xref: /openbmc/linux/block/blk-core.c (revision 6dfcd296)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39 
40 #include "blk.h"
41 #include "blk-mq.h"
42 
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48 
49 DEFINE_IDA(blk_queue_ida);
50 
51 /*
52  * For the allocated request tables
53  */
54 struct kmem_cache *request_cachep;
55 
56 /*
57  * For queue allocation
58  */
59 struct kmem_cache *blk_requestq_cachep;
60 
61 /*
62  * Controlling structure to kblockd
63  */
64 static struct workqueue_struct *kblockd_workqueue;
65 
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 	clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 	/*
72 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 	 * flip its congestion state for events on other blkcgs.
74 	 */
75 	if (rl == &rl->q->root_rl)
76 		clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79 
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 	set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 	/* see blk_clear_congested() */
86 	if (rl == &rl->q->root_rl)
87 		set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90 
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 	int nr;
94 
95 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 	if (nr > q->nr_requests)
97 		nr = q->nr_requests;
98 	q->nr_congestion_on = nr;
99 
100 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 	if (nr < 1)
102 		nr = 1;
103 	q->nr_congestion_off = nr;
104 }
105 
106 /**
107  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108  * @bdev:	device
109  *
110  * Locates the passed device's request queue and returns the address of its
111  * backing_dev_info.  This function can only be called if @bdev is opened
112  * and the return value is never NULL.
113  */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 	struct request_queue *q = bdev_get_queue(bdev);
117 
118 	return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121 
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 	memset(rq, 0, sizeof(*rq));
125 
126 	INIT_LIST_HEAD(&rq->queuelist);
127 	INIT_LIST_HEAD(&rq->timeout_list);
128 	rq->cpu = -1;
129 	rq->q = q;
130 	rq->__sector = (sector_t) -1;
131 	INIT_HLIST_NODE(&rq->hash);
132 	RB_CLEAR_NODE(&rq->rb_node);
133 	rq->cmd = rq->__cmd;
134 	rq->cmd_len = BLK_MAX_CDB;
135 	rq->tag = -1;
136 	rq->start_time = jiffies;
137 	set_start_time_ns(rq);
138 	rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141 
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 			  unsigned int nbytes, int error)
144 {
145 	if (error)
146 		bio->bi_error = error;
147 
148 	if (unlikely(rq->cmd_flags & REQ_QUIET))
149 		bio_set_flag(bio, BIO_QUIET);
150 
151 	bio_advance(bio, nbytes);
152 
153 	/* don't actually finish bio if it's part of flush sequence */
154 	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 		bio_endio(bio);
156 }
157 
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 	int bit;
161 
162 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 		(unsigned long long) rq->cmd_flags);
165 
166 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
167 	       (unsigned long long)blk_rq_pos(rq),
168 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
170 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
171 
172 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 		printk(KERN_INFO "  cdb: ");
174 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 			printk("%02x ", rq->cmd[bit]);
176 		printk("\n");
177 	}
178 }
179 EXPORT_SYMBOL(blk_dump_rq_flags);
180 
181 static void blk_delay_work(struct work_struct *work)
182 {
183 	struct request_queue *q;
184 
185 	q = container_of(work, struct request_queue, delay_work.work);
186 	spin_lock_irq(q->queue_lock);
187 	__blk_run_queue(q);
188 	spin_unlock_irq(q->queue_lock);
189 }
190 
191 /**
192  * blk_delay_queue - restart queueing after defined interval
193  * @q:		The &struct request_queue in question
194  * @msecs:	Delay in msecs
195  *
196  * Description:
197  *   Sometimes queueing needs to be postponed for a little while, to allow
198  *   resources to come back. This function will make sure that queueing is
199  *   restarted around the specified time. Queue lock must be held.
200  */
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
202 {
203 	if (likely(!blk_queue_dead(q)))
204 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 				   msecs_to_jiffies(msecs));
206 }
207 EXPORT_SYMBOL(blk_delay_queue);
208 
209 /**
210  * blk_start_queue_async - asynchronously restart a previously stopped queue
211  * @q:    The &struct request_queue in question
212  *
213  * Description:
214  *   blk_start_queue_async() will clear the stop flag on the queue, and
215  *   ensure that the request_fn for the queue is run from an async
216  *   context.
217  **/
218 void blk_start_queue_async(struct request_queue *q)
219 {
220 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 	blk_run_queue_async(q);
222 }
223 EXPORT_SYMBOL(blk_start_queue_async);
224 
225 /**
226  * blk_start_queue - restart a previously stopped queue
227  * @q:    The &struct request_queue in question
228  *
229  * Description:
230  *   blk_start_queue() will clear the stop flag on the queue, and call
231  *   the request_fn for the queue if it was in a stopped state when
232  *   entered. Also see blk_stop_queue(). Queue lock must be held.
233  **/
234 void blk_start_queue(struct request_queue *q)
235 {
236 	WARN_ON(!irqs_disabled());
237 
238 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
239 	__blk_run_queue(q);
240 }
241 EXPORT_SYMBOL(blk_start_queue);
242 
243 /**
244  * blk_stop_queue - stop a queue
245  * @q:    The &struct request_queue in question
246  *
247  * Description:
248  *   The Linux block layer assumes that a block driver will consume all
249  *   entries on the request queue when the request_fn strategy is called.
250  *   Often this will not happen, because of hardware limitations (queue
251  *   depth settings). If a device driver gets a 'queue full' response,
252  *   or if it simply chooses not to queue more I/O at one point, it can
253  *   call this function to prevent the request_fn from being called until
254  *   the driver has signalled it's ready to go again. This happens by calling
255  *   blk_start_queue() to restart queue operations. Queue lock must be held.
256  **/
257 void blk_stop_queue(struct request_queue *q)
258 {
259 	cancel_delayed_work(&q->delay_work);
260 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
261 }
262 EXPORT_SYMBOL(blk_stop_queue);
263 
264 /**
265  * blk_sync_queue - cancel any pending callbacks on a queue
266  * @q: the queue
267  *
268  * Description:
269  *     The block layer may perform asynchronous callback activity
270  *     on a queue, such as calling the unplug function after a timeout.
271  *     A block device may call blk_sync_queue to ensure that any
272  *     such activity is cancelled, thus allowing it to release resources
273  *     that the callbacks might use. The caller must already have made sure
274  *     that its ->make_request_fn will not re-add plugging prior to calling
275  *     this function.
276  *
277  *     This function does not cancel any asynchronous activity arising
278  *     out of elevator or throttling code. That would require elevator_exit()
279  *     and blkcg_exit_queue() to be called with queue lock initialized.
280  *
281  */
282 void blk_sync_queue(struct request_queue *q)
283 {
284 	del_timer_sync(&q->timeout);
285 
286 	if (q->mq_ops) {
287 		struct blk_mq_hw_ctx *hctx;
288 		int i;
289 
290 		queue_for_each_hw_ctx(q, hctx, i) {
291 			cancel_work_sync(&hctx->run_work);
292 			cancel_delayed_work_sync(&hctx->delay_work);
293 		}
294 	} else {
295 		cancel_delayed_work_sync(&q->delay_work);
296 	}
297 }
298 EXPORT_SYMBOL(blk_sync_queue);
299 
300 /**
301  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302  * @q:	The queue to run
303  *
304  * Description:
305  *    Invoke request handling on a queue if there are any pending requests.
306  *    May be used to restart request handling after a request has completed.
307  *    This variant runs the queue whether or not the queue has been
308  *    stopped. Must be called with the queue lock held and interrupts
309  *    disabled. See also @blk_run_queue.
310  */
311 inline void __blk_run_queue_uncond(struct request_queue *q)
312 {
313 	if (unlikely(blk_queue_dead(q)))
314 		return;
315 
316 	/*
317 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 	 * the queue lock internally. As a result multiple threads may be
319 	 * running such a request function concurrently. Keep track of the
320 	 * number of active request_fn invocations such that blk_drain_queue()
321 	 * can wait until all these request_fn calls have finished.
322 	 */
323 	q->request_fn_active++;
324 	q->request_fn(q);
325 	q->request_fn_active--;
326 }
327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
328 
329 /**
330  * __blk_run_queue - run a single device queue
331  * @q:	The queue to run
332  *
333  * Description:
334  *    See @blk_run_queue. This variant must be called with the queue lock
335  *    held and interrupts disabled.
336  */
337 void __blk_run_queue(struct request_queue *q)
338 {
339 	if (unlikely(blk_queue_stopped(q)))
340 		return;
341 
342 	__blk_run_queue_uncond(q);
343 }
344 EXPORT_SYMBOL(__blk_run_queue);
345 
346 /**
347  * blk_run_queue_async - run a single device queue in workqueue context
348  * @q:	The queue to run
349  *
350  * Description:
351  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
352  *    of us. The caller must hold the queue lock.
353  */
354 void blk_run_queue_async(struct request_queue *q)
355 {
356 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
357 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
358 }
359 EXPORT_SYMBOL(blk_run_queue_async);
360 
361 /**
362  * blk_run_queue - run a single device queue
363  * @q: The queue to run
364  *
365  * Description:
366  *    Invoke request handling on this queue, if it has pending work to do.
367  *    May be used to restart queueing when a request has completed.
368  */
369 void blk_run_queue(struct request_queue *q)
370 {
371 	unsigned long flags;
372 
373 	spin_lock_irqsave(q->queue_lock, flags);
374 	__blk_run_queue(q);
375 	spin_unlock_irqrestore(q->queue_lock, flags);
376 }
377 EXPORT_SYMBOL(blk_run_queue);
378 
379 void blk_put_queue(struct request_queue *q)
380 {
381 	kobject_put(&q->kobj);
382 }
383 EXPORT_SYMBOL(blk_put_queue);
384 
385 /**
386  * __blk_drain_queue - drain requests from request_queue
387  * @q: queue to drain
388  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
389  *
390  * Drain requests from @q.  If @drain_all is set, all requests are drained.
391  * If not, only ELVPRIV requests are drained.  The caller is responsible
392  * for ensuring that no new requests which need to be drained are queued.
393  */
394 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 	__releases(q->queue_lock)
396 	__acquires(q->queue_lock)
397 {
398 	int i;
399 
400 	lockdep_assert_held(q->queue_lock);
401 
402 	while (true) {
403 		bool drain = false;
404 
405 		/*
406 		 * The caller might be trying to drain @q before its
407 		 * elevator is initialized.
408 		 */
409 		if (q->elevator)
410 			elv_drain_elevator(q);
411 
412 		blkcg_drain_queue(q);
413 
414 		/*
415 		 * This function might be called on a queue which failed
416 		 * driver init after queue creation or is not yet fully
417 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
418 		 * in such cases.  Kick queue iff dispatch queue has
419 		 * something on it and @q has request_fn set.
420 		 */
421 		if (!list_empty(&q->queue_head) && q->request_fn)
422 			__blk_run_queue(q);
423 
424 		drain |= q->nr_rqs_elvpriv;
425 		drain |= q->request_fn_active;
426 
427 		/*
428 		 * Unfortunately, requests are queued at and tracked from
429 		 * multiple places and there's no single counter which can
430 		 * be drained.  Check all the queues and counters.
431 		 */
432 		if (drain_all) {
433 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
434 			drain |= !list_empty(&q->queue_head);
435 			for (i = 0; i < 2; i++) {
436 				drain |= q->nr_rqs[i];
437 				drain |= q->in_flight[i];
438 				if (fq)
439 				    drain |= !list_empty(&fq->flush_queue[i]);
440 			}
441 		}
442 
443 		if (!drain)
444 			break;
445 
446 		spin_unlock_irq(q->queue_lock);
447 
448 		msleep(10);
449 
450 		spin_lock_irq(q->queue_lock);
451 	}
452 
453 	/*
454 	 * With queue marked dead, any woken up waiter will fail the
455 	 * allocation path, so the wakeup chaining is lost and we're
456 	 * left with hung waiters. We need to wake up those waiters.
457 	 */
458 	if (q->request_fn) {
459 		struct request_list *rl;
460 
461 		blk_queue_for_each_rl(rl, q)
462 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 				wake_up_all(&rl->wait[i]);
464 	}
465 }
466 
467 /**
468  * blk_queue_bypass_start - enter queue bypass mode
469  * @q: queue of interest
470  *
471  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
472  * function makes @q enter bypass mode and drains all requests which were
473  * throttled or issued before.  On return, it's guaranteed that no request
474  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475  * inside queue or RCU read lock.
476  */
477 void blk_queue_bypass_start(struct request_queue *q)
478 {
479 	spin_lock_irq(q->queue_lock);
480 	q->bypass_depth++;
481 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 	spin_unlock_irq(q->queue_lock);
483 
484 	/*
485 	 * Queues start drained.  Skip actual draining till init is
486 	 * complete.  This avoids lenghty delays during queue init which
487 	 * can happen many times during boot.
488 	 */
489 	if (blk_queue_init_done(q)) {
490 		spin_lock_irq(q->queue_lock);
491 		__blk_drain_queue(q, false);
492 		spin_unlock_irq(q->queue_lock);
493 
494 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
495 		synchronize_rcu();
496 	}
497 }
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499 
500 /**
501  * blk_queue_bypass_end - leave queue bypass mode
502  * @q: queue of interest
503  *
504  * Leave bypass mode and restore the normal queueing behavior.
505  */
506 void blk_queue_bypass_end(struct request_queue *q)
507 {
508 	spin_lock_irq(q->queue_lock);
509 	if (!--q->bypass_depth)
510 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 	WARN_ON_ONCE(q->bypass_depth < 0);
512 	spin_unlock_irq(q->queue_lock);
513 }
514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515 
516 void blk_set_queue_dying(struct request_queue *q)
517 {
518 	spin_lock_irq(q->queue_lock);
519 	queue_flag_set(QUEUE_FLAG_DYING, q);
520 	spin_unlock_irq(q->queue_lock);
521 
522 	if (q->mq_ops)
523 		blk_mq_wake_waiters(q);
524 	else {
525 		struct request_list *rl;
526 
527 		blk_queue_for_each_rl(rl, q) {
528 			if (rl->rq_pool) {
529 				wake_up(&rl->wait[BLK_RW_SYNC]);
530 				wake_up(&rl->wait[BLK_RW_ASYNC]);
531 			}
532 		}
533 	}
534 }
535 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
536 
537 /**
538  * blk_cleanup_queue - shutdown a request queue
539  * @q: request queue to shutdown
540  *
541  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
542  * put it.  All future requests will be failed immediately with -ENODEV.
543  */
544 void blk_cleanup_queue(struct request_queue *q)
545 {
546 	spinlock_t *lock = q->queue_lock;
547 
548 	/* mark @q DYING, no new request or merges will be allowed afterwards */
549 	mutex_lock(&q->sysfs_lock);
550 	blk_set_queue_dying(q);
551 	spin_lock_irq(lock);
552 
553 	/*
554 	 * A dying queue is permanently in bypass mode till released.  Note
555 	 * that, unlike blk_queue_bypass_start(), we aren't performing
556 	 * synchronize_rcu() after entering bypass mode to avoid the delay
557 	 * as some drivers create and destroy a lot of queues while
558 	 * probing.  This is still safe because blk_release_queue() will be
559 	 * called only after the queue refcnt drops to zero and nothing,
560 	 * RCU or not, would be traversing the queue by then.
561 	 */
562 	q->bypass_depth++;
563 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
564 
565 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
566 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
567 	queue_flag_set(QUEUE_FLAG_DYING, q);
568 	spin_unlock_irq(lock);
569 	mutex_unlock(&q->sysfs_lock);
570 
571 	/*
572 	 * Drain all requests queued before DYING marking. Set DEAD flag to
573 	 * prevent that q->request_fn() gets invoked after draining finished.
574 	 */
575 	blk_freeze_queue(q);
576 	spin_lock_irq(lock);
577 	if (!q->mq_ops)
578 		__blk_drain_queue(q, true);
579 	queue_flag_set(QUEUE_FLAG_DEAD, q);
580 	spin_unlock_irq(lock);
581 
582 	/* for synchronous bio-based driver finish in-flight integrity i/o */
583 	blk_flush_integrity();
584 
585 	/* @q won't process any more request, flush async actions */
586 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
587 	blk_sync_queue(q);
588 
589 	if (q->mq_ops)
590 		blk_mq_free_queue(q);
591 	percpu_ref_exit(&q->q_usage_counter);
592 
593 	spin_lock_irq(lock);
594 	if (q->queue_lock != &q->__queue_lock)
595 		q->queue_lock = &q->__queue_lock;
596 	spin_unlock_irq(lock);
597 
598 	bdi_unregister(&q->backing_dev_info);
599 
600 	/* @q is and will stay empty, shutdown and put */
601 	blk_put_queue(q);
602 }
603 EXPORT_SYMBOL(blk_cleanup_queue);
604 
605 /* Allocate memory local to the request queue */
606 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
607 {
608 	int nid = (int)(long)data;
609 	return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
610 }
611 
612 static void free_request_struct(void *element, void *unused)
613 {
614 	kmem_cache_free(request_cachep, element);
615 }
616 
617 int blk_init_rl(struct request_list *rl, struct request_queue *q,
618 		gfp_t gfp_mask)
619 {
620 	if (unlikely(rl->rq_pool))
621 		return 0;
622 
623 	rl->q = q;
624 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
625 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
626 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
627 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
628 
629 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
630 					  free_request_struct,
631 					  (void *)(long)q->node, gfp_mask,
632 					  q->node);
633 	if (!rl->rq_pool)
634 		return -ENOMEM;
635 
636 	return 0;
637 }
638 
639 void blk_exit_rl(struct request_list *rl)
640 {
641 	if (rl->rq_pool)
642 		mempool_destroy(rl->rq_pool);
643 }
644 
645 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
646 {
647 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
648 }
649 EXPORT_SYMBOL(blk_alloc_queue);
650 
651 int blk_queue_enter(struct request_queue *q, bool nowait)
652 {
653 	while (true) {
654 		int ret;
655 
656 		if (percpu_ref_tryget_live(&q->q_usage_counter))
657 			return 0;
658 
659 		if (nowait)
660 			return -EBUSY;
661 
662 		ret = wait_event_interruptible(q->mq_freeze_wq,
663 				!atomic_read(&q->mq_freeze_depth) ||
664 				blk_queue_dying(q));
665 		if (blk_queue_dying(q))
666 			return -ENODEV;
667 		if (ret)
668 			return ret;
669 	}
670 }
671 
672 void blk_queue_exit(struct request_queue *q)
673 {
674 	percpu_ref_put(&q->q_usage_counter);
675 }
676 
677 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
678 {
679 	struct request_queue *q =
680 		container_of(ref, struct request_queue, q_usage_counter);
681 
682 	wake_up_all(&q->mq_freeze_wq);
683 }
684 
685 static void blk_rq_timed_out_timer(unsigned long data)
686 {
687 	struct request_queue *q = (struct request_queue *)data;
688 
689 	kblockd_schedule_work(&q->timeout_work);
690 }
691 
692 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
693 {
694 	struct request_queue *q;
695 	int err;
696 
697 	q = kmem_cache_alloc_node(blk_requestq_cachep,
698 				gfp_mask | __GFP_ZERO, node_id);
699 	if (!q)
700 		return NULL;
701 
702 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
703 	if (q->id < 0)
704 		goto fail_q;
705 
706 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
707 	if (!q->bio_split)
708 		goto fail_id;
709 
710 	q->backing_dev_info.ra_pages =
711 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
712 	q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
713 	q->backing_dev_info.name = "block";
714 	q->node = node_id;
715 
716 	err = bdi_init(&q->backing_dev_info);
717 	if (err)
718 		goto fail_split;
719 
720 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
721 		    laptop_mode_timer_fn, (unsigned long) q);
722 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
723 	INIT_LIST_HEAD(&q->queue_head);
724 	INIT_LIST_HEAD(&q->timeout_list);
725 	INIT_LIST_HEAD(&q->icq_list);
726 #ifdef CONFIG_BLK_CGROUP
727 	INIT_LIST_HEAD(&q->blkg_list);
728 #endif
729 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
730 
731 	kobject_init(&q->kobj, &blk_queue_ktype);
732 
733 	mutex_init(&q->sysfs_lock);
734 	spin_lock_init(&q->__queue_lock);
735 
736 	/*
737 	 * By default initialize queue_lock to internal lock and driver can
738 	 * override it later if need be.
739 	 */
740 	q->queue_lock = &q->__queue_lock;
741 
742 	/*
743 	 * A queue starts its life with bypass turned on to avoid
744 	 * unnecessary bypass on/off overhead and nasty surprises during
745 	 * init.  The initial bypass will be finished when the queue is
746 	 * registered by blk_register_queue().
747 	 */
748 	q->bypass_depth = 1;
749 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
750 
751 	init_waitqueue_head(&q->mq_freeze_wq);
752 
753 	/*
754 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
755 	 * See blk_register_queue() for details.
756 	 */
757 	if (percpu_ref_init(&q->q_usage_counter,
758 				blk_queue_usage_counter_release,
759 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
760 		goto fail_bdi;
761 
762 	if (blkcg_init_queue(q))
763 		goto fail_ref;
764 
765 	return q;
766 
767 fail_ref:
768 	percpu_ref_exit(&q->q_usage_counter);
769 fail_bdi:
770 	bdi_destroy(&q->backing_dev_info);
771 fail_split:
772 	bioset_free(q->bio_split);
773 fail_id:
774 	ida_simple_remove(&blk_queue_ida, q->id);
775 fail_q:
776 	kmem_cache_free(blk_requestq_cachep, q);
777 	return NULL;
778 }
779 EXPORT_SYMBOL(blk_alloc_queue_node);
780 
781 /**
782  * blk_init_queue  - prepare a request queue for use with a block device
783  * @rfn:  The function to be called to process requests that have been
784  *        placed on the queue.
785  * @lock: Request queue spin lock
786  *
787  * Description:
788  *    If a block device wishes to use the standard request handling procedures,
789  *    which sorts requests and coalesces adjacent requests, then it must
790  *    call blk_init_queue().  The function @rfn will be called when there
791  *    are requests on the queue that need to be processed.  If the device
792  *    supports plugging, then @rfn may not be called immediately when requests
793  *    are available on the queue, but may be called at some time later instead.
794  *    Plugged queues are generally unplugged when a buffer belonging to one
795  *    of the requests on the queue is needed, or due to memory pressure.
796  *
797  *    @rfn is not required, or even expected, to remove all requests off the
798  *    queue, but only as many as it can handle at a time.  If it does leave
799  *    requests on the queue, it is responsible for arranging that the requests
800  *    get dealt with eventually.
801  *
802  *    The queue spin lock must be held while manipulating the requests on the
803  *    request queue; this lock will be taken also from interrupt context, so irq
804  *    disabling is needed for it.
805  *
806  *    Function returns a pointer to the initialized request queue, or %NULL if
807  *    it didn't succeed.
808  *
809  * Note:
810  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
811  *    when the block device is deactivated (such as at module unload).
812  **/
813 
814 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
815 {
816 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
817 }
818 EXPORT_SYMBOL(blk_init_queue);
819 
820 struct request_queue *
821 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
822 {
823 	struct request_queue *uninit_q, *q;
824 
825 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
826 	if (!uninit_q)
827 		return NULL;
828 
829 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
830 	if (!q)
831 		blk_cleanup_queue(uninit_q);
832 
833 	return q;
834 }
835 EXPORT_SYMBOL(blk_init_queue_node);
836 
837 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
838 
839 struct request_queue *
840 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
841 			 spinlock_t *lock)
842 {
843 	if (!q)
844 		return NULL;
845 
846 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
847 	if (!q->fq)
848 		return NULL;
849 
850 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
851 		goto fail;
852 
853 	INIT_WORK(&q->timeout_work, blk_timeout_work);
854 	q->request_fn		= rfn;
855 	q->prep_rq_fn		= NULL;
856 	q->unprep_rq_fn		= NULL;
857 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
858 
859 	/* Override internal queue lock with supplied lock pointer */
860 	if (lock)
861 		q->queue_lock		= lock;
862 
863 	/*
864 	 * This also sets hw/phys segments, boundary and size
865 	 */
866 	blk_queue_make_request(q, blk_queue_bio);
867 
868 	q->sg_reserved_size = INT_MAX;
869 
870 	/* Protect q->elevator from elevator_change */
871 	mutex_lock(&q->sysfs_lock);
872 
873 	/* init elevator */
874 	if (elevator_init(q, NULL)) {
875 		mutex_unlock(&q->sysfs_lock);
876 		goto fail;
877 	}
878 
879 	mutex_unlock(&q->sysfs_lock);
880 
881 	return q;
882 
883 fail:
884 	blk_free_flush_queue(q->fq);
885 	return NULL;
886 }
887 EXPORT_SYMBOL(blk_init_allocated_queue);
888 
889 bool blk_get_queue(struct request_queue *q)
890 {
891 	if (likely(!blk_queue_dying(q))) {
892 		__blk_get_queue(q);
893 		return true;
894 	}
895 
896 	return false;
897 }
898 EXPORT_SYMBOL(blk_get_queue);
899 
900 static inline void blk_free_request(struct request_list *rl, struct request *rq)
901 {
902 	if (rq->cmd_flags & REQ_ELVPRIV) {
903 		elv_put_request(rl->q, rq);
904 		if (rq->elv.icq)
905 			put_io_context(rq->elv.icq->ioc);
906 	}
907 
908 	mempool_free(rq, rl->rq_pool);
909 }
910 
911 /*
912  * ioc_batching returns true if the ioc is a valid batching request and
913  * should be given priority access to a request.
914  */
915 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
916 {
917 	if (!ioc)
918 		return 0;
919 
920 	/*
921 	 * Make sure the process is able to allocate at least 1 request
922 	 * even if the batch times out, otherwise we could theoretically
923 	 * lose wakeups.
924 	 */
925 	return ioc->nr_batch_requests == q->nr_batching ||
926 		(ioc->nr_batch_requests > 0
927 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
928 }
929 
930 /*
931  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
932  * will cause the process to be a "batcher" on all queues in the system. This
933  * is the behaviour we want though - once it gets a wakeup it should be given
934  * a nice run.
935  */
936 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
937 {
938 	if (!ioc || ioc_batching(q, ioc))
939 		return;
940 
941 	ioc->nr_batch_requests = q->nr_batching;
942 	ioc->last_waited = jiffies;
943 }
944 
945 static void __freed_request(struct request_list *rl, int sync)
946 {
947 	struct request_queue *q = rl->q;
948 
949 	if (rl->count[sync] < queue_congestion_off_threshold(q))
950 		blk_clear_congested(rl, sync);
951 
952 	if (rl->count[sync] + 1 <= q->nr_requests) {
953 		if (waitqueue_active(&rl->wait[sync]))
954 			wake_up(&rl->wait[sync]);
955 
956 		blk_clear_rl_full(rl, sync);
957 	}
958 }
959 
960 /*
961  * A request has just been released.  Account for it, update the full and
962  * congestion status, wake up any waiters.   Called under q->queue_lock.
963  */
964 static void freed_request(struct request_list *rl, int op, unsigned int flags)
965 {
966 	struct request_queue *q = rl->q;
967 	int sync = rw_is_sync(op, flags);
968 
969 	q->nr_rqs[sync]--;
970 	rl->count[sync]--;
971 	if (flags & REQ_ELVPRIV)
972 		q->nr_rqs_elvpriv--;
973 
974 	__freed_request(rl, sync);
975 
976 	if (unlikely(rl->starved[sync ^ 1]))
977 		__freed_request(rl, sync ^ 1);
978 }
979 
980 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
981 {
982 	struct request_list *rl;
983 	int on_thresh, off_thresh;
984 
985 	spin_lock_irq(q->queue_lock);
986 	q->nr_requests = nr;
987 	blk_queue_congestion_threshold(q);
988 	on_thresh = queue_congestion_on_threshold(q);
989 	off_thresh = queue_congestion_off_threshold(q);
990 
991 	blk_queue_for_each_rl(rl, q) {
992 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
993 			blk_set_congested(rl, BLK_RW_SYNC);
994 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
995 			blk_clear_congested(rl, BLK_RW_SYNC);
996 
997 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
998 			blk_set_congested(rl, BLK_RW_ASYNC);
999 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1000 			blk_clear_congested(rl, BLK_RW_ASYNC);
1001 
1002 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1003 			blk_set_rl_full(rl, BLK_RW_SYNC);
1004 		} else {
1005 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1006 			wake_up(&rl->wait[BLK_RW_SYNC]);
1007 		}
1008 
1009 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1010 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1011 		} else {
1012 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1013 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1014 		}
1015 	}
1016 
1017 	spin_unlock_irq(q->queue_lock);
1018 	return 0;
1019 }
1020 
1021 /*
1022  * Determine if elevator data should be initialized when allocating the
1023  * request associated with @bio.
1024  */
1025 static bool blk_rq_should_init_elevator(struct bio *bio)
1026 {
1027 	if (!bio)
1028 		return true;
1029 
1030 	/*
1031 	 * Flush requests do not use the elevator so skip initialization.
1032 	 * This allows a request to share the flush and elevator data.
1033 	 */
1034 	if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA))
1035 		return false;
1036 
1037 	return true;
1038 }
1039 
1040 /**
1041  * rq_ioc - determine io_context for request allocation
1042  * @bio: request being allocated is for this bio (can be %NULL)
1043  *
1044  * Determine io_context to use for request allocation for @bio.  May return
1045  * %NULL if %current->io_context doesn't exist.
1046  */
1047 static struct io_context *rq_ioc(struct bio *bio)
1048 {
1049 #ifdef CONFIG_BLK_CGROUP
1050 	if (bio && bio->bi_ioc)
1051 		return bio->bi_ioc;
1052 #endif
1053 	return current->io_context;
1054 }
1055 
1056 /**
1057  * __get_request - get a free request
1058  * @rl: request list to allocate from
1059  * @op: REQ_OP_READ/REQ_OP_WRITE
1060  * @op_flags: rq_flag_bits
1061  * @bio: bio to allocate request for (can be %NULL)
1062  * @gfp_mask: allocation mask
1063  *
1064  * Get a free request from @q.  This function may fail under memory
1065  * pressure or if @q is dead.
1066  *
1067  * Must be called with @q->queue_lock held and,
1068  * Returns ERR_PTR on failure, with @q->queue_lock held.
1069  * Returns request pointer on success, with @q->queue_lock *not held*.
1070  */
1071 static struct request *__get_request(struct request_list *rl, int op,
1072 				     int op_flags, struct bio *bio,
1073 				     gfp_t gfp_mask)
1074 {
1075 	struct request_queue *q = rl->q;
1076 	struct request *rq;
1077 	struct elevator_type *et = q->elevator->type;
1078 	struct io_context *ioc = rq_ioc(bio);
1079 	struct io_cq *icq = NULL;
1080 	const bool is_sync = rw_is_sync(op, op_flags) != 0;
1081 	int may_queue;
1082 
1083 	if (unlikely(blk_queue_dying(q)))
1084 		return ERR_PTR(-ENODEV);
1085 
1086 	may_queue = elv_may_queue(q, op, op_flags);
1087 	if (may_queue == ELV_MQUEUE_NO)
1088 		goto rq_starved;
1089 
1090 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1091 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1092 			/*
1093 			 * The queue will fill after this allocation, so set
1094 			 * it as full, and mark this process as "batching".
1095 			 * This process will be allowed to complete a batch of
1096 			 * requests, others will be blocked.
1097 			 */
1098 			if (!blk_rl_full(rl, is_sync)) {
1099 				ioc_set_batching(q, ioc);
1100 				blk_set_rl_full(rl, is_sync);
1101 			} else {
1102 				if (may_queue != ELV_MQUEUE_MUST
1103 						&& !ioc_batching(q, ioc)) {
1104 					/*
1105 					 * The queue is full and the allocating
1106 					 * process is not a "batcher", and not
1107 					 * exempted by the IO scheduler
1108 					 */
1109 					return ERR_PTR(-ENOMEM);
1110 				}
1111 			}
1112 		}
1113 		blk_set_congested(rl, is_sync);
1114 	}
1115 
1116 	/*
1117 	 * Only allow batching queuers to allocate up to 50% over the defined
1118 	 * limit of requests, otherwise we could have thousands of requests
1119 	 * allocated with any setting of ->nr_requests
1120 	 */
1121 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1122 		return ERR_PTR(-ENOMEM);
1123 
1124 	q->nr_rqs[is_sync]++;
1125 	rl->count[is_sync]++;
1126 	rl->starved[is_sync] = 0;
1127 
1128 	/*
1129 	 * Decide whether the new request will be managed by elevator.  If
1130 	 * so, mark @op_flags and increment elvpriv.  Non-zero elvpriv will
1131 	 * prevent the current elevator from being destroyed until the new
1132 	 * request is freed.  This guarantees icq's won't be destroyed and
1133 	 * makes creating new ones safe.
1134 	 *
1135 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1136 	 * it will be created after releasing queue_lock.
1137 	 */
1138 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1139 		op_flags |= REQ_ELVPRIV;
1140 		q->nr_rqs_elvpriv++;
1141 		if (et->icq_cache && ioc)
1142 			icq = ioc_lookup_icq(ioc, q);
1143 	}
1144 
1145 	if (blk_queue_io_stat(q))
1146 		op_flags |= REQ_IO_STAT;
1147 	spin_unlock_irq(q->queue_lock);
1148 
1149 	/* allocate and init request */
1150 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1151 	if (!rq)
1152 		goto fail_alloc;
1153 
1154 	blk_rq_init(q, rq);
1155 	blk_rq_set_rl(rq, rl);
1156 	req_set_op_attrs(rq, op, op_flags | REQ_ALLOCED);
1157 
1158 	/* init elvpriv */
1159 	if (op_flags & REQ_ELVPRIV) {
1160 		if (unlikely(et->icq_cache && !icq)) {
1161 			if (ioc)
1162 				icq = ioc_create_icq(ioc, q, gfp_mask);
1163 			if (!icq)
1164 				goto fail_elvpriv;
1165 		}
1166 
1167 		rq->elv.icq = icq;
1168 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1169 			goto fail_elvpriv;
1170 
1171 		/* @rq->elv.icq holds io_context until @rq is freed */
1172 		if (icq)
1173 			get_io_context(icq->ioc);
1174 	}
1175 out:
1176 	/*
1177 	 * ioc may be NULL here, and ioc_batching will be false. That's
1178 	 * OK, if the queue is under the request limit then requests need
1179 	 * not count toward the nr_batch_requests limit. There will always
1180 	 * be some limit enforced by BLK_BATCH_TIME.
1181 	 */
1182 	if (ioc_batching(q, ioc))
1183 		ioc->nr_batch_requests--;
1184 
1185 	trace_block_getrq(q, bio, op);
1186 	return rq;
1187 
1188 fail_elvpriv:
1189 	/*
1190 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1191 	 * and may fail indefinitely under memory pressure and thus
1192 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1193 	 * disturb iosched and blkcg but weird is bettern than dead.
1194 	 */
1195 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1196 			   __func__, dev_name(q->backing_dev_info.dev));
1197 
1198 	rq->cmd_flags &= ~REQ_ELVPRIV;
1199 	rq->elv.icq = NULL;
1200 
1201 	spin_lock_irq(q->queue_lock);
1202 	q->nr_rqs_elvpriv--;
1203 	spin_unlock_irq(q->queue_lock);
1204 	goto out;
1205 
1206 fail_alloc:
1207 	/*
1208 	 * Allocation failed presumably due to memory. Undo anything we
1209 	 * might have messed up.
1210 	 *
1211 	 * Allocating task should really be put onto the front of the wait
1212 	 * queue, but this is pretty rare.
1213 	 */
1214 	spin_lock_irq(q->queue_lock);
1215 	freed_request(rl, op, op_flags);
1216 
1217 	/*
1218 	 * in the very unlikely event that allocation failed and no
1219 	 * requests for this direction was pending, mark us starved so that
1220 	 * freeing of a request in the other direction will notice
1221 	 * us. another possible fix would be to split the rq mempool into
1222 	 * READ and WRITE
1223 	 */
1224 rq_starved:
1225 	if (unlikely(rl->count[is_sync] == 0))
1226 		rl->starved[is_sync] = 1;
1227 	return ERR_PTR(-ENOMEM);
1228 }
1229 
1230 /**
1231  * get_request - get a free request
1232  * @q: request_queue to allocate request from
1233  * @op: REQ_OP_READ/REQ_OP_WRITE
1234  * @op_flags: rq_flag_bits
1235  * @bio: bio to allocate request for (can be %NULL)
1236  * @gfp_mask: allocation mask
1237  *
1238  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1239  * this function keeps retrying under memory pressure and fails iff @q is dead.
1240  *
1241  * Must be called with @q->queue_lock held and,
1242  * Returns ERR_PTR on failure, with @q->queue_lock held.
1243  * Returns request pointer on success, with @q->queue_lock *not held*.
1244  */
1245 static struct request *get_request(struct request_queue *q, int op,
1246 				   int op_flags, struct bio *bio,
1247 				   gfp_t gfp_mask)
1248 {
1249 	const bool is_sync = rw_is_sync(op, op_flags) != 0;
1250 	DEFINE_WAIT(wait);
1251 	struct request_list *rl;
1252 	struct request *rq;
1253 
1254 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1255 retry:
1256 	rq = __get_request(rl, op, op_flags, bio, gfp_mask);
1257 	if (!IS_ERR(rq))
1258 		return rq;
1259 
1260 	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1261 		blk_put_rl(rl);
1262 		return rq;
1263 	}
1264 
1265 	/* wait on @rl and retry */
1266 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1267 				  TASK_UNINTERRUPTIBLE);
1268 
1269 	trace_block_sleeprq(q, bio, op);
1270 
1271 	spin_unlock_irq(q->queue_lock);
1272 	io_schedule();
1273 
1274 	/*
1275 	 * After sleeping, we become a "batching" process and will be able
1276 	 * to allocate at least one request, and up to a big batch of them
1277 	 * for a small period time.  See ioc_batching, ioc_set_batching
1278 	 */
1279 	ioc_set_batching(q, current->io_context);
1280 
1281 	spin_lock_irq(q->queue_lock);
1282 	finish_wait(&rl->wait[is_sync], &wait);
1283 
1284 	goto retry;
1285 }
1286 
1287 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1288 		gfp_t gfp_mask)
1289 {
1290 	struct request *rq;
1291 
1292 	BUG_ON(rw != READ && rw != WRITE);
1293 
1294 	/* create ioc upfront */
1295 	create_io_context(gfp_mask, q->node);
1296 
1297 	spin_lock_irq(q->queue_lock);
1298 	rq = get_request(q, rw, 0, NULL, gfp_mask);
1299 	if (IS_ERR(rq)) {
1300 		spin_unlock_irq(q->queue_lock);
1301 		return rq;
1302 	}
1303 
1304 	/* q->queue_lock is unlocked at this point */
1305 	rq->__data_len = 0;
1306 	rq->__sector = (sector_t) -1;
1307 	rq->bio = rq->biotail = NULL;
1308 	return rq;
1309 }
1310 
1311 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1312 {
1313 	if (q->mq_ops)
1314 		return blk_mq_alloc_request(q, rw,
1315 			(gfp_mask & __GFP_DIRECT_RECLAIM) ?
1316 				0 : BLK_MQ_REQ_NOWAIT);
1317 	else
1318 		return blk_old_get_request(q, rw, gfp_mask);
1319 }
1320 EXPORT_SYMBOL(blk_get_request);
1321 
1322 /**
1323  * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1324  * @rq:		request to be initialized
1325  *
1326  */
1327 void blk_rq_set_block_pc(struct request *rq)
1328 {
1329 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1330 	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1331 }
1332 EXPORT_SYMBOL(blk_rq_set_block_pc);
1333 
1334 /**
1335  * blk_requeue_request - put a request back on queue
1336  * @q:		request queue where request should be inserted
1337  * @rq:		request to be inserted
1338  *
1339  * Description:
1340  *    Drivers often keep queueing requests until the hardware cannot accept
1341  *    more, when that condition happens we need to put the request back
1342  *    on the queue. Must be called with queue lock held.
1343  */
1344 void blk_requeue_request(struct request_queue *q, struct request *rq)
1345 {
1346 	blk_delete_timer(rq);
1347 	blk_clear_rq_complete(rq);
1348 	trace_block_rq_requeue(q, rq);
1349 
1350 	if (rq->cmd_flags & REQ_QUEUED)
1351 		blk_queue_end_tag(q, rq);
1352 
1353 	BUG_ON(blk_queued_rq(rq));
1354 
1355 	elv_requeue_request(q, rq);
1356 }
1357 EXPORT_SYMBOL(blk_requeue_request);
1358 
1359 static void add_acct_request(struct request_queue *q, struct request *rq,
1360 			     int where)
1361 {
1362 	blk_account_io_start(rq, true);
1363 	__elv_add_request(q, rq, where);
1364 }
1365 
1366 static void part_round_stats_single(int cpu, struct hd_struct *part,
1367 				    unsigned long now)
1368 {
1369 	int inflight;
1370 
1371 	if (now == part->stamp)
1372 		return;
1373 
1374 	inflight = part_in_flight(part);
1375 	if (inflight) {
1376 		__part_stat_add(cpu, part, time_in_queue,
1377 				inflight * (now - part->stamp));
1378 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1379 	}
1380 	part->stamp = now;
1381 }
1382 
1383 /**
1384  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1385  * @cpu: cpu number for stats access
1386  * @part: target partition
1387  *
1388  * The average IO queue length and utilisation statistics are maintained
1389  * by observing the current state of the queue length and the amount of
1390  * time it has been in this state for.
1391  *
1392  * Normally, that accounting is done on IO completion, but that can result
1393  * in more than a second's worth of IO being accounted for within any one
1394  * second, leading to >100% utilisation.  To deal with that, we call this
1395  * function to do a round-off before returning the results when reading
1396  * /proc/diskstats.  This accounts immediately for all queue usage up to
1397  * the current jiffies and restarts the counters again.
1398  */
1399 void part_round_stats(int cpu, struct hd_struct *part)
1400 {
1401 	unsigned long now = jiffies;
1402 
1403 	if (part->partno)
1404 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1405 	part_round_stats_single(cpu, part, now);
1406 }
1407 EXPORT_SYMBOL_GPL(part_round_stats);
1408 
1409 #ifdef CONFIG_PM
1410 static void blk_pm_put_request(struct request *rq)
1411 {
1412 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1413 		pm_runtime_mark_last_busy(rq->q->dev);
1414 }
1415 #else
1416 static inline void blk_pm_put_request(struct request *rq) {}
1417 #endif
1418 
1419 /*
1420  * queue lock must be held
1421  */
1422 void __blk_put_request(struct request_queue *q, struct request *req)
1423 {
1424 	if (unlikely(!q))
1425 		return;
1426 
1427 	if (q->mq_ops) {
1428 		blk_mq_free_request(req);
1429 		return;
1430 	}
1431 
1432 	blk_pm_put_request(req);
1433 
1434 	elv_completed_request(q, req);
1435 
1436 	/* this is a bio leak */
1437 	WARN_ON(req->bio != NULL);
1438 
1439 	/*
1440 	 * Request may not have originated from ll_rw_blk. if not,
1441 	 * it didn't come out of our reserved rq pools
1442 	 */
1443 	if (req->cmd_flags & REQ_ALLOCED) {
1444 		unsigned int flags = req->cmd_flags;
1445 		int op = req_op(req);
1446 		struct request_list *rl = blk_rq_rl(req);
1447 
1448 		BUG_ON(!list_empty(&req->queuelist));
1449 		BUG_ON(ELV_ON_HASH(req));
1450 
1451 		blk_free_request(rl, req);
1452 		freed_request(rl, op, flags);
1453 		blk_put_rl(rl);
1454 	}
1455 }
1456 EXPORT_SYMBOL_GPL(__blk_put_request);
1457 
1458 void blk_put_request(struct request *req)
1459 {
1460 	struct request_queue *q = req->q;
1461 
1462 	if (q->mq_ops)
1463 		blk_mq_free_request(req);
1464 	else {
1465 		unsigned long flags;
1466 
1467 		spin_lock_irqsave(q->queue_lock, flags);
1468 		__blk_put_request(q, req);
1469 		spin_unlock_irqrestore(q->queue_lock, flags);
1470 	}
1471 }
1472 EXPORT_SYMBOL(blk_put_request);
1473 
1474 /**
1475  * blk_add_request_payload - add a payload to a request
1476  * @rq: request to update
1477  * @page: page backing the payload
1478  * @offset: offset in page
1479  * @len: length of the payload.
1480  *
1481  * This allows to later add a payload to an already submitted request by
1482  * a block driver.  The driver needs to take care of freeing the payload
1483  * itself.
1484  *
1485  * Note that this is a quite horrible hack and nothing but handling of
1486  * discard requests should ever use it.
1487  */
1488 void blk_add_request_payload(struct request *rq, struct page *page,
1489 		int offset, unsigned int len)
1490 {
1491 	struct bio *bio = rq->bio;
1492 
1493 	bio->bi_io_vec->bv_page = page;
1494 	bio->bi_io_vec->bv_offset = offset;
1495 	bio->bi_io_vec->bv_len = len;
1496 
1497 	bio->bi_iter.bi_size = len;
1498 	bio->bi_vcnt = 1;
1499 	bio->bi_phys_segments = 1;
1500 
1501 	rq->__data_len = rq->resid_len = len;
1502 	rq->nr_phys_segments = 1;
1503 }
1504 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1505 
1506 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1507 			    struct bio *bio)
1508 {
1509 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1510 
1511 	if (!ll_back_merge_fn(q, req, bio))
1512 		return false;
1513 
1514 	trace_block_bio_backmerge(q, req, bio);
1515 
1516 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1517 		blk_rq_set_mixed_merge(req);
1518 
1519 	req->biotail->bi_next = bio;
1520 	req->biotail = bio;
1521 	req->__data_len += bio->bi_iter.bi_size;
1522 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1523 
1524 	blk_account_io_start(req, false);
1525 	return true;
1526 }
1527 
1528 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1529 			     struct bio *bio)
1530 {
1531 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1532 
1533 	if (!ll_front_merge_fn(q, req, bio))
1534 		return false;
1535 
1536 	trace_block_bio_frontmerge(q, req, bio);
1537 
1538 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1539 		blk_rq_set_mixed_merge(req);
1540 
1541 	bio->bi_next = req->bio;
1542 	req->bio = bio;
1543 
1544 	req->__sector = bio->bi_iter.bi_sector;
1545 	req->__data_len += bio->bi_iter.bi_size;
1546 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1547 
1548 	blk_account_io_start(req, false);
1549 	return true;
1550 }
1551 
1552 /**
1553  * blk_attempt_plug_merge - try to merge with %current's plugged list
1554  * @q: request_queue new bio is being queued at
1555  * @bio: new bio being queued
1556  * @request_count: out parameter for number of traversed plugged requests
1557  * @same_queue_rq: pointer to &struct request that gets filled in when
1558  * another request associated with @q is found on the plug list
1559  * (optional, may be %NULL)
1560  *
1561  * Determine whether @bio being queued on @q can be merged with a request
1562  * on %current's plugged list.  Returns %true if merge was successful,
1563  * otherwise %false.
1564  *
1565  * Plugging coalesces IOs from the same issuer for the same purpose without
1566  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1567  * than scheduling, and the request, while may have elvpriv data, is not
1568  * added on the elevator at this point.  In addition, we don't have
1569  * reliable access to the elevator outside queue lock.  Only check basic
1570  * merging parameters without querying the elevator.
1571  *
1572  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1573  */
1574 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1575 			    unsigned int *request_count,
1576 			    struct request **same_queue_rq)
1577 {
1578 	struct blk_plug *plug;
1579 	struct request *rq;
1580 	bool ret = false;
1581 	struct list_head *plug_list;
1582 
1583 	plug = current->plug;
1584 	if (!plug)
1585 		goto out;
1586 	*request_count = 0;
1587 
1588 	if (q->mq_ops)
1589 		plug_list = &plug->mq_list;
1590 	else
1591 		plug_list = &plug->list;
1592 
1593 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1594 		int el_ret;
1595 
1596 		if (rq->q == q) {
1597 			(*request_count)++;
1598 			/*
1599 			 * Only blk-mq multiple hardware queues case checks the
1600 			 * rq in the same queue, there should be only one such
1601 			 * rq in a queue
1602 			 **/
1603 			if (same_queue_rq)
1604 				*same_queue_rq = rq;
1605 		}
1606 
1607 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1608 			continue;
1609 
1610 		el_ret = blk_try_merge(rq, bio);
1611 		if (el_ret == ELEVATOR_BACK_MERGE) {
1612 			ret = bio_attempt_back_merge(q, rq, bio);
1613 			if (ret)
1614 				break;
1615 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1616 			ret = bio_attempt_front_merge(q, rq, bio);
1617 			if (ret)
1618 				break;
1619 		}
1620 	}
1621 out:
1622 	return ret;
1623 }
1624 
1625 unsigned int blk_plug_queued_count(struct request_queue *q)
1626 {
1627 	struct blk_plug *plug;
1628 	struct request *rq;
1629 	struct list_head *plug_list;
1630 	unsigned int ret = 0;
1631 
1632 	plug = current->plug;
1633 	if (!plug)
1634 		goto out;
1635 
1636 	if (q->mq_ops)
1637 		plug_list = &plug->mq_list;
1638 	else
1639 		plug_list = &plug->list;
1640 
1641 	list_for_each_entry(rq, plug_list, queuelist) {
1642 		if (rq->q == q)
1643 			ret++;
1644 	}
1645 out:
1646 	return ret;
1647 }
1648 
1649 void init_request_from_bio(struct request *req, struct bio *bio)
1650 {
1651 	req->cmd_type = REQ_TYPE_FS;
1652 
1653 	req->cmd_flags |= bio->bi_opf & REQ_COMMON_MASK;
1654 	if (bio->bi_opf & REQ_RAHEAD)
1655 		req->cmd_flags |= REQ_FAILFAST_MASK;
1656 
1657 	req->errors = 0;
1658 	req->__sector = bio->bi_iter.bi_sector;
1659 	req->ioprio = bio_prio(bio);
1660 	blk_rq_bio_prep(req->q, req, bio);
1661 }
1662 
1663 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1664 {
1665 	const bool sync = !!(bio->bi_opf & REQ_SYNC);
1666 	struct blk_plug *plug;
1667 	int el_ret, rw_flags = 0, where = ELEVATOR_INSERT_SORT;
1668 	struct request *req;
1669 	unsigned int request_count = 0;
1670 
1671 	/*
1672 	 * low level driver can indicate that it wants pages above a
1673 	 * certain limit bounced to low memory (ie for highmem, or even
1674 	 * ISA dma in theory)
1675 	 */
1676 	blk_queue_bounce(q, &bio);
1677 
1678 	blk_queue_split(q, &bio, q->bio_split);
1679 
1680 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1681 		bio->bi_error = -EIO;
1682 		bio_endio(bio);
1683 		return BLK_QC_T_NONE;
1684 	}
1685 
1686 	if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) {
1687 		spin_lock_irq(q->queue_lock);
1688 		where = ELEVATOR_INSERT_FLUSH;
1689 		goto get_rq;
1690 	}
1691 
1692 	/*
1693 	 * Check if we can merge with the plugged list before grabbing
1694 	 * any locks.
1695 	 */
1696 	if (!blk_queue_nomerges(q)) {
1697 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1698 			return BLK_QC_T_NONE;
1699 	} else
1700 		request_count = blk_plug_queued_count(q);
1701 
1702 	spin_lock_irq(q->queue_lock);
1703 
1704 	el_ret = elv_merge(q, &req, bio);
1705 	if (el_ret == ELEVATOR_BACK_MERGE) {
1706 		if (bio_attempt_back_merge(q, req, bio)) {
1707 			elv_bio_merged(q, req, bio);
1708 			if (!attempt_back_merge(q, req))
1709 				elv_merged_request(q, req, el_ret);
1710 			goto out_unlock;
1711 		}
1712 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1713 		if (bio_attempt_front_merge(q, req, bio)) {
1714 			elv_bio_merged(q, req, bio);
1715 			if (!attempt_front_merge(q, req))
1716 				elv_merged_request(q, req, el_ret);
1717 			goto out_unlock;
1718 		}
1719 	}
1720 
1721 get_rq:
1722 	/*
1723 	 * This sync check and mask will be re-done in init_request_from_bio(),
1724 	 * but we need to set it earlier to expose the sync flag to the
1725 	 * rq allocator and io schedulers.
1726 	 */
1727 	if (sync)
1728 		rw_flags |= REQ_SYNC;
1729 
1730 	/*
1731 	 * Add in META/PRIO flags, if set, before we get to the IO scheduler
1732 	 */
1733 	rw_flags |= (bio->bi_opf & (REQ_META | REQ_PRIO));
1734 
1735 	/*
1736 	 * Grab a free request. This is might sleep but can not fail.
1737 	 * Returns with the queue unlocked.
1738 	 */
1739 	req = get_request(q, bio_data_dir(bio), rw_flags, bio, GFP_NOIO);
1740 	if (IS_ERR(req)) {
1741 		bio->bi_error = PTR_ERR(req);
1742 		bio_endio(bio);
1743 		goto out_unlock;
1744 	}
1745 
1746 	/*
1747 	 * After dropping the lock and possibly sleeping here, our request
1748 	 * may now be mergeable after it had proven unmergeable (above).
1749 	 * We don't worry about that case for efficiency. It won't happen
1750 	 * often, and the elevators are able to handle it.
1751 	 */
1752 	init_request_from_bio(req, bio);
1753 
1754 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1755 		req->cpu = raw_smp_processor_id();
1756 
1757 	plug = current->plug;
1758 	if (plug) {
1759 		/*
1760 		 * If this is the first request added after a plug, fire
1761 		 * of a plug trace.
1762 		 */
1763 		if (!request_count)
1764 			trace_block_plug(q);
1765 		else {
1766 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1767 				blk_flush_plug_list(plug, false);
1768 				trace_block_plug(q);
1769 			}
1770 		}
1771 		list_add_tail(&req->queuelist, &plug->list);
1772 		blk_account_io_start(req, true);
1773 	} else {
1774 		spin_lock_irq(q->queue_lock);
1775 		add_acct_request(q, req, where);
1776 		__blk_run_queue(q);
1777 out_unlock:
1778 		spin_unlock_irq(q->queue_lock);
1779 	}
1780 
1781 	return BLK_QC_T_NONE;
1782 }
1783 
1784 /*
1785  * If bio->bi_dev is a partition, remap the location
1786  */
1787 static inline void blk_partition_remap(struct bio *bio)
1788 {
1789 	struct block_device *bdev = bio->bi_bdev;
1790 
1791 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1792 		struct hd_struct *p = bdev->bd_part;
1793 
1794 		bio->bi_iter.bi_sector += p->start_sect;
1795 		bio->bi_bdev = bdev->bd_contains;
1796 
1797 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1798 				      bdev->bd_dev,
1799 				      bio->bi_iter.bi_sector - p->start_sect);
1800 	}
1801 }
1802 
1803 static void handle_bad_sector(struct bio *bio)
1804 {
1805 	char b[BDEVNAME_SIZE];
1806 
1807 	printk(KERN_INFO "attempt to access beyond end of device\n");
1808 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1809 			bdevname(bio->bi_bdev, b),
1810 			bio->bi_opf,
1811 			(unsigned long long)bio_end_sector(bio),
1812 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1813 }
1814 
1815 #ifdef CONFIG_FAIL_MAKE_REQUEST
1816 
1817 static DECLARE_FAULT_ATTR(fail_make_request);
1818 
1819 static int __init setup_fail_make_request(char *str)
1820 {
1821 	return setup_fault_attr(&fail_make_request, str);
1822 }
1823 __setup("fail_make_request=", setup_fail_make_request);
1824 
1825 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1826 {
1827 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1828 }
1829 
1830 static int __init fail_make_request_debugfs(void)
1831 {
1832 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1833 						NULL, &fail_make_request);
1834 
1835 	return PTR_ERR_OR_ZERO(dir);
1836 }
1837 
1838 late_initcall(fail_make_request_debugfs);
1839 
1840 #else /* CONFIG_FAIL_MAKE_REQUEST */
1841 
1842 static inline bool should_fail_request(struct hd_struct *part,
1843 					unsigned int bytes)
1844 {
1845 	return false;
1846 }
1847 
1848 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1849 
1850 /*
1851  * Check whether this bio extends beyond the end of the device.
1852  */
1853 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1854 {
1855 	sector_t maxsector;
1856 
1857 	if (!nr_sectors)
1858 		return 0;
1859 
1860 	/* Test device or partition size, when known. */
1861 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1862 	if (maxsector) {
1863 		sector_t sector = bio->bi_iter.bi_sector;
1864 
1865 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1866 			/*
1867 			 * This may well happen - the kernel calls bread()
1868 			 * without checking the size of the device, e.g., when
1869 			 * mounting a device.
1870 			 */
1871 			handle_bad_sector(bio);
1872 			return 1;
1873 		}
1874 	}
1875 
1876 	return 0;
1877 }
1878 
1879 static noinline_for_stack bool
1880 generic_make_request_checks(struct bio *bio)
1881 {
1882 	struct request_queue *q;
1883 	int nr_sectors = bio_sectors(bio);
1884 	int err = -EIO;
1885 	char b[BDEVNAME_SIZE];
1886 	struct hd_struct *part;
1887 
1888 	might_sleep();
1889 
1890 	if (bio_check_eod(bio, nr_sectors))
1891 		goto end_io;
1892 
1893 	q = bdev_get_queue(bio->bi_bdev);
1894 	if (unlikely(!q)) {
1895 		printk(KERN_ERR
1896 		       "generic_make_request: Trying to access "
1897 			"nonexistent block-device %s (%Lu)\n",
1898 			bdevname(bio->bi_bdev, b),
1899 			(long long) bio->bi_iter.bi_sector);
1900 		goto end_io;
1901 	}
1902 
1903 	part = bio->bi_bdev->bd_part;
1904 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1905 	    should_fail_request(&part_to_disk(part)->part0,
1906 				bio->bi_iter.bi_size))
1907 		goto end_io;
1908 
1909 	/*
1910 	 * If this device has partitions, remap block n
1911 	 * of partition p to block n+start(p) of the disk.
1912 	 */
1913 	blk_partition_remap(bio);
1914 
1915 	if (bio_check_eod(bio, nr_sectors))
1916 		goto end_io;
1917 
1918 	/*
1919 	 * Filter flush bio's early so that make_request based
1920 	 * drivers without flush support don't have to worry
1921 	 * about them.
1922 	 */
1923 	if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
1924 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1925 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1926 		if (!nr_sectors) {
1927 			err = 0;
1928 			goto end_io;
1929 		}
1930 	}
1931 
1932 	switch (bio_op(bio)) {
1933 	case REQ_OP_DISCARD:
1934 		if (!blk_queue_discard(q))
1935 			goto not_supported;
1936 		break;
1937 	case REQ_OP_SECURE_ERASE:
1938 		if (!blk_queue_secure_erase(q))
1939 			goto not_supported;
1940 		break;
1941 	case REQ_OP_WRITE_SAME:
1942 		if (!bdev_write_same(bio->bi_bdev))
1943 			goto not_supported;
1944 		break;
1945 	default:
1946 		break;
1947 	}
1948 
1949 	/*
1950 	 * Various block parts want %current->io_context and lazy ioc
1951 	 * allocation ends up trading a lot of pain for a small amount of
1952 	 * memory.  Just allocate it upfront.  This may fail and block
1953 	 * layer knows how to live with it.
1954 	 */
1955 	create_io_context(GFP_ATOMIC, q->node);
1956 
1957 	if (!blkcg_bio_issue_check(q, bio))
1958 		return false;
1959 
1960 	trace_block_bio_queue(q, bio);
1961 	return true;
1962 
1963 not_supported:
1964 	err = -EOPNOTSUPP;
1965 end_io:
1966 	bio->bi_error = err;
1967 	bio_endio(bio);
1968 	return false;
1969 }
1970 
1971 /**
1972  * generic_make_request - hand a buffer to its device driver for I/O
1973  * @bio:  The bio describing the location in memory and on the device.
1974  *
1975  * generic_make_request() is used to make I/O requests of block
1976  * devices. It is passed a &struct bio, which describes the I/O that needs
1977  * to be done.
1978  *
1979  * generic_make_request() does not return any status.  The
1980  * success/failure status of the request, along with notification of
1981  * completion, is delivered asynchronously through the bio->bi_end_io
1982  * function described (one day) else where.
1983  *
1984  * The caller of generic_make_request must make sure that bi_io_vec
1985  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1986  * set to describe the device address, and the
1987  * bi_end_io and optionally bi_private are set to describe how
1988  * completion notification should be signaled.
1989  *
1990  * generic_make_request and the drivers it calls may use bi_next if this
1991  * bio happens to be merged with someone else, and may resubmit the bio to
1992  * a lower device by calling into generic_make_request recursively, which
1993  * means the bio should NOT be touched after the call to ->make_request_fn.
1994  */
1995 blk_qc_t generic_make_request(struct bio *bio)
1996 {
1997 	struct bio_list bio_list_on_stack;
1998 	blk_qc_t ret = BLK_QC_T_NONE;
1999 
2000 	if (!generic_make_request_checks(bio))
2001 		goto out;
2002 
2003 	/*
2004 	 * We only want one ->make_request_fn to be active at a time, else
2005 	 * stack usage with stacked devices could be a problem.  So use
2006 	 * current->bio_list to keep a list of requests submited by a
2007 	 * make_request_fn function.  current->bio_list is also used as a
2008 	 * flag to say if generic_make_request is currently active in this
2009 	 * task or not.  If it is NULL, then no make_request is active.  If
2010 	 * it is non-NULL, then a make_request is active, and new requests
2011 	 * should be added at the tail
2012 	 */
2013 	if (current->bio_list) {
2014 		bio_list_add(current->bio_list, bio);
2015 		goto out;
2016 	}
2017 
2018 	/* following loop may be a bit non-obvious, and so deserves some
2019 	 * explanation.
2020 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2021 	 * ensure that) so we have a list with a single bio.
2022 	 * We pretend that we have just taken it off a longer list, so
2023 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2024 	 * thus initialising the bio_list of new bios to be
2025 	 * added.  ->make_request() may indeed add some more bios
2026 	 * through a recursive call to generic_make_request.  If it
2027 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2028 	 * from the top.  In this case we really did just take the bio
2029 	 * of the top of the list (no pretending) and so remove it from
2030 	 * bio_list, and call into ->make_request() again.
2031 	 */
2032 	BUG_ON(bio->bi_next);
2033 	bio_list_init(&bio_list_on_stack);
2034 	current->bio_list = &bio_list_on_stack;
2035 	do {
2036 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2037 
2038 		if (likely(blk_queue_enter(q, false) == 0)) {
2039 			ret = q->make_request_fn(q, bio);
2040 
2041 			blk_queue_exit(q);
2042 
2043 			bio = bio_list_pop(current->bio_list);
2044 		} else {
2045 			struct bio *bio_next = bio_list_pop(current->bio_list);
2046 
2047 			bio_io_error(bio);
2048 			bio = bio_next;
2049 		}
2050 	} while (bio);
2051 	current->bio_list = NULL; /* deactivate */
2052 
2053 out:
2054 	return ret;
2055 }
2056 EXPORT_SYMBOL(generic_make_request);
2057 
2058 /**
2059  * submit_bio - submit a bio to the block device layer for I/O
2060  * @bio: The &struct bio which describes the I/O
2061  *
2062  * submit_bio() is very similar in purpose to generic_make_request(), and
2063  * uses that function to do most of the work. Both are fairly rough
2064  * interfaces; @bio must be presetup and ready for I/O.
2065  *
2066  */
2067 blk_qc_t submit_bio(struct bio *bio)
2068 {
2069 	/*
2070 	 * If it's a regular read/write or a barrier with data attached,
2071 	 * go through the normal accounting stuff before submission.
2072 	 */
2073 	if (bio_has_data(bio)) {
2074 		unsigned int count;
2075 
2076 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2077 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2078 		else
2079 			count = bio_sectors(bio);
2080 
2081 		if (op_is_write(bio_op(bio))) {
2082 			count_vm_events(PGPGOUT, count);
2083 		} else {
2084 			task_io_account_read(bio->bi_iter.bi_size);
2085 			count_vm_events(PGPGIN, count);
2086 		}
2087 
2088 		if (unlikely(block_dump)) {
2089 			char b[BDEVNAME_SIZE];
2090 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2091 			current->comm, task_pid_nr(current),
2092 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2093 				(unsigned long long)bio->bi_iter.bi_sector,
2094 				bdevname(bio->bi_bdev, b),
2095 				count);
2096 		}
2097 	}
2098 
2099 	return generic_make_request(bio);
2100 }
2101 EXPORT_SYMBOL(submit_bio);
2102 
2103 /**
2104  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2105  *                              for new the queue limits
2106  * @q:  the queue
2107  * @rq: the request being checked
2108  *
2109  * Description:
2110  *    @rq may have been made based on weaker limitations of upper-level queues
2111  *    in request stacking drivers, and it may violate the limitation of @q.
2112  *    Since the block layer and the underlying device driver trust @rq
2113  *    after it is inserted to @q, it should be checked against @q before
2114  *    the insertion using this generic function.
2115  *
2116  *    Request stacking drivers like request-based dm may change the queue
2117  *    limits when retrying requests on other queues. Those requests need
2118  *    to be checked against the new queue limits again during dispatch.
2119  */
2120 static int blk_cloned_rq_check_limits(struct request_queue *q,
2121 				      struct request *rq)
2122 {
2123 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2124 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2125 		return -EIO;
2126 	}
2127 
2128 	/*
2129 	 * queue's settings related to segment counting like q->bounce_pfn
2130 	 * may differ from that of other stacking queues.
2131 	 * Recalculate it to check the request correctly on this queue's
2132 	 * limitation.
2133 	 */
2134 	blk_recalc_rq_segments(rq);
2135 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2136 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2137 		return -EIO;
2138 	}
2139 
2140 	return 0;
2141 }
2142 
2143 /**
2144  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2145  * @q:  the queue to submit the request
2146  * @rq: the request being queued
2147  */
2148 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2149 {
2150 	unsigned long flags;
2151 	int where = ELEVATOR_INSERT_BACK;
2152 
2153 	if (blk_cloned_rq_check_limits(q, rq))
2154 		return -EIO;
2155 
2156 	if (rq->rq_disk &&
2157 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2158 		return -EIO;
2159 
2160 	if (q->mq_ops) {
2161 		if (blk_queue_io_stat(q))
2162 			blk_account_io_start(rq, true);
2163 		blk_mq_insert_request(rq, false, true, false);
2164 		return 0;
2165 	}
2166 
2167 	spin_lock_irqsave(q->queue_lock, flags);
2168 	if (unlikely(blk_queue_dying(q))) {
2169 		spin_unlock_irqrestore(q->queue_lock, flags);
2170 		return -ENODEV;
2171 	}
2172 
2173 	/*
2174 	 * Submitting request must be dequeued before calling this function
2175 	 * because it will be linked to another request_queue
2176 	 */
2177 	BUG_ON(blk_queued_rq(rq));
2178 
2179 	if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
2180 		where = ELEVATOR_INSERT_FLUSH;
2181 
2182 	add_acct_request(q, rq, where);
2183 	if (where == ELEVATOR_INSERT_FLUSH)
2184 		__blk_run_queue(q);
2185 	spin_unlock_irqrestore(q->queue_lock, flags);
2186 
2187 	return 0;
2188 }
2189 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2190 
2191 /**
2192  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2193  * @rq: request to examine
2194  *
2195  * Description:
2196  *     A request could be merge of IOs which require different failure
2197  *     handling.  This function determines the number of bytes which
2198  *     can be failed from the beginning of the request without
2199  *     crossing into area which need to be retried further.
2200  *
2201  * Return:
2202  *     The number of bytes to fail.
2203  *
2204  * Context:
2205  *     queue_lock must be held.
2206  */
2207 unsigned int blk_rq_err_bytes(const struct request *rq)
2208 {
2209 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2210 	unsigned int bytes = 0;
2211 	struct bio *bio;
2212 
2213 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2214 		return blk_rq_bytes(rq);
2215 
2216 	/*
2217 	 * Currently the only 'mixing' which can happen is between
2218 	 * different fastfail types.  We can safely fail portions
2219 	 * which have all the failfast bits that the first one has -
2220 	 * the ones which are at least as eager to fail as the first
2221 	 * one.
2222 	 */
2223 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2224 		if ((bio->bi_opf & ff) != ff)
2225 			break;
2226 		bytes += bio->bi_iter.bi_size;
2227 	}
2228 
2229 	/* this could lead to infinite loop */
2230 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2231 	return bytes;
2232 }
2233 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2234 
2235 void blk_account_io_completion(struct request *req, unsigned int bytes)
2236 {
2237 	if (blk_do_io_stat(req)) {
2238 		const int rw = rq_data_dir(req);
2239 		struct hd_struct *part;
2240 		int cpu;
2241 
2242 		cpu = part_stat_lock();
2243 		part = req->part;
2244 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2245 		part_stat_unlock();
2246 	}
2247 }
2248 
2249 void blk_account_io_done(struct request *req)
2250 {
2251 	/*
2252 	 * Account IO completion.  flush_rq isn't accounted as a
2253 	 * normal IO on queueing nor completion.  Accounting the
2254 	 * containing request is enough.
2255 	 */
2256 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2257 		unsigned long duration = jiffies - req->start_time;
2258 		const int rw = rq_data_dir(req);
2259 		struct hd_struct *part;
2260 		int cpu;
2261 
2262 		cpu = part_stat_lock();
2263 		part = req->part;
2264 
2265 		part_stat_inc(cpu, part, ios[rw]);
2266 		part_stat_add(cpu, part, ticks[rw], duration);
2267 		part_round_stats(cpu, part);
2268 		part_dec_in_flight(part, rw);
2269 
2270 		hd_struct_put(part);
2271 		part_stat_unlock();
2272 	}
2273 }
2274 
2275 #ifdef CONFIG_PM
2276 /*
2277  * Don't process normal requests when queue is suspended
2278  * or in the process of suspending/resuming
2279  */
2280 static struct request *blk_pm_peek_request(struct request_queue *q,
2281 					   struct request *rq)
2282 {
2283 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2284 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2285 		return NULL;
2286 	else
2287 		return rq;
2288 }
2289 #else
2290 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2291 						  struct request *rq)
2292 {
2293 	return rq;
2294 }
2295 #endif
2296 
2297 void blk_account_io_start(struct request *rq, bool new_io)
2298 {
2299 	struct hd_struct *part;
2300 	int rw = rq_data_dir(rq);
2301 	int cpu;
2302 
2303 	if (!blk_do_io_stat(rq))
2304 		return;
2305 
2306 	cpu = part_stat_lock();
2307 
2308 	if (!new_io) {
2309 		part = rq->part;
2310 		part_stat_inc(cpu, part, merges[rw]);
2311 	} else {
2312 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2313 		if (!hd_struct_try_get(part)) {
2314 			/*
2315 			 * The partition is already being removed,
2316 			 * the request will be accounted on the disk only
2317 			 *
2318 			 * We take a reference on disk->part0 although that
2319 			 * partition will never be deleted, so we can treat
2320 			 * it as any other partition.
2321 			 */
2322 			part = &rq->rq_disk->part0;
2323 			hd_struct_get(part);
2324 		}
2325 		part_round_stats(cpu, part);
2326 		part_inc_in_flight(part, rw);
2327 		rq->part = part;
2328 	}
2329 
2330 	part_stat_unlock();
2331 }
2332 
2333 /**
2334  * blk_peek_request - peek at the top of a request queue
2335  * @q: request queue to peek at
2336  *
2337  * Description:
2338  *     Return the request at the top of @q.  The returned request
2339  *     should be started using blk_start_request() before LLD starts
2340  *     processing it.
2341  *
2342  * Return:
2343  *     Pointer to the request at the top of @q if available.  Null
2344  *     otherwise.
2345  *
2346  * Context:
2347  *     queue_lock must be held.
2348  */
2349 struct request *blk_peek_request(struct request_queue *q)
2350 {
2351 	struct request *rq;
2352 	int ret;
2353 
2354 	while ((rq = __elv_next_request(q)) != NULL) {
2355 
2356 		rq = blk_pm_peek_request(q, rq);
2357 		if (!rq)
2358 			break;
2359 
2360 		if (!(rq->cmd_flags & REQ_STARTED)) {
2361 			/*
2362 			 * This is the first time the device driver
2363 			 * sees this request (possibly after
2364 			 * requeueing).  Notify IO scheduler.
2365 			 */
2366 			if (rq->cmd_flags & REQ_SORTED)
2367 				elv_activate_rq(q, rq);
2368 
2369 			/*
2370 			 * just mark as started even if we don't start
2371 			 * it, a request that has been delayed should
2372 			 * not be passed by new incoming requests
2373 			 */
2374 			rq->cmd_flags |= REQ_STARTED;
2375 			trace_block_rq_issue(q, rq);
2376 		}
2377 
2378 		if (!q->boundary_rq || q->boundary_rq == rq) {
2379 			q->end_sector = rq_end_sector(rq);
2380 			q->boundary_rq = NULL;
2381 		}
2382 
2383 		if (rq->cmd_flags & REQ_DONTPREP)
2384 			break;
2385 
2386 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2387 			/*
2388 			 * make sure space for the drain appears we
2389 			 * know we can do this because max_hw_segments
2390 			 * has been adjusted to be one fewer than the
2391 			 * device can handle
2392 			 */
2393 			rq->nr_phys_segments++;
2394 		}
2395 
2396 		if (!q->prep_rq_fn)
2397 			break;
2398 
2399 		ret = q->prep_rq_fn(q, rq);
2400 		if (ret == BLKPREP_OK) {
2401 			break;
2402 		} else if (ret == BLKPREP_DEFER) {
2403 			/*
2404 			 * the request may have been (partially) prepped.
2405 			 * we need to keep this request in the front to
2406 			 * avoid resource deadlock.  REQ_STARTED will
2407 			 * prevent other fs requests from passing this one.
2408 			 */
2409 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2410 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2411 				/*
2412 				 * remove the space for the drain we added
2413 				 * so that we don't add it again
2414 				 */
2415 				--rq->nr_phys_segments;
2416 			}
2417 
2418 			rq = NULL;
2419 			break;
2420 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2421 			int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2422 
2423 			rq->cmd_flags |= REQ_QUIET;
2424 			/*
2425 			 * Mark this request as started so we don't trigger
2426 			 * any debug logic in the end I/O path.
2427 			 */
2428 			blk_start_request(rq);
2429 			__blk_end_request_all(rq, err);
2430 		} else {
2431 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2432 			break;
2433 		}
2434 	}
2435 
2436 	return rq;
2437 }
2438 EXPORT_SYMBOL(blk_peek_request);
2439 
2440 void blk_dequeue_request(struct request *rq)
2441 {
2442 	struct request_queue *q = rq->q;
2443 
2444 	BUG_ON(list_empty(&rq->queuelist));
2445 	BUG_ON(ELV_ON_HASH(rq));
2446 
2447 	list_del_init(&rq->queuelist);
2448 
2449 	/*
2450 	 * the time frame between a request being removed from the lists
2451 	 * and to it is freed is accounted as io that is in progress at
2452 	 * the driver side.
2453 	 */
2454 	if (blk_account_rq(rq)) {
2455 		q->in_flight[rq_is_sync(rq)]++;
2456 		set_io_start_time_ns(rq);
2457 	}
2458 }
2459 
2460 /**
2461  * blk_start_request - start request processing on the driver
2462  * @req: request to dequeue
2463  *
2464  * Description:
2465  *     Dequeue @req and start timeout timer on it.  This hands off the
2466  *     request to the driver.
2467  *
2468  *     Block internal functions which don't want to start timer should
2469  *     call blk_dequeue_request().
2470  *
2471  * Context:
2472  *     queue_lock must be held.
2473  */
2474 void blk_start_request(struct request *req)
2475 {
2476 	blk_dequeue_request(req);
2477 
2478 	/*
2479 	 * We are now handing the request to the hardware, initialize
2480 	 * resid_len to full count and add the timeout handler.
2481 	 */
2482 	req->resid_len = blk_rq_bytes(req);
2483 	if (unlikely(blk_bidi_rq(req)))
2484 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2485 
2486 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2487 	blk_add_timer(req);
2488 }
2489 EXPORT_SYMBOL(blk_start_request);
2490 
2491 /**
2492  * blk_fetch_request - fetch a request from a request queue
2493  * @q: request queue to fetch a request from
2494  *
2495  * Description:
2496  *     Return the request at the top of @q.  The request is started on
2497  *     return and LLD can start processing it immediately.
2498  *
2499  * Return:
2500  *     Pointer to the request at the top of @q if available.  Null
2501  *     otherwise.
2502  *
2503  * Context:
2504  *     queue_lock must be held.
2505  */
2506 struct request *blk_fetch_request(struct request_queue *q)
2507 {
2508 	struct request *rq;
2509 
2510 	rq = blk_peek_request(q);
2511 	if (rq)
2512 		blk_start_request(rq);
2513 	return rq;
2514 }
2515 EXPORT_SYMBOL(blk_fetch_request);
2516 
2517 /**
2518  * blk_update_request - Special helper function for request stacking drivers
2519  * @req:      the request being processed
2520  * @error:    %0 for success, < %0 for error
2521  * @nr_bytes: number of bytes to complete @req
2522  *
2523  * Description:
2524  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2525  *     the request structure even if @req doesn't have leftover.
2526  *     If @req has leftover, sets it up for the next range of segments.
2527  *
2528  *     This special helper function is only for request stacking drivers
2529  *     (e.g. request-based dm) so that they can handle partial completion.
2530  *     Actual device drivers should use blk_end_request instead.
2531  *
2532  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2533  *     %false return from this function.
2534  *
2535  * Return:
2536  *     %false - this request doesn't have any more data
2537  *     %true  - this request has more data
2538  **/
2539 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2540 {
2541 	int total_bytes;
2542 
2543 	trace_block_rq_complete(req->q, req, nr_bytes);
2544 
2545 	if (!req->bio)
2546 		return false;
2547 
2548 	/*
2549 	 * For fs requests, rq is just carrier of independent bio's
2550 	 * and each partial completion should be handled separately.
2551 	 * Reset per-request error on each partial completion.
2552 	 *
2553 	 * TODO: tj: This is too subtle.  It would be better to let
2554 	 * low level drivers do what they see fit.
2555 	 */
2556 	if (req->cmd_type == REQ_TYPE_FS)
2557 		req->errors = 0;
2558 
2559 	if (error && req->cmd_type == REQ_TYPE_FS &&
2560 	    !(req->cmd_flags & REQ_QUIET)) {
2561 		char *error_type;
2562 
2563 		switch (error) {
2564 		case -ENOLINK:
2565 			error_type = "recoverable transport";
2566 			break;
2567 		case -EREMOTEIO:
2568 			error_type = "critical target";
2569 			break;
2570 		case -EBADE:
2571 			error_type = "critical nexus";
2572 			break;
2573 		case -ETIMEDOUT:
2574 			error_type = "timeout";
2575 			break;
2576 		case -ENOSPC:
2577 			error_type = "critical space allocation";
2578 			break;
2579 		case -ENODATA:
2580 			error_type = "critical medium";
2581 			break;
2582 		case -EIO:
2583 		default:
2584 			error_type = "I/O";
2585 			break;
2586 		}
2587 		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2588 				   __func__, error_type, req->rq_disk ?
2589 				   req->rq_disk->disk_name : "?",
2590 				   (unsigned long long)blk_rq_pos(req));
2591 
2592 	}
2593 
2594 	blk_account_io_completion(req, nr_bytes);
2595 
2596 	total_bytes = 0;
2597 	while (req->bio) {
2598 		struct bio *bio = req->bio;
2599 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2600 
2601 		if (bio_bytes == bio->bi_iter.bi_size)
2602 			req->bio = bio->bi_next;
2603 
2604 		req_bio_endio(req, bio, bio_bytes, error);
2605 
2606 		total_bytes += bio_bytes;
2607 		nr_bytes -= bio_bytes;
2608 
2609 		if (!nr_bytes)
2610 			break;
2611 	}
2612 
2613 	/*
2614 	 * completely done
2615 	 */
2616 	if (!req->bio) {
2617 		/*
2618 		 * Reset counters so that the request stacking driver
2619 		 * can find how many bytes remain in the request
2620 		 * later.
2621 		 */
2622 		req->__data_len = 0;
2623 		return false;
2624 	}
2625 
2626 	req->__data_len -= total_bytes;
2627 
2628 	/* update sector only for requests with clear definition of sector */
2629 	if (req->cmd_type == REQ_TYPE_FS)
2630 		req->__sector += total_bytes >> 9;
2631 
2632 	/* mixed attributes always follow the first bio */
2633 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2634 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2635 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2636 	}
2637 
2638 	/*
2639 	 * If total number of sectors is less than the first segment
2640 	 * size, something has gone terribly wrong.
2641 	 */
2642 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2643 		blk_dump_rq_flags(req, "request botched");
2644 		req->__data_len = blk_rq_cur_bytes(req);
2645 	}
2646 
2647 	/* recalculate the number of segments */
2648 	blk_recalc_rq_segments(req);
2649 
2650 	return true;
2651 }
2652 EXPORT_SYMBOL_GPL(blk_update_request);
2653 
2654 static bool blk_update_bidi_request(struct request *rq, int error,
2655 				    unsigned int nr_bytes,
2656 				    unsigned int bidi_bytes)
2657 {
2658 	if (blk_update_request(rq, error, nr_bytes))
2659 		return true;
2660 
2661 	/* Bidi request must be completed as a whole */
2662 	if (unlikely(blk_bidi_rq(rq)) &&
2663 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2664 		return true;
2665 
2666 	if (blk_queue_add_random(rq->q))
2667 		add_disk_randomness(rq->rq_disk);
2668 
2669 	return false;
2670 }
2671 
2672 /**
2673  * blk_unprep_request - unprepare a request
2674  * @req:	the request
2675  *
2676  * This function makes a request ready for complete resubmission (or
2677  * completion).  It happens only after all error handling is complete,
2678  * so represents the appropriate moment to deallocate any resources
2679  * that were allocated to the request in the prep_rq_fn.  The queue
2680  * lock is held when calling this.
2681  */
2682 void blk_unprep_request(struct request *req)
2683 {
2684 	struct request_queue *q = req->q;
2685 
2686 	req->cmd_flags &= ~REQ_DONTPREP;
2687 	if (q->unprep_rq_fn)
2688 		q->unprep_rq_fn(q, req);
2689 }
2690 EXPORT_SYMBOL_GPL(blk_unprep_request);
2691 
2692 /*
2693  * queue lock must be held
2694  */
2695 void blk_finish_request(struct request *req, int error)
2696 {
2697 	if (req->cmd_flags & REQ_QUEUED)
2698 		blk_queue_end_tag(req->q, req);
2699 
2700 	BUG_ON(blk_queued_rq(req));
2701 
2702 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2703 		laptop_io_completion(&req->q->backing_dev_info);
2704 
2705 	blk_delete_timer(req);
2706 
2707 	if (req->cmd_flags & REQ_DONTPREP)
2708 		blk_unprep_request(req);
2709 
2710 	blk_account_io_done(req);
2711 
2712 	if (req->end_io)
2713 		req->end_io(req, error);
2714 	else {
2715 		if (blk_bidi_rq(req))
2716 			__blk_put_request(req->next_rq->q, req->next_rq);
2717 
2718 		__blk_put_request(req->q, req);
2719 	}
2720 }
2721 EXPORT_SYMBOL(blk_finish_request);
2722 
2723 /**
2724  * blk_end_bidi_request - Complete a bidi request
2725  * @rq:         the request to complete
2726  * @error:      %0 for success, < %0 for error
2727  * @nr_bytes:   number of bytes to complete @rq
2728  * @bidi_bytes: number of bytes to complete @rq->next_rq
2729  *
2730  * Description:
2731  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2732  *     Drivers that supports bidi can safely call this member for any
2733  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2734  *     just ignored.
2735  *
2736  * Return:
2737  *     %false - we are done with this request
2738  *     %true  - still buffers pending for this request
2739  **/
2740 static bool blk_end_bidi_request(struct request *rq, int error,
2741 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2742 {
2743 	struct request_queue *q = rq->q;
2744 	unsigned long flags;
2745 
2746 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2747 		return true;
2748 
2749 	spin_lock_irqsave(q->queue_lock, flags);
2750 	blk_finish_request(rq, error);
2751 	spin_unlock_irqrestore(q->queue_lock, flags);
2752 
2753 	return false;
2754 }
2755 
2756 /**
2757  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2758  * @rq:         the request to complete
2759  * @error:      %0 for success, < %0 for error
2760  * @nr_bytes:   number of bytes to complete @rq
2761  * @bidi_bytes: number of bytes to complete @rq->next_rq
2762  *
2763  * Description:
2764  *     Identical to blk_end_bidi_request() except that queue lock is
2765  *     assumed to be locked on entry and remains so on return.
2766  *
2767  * Return:
2768  *     %false - we are done with this request
2769  *     %true  - still buffers pending for this request
2770  **/
2771 bool __blk_end_bidi_request(struct request *rq, int error,
2772 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2773 {
2774 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2775 		return true;
2776 
2777 	blk_finish_request(rq, error);
2778 
2779 	return false;
2780 }
2781 
2782 /**
2783  * blk_end_request - Helper function for drivers to complete the request.
2784  * @rq:       the request being processed
2785  * @error:    %0 for success, < %0 for error
2786  * @nr_bytes: number of bytes to complete
2787  *
2788  * Description:
2789  *     Ends I/O on a number of bytes attached to @rq.
2790  *     If @rq has leftover, sets it up for the next range of segments.
2791  *
2792  * Return:
2793  *     %false - we are done with this request
2794  *     %true  - still buffers pending for this request
2795  **/
2796 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2797 {
2798 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2799 }
2800 EXPORT_SYMBOL(blk_end_request);
2801 
2802 /**
2803  * blk_end_request_all - Helper function for drives to finish the request.
2804  * @rq: the request to finish
2805  * @error: %0 for success, < %0 for error
2806  *
2807  * Description:
2808  *     Completely finish @rq.
2809  */
2810 void blk_end_request_all(struct request *rq, int error)
2811 {
2812 	bool pending;
2813 	unsigned int bidi_bytes = 0;
2814 
2815 	if (unlikely(blk_bidi_rq(rq)))
2816 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2817 
2818 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2819 	BUG_ON(pending);
2820 }
2821 EXPORT_SYMBOL(blk_end_request_all);
2822 
2823 /**
2824  * blk_end_request_cur - Helper function to finish the current request chunk.
2825  * @rq: the request to finish the current chunk for
2826  * @error: %0 for success, < %0 for error
2827  *
2828  * Description:
2829  *     Complete the current consecutively mapped chunk from @rq.
2830  *
2831  * Return:
2832  *     %false - we are done with this request
2833  *     %true  - still buffers pending for this request
2834  */
2835 bool blk_end_request_cur(struct request *rq, int error)
2836 {
2837 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2838 }
2839 EXPORT_SYMBOL(blk_end_request_cur);
2840 
2841 /**
2842  * blk_end_request_err - Finish a request till the next failure boundary.
2843  * @rq: the request to finish till the next failure boundary for
2844  * @error: must be negative errno
2845  *
2846  * Description:
2847  *     Complete @rq till the next failure boundary.
2848  *
2849  * Return:
2850  *     %false - we are done with this request
2851  *     %true  - still buffers pending for this request
2852  */
2853 bool blk_end_request_err(struct request *rq, int error)
2854 {
2855 	WARN_ON(error >= 0);
2856 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2857 }
2858 EXPORT_SYMBOL_GPL(blk_end_request_err);
2859 
2860 /**
2861  * __blk_end_request - Helper function for drivers to complete the request.
2862  * @rq:       the request being processed
2863  * @error:    %0 for success, < %0 for error
2864  * @nr_bytes: number of bytes to complete
2865  *
2866  * Description:
2867  *     Must be called with queue lock held unlike blk_end_request().
2868  *
2869  * Return:
2870  *     %false - we are done with this request
2871  *     %true  - still buffers pending for this request
2872  **/
2873 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2874 {
2875 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2876 }
2877 EXPORT_SYMBOL(__blk_end_request);
2878 
2879 /**
2880  * __blk_end_request_all - Helper function for drives to finish the request.
2881  * @rq: the request to finish
2882  * @error: %0 for success, < %0 for error
2883  *
2884  * Description:
2885  *     Completely finish @rq.  Must be called with queue lock held.
2886  */
2887 void __blk_end_request_all(struct request *rq, int error)
2888 {
2889 	bool pending;
2890 	unsigned int bidi_bytes = 0;
2891 
2892 	if (unlikely(blk_bidi_rq(rq)))
2893 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2894 
2895 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2896 	BUG_ON(pending);
2897 }
2898 EXPORT_SYMBOL(__blk_end_request_all);
2899 
2900 /**
2901  * __blk_end_request_cur - Helper function to finish the current request chunk.
2902  * @rq: the request to finish the current chunk for
2903  * @error: %0 for success, < %0 for error
2904  *
2905  * Description:
2906  *     Complete the current consecutively mapped chunk from @rq.  Must
2907  *     be called with queue lock held.
2908  *
2909  * Return:
2910  *     %false - we are done with this request
2911  *     %true  - still buffers pending for this request
2912  */
2913 bool __blk_end_request_cur(struct request *rq, int error)
2914 {
2915 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2916 }
2917 EXPORT_SYMBOL(__blk_end_request_cur);
2918 
2919 /**
2920  * __blk_end_request_err - Finish a request till the next failure boundary.
2921  * @rq: the request to finish till the next failure boundary for
2922  * @error: must be negative errno
2923  *
2924  * Description:
2925  *     Complete @rq till the next failure boundary.  Must be called
2926  *     with queue lock held.
2927  *
2928  * Return:
2929  *     %false - we are done with this request
2930  *     %true  - still buffers pending for this request
2931  */
2932 bool __blk_end_request_err(struct request *rq, int error)
2933 {
2934 	WARN_ON(error >= 0);
2935 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2936 }
2937 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2938 
2939 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2940 		     struct bio *bio)
2941 {
2942 	req_set_op(rq, bio_op(bio));
2943 
2944 	if (bio_has_data(bio))
2945 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2946 
2947 	rq->__data_len = bio->bi_iter.bi_size;
2948 	rq->bio = rq->biotail = bio;
2949 
2950 	if (bio->bi_bdev)
2951 		rq->rq_disk = bio->bi_bdev->bd_disk;
2952 }
2953 
2954 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2955 /**
2956  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2957  * @rq: the request to be flushed
2958  *
2959  * Description:
2960  *     Flush all pages in @rq.
2961  */
2962 void rq_flush_dcache_pages(struct request *rq)
2963 {
2964 	struct req_iterator iter;
2965 	struct bio_vec bvec;
2966 
2967 	rq_for_each_segment(bvec, rq, iter)
2968 		flush_dcache_page(bvec.bv_page);
2969 }
2970 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2971 #endif
2972 
2973 /**
2974  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2975  * @q : the queue of the device being checked
2976  *
2977  * Description:
2978  *    Check if underlying low-level drivers of a device are busy.
2979  *    If the drivers want to export their busy state, they must set own
2980  *    exporting function using blk_queue_lld_busy() first.
2981  *
2982  *    Basically, this function is used only by request stacking drivers
2983  *    to stop dispatching requests to underlying devices when underlying
2984  *    devices are busy.  This behavior helps more I/O merging on the queue
2985  *    of the request stacking driver and prevents I/O throughput regression
2986  *    on burst I/O load.
2987  *
2988  * Return:
2989  *    0 - Not busy (The request stacking driver should dispatch request)
2990  *    1 - Busy (The request stacking driver should stop dispatching request)
2991  */
2992 int blk_lld_busy(struct request_queue *q)
2993 {
2994 	if (q->lld_busy_fn)
2995 		return q->lld_busy_fn(q);
2996 
2997 	return 0;
2998 }
2999 EXPORT_SYMBOL_GPL(blk_lld_busy);
3000 
3001 /**
3002  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3003  * @rq: the clone request to be cleaned up
3004  *
3005  * Description:
3006  *     Free all bios in @rq for a cloned request.
3007  */
3008 void blk_rq_unprep_clone(struct request *rq)
3009 {
3010 	struct bio *bio;
3011 
3012 	while ((bio = rq->bio) != NULL) {
3013 		rq->bio = bio->bi_next;
3014 
3015 		bio_put(bio);
3016 	}
3017 }
3018 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3019 
3020 /*
3021  * Copy attributes of the original request to the clone request.
3022  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3023  */
3024 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3025 {
3026 	dst->cpu = src->cpu;
3027 	req_set_op_attrs(dst, req_op(src),
3028 			 (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE);
3029 	dst->cmd_type = src->cmd_type;
3030 	dst->__sector = blk_rq_pos(src);
3031 	dst->__data_len = blk_rq_bytes(src);
3032 	dst->nr_phys_segments = src->nr_phys_segments;
3033 	dst->ioprio = src->ioprio;
3034 	dst->extra_len = src->extra_len;
3035 }
3036 
3037 /**
3038  * blk_rq_prep_clone - Helper function to setup clone request
3039  * @rq: the request to be setup
3040  * @rq_src: original request to be cloned
3041  * @bs: bio_set that bios for clone are allocated from
3042  * @gfp_mask: memory allocation mask for bio
3043  * @bio_ctr: setup function to be called for each clone bio.
3044  *           Returns %0 for success, non %0 for failure.
3045  * @data: private data to be passed to @bio_ctr
3046  *
3047  * Description:
3048  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3049  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3050  *     are not copied, and copying such parts is the caller's responsibility.
3051  *     Also, pages which the original bios are pointing to are not copied
3052  *     and the cloned bios just point same pages.
3053  *     So cloned bios must be completed before original bios, which means
3054  *     the caller must complete @rq before @rq_src.
3055  */
3056 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3057 		      struct bio_set *bs, gfp_t gfp_mask,
3058 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3059 		      void *data)
3060 {
3061 	struct bio *bio, *bio_src;
3062 
3063 	if (!bs)
3064 		bs = fs_bio_set;
3065 
3066 	__rq_for_each_bio(bio_src, rq_src) {
3067 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3068 		if (!bio)
3069 			goto free_and_out;
3070 
3071 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3072 			goto free_and_out;
3073 
3074 		if (rq->bio) {
3075 			rq->biotail->bi_next = bio;
3076 			rq->biotail = bio;
3077 		} else
3078 			rq->bio = rq->biotail = bio;
3079 	}
3080 
3081 	__blk_rq_prep_clone(rq, rq_src);
3082 
3083 	return 0;
3084 
3085 free_and_out:
3086 	if (bio)
3087 		bio_put(bio);
3088 	blk_rq_unprep_clone(rq);
3089 
3090 	return -ENOMEM;
3091 }
3092 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3093 
3094 int kblockd_schedule_work(struct work_struct *work)
3095 {
3096 	return queue_work(kblockd_workqueue, work);
3097 }
3098 EXPORT_SYMBOL(kblockd_schedule_work);
3099 
3100 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3101 {
3102 	return queue_work_on(cpu, kblockd_workqueue, work);
3103 }
3104 EXPORT_SYMBOL(kblockd_schedule_work_on);
3105 
3106 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3107 				  unsigned long delay)
3108 {
3109 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3110 }
3111 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3112 
3113 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3114 				     unsigned long delay)
3115 {
3116 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3117 }
3118 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3119 
3120 /**
3121  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3122  * @plug:	The &struct blk_plug that needs to be initialized
3123  *
3124  * Description:
3125  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3126  *   pending I/O should the task end up blocking between blk_start_plug() and
3127  *   blk_finish_plug(). This is important from a performance perspective, but
3128  *   also ensures that we don't deadlock. For instance, if the task is blocking
3129  *   for a memory allocation, memory reclaim could end up wanting to free a
3130  *   page belonging to that request that is currently residing in our private
3131  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3132  *   this kind of deadlock.
3133  */
3134 void blk_start_plug(struct blk_plug *plug)
3135 {
3136 	struct task_struct *tsk = current;
3137 
3138 	/*
3139 	 * If this is a nested plug, don't actually assign it.
3140 	 */
3141 	if (tsk->plug)
3142 		return;
3143 
3144 	INIT_LIST_HEAD(&plug->list);
3145 	INIT_LIST_HEAD(&plug->mq_list);
3146 	INIT_LIST_HEAD(&plug->cb_list);
3147 	/*
3148 	 * Store ordering should not be needed here, since a potential
3149 	 * preempt will imply a full memory barrier
3150 	 */
3151 	tsk->plug = plug;
3152 }
3153 EXPORT_SYMBOL(blk_start_plug);
3154 
3155 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3156 {
3157 	struct request *rqa = container_of(a, struct request, queuelist);
3158 	struct request *rqb = container_of(b, struct request, queuelist);
3159 
3160 	return !(rqa->q < rqb->q ||
3161 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3162 }
3163 
3164 /*
3165  * If 'from_schedule' is true, then postpone the dispatch of requests
3166  * until a safe kblockd context. We due this to avoid accidental big
3167  * additional stack usage in driver dispatch, in places where the originally
3168  * plugger did not intend it.
3169  */
3170 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3171 			    bool from_schedule)
3172 	__releases(q->queue_lock)
3173 {
3174 	trace_block_unplug(q, depth, !from_schedule);
3175 
3176 	if (from_schedule)
3177 		blk_run_queue_async(q);
3178 	else
3179 		__blk_run_queue(q);
3180 	spin_unlock(q->queue_lock);
3181 }
3182 
3183 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3184 {
3185 	LIST_HEAD(callbacks);
3186 
3187 	while (!list_empty(&plug->cb_list)) {
3188 		list_splice_init(&plug->cb_list, &callbacks);
3189 
3190 		while (!list_empty(&callbacks)) {
3191 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3192 							  struct blk_plug_cb,
3193 							  list);
3194 			list_del(&cb->list);
3195 			cb->callback(cb, from_schedule);
3196 		}
3197 	}
3198 }
3199 
3200 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3201 				      int size)
3202 {
3203 	struct blk_plug *plug = current->plug;
3204 	struct blk_plug_cb *cb;
3205 
3206 	if (!plug)
3207 		return NULL;
3208 
3209 	list_for_each_entry(cb, &plug->cb_list, list)
3210 		if (cb->callback == unplug && cb->data == data)
3211 			return cb;
3212 
3213 	/* Not currently on the callback list */
3214 	BUG_ON(size < sizeof(*cb));
3215 	cb = kzalloc(size, GFP_ATOMIC);
3216 	if (cb) {
3217 		cb->data = data;
3218 		cb->callback = unplug;
3219 		list_add(&cb->list, &plug->cb_list);
3220 	}
3221 	return cb;
3222 }
3223 EXPORT_SYMBOL(blk_check_plugged);
3224 
3225 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3226 {
3227 	struct request_queue *q;
3228 	unsigned long flags;
3229 	struct request *rq;
3230 	LIST_HEAD(list);
3231 	unsigned int depth;
3232 
3233 	flush_plug_callbacks(plug, from_schedule);
3234 
3235 	if (!list_empty(&plug->mq_list))
3236 		blk_mq_flush_plug_list(plug, from_schedule);
3237 
3238 	if (list_empty(&plug->list))
3239 		return;
3240 
3241 	list_splice_init(&plug->list, &list);
3242 
3243 	list_sort(NULL, &list, plug_rq_cmp);
3244 
3245 	q = NULL;
3246 	depth = 0;
3247 
3248 	/*
3249 	 * Save and disable interrupts here, to avoid doing it for every
3250 	 * queue lock we have to take.
3251 	 */
3252 	local_irq_save(flags);
3253 	while (!list_empty(&list)) {
3254 		rq = list_entry_rq(list.next);
3255 		list_del_init(&rq->queuelist);
3256 		BUG_ON(!rq->q);
3257 		if (rq->q != q) {
3258 			/*
3259 			 * This drops the queue lock
3260 			 */
3261 			if (q)
3262 				queue_unplugged(q, depth, from_schedule);
3263 			q = rq->q;
3264 			depth = 0;
3265 			spin_lock(q->queue_lock);
3266 		}
3267 
3268 		/*
3269 		 * Short-circuit if @q is dead
3270 		 */
3271 		if (unlikely(blk_queue_dying(q))) {
3272 			__blk_end_request_all(rq, -ENODEV);
3273 			continue;
3274 		}
3275 
3276 		/*
3277 		 * rq is already accounted, so use raw insert
3278 		 */
3279 		if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
3280 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3281 		else
3282 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3283 
3284 		depth++;
3285 	}
3286 
3287 	/*
3288 	 * This drops the queue lock
3289 	 */
3290 	if (q)
3291 		queue_unplugged(q, depth, from_schedule);
3292 
3293 	local_irq_restore(flags);
3294 }
3295 
3296 void blk_finish_plug(struct blk_plug *plug)
3297 {
3298 	if (plug != current->plug)
3299 		return;
3300 	blk_flush_plug_list(plug, false);
3301 
3302 	current->plug = NULL;
3303 }
3304 EXPORT_SYMBOL(blk_finish_plug);
3305 
3306 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3307 {
3308 	struct blk_plug *plug;
3309 	long state;
3310 	unsigned int queue_num;
3311 	struct blk_mq_hw_ctx *hctx;
3312 
3313 	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3314 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3315 		return false;
3316 
3317 	queue_num = blk_qc_t_to_queue_num(cookie);
3318 	hctx = q->queue_hw_ctx[queue_num];
3319 	hctx->poll_considered++;
3320 
3321 	plug = current->plug;
3322 	if (plug)
3323 		blk_flush_plug_list(plug, false);
3324 
3325 	state = current->state;
3326 	while (!need_resched()) {
3327 		int ret;
3328 
3329 		hctx->poll_invoked++;
3330 
3331 		ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3332 		if (ret > 0) {
3333 			hctx->poll_success++;
3334 			set_current_state(TASK_RUNNING);
3335 			return true;
3336 		}
3337 
3338 		if (signal_pending_state(state, current))
3339 			set_current_state(TASK_RUNNING);
3340 
3341 		if (current->state == TASK_RUNNING)
3342 			return true;
3343 		if (ret < 0)
3344 			break;
3345 		cpu_relax();
3346 	}
3347 
3348 	return false;
3349 }
3350 EXPORT_SYMBOL_GPL(blk_poll);
3351 
3352 #ifdef CONFIG_PM
3353 /**
3354  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3355  * @q: the queue of the device
3356  * @dev: the device the queue belongs to
3357  *
3358  * Description:
3359  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3360  *    @dev. Drivers that want to take advantage of request-based runtime PM
3361  *    should call this function after @dev has been initialized, and its
3362  *    request queue @q has been allocated, and runtime PM for it can not happen
3363  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3364  *    cases, driver should call this function before any I/O has taken place.
3365  *
3366  *    This function takes care of setting up using auto suspend for the device,
3367  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3368  *    until an updated value is either set by user or by driver. Drivers do
3369  *    not need to touch other autosuspend settings.
3370  *
3371  *    The block layer runtime PM is request based, so only works for drivers
3372  *    that use request as their IO unit instead of those directly use bio's.
3373  */
3374 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3375 {
3376 	q->dev = dev;
3377 	q->rpm_status = RPM_ACTIVE;
3378 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3379 	pm_runtime_use_autosuspend(q->dev);
3380 }
3381 EXPORT_SYMBOL(blk_pm_runtime_init);
3382 
3383 /**
3384  * blk_pre_runtime_suspend - Pre runtime suspend check
3385  * @q: the queue of the device
3386  *
3387  * Description:
3388  *    This function will check if runtime suspend is allowed for the device
3389  *    by examining if there are any requests pending in the queue. If there
3390  *    are requests pending, the device can not be runtime suspended; otherwise,
3391  *    the queue's status will be updated to SUSPENDING and the driver can
3392  *    proceed to suspend the device.
3393  *
3394  *    For the not allowed case, we mark last busy for the device so that
3395  *    runtime PM core will try to autosuspend it some time later.
3396  *
3397  *    This function should be called near the start of the device's
3398  *    runtime_suspend callback.
3399  *
3400  * Return:
3401  *    0		- OK to runtime suspend the device
3402  *    -EBUSY	- Device should not be runtime suspended
3403  */
3404 int blk_pre_runtime_suspend(struct request_queue *q)
3405 {
3406 	int ret = 0;
3407 
3408 	if (!q->dev)
3409 		return ret;
3410 
3411 	spin_lock_irq(q->queue_lock);
3412 	if (q->nr_pending) {
3413 		ret = -EBUSY;
3414 		pm_runtime_mark_last_busy(q->dev);
3415 	} else {
3416 		q->rpm_status = RPM_SUSPENDING;
3417 	}
3418 	spin_unlock_irq(q->queue_lock);
3419 	return ret;
3420 }
3421 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3422 
3423 /**
3424  * blk_post_runtime_suspend - Post runtime suspend processing
3425  * @q: the queue of the device
3426  * @err: return value of the device's runtime_suspend function
3427  *
3428  * Description:
3429  *    Update the queue's runtime status according to the return value of the
3430  *    device's runtime suspend function and mark last busy for the device so
3431  *    that PM core will try to auto suspend the device at a later time.
3432  *
3433  *    This function should be called near the end of the device's
3434  *    runtime_suspend callback.
3435  */
3436 void blk_post_runtime_suspend(struct request_queue *q, int err)
3437 {
3438 	if (!q->dev)
3439 		return;
3440 
3441 	spin_lock_irq(q->queue_lock);
3442 	if (!err) {
3443 		q->rpm_status = RPM_SUSPENDED;
3444 	} else {
3445 		q->rpm_status = RPM_ACTIVE;
3446 		pm_runtime_mark_last_busy(q->dev);
3447 	}
3448 	spin_unlock_irq(q->queue_lock);
3449 }
3450 EXPORT_SYMBOL(blk_post_runtime_suspend);
3451 
3452 /**
3453  * blk_pre_runtime_resume - Pre runtime resume processing
3454  * @q: the queue of the device
3455  *
3456  * Description:
3457  *    Update the queue's runtime status to RESUMING in preparation for the
3458  *    runtime resume of the device.
3459  *
3460  *    This function should be called near the start of the device's
3461  *    runtime_resume callback.
3462  */
3463 void blk_pre_runtime_resume(struct request_queue *q)
3464 {
3465 	if (!q->dev)
3466 		return;
3467 
3468 	spin_lock_irq(q->queue_lock);
3469 	q->rpm_status = RPM_RESUMING;
3470 	spin_unlock_irq(q->queue_lock);
3471 }
3472 EXPORT_SYMBOL(blk_pre_runtime_resume);
3473 
3474 /**
3475  * blk_post_runtime_resume - Post runtime resume processing
3476  * @q: the queue of the device
3477  * @err: return value of the device's runtime_resume function
3478  *
3479  * Description:
3480  *    Update the queue's runtime status according to the return value of the
3481  *    device's runtime_resume function. If it is successfully resumed, process
3482  *    the requests that are queued into the device's queue when it is resuming
3483  *    and then mark last busy and initiate autosuspend for it.
3484  *
3485  *    This function should be called near the end of the device's
3486  *    runtime_resume callback.
3487  */
3488 void blk_post_runtime_resume(struct request_queue *q, int err)
3489 {
3490 	if (!q->dev)
3491 		return;
3492 
3493 	spin_lock_irq(q->queue_lock);
3494 	if (!err) {
3495 		q->rpm_status = RPM_ACTIVE;
3496 		__blk_run_queue(q);
3497 		pm_runtime_mark_last_busy(q->dev);
3498 		pm_request_autosuspend(q->dev);
3499 	} else {
3500 		q->rpm_status = RPM_SUSPENDED;
3501 	}
3502 	spin_unlock_irq(q->queue_lock);
3503 }
3504 EXPORT_SYMBOL(blk_post_runtime_resume);
3505 
3506 /**
3507  * blk_set_runtime_active - Force runtime status of the queue to be active
3508  * @q: the queue of the device
3509  *
3510  * If the device is left runtime suspended during system suspend the resume
3511  * hook typically resumes the device and corrects runtime status
3512  * accordingly. However, that does not affect the queue runtime PM status
3513  * which is still "suspended". This prevents processing requests from the
3514  * queue.
3515  *
3516  * This function can be used in driver's resume hook to correct queue
3517  * runtime PM status and re-enable peeking requests from the queue. It
3518  * should be called before first request is added to the queue.
3519  */
3520 void blk_set_runtime_active(struct request_queue *q)
3521 {
3522 	spin_lock_irq(q->queue_lock);
3523 	q->rpm_status = RPM_ACTIVE;
3524 	pm_runtime_mark_last_busy(q->dev);
3525 	pm_request_autosuspend(q->dev);
3526 	spin_unlock_irq(q->queue_lock);
3527 }
3528 EXPORT_SYMBOL(blk_set_runtime_active);
3529 #endif
3530 
3531 int __init blk_dev_init(void)
3532 {
3533 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3534 			FIELD_SIZEOF(struct request, cmd_flags));
3535 
3536 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3537 	kblockd_workqueue = alloc_workqueue("kblockd",
3538 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3539 	if (!kblockd_workqueue)
3540 		panic("Failed to create kblockd\n");
3541 
3542 	request_cachep = kmem_cache_create("blkdev_requests",
3543 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3544 
3545 	blk_requestq_cachep = kmem_cache_create("request_queue",
3546 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3547 
3548 	return 0;
3549 }
3550