xref: /openbmc/linux/block/blk-core.c (revision 62eab49f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/blk-pm.h>
22 #include <linux/highmem.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/writeback.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/fault-inject.h>
34 #include <linux/list_sort.h>
35 #include <linux/delay.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/blk-cgroup.h>
39 #include <linux/t10-pi.h>
40 #include <linux/debugfs.h>
41 #include <linux/bpf.h>
42 #include <linux/psi.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
48 
49 #include "blk.h"
50 #include "blk-mq.h"
51 #include "blk-mq-sched.h"
52 #include "blk-pm.h"
53 #include "blk-rq-qos.h"
54 
55 struct dentry *blk_debugfs_root;
56 
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
63 
64 DEFINE_IDA(blk_queue_ida);
65 
66 /*
67  * For queue allocation
68  */
69 struct kmem_cache *blk_requestq_cachep;
70 
71 /*
72  * Controlling structure to kblockd
73  */
74 static struct workqueue_struct *kblockd_workqueue;
75 
76 /**
77  * blk_queue_flag_set - atomically set a queue flag
78  * @flag: flag to be set
79  * @q: request queue
80  */
81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82 {
83 	set_bit(flag, &q->queue_flags);
84 }
85 EXPORT_SYMBOL(blk_queue_flag_set);
86 
87 /**
88  * blk_queue_flag_clear - atomically clear a queue flag
89  * @flag: flag to be cleared
90  * @q: request queue
91  */
92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
93 {
94 	clear_bit(flag, &q->queue_flags);
95 }
96 EXPORT_SYMBOL(blk_queue_flag_clear);
97 
98 /**
99  * blk_queue_flag_test_and_set - atomically test and set a queue flag
100  * @flag: flag to be set
101  * @q: request queue
102  *
103  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104  * the flag was already set.
105  */
106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
107 {
108 	return test_and_set_bit(flag, &q->queue_flags);
109 }
110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
111 
112 void blk_rq_init(struct request_queue *q, struct request *rq)
113 {
114 	memset(rq, 0, sizeof(*rq));
115 
116 	INIT_LIST_HEAD(&rq->queuelist);
117 	rq->q = q;
118 	rq->__sector = (sector_t) -1;
119 	INIT_HLIST_NODE(&rq->hash);
120 	RB_CLEAR_NODE(&rq->rb_node);
121 	rq->tag = BLK_MQ_NO_TAG;
122 	rq->internal_tag = BLK_MQ_NO_TAG;
123 	rq->start_time_ns = ktime_get_ns();
124 	rq->part = NULL;
125 	refcount_set(&rq->ref, 1);
126 	blk_crypto_rq_set_defaults(rq);
127 }
128 EXPORT_SYMBOL(blk_rq_init);
129 
130 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
131 static const char *const blk_op_name[] = {
132 	REQ_OP_NAME(READ),
133 	REQ_OP_NAME(WRITE),
134 	REQ_OP_NAME(FLUSH),
135 	REQ_OP_NAME(DISCARD),
136 	REQ_OP_NAME(SECURE_ERASE),
137 	REQ_OP_NAME(ZONE_RESET),
138 	REQ_OP_NAME(ZONE_RESET_ALL),
139 	REQ_OP_NAME(ZONE_OPEN),
140 	REQ_OP_NAME(ZONE_CLOSE),
141 	REQ_OP_NAME(ZONE_FINISH),
142 	REQ_OP_NAME(ZONE_APPEND),
143 	REQ_OP_NAME(WRITE_SAME),
144 	REQ_OP_NAME(WRITE_ZEROES),
145 	REQ_OP_NAME(SCSI_IN),
146 	REQ_OP_NAME(SCSI_OUT),
147 	REQ_OP_NAME(DRV_IN),
148 	REQ_OP_NAME(DRV_OUT),
149 };
150 #undef REQ_OP_NAME
151 
152 /**
153  * blk_op_str - Return string XXX in the REQ_OP_XXX.
154  * @op: REQ_OP_XXX.
155  *
156  * Description: Centralize block layer function to convert REQ_OP_XXX into
157  * string format. Useful in the debugging and tracing bio or request. For
158  * invalid REQ_OP_XXX it returns string "UNKNOWN".
159  */
160 inline const char *blk_op_str(unsigned int op)
161 {
162 	const char *op_str = "UNKNOWN";
163 
164 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
165 		op_str = blk_op_name[op];
166 
167 	return op_str;
168 }
169 EXPORT_SYMBOL_GPL(blk_op_str);
170 
171 static const struct {
172 	int		errno;
173 	const char	*name;
174 } blk_errors[] = {
175 	[BLK_STS_OK]		= { 0,		"" },
176 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
177 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
178 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
179 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
180 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
181 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
182 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
183 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
184 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
185 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
186 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
187 
188 	/* device mapper special case, should not leak out: */
189 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
190 
191 	/* zone device specific errors */
192 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
193 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
194 
195 	/* everything else not covered above: */
196 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
197 };
198 
199 blk_status_t errno_to_blk_status(int errno)
200 {
201 	int i;
202 
203 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
204 		if (blk_errors[i].errno == errno)
205 			return (__force blk_status_t)i;
206 	}
207 
208 	return BLK_STS_IOERR;
209 }
210 EXPORT_SYMBOL_GPL(errno_to_blk_status);
211 
212 int blk_status_to_errno(blk_status_t status)
213 {
214 	int idx = (__force int)status;
215 
216 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
217 		return -EIO;
218 	return blk_errors[idx].errno;
219 }
220 EXPORT_SYMBOL_GPL(blk_status_to_errno);
221 
222 static void print_req_error(struct request *req, blk_status_t status,
223 		const char *caller)
224 {
225 	int idx = (__force int)status;
226 
227 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
228 		return;
229 
230 	printk_ratelimited(KERN_ERR
231 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
232 		"phys_seg %u prio class %u\n",
233 		caller, blk_errors[idx].name,
234 		req->rq_disk ? req->rq_disk->disk_name : "?",
235 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
236 		req->cmd_flags & ~REQ_OP_MASK,
237 		req->nr_phys_segments,
238 		IOPRIO_PRIO_CLASS(req->ioprio));
239 }
240 
241 static void req_bio_endio(struct request *rq, struct bio *bio,
242 			  unsigned int nbytes, blk_status_t error)
243 {
244 	if (error)
245 		bio->bi_status = error;
246 
247 	if (unlikely(rq->rq_flags & RQF_QUIET))
248 		bio_set_flag(bio, BIO_QUIET);
249 
250 	bio_advance(bio, nbytes);
251 
252 	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
253 		/*
254 		 * Partial zone append completions cannot be supported as the
255 		 * BIO fragments may end up not being written sequentially.
256 		 */
257 		if (bio->bi_iter.bi_size)
258 			bio->bi_status = BLK_STS_IOERR;
259 		else
260 			bio->bi_iter.bi_sector = rq->__sector;
261 	}
262 
263 	/* don't actually finish bio if it's part of flush sequence */
264 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
265 		bio_endio(bio);
266 }
267 
268 void blk_dump_rq_flags(struct request *rq, char *msg)
269 {
270 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
271 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
272 		(unsigned long long) rq->cmd_flags);
273 
274 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
275 	       (unsigned long long)blk_rq_pos(rq),
276 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
277 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
278 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
279 }
280 EXPORT_SYMBOL(blk_dump_rq_flags);
281 
282 /**
283  * blk_sync_queue - cancel any pending callbacks on a queue
284  * @q: the queue
285  *
286  * Description:
287  *     The block layer may perform asynchronous callback activity
288  *     on a queue, such as calling the unplug function after a timeout.
289  *     A block device may call blk_sync_queue to ensure that any
290  *     such activity is cancelled, thus allowing it to release resources
291  *     that the callbacks might use. The caller must already have made sure
292  *     that its ->submit_bio will not re-add plugging prior to calling
293  *     this function.
294  *
295  *     This function does not cancel any asynchronous activity arising
296  *     out of elevator or throttling code. That would require elevator_exit()
297  *     and blkcg_exit_queue() to be called with queue lock initialized.
298  *
299  */
300 void blk_sync_queue(struct request_queue *q)
301 {
302 	del_timer_sync(&q->timeout);
303 	cancel_work_sync(&q->timeout_work);
304 }
305 EXPORT_SYMBOL(blk_sync_queue);
306 
307 /**
308  * blk_set_pm_only - increment pm_only counter
309  * @q: request queue pointer
310  */
311 void blk_set_pm_only(struct request_queue *q)
312 {
313 	atomic_inc(&q->pm_only);
314 }
315 EXPORT_SYMBOL_GPL(blk_set_pm_only);
316 
317 void blk_clear_pm_only(struct request_queue *q)
318 {
319 	int pm_only;
320 
321 	pm_only = atomic_dec_return(&q->pm_only);
322 	WARN_ON_ONCE(pm_only < 0);
323 	if (pm_only == 0)
324 		wake_up_all(&q->mq_freeze_wq);
325 }
326 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
327 
328 /**
329  * blk_put_queue - decrement the request_queue refcount
330  * @q: the request_queue structure to decrement the refcount for
331  *
332  * Decrements the refcount of the request_queue kobject. When this reaches 0
333  * we'll have blk_release_queue() called.
334  *
335  * Context: Any context, but the last reference must not be dropped from
336  *          atomic context.
337  */
338 void blk_put_queue(struct request_queue *q)
339 {
340 	kobject_put(&q->kobj);
341 }
342 EXPORT_SYMBOL(blk_put_queue);
343 
344 void blk_set_queue_dying(struct request_queue *q)
345 {
346 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
347 
348 	/*
349 	 * When queue DYING flag is set, we need to block new req
350 	 * entering queue, so we call blk_freeze_queue_start() to
351 	 * prevent I/O from crossing blk_queue_enter().
352 	 */
353 	blk_freeze_queue_start(q);
354 
355 	if (queue_is_mq(q))
356 		blk_mq_wake_waiters(q);
357 
358 	/* Make blk_queue_enter() reexamine the DYING flag. */
359 	wake_up_all(&q->mq_freeze_wq);
360 }
361 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
362 
363 /**
364  * blk_cleanup_queue - shutdown a request queue
365  * @q: request queue to shutdown
366  *
367  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
368  * put it.  All future requests will be failed immediately with -ENODEV.
369  *
370  * Context: can sleep
371  */
372 void blk_cleanup_queue(struct request_queue *q)
373 {
374 	/* cannot be called from atomic context */
375 	might_sleep();
376 
377 	WARN_ON_ONCE(blk_queue_registered(q));
378 
379 	/* mark @q DYING, no new request or merges will be allowed afterwards */
380 	blk_set_queue_dying(q);
381 
382 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
383 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
384 
385 	/*
386 	 * Drain all requests queued before DYING marking. Set DEAD flag to
387 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
388 	 * after draining finished.
389 	 */
390 	blk_freeze_queue(q);
391 
392 	rq_qos_exit(q);
393 
394 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
395 
396 	/* for synchronous bio-based driver finish in-flight integrity i/o */
397 	blk_flush_integrity();
398 
399 	/* @q won't process any more request, flush async actions */
400 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
401 	blk_sync_queue(q);
402 
403 	if (queue_is_mq(q))
404 		blk_mq_exit_queue(q);
405 
406 	/*
407 	 * In theory, request pool of sched_tags belongs to request queue.
408 	 * However, the current implementation requires tag_set for freeing
409 	 * requests, so free the pool now.
410 	 *
411 	 * Queue has become frozen, there can't be any in-queue requests, so
412 	 * it is safe to free requests now.
413 	 */
414 	mutex_lock(&q->sysfs_lock);
415 	if (q->elevator)
416 		blk_mq_sched_free_requests(q);
417 	mutex_unlock(&q->sysfs_lock);
418 
419 	percpu_ref_exit(&q->q_usage_counter);
420 
421 	/* @q is and will stay empty, shutdown and put */
422 	blk_put_queue(q);
423 }
424 EXPORT_SYMBOL(blk_cleanup_queue);
425 
426 /**
427  * blk_queue_enter() - try to increase q->q_usage_counter
428  * @q: request queue pointer
429  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
430  */
431 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
432 {
433 	const bool pm = flags & BLK_MQ_REQ_PM;
434 
435 	while (true) {
436 		bool success = false;
437 
438 		rcu_read_lock();
439 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
440 			/*
441 			 * The code that increments the pm_only counter is
442 			 * responsible for ensuring that that counter is
443 			 * globally visible before the queue is unfrozen.
444 			 */
445 			if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
446 			    !blk_queue_pm_only(q)) {
447 				success = true;
448 			} else {
449 				percpu_ref_put(&q->q_usage_counter);
450 			}
451 		}
452 		rcu_read_unlock();
453 
454 		if (success)
455 			return 0;
456 
457 		if (flags & BLK_MQ_REQ_NOWAIT)
458 			return -EBUSY;
459 
460 		/*
461 		 * read pair of barrier in blk_freeze_queue_start(),
462 		 * we need to order reading __PERCPU_REF_DEAD flag of
463 		 * .q_usage_counter and reading .mq_freeze_depth or
464 		 * queue dying flag, otherwise the following wait may
465 		 * never return if the two reads are reordered.
466 		 */
467 		smp_rmb();
468 
469 		wait_event(q->mq_freeze_wq,
470 			   (!q->mq_freeze_depth &&
471 			    blk_pm_resume_queue(pm, q)) ||
472 			   blk_queue_dying(q));
473 		if (blk_queue_dying(q))
474 			return -ENODEV;
475 	}
476 }
477 
478 static inline int bio_queue_enter(struct bio *bio)
479 {
480 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
481 	bool nowait = bio->bi_opf & REQ_NOWAIT;
482 	int ret;
483 
484 	ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
485 	if (unlikely(ret)) {
486 		if (nowait && !blk_queue_dying(q))
487 			bio_wouldblock_error(bio);
488 		else
489 			bio_io_error(bio);
490 	}
491 
492 	return ret;
493 }
494 
495 void blk_queue_exit(struct request_queue *q)
496 {
497 	percpu_ref_put(&q->q_usage_counter);
498 }
499 
500 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
501 {
502 	struct request_queue *q =
503 		container_of(ref, struct request_queue, q_usage_counter);
504 
505 	wake_up_all(&q->mq_freeze_wq);
506 }
507 
508 static void blk_rq_timed_out_timer(struct timer_list *t)
509 {
510 	struct request_queue *q = from_timer(q, t, timeout);
511 
512 	kblockd_schedule_work(&q->timeout_work);
513 }
514 
515 static void blk_timeout_work(struct work_struct *work)
516 {
517 }
518 
519 struct request_queue *blk_alloc_queue(int node_id)
520 {
521 	struct request_queue *q;
522 	int ret;
523 
524 	q = kmem_cache_alloc_node(blk_requestq_cachep,
525 				GFP_KERNEL | __GFP_ZERO, node_id);
526 	if (!q)
527 		return NULL;
528 
529 	q->last_merge = NULL;
530 
531 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
532 	if (q->id < 0)
533 		goto fail_q;
534 
535 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
536 	if (ret)
537 		goto fail_id;
538 
539 	q->backing_dev_info = bdi_alloc(node_id);
540 	if (!q->backing_dev_info)
541 		goto fail_split;
542 
543 	q->stats = blk_alloc_queue_stats();
544 	if (!q->stats)
545 		goto fail_stats;
546 
547 	q->node = node_id;
548 
549 	atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
550 
551 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
552 		    laptop_mode_timer_fn, 0);
553 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
554 	INIT_WORK(&q->timeout_work, blk_timeout_work);
555 	INIT_LIST_HEAD(&q->icq_list);
556 #ifdef CONFIG_BLK_CGROUP
557 	INIT_LIST_HEAD(&q->blkg_list);
558 #endif
559 
560 	kobject_init(&q->kobj, &blk_queue_ktype);
561 
562 	mutex_init(&q->debugfs_mutex);
563 	mutex_init(&q->sysfs_lock);
564 	mutex_init(&q->sysfs_dir_lock);
565 	spin_lock_init(&q->queue_lock);
566 
567 	init_waitqueue_head(&q->mq_freeze_wq);
568 	mutex_init(&q->mq_freeze_lock);
569 
570 	/*
571 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
572 	 * See blk_register_queue() for details.
573 	 */
574 	if (percpu_ref_init(&q->q_usage_counter,
575 				blk_queue_usage_counter_release,
576 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
577 		goto fail_bdi;
578 
579 	if (blkcg_init_queue(q))
580 		goto fail_ref;
581 
582 	blk_queue_dma_alignment(q, 511);
583 	blk_set_default_limits(&q->limits);
584 	q->nr_requests = BLKDEV_MAX_RQ;
585 
586 	return q;
587 
588 fail_ref:
589 	percpu_ref_exit(&q->q_usage_counter);
590 fail_bdi:
591 	blk_free_queue_stats(q->stats);
592 fail_stats:
593 	bdi_put(q->backing_dev_info);
594 fail_split:
595 	bioset_exit(&q->bio_split);
596 fail_id:
597 	ida_simple_remove(&blk_queue_ida, q->id);
598 fail_q:
599 	kmem_cache_free(blk_requestq_cachep, q);
600 	return NULL;
601 }
602 EXPORT_SYMBOL(blk_alloc_queue);
603 
604 /**
605  * blk_get_queue - increment the request_queue refcount
606  * @q: the request_queue structure to increment the refcount for
607  *
608  * Increment the refcount of the request_queue kobject.
609  *
610  * Context: Any context.
611  */
612 bool blk_get_queue(struct request_queue *q)
613 {
614 	if (likely(!blk_queue_dying(q))) {
615 		__blk_get_queue(q);
616 		return true;
617 	}
618 
619 	return false;
620 }
621 EXPORT_SYMBOL(blk_get_queue);
622 
623 /**
624  * blk_get_request - allocate a request
625  * @q: request queue to allocate a request for
626  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
627  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
628  */
629 struct request *blk_get_request(struct request_queue *q, unsigned int op,
630 				blk_mq_req_flags_t flags)
631 {
632 	struct request *req;
633 
634 	WARN_ON_ONCE(op & REQ_NOWAIT);
635 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
636 
637 	req = blk_mq_alloc_request(q, op, flags);
638 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
639 		q->mq_ops->initialize_rq_fn(req);
640 
641 	return req;
642 }
643 EXPORT_SYMBOL(blk_get_request);
644 
645 void blk_put_request(struct request *req)
646 {
647 	blk_mq_free_request(req);
648 }
649 EXPORT_SYMBOL(blk_put_request);
650 
651 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
652 {
653 	char b[BDEVNAME_SIZE];
654 
655 	pr_info_ratelimited("attempt to access beyond end of device\n"
656 			    "%s: rw=%d, want=%llu, limit=%llu\n",
657 			    bio_devname(bio, b), bio->bi_opf,
658 			    bio_end_sector(bio), maxsector);
659 }
660 
661 #ifdef CONFIG_FAIL_MAKE_REQUEST
662 
663 static DECLARE_FAULT_ATTR(fail_make_request);
664 
665 static int __init setup_fail_make_request(char *str)
666 {
667 	return setup_fault_attr(&fail_make_request, str);
668 }
669 __setup("fail_make_request=", setup_fail_make_request);
670 
671 static bool should_fail_request(struct block_device *part, unsigned int bytes)
672 {
673 	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
674 }
675 
676 static int __init fail_make_request_debugfs(void)
677 {
678 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
679 						NULL, &fail_make_request);
680 
681 	return PTR_ERR_OR_ZERO(dir);
682 }
683 
684 late_initcall(fail_make_request_debugfs);
685 
686 #else /* CONFIG_FAIL_MAKE_REQUEST */
687 
688 static inline bool should_fail_request(struct block_device *part,
689 					unsigned int bytes)
690 {
691 	return false;
692 }
693 
694 #endif /* CONFIG_FAIL_MAKE_REQUEST */
695 
696 static inline bool bio_check_ro(struct bio *bio)
697 {
698 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
699 		char b[BDEVNAME_SIZE];
700 
701 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
702 			return false;
703 
704 		WARN_ONCE(1,
705 		       "Trying to write to read-only block-device %s (partno %d)\n",
706 			bio_devname(bio, b), bio->bi_bdev->bd_partno);
707 		/* Older lvm-tools actually trigger this */
708 		return false;
709 	}
710 
711 	return false;
712 }
713 
714 static noinline int should_fail_bio(struct bio *bio)
715 {
716 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
717 		return -EIO;
718 	return 0;
719 }
720 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
721 
722 /*
723  * Check whether this bio extends beyond the end of the device or partition.
724  * This may well happen - the kernel calls bread() without checking the size of
725  * the device, e.g., when mounting a file system.
726  */
727 static inline int bio_check_eod(struct bio *bio)
728 {
729 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
730 	unsigned int nr_sectors = bio_sectors(bio);
731 
732 	if (nr_sectors && maxsector &&
733 	    (nr_sectors > maxsector ||
734 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
735 		handle_bad_sector(bio, maxsector);
736 		return -EIO;
737 	}
738 	return 0;
739 }
740 
741 /*
742  * Remap block n of partition p to block n+start(p) of the disk.
743  */
744 static int blk_partition_remap(struct bio *bio)
745 {
746 	struct block_device *p = bio->bi_bdev;
747 
748 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
749 		return -EIO;
750 	if (bio_sectors(bio)) {
751 		bio->bi_iter.bi_sector += p->bd_start_sect;
752 		trace_block_bio_remap(bio, p->bd_dev,
753 				      bio->bi_iter.bi_sector -
754 				      p->bd_start_sect);
755 	}
756 	bio_set_flag(bio, BIO_REMAPPED);
757 	return 0;
758 }
759 
760 /*
761  * Check write append to a zoned block device.
762  */
763 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
764 						 struct bio *bio)
765 {
766 	sector_t pos = bio->bi_iter.bi_sector;
767 	int nr_sectors = bio_sectors(bio);
768 
769 	/* Only applicable to zoned block devices */
770 	if (!blk_queue_is_zoned(q))
771 		return BLK_STS_NOTSUPP;
772 
773 	/* The bio sector must point to the start of a sequential zone */
774 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
775 	    !blk_queue_zone_is_seq(q, pos))
776 		return BLK_STS_IOERR;
777 
778 	/*
779 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
780 	 * split and could result in non-contiguous sectors being written in
781 	 * different zones.
782 	 */
783 	if (nr_sectors > q->limits.chunk_sectors)
784 		return BLK_STS_IOERR;
785 
786 	/* Make sure the BIO is small enough and will not get split */
787 	if (nr_sectors > q->limits.max_zone_append_sectors)
788 		return BLK_STS_IOERR;
789 
790 	bio->bi_opf |= REQ_NOMERGE;
791 
792 	return BLK_STS_OK;
793 }
794 
795 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
796 {
797 	struct block_device *bdev = bio->bi_bdev;
798 	struct request_queue *q = bdev->bd_disk->queue;
799 	blk_status_t status = BLK_STS_IOERR;
800 	struct blk_plug *plug;
801 
802 	might_sleep();
803 
804 	plug = blk_mq_plug(q, bio);
805 	if (plug && plug->nowait)
806 		bio->bi_opf |= REQ_NOWAIT;
807 
808 	/*
809 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
810 	 * if queue does not support NOWAIT.
811 	 */
812 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
813 		goto not_supported;
814 
815 	if (should_fail_bio(bio))
816 		goto end_io;
817 	if (unlikely(bio_check_ro(bio)))
818 		goto end_io;
819 	if (!bio_flagged(bio, BIO_REMAPPED)) {
820 		if (unlikely(bio_check_eod(bio)))
821 			goto end_io;
822 		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
823 			goto end_io;
824 	}
825 
826 	/*
827 	 * Filter flush bio's early so that bio based drivers without flush
828 	 * support don't have to worry about them.
829 	 */
830 	if (op_is_flush(bio->bi_opf) &&
831 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
832 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
833 		if (!bio_sectors(bio)) {
834 			status = BLK_STS_OK;
835 			goto end_io;
836 		}
837 	}
838 
839 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
840 		bio->bi_opf &= ~REQ_HIPRI;
841 
842 	switch (bio_op(bio)) {
843 	case REQ_OP_DISCARD:
844 		if (!blk_queue_discard(q))
845 			goto not_supported;
846 		break;
847 	case REQ_OP_SECURE_ERASE:
848 		if (!blk_queue_secure_erase(q))
849 			goto not_supported;
850 		break;
851 	case REQ_OP_WRITE_SAME:
852 		if (!q->limits.max_write_same_sectors)
853 			goto not_supported;
854 		break;
855 	case REQ_OP_ZONE_APPEND:
856 		status = blk_check_zone_append(q, bio);
857 		if (status != BLK_STS_OK)
858 			goto end_io;
859 		break;
860 	case REQ_OP_ZONE_RESET:
861 	case REQ_OP_ZONE_OPEN:
862 	case REQ_OP_ZONE_CLOSE:
863 	case REQ_OP_ZONE_FINISH:
864 		if (!blk_queue_is_zoned(q))
865 			goto not_supported;
866 		break;
867 	case REQ_OP_ZONE_RESET_ALL:
868 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
869 			goto not_supported;
870 		break;
871 	case REQ_OP_WRITE_ZEROES:
872 		if (!q->limits.max_write_zeroes_sectors)
873 			goto not_supported;
874 		break;
875 	default:
876 		break;
877 	}
878 
879 	/*
880 	 * Various block parts want %current->io_context, so allocate it up
881 	 * front rather than dealing with lots of pain to allocate it only
882 	 * where needed. This may fail and the block layer knows how to live
883 	 * with it.
884 	 */
885 	if (unlikely(!current->io_context))
886 		create_task_io_context(current, GFP_ATOMIC, q->node);
887 
888 	if (blk_throtl_bio(bio)) {
889 		blkcg_bio_issue_init(bio);
890 		return false;
891 	}
892 
893 	blk_cgroup_bio_start(bio);
894 	blkcg_bio_issue_init(bio);
895 
896 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
897 		trace_block_bio_queue(bio);
898 		/* Now that enqueuing has been traced, we need to trace
899 		 * completion as well.
900 		 */
901 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
902 	}
903 	return true;
904 
905 not_supported:
906 	status = BLK_STS_NOTSUPP;
907 end_io:
908 	bio->bi_status = status;
909 	bio_endio(bio);
910 	return false;
911 }
912 
913 static blk_qc_t __submit_bio(struct bio *bio)
914 {
915 	struct gendisk *disk = bio->bi_bdev->bd_disk;
916 	blk_qc_t ret = BLK_QC_T_NONE;
917 
918 	if (blk_crypto_bio_prep(&bio)) {
919 		if (!disk->fops->submit_bio)
920 			return blk_mq_submit_bio(bio);
921 		ret = disk->fops->submit_bio(bio);
922 	}
923 	blk_queue_exit(disk->queue);
924 	return ret;
925 }
926 
927 /*
928  * The loop in this function may be a bit non-obvious, and so deserves some
929  * explanation:
930  *
931  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
932  *    that), so we have a list with a single bio.
933  *  - We pretend that we have just taken it off a longer list, so we assign
934  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
935  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
936  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
937  *    non-NULL value in bio_list and re-enter the loop from the top.
938  *  - In this case we really did just take the bio of the top of the list (no
939  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
940  *    again.
941  *
942  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
943  * bio_list_on_stack[1] contains bios that were submitted before the current
944  *	->submit_bio_bio, but that haven't been processed yet.
945  */
946 static blk_qc_t __submit_bio_noacct(struct bio *bio)
947 {
948 	struct bio_list bio_list_on_stack[2];
949 	blk_qc_t ret = BLK_QC_T_NONE;
950 
951 	BUG_ON(bio->bi_next);
952 
953 	bio_list_init(&bio_list_on_stack[0]);
954 	current->bio_list = bio_list_on_stack;
955 
956 	do {
957 		struct request_queue *q = bio->bi_bdev->bd_disk->queue;
958 		struct bio_list lower, same;
959 
960 		if (unlikely(bio_queue_enter(bio) != 0))
961 			continue;
962 
963 		/*
964 		 * Create a fresh bio_list for all subordinate requests.
965 		 */
966 		bio_list_on_stack[1] = bio_list_on_stack[0];
967 		bio_list_init(&bio_list_on_stack[0]);
968 
969 		ret = __submit_bio(bio);
970 
971 		/*
972 		 * Sort new bios into those for a lower level and those for the
973 		 * same level.
974 		 */
975 		bio_list_init(&lower);
976 		bio_list_init(&same);
977 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
978 			if (q == bio->bi_bdev->bd_disk->queue)
979 				bio_list_add(&same, bio);
980 			else
981 				bio_list_add(&lower, bio);
982 
983 		/*
984 		 * Now assemble so we handle the lowest level first.
985 		 */
986 		bio_list_merge(&bio_list_on_stack[0], &lower);
987 		bio_list_merge(&bio_list_on_stack[0], &same);
988 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
989 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
990 
991 	current->bio_list = NULL;
992 	return ret;
993 }
994 
995 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
996 {
997 	struct bio_list bio_list[2] = { };
998 	blk_qc_t ret = BLK_QC_T_NONE;
999 
1000 	current->bio_list = bio_list;
1001 
1002 	do {
1003 		struct gendisk *disk = bio->bi_bdev->bd_disk;
1004 
1005 		if (unlikely(bio_queue_enter(bio) != 0))
1006 			continue;
1007 
1008 		if (!blk_crypto_bio_prep(&bio)) {
1009 			blk_queue_exit(disk->queue);
1010 			ret = BLK_QC_T_NONE;
1011 			continue;
1012 		}
1013 
1014 		ret = blk_mq_submit_bio(bio);
1015 	} while ((bio = bio_list_pop(&bio_list[0])));
1016 
1017 	current->bio_list = NULL;
1018 	return ret;
1019 }
1020 
1021 /**
1022  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1023  * @bio:  The bio describing the location in memory and on the device.
1024  *
1025  * This is a version of submit_bio() that shall only be used for I/O that is
1026  * resubmitted to lower level drivers by stacking block drivers.  All file
1027  * systems and other upper level users of the block layer should use
1028  * submit_bio() instead.
1029  */
1030 blk_qc_t submit_bio_noacct(struct bio *bio)
1031 {
1032 	if (!submit_bio_checks(bio))
1033 		return BLK_QC_T_NONE;
1034 
1035 	/*
1036 	 * We only want one ->submit_bio to be active at a time, else stack
1037 	 * usage with stacked devices could be a problem.  Use current->bio_list
1038 	 * to collect a list of requests submited by a ->submit_bio method while
1039 	 * it is active, and then process them after it returned.
1040 	 */
1041 	if (current->bio_list) {
1042 		bio_list_add(&current->bio_list[0], bio);
1043 		return BLK_QC_T_NONE;
1044 	}
1045 
1046 	if (!bio->bi_bdev->bd_disk->fops->submit_bio)
1047 		return __submit_bio_noacct_mq(bio);
1048 	return __submit_bio_noacct(bio);
1049 }
1050 EXPORT_SYMBOL(submit_bio_noacct);
1051 
1052 /**
1053  * submit_bio - submit a bio to the block device layer for I/O
1054  * @bio: The &struct bio which describes the I/O
1055  *
1056  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1057  * fully set up &struct bio that describes the I/O that needs to be done.  The
1058  * bio will be send to the device described by the bi_bdev field.
1059  *
1060  * The success/failure status of the request, along with notification of
1061  * completion, is delivered asynchronously through the ->bi_end_io() callback
1062  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1063  * been called.
1064  */
1065 blk_qc_t submit_bio(struct bio *bio)
1066 {
1067 	if (blkcg_punt_bio_submit(bio))
1068 		return BLK_QC_T_NONE;
1069 
1070 	/*
1071 	 * If it's a regular read/write or a barrier with data attached,
1072 	 * go through the normal accounting stuff before submission.
1073 	 */
1074 	if (bio_has_data(bio)) {
1075 		unsigned int count;
1076 
1077 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1078 			count = queue_logical_block_size(
1079 					bio->bi_bdev->bd_disk->queue) >> 9;
1080 		else
1081 			count = bio_sectors(bio);
1082 
1083 		if (op_is_write(bio_op(bio))) {
1084 			count_vm_events(PGPGOUT, count);
1085 		} else {
1086 			task_io_account_read(bio->bi_iter.bi_size);
1087 			count_vm_events(PGPGIN, count);
1088 		}
1089 
1090 		if (unlikely(block_dump)) {
1091 			char b[BDEVNAME_SIZE];
1092 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1093 			current->comm, task_pid_nr(current),
1094 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1095 				(unsigned long long)bio->bi_iter.bi_sector,
1096 				bio_devname(bio, b), count);
1097 		}
1098 	}
1099 
1100 	/*
1101 	 * If we're reading data that is part of the userspace workingset, count
1102 	 * submission time as memory stall.  When the device is congested, or
1103 	 * the submitting cgroup IO-throttled, submission can be a significant
1104 	 * part of overall IO time.
1105 	 */
1106 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1107 	    bio_flagged(bio, BIO_WORKINGSET))) {
1108 		unsigned long pflags;
1109 		blk_qc_t ret;
1110 
1111 		psi_memstall_enter(&pflags);
1112 		ret = submit_bio_noacct(bio);
1113 		psi_memstall_leave(&pflags);
1114 
1115 		return ret;
1116 	}
1117 
1118 	return submit_bio_noacct(bio);
1119 }
1120 EXPORT_SYMBOL(submit_bio);
1121 
1122 /**
1123  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1124  *                              for the new queue limits
1125  * @q:  the queue
1126  * @rq: the request being checked
1127  *
1128  * Description:
1129  *    @rq may have been made based on weaker limitations of upper-level queues
1130  *    in request stacking drivers, and it may violate the limitation of @q.
1131  *    Since the block layer and the underlying device driver trust @rq
1132  *    after it is inserted to @q, it should be checked against @q before
1133  *    the insertion using this generic function.
1134  *
1135  *    Request stacking drivers like request-based dm may change the queue
1136  *    limits when retrying requests on other queues. Those requests need
1137  *    to be checked against the new queue limits again during dispatch.
1138  */
1139 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1140 				      struct request *rq)
1141 {
1142 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1143 
1144 	if (blk_rq_sectors(rq) > max_sectors) {
1145 		/*
1146 		 * SCSI device does not have a good way to return if
1147 		 * Write Same/Zero is actually supported. If a device rejects
1148 		 * a non-read/write command (discard, write same,etc.) the
1149 		 * low-level device driver will set the relevant queue limit to
1150 		 * 0 to prevent blk-lib from issuing more of the offending
1151 		 * operations. Commands queued prior to the queue limit being
1152 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1153 		 * errors being propagated to upper layers.
1154 		 */
1155 		if (max_sectors == 0)
1156 			return BLK_STS_NOTSUPP;
1157 
1158 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1159 			__func__, blk_rq_sectors(rq), max_sectors);
1160 		return BLK_STS_IOERR;
1161 	}
1162 
1163 	/*
1164 	 * queue's settings related to segment counting like q->bounce_pfn
1165 	 * may differ from that of other stacking queues.
1166 	 * Recalculate it to check the request correctly on this queue's
1167 	 * limitation.
1168 	 */
1169 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1170 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1171 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1172 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1173 		return BLK_STS_IOERR;
1174 	}
1175 
1176 	return BLK_STS_OK;
1177 }
1178 
1179 /**
1180  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1181  * @q:  the queue to submit the request
1182  * @rq: the request being queued
1183  */
1184 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1185 {
1186 	blk_status_t ret;
1187 
1188 	ret = blk_cloned_rq_check_limits(q, rq);
1189 	if (ret != BLK_STS_OK)
1190 		return ret;
1191 
1192 	if (rq->rq_disk &&
1193 	    should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1194 		return BLK_STS_IOERR;
1195 
1196 	if (blk_crypto_insert_cloned_request(rq))
1197 		return BLK_STS_IOERR;
1198 
1199 	if (blk_queue_io_stat(q))
1200 		blk_account_io_start(rq);
1201 
1202 	/*
1203 	 * Since we have a scheduler attached on the top device,
1204 	 * bypass a potential scheduler on the bottom device for
1205 	 * insert.
1206 	 */
1207 	return blk_mq_request_issue_directly(rq, true);
1208 }
1209 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1210 
1211 /**
1212  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1213  * @rq: request to examine
1214  *
1215  * Description:
1216  *     A request could be merge of IOs which require different failure
1217  *     handling.  This function determines the number of bytes which
1218  *     can be failed from the beginning of the request without
1219  *     crossing into area which need to be retried further.
1220  *
1221  * Return:
1222  *     The number of bytes to fail.
1223  */
1224 unsigned int blk_rq_err_bytes(const struct request *rq)
1225 {
1226 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1227 	unsigned int bytes = 0;
1228 	struct bio *bio;
1229 
1230 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1231 		return blk_rq_bytes(rq);
1232 
1233 	/*
1234 	 * Currently the only 'mixing' which can happen is between
1235 	 * different fastfail types.  We can safely fail portions
1236 	 * which have all the failfast bits that the first one has -
1237 	 * the ones which are at least as eager to fail as the first
1238 	 * one.
1239 	 */
1240 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1241 		if ((bio->bi_opf & ff) != ff)
1242 			break;
1243 		bytes += bio->bi_iter.bi_size;
1244 	}
1245 
1246 	/* this could lead to infinite loop */
1247 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1248 	return bytes;
1249 }
1250 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1251 
1252 static void update_io_ticks(struct block_device *part, unsigned long now,
1253 		bool end)
1254 {
1255 	unsigned long stamp;
1256 again:
1257 	stamp = READ_ONCE(part->bd_stamp);
1258 	if (unlikely(stamp != now)) {
1259 		if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1260 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1261 	}
1262 	if (part->bd_partno) {
1263 		part = bdev_whole(part);
1264 		goto again;
1265 	}
1266 }
1267 
1268 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1269 {
1270 	if (req->part && blk_do_io_stat(req)) {
1271 		const int sgrp = op_stat_group(req_op(req));
1272 
1273 		part_stat_lock();
1274 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1275 		part_stat_unlock();
1276 	}
1277 }
1278 
1279 void blk_account_io_done(struct request *req, u64 now)
1280 {
1281 	/*
1282 	 * Account IO completion.  flush_rq isn't accounted as a
1283 	 * normal IO on queueing nor completion.  Accounting the
1284 	 * containing request is enough.
1285 	 */
1286 	if (req->part && blk_do_io_stat(req) &&
1287 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1288 		const int sgrp = op_stat_group(req_op(req));
1289 
1290 		part_stat_lock();
1291 		update_io_ticks(req->part, jiffies, true);
1292 		part_stat_inc(req->part, ios[sgrp]);
1293 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1294 		part_stat_unlock();
1295 	}
1296 }
1297 
1298 void blk_account_io_start(struct request *rq)
1299 {
1300 	if (!blk_do_io_stat(rq))
1301 		return;
1302 
1303 	/* passthrough requests can hold bios that do not have ->bi_bdev set */
1304 	if (rq->bio && rq->bio->bi_bdev)
1305 		rq->part = rq->bio->bi_bdev;
1306 	else
1307 		rq->part = rq->rq_disk->part0;
1308 
1309 	part_stat_lock();
1310 	update_io_ticks(rq->part, jiffies, false);
1311 	part_stat_unlock();
1312 }
1313 
1314 static unsigned long __part_start_io_acct(struct block_device *part,
1315 					  unsigned int sectors, unsigned int op)
1316 {
1317 	const int sgrp = op_stat_group(op);
1318 	unsigned long now = READ_ONCE(jiffies);
1319 
1320 	part_stat_lock();
1321 	update_io_ticks(part, now, false);
1322 	part_stat_inc(part, ios[sgrp]);
1323 	part_stat_add(part, sectors[sgrp], sectors);
1324 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1325 	part_stat_unlock();
1326 
1327 	return now;
1328 }
1329 
1330 /**
1331  * bio_start_io_acct - start I/O accounting for bio based drivers
1332  * @bio:	bio to start account for
1333  *
1334  * Returns the start time that should be passed back to bio_end_io_acct().
1335  */
1336 unsigned long bio_start_io_acct(struct bio *bio)
1337 {
1338 	return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
1339 }
1340 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1341 
1342 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1343 				 unsigned int op)
1344 {
1345 	return __part_start_io_acct(disk->part0, sectors, op);
1346 }
1347 EXPORT_SYMBOL(disk_start_io_acct);
1348 
1349 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1350 			       unsigned long start_time)
1351 {
1352 	const int sgrp = op_stat_group(op);
1353 	unsigned long now = READ_ONCE(jiffies);
1354 	unsigned long duration = now - start_time;
1355 
1356 	part_stat_lock();
1357 	update_io_ticks(part, now, true);
1358 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1359 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1360 	part_stat_unlock();
1361 }
1362 
1363 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1364 		struct block_device *orig_bdev)
1365 {
1366 	__part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1367 }
1368 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1369 
1370 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1371 		      unsigned long start_time)
1372 {
1373 	__part_end_io_acct(disk->part0, op, start_time);
1374 }
1375 EXPORT_SYMBOL(disk_end_io_acct);
1376 
1377 /*
1378  * Steal bios from a request and add them to a bio list.
1379  * The request must not have been partially completed before.
1380  */
1381 void blk_steal_bios(struct bio_list *list, struct request *rq)
1382 {
1383 	if (rq->bio) {
1384 		if (list->tail)
1385 			list->tail->bi_next = rq->bio;
1386 		else
1387 			list->head = rq->bio;
1388 		list->tail = rq->biotail;
1389 
1390 		rq->bio = NULL;
1391 		rq->biotail = NULL;
1392 	}
1393 
1394 	rq->__data_len = 0;
1395 }
1396 EXPORT_SYMBOL_GPL(blk_steal_bios);
1397 
1398 /**
1399  * blk_update_request - Special helper function for request stacking drivers
1400  * @req:      the request being processed
1401  * @error:    block status code
1402  * @nr_bytes: number of bytes to complete @req
1403  *
1404  * Description:
1405  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1406  *     the request structure even if @req doesn't have leftover.
1407  *     If @req has leftover, sets it up for the next range of segments.
1408  *
1409  *     This special helper function is only for request stacking drivers
1410  *     (e.g. request-based dm) so that they can handle partial completion.
1411  *     Actual device drivers should use blk_mq_end_request instead.
1412  *
1413  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1414  *     %false return from this function.
1415  *
1416  * Note:
1417  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1418  *	blk_rq_bytes() and in blk_update_request().
1419  *
1420  * Return:
1421  *     %false - this request doesn't have any more data
1422  *     %true  - this request has more data
1423  **/
1424 bool blk_update_request(struct request *req, blk_status_t error,
1425 		unsigned int nr_bytes)
1426 {
1427 	int total_bytes;
1428 
1429 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1430 
1431 	if (!req->bio)
1432 		return false;
1433 
1434 #ifdef CONFIG_BLK_DEV_INTEGRITY
1435 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1436 	    error == BLK_STS_OK)
1437 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1438 #endif
1439 
1440 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1441 		     !(req->rq_flags & RQF_QUIET)))
1442 		print_req_error(req, error, __func__);
1443 
1444 	blk_account_io_completion(req, nr_bytes);
1445 
1446 	total_bytes = 0;
1447 	while (req->bio) {
1448 		struct bio *bio = req->bio;
1449 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1450 
1451 		if (bio_bytes == bio->bi_iter.bi_size)
1452 			req->bio = bio->bi_next;
1453 
1454 		/* Completion has already been traced */
1455 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1456 		req_bio_endio(req, bio, bio_bytes, error);
1457 
1458 		total_bytes += bio_bytes;
1459 		nr_bytes -= bio_bytes;
1460 
1461 		if (!nr_bytes)
1462 			break;
1463 	}
1464 
1465 	/*
1466 	 * completely done
1467 	 */
1468 	if (!req->bio) {
1469 		/*
1470 		 * Reset counters so that the request stacking driver
1471 		 * can find how many bytes remain in the request
1472 		 * later.
1473 		 */
1474 		req->__data_len = 0;
1475 		return false;
1476 	}
1477 
1478 	req->__data_len -= total_bytes;
1479 
1480 	/* update sector only for requests with clear definition of sector */
1481 	if (!blk_rq_is_passthrough(req))
1482 		req->__sector += total_bytes >> 9;
1483 
1484 	/* mixed attributes always follow the first bio */
1485 	if (req->rq_flags & RQF_MIXED_MERGE) {
1486 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1487 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1488 	}
1489 
1490 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1491 		/*
1492 		 * If total number of sectors is less than the first segment
1493 		 * size, something has gone terribly wrong.
1494 		 */
1495 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1496 			blk_dump_rq_flags(req, "request botched");
1497 			req->__data_len = blk_rq_cur_bytes(req);
1498 		}
1499 
1500 		/* recalculate the number of segments */
1501 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1502 	}
1503 
1504 	return true;
1505 }
1506 EXPORT_SYMBOL_GPL(blk_update_request);
1507 
1508 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1509 /**
1510  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1511  * @rq: the request to be flushed
1512  *
1513  * Description:
1514  *     Flush all pages in @rq.
1515  */
1516 void rq_flush_dcache_pages(struct request *rq)
1517 {
1518 	struct req_iterator iter;
1519 	struct bio_vec bvec;
1520 
1521 	rq_for_each_segment(bvec, rq, iter)
1522 		flush_dcache_page(bvec.bv_page);
1523 }
1524 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1525 #endif
1526 
1527 /**
1528  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1529  * @q : the queue of the device being checked
1530  *
1531  * Description:
1532  *    Check if underlying low-level drivers of a device are busy.
1533  *    If the drivers want to export their busy state, they must set own
1534  *    exporting function using blk_queue_lld_busy() first.
1535  *
1536  *    Basically, this function is used only by request stacking drivers
1537  *    to stop dispatching requests to underlying devices when underlying
1538  *    devices are busy.  This behavior helps more I/O merging on the queue
1539  *    of the request stacking driver and prevents I/O throughput regression
1540  *    on burst I/O load.
1541  *
1542  * Return:
1543  *    0 - Not busy (The request stacking driver should dispatch request)
1544  *    1 - Busy (The request stacking driver should stop dispatching request)
1545  */
1546 int blk_lld_busy(struct request_queue *q)
1547 {
1548 	if (queue_is_mq(q) && q->mq_ops->busy)
1549 		return q->mq_ops->busy(q);
1550 
1551 	return 0;
1552 }
1553 EXPORT_SYMBOL_GPL(blk_lld_busy);
1554 
1555 /**
1556  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1557  * @rq: the clone request to be cleaned up
1558  *
1559  * Description:
1560  *     Free all bios in @rq for a cloned request.
1561  */
1562 void blk_rq_unprep_clone(struct request *rq)
1563 {
1564 	struct bio *bio;
1565 
1566 	while ((bio = rq->bio) != NULL) {
1567 		rq->bio = bio->bi_next;
1568 
1569 		bio_put(bio);
1570 	}
1571 }
1572 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1573 
1574 /**
1575  * blk_rq_prep_clone - Helper function to setup clone request
1576  * @rq: the request to be setup
1577  * @rq_src: original request to be cloned
1578  * @bs: bio_set that bios for clone are allocated from
1579  * @gfp_mask: memory allocation mask for bio
1580  * @bio_ctr: setup function to be called for each clone bio.
1581  *           Returns %0 for success, non %0 for failure.
1582  * @data: private data to be passed to @bio_ctr
1583  *
1584  * Description:
1585  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1586  *     Also, pages which the original bios are pointing to are not copied
1587  *     and the cloned bios just point same pages.
1588  *     So cloned bios must be completed before original bios, which means
1589  *     the caller must complete @rq before @rq_src.
1590  */
1591 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1592 		      struct bio_set *bs, gfp_t gfp_mask,
1593 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1594 		      void *data)
1595 {
1596 	struct bio *bio, *bio_src;
1597 
1598 	if (!bs)
1599 		bs = &fs_bio_set;
1600 
1601 	__rq_for_each_bio(bio_src, rq_src) {
1602 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1603 		if (!bio)
1604 			goto free_and_out;
1605 
1606 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1607 			goto free_and_out;
1608 
1609 		if (rq->bio) {
1610 			rq->biotail->bi_next = bio;
1611 			rq->biotail = bio;
1612 		} else {
1613 			rq->bio = rq->biotail = bio;
1614 		}
1615 		bio = NULL;
1616 	}
1617 
1618 	/* Copy attributes of the original request to the clone request. */
1619 	rq->__sector = blk_rq_pos(rq_src);
1620 	rq->__data_len = blk_rq_bytes(rq_src);
1621 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1622 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1623 		rq->special_vec = rq_src->special_vec;
1624 	}
1625 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1626 	rq->ioprio = rq_src->ioprio;
1627 
1628 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1629 		goto free_and_out;
1630 
1631 	return 0;
1632 
1633 free_and_out:
1634 	if (bio)
1635 		bio_put(bio);
1636 	blk_rq_unprep_clone(rq);
1637 
1638 	return -ENOMEM;
1639 }
1640 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1641 
1642 int kblockd_schedule_work(struct work_struct *work)
1643 {
1644 	return queue_work(kblockd_workqueue, work);
1645 }
1646 EXPORT_SYMBOL(kblockd_schedule_work);
1647 
1648 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1649 				unsigned long delay)
1650 {
1651 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1652 }
1653 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1654 
1655 /**
1656  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1657  * @plug:	The &struct blk_plug that needs to be initialized
1658  *
1659  * Description:
1660  *   blk_start_plug() indicates to the block layer an intent by the caller
1661  *   to submit multiple I/O requests in a batch.  The block layer may use
1662  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1663  *   is called.  However, the block layer may choose to submit requests
1664  *   before a call to blk_finish_plug() if the number of queued I/Os
1665  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1666  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1667  *   the task schedules (see below).
1668  *
1669  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1670  *   pending I/O should the task end up blocking between blk_start_plug() and
1671  *   blk_finish_plug(). This is important from a performance perspective, but
1672  *   also ensures that we don't deadlock. For instance, if the task is blocking
1673  *   for a memory allocation, memory reclaim could end up wanting to free a
1674  *   page belonging to that request that is currently residing in our private
1675  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1676  *   this kind of deadlock.
1677  */
1678 void blk_start_plug(struct blk_plug *plug)
1679 {
1680 	struct task_struct *tsk = current;
1681 
1682 	/*
1683 	 * If this is a nested plug, don't actually assign it.
1684 	 */
1685 	if (tsk->plug)
1686 		return;
1687 
1688 	INIT_LIST_HEAD(&plug->mq_list);
1689 	INIT_LIST_HEAD(&plug->cb_list);
1690 	plug->rq_count = 0;
1691 	plug->multiple_queues = false;
1692 	plug->nowait = false;
1693 
1694 	/*
1695 	 * Store ordering should not be needed here, since a potential
1696 	 * preempt will imply a full memory barrier
1697 	 */
1698 	tsk->plug = plug;
1699 }
1700 EXPORT_SYMBOL(blk_start_plug);
1701 
1702 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1703 {
1704 	LIST_HEAD(callbacks);
1705 
1706 	while (!list_empty(&plug->cb_list)) {
1707 		list_splice_init(&plug->cb_list, &callbacks);
1708 
1709 		while (!list_empty(&callbacks)) {
1710 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1711 							  struct blk_plug_cb,
1712 							  list);
1713 			list_del(&cb->list);
1714 			cb->callback(cb, from_schedule);
1715 		}
1716 	}
1717 }
1718 
1719 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1720 				      int size)
1721 {
1722 	struct blk_plug *plug = current->plug;
1723 	struct blk_plug_cb *cb;
1724 
1725 	if (!plug)
1726 		return NULL;
1727 
1728 	list_for_each_entry(cb, &plug->cb_list, list)
1729 		if (cb->callback == unplug && cb->data == data)
1730 			return cb;
1731 
1732 	/* Not currently on the callback list */
1733 	BUG_ON(size < sizeof(*cb));
1734 	cb = kzalloc(size, GFP_ATOMIC);
1735 	if (cb) {
1736 		cb->data = data;
1737 		cb->callback = unplug;
1738 		list_add(&cb->list, &plug->cb_list);
1739 	}
1740 	return cb;
1741 }
1742 EXPORT_SYMBOL(blk_check_plugged);
1743 
1744 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1745 {
1746 	flush_plug_callbacks(plug, from_schedule);
1747 
1748 	if (!list_empty(&plug->mq_list))
1749 		blk_mq_flush_plug_list(plug, from_schedule);
1750 }
1751 
1752 /**
1753  * blk_finish_plug - mark the end of a batch of submitted I/O
1754  * @plug:	The &struct blk_plug passed to blk_start_plug()
1755  *
1756  * Description:
1757  * Indicate that a batch of I/O submissions is complete.  This function
1758  * must be paired with an initial call to blk_start_plug().  The intent
1759  * is to allow the block layer to optimize I/O submission.  See the
1760  * documentation for blk_start_plug() for more information.
1761  */
1762 void blk_finish_plug(struct blk_plug *plug)
1763 {
1764 	if (plug != current->plug)
1765 		return;
1766 	blk_flush_plug_list(plug, false);
1767 
1768 	current->plug = NULL;
1769 }
1770 EXPORT_SYMBOL(blk_finish_plug);
1771 
1772 void blk_io_schedule(void)
1773 {
1774 	/* Prevent hang_check timer from firing at us during very long I/O */
1775 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1776 
1777 	if (timeout)
1778 		io_schedule_timeout(timeout);
1779 	else
1780 		io_schedule();
1781 }
1782 EXPORT_SYMBOL_GPL(blk_io_schedule);
1783 
1784 int __init blk_dev_init(void)
1785 {
1786 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1787 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1788 			sizeof_field(struct request, cmd_flags));
1789 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1790 			sizeof_field(struct bio, bi_opf));
1791 
1792 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1793 	kblockd_workqueue = alloc_workqueue("kblockd",
1794 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1795 	if (!kblockd_workqueue)
1796 		panic("Failed to create kblockd\n");
1797 
1798 	blk_requestq_cachep = kmem_cache_create("request_queue",
1799 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1800 
1801 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1802 
1803 	return 0;
1804 }
1805