xref: /openbmc/linux/block/blk-core.c (revision 643d1f7f)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33 
34 #include "blk.h"
35 
36 static int __make_request(struct request_queue *q, struct bio *bio);
37 
38 /*
39  * For the allocated request tables
40  */
41 struct kmem_cache *request_cachep;
42 
43 /*
44  * For queue allocation
45  */
46 struct kmem_cache *blk_requestq_cachep;
47 
48 /*
49  * Controlling structure to kblockd
50  */
51 static struct workqueue_struct *kblockd_workqueue;
52 
53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
54 
55 static void drive_stat_acct(struct request *rq, int new_io)
56 {
57 	int rw = rq_data_dir(rq);
58 
59 	if (!blk_fs_request(rq) || !rq->rq_disk)
60 		return;
61 
62 	if (!new_io) {
63 		__disk_stat_inc(rq->rq_disk, merges[rw]);
64 	} else {
65 		disk_round_stats(rq->rq_disk);
66 		rq->rq_disk->in_flight++;
67 	}
68 }
69 
70 void blk_queue_congestion_threshold(struct request_queue *q)
71 {
72 	int nr;
73 
74 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
75 	if (nr > q->nr_requests)
76 		nr = q->nr_requests;
77 	q->nr_congestion_on = nr;
78 
79 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
80 	if (nr < 1)
81 		nr = 1;
82 	q->nr_congestion_off = nr;
83 }
84 
85 /**
86  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
87  * @bdev:	device
88  *
89  * Locates the passed device's request queue and returns the address of its
90  * backing_dev_info
91  *
92  * Will return NULL if the request queue cannot be located.
93  */
94 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
95 {
96 	struct backing_dev_info *ret = NULL;
97 	struct request_queue *q = bdev_get_queue(bdev);
98 
99 	if (q)
100 		ret = &q->backing_dev_info;
101 	return ret;
102 }
103 EXPORT_SYMBOL(blk_get_backing_dev_info);
104 
105 void rq_init(struct request_queue *q, struct request *rq)
106 {
107 	INIT_LIST_HEAD(&rq->queuelist);
108 	INIT_LIST_HEAD(&rq->donelist);
109 
110 	rq->errors = 0;
111 	rq->bio = rq->biotail = NULL;
112 	INIT_HLIST_NODE(&rq->hash);
113 	RB_CLEAR_NODE(&rq->rb_node);
114 	rq->ioprio = 0;
115 	rq->buffer = NULL;
116 	rq->ref_count = 1;
117 	rq->q = q;
118 	rq->special = NULL;
119 	rq->data_len = 0;
120 	rq->data = NULL;
121 	rq->nr_phys_segments = 0;
122 	rq->sense = NULL;
123 	rq->end_io = NULL;
124 	rq->end_io_data = NULL;
125 	rq->completion_data = NULL;
126 	rq->next_rq = NULL;
127 }
128 
129 static void req_bio_endio(struct request *rq, struct bio *bio,
130 			  unsigned int nbytes, int error)
131 {
132 	struct request_queue *q = rq->q;
133 
134 	if (&q->bar_rq != rq) {
135 		if (error)
136 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
137 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
138 			error = -EIO;
139 
140 		if (unlikely(nbytes > bio->bi_size)) {
141 			printk(KERN_ERR "%s: want %u bytes done, %u left\n",
142 			       __FUNCTION__, nbytes, bio->bi_size);
143 			nbytes = bio->bi_size;
144 		}
145 
146 		bio->bi_size -= nbytes;
147 		bio->bi_sector += (nbytes >> 9);
148 		if (bio->bi_size == 0)
149 			bio_endio(bio, error);
150 	} else {
151 
152 		/*
153 		 * Okay, this is the barrier request in progress, just
154 		 * record the error;
155 		 */
156 		if (error && !q->orderr)
157 			q->orderr = error;
158 	}
159 }
160 
161 void blk_dump_rq_flags(struct request *rq, char *msg)
162 {
163 	int bit;
164 
165 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
166 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
167 		rq->cmd_flags);
168 
169 	printk(KERN_INFO "  sector %llu, nr/cnr %lu/%u\n",
170 						(unsigned long long)rq->sector,
171 						rq->nr_sectors,
172 						rq->current_nr_sectors);
173 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, data %p, len %u\n",
174 						rq->bio, rq->biotail,
175 						rq->buffer, rq->data,
176 						rq->data_len);
177 
178 	if (blk_pc_request(rq)) {
179 		printk(KERN_INFO "  cdb: ");
180 		for (bit = 0; bit < sizeof(rq->cmd); bit++)
181 			printk("%02x ", rq->cmd[bit]);
182 		printk("\n");
183 	}
184 }
185 EXPORT_SYMBOL(blk_dump_rq_flags);
186 
187 /*
188  * "plug" the device if there are no outstanding requests: this will
189  * force the transfer to start only after we have put all the requests
190  * on the list.
191  *
192  * This is called with interrupts off and no requests on the queue and
193  * with the queue lock held.
194  */
195 void blk_plug_device(struct request_queue *q)
196 {
197 	WARN_ON(!irqs_disabled());
198 
199 	/*
200 	 * don't plug a stopped queue, it must be paired with blk_start_queue()
201 	 * which will restart the queueing
202 	 */
203 	if (blk_queue_stopped(q))
204 		return;
205 
206 	if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
207 		mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
208 		blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
209 	}
210 }
211 EXPORT_SYMBOL(blk_plug_device);
212 
213 /*
214  * remove the queue from the plugged list, if present. called with
215  * queue lock held and interrupts disabled.
216  */
217 int blk_remove_plug(struct request_queue *q)
218 {
219 	WARN_ON(!irqs_disabled());
220 
221 	if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
222 		return 0;
223 
224 	del_timer(&q->unplug_timer);
225 	return 1;
226 }
227 EXPORT_SYMBOL(blk_remove_plug);
228 
229 /*
230  * remove the plug and let it rip..
231  */
232 void __generic_unplug_device(struct request_queue *q)
233 {
234 	if (unlikely(blk_queue_stopped(q)))
235 		return;
236 
237 	if (!blk_remove_plug(q))
238 		return;
239 
240 	q->request_fn(q);
241 }
242 EXPORT_SYMBOL(__generic_unplug_device);
243 
244 /**
245  * generic_unplug_device - fire a request queue
246  * @q:    The &struct request_queue in question
247  *
248  * Description:
249  *   Linux uses plugging to build bigger requests queues before letting
250  *   the device have at them. If a queue is plugged, the I/O scheduler
251  *   is still adding and merging requests on the queue. Once the queue
252  *   gets unplugged, the request_fn defined for the queue is invoked and
253  *   transfers started.
254  **/
255 void generic_unplug_device(struct request_queue *q)
256 {
257 	spin_lock_irq(q->queue_lock);
258 	__generic_unplug_device(q);
259 	spin_unlock_irq(q->queue_lock);
260 }
261 EXPORT_SYMBOL(generic_unplug_device);
262 
263 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
264 				   struct page *page)
265 {
266 	struct request_queue *q = bdi->unplug_io_data;
267 
268 	blk_unplug(q);
269 }
270 
271 void blk_unplug_work(struct work_struct *work)
272 {
273 	struct request_queue *q =
274 		container_of(work, struct request_queue, unplug_work);
275 
276 	blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
277 				q->rq.count[READ] + q->rq.count[WRITE]);
278 
279 	q->unplug_fn(q);
280 }
281 
282 void blk_unplug_timeout(unsigned long data)
283 {
284 	struct request_queue *q = (struct request_queue *)data;
285 
286 	blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
287 				q->rq.count[READ] + q->rq.count[WRITE]);
288 
289 	kblockd_schedule_work(&q->unplug_work);
290 }
291 
292 void blk_unplug(struct request_queue *q)
293 {
294 	/*
295 	 * devices don't necessarily have an ->unplug_fn defined
296 	 */
297 	if (q->unplug_fn) {
298 		blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
299 					q->rq.count[READ] + q->rq.count[WRITE]);
300 
301 		q->unplug_fn(q);
302 	}
303 }
304 EXPORT_SYMBOL(blk_unplug);
305 
306 /**
307  * blk_start_queue - restart a previously stopped queue
308  * @q:    The &struct request_queue in question
309  *
310  * Description:
311  *   blk_start_queue() will clear the stop flag on the queue, and call
312  *   the request_fn for the queue if it was in a stopped state when
313  *   entered. Also see blk_stop_queue(). Queue lock must be held.
314  **/
315 void blk_start_queue(struct request_queue *q)
316 {
317 	WARN_ON(!irqs_disabled());
318 
319 	clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
320 
321 	/*
322 	 * one level of recursion is ok and is much faster than kicking
323 	 * the unplug handling
324 	 */
325 	if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
326 		q->request_fn(q);
327 		clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
328 	} else {
329 		blk_plug_device(q);
330 		kblockd_schedule_work(&q->unplug_work);
331 	}
332 }
333 EXPORT_SYMBOL(blk_start_queue);
334 
335 /**
336  * blk_stop_queue - stop a queue
337  * @q:    The &struct request_queue in question
338  *
339  * Description:
340  *   The Linux block layer assumes that a block driver will consume all
341  *   entries on the request queue when the request_fn strategy is called.
342  *   Often this will not happen, because of hardware limitations (queue
343  *   depth settings). If a device driver gets a 'queue full' response,
344  *   or if it simply chooses not to queue more I/O at one point, it can
345  *   call this function to prevent the request_fn from being called until
346  *   the driver has signalled it's ready to go again. This happens by calling
347  *   blk_start_queue() to restart queue operations. Queue lock must be held.
348  **/
349 void blk_stop_queue(struct request_queue *q)
350 {
351 	blk_remove_plug(q);
352 	set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
353 }
354 EXPORT_SYMBOL(blk_stop_queue);
355 
356 /**
357  * blk_sync_queue - cancel any pending callbacks on a queue
358  * @q: the queue
359  *
360  * Description:
361  *     The block layer may perform asynchronous callback activity
362  *     on a queue, such as calling the unplug function after a timeout.
363  *     A block device may call blk_sync_queue to ensure that any
364  *     such activity is cancelled, thus allowing it to release resources
365  *     that the callbacks might use. The caller must already have made sure
366  *     that its ->make_request_fn will not re-add plugging prior to calling
367  *     this function.
368  *
369  */
370 void blk_sync_queue(struct request_queue *q)
371 {
372 	del_timer_sync(&q->unplug_timer);
373 	kblockd_flush_work(&q->unplug_work);
374 }
375 EXPORT_SYMBOL(blk_sync_queue);
376 
377 /**
378  * blk_run_queue - run a single device queue
379  * @q:	The queue to run
380  */
381 void blk_run_queue(struct request_queue *q)
382 {
383 	unsigned long flags;
384 
385 	spin_lock_irqsave(q->queue_lock, flags);
386 	blk_remove_plug(q);
387 
388 	/*
389 	 * Only recurse once to avoid overrunning the stack, let the unplug
390 	 * handling reinvoke the handler shortly if we already got there.
391 	 */
392 	if (!elv_queue_empty(q)) {
393 		if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
394 			q->request_fn(q);
395 			clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
396 		} else {
397 			blk_plug_device(q);
398 			kblockd_schedule_work(&q->unplug_work);
399 		}
400 	}
401 
402 	spin_unlock_irqrestore(q->queue_lock, flags);
403 }
404 EXPORT_SYMBOL(blk_run_queue);
405 
406 void blk_put_queue(struct request_queue *q)
407 {
408 	kobject_put(&q->kobj);
409 }
410 EXPORT_SYMBOL(blk_put_queue);
411 
412 void blk_cleanup_queue(struct request_queue *q)
413 {
414 	mutex_lock(&q->sysfs_lock);
415 	set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
416 	mutex_unlock(&q->sysfs_lock);
417 
418 	if (q->elevator)
419 		elevator_exit(q->elevator);
420 
421 	blk_put_queue(q);
422 }
423 EXPORT_SYMBOL(blk_cleanup_queue);
424 
425 static int blk_init_free_list(struct request_queue *q)
426 {
427 	struct request_list *rl = &q->rq;
428 
429 	rl->count[READ] = rl->count[WRITE] = 0;
430 	rl->starved[READ] = rl->starved[WRITE] = 0;
431 	rl->elvpriv = 0;
432 	init_waitqueue_head(&rl->wait[READ]);
433 	init_waitqueue_head(&rl->wait[WRITE]);
434 
435 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
436 				mempool_free_slab, request_cachep, q->node);
437 
438 	if (!rl->rq_pool)
439 		return -ENOMEM;
440 
441 	return 0;
442 }
443 
444 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
445 {
446 	return blk_alloc_queue_node(gfp_mask, -1);
447 }
448 EXPORT_SYMBOL(blk_alloc_queue);
449 
450 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
451 {
452 	struct request_queue *q;
453 	int err;
454 
455 	q = kmem_cache_alloc_node(blk_requestq_cachep,
456 				gfp_mask | __GFP_ZERO, node_id);
457 	if (!q)
458 		return NULL;
459 
460 	q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
461 	q->backing_dev_info.unplug_io_data = q;
462 	err = bdi_init(&q->backing_dev_info);
463 	if (err) {
464 		kmem_cache_free(blk_requestq_cachep, q);
465 		return NULL;
466 	}
467 
468 	init_timer(&q->unplug_timer);
469 
470 	kobject_init(&q->kobj, &blk_queue_ktype);
471 
472 	mutex_init(&q->sysfs_lock);
473 
474 	return q;
475 }
476 EXPORT_SYMBOL(blk_alloc_queue_node);
477 
478 /**
479  * blk_init_queue  - prepare a request queue for use with a block device
480  * @rfn:  The function to be called to process requests that have been
481  *        placed on the queue.
482  * @lock: Request queue spin lock
483  *
484  * Description:
485  *    If a block device wishes to use the standard request handling procedures,
486  *    which sorts requests and coalesces adjacent requests, then it must
487  *    call blk_init_queue().  The function @rfn will be called when there
488  *    are requests on the queue that need to be processed.  If the device
489  *    supports plugging, then @rfn may not be called immediately when requests
490  *    are available on the queue, but may be called at some time later instead.
491  *    Plugged queues are generally unplugged when a buffer belonging to one
492  *    of the requests on the queue is needed, or due to memory pressure.
493  *
494  *    @rfn is not required, or even expected, to remove all requests off the
495  *    queue, but only as many as it can handle at a time.  If it does leave
496  *    requests on the queue, it is responsible for arranging that the requests
497  *    get dealt with eventually.
498  *
499  *    The queue spin lock must be held while manipulating the requests on the
500  *    request queue; this lock will be taken also from interrupt context, so irq
501  *    disabling is needed for it.
502  *
503  *    Function returns a pointer to the initialized request queue, or NULL if
504  *    it didn't succeed.
505  *
506  * Note:
507  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
508  *    when the block device is deactivated (such as at module unload).
509  **/
510 
511 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
512 {
513 	return blk_init_queue_node(rfn, lock, -1);
514 }
515 EXPORT_SYMBOL(blk_init_queue);
516 
517 struct request_queue *
518 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
519 {
520 	struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
521 
522 	if (!q)
523 		return NULL;
524 
525 	q->node = node_id;
526 	if (blk_init_free_list(q)) {
527 		kmem_cache_free(blk_requestq_cachep, q);
528 		return NULL;
529 	}
530 
531 	/*
532 	 * if caller didn't supply a lock, they get per-queue locking with
533 	 * our embedded lock
534 	 */
535 	if (!lock) {
536 		spin_lock_init(&q->__queue_lock);
537 		lock = &q->__queue_lock;
538 	}
539 
540 	q->request_fn		= rfn;
541 	q->prep_rq_fn		= NULL;
542 	q->unplug_fn		= generic_unplug_device;
543 	q->queue_flags		= (1 << QUEUE_FLAG_CLUSTER);
544 	q->queue_lock		= lock;
545 
546 	blk_queue_segment_boundary(q, 0xffffffff);
547 
548 	blk_queue_make_request(q, __make_request);
549 	blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
550 
551 	blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
552 	blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
553 
554 	q->sg_reserved_size = INT_MAX;
555 
556 	/*
557 	 * all done
558 	 */
559 	if (!elevator_init(q, NULL)) {
560 		blk_queue_congestion_threshold(q);
561 		return q;
562 	}
563 
564 	blk_put_queue(q);
565 	return NULL;
566 }
567 EXPORT_SYMBOL(blk_init_queue_node);
568 
569 int blk_get_queue(struct request_queue *q)
570 {
571 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
572 		kobject_get(&q->kobj);
573 		return 0;
574 	}
575 
576 	return 1;
577 }
578 EXPORT_SYMBOL(blk_get_queue);
579 
580 static inline void blk_free_request(struct request_queue *q, struct request *rq)
581 {
582 	if (rq->cmd_flags & REQ_ELVPRIV)
583 		elv_put_request(q, rq);
584 	mempool_free(rq, q->rq.rq_pool);
585 }
586 
587 static struct request *
588 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
589 {
590 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
591 
592 	if (!rq)
593 		return NULL;
594 
595 	/*
596 	 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
597 	 * see bio.h and blkdev.h
598 	 */
599 	rq->cmd_flags = rw | REQ_ALLOCED;
600 
601 	if (priv) {
602 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
603 			mempool_free(rq, q->rq.rq_pool);
604 			return NULL;
605 		}
606 		rq->cmd_flags |= REQ_ELVPRIV;
607 	}
608 
609 	return rq;
610 }
611 
612 /*
613  * ioc_batching returns true if the ioc is a valid batching request and
614  * should be given priority access to a request.
615  */
616 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
617 {
618 	if (!ioc)
619 		return 0;
620 
621 	/*
622 	 * Make sure the process is able to allocate at least 1 request
623 	 * even if the batch times out, otherwise we could theoretically
624 	 * lose wakeups.
625 	 */
626 	return ioc->nr_batch_requests == q->nr_batching ||
627 		(ioc->nr_batch_requests > 0
628 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
629 }
630 
631 /*
632  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
633  * will cause the process to be a "batcher" on all queues in the system. This
634  * is the behaviour we want though - once it gets a wakeup it should be given
635  * a nice run.
636  */
637 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
638 {
639 	if (!ioc || ioc_batching(q, ioc))
640 		return;
641 
642 	ioc->nr_batch_requests = q->nr_batching;
643 	ioc->last_waited = jiffies;
644 }
645 
646 static void __freed_request(struct request_queue *q, int rw)
647 {
648 	struct request_list *rl = &q->rq;
649 
650 	if (rl->count[rw] < queue_congestion_off_threshold(q))
651 		blk_clear_queue_congested(q, rw);
652 
653 	if (rl->count[rw] + 1 <= q->nr_requests) {
654 		if (waitqueue_active(&rl->wait[rw]))
655 			wake_up(&rl->wait[rw]);
656 
657 		blk_clear_queue_full(q, rw);
658 	}
659 }
660 
661 /*
662  * A request has just been released.  Account for it, update the full and
663  * congestion status, wake up any waiters.   Called under q->queue_lock.
664  */
665 static void freed_request(struct request_queue *q, int rw, int priv)
666 {
667 	struct request_list *rl = &q->rq;
668 
669 	rl->count[rw]--;
670 	if (priv)
671 		rl->elvpriv--;
672 
673 	__freed_request(q, rw);
674 
675 	if (unlikely(rl->starved[rw ^ 1]))
676 		__freed_request(q, rw ^ 1);
677 }
678 
679 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
680 /*
681  * Get a free request, queue_lock must be held.
682  * Returns NULL on failure, with queue_lock held.
683  * Returns !NULL on success, with queue_lock *not held*.
684  */
685 static struct request *get_request(struct request_queue *q, int rw_flags,
686 				   struct bio *bio, gfp_t gfp_mask)
687 {
688 	struct request *rq = NULL;
689 	struct request_list *rl = &q->rq;
690 	struct io_context *ioc = NULL;
691 	const int rw = rw_flags & 0x01;
692 	int may_queue, priv;
693 
694 	may_queue = elv_may_queue(q, rw_flags);
695 	if (may_queue == ELV_MQUEUE_NO)
696 		goto rq_starved;
697 
698 	if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
699 		if (rl->count[rw]+1 >= q->nr_requests) {
700 			ioc = current_io_context(GFP_ATOMIC, q->node);
701 			/*
702 			 * The queue will fill after this allocation, so set
703 			 * it as full, and mark this process as "batching".
704 			 * This process will be allowed to complete a batch of
705 			 * requests, others will be blocked.
706 			 */
707 			if (!blk_queue_full(q, rw)) {
708 				ioc_set_batching(q, ioc);
709 				blk_set_queue_full(q, rw);
710 			} else {
711 				if (may_queue != ELV_MQUEUE_MUST
712 						&& !ioc_batching(q, ioc)) {
713 					/*
714 					 * The queue is full and the allocating
715 					 * process is not a "batcher", and not
716 					 * exempted by the IO scheduler
717 					 */
718 					goto out;
719 				}
720 			}
721 		}
722 		blk_set_queue_congested(q, rw);
723 	}
724 
725 	/*
726 	 * Only allow batching queuers to allocate up to 50% over the defined
727 	 * limit of requests, otherwise we could have thousands of requests
728 	 * allocated with any setting of ->nr_requests
729 	 */
730 	if (rl->count[rw] >= (3 * q->nr_requests / 2))
731 		goto out;
732 
733 	rl->count[rw]++;
734 	rl->starved[rw] = 0;
735 
736 	priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
737 	if (priv)
738 		rl->elvpriv++;
739 
740 	spin_unlock_irq(q->queue_lock);
741 
742 	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
743 	if (unlikely(!rq)) {
744 		/*
745 		 * Allocation failed presumably due to memory. Undo anything
746 		 * we might have messed up.
747 		 *
748 		 * Allocating task should really be put onto the front of the
749 		 * wait queue, but this is pretty rare.
750 		 */
751 		spin_lock_irq(q->queue_lock);
752 		freed_request(q, rw, priv);
753 
754 		/*
755 		 * in the very unlikely event that allocation failed and no
756 		 * requests for this direction was pending, mark us starved
757 		 * so that freeing of a request in the other direction will
758 		 * notice us. another possible fix would be to split the
759 		 * rq mempool into READ and WRITE
760 		 */
761 rq_starved:
762 		if (unlikely(rl->count[rw] == 0))
763 			rl->starved[rw] = 1;
764 
765 		goto out;
766 	}
767 
768 	/*
769 	 * ioc may be NULL here, and ioc_batching will be false. That's
770 	 * OK, if the queue is under the request limit then requests need
771 	 * not count toward the nr_batch_requests limit. There will always
772 	 * be some limit enforced by BLK_BATCH_TIME.
773 	 */
774 	if (ioc_batching(q, ioc))
775 		ioc->nr_batch_requests--;
776 
777 	rq_init(q, rq);
778 
779 	blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
780 out:
781 	return rq;
782 }
783 
784 /*
785  * No available requests for this queue, unplug the device and wait for some
786  * requests to become available.
787  *
788  * Called with q->queue_lock held, and returns with it unlocked.
789  */
790 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
791 					struct bio *bio)
792 {
793 	const int rw = rw_flags & 0x01;
794 	struct request *rq;
795 
796 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
797 	while (!rq) {
798 		DEFINE_WAIT(wait);
799 		struct request_list *rl = &q->rq;
800 
801 		prepare_to_wait_exclusive(&rl->wait[rw], &wait,
802 				TASK_UNINTERRUPTIBLE);
803 
804 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
805 
806 		if (!rq) {
807 			struct io_context *ioc;
808 
809 			blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
810 
811 			__generic_unplug_device(q);
812 			spin_unlock_irq(q->queue_lock);
813 			io_schedule();
814 
815 			/*
816 			 * After sleeping, we become a "batching" process and
817 			 * will be able to allocate at least one request, and
818 			 * up to a big batch of them for a small period time.
819 			 * See ioc_batching, ioc_set_batching
820 			 */
821 			ioc = current_io_context(GFP_NOIO, q->node);
822 			ioc_set_batching(q, ioc);
823 
824 			spin_lock_irq(q->queue_lock);
825 		}
826 		finish_wait(&rl->wait[rw], &wait);
827 	}
828 
829 	return rq;
830 }
831 
832 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
833 {
834 	struct request *rq;
835 
836 	BUG_ON(rw != READ && rw != WRITE);
837 
838 	spin_lock_irq(q->queue_lock);
839 	if (gfp_mask & __GFP_WAIT) {
840 		rq = get_request_wait(q, rw, NULL);
841 	} else {
842 		rq = get_request(q, rw, NULL, gfp_mask);
843 		if (!rq)
844 			spin_unlock_irq(q->queue_lock);
845 	}
846 	/* q->queue_lock is unlocked at this point */
847 
848 	return rq;
849 }
850 EXPORT_SYMBOL(blk_get_request);
851 
852 /**
853  * blk_start_queueing - initiate dispatch of requests to device
854  * @q:		request queue to kick into gear
855  *
856  * This is basically a helper to remove the need to know whether a queue
857  * is plugged or not if someone just wants to initiate dispatch of requests
858  * for this queue.
859  *
860  * The queue lock must be held with interrupts disabled.
861  */
862 void blk_start_queueing(struct request_queue *q)
863 {
864 	if (!blk_queue_plugged(q))
865 		q->request_fn(q);
866 	else
867 		__generic_unplug_device(q);
868 }
869 EXPORT_SYMBOL(blk_start_queueing);
870 
871 /**
872  * blk_requeue_request - put a request back on queue
873  * @q:		request queue where request should be inserted
874  * @rq:		request to be inserted
875  *
876  * Description:
877  *    Drivers often keep queueing requests until the hardware cannot accept
878  *    more, when that condition happens we need to put the request back
879  *    on the queue. Must be called with queue lock held.
880  */
881 void blk_requeue_request(struct request_queue *q, struct request *rq)
882 {
883 	blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
884 
885 	if (blk_rq_tagged(rq))
886 		blk_queue_end_tag(q, rq);
887 
888 	elv_requeue_request(q, rq);
889 }
890 EXPORT_SYMBOL(blk_requeue_request);
891 
892 /**
893  * blk_insert_request - insert a special request in to a request queue
894  * @q:		request queue where request should be inserted
895  * @rq:		request to be inserted
896  * @at_head:	insert request at head or tail of queue
897  * @data:	private data
898  *
899  * Description:
900  *    Many block devices need to execute commands asynchronously, so they don't
901  *    block the whole kernel from preemption during request execution.  This is
902  *    accomplished normally by inserting aritficial requests tagged as
903  *    REQ_SPECIAL in to the corresponding request queue, and letting them be
904  *    scheduled for actual execution by the request queue.
905  *
906  *    We have the option of inserting the head or the tail of the queue.
907  *    Typically we use the tail for new ioctls and so forth.  We use the head
908  *    of the queue for things like a QUEUE_FULL message from a device, or a
909  *    host that is unable to accept a particular command.
910  */
911 void blk_insert_request(struct request_queue *q, struct request *rq,
912 			int at_head, void *data)
913 {
914 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
915 	unsigned long flags;
916 
917 	/*
918 	 * tell I/O scheduler that this isn't a regular read/write (ie it
919 	 * must not attempt merges on this) and that it acts as a soft
920 	 * barrier
921 	 */
922 	rq->cmd_type = REQ_TYPE_SPECIAL;
923 	rq->cmd_flags |= REQ_SOFTBARRIER;
924 
925 	rq->special = data;
926 
927 	spin_lock_irqsave(q->queue_lock, flags);
928 
929 	/*
930 	 * If command is tagged, release the tag
931 	 */
932 	if (blk_rq_tagged(rq))
933 		blk_queue_end_tag(q, rq);
934 
935 	drive_stat_acct(rq, 1);
936 	__elv_add_request(q, rq, where, 0);
937 	blk_start_queueing(q);
938 	spin_unlock_irqrestore(q->queue_lock, flags);
939 }
940 EXPORT_SYMBOL(blk_insert_request);
941 
942 /*
943  * add-request adds a request to the linked list.
944  * queue lock is held and interrupts disabled, as we muck with the
945  * request queue list.
946  */
947 static inline void add_request(struct request_queue *q, struct request *req)
948 {
949 	drive_stat_acct(req, 1);
950 
951 	/*
952 	 * elevator indicated where it wants this request to be
953 	 * inserted at elevator_merge time
954 	 */
955 	__elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
956 }
957 
958 /*
959  * disk_round_stats()	- Round off the performance stats on a struct
960  * disk_stats.
961  *
962  * The average IO queue length and utilisation statistics are maintained
963  * by observing the current state of the queue length and the amount of
964  * time it has been in this state for.
965  *
966  * Normally, that accounting is done on IO completion, but that can result
967  * in more than a second's worth of IO being accounted for within any one
968  * second, leading to >100% utilisation.  To deal with that, we call this
969  * function to do a round-off before returning the results when reading
970  * /proc/diskstats.  This accounts immediately for all queue usage up to
971  * the current jiffies and restarts the counters again.
972  */
973 void disk_round_stats(struct gendisk *disk)
974 {
975 	unsigned long now = jiffies;
976 
977 	if (now == disk->stamp)
978 		return;
979 
980 	if (disk->in_flight) {
981 		__disk_stat_add(disk, time_in_queue,
982 				disk->in_flight * (now - disk->stamp));
983 		__disk_stat_add(disk, io_ticks, (now - disk->stamp));
984 	}
985 	disk->stamp = now;
986 }
987 EXPORT_SYMBOL_GPL(disk_round_stats);
988 
989 /*
990  * queue lock must be held
991  */
992 void __blk_put_request(struct request_queue *q, struct request *req)
993 {
994 	if (unlikely(!q))
995 		return;
996 	if (unlikely(--req->ref_count))
997 		return;
998 
999 	elv_completed_request(q, req);
1000 
1001 	/*
1002 	 * Request may not have originated from ll_rw_blk. if not,
1003 	 * it didn't come out of our reserved rq pools
1004 	 */
1005 	if (req->cmd_flags & REQ_ALLOCED) {
1006 		int rw = rq_data_dir(req);
1007 		int priv = req->cmd_flags & REQ_ELVPRIV;
1008 
1009 		BUG_ON(!list_empty(&req->queuelist));
1010 		BUG_ON(!hlist_unhashed(&req->hash));
1011 
1012 		blk_free_request(q, req);
1013 		freed_request(q, rw, priv);
1014 	}
1015 }
1016 EXPORT_SYMBOL_GPL(__blk_put_request);
1017 
1018 void blk_put_request(struct request *req)
1019 {
1020 	unsigned long flags;
1021 	struct request_queue *q = req->q;
1022 
1023 	/*
1024 	 * Gee, IDE calls in w/ NULL q.  Fix IDE and remove the
1025 	 * following if (q) test.
1026 	 */
1027 	if (q) {
1028 		spin_lock_irqsave(q->queue_lock, flags);
1029 		__blk_put_request(q, req);
1030 		spin_unlock_irqrestore(q->queue_lock, flags);
1031 	}
1032 }
1033 EXPORT_SYMBOL(blk_put_request);
1034 
1035 void init_request_from_bio(struct request *req, struct bio *bio)
1036 {
1037 	req->cmd_type = REQ_TYPE_FS;
1038 
1039 	/*
1040 	 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1041 	 */
1042 	if (bio_rw_ahead(bio) || bio_failfast(bio))
1043 		req->cmd_flags |= REQ_FAILFAST;
1044 
1045 	/*
1046 	 * REQ_BARRIER implies no merging, but lets make it explicit
1047 	 */
1048 	if (unlikely(bio_barrier(bio)))
1049 		req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1050 
1051 	if (bio_sync(bio))
1052 		req->cmd_flags |= REQ_RW_SYNC;
1053 	if (bio_rw_meta(bio))
1054 		req->cmd_flags |= REQ_RW_META;
1055 
1056 	req->errors = 0;
1057 	req->hard_sector = req->sector = bio->bi_sector;
1058 	req->ioprio = bio_prio(bio);
1059 	req->start_time = jiffies;
1060 	blk_rq_bio_prep(req->q, req, bio);
1061 }
1062 
1063 static int __make_request(struct request_queue *q, struct bio *bio)
1064 {
1065 	struct request *req;
1066 	int el_ret, nr_sectors, barrier, err;
1067 	const unsigned short prio = bio_prio(bio);
1068 	const int sync = bio_sync(bio);
1069 	int rw_flags;
1070 
1071 	nr_sectors = bio_sectors(bio);
1072 
1073 	/*
1074 	 * low level driver can indicate that it wants pages above a
1075 	 * certain limit bounced to low memory (ie for highmem, or even
1076 	 * ISA dma in theory)
1077 	 */
1078 	blk_queue_bounce(q, &bio);
1079 
1080 	barrier = bio_barrier(bio);
1081 	if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1082 		err = -EOPNOTSUPP;
1083 		goto end_io;
1084 	}
1085 
1086 	spin_lock_irq(q->queue_lock);
1087 
1088 	if (unlikely(barrier) || elv_queue_empty(q))
1089 		goto get_rq;
1090 
1091 	el_ret = elv_merge(q, &req, bio);
1092 	switch (el_ret) {
1093 	case ELEVATOR_BACK_MERGE:
1094 		BUG_ON(!rq_mergeable(req));
1095 
1096 		if (!ll_back_merge_fn(q, req, bio))
1097 			break;
1098 
1099 		blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1100 
1101 		req->biotail->bi_next = bio;
1102 		req->biotail = bio;
1103 		req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1104 		req->ioprio = ioprio_best(req->ioprio, prio);
1105 		drive_stat_acct(req, 0);
1106 		if (!attempt_back_merge(q, req))
1107 			elv_merged_request(q, req, el_ret);
1108 		goto out;
1109 
1110 	case ELEVATOR_FRONT_MERGE:
1111 		BUG_ON(!rq_mergeable(req));
1112 
1113 		if (!ll_front_merge_fn(q, req, bio))
1114 			break;
1115 
1116 		blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1117 
1118 		bio->bi_next = req->bio;
1119 		req->bio = bio;
1120 
1121 		/*
1122 		 * may not be valid. if the low level driver said
1123 		 * it didn't need a bounce buffer then it better
1124 		 * not touch req->buffer either...
1125 		 */
1126 		req->buffer = bio_data(bio);
1127 		req->current_nr_sectors = bio_cur_sectors(bio);
1128 		req->hard_cur_sectors = req->current_nr_sectors;
1129 		req->sector = req->hard_sector = bio->bi_sector;
1130 		req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1131 		req->ioprio = ioprio_best(req->ioprio, prio);
1132 		drive_stat_acct(req, 0);
1133 		if (!attempt_front_merge(q, req))
1134 			elv_merged_request(q, req, el_ret);
1135 		goto out;
1136 
1137 	/* ELV_NO_MERGE: elevator says don't/can't merge. */
1138 	default:
1139 		;
1140 	}
1141 
1142 get_rq:
1143 	/*
1144 	 * This sync check and mask will be re-done in init_request_from_bio(),
1145 	 * but we need to set it earlier to expose the sync flag to the
1146 	 * rq allocator and io schedulers.
1147 	 */
1148 	rw_flags = bio_data_dir(bio);
1149 	if (sync)
1150 		rw_flags |= REQ_RW_SYNC;
1151 
1152 	/*
1153 	 * Grab a free request. This is might sleep but can not fail.
1154 	 * Returns with the queue unlocked.
1155 	 */
1156 	req = get_request_wait(q, rw_flags, bio);
1157 
1158 	/*
1159 	 * After dropping the lock and possibly sleeping here, our request
1160 	 * may now be mergeable after it had proven unmergeable (above).
1161 	 * We don't worry about that case for efficiency. It won't happen
1162 	 * often, and the elevators are able to handle it.
1163 	 */
1164 	init_request_from_bio(req, bio);
1165 
1166 	spin_lock_irq(q->queue_lock);
1167 	if (elv_queue_empty(q))
1168 		blk_plug_device(q);
1169 	add_request(q, req);
1170 out:
1171 	if (sync)
1172 		__generic_unplug_device(q);
1173 
1174 	spin_unlock_irq(q->queue_lock);
1175 	return 0;
1176 
1177 end_io:
1178 	bio_endio(bio, err);
1179 	return 0;
1180 }
1181 
1182 /*
1183  * If bio->bi_dev is a partition, remap the location
1184  */
1185 static inline void blk_partition_remap(struct bio *bio)
1186 {
1187 	struct block_device *bdev = bio->bi_bdev;
1188 
1189 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1190 		struct hd_struct *p = bdev->bd_part;
1191 		const int rw = bio_data_dir(bio);
1192 
1193 		p->sectors[rw] += bio_sectors(bio);
1194 		p->ios[rw]++;
1195 
1196 		bio->bi_sector += p->start_sect;
1197 		bio->bi_bdev = bdev->bd_contains;
1198 
1199 		blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1200 				    bdev->bd_dev, bio->bi_sector,
1201 				    bio->bi_sector - p->start_sect);
1202 	}
1203 }
1204 
1205 static void handle_bad_sector(struct bio *bio)
1206 {
1207 	char b[BDEVNAME_SIZE];
1208 
1209 	printk(KERN_INFO "attempt to access beyond end of device\n");
1210 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1211 			bdevname(bio->bi_bdev, b),
1212 			bio->bi_rw,
1213 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1214 			(long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1215 
1216 	set_bit(BIO_EOF, &bio->bi_flags);
1217 }
1218 
1219 #ifdef CONFIG_FAIL_MAKE_REQUEST
1220 
1221 static DECLARE_FAULT_ATTR(fail_make_request);
1222 
1223 static int __init setup_fail_make_request(char *str)
1224 {
1225 	return setup_fault_attr(&fail_make_request, str);
1226 }
1227 __setup("fail_make_request=", setup_fail_make_request);
1228 
1229 static int should_fail_request(struct bio *bio)
1230 {
1231 	if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1232 	    (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1233 		return should_fail(&fail_make_request, bio->bi_size);
1234 
1235 	return 0;
1236 }
1237 
1238 static int __init fail_make_request_debugfs(void)
1239 {
1240 	return init_fault_attr_dentries(&fail_make_request,
1241 					"fail_make_request");
1242 }
1243 
1244 late_initcall(fail_make_request_debugfs);
1245 
1246 #else /* CONFIG_FAIL_MAKE_REQUEST */
1247 
1248 static inline int should_fail_request(struct bio *bio)
1249 {
1250 	return 0;
1251 }
1252 
1253 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1254 
1255 /*
1256  * Check whether this bio extends beyond the end of the device.
1257  */
1258 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1259 {
1260 	sector_t maxsector;
1261 
1262 	if (!nr_sectors)
1263 		return 0;
1264 
1265 	/* Test device or partition size, when known. */
1266 	maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1267 	if (maxsector) {
1268 		sector_t sector = bio->bi_sector;
1269 
1270 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1271 			/*
1272 			 * This may well happen - the kernel calls bread()
1273 			 * without checking the size of the device, e.g., when
1274 			 * mounting a device.
1275 			 */
1276 			handle_bad_sector(bio);
1277 			return 1;
1278 		}
1279 	}
1280 
1281 	return 0;
1282 }
1283 
1284 /**
1285  * generic_make_request: hand a buffer to its device driver for I/O
1286  * @bio:  The bio describing the location in memory and on the device.
1287  *
1288  * generic_make_request() is used to make I/O requests of block
1289  * devices. It is passed a &struct bio, which describes the I/O that needs
1290  * to be done.
1291  *
1292  * generic_make_request() does not return any status.  The
1293  * success/failure status of the request, along with notification of
1294  * completion, is delivered asynchronously through the bio->bi_end_io
1295  * function described (one day) else where.
1296  *
1297  * The caller of generic_make_request must make sure that bi_io_vec
1298  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1299  * set to describe the device address, and the
1300  * bi_end_io and optionally bi_private are set to describe how
1301  * completion notification should be signaled.
1302  *
1303  * generic_make_request and the drivers it calls may use bi_next if this
1304  * bio happens to be merged with someone else, and may change bi_dev and
1305  * bi_sector for remaps as it sees fit.  So the values of these fields
1306  * should NOT be depended on after the call to generic_make_request.
1307  */
1308 static inline void __generic_make_request(struct bio *bio)
1309 {
1310 	struct request_queue *q;
1311 	sector_t old_sector;
1312 	int ret, nr_sectors = bio_sectors(bio);
1313 	dev_t old_dev;
1314 	int err = -EIO;
1315 
1316 	might_sleep();
1317 
1318 	if (bio_check_eod(bio, nr_sectors))
1319 		goto end_io;
1320 
1321 	/*
1322 	 * Resolve the mapping until finished. (drivers are
1323 	 * still free to implement/resolve their own stacking
1324 	 * by explicitly returning 0)
1325 	 *
1326 	 * NOTE: we don't repeat the blk_size check for each new device.
1327 	 * Stacking drivers are expected to know what they are doing.
1328 	 */
1329 	old_sector = -1;
1330 	old_dev = 0;
1331 	do {
1332 		char b[BDEVNAME_SIZE];
1333 
1334 		q = bdev_get_queue(bio->bi_bdev);
1335 		if (!q) {
1336 			printk(KERN_ERR
1337 			       "generic_make_request: Trying to access "
1338 				"nonexistent block-device %s (%Lu)\n",
1339 				bdevname(bio->bi_bdev, b),
1340 				(long long) bio->bi_sector);
1341 end_io:
1342 			bio_endio(bio, err);
1343 			break;
1344 		}
1345 
1346 		if (unlikely(nr_sectors > q->max_hw_sectors)) {
1347 			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1348 				bdevname(bio->bi_bdev, b),
1349 				bio_sectors(bio),
1350 				q->max_hw_sectors);
1351 			goto end_io;
1352 		}
1353 
1354 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1355 			goto end_io;
1356 
1357 		if (should_fail_request(bio))
1358 			goto end_io;
1359 
1360 		/*
1361 		 * If this device has partitions, remap block n
1362 		 * of partition p to block n+start(p) of the disk.
1363 		 */
1364 		blk_partition_remap(bio);
1365 
1366 		if (old_sector != -1)
1367 			blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1368 					    old_sector);
1369 
1370 		blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1371 
1372 		old_sector = bio->bi_sector;
1373 		old_dev = bio->bi_bdev->bd_dev;
1374 
1375 		if (bio_check_eod(bio, nr_sectors))
1376 			goto end_io;
1377 		if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
1378 			err = -EOPNOTSUPP;
1379 			goto end_io;
1380 		}
1381 
1382 		ret = q->make_request_fn(q, bio);
1383 	} while (ret);
1384 }
1385 
1386 /*
1387  * We only want one ->make_request_fn to be active at a time,
1388  * else stack usage with stacked devices could be a problem.
1389  * So use current->bio_{list,tail} to keep a list of requests
1390  * submited by a make_request_fn function.
1391  * current->bio_tail is also used as a flag to say if
1392  * generic_make_request is currently active in this task or not.
1393  * If it is NULL, then no make_request is active.  If it is non-NULL,
1394  * then a make_request is active, and new requests should be added
1395  * at the tail
1396  */
1397 void generic_make_request(struct bio *bio)
1398 {
1399 	if (current->bio_tail) {
1400 		/* make_request is active */
1401 		*(current->bio_tail) = bio;
1402 		bio->bi_next = NULL;
1403 		current->bio_tail = &bio->bi_next;
1404 		return;
1405 	}
1406 	/* following loop may be a bit non-obvious, and so deserves some
1407 	 * explanation.
1408 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1409 	 * ensure that) so we have a list with a single bio.
1410 	 * We pretend that we have just taken it off a longer list, so
1411 	 * we assign bio_list to the next (which is NULL) and bio_tail
1412 	 * to &bio_list, thus initialising the bio_list of new bios to be
1413 	 * added.  __generic_make_request may indeed add some more bios
1414 	 * through a recursive call to generic_make_request.  If it
1415 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1416 	 * from the top.  In this case we really did just take the bio
1417 	 * of the top of the list (no pretending) and so fixup bio_list and
1418 	 * bio_tail or bi_next, and call into __generic_make_request again.
1419 	 *
1420 	 * The loop was structured like this to make only one call to
1421 	 * __generic_make_request (which is important as it is large and
1422 	 * inlined) and to keep the structure simple.
1423 	 */
1424 	BUG_ON(bio->bi_next);
1425 	do {
1426 		current->bio_list = bio->bi_next;
1427 		if (bio->bi_next == NULL)
1428 			current->bio_tail = &current->bio_list;
1429 		else
1430 			bio->bi_next = NULL;
1431 		__generic_make_request(bio);
1432 		bio = current->bio_list;
1433 	} while (bio);
1434 	current->bio_tail = NULL; /* deactivate */
1435 }
1436 EXPORT_SYMBOL(generic_make_request);
1437 
1438 /**
1439  * submit_bio: submit a bio to the block device layer for I/O
1440  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1441  * @bio: The &struct bio which describes the I/O
1442  *
1443  * submit_bio() is very similar in purpose to generic_make_request(), and
1444  * uses that function to do most of the work. Both are fairly rough
1445  * interfaces, @bio must be presetup and ready for I/O.
1446  *
1447  */
1448 void submit_bio(int rw, struct bio *bio)
1449 {
1450 	int count = bio_sectors(bio);
1451 
1452 	bio->bi_rw |= rw;
1453 
1454 	/*
1455 	 * If it's a regular read/write or a barrier with data attached,
1456 	 * go through the normal accounting stuff before submission.
1457 	 */
1458 	if (!bio_empty_barrier(bio)) {
1459 
1460 		BIO_BUG_ON(!bio->bi_size);
1461 		BIO_BUG_ON(!bio->bi_io_vec);
1462 
1463 		if (rw & WRITE) {
1464 			count_vm_events(PGPGOUT, count);
1465 		} else {
1466 			task_io_account_read(bio->bi_size);
1467 			count_vm_events(PGPGIN, count);
1468 		}
1469 
1470 		if (unlikely(block_dump)) {
1471 			char b[BDEVNAME_SIZE];
1472 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1473 			current->comm, task_pid_nr(current),
1474 				(rw & WRITE) ? "WRITE" : "READ",
1475 				(unsigned long long)bio->bi_sector,
1476 				bdevname(bio->bi_bdev, b));
1477 		}
1478 	}
1479 
1480 	generic_make_request(bio);
1481 }
1482 EXPORT_SYMBOL(submit_bio);
1483 
1484 /**
1485  * __end_that_request_first - end I/O on a request
1486  * @req:      the request being processed
1487  * @error:    0 for success, < 0 for error
1488  * @nr_bytes: number of bytes to complete
1489  *
1490  * Description:
1491  *     Ends I/O on a number of bytes attached to @req, and sets it up
1492  *     for the next range of segments (if any) in the cluster.
1493  *
1494  * Return:
1495  *     0 - we are done with this request, call end_that_request_last()
1496  *     1 - still buffers pending for this request
1497  **/
1498 static int __end_that_request_first(struct request *req, int error,
1499 				    int nr_bytes)
1500 {
1501 	int total_bytes, bio_nbytes, next_idx = 0;
1502 	struct bio *bio;
1503 
1504 	blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1505 
1506 	/*
1507 	 * for a REQ_BLOCK_PC request, we want to carry any eventual
1508 	 * sense key with us all the way through
1509 	 */
1510 	if (!blk_pc_request(req))
1511 		req->errors = 0;
1512 
1513 	if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1514 		printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1515 				req->rq_disk ? req->rq_disk->disk_name : "?",
1516 				(unsigned long long)req->sector);
1517 	}
1518 
1519 	if (blk_fs_request(req) && req->rq_disk) {
1520 		const int rw = rq_data_dir(req);
1521 
1522 		disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
1523 	}
1524 
1525 	total_bytes = bio_nbytes = 0;
1526 	while ((bio = req->bio) != NULL) {
1527 		int nbytes;
1528 
1529 		/*
1530 		 * For an empty barrier request, the low level driver must
1531 		 * store a potential error location in ->sector. We pass
1532 		 * that back up in ->bi_sector.
1533 		 */
1534 		if (blk_empty_barrier(req))
1535 			bio->bi_sector = req->sector;
1536 
1537 		if (nr_bytes >= bio->bi_size) {
1538 			req->bio = bio->bi_next;
1539 			nbytes = bio->bi_size;
1540 			req_bio_endio(req, bio, nbytes, error);
1541 			next_idx = 0;
1542 			bio_nbytes = 0;
1543 		} else {
1544 			int idx = bio->bi_idx + next_idx;
1545 
1546 			if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1547 				blk_dump_rq_flags(req, "__end_that");
1548 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1549 						__FUNCTION__, bio->bi_idx,
1550 						bio->bi_vcnt);
1551 				break;
1552 			}
1553 
1554 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
1555 			BIO_BUG_ON(nbytes > bio->bi_size);
1556 
1557 			/*
1558 			 * not a complete bvec done
1559 			 */
1560 			if (unlikely(nbytes > nr_bytes)) {
1561 				bio_nbytes += nr_bytes;
1562 				total_bytes += nr_bytes;
1563 				break;
1564 			}
1565 
1566 			/*
1567 			 * advance to the next vector
1568 			 */
1569 			next_idx++;
1570 			bio_nbytes += nbytes;
1571 		}
1572 
1573 		total_bytes += nbytes;
1574 		nr_bytes -= nbytes;
1575 
1576 		bio = req->bio;
1577 		if (bio) {
1578 			/*
1579 			 * end more in this run, or just return 'not-done'
1580 			 */
1581 			if (unlikely(nr_bytes <= 0))
1582 				break;
1583 		}
1584 	}
1585 
1586 	/*
1587 	 * completely done
1588 	 */
1589 	if (!req->bio)
1590 		return 0;
1591 
1592 	/*
1593 	 * if the request wasn't completed, update state
1594 	 */
1595 	if (bio_nbytes) {
1596 		req_bio_endio(req, bio, bio_nbytes, error);
1597 		bio->bi_idx += next_idx;
1598 		bio_iovec(bio)->bv_offset += nr_bytes;
1599 		bio_iovec(bio)->bv_len -= nr_bytes;
1600 	}
1601 
1602 	blk_recalc_rq_sectors(req, total_bytes >> 9);
1603 	blk_recalc_rq_segments(req);
1604 	return 1;
1605 }
1606 
1607 /*
1608  * splice the completion data to a local structure and hand off to
1609  * process_completion_queue() to complete the requests
1610  */
1611 static void blk_done_softirq(struct softirq_action *h)
1612 {
1613 	struct list_head *cpu_list, local_list;
1614 
1615 	local_irq_disable();
1616 	cpu_list = &__get_cpu_var(blk_cpu_done);
1617 	list_replace_init(cpu_list, &local_list);
1618 	local_irq_enable();
1619 
1620 	while (!list_empty(&local_list)) {
1621 		struct request *rq;
1622 
1623 		rq = list_entry(local_list.next, struct request, donelist);
1624 		list_del_init(&rq->donelist);
1625 		rq->q->softirq_done_fn(rq);
1626 	}
1627 }
1628 
1629 static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1630 				    unsigned long action, void *hcpu)
1631 {
1632 	/*
1633 	 * If a CPU goes away, splice its entries to the current CPU
1634 	 * and trigger a run of the softirq
1635 	 */
1636 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1637 		int cpu = (unsigned long) hcpu;
1638 
1639 		local_irq_disable();
1640 		list_splice_init(&per_cpu(blk_cpu_done, cpu),
1641 				 &__get_cpu_var(blk_cpu_done));
1642 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
1643 		local_irq_enable();
1644 	}
1645 
1646 	return NOTIFY_OK;
1647 }
1648 
1649 
1650 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
1651 	.notifier_call	= blk_cpu_notify,
1652 };
1653 
1654 /**
1655  * blk_complete_request - end I/O on a request
1656  * @req:      the request being processed
1657  *
1658  * Description:
1659  *     Ends all I/O on a request. It does not handle partial completions,
1660  *     unless the driver actually implements this in its completion callback
1661  *     through requeueing. The actual completion happens out-of-order,
1662  *     through a softirq handler. The user must have registered a completion
1663  *     callback through blk_queue_softirq_done().
1664  **/
1665 
1666 void blk_complete_request(struct request *req)
1667 {
1668 	struct list_head *cpu_list;
1669 	unsigned long flags;
1670 
1671 	BUG_ON(!req->q->softirq_done_fn);
1672 
1673 	local_irq_save(flags);
1674 
1675 	cpu_list = &__get_cpu_var(blk_cpu_done);
1676 	list_add_tail(&req->donelist, cpu_list);
1677 	raise_softirq_irqoff(BLOCK_SOFTIRQ);
1678 
1679 	local_irq_restore(flags);
1680 }
1681 EXPORT_SYMBOL(blk_complete_request);
1682 
1683 /*
1684  * queue lock must be held
1685  */
1686 static void end_that_request_last(struct request *req, int error)
1687 {
1688 	struct gendisk *disk = req->rq_disk;
1689 
1690 	if (blk_rq_tagged(req))
1691 		blk_queue_end_tag(req->q, req);
1692 
1693 	if (blk_queued_rq(req))
1694 		blkdev_dequeue_request(req);
1695 
1696 	if (unlikely(laptop_mode) && blk_fs_request(req))
1697 		laptop_io_completion();
1698 
1699 	/*
1700 	 * Account IO completion.  bar_rq isn't accounted as a normal
1701 	 * IO on queueing nor completion.  Accounting the containing
1702 	 * request is enough.
1703 	 */
1704 	if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1705 		unsigned long duration = jiffies - req->start_time;
1706 		const int rw = rq_data_dir(req);
1707 
1708 		__disk_stat_inc(disk, ios[rw]);
1709 		__disk_stat_add(disk, ticks[rw], duration);
1710 		disk_round_stats(disk);
1711 		disk->in_flight--;
1712 	}
1713 
1714 	if (req->end_io)
1715 		req->end_io(req, error);
1716 	else {
1717 		if (blk_bidi_rq(req))
1718 			__blk_put_request(req->next_rq->q, req->next_rq);
1719 
1720 		__blk_put_request(req->q, req);
1721 	}
1722 }
1723 
1724 static inline void __end_request(struct request *rq, int uptodate,
1725 				 unsigned int nr_bytes)
1726 {
1727 	int error = 0;
1728 
1729 	if (uptodate <= 0)
1730 		error = uptodate ? uptodate : -EIO;
1731 
1732 	__blk_end_request(rq, error, nr_bytes);
1733 }
1734 
1735 /**
1736  * blk_rq_bytes - Returns bytes left to complete in the entire request
1737  **/
1738 unsigned int blk_rq_bytes(struct request *rq)
1739 {
1740 	if (blk_fs_request(rq))
1741 		return rq->hard_nr_sectors << 9;
1742 
1743 	return rq->data_len;
1744 }
1745 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1746 
1747 /**
1748  * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1749  **/
1750 unsigned int blk_rq_cur_bytes(struct request *rq)
1751 {
1752 	if (blk_fs_request(rq))
1753 		return rq->current_nr_sectors << 9;
1754 
1755 	if (rq->bio)
1756 		return rq->bio->bi_size;
1757 
1758 	return rq->data_len;
1759 }
1760 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1761 
1762 /**
1763  * end_queued_request - end all I/O on a queued request
1764  * @rq:		the request being processed
1765  * @uptodate:	error value or 0/1 uptodate flag
1766  *
1767  * Description:
1768  *     Ends all I/O on a request, and removes it from the block layer queues.
1769  *     Not suitable for normal IO completion, unless the driver still has
1770  *     the request attached to the block layer.
1771  *
1772  **/
1773 void end_queued_request(struct request *rq, int uptodate)
1774 {
1775 	__end_request(rq, uptodate, blk_rq_bytes(rq));
1776 }
1777 EXPORT_SYMBOL(end_queued_request);
1778 
1779 /**
1780  * end_dequeued_request - end all I/O on a dequeued request
1781  * @rq:		the request being processed
1782  * @uptodate:	error value or 0/1 uptodate flag
1783  *
1784  * Description:
1785  *     Ends all I/O on a request. The request must already have been
1786  *     dequeued using blkdev_dequeue_request(), as is normally the case
1787  *     for most drivers.
1788  *
1789  **/
1790 void end_dequeued_request(struct request *rq, int uptodate)
1791 {
1792 	__end_request(rq, uptodate, blk_rq_bytes(rq));
1793 }
1794 EXPORT_SYMBOL(end_dequeued_request);
1795 
1796 
1797 /**
1798  * end_request - end I/O on the current segment of the request
1799  * @req:	the request being processed
1800  * @uptodate:	error value or 0/1 uptodate flag
1801  *
1802  * Description:
1803  *     Ends I/O on the current segment of a request. If that is the only
1804  *     remaining segment, the request is also completed and freed.
1805  *
1806  *     This is a remnant of how older block drivers handled IO completions.
1807  *     Modern drivers typically end IO on the full request in one go, unless
1808  *     they have a residual value to account for. For that case this function
1809  *     isn't really useful, unless the residual just happens to be the
1810  *     full current segment. In other words, don't use this function in new
1811  *     code. Either use end_request_completely(), or the
1812  *     end_that_request_chunk() (along with end_that_request_last()) for
1813  *     partial completions.
1814  *
1815  **/
1816 void end_request(struct request *req, int uptodate)
1817 {
1818 	__end_request(req, uptodate, req->hard_cur_sectors << 9);
1819 }
1820 EXPORT_SYMBOL(end_request);
1821 
1822 /**
1823  * blk_end_io - Generic end_io function to complete a request.
1824  * @rq:           the request being processed
1825  * @error:        0 for success, < 0 for error
1826  * @nr_bytes:     number of bytes to complete @rq
1827  * @bidi_bytes:   number of bytes to complete @rq->next_rq
1828  * @drv_callback: function called between completion of bios in the request
1829  *                and completion of the request.
1830  *                If the callback returns non 0, this helper returns without
1831  *                completion of the request.
1832  *
1833  * Description:
1834  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1835  *     If @rq has leftover, sets it up for the next range of segments.
1836  *
1837  * Return:
1838  *     0 - we are done with this request
1839  *     1 - this request is not freed yet, it still has pending buffers.
1840  **/
1841 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1842 		      unsigned int bidi_bytes,
1843 		      int (drv_callback)(struct request *))
1844 {
1845 	struct request_queue *q = rq->q;
1846 	unsigned long flags = 0UL;
1847 
1848 	if (blk_fs_request(rq) || blk_pc_request(rq)) {
1849 		if (__end_that_request_first(rq, error, nr_bytes))
1850 			return 1;
1851 
1852 		/* Bidi request must be completed as a whole */
1853 		if (blk_bidi_rq(rq) &&
1854 		    __end_that_request_first(rq->next_rq, error, bidi_bytes))
1855 			return 1;
1856 	}
1857 
1858 	/* Special feature for tricky drivers */
1859 	if (drv_callback && drv_callback(rq))
1860 		return 1;
1861 
1862 	add_disk_randomness(rq->rq_disk);
1863 
1864 	spin_lock_irqsave(q->queue_lock, flags);
1865 	end_that_request_last(rq, error);
1866 	spin_unlock_irqrestore(q->queue_lock, flags);
1867 
1868 	return 0;
1869 }
1870 
1871 /**
1872  * blk_end_request - Helper function for drivers to complete the request.
1873  * @rq:       the request being processed
1874  * @error:    0 for success, < 0 for error
1875  * @nr_bytes: number of bytes to complete
1876  *
1877  * Description:
1878  *     Ends I/O on a number of bytes attached to @rq.
1879  *     If @rq has leftover, sets it up for the next range of segments.
1880  *
1881  * Return:
1882  *     0 - we are done with this request
1883  *     1 - still buffers pending for this request
1884  **/
1885 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1886 {
1887 	return blk_end_io(rq, error, nr_bytes, 0, NULL);
1888 }
1889 EXPORT_SYMBOL_GPL(blk_end_request);
1890 
1891 /**
1892  * __blk_end_request - Helper function for drivers to complete the request.
1893  * @rq:       the request being processed
1894  * @error:    0 for success, < 0 for error
1895  * @nr_bytes: number of bytes to complete
1896  *
1897  * Description:
1898  *     Must be called with queue lock held unlike blk_end_request().
1899  *
1900  * Return:
1901  *     0 - we are done with this request
1902  *     1 - still buffers pending for this request
1903  **/
1904 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1905 {
1906 	if (blk_fs_request(rq) || blk_pc_request(rq)) {
1907 		if (__end_that_request_first(rq, error, nr_bytes))
1908 			return 1;
1909 	}
1910 
1911 	add_disk_randomness(rq->rq_disk);
1912 
1913 	end_that_request_last(rq, error);
1914 
1915 	return 0;
1916 }
1917 EXPORT_SYMBOL_GPL(__blk_end_request);
1918 
1919 /**
1920  * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1921  * @rq:         the bidi request being processed
1922  * @error:      0 for success, < 0 for error
1923  * @nr_bytes:   number of bytes to complete @rq
1924  * @bidi_bytes: number of bytes to complete @rq->next_rq
1925  *
1926  * Description:
1927  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1928  *
1929  * Return:
1930  *     0 - we are done with this request
1931  *     1 - still buffers pending for this request
1932  **/
1933 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1934 			 unsigned int bidi_bytes)
1935 {
1936 	return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1937 }
1938 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1939 
1940 /**
1941  * blk_end_request_callback - Special helper function for tricky drivers
1942  * @rq:           the request being processed
1943  * @error:        0 for success, < 0 for error
1944  * @nr_bytes:     number of bytes to complete
1945  * @drv_callback: function called between completion of bios in the request
1946  *                and completion of the request.
1947  *                If the callback returns non 0, this helper returns without
1948  *                completion of the request.
1949  *
1950  * Description:
1951  *     Ends I/O on a number of bytes attached to @rq.
1952  *     If @rq has leftover, sets it up for the next range of segments.
1953  *
1954  *     This special helper function is used only for existing tricky drivers.
1955  *     (e.g. cdrom_newpc_intr() of ide-cd)
1956  *     This interface will be removed when such drivers are rewritten.
1957  *     Don't use this interface in other places anymore.
1958  *
1959  * Return:
1960  *     0 - we are done with this request
1961  *     1 - this request is not freed yet.
1962  *         this request still has pending buffers or
1963  *         the driver doesn't want to finish this request yet.
1964  **/
1965 int blk_end_request_callback(struct request *rq, int error,
1966 			     unsigned int nr_bytes,
1967 			     int (drv_callback)(struct request *))
1968 {
1969 	return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
1970 }
1971 EXPORT_SYMBOL_GPL(blk_end_request_callback);
1972 
1973 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1974 		     struct bio *bio)
1975 {
1976 	/* first two bits are identical in rq->cmd_flags and bio->bi_rw */
1977 	rq->cmd_flags |= (bio->bi_rw & 3);
1978 
1979 	rq->nr_phys_segments = bio_phys_segments(q, bio);
1980 	rq->nr_hw_segments = bio_hw_segments(q, bio);
1981 	rq->current_nr_sectors = bio_cur_sectors(bio);
1982 	rq->hard_cur_sectors = rq->current_nr_sectors;
1983 	rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
1984 	rq->buffer = bio_data(bio);
1985 	rq->data_len = bio->bi_size;
1986 
1987 	rq->bio = rq->biotail = bio;
1988 
1989 	if (bio->bi_bdev)
1990 		rq->rq_disk = bio->bi_bdev->bd_disk;
1991 }
1992 
1993 int kblockd_schedule_work(struct work_struct *work)
1994 {
1995 	return queue_work(kblockd_workqueue, work);
1996 }
1997 EXPORT_SYMBOL(kblockd_schedule_work);
1998 
1999 void kblockd_flush_work(struct work_struct *work)
2000 {
2001 	cancel_work_sync(work);
2002 }
2003 EXPORT_SYMBOL(kblockd_flush_work);
2004 
2005 int __init blk_dev_init(void)
2006 {
2007 	int i;
2008 
2009 	kblockd_workqueue = create_workqueue("kblockd");
2010 	if (!kblockd_workqueue)
2011 		panic("Failed to create kblockd\n");
2012 
2013 	request_cachep = kmem_cache_create("blkdev_requests",
2014 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2015 
2016 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2017 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2018 
2019 	for_each_possible_cpu(i)
2020 		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2021 
2022 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
2023 	register_hotcpu_notifier(&blk_cpu_notifier);
2024 
2025 	return 0;
2026 }
2027 
2028