1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-pm.h> 20 #include <linux/blk-integrity.h> 21 #include <linux/highmem.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kernel_stat.h> 25 #include <linux/string.h> 26 #include <linux/init.h> 27 #include <linux/completion.h> 28 #include <linux/slab.h> 29 #include <linux/swap.h> 30 #include <linux/writeback.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/fault-inject.h> 33 #include <linux/list_sort.h> 34 #include <linux/delay.h> 35 #include <linux/ratelimit.h> 36 #include <linux/pm_runtime.h> 37 #include <linux/t10-pi.h> 38 #include <linux/debugfs.h> 39 #include <linux/bpf.h> 40 #include <linux/part_stat.h> 41 #include <linux/sched/sysctl.h> 42 #include <linux/blk-crypto.h> 43 44 #define CREATE_TRACE_POINTS 45 #include <trace/events/block.h> 46 47 #include "blk.h" 48 #include "blk-mq-sched.h" 49 #include "blk-pm.h" 50 #include "blk-cgroup.h" 51 #include "blk-throttle.h" 52 53 struct dentry *blk_debugfs_root; 54 55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert); 61 62 static DEFINE_IDA(blk_queue_ida); 63 64 /* 65 * For queue allocation 66 */ 67 static struct kmem_cache *blk_requestq_cachep; 68 69 /* 70 * Controlling structure to kblockd 71 */ 72 static struct workqueue_struct *kblockd_workqueue; 73 74 /** 75 * blk_queue_flag_set - atomically set a queue flag 76 * @flag: flag to be set 77 * @q: request queue 78 */ 79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 80 { 81 set_bit(flag, &q->queue_flags); 82 } 83 EXPORT_SYMBOL(blk_queue_flag_set); 84 85 /** 86 * blk_queue_flag_clear - atomically clear a queue flag 87 * @flag: flag to be cleared 88 * @q: request queue 89 */ 90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 91 { 92 clear_bit(flag, &q->queue_flags); 93 } 94 EXPORT_SYMBOL(blk_queue_flag_clear); 95 96 /** 97 * blk_queue_flag_test_and_set - atomically test and set a queue flag 98 * @flag: flag to be set 99 * @q: request queue 100 * 101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 102 * the flag was already set. 103 */ 104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 105 { 106 return test_and_set_bit(flag, &q->queue_flags); 107 } 108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 109 110 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 111 static const char *const blk_op_name[] = { 112 REQ_OP_NAME(READ), 113 REQ_OP_NAME(WRITE), 114 REQ_OP_NAME(FLUSH), 115 REQ_OP_NAME(DISCARD), 116 REQ_OP_NAME(SECURE_ERASE), 117 REQ_OP_NAME(ZONE_RESET), 118 REQ_OP_NAME(ZONE_RESET_ALL), 119 REQ_OP_NAME(ZONE_OPEN), 120 REQ_OP_NAME(ZONE_CLOSE), 121 REQ_OP_NAME(ZONE_FINISH), 122 REQ_OP_NAME(ZONE_APPEND), 123 REQ_OP_NAME(WRITE_ZEROES), 124 REQ_OP_NAME(DRV_IN), 125 REQ_OP_NAME(DRV_OUT), 126 }; 127 #undef REQ_OP_NAME 128 129 /** 130 * blk_op_str - Return string XXX in the REQ_OP_XXX. 131 * @op: REQ_OP_XXX. 132 * 133 * Description: Centralize block layer function to convert REQ_OP_XXX into 134 * string format. Useful in the debugging and tracing bio or request. For 135 * invalid REQ_OP_XXX it returns string "UNKNOWN". 136 */ 137 inline const char *blk_op_str(enum req_op op) 138 { 139 const char *op_str = "UNKNOWN"; 140 141 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 142 op_str = blk_op_name[op]; 143 144 return op_str; 145 } 146 EXPORT_SYMBOL_GPL(blk_op_str); 147 148 static const struct { 149 int errno; 150 const char *name; 151 } blk_errors[] = { 152 [BLK_STS_OK] = { 0, "" }, 153 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 154 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 155 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 156 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 157 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 158 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 159 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 160 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 161 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 162 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 163 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 164 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" }, 165 166 /* device mapper special case, should not leak out: */ 167 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 168 169 /* zone device specific errors */ 170 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" }, 171 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" }, 172 173 /* everything else not covered above: */ 174 [BLK_STS_IOERR] = { -EIO, "I/O" }, 175 }; 176 177 blk_status_t errno_to_blk_status(int errno) 178 { 179 int i; 180 181 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 182 if (blk_errors[i].errno == errno) 183 return (__force blk_status_t)i; 184 } 185 186 return BLK_STS_IOERR; 187 } 188 EXPORT_SYMBOL_GPL(errno_to_blk_status); 189 190 int blk_status_to_errno(blk_status_t status) 191 { 192 int idx = (__force int)status; 193 194 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 195 return -EIO; 196 return blk_errors[idx].errno; 197 } 198 EXPORT_SYMBOL_GPL(blk_status_to_errno); 199 200 const char *blk_status_to_str(blk_status_t status) 201 { 202 int idx = (__force int)status; 203 204 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 205 return "<null>"; 206 return blk_errors[idx].name; 207 } 208 209 /** 210 * blk_sync_queue - cancel any pending callbacks on a queue 211 * @q: the queue 212 * 213 * Description: 214 * The block layer may perform asynchronous callback activity 215 * on a queue, such as calling the unplug function after a timeout. 216 * A block device may call blk_sync_queue to ensure that any 217 * such activity is cancelled, thus allowing it to release resources 218 * that the callbacks might use. The caller must already have made sure 219 * that its ->submit_bio will not re-add plugging prior to calling 220 * this function. 221 * 222 * This function does not cancel any asynchronous activity arising 223 * out of elevator or throttling code. That would require elevator_exit() 224 * and blkcg_exit_queue() to be called with queue lock initialized. 225 * 226 */ 227 void blk_sync_queue(struct request_queue *q) 228 { 229 del_timer_sync(&q->timeout); 230 cancel_work_sync(&q->timeout_work); 231 } 232 EXPORT_SYMBOL(blk_sync_queue); 233 234 /** 235 * blk_set_pm_only - increment pm_only counter 236 * @q: request queue pointer 237 */ 238 void blk_set_pm_only(struct request_queue *q) 239 { 240 atomic_inc(&q->pm_only); 241 } 242 EXPORT_SYMBOL_GPL(blk_set_pm_only); 243 244 void blk_clear_pm_only(struct request_queue *q) 245 { 246 int pm_only; 247 248 pm_only = atomic_dec_return(&q->pm_only); 249 WARN_ON_ONCE(pm_only < 0); 250 if (pm_only == 0) 251 wake_up_all(&q->mq_freeze_wq); 252 } 253 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 254 255 static void blk_free_queue_rcu(struct rcu_head *rcu_head) 256 { 257 struct request_queue *q = container_of(rcu_head, 258 struct request_queue, rcu_head); 259 260 percpu_ref_exit(&q->q_usage_counter); 261 kmem_cache_free(blk_requestq_cachep, q); 262 } 263 264 static void blk_free_queue(struct request_queue *q) 265 { 266 if (q->poll_stat) 267 blk_stat_remove_callback(q, q->poll_cb); 268 blk_stat_free_callback(q->poll_cb); 269 270 blk_free_queue_stats(q->stats); 271 kfree(q->poll_stat); 272 273 if (queue_is_mq(q)) 274 blk_mq_release(q); 275 276 ida_free(&blk_queue_ida, q->id); 277 call_rcu(&q->rcu_head, blk_free_queue_rcu); 278 } 279 280 /** 281 * blk_put_queue - decrement the request_queue refcount 282 * @q: the request_queue structure to decrement the refcount for 283 * 284 * Decrements the refcount of the request_queue and free it when the refcount 285 * reaches 0. 286 */ 287 void blk_put_queue(struct request_queue *q) 288 { 289 if (refcount_dec_and_test(&q->refs)) 290 blk_free_queue(q); 291 } 292 EXPORT_SYMBOL(blk_put_queue); 293 294 void blk_queue_start_drain(struct request_queue *q) 295 { 296 /* 297 * When queue DYING flag is set, we need to block new req 298 * entering queue, so we call blk_freeze_queue_start() to 299 * prevent I/O from crossing blk_queue_enter(). 300 */ 301 blk_freeze_queue_start(q); 302 if (queue_is_mq(q)) 303 blk_mq_wake_waiters(q); 304 /* Make blk_queue_enter() reexamine the DYING flag. */ 305 wake_up_all(&q->mq_freeze_wq); 306 } 307 308 /** 309 * blk_queue_enter() - try to increase q->q_usage_counter 310 * @q: request queue pointer 311 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM 312 */ 313 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 314 { 315 const bool pm = flags & BLK_MQ_REQ_PM; 316 317 while (!blk_try_enter_queue(q, pm)) { 318 if (flags & BLK_MQ_REQ_NOWAIT) 319 return -EAGAIN; 320 321 /* 322 * read pair of barrier in blk_freeze_queue_start(), we need to 323 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and 324 * reading .mq_freeze_depth or queue dying flag, otherwise the 325 * following wait may never return if the two reads are 326 * reordered. 327 */ 328 smp_rmb(); 329 wait_event(q->mq_freeze_wq, 330 (!q->mq_freeze_depth && 331 blk_pm_resume_queue(pm, q)) || 332 blk_queue_dying(q)); 333 if (blk_queue_dying(q)) 334 return -ENODEV; 335 } 336 337 return 0; 338 } 339 340 int __bio_queue_enter(struct request_queue *q, struct bio *bio) 341 { 342 while (!blk_try_enter_queue(q, false)) { 343 struct gendisk *disk = bio->bi_bdev->bd_disk; 344 345 if (bio->bi_opf & REQ_NOWAIT) { 346 if (test_bit(GD_DEAD, &disk->state)) 347 goto dead; 348 bio_wouldblock_error(bio); 349 return -EAGAIN; 350 } 351 352 /* 353 * read pair of barrier in blk_freeze_queue_start(), we need to 354 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and 355 * reading .mq_freeze_depth or queue dying flag, otherwise the 356 * following wait may never return if the two reads are 357 * reordered. 358 */ 359 smp_rmb(); 360 wait_event(q->mq_freeze_wq, 361 (!q->mq_freeze_depth && 362 blk_pm_resume_queue(false, q)) || 363 test_bit(GD_DEAD, &disk->state)); 364 if (test_bit(GD_DEAD, &disk->state)) 365 goto dead; 366 } 367 368 return 0; 369 dead: 370 bio_io_error(bio); 371 return -ENODEV; 372 } 373 374 void blk_queue_exit(struct request_queue *q) 375 { 376 percpu_ref_put(&q->q_usage_counter); 377 } 378 379 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 380 { 381 struct request_queue *q = 382 container_of(ref, struct request_queue, q_usage_counter); 383 384 wake_up_all(&q->mq_freeze_wq); 385 } 386 387 static void blk_rq_timed_out_timer(struct timer_list *t) 388 { 389 struct request_queue *q = from_timer(q, t, timeout); 390 391 kblockd_schedule_work(&q->timeout_work); 392 } 393 394 static void blk_timeout_work(struct work_struct *work) 395 { 396 } 397 398 struct request_queue *blk_alloc_queue(int node_id) 399 { 400 struct request_queue *q; 401 402 q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO, 403 node_id); 404 if (!q) 405 return NULL; 406 407 q->last_merge = NULL; 408 409 q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL); 410 if (q->id < 0) 411 goto fail_q; 412 413 q->stats = blk_alloc_queue_stats(); 414 if (!q->stats) 415 goto fail_id; 416 417 q->node = node_id; 418 419 atomic_set(&q->nr_active_requests_shared_tags, 0); 420 421 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 422 INIT_WORK(&q->timeout_work, blk_timeout_work); 423 INIT_LIST_HEAD(&q->icq_list); 424 425 refcount_set(&q->refs, 1); 426 mutex_init(&q->debugfs_mutex); 427 mutex_init(&q->sysfs_lock); 428 mutex_init(&q->sysfs_dir_lock); 429 spin_lock_init(&q->queue_lock); 430 431 init_waitqueue_head(&q->mq_freeze_wq); 432 mutex_init(&q->mq_freeze_lock); 433 434 /* 435 * Init percpu_ref in atomic mode so that it's faster to shutdown. 436 * See blk_register_queue() for details. 437 */ 438 if (percpu_ref_init(&q->q_usage_counter, 439 blk_queue_usage_counter_release, 440 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 441 goto fail_stats; 442 443 blk_set_default_limits(&q->limits); 444 q->nr_requests = BLKDEV_DEFAULT_RQ; 445 446 return q; 447 448 fail_stats: 449 blk_free_queue_stats(q->stats); 450 fail_id: 451 ida_free(&blk_queue_ida, q->id); 452 fail_q: 453 kmem_cache_free(blk_requestq_cachep, q); 454 return NULL; 455 } 456 457 /** 458 * blk_get_queue - increment the request_queue refcount 459 * @q: the request_queue structure to increment the refcount for 460 * 461 * Increment the refcount of the request_queue kobject. 462 * 463 * Context: Any context. 464 */ 465 bool blk_get_queue(struct request_queue *q) 466 { 467 if (unlikely(blk_queue_dying(q))) 468 return false; 469 refcount_inc(&q->refs); 470 return true; 471 } 472 EXPORT_SYMBOL(blk_get_queue); 473 474 #ifdef CONFIG_FAIL_MAKE_REQUEST 475 476 static DECLARE_FAULT_ATTR(fail_make_request); 477 478 static int __init setup_fail_make_request(char *str) 479 { 480 return setup_fault_attr(&fail_make_request, str); 481 } 482 __setup("fail_make_request=", setup_fail_make_request); 483 484 bool should_fail_request(struct block_device *part, unsigned int bytes) 485 { 486 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes); 487 } 488 489 static int __init fail_make_request_debugfs(void) 490 { 491 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 492 NULL, &fail_make_request); 493 494 return PTR_ERR_OR_ZERO(dir); 495 } 496 497 late_initcall(fail_make_request_debugfs); 498 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 499 500 static inline void bio_check_ro(struct bio *bio) 501 { 502 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) { 503 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 504 return; 505 pr_warn("Trying to write to read-only block-device %pg\n", 506 bio->bi_bdev); 507 /* Older lvm-tools actually trigger this */ 508 } 509 } 510 511 static noinline int should_fail_bio(struct bio *bio) 512 { 513 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size)) 514 return -EIO; 515 return 0; 516 } 517 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 518 519 /* 520 * Check whether this bio extends beyond the end of the device or partition. 521 * This may well happen - the kernel calls bread() without checking the size of 522 * the device, e.g., when mounting a file system. 523 */ 524 static inline int bio_check_eod(struct bio *bio) 525 { 526 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 527 unsigned int nr_sectors = bio_sectors(bio); 528 529 if (nr_sectors && maxsector && 530 (nr_sectors > maxsector || 531 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 532 pr_info_ratelimited("%s: attempt to access beyond end of device\n" 533 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n", 534 current->comm, bio->bi_bdev, bio->bi_opf, 535 bio->bi_iter.bi_sector, nr_sectors, maxsector); 536 return -EIO; 537 } 538 return 0; 539 } 540 541 /* 542 * Remap block n of partition p to block n+start(p) of the disk. 543 */ 544 static int blk_partition_remap(struct bio *bio) 545 { 546 struct block_device *p = bio->bi_bdev; 547 548 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 549 return -EIO; 550 if (bio_sectors(bio)) { 551 bio->bi_iter.bi_sector += p->bd_start_sect; 552 trace_block_bio_remap(bio, p->bd_dev, 553 bio->bi_iter.bi_sector - 554 p->bd_start_sect); 555 } 556 bio_set_flag(bio, BIO_REMAPPED); 557 return 0; 558 } 559 560 /* 561 * Check write append to a zoned block device. 562 */ 563 static inline blk_status_t blk_check_zone_append(struct request_queue *q, 564 struct bio *bio) 565 { 566 int nr_sectors = bio_sectors(bio); 567 568 /* Only applicable to zoned block devices */ 569 if (!bdev_is_zoned(bio->bi_bdev)) 570 return BLK_STS_NOTSUPP; 571 572 /* The bio sector must point to the start of a sequential zone */ 573 if (bio->bi_iter.bi_sector & (bdev_zone_sectors(bio->bi_bdev) - 1) || 574 !bio_zone_is_seq(bio)) 575 return BLK_STS_IOERR; 576 577 /* 578 * Not allowed to cross zone boundaries. Otherwise, the BIO will be 579 * split and could result in non-contiguous sectors being written in 580 * different zones. 581 */ 582 if (nr_sectors > q->limits.chunk_sectors) 583 return BLK_STS_IOERR; 584 585 /* Make sure the BIO is small enough and will not get split */ 586 if (nr_sectors > q->limits.max_zone_append_sectors) 587 return BLK_STS_IOERR; 588 589 bio->bi_opf |= REQ_NOMERGE; 590 591 return BLK_STS_OK; 592 } 593 594 static void __submit_bio(struct bio *bio) 595 { 596 struct gendisk *disk = bio->bi_bdev->bd_disk; 597 598 if (unlikely(!blk_crypto_bio_prep(&bio))) 599 return; 600 601 if (!disk->fops->submit_bio) { 602 blk_mq_submit_bio(bio); 603 } else if (likely(bio_queue_enter(bio) == 0)) { 604 disk->fops->submit_bio(bio); 605 blk_queue_exit(disk->queue); 606 } 607 } 608 609 /* 610 * The loop in this function may be a bit non-obvious, and so deserves some 611 * explanation: 612 * 613 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure 614 * that), so we have a list with a single bio. 615 * - We pretend that we have just taken it off a longer list, so we assign 616 * bio_list to a pointer to the bio_list_on_stack, thus initialising the 617 * bio_list of new bios to be added. ->submit_bio() may indeed add some more 618 * bios through a recursive call to submit_bio_noacct. If it did, we find a 619 * non-NULL value in bio_list and re-enter the loop from the top. 620 * - In this case we really did just take the bio of the top of the list (no 621 * pretending) and so remove it from bio_list, and call into ->submit_bio() 622 * again. 623 * 624 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio. 625 * bio_list_on_stack[1] contains bios that were submitted before the current 626 * ->submit_bio, but that haven't been processed yet. 627 */ 628 static void __submit_bio_noacct(struct bio *bio) 629 { 630 struct bio_list bio_list_on_stack[2]; 631 632 BUG_ON(bio->bi_next); 633 634 bio_list_init(&bio_list_on_stack[0]); 635 current->bio_list = bio_list_on_stack; 636 637 do { 638 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 639 struct bio_list lower, same; 640 641 /* 642 * Create a fresh bio_list for all subordinate requests. 643 */ 644 bio_list_on_stack[1] = bio_list_on_stack[0]; 645 bio_list_init(&bio_list_on_stack[0]); 646 647 __submit_bio(bio); 648 649 /* 650 * Sort new bios into those for a lower level and those for the 651 * same level. 652 */ 653 bio_list_init(&lower); 654 bio_list_init(&same); 655 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 656 if (q == bdev_get_queue(bio->bi_bdev)) 657 bio_list_add(&same, bio); 658 else 659 bio_list_add(&lower, bio); 660 661 /* 662 * Now assemble so we handle the lowest level first. 663 */ 664 bio_list_merge(&bio_list_on_stack[0], &lower); 665 bio_list_merge(&bio_list_on_stack[0], &same); 666 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 667 } while ((bio = bio_list_pop(&bio_list_on_stack[0]))); 668 669 current->bio_list = NULL; 670 } 671 672 static void __submit_bio_noacct_mq(struct bio *bio) 673 { 674 struct bio_list bio_list[2] = { }; 675 676 current->bio_list = bio_list; 677 678 do { 679 __submit_bio(bio); 680 } while ((bio = bio_list_pop(&bio_list[0]))); 681 682 current->bio_list = NULL; 683 } 684 685 void submit_bio_noacct_nocheck(struct bio *bio) 686 { 687 /* 688 * We only want one ->submit_bio to be active at a time, else stack 689 * usage with stacked devices could be a problem. Use current->bio_list 690 * to collect a list of requests submited by a ->submit_bio method while 691 * it is active, and then process them after it returned. 692 */ 693 if (current->bio_list) 694 bio_list_add(¤t->bio_list[0], bio); 695 else if (!bio->bi_bdev->bd_disk->fops->submit_bio) 696 __submit_bio_noacct_mq(bio); 697 else 698 __submit_bio_noacct(bio); 699 } 700 701 /** 702 * submit_bio_noacct - re-submit a bio to the block device layer for I/O 703 * @bio: The bio describing the location in memory and on the device. 704 * 705 * This is a version of submit_bio() that shall only be used for I/O that is 706 * resubmitted to lower level drivers by stacking block drivers. All file 707 * systems and other upper level users of the block layer should use 708 * submit_bio() instead. 709 */ 710 void submit_bio_noacct(struct bio *bio) 711 { 712 struct block_device *bdev = bio->bi_bdev; 713 struct request_queue *q = bdev_get_queue(bdev); 714 blk_status_t status = BLK_STS_IOERR; 715 struct blk_plug *plug; 716 717 might_sleep(); 718 719 plug = blk_mq_plug(bio); 720 if (plug && plug->nowait) 721 bio->bi_opf |= REQ_NOWAIT; 722 723 /* 724 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 725 * if queue does not support NOWAIT. 726 */ 727 if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev)) 728 goto not_supported; 729 730 if (should_fail_bio(bio)) 731 goto end_io; 732 bio_check_ro(bio); 733 if (!bio_flagged(bio, BIO_REMAPPED)) { 734 if (unlikely(bio_check_eod(bio))) 735 goto end_io; 736 if (bdev->bd_partno && unlikely(blk_partition_remap(bio))) 737 goto end_io; 738 } 739 740 /* 741 * Filter flush bio's early so that bio based drivers without flush 742 * support don't have to worry about them. 743 */ 744 if (op_is_flush(bio->bi_opf) && 745 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 746 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 747 if (!bio_sectors(bio)) { 748 status = BLK_STS_OK; 749 goto end_io; 750 } 751 } 752 753 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 754 bio_clear_polled(bio); 755 756 switch (bio_op(bio)) { 757 case REQ_OP_DISCARD: 758 if (!bdev_max_discard_sectors(bdev)) 759 goto not_supported; 760 break; 761 case REQ_OP_SECURE_ERASE: 762 if (!bdev_max_secure_erase_sectors(bdev)) 763 goto not_supported; 764 break; 765 case REQ_OP_ZONE_APPEND: 766 status = blk_check_zone_append(q, bio); 767 if (status != BLK_STS_OK) 768 goto end_io; 769 break; 770 case REQ_OP_ZONE_RESET: 771 case REQ_OP_ZONE_OPEN: 772 case REQ_OP_ZONE_CLOSE: 773 case REQ_OP_ZONE_FINISH: 774 if (!bdev_is_zoned(bio->bi_bdev)) 775 goto not_supported; 776 break; 777 case REQ_OP_ZONE_RESET_ALL: 778 if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q)) 779 goto not_supported; 780 break; 781 case REQ_OP_WRITE_ZEROES: 782 if (!q->limits.max_write_zeroes_sectors) 783 goto not_supported; 784 break; 785 default: 786 break; 787 } 788 789 if (blk_throtl_bio(bio)) 790 return; 791 792 blk_cgroup_bio_start(bio); 793 blkcg_bio_issue_init(bio); 794 795 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 796 trace_block_bio_queue(bio); 797 /* Now that enqueuing has been traced, we need to trace 798 * completion as well. 799 */ 800 bio_set_flag(bio, BIO_TRACE_COMPLETION); 801 } 802 submit_bio_noacct_nocheck(bio); 803 return; 804 805 not_supported: 806 status = BLK_STS_NOTSUPP; 807 end_io: 808 bio->bi_status = status; 809 bio_endio(bio); 810 } 811 EXPORT_SYMBOL(submit_bio_noacct); 812 813 /** 814 * submit_bio - submit a bio to the block device layer for I/O 815 * @bio: The &struct bio which describes the I/O 816 * 817 * submit_bio() is used to submit I/O requests to block devices. It is passed a 818 * fully set up &struct bio that describes the I/O that needs to be done. The 819 * bio will be send to the device described by the bi_bdev field. 820 * 821 * The success/failure status of the request, along with notification of 822 * completion, is delivered asynchronously through the ->bi_end_io() callback 823 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has 824 * been called. 825 */ 826 void submit_bio(struct bio *bio) 827 { 828 if (blkcg_punt_bio_submit(bio)) 829 return; 830 831 if (bio_op(bio) == REQ_OP_READ) { 832 task_io_account_read(bio->bi_iter.bi_size); 833 count_vm_events(PGPGIN, bio_sectors(bio)); 834 } else if (bio_op(bio) == REQ_OP_WRITE) { 835 count_vm_events(PGPGOUT, bio_sectors(bio)); 836 } 837 838 submit_bio_noacct(bio); 839 } 840 EXPORT_SYMBOL(submit_bio); 841 842 /** 843 * bio_poll - poll for BIO completions 844 * @bio: bio to poll for 845 * @iob: batches of IO 846 * @flags: BLK_POLL_* flags that control the behavior 847 * 848 * Poll for completions on queue associated with the bio. Returns number of 849 * completed entries found. 850 * 851 * Note: the caller must either be the context that submitted @bio, or 852 * be in a RCU critical section to prevent freeing of @bio. 853 */ 854 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags) 855 { 856 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 857 blk_qc_t cookie = READ_ONCE(bio->bi_cookie); 858 int ret = 0; 859 860 if (cookie == BLK_QC_T_NONE || 861 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 862 return 0; 863 864 /* 865 * As the requests that require a zone lock are not plugged in the 866 * first place, directly accessing the plug instead of using 867 * blk_mq_plug() should not have any consequences during flushing for 868 * zoned devices. 869 */ 870 blk_flush_plug(current->plug, false); 871 872 if (bio_queue_enter(bio)) 873 return 0; 874 if (queue_is_mq(q)) { 875 ret = blk_mq_poll(q, cookie, iob, flags); 876 } else { 877 struct gendisk *disk = q->disk; 878 879 if (disk && disk->fops->poll_bio) 880 ret = disk->fops->poll_bio(bio, iob, flags); 881 } 882 blk_queue_exit(q); 883 return ret; 884 } 885 EXPORT_SYMBOL_GPL(bio_poll); 886 887 /* 888 * Helper to implement file_operations.iopoll. Requires the bio to be stored 889 * in iocb->private, and cleared before freeing the bio. 890 */ 891 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 892 unsigned int flags) 893 { 894 struct bio *bio; 895 int ret = 0; 896 897 /* 898 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can 899 * point to a freshly allocated bio at this point. If that happens 900 * we have a few cases to consider: 901 * 902 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just 903 * simply nothing in this case 904 * 2) the bio points to a not poll enabled device. bio_poll will catch 905 * this and return 0 906 * 3) the bio points to a poll capable device, including but not 907 * limited to the one that the original bio pointed to. In this 908 * case we will call into the actual poll method and poll for I/O, 909 * even if we don't need to, but it won't cause harm either. 910 * 911 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev 912 * is still allocated. Because partitions hold a reference to the whole 913 * device bdev and thus disk, the disk is also still valid. Grabbing 914 * a reference to the queue in bio_poll() ensures the hctxs and requests 915 * are still valid as well. 916 */ 917 rcu_read_lock(); 918 bio = READ_ONCE(kiocb->private); 919 if (bio && bio->bi_bdev) 920 ret = bio_poll(bio, iob, flags); 921 rcu_read_unlock(); 922 923 return ret; 924 } 925 EXPORT_SYMBOL_GPL(iocb_bio_iopoll); 926 927 void update_io_ticks(struct block_device *part, unsigned long now, bool end) 928 { 929 unsigned long stamp; 930 again: 931 stamp = READ_ONCE(part->bd_stamp); 932 if (unlikely(time_after(now, stamp))) { 933 if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now))) 934 __part_stat_add(part, io_ticks, end ? now - stamp : 1); 935 } 936 if (part->bd_partno) { 937 part = bdev_whole(part); 938 goto again; 939 } 940 } 941 942 unsigned long bdev_start_io_acct(struct block_device *bdev, 943 unsigned int sectors, enum req_op op, 944 unsigned long start_time) 945 { 946 const int sgrp = op_stat_group(op); 947 948 part_stat_lock(); 949 update_io_ticks(bdev, start_time, false); 950 part_stat_inc(bdev, ios[sgrp]); 951 part_stat_add(bdev, sectors[sgrp], sectors); 952 part_stat_local_inc(bdev, in_flight[op_is_write(op)]); 953 part_stat_unlock(); 954 955 return start_time; 956 } 957 EXPORT_SYMBOL(bdev_start_io_acct); 958 959 /** 960 * bio_start_io_acct - start I/O accounting for bio based drivers 961 * @bio: bio to start account for 962 * 963 * Returns the start time that should be passed back to bio_end_io_acct(). 964 */ 965 unsigned long bio_start_io_acct(struct bio *bio) 966 { 967 return bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio), 968 bio_op(bio), jiffies); 969 } 970 EXPORT_SYMBOL_GPL(bio_start_io_acct); 971 972 void bdev_end_io_acct(struct block_device *bdev, enum req_op op, 973 unsigned long start_time) 974 { 975 const int sgrp = op_stat_group(op); 976 unsigned long now = READ_ONCE(jiffies); 977 unsigned long duration = now - start_time; 978 979 part_stat_lock(); 980 update_io_ticks(bdev, now, true); 981 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration)); 982 part_stat_local_dec(bdev, in_flight[op_is_write(op)]); 983 part_stat_unlock(); 984 } 985 EXPORT_SYMBOL(bdev_end_io_acct); 986 987 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 988 struct block_device *orig_bdev) 989 { 990 bdev_end_io_acct(orig_bdev, bio_op(bio), start_time); 991 } 992 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped); 993 994 /** 995 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 996 * @q : the queue of the device being checked 997 * 998 * Description: 999 * Check if underlying low-level drivers of a device are busy. 1000 * If the drivers want to export their busy state, they must set own 1001 * exporting function using blk_queue_lld_busy() first. 1002 * 1003 * Basically, this function is used only by request stacking drivers 1004 * to stop dispatching requests to underlying devices when underlying 1005 * devices are busy. This behavior helps more I/O merging on the queue 1006 * of the request stacking driver and prevents I/O throughput regression 1007 * on burst I/O load. 1008 * 1009 * Return: 1010 * 0 - Not busy (The request stacking driver should dispatch request) 1011 * 1 - Busy (The request stacking driver should stop dispatching request) 1012 */ 1013 int blk_lld_busy(struct request_queue *q) 1014 { 1015 if (queue_is_mq(q) && q->mq_ops->busy) 1016 return q->mq_ops->busy(q); 1017 1018 return 0; 1019 } 1020 EXPORT_SYMBOL_GPL(blk_lld_busy); 1021 1022 int kblockd_schedule_work(struct work_struct *work) 1023 { 1024 return queue_work(kblockd_workqueue, work); 1025 } 1026 EXPORT_SYMBOL(kblockd_schedule_work); 1027 1028 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1029 unsigned long delay) 1030 { 1031 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1032 } 1033 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1034 1035 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios) 1036 { 1037 struct task_struct *tsk = current; 1038 1039 /* 1040 * If this is a nested plug, don't actually assign it. 1041 */ 1042 if (tsk->plug) 1043 return; 1044 1045 plug->mq_list = NULL; 1046 plug->cached_rq = NULL; 1047 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT); 1048 plug->rq_count = 0; 1049 plug->multiple_queues = false; 1050 plug->has_elevator = false; 1051 plug->nowait = false; 1052 INIT_LIST_HEAD(&plug->cb_list); 1053 1054 /* 1055 * Store ordering should not be needed here, since a potential 1056 * preempt will imply a full memory barrier 1057 */ 1058 tsk->plug = plug; 1059 } 1060 1061 /** 1062 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1063 * @plug: The &struct blk_plug that needs to be initialized 1064 * 1065 * Description: 1066 * blk_start_plug() indicates to the block layer an intent by the caller 1067 * to submit multiple I/O requests in a batch. The block layer may use 1068 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1069 * is called. However, the block layer may choose to submit requests 1070 * before a call to blk_finish_plug() if the number of queued I/Os 1071 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1072 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1073 * the task schedules (see below). 1074 * 1075 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1076 * pending I/O should the task end up blocking between blk_start_plug() and 1077 * blk_finish_plug(). This is important from a performance perspective, but 1078 * also ensures that we don't deadlock. For instance, if the task is blocking 1079 * for a memory allocation, memory reclaim could end up wanting to free a 1080 * page belonging to that request that is currently residing in our private 1081 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1082 * this kind of deadlock. 1083 */ 1084 void blk_start_plug(struct blk_plug *plug) 1085 { 1086 blk_start_plug_nr_ios(plug, 1); 1087 } 1088 EXPORT_SYMBOL(blk_start_plug); 1089 1090 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1091 { 1092 LIST_HEAD(callbacks); 1093 1094 while (!list_empty(&plug->cb_list)) { 1095 list_splice_init(&plug->cb_list, &callbacks); 1096 1097 while (!list_empty(&callbacks)) { 1098 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1099 struct blk_plug_cb, 1100 list); 1101 list_del(&cb->list); 1102 cb->callback(cb, from_schedule); 1103 } 1104 } 1105 } 1106 1107 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1108 int size) 1109 { 1110 struct blk_plug *plug = current->plug; 1111 struct blk_plug_cb *cb; 1112 1113 if (!plug) 1114 return NULL; 1115 1116 list_for_each_entry(cb, &plug->cb_list, list) 1117 if (cb->callback == unplug && cb->data == data) 1118 return cb; 1119 1120 /* Not currently on the callback list */ 1121 BUG_ON(size < sizeof(*cb)); 1122 cb = kzalloc(size, GFP_ATOMIC); 1123 if (cb) { 1124 cb->data = data; 1125 cb->callback = unplug; 1126 list_add(&cb->list, &plug->cb_list); 1127 } 1128 return cb; 1129 } 1130 EXPORT_SYMBOL(blk_check_plugged); 1131 1132 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule) 1133 { 1134 if (!list_empty(&plug->cb_list)) 1135 flush_plug_callbacks(plug, from_schedule); 1136 if (!rq_list_empty(plug->mq_list)) 1137 blk_mq_flush_plug_list(plug, from_schedule); 1138 /* 1139 * Unconditionally flush out cached requests, even if the unplug 1140 * event came from schedule. Since we know hold references to the 1141 * queue for cached requests, we don't want a blocked task holding 1142 * up a queue freeze/quiesce event. 1143 */ 1144 if (unlikely(!rq_list_empty(plug->cached_rq))) 1145 blk_mq_free_plug_rqs(plug); 1146 } 1147 1148 /** 1149 * blk_finish_plug - mark the end of a batch of submitted I/O 1150 * @plug: The &struct blk_plug passed to blk_start_plug() 1151 * 1152 * Description: 1153 * Indicate that a batch of I/O submissions is complete. This function 1154 * must be paired with an initial call to blk_start_plug(). The intent 1155 * is to allow the block layer to optimize I/O submission. See the 1156 * documentation for blk_start_plug() for more information. 1157 */ 1158 void blk_finish_plug(struct blk_plug *plug) 1159 { 1160 if (plug == current->plug) { 1161 __blk_flush_plug(plug, false); 1162 current->plug = NULL; 1163 } 1164 } 1165 EXPORT_SYMBOL(blk_finish_plug); 1166 1167 void blk_io_schedule(void) 1168 { 1169 /* Prevent hang_check timer from firing at us during very long I/O */ 1170 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 1171 1172 if (timeout) 1173 io_schedule_timeout(timeout); 1174 else 1175 io_schedule(); 1176 } 1177 EXPORT_SYMBOL_GPL(blk_io_schedule); 1178 1179 int __init blk_dev_init(void) 1180 { 1181 BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1182 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1183 sizeof_field(struct request, cmd_flags)); 1184 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1185 sizeof_field(struct bio, bi_opf)); 1186 1187 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1188 kblockd_workqueue = alloc_workqueue("kblockd", 1189 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1190 if (!kblockd_workqueue) 1191 panic("Failed to create kblockd\n"); 1192 1193 blk_requestq_cachep = kmem_cache_create("request_queue", 1194 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1195 1196 blk_debugfs_root = debugfs_create_dir("block", NULL); 1197 1198 return 0; 1199 } 1200