc_t_to_queue_num(cookie); 3318 hctx = q->queue_hw_ctx[queue_num]; 3319 hctx->poll_considered++; 3320 3321 plug = current->plug; 3322 if (plug) 3323 blk_flush_plug_list(plug, false); 3324 3325 state = current->state; 3326 while (!need_resched()) { 3327 int ret; 3328 3329 hctx->poll_invoked++; 3330 3331 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie)); 3332 if (ret > 0) { 3333 hctx->poll_success++; 3334 set_current_state(TASK_RUNNING); 3335 return true; 3336 } 3337 3338 if (signal_pending_state(state, current)) 3339 set_current_state(TASK_RUNNING); 3340 3341 if (current->state == TASK_RUNNING) 3342 return true; 3343 if (ret < 0) 3344 break; 3345 cpu_relax(); 3346 } 3347 3348 return false; 3349 } 3350 EXPORT_SYMBOL_GPL(blk_poll); 3351 3352 #ifdef CONFIG_PM 3353 /** 3354 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3355 * @q: the queue of the device 3356 * @dev: the device the queue belongs to 3357 * 3358 * Description: 3359 * Initialize runtime-PM-related fields for @q and start auto suspend for 3360 * @dev. Drivers that want to take advantage of request-based runtime PM 3361 * should call this function after @dev has been initialized, and its 3362 * request queue @q has been allocated, and runtime PM for it can not happen 3363 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3364 * cases, driver should call this function before any I/O has taken place. 3365 * 3366 * This function takes care of setting up using auto suspend for the device, 3367 * the autosuspend delay is set to -1 to make runtime suspend impossible 3368 * until an updated value is either set by user or by driver. Drivers do 3369 * not need to touch other autosuspend settings. 3370 * 3371 * The block layer runtime PM is request based, so only works for drivers 3372 * that use request as their IO unit instead of those directly use bio's. 3373 */ 3374 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3375 { 3376 q->dev = dev; 3377 q->rpm_status = RPM_ACTIVE; 3378 pm_runtime_set_autosuspend_delay(q->dev, -1); 3379 pm_runtime_use_autosuspend(q->dev); 3380 } 3381 EXPORT_SYMBOL(blk_pm_runtime_init); 3382 3383 /** 3384 * blk_pre_runtime_suspend - Pre runtime suspend check 3385 * @q: the queue of the device 3386 * 3387 * Description: 3388 * This function will check if runtime suspend is allowed for the device 3389 * by examining if there are any requests pending in the queue. If there 3390 * are requests pending, the device can not be runtime suspended; otherwise, 3391 * the queue's status will be updated to SUSPENDING and the driver can 3392 * proceed to suspend the device. 3393 * 3394 * For the not allowed case, we mark last busy for the device so that 3395 * runtime PM core will try to autosuspend it some time later. 3396 * 3397 * This function should be called near the start of the device's 3398 * runtime_suspend callback. 3399 * 3400 * Return: 3401 * 0 - OK to runtime suspend the device 3402 * -EBUSY - Device should not be runtime suspended 3403 */ 3404 int blk_pre_runtime_suspend(struct request_queue *q) 3405 { 3406 int ret = 0; 3407 3408 if (!q->dev) 3409 return ret; 3410 3411 spin_lock_irq(q->queue_lock); 3412 if (q->nr_pending) { 3413 ret = -EBUSY; 3414 pm_runtime_mark_last_busy(q->dev); 3415 } else { 3416 q->rpm_status = RPM_SUSPENDING; 3417 } 3418 spin_unlock_irq(q->queue_lock); 3419 return ret; 3420 } 3421 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3422 3423 /** 3424 * blk_post_runtime_suspend - Post runtime suspend processing 3425 * @q: the queue of the device 3426 * @err: return value of the device's runtime_suspend function 3427 * 3428 * Description: 3429 * Update the queue's runtime status according to the return value of the 3430 * device's runtime suspend function and mark last busy for the device so 3431 * that PM core will try to auto suspend the device at a later time. 3432 * 3433 * This function should be called near the end of the device's 3434 * runtime_suspend callback. 3435 */ 3436 void blk_post_runtime_suspend(struct request_queue *q, int err) 3437 { 3438 if (!q->dev) 3439 return; 3440 3441 spin_lock_irq(q->queue_lock); 3442 if (!err) { 3443 q->rpm_status = RPM_SUSPENDED; 3444 } else { 3445 q->rpm_status = RPM_ACTIVE; 3446 pm_runtime_mark_last_busy(q->dev); 3447 } 3448 spin_unlock_irq(q->queue_lock); 3449 } 3450 EXPORT_SYMBOL(blk_post_runtime_suspend); 3451 3452 /** 3453 * blk_pre_runtime_resume - Pre runtime resume processing 3454 * @q: the queue of the device 3455 * 3456 * Description: 3457 * Update the queue's runtime status to RESUMING in preparation for the 3458 * runtime resume of the device. 3459 * 3460 * This function should be called near the start of the device's 3461 * runtime_resume callback. 3462 */ 3463 void blk_pre_runtime_resume(struct request_queue *q) 3464 { 3465 if (!q->dev) 3466 return; 3467 3468 spin_lock_irq(q->queue_lock); 3469 q->rpm_status = RPM_RESUMING; 3470 spin_unlock_irq(q->queue_lock); 3471 } 3472 EXPORT_SYMBOL(blk_pre_runtime_resume); 3473 3474 /** 3475 * blk_post_runtime_resume - Post runtime resume processing 3476 * @q: the queue of the device 3477 * @err: return value of the device's runtime_resume function 3478 * 3479 * Description: 3480 * Update the queue's runtime status according to the return value of the 3481 * device's runtime_resume function. If it is successfully resumed, process 3482 * the requests that are queued into the device's queue when it is resuming 3483 * and then mark last busy and initiate autosuspend for it. 3484 * 3485 * This function should be called near the end of the device's 3486 * runtime_resume callback. 3487 */ 3488 void blk_post_runtime_resume(struct request_queue *q, int err) 3489 { 3490 if (!q->dev) 3491 return; 3492 3493 spin_lock_irq(q->queue_lock); 3494 if (!err) { 3495 q->rpm_status = RPM_ACTIVE; 3496 __blk_run_queue(q); 3497 pm_runtime_mark_last_busy(q->dev); 3498 pm_request_autosuspend(q->dev); 3499 } else { 3500 q->rpm_status = RPM_SUSPENDED; 3501 } 3502 spin_unlock_irq(q->queue_lock); 3503 } 3504 EXPORT_SYMBOL(blk_post_runtime_resume); 3505 3506 /** 3507 * blk_set_runtime_active - Force runtime status of the queue to be active 3508 * @q: the queue of the device 3509 * 3510 * If the device is left runtime suspended during system suspend the resume 3511 * hook typically resumes the device and corrects runtime status 3512 * accordingly. However, that does not affect the queue runtime PM status 3513 * which is still "suspended". This prevents processing requests from the 3514 * queue. 3515 * 3516 * This function can be used in driver's resume hook to correct queue 3517 * runtime PM status and re-enable peeking requests from the queue. It 3518 * should be called before first request is added to the queue. 3519 */ 3520 void blk_set_runtime_active(struct request_queue *q) 3521 { 3522 spin_lock_irq(q->queue_lock); 3523 q->rpm_status = RPM_ACTIVE; 3524 pm_runtime_mark_last_busy(q->dev); 3525 pm_request_autosuspend(q->dev); 3526 spin_unlock_irq(q->queue_lock); 3527 } 3528 EXPORT_SYMBOL(blk_set_runtime_active); 3529 #endif 3530 3531 int __init blk_dev_init(void) 3532 { 3533 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3534 FIELD_SIZEOF(struct request, cmd_flags)); 3535 3536 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3537 kblockd_workqueue = alloc_workqueue("kblockd", 3538 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3539 if (!kblockd_workqueue) 3540 panic("Failed to create kblockd\n"); 3541 3542 request_cachep = kmem_cache_create("blkdev_requests", 3543 sizeof(struct request), 0, SLAB_PANIC, NULL); 3544 3545 blk_requestq_cachep = kmem_cache_create("request_queue", 3546 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3547 3548 return 0; 3549 } 3550