xref: /openbmc/linux/block/blk-core.c (revision 68198dca)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40 
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45 
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49 
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55 
56 DEFINE_IDA(blk_queue_ida);
57 
58 /*
59  * For the allocated request tables
60  */
61 struct kmem_cache *request_cachep;
62 
63 /*
64  * For queue allocation
65  */
66 struct kmem_cache *blk_requestq_cachep;
67 
68 /*
69  * Controlling structure to kblockd
70  */
71 static struct workqueue_struct *kblockd_workqueue;
72 
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 	clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 	/*
79 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 	 * flip its congestion state for events on other blkcgs.
81 	 */
82 	if (rl == &rl->q->root_rl)
83 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86 
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 	set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 	/* see blk_clear_congested() */
93 	if (rl == &rl->q->root_rl)
94 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97 
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 	int nr;
101 
102 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 	if (nr > q->nr_requests)
104 		nr = q->nr_requests;
105 	q->nr_congestion_on = nr;
106 
107 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 	if (nr < 1)
109 		nr = 1;
110 	q->nr_congestion_off = nr;
111 }
112 
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 	memset(rq, 0, sizeof(*rq));
116 
117 	INIT_LIST_HEAD(&rq->queuelist);
118 	INIT_LIST_HEAD(&rq->timeout_list);
119 	rq->cpu = -1;
120 	rq->q = q;
121 	rq->__sector = (sector_t) -1;
122 	INIT_HLIST_NODE(&rq->hash);
123 	RB_CLEAR_NODE(&rq->rb_node);
124 	rq->tag = -1;
125 	rq->internal_tag = -1;
126 	rq->start_time = jiffies;
127 	set_start_time_ns(rq);
128 	rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131 
132 static const struct {
133 	int		errno;
134 	const char	*name;
135 } blk_errors[] = {
136 	[BLK_STS_OK]		= { 0,		"" },
137 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
138 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
139 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
140 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
141 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
142 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
143 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
144 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
145 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
146 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
147 
148 	/* device mapper special case, should not leak out: */
149 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
150 
151 	/* everything else not covered above: */
152 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
153 };
154 
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 	int i;
158 
159 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 		if (blk_errors[i].errno == errno)
161 			return (__force blk_status_t)i;
162 	}
163 
164 	return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167 
168 int blk_status_to_errno(blk_status_t status)
169 {
170 	int idx = (__force int)status;
171 
172 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 		return -EIO;
174 	return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177 
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 	int idx = (__force int)status;
181 
182 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 		return;
184 
185 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 			   __func__, blk_errors[idx].name, req->rq_disk ?
187 			   req->rq_disk->disk_name : "?",
188 			   (unsigned long long)blk_rq_pos(req));
189 }
190 
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 			  unsigned int nbytes, blk_status_t error)
193 {
194 	if (error)
195 		bio->bi_status = error;
196 
197 	if (unlikely(rq->rq_flags & RQF_QUIET))
198 		bio_set_flag(bio, BIO_QUIET);
199 
200 	bio_advance(bio, nbytes);
201 
202 	/* don't actually finish bio if it's part of flush sequence */
203 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 		bio_endio(bio);
205 }
206 
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 		(unsigned long long) rq->cmd_flags);
212 
213 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
214 	       (unsigned long long)blk_rq_pos(rq),
215 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
217 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220 
221 static void blk_delay_work(struct work_struct *work)
222 {
223 	struct request_queue *q;
224 
225 	q = container_of(work, struct request_queue, delay_work.work);
226 	spin_lock_irq(q->queue_lock);
227 	__blk_run_queue(q);
228 	spin_unlock_irq(q->queue_lock);
229 }
230 
231 /**
232  * blk_delay_queue - restart queueing after defined interval
233  * @q:		The &struct request_queue in question
234  * @msecs:	Delay in msecs
235  *
236  * Description:
237  *   Sometimes queueing needs to be postponed for a little while, to allow
238  *   resources to come back. This function will make sure that queueing is
239  *   restarted around the specified time.
240  */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 	lockdep_assert_held(q->queue_lock);
244 	WARN_ON_ONCE(q->mq_ops);
245 
246 	if (likely(!blk_queue_dead(q)))
247 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 				   msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251 
252 /**
253  * blk_start_queue_async - asynchronously restart a previously stopped queue
254  * @q:    The &struct request_queue in question
255  *
256  * Description:
257  *   blk_start_queue_async() will clear the stop flag on the queue, and
258  *   ensure that the request_fn for the queue is run from an async
259  *   context.
260  **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 	lockdep_assert_held(q->queue_lock);
264 	WARN_ON_ONCE(q->mq_ops);
265 
266 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 	blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270 
271 /**
272  * blk_start_queue - restart a previously stopped queue
273  * @q:    The &struct request_queue in question
274  *
275  * Description:
276  *   blk_start_queue() will clear the stop flag on the queue, and call
277  *   the request_fn for the queue if it was in a stopped state when
278  *   entered. Also see blk_stop_queue().
279  **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 	lockdep_assert_held(q->queue_lock);
283 	WARN_ON(!in_interrupt() && !irqs_disabled());
284 	WARN_ON_ONCE(q->mq_ops);
285 
286 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 	__blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290 
291 /**
292  * blk_stop_queue - stop a queue
293  * @q:    The &struct request_queue in question
294  *
295  * Description:
296  *   The Linux block layer assumes that a block driver will consume all
297  *   entries on the request queue when the request_fn strategy is called.
298  *   Often this will not happen, because of hardware limitations (queue
299  *   depth settings). If a device driver gets a 'queue full' response,
300  *   or if it simply chooses not to queue more I/O at one point, it can
301  *   call this function to prevent the request_fn from being called until
302  *   the driver has signalled it's ready to go again. This happens by calling
303  *   blk_start_queue() to restart queue operations.
304  **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 	lockdep_assert_held(q->queue_lock);
308 	WARN_ON_ONCE(q->mq_ops);
309 
310 	cancel_delayed_work(&q->delay_work);
311 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314 
315 /**
316  * blk_sync_queue - cancel any pending callbacks on a queue
317  * @q: the queue
318  *
319  * Description:
320  *     The block layer may perform asynchronous callback activity
321  *     on a queue, such as calling the unplug function after a timeout.
322  *     A block device may call blk_sync_queue to ensure that any
323  *     such activity is cancelled, thus allowing it to release resources
324  *     that the callbacks might use. The caller must already have made sure
325  *     that its ->make_request_fn will not re-add plugging prior to calling
326  *     this function.
327  *
328  *     This function does not cancel any asynchronous activity arising
329  *     out of elevator or throttling code. That would require elevator_exit()
330  *     and blkcg_exit_queue() to be called with queue lock initialized.
331  *
332  */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 	del_timer_sync(&q->timeout);
336 	cancel_work_sync(&q->timeout_work);
337 
338 	if (q->mq_ops) {
339 		struct blk_mq_hw_ctx *hctx;
340 		int i;
341 
342 		cancel_delayed_work_sync(&q->requeue_work);
343 		queue_for_each_hw_ctx(q, hctx, i)
344 			cancel_delayed_work_sync(&hctx->run_work);
345 	} else {
346 		cancel_delayed_work_sync(&q->delay_work);
347 	}
348 }
349 EXPORT_SYMBOL(blk_sync_queue);
350 
351 /**
352  * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
353  * @q: request queue pointer
354  *
355  * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
356  * set and 1 if the flag was already set.
357  */
358 int blk_set_preempt_only(struct request_queue *q)
359 {
360 	unsigned long flags;
361 	int res;
362 
363 	spin_lock_irqsave(q->queue_lock, flags);
364 	res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
365 	spin_unlock_irqrestore(q->queue_lock, flags);
366 
367 	return res;
368 }
369 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
370 
371 void blk_clear_preempt_only(struct request_queue *q)
372 {
373 	unsigned long flags;
374 
375 	spin_lock_irqsave(q->queue_lock, flags);
376 	queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
377 	wake_up_all(&q->mq_freeze_wq);
378 	spin_unlock_irqrestore(q->queue_lock, flags);
379 }
380 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
381 
382 /**
383  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
384  * @q:	The queue to run
385  *
386  * Description:
387  *    Invoke request handling on a queue if there are any pending requests.
388  *    May be used to restart request handling after a request has completed.
389  *    This variant runs the queue whether or not the queue has been
390  *    stopped. Must be called with the queue lock held and interrupts
391  *    disabled. See also @blk_run_queue.
392  */
393 inline void __blk_run_queue_uncond(struct request_queue *q)
394 {
395 	lockdep_assert_held(q->queue_lock);
396 	WARN_ON_ONCE(q->mq_ops);
397 
398 	if (unlikely(blk_queue_dead(q)))
399 		return;
400 
401 	/*
402 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
403 	 * the queue lock internally. As a result multiple threads may be
404 	 * running such a request function concurrently. Keep track of the
405 	 * number of active request_fn invocations such that blk_drain_queue()
406 	 * can wait until all these request_fn calls have finished.
407 	 */
408 	q->request_fn_active++;
409 	q->request_fn(q);
410 	q->request_fn_active--;
411 }
412 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
413 
414 /**
415  * __blk_run_queue - run a single device queue
416  * @q:	The queue to run
417  *
418  * Description:
419  *    See @blk_run_queue.
420  */
421 void __blk_run_queue(struct request_queue *q)
422 {
423 	lockdep_assert_held(q->queue_lock);
424 	WARN_ON_ONCE(q->mq_ops);
425 
426 	if (unlikely(blk_queue_stopped(q)))
427 		return;
428 
429 	__blk_run_queue_uncond(q);
430 }
431 EXPORT_SYMBOL(__blk_run_queue);
432 
433 /**
434  * blk_run_queue_async - run a single device queue in workqueue context
435  * @q:	The queue to run
436  *
437  * Description:
438  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
439  *    of us.
440  *
441  * Note:
442  *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
443  *    has canceled q->delay_work, callers must hold the queue lock to avoid
444  *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
445  */
446 void blk_run_queue_async(struct request_queue *q)
447 {
448 	lockdep_assert_held(q->queue_lock);
449 	WARN_ON_ONCE(q->mq_ops);
450 
451 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
452 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
453 }
454 EXPORT_SYMBOL(blk_run_queue_async);
455 
456 /**
457  * blk_run_queue - run a single device queue
458  * @q: The queue to run
459  *
460  * Description:
461  *    Invoke request handling on this queue, if it has pending work to do.
462  *    May be used to restart queueing when a request has completed.
463  */
464 void blk_run_queue(struct request_queue *q)
465 {
466 	unsigned long flags;
467 
468 	WARN_ON_ONCE(q->mq_ops);
469 
470 	spin_lock_irqsave(q->queue_lock, flags);
471 	__blk_run_queue(q);
472 	spin_unlock_irqrestore(q->queue_lock, flags);
473 }
474 EXPORT_SYMBOL(blk_run_queue);
475 
476 void blk_put_queue(struct request_queue *q)
477 {
478 	kobject_put(&q->kobj);
479 }
480 EXPORT_SYMBOL(blk_put_queue);
481 
482 /**
483  * __blk_drain_queue - drain requests from request_queue
484  * @q: queue to drain
485  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
486  *
487  * Drain requests from @q.  If @drain_all is set, all requests are drained.
488  * If not, only ELVPRIV requests are drained.  The caller is responsible
489  * for ensuring that no new requests which need to be drained are queued.
490  */
491 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
492 	__releases(q->queue_lock)
493 	__acquires(q->queue_lock)
494 {
495 	int i;
496 
497 	lockdep_assert_held(q->queue_lock);
498 	WARN_ON_ONCE(q->mq_ops);
499 
500 	while (true) {
501 		bool drain = false;
502 
503 		/*
504 		 * The caller might be trying to drain @q before its
505 		 * elevator is initialized.
506 		 */
507 		if (q->elevator)
508 			elv_drain_elevator(q);
509 
510 		blkcg_drain_queue(q);
511 
512 		/*
513 		 * This function might be called on a queue which failed
514 		 * driver init after queue creation or is not yet fully
515 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
516 		 * in such cases.  Kick queue iff dispatch queue has
517 		 * something on it and @q has request_fn set.
518 		 */
519 		if (!list_empty(&q->queue_head) && q->request_fn)
520 			__blk_run_queue(q);
521 
522 		drain |= q->nr_rqs_elvpriv;
523 		drain |= q->request_fn_active;
524 
525 		/*
526 		 * Unfortunately, requests are queued at and tracked from
527 		 * multiple places and there's no single counter which can
528 		 * be drained.  Check all the queues and counters.
529 		 */
530 		if (drain_all) {
531 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
532 			drain |= !list_empty(&q->queue_head);
533 			for (i = 0; i < 2; i++) {
534 				drain |= q->nr_rqs[i];
535 				drain |= q->in_flight[i];
536 				if (fq)
537 				    drain |= !list_empty(&fq->flush_queue[i]);
538 			}
539 		}
540 
541 		if (!drain)
542 			break;
543 
544 		spin_unlock_irq(q->queue_lock);
545 
546 		msleep(10);
547 
548 		spin_lock_irq(q->queue_lock);
549 	}
550 
551 	/*
552 	 * With queue marked dead, any woken up waiter will fail the
553 	 * allocation path, so the wakeup chaining is lost and we're
554 	 * left with hung waiters. We need to wake up those waiters.
555 	 */
556 	if (q->request_fn) {
557 		struct request_list *rl;
558 
559 		blk_queue_for_each_rl(rl, q)
560 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
561 				wake_up_all(&rl->wait[i]);
562 	}
563 }
564 
565 /**
566  * blk_queue_bypass_start - enter queue bypass mode
567  * @q: queue of interest
568  *
569  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
570  * function makes @q enter bypass mode and drains all requests which were
571  * throttled or issued before.  On return, it's guaranteed that no request
572  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
573  * inside queue or RCU read lock.
574  */
575 void blk_queue_bypass_start(struct request_queue *q)
576 {
577 	WARN_ON_ONCE(q->mq_ops);
578 
579 	spin_lock_irq(q->queue_lock);
580 	q->bypass_depth++;
581 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
582 	spin_unlock_irq(q->queue_lock);
583 
584 	/*
585 	 * Queues start drained.  Skip actual draining till init is
586 	 * complete.  This avoids lenghty delays during queue init which
587 	 * can happen many times during boot.
588 	 */
589 	if (blk_queue_init_done(q)) {
590 		spin_lock_irq(q->queue_lock);
591 		__blk_drain_queue(q, false);
592 		spin_unlock_irq(q->queue_lock);
593 
594 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
595 		synchronize_rcu();
596 	}
597 }
598 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
599 
600 /**
601  * blk_queue_bypass_end - leave queue bypass mode
602  * @q: queue of interest
603  *
604  * Leave bypass mode and restore the normal queueing behavior.
605  *
606  * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
607  * this function is called for both blk-sq and blk-mq queues.
608  */
609 void blk_queue_bypass_end(struct request_queue *q)
610 {
611 	spin_lock_irq(q->queue_lock);
612 	if (!--q->bypass_depth)
613 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
614 	WARN_ON_ONCE(q->bypass_depth < 0);
615 	spin_unlock_irq(q->queue_lock);
616 }
617 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
618 
619 void blk_set_queue_dying(struct request_queue *q)
620 {
621 	spin_lock_irq(q->queue_lock);
622 	queue_flag_set(QUEUE_FLAG_DYING, q);
623 	spin_unlock_irq(q->queue_lock);
624 
625 	/*
626 	 * When queue DYING flag is set, we need to block new req
627 	 * entering queue, so we call blk_freeze_queue_start() to
628 	 * prevent I/O from crossing blk_queue_enter().
629 	 */
630 	blk_freeze_queue_start(q);
631 
632 	if (q->mq_ops)
633 		blk_mq_wake_waiters(q);
634 	else {
635 		struct request_list *rl;
636 
637 		spin_lock_irq(q->queue_lock);
638 		blk_queue_for_each_rl(rl, q) {
639 			if (rl->rq_pool) {
640 				wake_up_all(&rl->wait[BLK_RW_SYNC]);
641 				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
642 			}
643 		}
644 		spin_unlock_irq(q->queue_lock);
645 	}
646 
647 	/* Make blk_queue_enter() reexamine the DYING flag. */
648 	wake_up_all(&q->mq_freeze_wq);
649 }
650 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
651 
652 /**
653  * blk_cleanup_queue - shutdown a request queue
654  * @q: request queue to shutdown
655  *
656  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
657  * put it.  All future requests will be failed immediately with -ENODEV.
658  */
659 void blk_cleanup_queue(struct request_queue *q)
660 {
661 	spinlock_t *lock = q->queue_lock;
662 
663 	/* mark @q DYING, no new request or merges will be allowed afterwards */
664 	mutex_lock(&q->sysfs_lock);
665 	blk_set_queue_dying(q);
666 	spin_lock_irq(lock);
667 
668 	/*
669 	 * A dying queue is permanently in bypass mode till released.  Note
670 	 * that, unlike blk_queue_bypass_start(), we aren't performing
671 	 * synchronize_rcu() after entering bypass mode to avoid the delay
672 	 * as some drivers create and destroy a lot of queues while
673 	 * probing.  This is still safe because blk_release_queue() will be
674 	 * called only after the queue refcnt drops to zero and nothing,
675 	 * RCU or not, would be traversing the queue by then.
676 	 */
677 	q->bypass_depth++;
678 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
679 
680 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
681 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
682 	queue_flag_set(QUEUE_FLAG_DYING, q);
683 	spin_unlock_irq(lock);
684 	mutex_unlock(&q->sysfs_lock);
685 
686 	/*
687 	 * Drain all requests queued before DYING marking. Set DEAD flag to
688 	 * prevent that q->request_fn() gets invoked after draining finished.
689 	 */
690 	blk_freeze_queue(q);
691 	spin_lock_irq(lock);
692 	if (!q->mq_ops)
693 		__blk_drain_queue(q, true);
694 	queue_flag_set(QUEUE_FLAG_DEAD, q);
695 	spin_unlock_irq(lock);
696 
697 	/* for synchronous bio-based driver finish in-flight integrity i/o */
698 	blk_flush_integrity();
699 
700 	/* @q won't process any more request, flush async actions */
701 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
702 	blk_sync_queue(q);
703 
704 	if (q->mq_ops)
705 		blk_mq_free_queue(q);
706 	percpu_ref_exit(&q->q_usage_counter);
707 
708 	spin_lock_irq(lock);
709 	if (q->queue_lock != &q->__queue_lock)
710 		q->queue_lock = &q->__queue_lock;
711 	spin_unlock_irq(lock);
712 
713 	/* @q is and will stay empty, shutdown and put */
714 	blk_put_queue(q);
715 }
716 EXPORT_SYMBOL(blk_cleanup_queue);
717 
718 /* Allocate memory local to the request queue */
719 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
720 {
721 	struct request_queue *q = data;
722 
723 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
724 }
725 
726 static void free_request_simple(void *element, void *data)
727 {
728 	kmem_cache_free(request_cachep, element);
729 }
730 
731 static void *alloc_request_size(gfp_t gfp_mask, void *data)
732 {
733 	struct request_queue *q = data;
734 	struct request *rq;
735 
736 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
737 			q->node);
738 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
739 		kfree(rq);
740 		rq = NULL;
741 	}
742 	return rq;
743 }
744 
745 static void free_request_size(void *element, void *data)
746 {
747 	struct request_queue *q = data;
748 
749 	if (q->exit_rq_fn)
750 		q->exit_rq_fn(q, element);
751 	kfree(element);
752 }
753 
754 int blk_init_rl(struct request_list *rl, struct request_queue *q,
755 		gfp_t gfp_mask)
756 {
757 	if (unlikely(rl->rq_pool) || q->mq_ops)
758 		return 0;
759 
760 	rl->q = q;
761 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
762 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
763 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
764 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
765 
766 	if (q->cmd_size) {
767 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
768 				alloc_request_size, free_request_size,
769 				q, gfp_mask, q->node);
770 	} else {
771 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
772 				alloc_request_simple, free_request_simple,
773 				q, gfp_mask, q->node);
774 	}
775 	if (!rl->rq_pool)
776 		return -ENOMEM;
777 
778 	if (rl != &q->root_rl)
779 		WARN_ON_ONCE(!blk_get_queue(q));
780 
781 	return 0;
782 }
783 
784 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
785 {
786 	if (rl->rq_pool) {
787 		mempool_destroy(rl->rq_pool);
788 		if (rl != &q->root_rl)
789 			blk_put_queue(q);
790 	}
791 }
792 
793 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
794 {
795 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
796 }
797 EXPORT_SYMBOL(blk_alloc_queue);
798 
799 /**
800  * blk_queue_enter() - try to increase q->q_usage_counter
801  * @q: request queue pointer
802  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
803  */
804 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
805 {
806 	const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
807 
808 	while (true) {
809 		bool success = false;
810 		int ret;
811 
812 		rcu_read_lock_sched();
813 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
814 			/*
815 			 * The code that sets the PREEMPT_ONLY flag is
816 			 * responsible for ensuring that that flag is globally
817 			 * visible before the queue is unfrozen.
818 			 */
819 			if (preempt || !blk_queue_preempt_only(q)) {
820 				success = true;
821 			} else {
822 				percpu_ref_put(&q->q_usage_counter);
823 			}
824 		}
825 		rcu_read_unlock_sched();
826 
827 		if (success)
828 			return 0;
829 
830 		if (flags & BLK_MQ_REQ_NOWAIT)
831 			return -EBUSY;
832 
833 		/*
834 		 * read pair of barrier in blk_freeze_queue_start(),
835 		 * we need to order reading __PERCPU_REF_DEAD flag of
836 		 * .q_usage_counter and reading .mq_freeze_depth or
837 		 * queue dying flag, otherwise the following wait may
838 		 * never return if the two reads are reordered.
839 		 */
840 		smp_rmb();
841 
842 		ret = wait_event_interruptible(q->mq_freeze_wq,
843 				(atomic_read(&q->mq_freeze_depth) == 0 &&
844 				 (preempt || !blk_queue_preempt_only(q))) ||
845 				blk_queue_dying(q));
846 		if (blk_queue_dying(q))
847 			return -ENODEV;
848 		if (ret)
849 			return ret;
850 	}
851 }
852 
853 void blk_queue_exit(struct request_queue *q)
854 {
855 	percpu_ref_put(&q->q_usage_counter);
856 }
857 
858 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
859 {
860 	struct request_queue *q =
861 		container_of(ref, struct request_queue, q_usage_counter);
862 
863 	wake_up_all(&q->mq_freeze_wq);
864 }
865 
866 static void blk_rq_timed_out_timer(struct timer_list *t)
867 {
868 	struct request_queue *q = from_timer(q, t, timeout);
869 
870 	kblockd_schedule_work(&q->timeout_work);
871 }
872 
873 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
874 {
875 	struct request_queue *q;
876 
877 	q = kmem_cache_alloc_node(blk_requestq_cachep,
878 				gfp_mask | __GFP_ZERO, node_id);
879 	if (!q)
880 		return NULL;
881 
882 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
883 	if (q->id < 0)
884 		goto fail_q;
885 
886 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
887 	if (!q->bio_split)
888 		goto fail_id;
889 
890 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
891 	if (!q->backing_dev_info)
892 		goto fail_split;
893 
894 	q->stats = blk_alloc_queue_stats();
895 	if (!q->stats)
896 		goto fail_stats;
897 
898 	q->backing_dev_info->ra_pages =
899 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
900 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
901 	q->backing_dev_info->name = "block";
902 	q->node = node_id;
903 
904 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
905 		    laptop_mode_timer_fn, 0);
906 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
907 	INIT_WORK(&q->timeout_work, NULL);
908 	INIT_LIST_HEAD(&q->queue_head);
909 	INIT_LIST_HEAD(&q->timeout_list);
910 	INIT_LIST_HEAD(&q->icq_list);
911 #ifdef CONFIG_BLK_CGROUP
912 	INIT_LIST_HEAD(&q->blkg_list);
913 #endif
914 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
915 
916 	kobject_init(&q->kobj, &blk_queue_ktype);
917 
918 #ifdef CONFIG_BLK_DEV_IO_TRACE
919 	mutex_init(&q->blk_trace_mutex);
920 #endif
921 	mutex_init(&q->sysfs_lock);
922 	spin_lock_init(&q->__queue_lock);
923 
924 	/*
925 	 * By default initialize queue_lock to internal lock and driver can
926 	 * override it later if need be.
927 	 */
928 	q->queue_lock = &q->__queue_lock;
929 
930 	/*
931 	 * A queue starts its life with bypass turned on to avoid
932 	 * unnecessary bypass on/off overhead and nasty surprises during
933 	 * init.  The initial bypass will be finished when the queue is
934 	 * registered by blk_register_queue().
935 	 */
936 	q->bypass_depth = 1;
937 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
938 
939 	init_waitqueue_head(&q->mq_freeze_wq);
940 
941 	/*
942 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
943 	 * See blk_register_queue() for details.
944 	 */
945 	if (percpu_ref_init(&q->q_usage_counter,
946 				blk_queue_usage_counter_release,
947 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
948 		goto fail_bdi;
949 
950 	if (blkcg_init_queue(q))
951 		goto fail_ref;
952 
953 	return q;
954 
955 fail_ref:
956 	percpu_ref_exit(&q->q_usage_counter);
957 fail_bdi:
958 	blk_free_queue_stats(q->stats);
959 fail_stats:
960 	bdi_put(q->backing_dev_info);
961 fail_split:
962 	bioset_free(q->bio_split);
963 fail_id:
964 	ida_simple_remove(&blk_queue_ida, q->id);
965 fail_q:
966 	kmem_cache_free(blk_requestq_cachep, q);
967 	return NULL;
968 }
969 EXPORT_SYMBOL(blk_alloc_queue_node);
970 
971 /**
972  * blk_init_queue  - prepare a request queue for use with a block device
973  * @rfn:  The function to be called to process requests that have been
974  *        placed on the queue.
975  * @lock: Request queue spin lock
976  *
977  * Description:
978  *    If a block device wishes to use the standard request handling procedures,
979  *    which sorts requests and coalesces adjacent requests, then it must
980  *    call blk_init_queue().  The function @rfn will be called when there
981  *    are requests on the queue that need to be processed.  If the device
982  *    supports plugging, then @rfn may not be called immediately when requests
983  *    are available on the queue, but may be called at some time later instead.
984  *    Plugged queues are generally unplugged when a buffer belonging to one
985  *    of the requests on the queue is needed, or due to memory pressure.
986  *
987  *    @rfn is not required, or even expected, to remove all requests off the
988  *    queue, but only as many as it can handle at a time.  If it does leave
989  *    requests on the queue, it is responsible for arranging that the requests
990  *    get dealt with eventually.
991  *
992  *    The queue spin lock must be held while manipulating the requests on the
993  *    request queue; this lock will be taken also from interrupt context, so irq
994  *    disabling is needed for it.
995  *
996  *    Function returns a pointer to the initialized request queue, or %NULL if
997  *    it didn't succeed.
998  *
999  * Note:
1000  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1001  *    when the block device is deactivated (such as at module unload).
1002  **/
1003 
1004 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1005 {
1006 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1007 }
1008 EXPORT_SYMBOL(blk_init_queue);
1009 
1010 struct request_queue *
1011 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1012 {
1013 	struct request_queue *q;
1014 
1015 	q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1016 	if (!q)
1017 		return NULL;
1018 
1019 	q->request_fn = rfn;
1020 	if (lock)
1021 		q->queue_lock = lock;
1022 	if (blk_init_allocated_queue(q) < 0) {
1023 		blk_cleanup_queue(q);
1024 		return NULL;
1025 	}
1026 
1027 	return q;
1028 }
1029 EXPORT_SYMBOL(blk_init_queue_node);
1030 
1031 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1032 
1033 
1034 int blk_init_allocated_queue(struct request_queue *q)
1035 {
1036 	WARN_ON_ONCE(q->mq_ops);
1037 
1038 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1039 	if (!q->fq)
1040 		return -ENOMEM;
1041 
1042 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1043 		goto out_free_flush_queue;
1044 
1045 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1046 		goto out_exit_flush_rq;
1047 
1048 	INIT_WORK(&q->timeout_work, blk_timeout_work);
1049 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
1050 
1051 	/*
1052 	 * This also sets hw/phys segments, boundary and size
1053 	 */
1054 	blk_queue_make_request(q, blk_queue_bio);
1055 
1056 	q->sg_reserved_size = INT_MAX;
1057 
1058 	/* Protect q->elevator from elevator_change */
1059 	mutex_lock(&q->sysfs_lock);
1060 
1061 	/* init elevator */
1062 	if (elevator_init(q, NULL)) {
1063 		mutex_unlock(&q->sysfs_lock);
1064 		goto out_exit_flush_rq;
1065 	}
1066 
1067 	mutex_unlock(&q->sysfs_lock);
1068 	return 0;
1069 
1070 out_exit_flush_rq:
1071 	if (q->exit_rq_fn)
1072 		q->exit_rq_fn(q, q->fq->flush_rq);
1073 out_free_flush_queue:
1074 	blk_free_flush_queue(q->fq);
1075 	return -ENOMEM;
1076 }
1077 EXPORT_SYMBOL(blk_init_allocated_queue);
1078 
1079 bool blk_get_queue(struct request_queue *q)
1080 {
1081 	if (likely(!blk_queue_dying(q))) {
1082 		__blk_get_queue(q);
1083 		return true;
1084 	}
1085 
1086 	return false;
1087 }
1088 EXPORT_SYMBOL(blk_get_queue);
1089 
1090 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1091 {
1092 	if (rq->rq_flags & RQF_ELVPRIV) {
1093 		elv_put_request(rl->q, rq);
1094 		if (rq->elv.icq)
1095 			put_io_context(rq->elv.icq->ioc);
1096 	}
1097 
1098 	mempool_free(rq, rl->rq_pool);
1099 }
1100 
1101 /*
1102  * ioc_batching returns true if the ioc is a valid batching request and
1103  * should be given priority access to a request.
1104  */
1105 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1106 {
1107 	if (!ioc)
1108 		return 0;
1109 
1110 	/*
1111 	 * Make sure the process is able to allocate at least 1 request
1112 	 * even if the batch times out, otherwise we could theoretically
1113 	 * lose wakeups.
1114 	 */
1115 	return ioc->nr_batch_requests == q->nr_batching ||
1116 		(ioc->nr_batch_requests > 0
1117 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1118 }
1119 
1120 /*
1121  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1122  * will cause the process to be a "batcher" on all queues in the system. This
1123  * is the behaviour we want though - once it gets a wakeup it should be given
1124  * a nice run.
1125  */
1126 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1127 {
1128 	if (!ioc || ioc_batching(q, ioc))
1129 		return;
1130 
1131 	ioc->nr_batch_requests = q->nr_batching;
1132 	ioc->last_waited = jiffies;
1133 }
1134 
1135 static void __freed_request(struct request_list *rl, int sync)
1136 {
1137 	struct request_queue *q = rl->q;
1138 
1139 	if (rl->count[sync] < queue_congestion_off_threshold(q))
1140 		blk_clear_congested(rl, sync);
1141 
1142 	if (rl->count[sync] + 1 <= q->nr_requests) {
1143 		if (waitqueue_active(&rl->wait[sync]))
1144 			wake_up(&rl->wait[sync]);
1145 
1146 		blk_clear_rl_full(rl, sync);
1147 	}
1148 }
1149 
1150 /*
1151  * A request has just been released.  Account for it, update the full and
1152  * congestion status, wake up any waiters.   Called under q->queue_lock.
1153  */
1154 static void freed_request(struct request_list *rl, bool sync,
1155 		req_flags_t rq_flags)
1156 {
1157 	struct request_queue *q = rl->q;
1158 
1159 	q->nr_rqs[sync]--;
1160 	rl->count[sync]--;
1161 	if (rq_flags & RQF_ELVPRIV)
1162 		q->nr_rqs_elvpriv--;
1163 
1164 	__freed_request(rl, sync);
1165 
1166 	if (unlikely(rl->starved[sync ^ 1]))
1167 		__freed_request(rl, sync ^ 1);
1168 }
1169 
1170 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1171 {
1172 	struct request_list *rl;
1173 	int on_thresh, off_thresh;
1174 
1175 	WARN_ON_ONCE(q->mq_ops);
1176 
1177 	spin_lock_irq(q->queue_lock);
1178 	q->nr_requests = nr;
1179 	blk_queue_congestion_threshold(q);
1180 	on_thresh = queue_congestion_on_threshold(q);
1181 	off_thresh = queue_congestion_off_threshold(q);
1182 
1183 	blk_queue_for_each_rl(rl, q) {
1184 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1185 			blk_set_congested(rl, BLK_RW_SYNC);
1186 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1187 			blk_clear_congested(rl, BLK_RW_SYNC);
1188 
1189 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1190 			blk_set_congested(rl, BLK_RW_ASYNC);
1191 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1192 			blk_clear_congested(rl, BLK_RW_ASYNC);
1193 
1194 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1195 			blk_set_rl_full(rl, BLK_RW_SYNC);
1196 		} else {
1197 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1198 			wake_up(&rl->wait[BLK_RW_SYNC]);
1199 		}
1200 
1201 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1202 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1203 		} else {
1204 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1205 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1206 		}
1207 	}
1208 
1209 	spin_unlock_irq(q->queue_lock);
1210 	return 0;
1211 }
1212 
1213 /**
1214  * __get_request - get a free request
1215  * @rl: request list to allocate from
1216  * @op: operation and flags
1217  * @bio: bio to allocate request for (can be %NULL)
1218  * @flags: BLQ_MQ_REQ_* flags
1219  *
1220  * Get a free request from @q.  This function may fail under memory
1221  * pressure or if @q is dead.
1222  *
1223  * Must be called with @q->queue_lock held and,
1224  * Returns ERR_PTR on failure, with @q->queue_lock held.
1225  * Returns request pointer on success, with @q->queue_lock *not held*.
1226  */
1227 static struct request *__get_request(struct request_list *rl, unsigned int op,
1228 				     struct bio *bio, blk_mq_req_flags_t flags)
1229 {
1230 	struct request_queue *q = rl->q;
1231 	struct request *rq;
1232 	struct elevator_type *et = q->elevator->type;
1233 	struct io_context *ioc = rq_ioc(bio);
1234 	struct io_cq *icq = NULL;
1235 	const bool is_sync = op_is_sync(op);
1236 	int may_queue;
1237 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1238 			 __GFP_DIRECT_RECLAIM;
1239 	req_flags_t rq_flags = RQF_ALLOCED;
1240 
1241 	lockdep_assert_held(q->queue_lock);
1242 
1243 	if (unlikely(blk_queue_dying(q)))
1244 		return ERR_PTR(-ENODEV);
1245 
1246 	may_queue = elv_may_queue(q, op);
1247 	if (may_queue == ELV_MQUEUE_NO)
1248 		goto rq_starved;
1249 
1250 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1251 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1252 			/*
1253 			 * The queue will fill after this allocation, so set
1254 			 * it as full, and mark this process as "batching".
1255 			 * This process will be allowed to complete a batch of
1256 			 * requests, others will be blocked.
1257 			 */
1258 			if (!blk_rl_full(rl, is_sync)) {
1259 				ioc_set_batching(q, ioc);
1260 				blk_set_rl_full(rl, is_sync);
1261 			} else {
1262 				if (may_queue != ELV_MQUEUE_MUST
1263 						&& !ioc_batching(q, ioc)) {
1264 					/*
1265 					 * The queue is full and the allocating
1266 					 * process is not a "batcher", and not
1267 					 * exempted by the IO scheduler
1268 					 */
1269 					return ERR_PTR(-ENOMEM);
1270 				}
1271 			}
1272 		}
1273 		blk_set_congested(rl, is_sync);
1274 	}
1275 
1276 	/*
1277 	 * Only allow batching queuers to allocate up to 50% over the defined
1278 	 * limit of requests, otherwise we could have thousands of requests
1279 	 * allocated with any setting of ->nr_requests
1280 	 */
1281 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1282 		return ERR_PTR(-ENOMEM);
1283 
1284 	q->nr_rqs[is_sync]++;
1285 	rl->count[is_sync]++;
1286 	rl->starved[is_sync] = 0;
1287 
1288 	/*
1289 	 * Decide whether the new request will be managed by elevator.  If
1290 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1291 	 * prevent the current elevator from being destroyed until the new
1292 	 * request is freed.  This guarantees icq's won't be destroyed and
1293 	 * makes creating new ones safe.
1294 	 *
1295 	 * Flush requests do not use the elevator so skip initialization.
1296 	 * This allows a request to share the flush and elevator data.
1297 	 *
1298 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1299 	 * it will be created after releasing queue_lock.
1300 	 */
1301 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1302 		rq_flags |= RQF_ELVPRIV;
1303 		q->nr_rqs_elvpriv++;
1304 		if (et->icq_cache && ioc)
1305 			icq = ioc_lookup_icq(ioc, q);
1306 	}
1307 
1308 	if (blk_queue_io_stat(q))
1309 		rq_flags |= RQF_IO_STAT;
1310 	spin_unlock_irq(q->queue_lock);
1311 
1312 	/* allocate and init request */
1313 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1314 	if (!rq)
1315 		goto fail_alloc;
1316 
1317 	blk_rq_init(q, rq);
1318 	blk_rq_set_rl(rq, rl);
1319 	rq->cmd_flags = op;
1320 	rq->rq_flags = rq_flags;
1321 	if (flags & BLK_MQ_REQ_PREEMPT)
1322 		rq->rq_flags |= RQF_PREEMPT;
1323 
1324 	/* init elvpriv */
1325 	if (rq_flags & RQF_ELVPRIV) {
1326 		if (unlikely(et->icq_cache && !icq)) {
1327 			if (ioc)
1328 				icq = ioc_create_icq(ioc, q, gfp_mask);
1329 			if (!icq)
1330 				goto fail_elvpriv;
1331 		}
1332 
1333 		rq->elv.icq = icq;
1334 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1335 			goto fail_elvpriv;
1336 
1337 		/* @rq->elv.icq holds io_context until @rq is freed */
1338 		if (icq)
1339 			get_io_context(icq->ioc);
1340 	}
1341 out:
1342 	/*
1343 	 * ioc may be NULL here, and ioc_batching will be false. That's
1344 	 * OK, if the queue is under the request limit then requests need
1345 	 * not count toward the nr_batch_requests limit. There will always
1346 	 * be some limit enforced by BLK_BATCH_TIME.
1347 	 */
1348 	if (ioc_batching(q, ioc))
1349 		ioc->nr_batch_requests--;
1350 
1351 	trace_block_getrq(q, bio, op);
1352 	return rq;
1353 
1354 fail_elvpriv:
1355 	/*
1356 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1357 	 * and may fail indefinitely under memory pressure and thus
1358 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1359 	 * disturb iosched and blkcg but weird is bettern than dead.
1360 	 */
1361 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1362 			   __func__, dev_name(q->backing_dev_info->dev));
1363 
1364 	rq->rq_flags &= ~RQF_ELVPRIV;
1365 	rq->elv.icq = NULL;
1366 
1367 	spin_lock_irq(q->queue_lock);
1368 	q->nr_rqs_elvpriv--;
1369 	spin_unlock_irq(q->queue_lock);
1370 	goto out;
1371 
1372 fail_alloc:
1373 	/*
1374 	 * Allocation failed presumably due to memory. Undo anything we
1375 	 * might have messed up.
1376 	 *
1377 	 * Allocating task should really be put onto the front of the wait
1378 	 * queue, but this is pretty rare.
1379 	 */
1380 	spin_lock_irq(q->queue_lock);
1381 	freed_request(rl, is_sync, rq_flags);
1382 
1383 	/*
1384 	 * in the very unlikely event that allocation failed and no
1385 	 * requests for this direction was pending, mark us starved so that
1386 	 * freeing of a request in the other direction will notice
1387 	 * us. another possible fix would be to split the rq mempool into
1388 	 * READ and WRITE
1389 	 */
1390 rq_starved:
1391 	if (unlikely(rl->count[is_sync] == 0))
1392 		rl->starved[is_sync] = 1;
1393 	return ERR_PTR(-ENOMEM);
1394 }
1395 
1396 /**
1397  * get_request - get a free request
1398  * @q: request_queue to allocate request from
1399  * @op: operation and flags
1400  * @bio: bio to allocate request for (can be %NULL)
1401  * @flags: BLK_MQ_REQ_* flags.
1402  *
1403  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1404  * this function keeps retrying under memory pressure and fails iff @q is dead.
1405  *
1406  * Must be called with @q->queue_lock held and,
1407  * Returns ERR_PTR on failure, with @q->queue_lock held.
1408  * Returns request pointer on success, with @q->queue_lock *not held*.
1409  */
1410 static struct request *get_request(struct request_queue *q, unsigned int op,
1411 				   struct bio *bio, blk_mq_req_flags_t flags)
1412 {
1413 	const bool is_sync = op_is_sync(op);
1414 	DEFINE_WAIT(wait);
1415 	struct request_list *rl;
1416 	struct request *rq;
1417 
1418 	lockdep_assert_held(q->queue_lock);
1419 	WARN_ON_ONCE(q->mq_ops);
1420 
1421 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1422 retry:
1423 	rq = __get_request(rl, op, bio, flags);
1424 	if (!IS_ERR(rq))
1425 		return rq;
1426 
1427 	if (op & REQ_NOWAIT) {
1428 		blk_put_rl(rl);
1429 		return ERR_PTR(-EAGAIN);
1430 	}
1431 
1432 	if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1433 		blk_put_rl(rl);
1434 		return rq;
1435 	}
1436 
1437 	/* wait on @rl and retry */
1438 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1439 				  TASK_UNINTERRUPTIBLE);
1440 
1441 	trace_block_sleeprq(q, bio, op);
1442 
1443 	spin_unlock_irq(q->queue_lock);
1444 	io_schedule();
1445 
1446 	/*
1447 	 * After sleeping, we become a "batching" process and will be able
1448 	 * to allocate at least one request, and up to a big batch of them
1449 	 * for a small period time.  See ioc_batching, ioc_set_batching
1450 	 */
1451 	ioc_set_batching(q, current->io_context);
1452 
1453 	spin_lock_irq(q->queue_lock);
1454 	finish_wait(&rl->wait[is_sync], &wait);
1455 
1456 	goto retry;
1457 }
1458 
1459 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1460 static struct request *blk_old_get_request(struct request_queue *q,
1461 				unsigned int op, blk_mq_req_flags_t flags)
1462 {
1463 	struct request *rq;
1464 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1465 			 __GFP_DIRECT_RECLAIM;
1466 	int ret = 0;
1467 
1468 	WARN_ON_ONCE(q->mq_ops);
1469 
1470 	/* create ioc upfront */
1471 	create_io_context(gfp_mask, q->node);
1472 
1473 	ret = blk_queue_enter(q, flags);
1474 	if (ret)
1475 		return ERR_PTR(ret);
1476 	spin_lock_irq(q->queue_lock);
1477 	rq = get_request(q, op, NULL, flags);
1478 	if (IS_ERR(rq)) {
1479 		spin_unlock_irq(q->queue_lock);
1480 		blk_queue_exit(q);
1481 		return rq;
1482 	}
1483 
1484 	/* q->queue_lock is unlocked at this point */
1485 	rq->__data_len = 0;
1486 	rq->__sector = (sector_t) -1;
1487 	rq->bio = rq->biotail = NULL;
1488 	return rq;
1489 }
1490 
1491 /**
1492  * blk_get_request_flags - allocate a request
1493  * @q: request queue to allocate a request for
1494  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1495  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1496  */
1497 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1498 				      blk_mq_req_flags_t flags)
1499 {
1500 	struct request *req;
1501 
1502 	WARN_ON_ONCE(op & REQ_NOWAIT);
1503 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1504 
1505 	if (q->mq_ops) {
1506 		req = blk_mq_alloc_request(q, op, flags);
1507 		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1508 			q->mq_ops->initialize_rq_fn(req);
1509 	} else {
1510 		req = blk_old_get_request(q, op, flags);
1511 		if (!IS_ERR(req) && q->initialize_rq_fn)
1512 			q->initialize_rq_fn(req);
1513 	}
1514 
1515 	return req;
1516 }
1517 EXPORT_SYMBOL(blk_get_request_flags);
1518 
1519 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1520 				gfp_t gfp_mask)
1521 {
1522 	return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1523 				     0 : BLK_MQ_REQ_NOWAIT);
1524 }
1525 EXPORT_SYMBOL(blk_get_request);
1526 
1527 /**
1528  * blk_requeue_request - put a request back on queue
1529  * @q:		request queue where request should be inserted
1530  * @rq:		request to be inserted
1531  *
1532  * Description:
1533  *    Drivers often keep queueing requests until the hardware cannot accept
1534  *    more, when that condition happens we need to put the request back
1535  *    on the queue. Must be called with queue lock held.
1536  */
1537 void blk_requeue_request(struct request_queue *q, struct request *rq)
1538 {
1539 	lockdep_assert_held(q->queue_lock);
1540 	WARN_ON_ONCE(q->mq_ops);
1541 
1542 	blk_delete_timer(rq);
1543 	blk_clear_rq_complete(rq);
1544 	trace_block_rq_requeue(q, rq);
1545 	wbt_requeue(q->rq_wb, &rq->issue_stat);
1546 
1547 	if (rq->rq_flags & RQF_QUEUED)
1548 		blk_queue_end_tag(q, rq);
1549 
1550 	BUG_ON(blk_queued_rq(rq));
1551 
1552 	elv_requeue_request(q, rq);
1553 }
1554 EXPORT_SYMBOL(blk_requeue_request);
1555 
1556 static void add_acct_request(struct request_queue *q, struct request *rq,
1557 			     int where)
1558 {
1559 	blk_account_io_start(rq, true);
1560 	__elv_add_request(q, rq, where);
1561 }
1562 
1563 static void part_round_stats_single(struct request_queue *q, int cpu,
1564 				    struct hd_struct *part, unsigned long now,
1565 				    unsigned int inflight)
1566 {
1567 	if (inflight) {
1568 		__part_stat_add(cpu, part, time_in_queue,
1569 				inflight * (now - part->stamp));
1570 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1571 	}
1572 	part->stamp = now;
1573 }
1574 
1575 /**
1576  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1577  * @q: target block queue
1578  * @cpu: cpu number for stats access
1579  * @part: target partition
1580  *
1581  * The average IO queue length and utilisation statistics are maintained
1582  * by observing the current state of the queue length and the amount of
1583  * time it has been in this state for.
1584  *
1585  * Normally, that accounting is done on IO completion, but that can result
1586  * in more than a second's worth of IO being accounted for within any one
1587  * second, leading to >100% utilisation.  To deal with that, we call this
1588  * function to do a round-off before returning the results when reading
1589  * /proc/diskstats.  This accounts immediately for all queue usage up to
1590  * the current jiffies and restarts the counters again.
1591  */
1592 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1593 {
1594 	struct hd_struct *part2 = NULL;
1595 	unsigned long now = jiffies;
1596 	unsigned int inflight[2];
1597 	int stats = 0;
1598 
1599 	if (part->stamp != now)
1600 		stats |= 1;
1601 
1602 	if (part->partno) {
1603 		part2 = &part_to_disk(part)->part0;
1604 		if (part2->stamp != now)
1605 			stats |= 2;
1606 	}
1607 
1608 	if (!stats)
1609 		return;
1610 
1611 	part_in_flight(q, part, inflight);
1612 
1613 	if (stats & 2)
1614 		part_round_stats_single(q, cpu, part2, now, inflight[1]);
1615 	if (stats & 1)
1616 		part_round_stats_single(q, cpu, part, now, inflight[0]);
1617 }
1618 EXPORT_SYMBOL_GPL(part_round_stats);
1619 
1620 #ifdef CONFIG_PM
1621 static void blk_pm_put_request(struct request *rq)
1622 {
1623 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1624 		pm_runtime_mark_last_busy(rq->q->dev);
1625 }
1626 #else
1627 static inline void blk_pm_put_request(struct request *rq) {}
1628 #endif
1629 
1630 void __blk_put_request(struct request_queue *q, struct request *req)
1631 {
1632 	req_flags_t rq_flags = req->rq_flags;
1633 
1634 	if (unlikely(!q))
1635 		return;
1636 
1637 	if (q->mq_ops) {
1638 		blk_mq_free_request(req);
1639 		return;
1640 	}
1641 
1642 	lockdep_assert_held(q->queue_lock);
1643 
1644 	blk_pm_put_request(req);
1645 
1646 	elv_completed_request(q, req);
1647 
1648 	/* this is a bio leak */
1649 	WARN_ON(req->bio != NULL);
1650 
1651 	wbt_done(q->rq_wb, &req->issue_stat);
1652 
1653 	/*
1654 	 * Request may not have originated from ll_rw_blk. if not,
1655 	 * it didn't come out of our reserved rq pools
1656 	 */
1657 	if (rq_flags & RQF_ALLOCED) {
1658 		struct request_list *rl = blk_rq_rl(req);
1659 		bool sync = op_is_sync(req->cmd_flags);
1660 
1661 		BUG_ON(!list_empty(&req->queuelist));
1662 		BUG_ON(ELV_ON_HASH(req));
1663 
1664 		blk_free_request(rl, req);
1665 		freed_request(rl, sync, rq_flags);
1666 		blk_put_rl(rl);
1667 		blk_queue_exit(q);
1668 	}
1669 }
1670 EXPORT_SYMBOL_GPL(__blk_put_request);
1671 
1672 void blk_put_request(struct request *req)
1673 {
1674 	struct request_queue *q = req->q;
1675 
1676 	if (q->mq_ops)
1677 		blk_mq_free_request(req);
1678 	else {
1679 		unsigned long flags;
1680 
1681 		spin_lock_irqsave(q->queue_lock, flags);
1682 		__blk_put_request(q, req);
1683 		spin_unlock_irqrestore(q->queue_lock, flags);
1684 	}
1685 }
1686 EXPORT_SYMBOL(blk_put_request);
1687 
1688 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1689 			    struct bio *bio)
1690 {
1691 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1692 
1693 	if (!ll_back_merge_fn(q, req, bio))
1694 		return false;
1695 
1696 	trace_block_bio_backmerge(q, req, bio);
1697 
1698 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1699 		blk_rq_set_mixed_merge(req);
1700 
1701 	req->biotail->bi_next = bio;
1702 	req->biotail = bio;
1703 	req->__data_len += bio->bi_iter.bi_size;
1704 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1705 
1706 	blk_account_io_start(req, false);
1707 	return true;
1708 }
1709 
1710 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1711 			     struct bio *bio)
1712 {
1713 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1714 
1715 	if (!ll_front_merge_fn(q, req, bio))
1716 		return false;
1717 
1718 	trace_block_bio_frontmerge(q, req, bio);
1719 
1720 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1721 		blk_rq_set_mixed_merge(req);
1722 
1723 	bio->bi_next = req->bio;
1724 	req->bio = bio;
1725 
1726 	req->__sector = bio->bi_iter.bi_sector;
1727 	req->__data_len += bio->bi_iter.bi_size;
1728 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1729 
1730 	blk_account_io_start(req, false);
1731 	return true;
1732 }
1733 
1734 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1735 		struct bio *bio)
1736 {
1737 	unsigned short segments = blk_rq_nr_discard_segments(req);
1738 
1739 	if (segments >= queue_max_discard_segments(q))
1740 		goto no_merge;
1741 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1742 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1743 		goto no_merge;
1744 
1745 	req->biotail->bi_next = bio;
1746 	req->biotail = bio;
1747 	req->__data_len += bio->bi_iter.bi_size;
1748 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1749 	req->nr_phys_segments = segments + 1;
1750 
1751 	blk_account_io_start(req, false);
1752 	return true;
1753 no_merge:
1754 	req_set_nomerge(q, req);
1755 	return false;
1756 }
1757 
1758 /**
1759  * blk_attempt_plug_merge - try to merge with %current's plugged list
1760  * @q: request_queue new bio is being queued at
1761  * @bio: new bio being queued
1762  * @request_count: out parameter for number of traversed plugged requests
1763  * @same_queue_rq: pointer to &struct request that gets filled in when
1764  * another request associated with @q is found on the plug list
1765  * (optional, may be %NULL)
1766  *
1767  * Determine whether @bio being queued on @q can be merged with a request
1768  * on %current's plugged list.  Returns %true if merge was successful,
1769  * otherwise %false.
1770  *
1771  * Plugging coalesces IOs from the same issuer for the same purpose without
1772  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1773  * than scheduling, and the request, while may have elvpriv data, is not
1774  * added on the elevator at this point.  In addition, we don't have
1775  * reliable access to the elevator outside queue lock.  Only check basic
1776  * merging parameters without querying the elevator.
1777  *
1778  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1779  */
1780 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1781 			    unsigned int *request_count,
1782 			    struct request **same_queue_rq)
1783 {
1784 	struct blk_plug *plug;
1785 	struct request *rq;
1786 	struct list_head *plug_list;
1787 
1788 	plug = current->plug;
1789 	if (!plug)
1790 		return false;
1791 	*request_count = 0;
1792 
1793 	if (q->mq_ops)
1794 		plug_list = &plug->mq_list;
1795 	else
1796 		plug_list = &plug->list;
1797 
1798 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1799 		bool merged = false;
1800 
1801 		if (rq->q == q) {
1802 			(*request_count)++;
1803 			/*
1804 			 * Only blk-mq multiple hardware queues case checks the
1805 			 * rq in the same queue, there should be only one such
1806 			 * rq in a queue
1807 			 **/
1808 			if (same_queue_rq)
1809 				*same_queue_rq = rq;
1810 		}
1811 
1812 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1813 			continue;
1814 
1815 		switch (blk_try_merge(rq, bio)) {
1816 		case ELEVATOR_BACK_MERGE:
1817 			merged = bio_attempt_back_merge(q, rq, bio);
1818 			break;
1819 		case ELEVATOR_FRONT_MERGE:
1820 			merged = bio_attempt_front_merge(q, rq, bio);
1821 			break;
1822 		case ELEVATOR_DISCARD_MERGE:
1823 			merged = bio_attempt_discard_merge(q, rq, bio);
1824 			break;
1825 		default:
1826 			break;
1827 		}
1828 
1829 		if (merged)
1830 			return true;
1831 	}
1832 
1833 	return false;
1834 }
1835 
1836 unsigned int blk_plug_queued_count(struct request_queue *q)
1837 {
1838 	struct blk_plug *plug;
1839 	struct request *rq;
1840 	struct list_head *plug_list;
1841 	unsigned int ret = 0;
1842 
1843 	plug = current->plug;
1844 	if (!plug)
1845 		goto out;
1846 
1847 	if (q->mq_ops)
1848 		plug_list = &plug->mq_list;
1849 	else
1850 		plug_list = &plug->list;
1851 
1852 	list_for_each_entry(rq, plug_list, queuelist) {
1853 		if (rq->q == q)
1854 			ret++;
1855 	}
1856 out:
1857 	return ret;
1858 }
1859 
1860 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1861 {
1862 	struct io_context *ioc = rq_ioc(bio);
1863 
1864 	if (bio->bi_opf & REQ_RAHEAD)
1865 		req->cmd_flags |= REQ_FAILFAST_MASK;
1866 
1867 	req->__sector = bio->bi_iter.bi_sector;
1868 	if (ioprio_valid(bio_prio(bio)))
1869 		req->ioprio = bio_prio(bio);
1870 	else if (ioc)
1871 		req->ioprio = ioc->ioprio;
1872 	else
1873 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1874 	req->write_hint = bio->bi_write_hint;
1875 	blk_rq_bio_prep(req->q, req, bio);
1876 }
1877 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1878 
1879 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1880 {
1881 	struct blk_plug *plug;
1882 	int where = ELEVATOR_INSERT_SORT;
1883 	struct request *req, *free;
1884 	unsigned int request_count = 0;
1885 	unsigned int wb_acct;
1886 
1887 	/*
1888 	 * low level driver can indicate that it wants pages above a
1889 	 * certain limit bounced to low memory (ie for highmem, or even
1890 	 * ISA dma in theory)
1891 	 */
1892 	blk_queue_bounce(q, &bio);
1893 
1894 	blk_queue_split(q, &bio);
1895 
1896 	if (!bio_integrity_prep(bio))
1897 		return BLK_QC_T_NONE;
1898 
1899 	if (op_is_flush(bio->bi_opf)) {
1900 		spin_lock_irq(q->queue_lock);
1901 		where = ELEVATOR_INSERT_FLUSH;
1902 		goto get_rq;
1903 	}
1904 
1905 	/*
1906 	 * Check if we can merge with the plugged list before grabbing
1907 	 * any locks.
1908 	 */
1909 	if (!blk_queue_nomerges(q)) {
1910 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1911 			return BLK_QC_T_NONE;
1912 	} else
1913 		request_count = blk_plug_queued_count(q);
1914 
1915 	spin_lock_irq(q->queue_lock);
1916 
1917 	switch (elv_merge(q, &req, bio)) {
1918 	case ELEVATOR_BACK_MERGE:
1919 		if (!bio_attempt_back_merge(q, req, bio))
1920 			break;
1921 		elv_bio_merged(q, req, bio);
1922 		free = attempt_back_merge(q, req);
1923 		if (free)
1924 			__blk_put_request(q, free);
1925 		else
1926 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1927 		goto out_unlock;
1928 	case ELEVATOR_FRONT_MERGE:
1929 		if (!bio_attempt_front_merge(q, req, bio))
1930 			break;
1931 		elv_bio_merged(q, req, bio);
1932 		free = attempt_front_merge(q, req);
1933 		if (free)
1934 			__blk_put_request(q, free);
1935 		else
1936 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1937 		goto out_unlock;
1938 	default:
1939 		break;
1940 	}
1941 
1942 get_rq:
1943 	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1944 
1945 	/*
1946 	 * Grab a free request. This is might sleep but can not fail.
1947 	 * Returns with the queue unlocked.
1948 	 */
1949 	blk_queue_enter_live(q);
1950 	req = get_request(q, bio->bi_opf, bio, 0);
1951 	if (IS_ERR(req)) {
1952 		blk_queue_exit(q);
1953 		__wbt_done(q->rq_wb, wb_acct);
1954 		if (PTR_ERR(req) == -ENOMEM)
1955 			bio->bi_status = BLK_STS_RESOURCE;
1956 		else
1957 			bio->bi_status = BLK_STS_IOERR;
1958 		bio_endio(bio);
1959 		goto out_unlock;
1960 	}
1961 
1962 	wbt_track(&req->issue_stat, wb_acct);
1963 
1964 	/*
1965 	 * After dropping the lock and possibly sleeping here, our request
1966 	 * may now be mergeable after it had proven unmergeable (above).
1967 	 * We don't worry about that case for efficiency. It won't happen
1968 	 * often, and the elevators are able to handle it.
1969 	 */
1970 	blk_init_request_from_bio(req, bio);
1971 
1972 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1973 		req->cpu = raw_smp_processor_id();
1974 
1975 	plug = current->plug;
1976 	if (plug) {
1977 		/*
1978 		 * If this is the first request added after a plug, fire
1979 		 * of a plug trace.
1980 		 *
1981 		 * @request_count may become stale because of schedule
1982 		 * out, so check plug list again.
1983 		 */
1984 		if (!request_count || list_empty(&plug->list))
1985 			trace_block_plug(q);
1986 		else {
1987 			struct request *last = list_entry_rq(plug->list.prev);
1988 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
1989 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1990 				blk_flush_plug_list(plug, false);
1991 				trace_block_plug(q);
1992 			}
1993 		}
1994 		list_add_tail(&req->queuelist, &plug->list);
1995 		blk_account_io_start(req, true);
1996 	} else {
1997 		spin_lock_irq(q->queue_lock);
1998 		add_acct_request(q, req, where);
1999 		__blk_run_queue(q);
2000 out_unlock:
2001 		spin_unlock_irq(q->queue_lock);
2002 	}
2003 
2004 	return BLK_QC_T_NONE;
2005 }
2006 
2007 static void handle_bad_sector(struct bio *bio)
2008 {
2009 	char b[BDEVNAME_SIZE];
2010 
2011 	printk(KERN_INFO "attempt to access beyond end of device\n");
2012 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2013 			bio_devname(bio, b), bio->bi_opf,
2014 			(unsigned long long)bio_end_sector(bio),
2015 			(long long)get_capacity(bio->bi_disk));
2016 }
2017 
2018 #ifdef CONFIG_FAIL_MAKE_REQUEST
2019 
2020 static DECLARE_FAULT_ATTR(fail_make_request);
2021 
2022 static int __init setup_fail_make_request(char *str)
2023 {
2024 	return setup_fault_attr(&fail_make_request, str);
2025 }
2026 __setup("fail_make_request=", setup_fail_make_request);
2027 
2028 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2029 {
2030 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
2031 }
2032 
2033 static int __init fail_make_request_debugfs(void)
2034 {
2035 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2036 						NULL, &fail_make_request);
2037 
2038 	return PTR_ERR_OR_ZERO(dir);
2039 }
2040 
2041 late_initcall(fail_make_request_debugfs);
2042 
2043 #else /* CONFIG_FAIL_MAKE_REQUEST */
2044 
2045 static inline bool should_fail_request(struct hd_struct *part,
2046 					unsigned int bytes)
2047 {
2048 	return false;
2049 }
2050 
2051 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2052 
2053 /*
2054  * Remap block n of partition p to block n+start(p) of the disk.
2055  */
2056 static inline int blk_partition_remap(struct bio *bio)
2057 {
2058 	struct hd_struct *p;
2059 	int ret = 0;
2060 
2061 	/*
2062 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
2063 	 * Include a test for the reset op code and perform the remap if needed.
2064 	 */
2065 	if (!bio->bi_partno ||
2066 	    (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2067 		return 0;
2068 
2069 	rcu_read_lock();
2070 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2071 	if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2072 		bio->bi_iter.bi_sector += p->start_sect;
2073 		bio->bi_partno = 0;
2074 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2075 				bio->bi_iter.bi_sector - p->start_sect);
2076 	} else {
2077 		printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2078 		ret = -EIO;
2079 	}
2080 	rcu_read_unlock();
2081 
2082 	return ret;
2083 }
2084 
2085 /*
2086  * Check whether this bio extends beyond the end of the device.
2087  */
2088 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2089 {
2090 	sector_t maxsector;
2091 
2092 	if (!nr_sectors)
2093 		return 0;
2094 
2095 	/* Test device or partition size, when known. */
2096 	maxsector = get_capacity(bio->bi_disk);
2097 	if (maxsector) {
2098 		sector_t sector = bio->bi_iter.bi_sector;
2099 
2100 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2101 			/*
2102 			 * This may well happen - the kernel calls bread()
2103 			 * without checking the size of the device, e.g., when
2104 			 * mounting a device.
2105 			 */
2106 			handle_bad_sector(bio);
2107 			return 1;
2108 		}
2109 	}
2110 
2111 	return 0;
2112 }
2113 
2114 static noinline_for_stack bool
2115 generic_make_request_checks(struct bio *bio)
2116 {
2117 	struct request_queue *q;
2118 	int nr_sectors = bio_sectors(bio);
2119 	blk_status_t status = BLK_STS_IOERR;
2120 	char b[BDEVNAME_SIZE];
2121 
2122 	might_sleep();
2123 
2124 	if (bio_check_eod(bio, nr_sectors))
2125 		goto end_io;
2126 
2127 	q = bio->bi_disk->queue;
2128 	if (unlikely(!q)) {
2129 		printk(KERN_ERR
2130 		       "generic_make_request: Trying to access "
2131 			"nonexistent block-device %s (%Lu)\n",
2132 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2133 		goto end_io;
2134 	}
2135 
2136 	/*
2137 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2138 	 * if queue is not a request based queue.
2139 	 */
2140 
2141 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2142 		goto not_supported;
2143 
2144 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2145 		goto end_io;
2146 
2147 	if (blk_partition_remap(bio))
2148 		goto end_io;
2149 
2150 	if (bio_check_eod(bio, nr_sectors))
2151 		goto end_io;
2152 
2153 	/*
2154 	 * Filter flush bio's early so that make_request based
2155 	 * drivers without flush support don't have to worry
2156 	 * about them.
2157 	 */
2158 	if (op_is_flush(bio->bi_opf) &&
2159 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2160 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2161 		if (!nr_sectors) {
2162 			status = BLK_STS_OK;
2163 			goto end_io;
2164 		}
2165 	}
2166 
2167 	switch (bio_op(bio)) {
2168 	case REQ_OP_DISCARD:
2169 		if (!blk_queue_discard(q))
2170 			goto not_supported;
2171 		break;
2172 	case REQ_OP_SECURE_ERASE:
2173 		if (!blk_queue_secure_erase(q))
2174 			goto not_supported;
2175 		break;
2176 	case REQ_OP_WRITE_SAME:
2177 		if (!q->limits.max_write_same_sectors)
2178 			goto not_supported;
2179 		break;
2180 	case REQ_OP_ZONE_REPORT:
2181 	case REQ_OP_ZONE_RESET:
2182 		if (!blk_queue_is_zoned(q))
2183 			goto not_supported;
2184 		break;
2185 	case REQ_OP_WRITE_ZEROES:
2186 		if (!q->limits.max_write_zeroes_sectors)
2187 			goto not_supported;
2188 		break;
2189 	default:
2190 		break;
2191 	}
2192 
2193 	/*
2194 	 * Various block parts want %current->io_context and lazy ioc
2195 	 * allocation ends up trading a lot of pain for a small amount of
2196 	 * memory.  Just allocate it upfront.  This may fail and block
2197 	 * layer knows how to live with it.
2198 	 */
2199 	create_io_context(GFP_ATOMIC, q->node);
2200 
2201 	if (!blkcg_bio_issue_check(q, bio))
2202 		return false;
2203 
2204 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2205 		trace_block_bio_queue(q, bio);
2206 		/* Now that enqueuing has been traced, we need to trace
2207 		 * completion as well.
2208 		 */
2209 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2210 	}
2211 	return true;
2212 
2213 not_supported:
2214 	status = BLK_STS_NOTSUPP;
2215 end_io:
2216 	bio->bi_status = status;
2217 	bio_endio(bio);
2218 	return false;
2219 }
2220 
2221 /**
2222  * generic_make_request - hand a buffer to its device driver for I/O
2223  * @bio:  The bio describing the location in memory and on the device.
2224  *
2225  * generic_make_request() is used to make I/O requests of block
2226  * devices. It is passed a &struct bio, which describes the I/O that needs
2227  * to be done.
2228  *
2229  * generic_make_request() does not return any status.  The
2230  * success/failure status of the request, along with notification of
2231  * completion, is delivered asynchronously through the bio->bi_end_io
2232  * function described (one day) else where.
2233  *
2234  * The caller of generic_make_request must make sure that bi_io_vec
2235  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2236  * set to describe the device address, and the
2237  * bi_end_io and optionally bi_private are set to describe how
2238  * completion notification should be signaled.
2239  *
2240  * generic_make_request and the drivers it calls may use bi_next if this
2241  * bio happens to be merged with someone else, and may resubmit the bio to
2242  * a lower device by calling into generic_make_request recursively, which
2243  * means the bio should NOT be touched after the call to ->make_request_fn.
2244  */
2245 blk_qc_t generic_make_request(struct bio *bio)
2246 {
2247 	/*
2248 	 * bio_list_on_stack[0] contains bios submitted by the current
2249 	 * make_request_fn.
2250 	 * bio_list_on_stack[1] contains bios that were submitted before
2251 	 * the current make_request_fn, but that haven't been processed
2252 	 * yet.
2253 	 */
2254 	struct bio_list bio_list_on_stack[2];
2255 	blk_qc_t ret = BLK_QC_T_NONE;
2256 
2257 	if (!generic_make_request_checks(bio))
2258 		goto out;
2259 
2260 	/*
2261 	 * We only want one ->make_request_fn to be active at a time, else
2262 	 * stack usage with stacked devices could be a problem.  So use
2263 	 * current->bio_list to keep a list of requests submited by a
2264 	 * make_request_fn function.  current->bio_list is also used as a
2265 	 * flag to say if generic_make_request is currently active in this
2266 	 * task or not.  If it is NULL, then no make_request is active.  If
2267 	 * it is non-NULL, then a make_request is active, and new requests
2268 	 * should be added at the tail
2269 	 */
2270 	if (current->bio_list) {
2271 		bio_list_add(&current->bio_list[0], bio);
2272 		goto out;
2273 	}
2274 
2275 	/* following loop may be a bit non-obvious, and so deserves some
2276 	 * explanation.
2277 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2278 	 * ensure that) so we have a list with a single bio.
2279 	 * We pretend that we have just taken it off a longer list, so
2280 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2281 	 * thus initialising the bio_list of new bios to be
2282 	 * added.  ->make_request() may indeed add some more bios
2283 	 * through a recursive call to generic_make_request.  If it
2284 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2285 	 * from the top.  In this case we really did just take the bio
2286 	 * of the top of the list (no pretending) and so remove it from
2287 	 * bio_list, and call into ->make_request() again.
2288 	 */
2289 	BUG_ON(bio->bi_next);
2290 	bio_list_init(&bio_list_on_stack[0]);
2291 	current->bio_list = bio_list_on_stack;
2292 	do {
2293 		struct request_queue *q = bio->bi_disk->queue;
2294 		blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
2295 			BLK_MQ_REQ_NOWAIT : 0;
2296 
2297 		if (likely(blk_queue_enter(q, flags) == 0)) {
2298 			struct bio_list lower, same;
2299 
2300 			/* Create a fresh bio_list for all subordinate requests */
2301 			bio_list_on_stack[1] = bio_list_on_stack[0];
2302 			bio_list_init(&bio_list_on_stack[0]);
2303 			ret = q->make_request_fn(q, bio);
2304 
2305 			blk_queue_exit(q);
2306 
2307 			/* sort new bios into those for a lower level
2308 			 * and those for the same level
2309 			 */
2310 			bio_list_init(&lower);
2311 			bio_list_init(&same);
2312 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2313 				if (q == bio->bi_disk->queue)
2314 					bio_list_add(&same, bio);
2315 				else
2316 					bio_list_add(&lower, bio);
2317 			/* now assemble so we handle the lowest level first */
2318 			bio_list_merge(&bio_list_on_stack[0], &lower);
2319 			bio_list_merge(&bio_list_on_stack[0], &same);
2320 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2321 		} else {
2322 			if (unlikely(!blk_queue_dying(q) &&
2323 					(bio->bi_opf & REQ_NOWAIT)))
2324 				bio_wouldblock_error(bio);
2325 			else
2326 				bio_io_error(bio);
2327 		}
2328 		bio = bio_list_pop(&bio_list_on_stack[0]);
2329 	} while (bio);
2330 	current->bio_list = NULL; /* deactivate */
2331 
2332 out:
2333 	return ret;
2334 }
2335 EXPORT_SYMBOL(generic_make_request);
2336 
2337 /**
2338  * direct_make_request - hand a buffer directly to its device driver for I/O
2339  * @bio:  The bio describing the location in memory and on the device.
2340  *
2341  * This function behaves like generic_make_request(), but does not protect
2342  * against recursion.  Must only be used if the called driver is known
2343  * to not call generic_make_request (or direct_make_request) again from
2344  * its make_request function.  (Calling direct_make_request again from
2345  * a workqueue is perfectly fine as that doesn't recurse).
2346  */
2347 blk_qc_t direct_make_request(struct bio *bio)
2348 {
2349 	struct request_queue *q = bio->bi_disk->queue;
2350 	bool nowait = bio->bi_opf & REQ_NOWAIT;
2351 	blk_qc_t ret;
2352 
2353 	if (!generic_make_request_checks(bio))
2354 		return BLK_QC_T_NONE;
2355 
2356 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2357 		if (nowait && !blk_queue_dying(q))
2358 			bio->bi_status = BLK_STS_AGAIN;
2359 		else
2360 			bio->bi_status = BLK_STS_IOERR;
2361 		bio_endio(bio);
2362 		return BLK_QC_T_NONE;
2363 	}
2364 
2365 	ret = q->make_request_fn(q, bio);
2366 	blk_queue_exit(q);
2367 	return ret;
2368 }
2369 EXPORT_SYMBOL_GPL(direct_make_request);
2370 
2371 /**
2372  * submit_bio - submit a bio to the block device layer for I/O
2373  * @bio: The &struct bio which describes the I/O
2374  *
2375  * submit_bio() is very similar in purpose to generic_make_request(), and
2376  * uses that function to do most of the work. Both are fairly rough
2377  * interfaces; @bio must be presetup and ready for I/O.
2378  *
2379  */
2380 blk_qc_t submit_bio(struct bio *bio)
2381 {
2382 	/*
2383 	 * If it's a regular read/write or a barrier with data attached,
2384 	 * go through the normal accounting stuff before submission.
2385 	 */
2386 	if (bio_has_data(bio)) {
2387 		unsigned int count;
2388 
2389 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2390 			count = queue_logical_block_size(bio->bi_disk->queue);
2391 		else
2392 			count = bio_sectors(bio);
2393 
2394 		if (op_is_write(bio_op(bio))) {
2395 			count_vm_events(PGPGOUT, count);
2396 		} else {
2397 			task_io_account_read(bio->bi_iter.bi_size);
2398 			count_vm_events(PGPGIN, count);
2399 		}
2400 
2401 		if (unlikely(block_dump)) {
2402 			char b[BDEVNAME_SIZE];
2403 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2404 			current->comm, task_pid_nr(current),
2405 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2406 				(unsigned long long)bio->bi_iter.bi_sector,
2407 				bio_devname(bio, b), count);
2408 		}
2409 	}
2410 
2411 	return generic_make_request(bio);
2412 }
2413 EXPORT_SYMBOL(submit_bio);
2414 
2415 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2416 {
2417 	if (!q->poll_fn || !blk_qc_t_valid(cookie))
2418 		return false;
2419 
2420 	if (current->plug)
2421 		blk_flush_plug_list(current->plug, false);
2422 	return q->poll_fn(q, cookie);
2423 }
2424 EXPORT_SYMBOL_GPL(blk_poll);
2425 
2426 /**
2427  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2428  *                              for new the queue limits
2429  * @q:  the queue
2430  * @rq: the request being checked
2431  *
2432  * Description:
2433  *    @rq may have been made based on weaker limitations of upper-level queues
2434  *    in request stacking drivers, and it may violate the limitation of @q.
2435  *    Since the block layer and the underlying device driver trust @rq
2436  *    after it is inserted to @q, it should be checked against @q before
2437  *    the insertion using this generic function.
2438  *
2439  *    Request stacking drivers like request-based dm may change the queue
2440  *    limits when retrying requests on other queues. Those requests need
2441  *    to be checked against the new queue limits again during dispatch.
2442  */
2443 static int blk_cloned_rq_check_limits(struct request_queue *q,
2444 				      struct request *rq)
2445 {
2446 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2447 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2448 		return -EIO;
2449 	}
2450 
2451 	/*
2452 	 * queue's settings related to segment counting like q->bounce_pfn
2453 	 * may differ from that of other stacking queues.
2454 	 * Recalculate it to check the request correctly on this queue's
2455 	 * limitation.
2456 	 */
2457 	blk_recalc_rq_segments(rq);
2458 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2459 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2460 		return -EIO;
2461 	}
2462 
2463 	return 0;
2464 }
2465 
2466 /**
2467  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2468  * @q:  the queue to submit the request
2469  * @rq: the request being queued
2470  */
2471 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2472 {
2473 	unsigned long flags;
2474 	int where = ELEVATOR_INSERT_BACK;
2475 
2476 	if (blk_cloned_rq_check_limits(q, rq))
2477 		return BLK_STS_IOERR;
2478 
2479 	if (rq->rq_disk &&
2480 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2481 		return BLK_STS_IOERR;
2482 
2483 	if (q->mq_ops) {
2484 		if (blk_queue_io_stat(q))
2485 			blk_account_io_start(rq, true);
2486 		/*
2487 		 * Since we have a scheduler attached on the top device,
2488 		 * bypass a potential scheduler on the bottom device for
2489 		 * insert.
2490 		 */
2491 		blk_mq_request_bypass_insert(rq, true);
2492 		return BLK_STS_OK;
2493 	}
2494 
2495 	spin_lock_irqsave(q->queue_lock, flags);
2496 	if (unlikely(blk_queue_dying(q))) {
2497 		spin_unlock_irqrestore(q->queue_lock, flags);
2498 		return BLK_STS_IOERR;
2499 	}
2500 
2501 	/*
2502 	 * Submitting request must be dequeued before calling this function
2503 	 * because it will be linked to another request_queue
2504 	 */
2505 	BUG_ON(blk_queued_rq(rq));
2506 
2507 	if (op_is_flush(rq->cmd_flags))
2508 		where = ELEVATOR_INSERT_FLUSH;
2509 
2510 	add_acct_request(q, rq, where);
2511 	if (where == ELEVATOR_INSERT_FLUSH)
2512 		__blk_run_queue(q);
2513 	spin_unlock_irqrestore(q->queue_lock, flags);
2514 
2515 	return BLK_STS_OK;
2516 }
2517 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2518 
2519 /**
2520  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2521  * @rq: request to examine
2522  *
2523  * Description:
2524  *     A request could be merge of IOs which require different failure
2525  *     handling.  This function determines the number of bytes which
2526  *     can be failed from the beginning of the request without
2527  *     crossing into area which need to be retried further.
2528  *
2529  * Return:
2530  *     The number of bytes to fail.
2531  */
2532 unsigned int blk_rq_err_bytes(const struct request *rq)
2533 {
2534 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2535 	unsigned int bytes = 0;
2536 	struct bio *bio;
2537 
2538 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2539 		return blk_rq_bytes(rq);
2540 
2541 	/*
2542 	 * Currently the only 'mixing' which can happen is between
2543 	 * different fastfail types.  We can safely fail portions
2544 	 * which have all the failfast bits that the first one has -
2545 	 * the ones which are at least as eager to fail as the first
2546 	 * one.
2547 	 */
2548 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2549 		if ((bio->bi_opf & ff) != ff)
2550 			break;
2551 		bytes += bio->bi_iter.bi_size;
2552 	}
2553 
2554 	/* this could lead to infinite loop */
2555 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2556 	return bytes;
2557 }
2558 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2559 
2560 void blk_account_io_completion(struct request *req, unsigned int bytes)
2561 {
2562 	if (blk_do_io_stat(req)) {
2563 		const int rw = rq_data_dir(req);
2564 		struct hd_struct *part;
2565 		int cpu;
2566 
2567 		cpu = part_stat_lock();
2568 		part = req->part;
2569 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2570 		part_stat_unlock();
2571 	}
2572 }
2573 
2574 void blk_account_io_done(struct request *req)
2575 {
2576 	/*
2577 	 * Account IO completion.  flush_rq isn't accounted as a
2578 	 * normal IO on queueing nor completion.  Accounting the
2579 	 * containing request is enough.
2580 	 */
2581 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2582 		unsigned long duration = jiffies - req->start_time;
2583 		const int rw = rq_data_dir(req);
2584 		struct hd_struct *part;
2585 		int cpu;
2586 
2587 		cpu = part_stat_lock();
2588 		part = req->part;
2589 
2590 		part_stat_inc(cpu, part, ios[rw]);
2591 		part_stat_add(cpu, part, ticks[rw], duration);
2592 		part_round_stats(req->q, cpu, part);
2593 		part_dec_in_flight(req->q, part, rw);
2594 
2595 		hd_struct_put(part);
2596 		part_stat_unlock();
2597 	}
2598 }
2599 
2600 #ifdef CONFIG_PM
2601 /*
2602  * Don't process normal requests when queue is suspended
2603  * or in the process of suspending/resuming
2604  */
2605 static bool blk_pm_allow_request(struct request *rq)
2606 {
2607 	switch (rq->q->rpm_status) {
2608 	case RPM_RESUMING:
2609 	case RPM_SUSPENDING:
2610 		return rq->rq_flags & RQF_PM;
2611 	case RPM_SUSPENDED:
2612 		return false;
2613 	}
2614 
2615 	return true;
2616 }
2617 #else
2618 static bool blk_pm_allow_request(struct request *rq)
2619 {
2620 	return true;
2621 }
2622 #endif
2623 
2624 void blk_account_io_start(struct request *rq, bool new_io)
2625 {
2626 	struct hd_struct *part;
2627 	int rw = rq_data_dir(rq);
2628 	int cpu;
2629 
2630 	if (!blk_do_io_stat(rq))
2631 		return;
2632 
2633 	cpu = part_stat_lock();
2634 
2635 	if (!new_io) {
2636 		part = rq->part;
2637 		part_stat_inc(cpu, part, merges[rw]);
2638 	} else {
2639 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2640 		if (!hd_struct_try_get(part)) {
2641 			/*
2642 			 * The partition is already being removed,
2643 			 * the request will be accounted on the disk only
2644 			 *
2645 			 * We take a reference on disk->part0 although that
2646 			 * partition will never be deleted, so we can treat
2647 			 * it as any other partition.
2648 			 */
2649 			part = &rq->rq_disk->part0;
2650 			hd_struct_get(part);
2651 		}
2652 		part_round_stats(rq->q, cpu, part);
2653 		part_inc_in_flight(rq->q, part, rw);
2654 		rq->part = part;
2655 	}
2656 
2657 	part_stat_unlock();
2658 }
2659 
2660 static struct request *elv_next_request(struct request_queue *q)
2661 {
2662 	struct request *rq;
2663 	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2664 
2665 	WARN_ON_ONCE(q->mq_ops);
2666 
2667 	while (1) {
2668 		list_for_each_entry(rq, &q->queue_head, queuelist) {
2669 			if (blk_pm_allow_request(rq))
2670 				return rq;
2671 
2672 			if (rq->rq_flags & RQF_SOFTBARRIER)
2673 				break;
2674 		}
2675 
2676 		/*
2677 		 * Flush request is running and flush request isn't queueable
2678 		 * in the drive, we can hold the queue till flush request is
2679 		 * finished. Even we don't do this, driver can't dispatch next
2680 		 * requests and will requeue them. And this can improve
2681 		 * throughput too. For example, we have request flush1, write1,
2682 		 * flush 2. flush1 is dispatched, then queue is hold, write1
2683 		 * isn't inserted to queue. After flush1 is finished, flush2
2684 		 * will be dispatched. Since disk cache is already clean,
2685 		 * flush2 will be finished very soon, so looks like flush2 is
2686 		 * folded to flush1.
2687 		 * Since the queue is hold, a flag is set to indicate the queue
2688 		 * should be restarted later. Please see flush_end_io() for
2689 		 * details.
2690 		 */
2691 		if (fq->flush_pending_idx != fq->flush_running_idx &&
2692 				!queue_flush_queueable(q)) {
2693 			fq->flush_queue_delayed = 1;
2694 			return NULL;
2695 		}
2696 		if (unlikely(blk_queue_bypass(q)) ||
2697 		    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2698 			return NULL;
2699 	}
2700 }
2701 
2702 /**
2703  * blk_peek_request - peek at the top of a request queue
2704  * @q: request queue to peek at
2705  *
2706  * Description:
2707  *     Return the request at the top of @q.  The returned request
2708  *     should be started using blk_start_request() before LLD starts
2709  *     processing it.
2710  *
2711  * Return:
2712  *     Pointer to the request at the top of @q if available.  Null
2713  *     otherwise.
2714  */
2715 struct request *blk_peek_request(struct request_queue *q)
2716 {
2717 	struct request *rq;
2718 	int ret;
2719 
2720 	lockdep_assert_held(q->queue_lock);
2721 	WARN_ON_ONCE(q->mq_ops);
2722 
2723 	while ((rq = elv_next_request(q)) != NULL) {
2724 		if (!(rq->rq_flags & RQF_STARTED)) {
2725 			/*
2726 			 * This is the first time the device driver
2727 			 * sees this request (possibly after
2728 			 * requeueing).  Notify IO scheduler.
2729 			 */
2730 			if (rq->rq_flags & RQF_SORTED)
2731 				elv_activate_rq(q, rq);
2732 
2733 			/*
2734 			 * just mark as started even if we don't start
2735 			 * it, a request that has been delayed should
2736 			 * not be passed by new incoming requests
2737 			 */
2738 			rq->rq_flags |= RQF_STARTED;
2739 			trace_block_rq_issue(q, rq);
2740 		}
2741 
2742 		if (!q->boundary_rq || q->boundary_rq == rq) {
2743 			q->end_sector = rq_end_sector(rq);
2744 			q->boundary_rq = NULL;
2745 		}
2746 
2747 		if (rq->rq_flags & RQF_DONTPREP)
2748 			break;
2749 
2750 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2751 			/*
2752 			 * make sure space for the drain appears we
2753 			 * know we can do this because max_hw_segments
2754 			 * has been adjusted to be one fewer than the
2755 			 * device can handle
2756 			 */
2757 			rq->nr_phys_segments++;
2758 		}
2759 
2760 		if (!q->prep_rq_fn)
2761 			break;
2762 
2763 		ret = q->prep_rq_fn(q, rq);
2764 		if (ret == BLKPREP_OK) {
2765 			break;
2766 		} else if (ret == BLKPREP_DEFER) {
2767 			/*
2768 			 * the request may have been (partially) prepped.
2769 			 * we need to keep this request in the front to
2770 			 * avoid resource deadlock.  RQF_STARTED will
2771 			 * prevent other fs requests from passing this one.
2772 			 */
2773 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2774 			    !(rq->rq_flags & RQF_DONTPREP)) {
2775 				/*
2776 				 * remove the space for the drain we added
2777 				 * so that we don't add it again
2778 				 */
2779 				--rq->nr_phys_segments;
2780 			}
2781 
2782 			rq = NULL;
2783 			break;
2784 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2785 			rq->rq_flags |= RQF_QUIET;
2786 			/*
2787 			 * Mark this request as started so we don't trigger
2788 			 * any debug logic in the end I/O path.
2789 			 */
2790 			blk_start_request(rq);
2791 			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2792 					BLK_STS_TARGET : BLK_STS_IOERR);
2793 		} else {
2794 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2795 			break;
2796 		}
2797 	}
2798 
2799 	return rq;
2800 }
2801 EXPORT_SYMBOL(blk_peek_request);
2802 
2803 static void blk_dequeue_request(struct request *rq)
2804 {
2805 	struct request_queue *q = rq->q;
2806 
2807 	BUG_ON(list_empty(&rq->queuelist));
2808 	BUG_ON(ELV_ON_HASH(rq));
2809 
2810 	list_del_init(&rq->queuelist);
2811 
2812 	/*
2813 	 * the time frame between a request being removed from the lists
2814 	 * and to it is freed is accounted as io that is in progress at
2815 	 * the driver side.
2816 	 */
2817 	if (blk_account_rq(rq)) {
2818 		q->in_flight[rq_is_sync(rq)]++;
2819 		set_io_start_time_ns(rq);
2820 	}
2821 }
2822 
2823 /**
2824  * blk_start_request - start request processing on the driver
2825  * @req: request to dequeue
2826  *
2827  * Description:
2828  *     Dequeue @req and start timeout timer on it.  This hands off the
2829  *     request to the driver.
2830  */
2831 void blk_start_request(struct request *req)
2832 {
2833 	lockdep_assert_held(req->q->queue_lock);
2834 	WARN_ON_ONCE(req->q->mq_ops);
2835 
2836 	blk_dequeue_request(req);
2837 
2838 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2839 		blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2840 		req->rq_flags |= RQF_STATS;
2841 		wbt_issue(req->q->rq_wb, &req->issue_stat);
2842 	}
2843 
2844 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2845 	blk_add_timer(req);
2846 }
2847 EXPORT_SYMBOL(blk_start_request);
2848 
2849 /**
2850  * blk_fetch_request - fetch a request from a request queue
2851  * @q: request queue to fetch a request from
2852  *
2853  * Description:
2854  *     Return the request at the top of @q.  The request is started on
2855  *     return and LLD can start processing it immediately.
2856  *
2857  * Return:
2858  *     Pointer to the request at the top of @q if available.  Null
2859  *     otherwise.
2860  */
2861 struct request *blk_fetch_request(struct request_queue *q)
2862 {
2863 	struct request *rq;
2864 
2865 	lockdep_assert_held(q->queue_lock);
2866 	WARN_ON_ONCE(q->mq_ops);
2867 
2868 	rq = blk_peek_request(q);
2869 	if (rq)
2870 		blk_start_request(rq);
2871 	return rq;
2872 }
2873 EXPORT_SYMBOL(blk_fetch_request);
2874 
2875 /*
2876  * Steal bios from a request and add them to a bio list.
2877  * The request must not have been partially completed before.
2878  */
2879 void blk_steal_bios(struct bio_list *list, struct request *rq)
2880 {
2881 	if (rq->bio) {
2882 		if (list->tail)
2883 			list->tail->bi_next = rq->bio;
2884 		else
2885 			list->head = rq->bio;
2886 		list->tail = rq->biotail;
2887 
2888 		rq->bio = NULL;
2889 		rq->biotail = NULL;
2890 	}
2891 
2892 	rq->__data_len = 0;
2893 }
2894 EXPORT_SYMBOL_GPL(blk_steal_bios);
2895 
2896 /**
2897  * blk_update_request - Special helper function for request stacking drivers
2898  * @req:      the request being processed
2899  * @error:    block status code
2900  * @nr_bytes: number of bytes to complete @req
2901  *
2902  * Description:
2903  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2904  *     the request structure even if @req doesn't have leftover.
2905  *     If @req has leftover, sets it up for the next range of segments.
2906  *
2907  *     This special helper function is only for request stacking drivers
2908  *     (e.g. request-based dm) so that they can handle partial completion.
2909  *     Actual device drivers should use blk_end_request instead.
2910  *
2911  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2912  *     %false return from this function.
2913  *
2914  * Return:
2915  *     %false - this request doesn't have any more data
2916  *     %true  - this request has more data
2917  **/
2918 bool blk_update_request(struct request *req, blk_status_t error,
2919 		unsigned int nr_bytes)
2920 {
2921 	int total_bytes;
2922 
2923 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2924 
2925 	if (!req->bio)
2926 		return false;
2927 
2928 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
2929 		     !(req->rq_flags & RQF_QUIET)))
2930 		print_req_error(req, error);
2931 
2932 	blk_account_io_completion(req, nr_bytes);
2933 
2934 	total_bytes = 0;
2935 	while (req->bio) {
2936 		struct bio *bio = req->bio;
2937 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2938 
2939 		if (bio_bytes == bio->bi_iter.bi_size)
2940 			req->bio = bio->bi_next;
2941 
2942 		/* Completion has already been traced */
2943 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2944 		req_bio_endio(req, bio, bio_bytes, error);
2945 
2946 		total_bytes += bio_bytes;
2947 		nr_bytes -= bio_bytes;
2948 
2949 		if (!nr_bytes)
2950 			break;
2951 	}
2952 
2953 	/*
2954 	 * completely done
2955 	 */
2956 	if (!req->bio) {
2957 		/*
2958 		 * Reset counters so that the request stacking driver
2959 		 * can find how many bytes remain in the request
2960 		 * later.
2961 		 */
2962 		req->__data_len = 0;
2963 		return false;
2964 	}
2965 
2966 	req->__data_len -= total_bytes;
2967 
2968 	/* update sector only for requests with clear definition of sector */
2969 	if (!blk_rq_is_passthrough(req))
2970 		req->__sector += total_bytes >> 9;
2971 
2972 	/* mixed attributes always follow the first bio */
2973 	if (req->rq_flags & RQF_MIXED_MERGE) {
2974 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2975 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2976 	}
2977 
2978 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2979 		/*
2980 		 * If total number of sectors is less than the first segment
2981 		 * size, something has gone terribly wrong.
2982 		 */
2983 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2984 			blk_dump_rq_flags(req, "request botched");
2985 			req->__data_len = blk_rq_cur_bytes(req);
2986 		}
2987 
2988 		/* recalculate the number of segments */
2989 		blk_recalc_rq_segments(req);
2990 	}
2991 
2992 	return true;
2993 }
2994 EXPORT_SYMBOL_GPL(blk_update_request);
2995 
2996 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2997 				    unsigned int nr_bytes,
2998 				    unsigned int bidi_bytes)
2999 {
3000 	if (blk_update_request(rq, error, nr_bytes))
3001 		return true;
3002 
3003 	/* Bidi request must be completed as a whole */
3004 	if (unlikely(blk_bidi_rq(rq)) &&
3005 	    blk_update_request(rq->next_rq, error, bidi_bytes))
3006 		return true;
3007 
3008 	if (blk_queue_add_random(rq->q))
3009 		add_disk_randomness(rq->rq_disk);
3010 
3011 	return false;
3012 }
3013 
3014 /**
3015  * blk_unprep_request - unprepare a request
3016  * @req:	the request
3017  *
3018  * This function makes a request ready for complete resubmission (or
3019  * completion).  It happens only after all error handling is complete,
3020  * so represents the appropriate moment to deallocate any resources
3021  * that were allocated to the request in the prep_rq_fn.  The queue
3022  * lock is held when calling this.
3023  */
3024 void blk_unprep_request(struct request *req)
3025 {
3026 	struct request_queue *q = req->q;
3027 
3028 	req->rq_flags &= ~RQF_DONTPREP;
3029 	if (q->unprep_rq_fn)
3030 		q->unprep_rq_fn(q, req);
3031 }
3032 EXPORT_SYMBOL_GPL(blk_unprep_request);
3033 
3034 void blk_finish_request(struct request *req, blk_status_t error)
3035 {
3036 	struct request_queue *q = req->q;
3037 
3038 	lockdep_assert_held(req->q->queue_lock);
3039 	WARN_ON_ONCE(q->mq_ops);
3040 
3041 	if (req->rq_flags & RQF_STATS)
3042 		blk_stat_add(req);
3043 
3044 	if (req->rq_flags & RQF_QUEUED)
3045 		blk_queue_end_tag(q, req);
3046 
3047 	BUG_ON(blk_queued_rq(req));
3048 
3049 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3050 		laptop_io_completion(req->q->backing_dev_info);
3051 
3052 	blk_delete_timer(req);
3053 
3054 	if (req->rq_flags & RQF_DONTPREP)
3055 		blk_unprep_request(req);
3056 
3057 	blk_account_io_done(req);
3058 
3059 	if (req->end_io) {
3060 		wbt_done(req->q->rq_wb, &req->issue_stat);
3061 		req->end_io(req, error);
3062 	} else {
3063 		if (blk_bidi_rq(req))
3064 			__blk_put_request(req->next_rq->q, req->next_rq);
3065 
3066 		__blk_put_request(q, req);
3067 	}
3068 }
3069 EXPORT_SYMBOL(blk_finish_request);
3070 
3071 /**
3072  * blk_end_bidi_request - Complete a bidi request
3073  * @rq:         the request to complete
3074  * @error:      block status code
3075  * @nr_bytes:   number of bytes to complete @rq
3076  * @bidi_bytes: number of bytes to complete @rq->next_rq
3077  *
3078  * Description:
3079  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3080  *     Drivers that supports bidi can safely call this member for any
3081  *     type of request, bidi or uni.  In the later case @bidi_bytes is
3082  *     just ignored.
3083  *
3084  * Return:
3085  *     %false - we are done with this request
3086  *     %true  - still buffers pending for this request
3087  **/
3088 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3089 				 unsigned int nr_bytes, unsigned int bidi_bytes)
3090 {
3091 	struct request_queue *q = rq->q;
3092 	unsigned long flags;
3093 
3094 	WARN_ON_ONCE(q->mq_ops);
3095 
3096 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3097 		return true;
3098 
3099 	spin_lock_irqsave(q->queue_lock, flags);
3100 	blk_finish_request(rq, error);
3101 	spin_unlock_irqrestore(q->queue_lock, flags);
3102 
3103 	return false;
3104 }
3105 
3106 /**
3107  * __blk_end_bidi_request - Complete a bidi request with queue lock held
3108  * @rq:         the request to complete
3109  * @error:      block status code
3110  * @nr_bytes:   number of bytes to complete @rq
3111  * @bidi_bytes: number of bytes to complete @rq->next_rq
3112  *
3113  * Description:
3114  *     Identical to blk_end_bidi_request() except that queue lock is
3115  *     assumed to be locked on entry and remains so on return.
3116  *
3117  * Return:
3118  *     %false - we are done with this request
3119  *     %true  - still buffers pending for this request
3120  **/
3121 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3122 				   unsigned int nr_bytes, unsigned int bidi_bytes)
3123 {
3124 	lockdep_assert_held(rq->q->queue_lock);
3125 	WARN_ON_ONCE(rq->q->mq_ops);
3126 
3127 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3128 		return true;
3129 
3130 	blk_finish_request(rq, error);
3131 
3132 	return false;
3133 }
3134 
3135 /**
3136  * blk_end_request - Helper function for drivers to complete the request.
3137  * @rq:       the request being processed
3138  * @error:    block status code
3139  * @nr_bytes: number of bytes to complete
3140  *
3141  * Description:
3142  *     Ends I/O on a number of bytes attached to @rq.
3143  *     If @rq has leftover, sets it up for the next range of segments.
3144  *
3145  * Return:
3146  *     %false - we are done with this request
3147  *     %true  - still buffers pending for this request
3148  **/
3149 bool blk_end_request(struct request *rq, blk_status_t error,
3150 		unsigned int nr_bytes)
3151 {
3152 	WARN_ON_ONCE(rq->q->mq_ops);
3153 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
3154 }
3155 EXPORT_SYMBOL(blk_end_request);
3156 
3157 /**
3158  * blk_end_request_all - Helper function for drives to finish the request.
3159  * @rq: the request to finish
3160  * @error: block status code
3161  *
3162  * Description:
3163  *     Completely finish @rq.
3164  */
3165 void blk_end_request_all(struct request *rq, blk_status_t error)
3166 {
3167 	bool pending;
3168 	unsigned int bidi_bytes = 0;
3169 
3170 	if (unlikely(blk_bidi_rq(rq)))
3171 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3172 
3173 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3174 	BUG_ON(pending);
3175 }
3176 EXPORT_SYMBOL(blk_end_request_all);
3177 
3178 /**
3179  * __blk_end_request - Helper function for drivers to complete the request.
3180  * @rq:       the request being processed
3181  * @error:    block status code
3182  * @nr_bytes: number of bytes to complete
3183  *
3184  * Description:
3185  *     Must be called with queue lock held unlike blk_end_request().
3186  *
3187  * Return:
3188  *     %false - we are done with this request
3189  *     %true  - still buffers pending for this request
3190  **/
3191 bool __blk_end_request(struct request *rq, blk_status_t error,
3192 		unsigned int nr_bytes)
3193 {
3194 	lockdep_assert_held(rq->q->queue_lock);
3195 	WARN_ON_ONCE(rq->q->mq_ops);
3196 
3197 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3198 }
3199 EXPORT_SYMBOL(__blk_end_request);
3200 
3201 /**
3202  * __blk_end_request_all - Helper function for drives to finish the request.
3203  * @rq: the request to finish
3204  * @error:    block status code
3205  *
3206  * Description:
3207  *     Completely finish @rq.  Must be called with queue lock held.
3208  */
3209 void __blk_end_request_all(struct request *rq, blk_status_t error)
3210 {
3211 	bool pending;
3212 	unsigned int bidi_bytes = 0;
3213 
3214 	lockdep_assert_held(rq->q->queue_lock);
3215 	WARN_ON_ONCE(rq->q->mq_ops);
3216 
3217 	if (unlikely(blk_bidi_rq(rq)))
3218 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3219 
3220 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3221 	BUG_ON(pending);
3222 }
3223 EXPORT_SYMBOL(__blk_end_request_all);
3224 
3225 /**
3226  * __blk_end_request_cur - Helper function to finish the current request chunk.
3227  * @rq: the request to finish the current chunk for
3228  * @error:    block status code
3229  *
3230  * Description:
3231  *     Complete the current consecutively mapped chunk from @rq.  Must
3232  *     be called with queue lock held.
3233  *
3234  * Return:
3235  *     %false - we are done with this request
3236  *     %true  - still buffers pending for this request
3237  */
3238 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3239 {
3240 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3241 }
3242 EXPORT_SYMBOL(__blk_end_request_cur);
3243 
3244 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3245 		     struct bio *bio)
3246 {
3247 	if (bio_has_data(bio))
3248 		rq->nr_phys_segments = bio_phys_segments(q, bio);
3249 
3250 	rq->__data_len = bio->bi_iter.bi_size;
3251 	rq->bio = rq->biotail = bio;
3252 
3253 	if (bio->bi_disk)
3254 		rq->rq_disk = bio->bi_disk;
3255 }
3256 
3257 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3258 /**
3259  * rq_flush_dcache_pages - Helper function to flush all pages in a request
3260  * @rq: the request to be flushed
3261  *
3262  * Description:
3263  *     Flush all pages in @rq.
3264  */
3265 void rq_flush_dcache_pages(struct request *rq)
3266 {
3267 	struct req_iterator iter;
3268 	struct bio_vec bvec;
3269 
3270 	rq_for_each_segment(bvec, rq, iter)
3271 		flush_dcache_page(bvec.bv_page);
3272 }
3273 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3274 #endif
3275 
3276 /**
3277  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3278  * @q : the queue of the device being checked
3279  *
3280  * Description:
3281  *    Check if underlying low-level drivers of a device are busy.
3282  *    If the drivers want to export their busy state, they must set own
3283  *    exporting function using blk_queue_lld_busy() first.
3284  *
3285  *    Basically, this function is used only by request stacking drivers
3286  *    to stop dispatching requests to underlying devices when underlying
3287  *    devices are busy.  This behavior helps more I/O merging on the queue
3288  *    of the request stacking driver and prevents I/O throughput regression
3289  *    on burst I/O load.
3290  *
3291  * Return:
3292  *    0 - Not busy (The request stacking driver should dispatch request)
3293  *    1 - Busy (The request stacking driver should stop dispatching request)
3294  */
3295 int blk_lld_busy(struct request_queue *q)
3296 {
3297 	if (q->lld_busy_fn)
3298 		return q->lld_busy_fn(q);
3299 
3300 	return 0;
3301 }
3302 EXPORT_SYMBOL_GPL(blk_lld_busy);
3303 
3304 /**
3305  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3306  * @rq: the clone request to be cleaned up
3307  *
3308  * Description:
3309  *     Free all bios in @rq for a cloned request.
3310  */
3311 void blk_rq_unprep_clone(struct request *rq)
3312 {
3313 	struct bio *bio;
3314 
3315 	while ((bio = rq->bio) != NULL) {
3316 		rq->bio = bio->bi_next;
3317 
3318 		bio_put(bio);
3319 	}
3320 }
3321 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3322 
3323 /*
3324  * Copy attributes of the original request to the clone request.
3325  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3326  */
3327 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3328 {
3329 	dst->cpu = src->cpu;
3330 	dst->__sector = blk_rq_pos(src);
3331 	dst->__data_len = blk_rq_bytes(src);
3332 	dst->nr_phys_segments = src->nr_phys_segments;
3333 	dst->ioprio = src->ioprio;
3334 	dst->extra_len = src->extra_len;
3335 }
3336 
3337 /**
3338  * blk_rq_prep_clone - Helper function to setup clone request
3339  * @rq: the request to be setup
3340  * @rq_src: original request to be cloned
3341  * @bs: bio_set that bios for clone are allocated from
3342  * @gfp_mask: memory allocation mask for bio
3343  * @bio_ctr: setup function to be called for each clone bio.
3344  *           Returns %0 for success, non %0 for failure.
3345  * @data: private data to be passed to @bio_ctr
3346  *
3347  * Description:
3348  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3349  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3350  *     are not copied, and copying such parts is the caller's responsibility.
3351  *     Also, pages which the original bios are pointing to are not copied
3352  *     and the cloned bios just point same pages.
3353  *     So cloned bios must be completed before original bios, which means
3354  *     the caller must complete @rq before @rq_src.
3355  */
3356 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3357 		      struct bio_set *bs, gfp_t gfp_mask,
3358 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3359 		      void *data)
3360 {
3361 	struct bio *bio, *bio_src;
3362 
3363 	if (!bs)
3364 		bs = fs_bio_set;
3365 
3366 	__rq_for_each_bio(bio_src, rq_src) {
3367 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3368 		if (!bio)
3369 			goto free_and_out;
3370 
3371 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3372 			goto free_and_out;
3373 
3374 		if (rq->bio) {
3375 			rq->biotail->bi_next = bio;
3376 			rq->biotail = bio;
3377 		} else
3378 			rq->bio = rq->biotail = bio;
3379 	}
3380 
3381 	__blk_rq_prep_clone(rq, rq_src);
3382 
3383 	return 0;
3384 
3385 free_and_out:
3386 	if (bio)
3387 		bio_put(bio);
3388 	blk_rq_unprep_clone(rq);
3389 
3390 	return -ENOMEM;
3391 }
3392 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3393 
3394 int kblockd_schedule_work(struct work_struct *work)
3395 {
3396 	return queue_work(kblockd_workqueue, work);
3397 }
3398 EXPORT_SYMBOL(kblockd_schedule_work);
3399 
3400 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3401 {
3402 	return queue_work_on(cpu, kblockd_workqueue, work);
3403 }
3404 EXPORT_SYMBOL(kblockd_schedule_work_on);
3405 
3406 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3407 				unsigned long delay)
3408 {
3409 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3410 }
3411 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3412 
3413 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3414 				  unsigned long delay)
3415 {
3416 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3417 }
3418 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3419 
3420 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3421 				     unsigned long delay)
3422 {
3423 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3424 }
3425 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3426 
3427 /**
3428  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3429  * @plug:	The &struct blk_plug that needs to be initialized
3430  *
3431  * Description:
3432  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3433  *   pending I/O should the task end up blocking between blk_start_plug() and
3434  *   blk_finish_plug(). This is important from a performance perspective, but
3435  *   also ensures that we don't deadlock. For instance, if the task is blocking
3436  *   for a memory allocation, memory reclaim could end up wanting to free a
3437  *   page belonging to that request that is currently residing in our private
3438  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3439  *   this kind of deadlock.
3440  */
3441 void blk_start_plug(struct blk_plug *plug)
3442 {
3443 	struct task_struct *tsk = current;
3444 
3445 	/*
3446 	 * If this is a nested plug, don't actually assign it.
3447 	 */
3448 	if (tsk->plug)
3449 		return;
3450 
3451 	INIT_LIST_HEAD(&plug->list);
3452 	INIT_LIST_HEAD(&plug->mq_list);
3453 	INIT_LIST_HEAD(&plug->cb_list);
3454 	/*
3455 	 * Store ordering should not be needed here, since a potential
3456 	 * preempt will imply a full memory barrier
3457 	 */
3458 	tsk->plug = plug;
3459 }
3460 EXPORT_SYMBOL(blk_start_plug);
3461 
3462 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3463 {
3464 	struct request *rqa = container_of(a, struct request, queuelist);
3465 	struct request *rqb = container_of(b, struct request, queuelist);
3466 
3467 	return !(rqa->q < rqb->q ||
3468 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3469 }
3470 
3471 /*
3472  * If 'from_schedule' is true, then postpone the dispatch of requests
3473  * until a safe kblockd context. We due this to avoid accidental big
3474  * additional stack usage in driver dispatch, in places where the originally
3475  * plugger did not intend it.
3476  */
3477 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3478 			    bool from_schedule)
3479 	__releases(q->queue_lock)
3480 {
3481 	lockdep_assert_held(q->queue_lock);
3482 
3483 	trace_block_unplug(q, depth, !from_schedule);
3484 
3485 	if (from_schedule)
3486 		blk_run_queue_async(q);
3487 	else
3488 		__blk_run_queue(q);
3489 	spin_unlock(q->queue_lock);
3490 }
3491 
3492 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3493 {
3494 	LIST_HEAD(callbacks);
3495 
3496 	while (!list_empty(&plug->cb_list)) {
3497 		list_splice_init(&plug->cb_list, &callbacks);
3498 
3499 		while (!list_empty(&callbacks)) {
3500 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3501 							  struct blk_plug_cb,
3502 							  list);
3503 			list_del(&cb->list);
3504 			cb->callback(cb, from_schedule);
3505 		}
3506 	}
3507 }
3508 
3509 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3510 				      int size)
3511 {
3512 	struct blk_plug *plug = current->plug;
3513 	struct blk_plug_cb *cb;
3514 
3515 	if (!plug)
3516 		return NULL;
3517 
3518 	list_for_each_entry(cb, &plug->cb_list, list)
3519 		if (cb->callback == unplug && cb->data == data)
3520 			return cb;
3521 
3522 	/* Not currently on the callback list */
3523 	BUG_ON(size < sizeof(*cb));
3524 	cb = kzalloc(size, GFP_ATOMIC);
3525 	if (cb) {
3526 		cb->data = data;
3527 		cb->callback = unplug;
3528 		list_add(&cb->list, &plug->cb_list);
3529 	}
3530 	return cb;
3531 }
3532 EXPORT_SYMBOL(blk_check_plugged);
3533 
3534 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3535 {
3536 	struct request_queue *q;
3537 	unsigned long flags;
3538 	struct request *rq;
3539 	LIST_HEAD(list);
3540 	unsigned int depth;
3541 
3542 	flush_plug_callbacks(plug, from_schedule);
3543 
3544 	if (!list_empty(&plug->mq_list))
3545 		blk_mq_flush_plug_list(plug, from_schedule);
3546 
3547 	if (list_empty(&plug->list))
3548 		return;
3549 
3550 	list_splice_init(&plug->list, &list);
3551 
3552 	list_sort(NULL, &list, plug_rq_cmp);
3553 
3554 	q = NULL;
3555 	depth = 0;
3556 
3557 	/*
3558 	 * Save and disable interrupts here, to avoid doing it for every
3559 	 * queue lock we have to take.
3560 	 */
3561 	local_irq_save(flags);
3562 	while (!list_empty(&list)) {
3563 		rq = list_entry_rq(list.next);
3564 		list_del_init(&rq->queuelist);
3565 		BUG_ON(!rq->q);
3566 		if (rq->q != q) {
3567 			/*
3568 			 * This drops the queue lock
3569 			 */
3570 			if (q)
3571 				queue_unplugged(q, depth, from_schedule);
3572 			q = rq->q;
3573 			depth = 0;
3574 			spin_lock(q->queue_lock);
3575 		}
3576 
3577 		/*
3578 		 * Short-circuit if @q is dead
3579 		 */
3580 		if (unlikely(blk_queue_dying(q))) {
3581 			__blk_end_request_all(rq, BLK_STS_IOERR);
3582 			continue;
3583 		}
3584 
3585 		/*
3586 		 * rq is already accounted, so use raw insert
3587 		 */
3588 		if (op_is_flush(rq->cmd_flags))
3589 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3590 		else
3591 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3592 
3593 		depth++;
3594 	}
3595 
3596 	/*
3597 	 * This drops the queue lock
3598 	 */
3599 	if (q)
3600 		queue_unplugged(q, depth, from_schedule);
3601 
3602 	local_irq_restore(flags);
3603 }
3604 
3605 void blk_finish_plug(struct blk_plug *plug)
3606 {
3607 	if (plug != current->plug)
3608 		return;
3609 	blk_flush_plug_list(plug, false);
3610 
3611 	current->plug = NULL;
3612 }
3613 EXPORT_SYMBOL(blk_finish_plug);
3614 
3615 #ifdef CONFIG_PM
3616 /**
3617  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3618  * @q: the queue of the device
3619  * @dev: the device the queue belongs to
3620  *
3621  * Description:
3622  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3623  *    @dev. Drivers that want to take advantage of request-based runtime PM
3624  *    should call this function after @dev has been initialized, and its
3625  *    request queue @q has been allocated, and runtime PM for it can not happen
3626  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3627  *    cases, driver should call this function before any I/O has taken place.
3628  *
3629  *    This function takes care of setting up using auto suspend for the device,
3630  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3631  *    until an updated value is either set by user or by driver. Drivers do
3632  *    not need to touch other autosuspend settings.
3633  *
3634  *    The block layer runtime PM is request based, so only works for drivers
3635  *    that use request as their IO unit instead of those directly use bio's.
3636  */
3637 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3638 {
3639 	/* not support for RQF_PM and ->rpm_status in blk-mq yet */
3640 	if (q->mq_ops)
3641 		return;
3642 
3643 	q->dev = dev;
3644 	q->rpm_status = RPM_ACTIVE;
3645 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3646 	pm_runtime_use_autosuspend(q->dev);
3647 }
3648 EXPORT_SYMBOL(blk_pm_runtime_init);
3649 
3650 /**
3651  * blk_pre_runtime_suspend - Pre runtime suspend check
3652  * @q: the queue of the device
3653  *
3654  * Description:
3655  *    This function will check if runtime suspend is allowed for the device
3656  *    by examining if there are any requests pending in the queue. If there
3657  *    are requests pending, the device can not be runtime suspended; otherwise,
3658  *    the queue's status will be updated to SUSPENDING and the driver can
3659  *    proceed to suspend the device.
3660  *
3661  *    For the not allowed case, we mark last busy for the device so that
3662  *    runtime PM core will try to autosuspend it some time later.
3663  *
3664  *    This function should be called near the start of the device's
3665  *    runtime_suspend callback.
3666  *
3667  * Return:
3668  *    0		- OK to runtime suspend the device
3669  *    -EBUSY	- Device should not be runtime suspended
3670  */
3671 int blk_pre_runtime_suspend(struct request_queue *q)
3672 {
3673 	int ret = 0;
3674 
3675 	if (!q->dev)
3676 		return ret;
3677 
3678 	spin_lock_irq(q->queue_lock);
3679 	if (q->nr_pending) {
3680 		ret = -EBUSY;
3681 		pm_runtime_mark_last_busy(q->dev);
3682 	} else {
3683 		q->rpm_status = RPM_SUSPENDING;
3684 	}
3685 	spin_unlock_irq(q->queue_lock);
3686 	return ret;
3687 }
3688 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3689 
3690 /**
3691  * blk_post_runtime_suspend - Post runtime suspend processing
3692  * @q: the queue of the device
3693  * @err: return value of the device's runtime_suspend function
3694  *
3695  * Description:
3696  *    Update the queue's runtime status according to the return value of the
3697  *    device's runtime suspend function and mark last busy for the device so
3698  *    that PM core will try to auto suspend the device at a later time.
3699  *
3700  *    This function should be called near the end of the device's
3701  *    runtime_suspend callback.
3702  */
3703 void blk_post_runtime_suspend(struct request_queue *q, int err)
3704 {
3705 	if (!q->dev)
3706 		return;
3707 
3708 	spin_lock_irq(q->queue_lock);
3709 	if (!err) {
3710 		q->rpm_status = RPM_SUSPENDED;
3711 	} else {
3712 		q->rpm_status = RPM_ACTIVE;
3713 		pm_runtime_mark_last_busy(q->dev);
3714 	}
3715 	spin_unlock_irq(q->queue_lock);
3716 }
3717 EXPORT_SYMBOL(blk_post_runtime_suspend);
3718 
3719 /**
3720  * blk_pre_runtime_resume - Pre runtime resume processing
3721  * @q: the queue of the device
3722  *
3723  * Description:
3724  *    Update the queue's runtime status to RESUMING in preparation for the
3725  *    runtime resume of the device.
3726  *
3727  *    This function should be called near the start of the device's
3728  *    runtime_resume callback.
3729  */
3730 void blk_pre_runtime_resume(struct request_queue *q)
3731 {
3732 	if (!q->dev)
3733 		return;
3734 
3735 	spin_lock_irq(q->queue_lock);
3736 	q->rpm_status = RPM_RESUMING;
3737 	spin_unlock_irq(q->queue_lock);
3738 }
3739 EXPORT_SYMBOL(blk_pre_runtime_resume);
3740 
3741 /**
3742  * blk_post_runtime_resume - Post runtime resume processing
3743  * @q: the queue of the device
3744  * @err: return value of the device's runtime_resume function
3745  *
3746  * Description:
3747  *    Update the queue's runtime status according to the return value of the
3748  *    device's runtime_resume function. If it is successfully resumed, process
3749  *    the requests that are queued into the device's queue when it is resuming
3750  *    and then mark last busy and initiate autosuspend for it.
3751  *
3752  *    This function should be called near the end of the device's
3753  *    runtime_resume callback.
3754  */
3755 void blk_post_runtime_resume(struct request_queue *q, int err)
3756 {
3757 	if (!q->dev)
3758 		return;
3759 
3760 	spin_lock_irq(q->queue_lock);
3761 	if (!err) {
3762 		q->rpm_status = RPM_ACTIVE;
3763 		__blk_run_queue(q);
3764 		pm_runtime_mark_last_busy(q->dev);
3765 		pm_request_autosuspend(q->dev);
3766 	} else {
3767 		q->rpm_status = RPM_SUSPENDED;
3768 	}
3769 	spin_unlock_irq(q->queue_lock);
3770 }
3771 EXPORT_SYMBOL(blk_post_runtime_resume);
3772 
3773 /**
3774  * blk_set_runtime_active - Force runtime status of the queue to be active
3775  * @q: the queue of the device
3776  *
3777  * If the device is left runtime suspended during system suspend the resume
3778  * hook typically resumes the device and corrects runtime status
3779  * accordingly. However, that does not affect the queue runtime PM status
3780  * which is still "suspended". This prevents processing requests from the
3781  * queue.
3782  *
3783  * This function can be used in driver's resume hook to correct queue
3784  * runtime PM status and re-enable peeking requests from the queue. It
3785  * should be called before first request is added to the queue.
3786  */
3787 void blk_set_runtime_active(struct request_queue *q)
3788 {
3789 	spin_lock_irq(q->queue_lock);
3790 	q->rpm_status = RPM_ACTIVE;
3791 	pm_runtime_mark_last_busy(q->dev);
3792 	pm_request_autosuspend(q->dev);
3793 	spin_unlock_irq(q->queue_lock);
3794 }
3795 EXPORT_SYMBOL(blk_set_runtime_active);
3796 #endif
3797 
3798 int __init blk_dev_init(void)
3799 {
3800 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3801 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3802 			FIELD_SIZEOF(struct request, cmd_flags));
3803 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3804 			FIELD_SIZEOF(struct bio, bi_opf));
3805 
3806 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3807 	kblockd_workqueue = alloc_workqueue("kblockd",
3808 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3809 	if (!kblockd_workqueue)
3810 		panic("Failed to create kblockd\n");
3811 
3812 	request_cachep = kmem_cache_create("blkdev_requests",
3813 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3814 
3815 	blk_requestq_cachep = kmem_cache_create("request_queue",
3816 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3817 
3818 #ifdef CONFIG_DEBUG_FS
3819 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3820 #endif
3821 
3822 	return 0;
3823 }
3824